The present invention generally relates to the field of semiconductors, and more particularly relates to field-effect transistors with a recessed channel and raised source/drain regions.
In order to increase the integration density of integrated circuits such as memory, logic, and other devices, the dimensions of field effect transistors (FETs) must be further downscaled. Scaling achieves compactness and improves operating performance in devices by shrinking the overall dimensions and operating voltages of the device while maintaining its electrical properties. All dimensions of the device must be scaled simultaneously in order to optimize the electrical performance of the device. With conventional planar FET scaling reaching fundamental limits, the semiconductor industry is looking to new geometries to facilitate continued device performance improvements.
In one embodiment, a method for fabricating a transistor is disclosed. According to the method, a second semiconductor layer is formed on a first semiconductor layer, and a dummy gate structure is formed on the second semiconductor layer. After forming the dummy gate structure, a gate spacer is formed on vertical sidewalls of the dummy gate structure. After forming the gate spacer, the dummy gate structure is removed so as to form a cavity. The second semiconductor layer is removed beneath the cavity so as to expose a first portion of the first semiconductor layer and to create vertical sidewalls of the second semiconductor layer. A gate dielectric is formed comprising a first portion located on the first portion of the first semiconductor layer and a second portion adjacent to the vertical sidewalls of the second semiconductor layer and vertical sidewalls of the gate spacer. A gate conductor is formed on the first portion of the gate dielectric and abutting the second portion of the gate dielectric. Raised source/drain regions are formed in the second semiconductor layer, at least part of the raised source/drain regions being located below the gate spacer.
In another embodiment, a method for fabricating a fin-field-effect-transistor is disclosed. According to the method, a fin structure is provided atop a dielectric layer, and a semiconductor material is formed on sidewalls of the fin structure. A dummy gate structure is formed on the fin structure and the semiconductor material. After forming the dummy gate structure, a gate spacer is formed on vertical sidewalls of the dummy gate structure. After forming the gate spacer, the dummy gate structure is removed so as to form a cavity and an exposed portion of the fin structure in the cavity. After the cavity is formed, the semiconductor layer is removed from sidewalls of portion of the fin structure. A dielectric spacer is formed on the exposed portion of the fin structure. A gate conductor is formed within the cavity and over the dielectric spacer.
Other objects, features, and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and specific examples, while indicating various embodiments of the present invention, are given by way of illustration only and various modifications may naturally be performed without deviating from the present invention.
Extremely thin silicon-on-insulator (ETSOI) technology has become a viable option for complementary metal-oxide-semiconductor (CMOS) applications. However, there are several challenges in fabricating ETSOI devices. First, the thin layer of silicon in the source/drain extension regions causes high external resistance. For this reason, raised source/drain regions are usually formed to lower this resistance. Raised source/drain regions are usually formed using epitaxial growth after gate patterning. However, the dependency of epitaxial growth on pitch causes variation in the thickness of raised source/drain regions in devices with different pitches. Another challenge is that the loss of material in the ETSOI layer during device fabrication (e.g., during etching) results in an inefficient silicon layer for epitaxially growing raised source/drain regions.
Embodiments of the present invention provide improved ETSOI devices and methods for forming such ETSOI devices. In one embodiment, an epitaxial (epi) layer is grown on top of the ETSOI layer, with the epitaxial layer being composed of a different material than the ETSOI (e.g., the ETSOI layer is silicon and the epitaxial layer is silicon-germanium). A dummy gate is formed on the epitaxial layer, and source/drain regions are formed in the epitaxial and ETSOI layers. The dummy gate is then removed to expose the epitaxial layer in the channel region. The exposed epitaxial layer is then selectively removed with respect to the ETSOI layer.
Good control of the ETSOI channel thickness is achieved by utilizing selective etching techniques. In addition, the ETSOI transistor only requires a single spacer and has a low resistance extension with a thick epitaxial layer. Further, raised source/drain regions are formed prior to gate patterning, which results in uniform raised source/drain regions across various pitches.
As shown in
In the illustrated embodiment, the second semiconductor layer 208 is formed through selective-epitaxial growth of SiGe atop the ETSOI layer 106. The Ge content of the epitaxial grown SiGe ranges from 5% to 60% (by atomic weight). In another embodiment, the Ge content of the epitaxial grown SiGe ranges from 10% to 40%. The epitaxially grown SiGe of the illustrated embodiment is under an intrinsic compressive strain that is produced by a lattice mismatch between the larger lattice dimension of the SiGe and the smaller lattice dimension of the layer on which the SiGe is epitaxially grown. The epitaxially grown SiGe produces a compressive strain in the portion of the ETSOI layer 106 in which the channel of a semiconductor device is subsequently formed.
In this embodiment, the second semiconductor layer 208 is doped with a first conductivity type dopant during the epitaxial growth process. P-type MOSFET devices are produced by doping the second semiconductor layer 208 with elements from group III of the periodic table (e.g., boron, aluminum, gallium, or indium). As an example, the dopant can be boron in a concentration ranging from 1×10E18 atoms/cm3 to 2×10E21 atoms/cm3. In this example, the second semiconductor layer 208 is composed of SiGe and is doped with boron to provide the raised source and drain regions of a P-channel field-effect transistor (PFET). In another embodiment, an N-channel field-effect transistor NPFET) is produced by doping the second semiconductor layer 208 with elements from group V of the periodic table (e.g., phosphorus, antimony, or arsenic).
As shown in
Next, the active area 310 is isolated, such as through shallow trench isolation (STI). In this embodiment, STI is obtained through deposition of an STI oxide, densification anneals, and chemical-mechanical polishing (CMP) that stops on the pad nitride. This forms an STI region 312 above the BOX layer 104 that is continuous around the active area 310. The pad nitride, along with any STI oxide remaining on the pad nitride, and the pad oxide are then removed (e.g., through wet etching using hot phosphoric acid and HF).
As shown in
The second semiconductor layer 208 provides the raised source and drain regions of the semiconductor device. In the illustrated embodiment in which the second semiconductor layer 208 is formed undoped, deep source/drain and extension implantation is performed using the gate spacer 418 to align the implantation. In this embodiment, photolithography is used to selectively define NFET and PFET areas for deep source/drain and extension implants, and then ions are implanted. N-type species are implanted for NFETs, while P-type species are implanted for PFETs. A thermal anneal is then performed to activate and diffuse the implanted ions so as to form the raised source/drain regions 420 and 422 and the source/drain extensions 424 and 426, such as through a spike rapid-thermal anneal (RTA). In another embodiment in which the second semiconductor layer 208 is doped, annealing (such as rapid thermal annealing, furnace annealing, flash lamp annealing, laser annealing, or any suitable combination thereof) can be used to drive the dopants from the second semiconductor layer 208 into the ETSOI layer 106 to provide the extension regions 424 and 426.
In the illustrated embodiment, for an NFET, the source/drain regions 420 and 422 can be heavily doped with an N-type dopant, the source/drain extension regions 424 and 426 can be lightly doped with the same or a different N-type dopant, and the halo regions can be doped with a P-type dopant. Conversely, for a PFET, the source/drain regions 420 and 422 can be heavily doped with a P-type dopant, the source/drain extension regions 424 and 426 can be lightly doped with the same or a different P-type dopant, and the halo regions can be doped with an N-type dopant.
After the source/drain regions 420 and 422 have been formed, a dielectric layer 528 (e.g., an oxide layer) is then formed over the entire structure, as shown in
The second semiconductor layer 208 is then selectively removed with respect to the ETSOI layer 106 to deepen the gate cavity, as shown in
In an alternative embodiment shown in
After the high-k gate dielectric 836 has been formed, a gate conductor material is then deposited and etched to form a gate conductor 852 in the cavity, as shown in
As shown in
After the gate conductor 852 has been formed, the dielectric layer 528 is removed using a conventional process. Next, silicide areas are formed for contacts. In one embodiment, a metal is deposited on top of the source/drain regions 420 and 422, an anneal is performed to form silicide, and then the metal is selectively removed while leaving the silicide untouched (e.g., through an aqua regia wet etch). For example, the metal is nickel, cobalt, titanium, platinum, or a combination thereof. Conventional fabrication steps are then performed to form the remainder of the integrated circuit that includes this transistor.
The principles of the present invention are also applicable to finFETs. After fin formation, an epitaxial layer is grown on the sidewalls of the fin (e.g., with the fin being silicon and the epitaxial layer being SiGe). A dummy gate is formed and the source/drain regions are formed in the epitaxial layer and the ETSOI/fin layer. The dummy gate is the removed to expose the epitaxial layer in the channel region. The exposed epitaxial layer is then selectively removed with respect to the silicon fin layer.
For example, the SOI layer and the substrate layer 1002 comprise at least one of Si, Ge alloys, SiGe, GaAs, InAs, InP, SiCGe, SiC, and other III/V or II/VI compound semiconductors. The SOI layer and substrate layer 1002 can be made of the same or different materials. The dielectric layer 1004 is a crystalline or non-crystalline oxide, nitride, oxynitride, or any other insulating material. The SOI substrate can be formed utilizing a layer transfer process including a bonding step, or an implantation process such as SIMOX (Separation by IMplantation of OXygen).
In the illustrated embodiment, photolithography and etching are used to form the initial structure that is depicted in
In one embodiment, the additional semiconductor material 1108 is formed by selective-epitaxial growth of SiGe on the exposed sidewalls 1109 and 1111 of the fin structure 1006. The Ge content of the epitaxially grown SiGe ranges from 5% to 70% (by atomic weight). In another embodiment, the Ge content of the epitaxially grown SiGe ranges from 10% to 45%. The epitaxially grown SiGe of the illustrated embodiment produces a compressive strain in the portion of the fin structure 1006 in which the channel of a semiconductor device is subsequently formed.
P-type finFET devices are produced by doping the additional semiconductor material 1108 with elements from group III of the periodic table (e.g., boron, aluminum, gallium, or indium). As an example, the dopant may be boron in a concentration ranging from 1×1019 atoms/cm3 to 2×1021 atoms/cm3. In the illustrated embodiment, the additional semiconductor material 1108 is composed of SiGe and is doped with boron to provide the raised source/drain regions of a P-channel finFET.
In another embodiment, the additional semiconductor material 1108 is composed of epitaxially grown Si:C (carbon doped silicon). The carbon (C) content of the epitaxial grown Si:C ranges from 0.5% to 10% (by atomic weight). In another embodiment, the carbon (C) content of the epitaxial grown Si:C ranges from 1% to 2%. In one embodiment, the epitaxial grown Si:C produces a tensile strain in the portion of the fin structure 1006 in which the channel of the finFET is subsequently formed.
In this embodiment, the additional semiconductor material 1108 is doped with a second conductivity type dopant during the epitaxial growth process. N-channel finFET devices are produced by doping the additional semiconductor material 1108 with elements from group V of the periodic table (e.g., phosphorus, antimony, or arsenic).
As shown in
In the illustrated embodiment, a gate (dielectric) spacer 1118 is formed by depositing a conformal layer of dielectric material (such as an oxide, nitride, or oxynitride) and then performing an anisotropic etch (such as a reactive ion etch). After the gate spacer 1118 has been formed, diffusion/annealing is performed to drive dopants from the additional semiconductor layer 1006 into the fin structure 1006 to form source/drain extension regions. In an embodiment in which the additional semiconductor layer 1006 is undoped, source/drain and extension implantation is performed using the gate spacer 1118 to align the implantation. In this embodiment, photolithography is used to selectively define NFET and PFET areas for deep source/drain and extension implants, and then ions are implanted. N-type species are implanted for NFETs, while p-type species are implanted for PFETs. A thermal anneal is then performed to activate and diffuse the ions, such as through a spike rapid-thermal anneal (RTA).
After the source/drain and extension regions have been formed, a dielectric layer 1228 (e.g., an oxide layer) is then formed over the dielectric layer 1004, the fin structure 1006, the additional semiconductor layer 1108, the dummy gate 1116, and the hard mask 1117, as shown in
The exposed portion of the additional semiconductor layer 1108 is then selectively etched with respect to the fin structure 1006, as shown in
This etching extends the gate cavity 1230 down to the dielectric layer 1104, so as to separate the sidewall 1338 and 1340 of the gate spacer 1118 from the exposed portion of the fin structure 1006. After the additional semiconductor layer 1108 has been selectively etched, a layer of a high-k dielectric material is blanket deposited (for example, by CVD, PECVD, or ALD) and then selectively etched using a process such as RIE to form a high-k dielectric spacer 1436 only on the fin structure sidewalls 1109, 1111, 1439, and 1441 and upper horizontal surface 1443, as shown in
After the high-k dielectric spacer 1436 has been formed, a gate conductor material is then deposited over the structure, lithographically patterned, and etched to form a gate conductor 1452, as shown in
The resulting structure has a channel region 1410 formed by the thin fin structure 1006 surrounded by the high-k dielectric spacer 1436 and gate conductor 1452, as shown in
A gate spacer 418 is then formed on the dummy gate stack 414 and 416, at step 1510. A dielectric layer 528 is formed over the second semiconductor layer 208, the dummy gate 416 and 418, and the gate spacer 418, at step 512. The dummy gate stack 414 and 416 is removed and the second semiconductor layer 208 within the gate cavity 630 is selectively etched with respect to the first semiconductor layer 106, at step 1514. This exposes a portion of the first semiconductor layer 106 below the gate cavity 630. A high-k dielectric spacer 836 is then formed on the walls of the gate cavity 630, at step 1516. A gate conductor 852 is then formed in the remaining portion of the gate cavity 630, at step 1518. Conventional steps are then performed to complete the fabrication process, at step 1520.
A gate spacer 1118 is then formed on the dummy gate 1116, at step 1610. A dielectric layer 1228 is formed over the dielectric layer 1004, the dummy gate 1116, and gate spacer 1118, at step 1612. The dummy gate 1116 is removed and the semiconductor layer 1108 within the gate cavity 1230 is selectively etched with respect to the fin structure 1006, at step 1614. This exposes a portion of the fin structure 1006 in the gate cavity 1230. A high-k dielectric spacer 1436 is then formed on vertical walls and the upper horizontal portion of the exposed fin structure 1006, at step 1616. A gate conductor 1452 is then formed in the remaining portion of the gate cavity 1230, at step 1618. Conventional steps are then performed to complete the fabrication process, at step 1620.
It should be noted that some features of the present invention may be used in an embodiment thereof without use of other features of the present invention. As such, the foregoing description should be considered as merely illustrative of the principles, teachings, examples, and exemplary embodiments of the present invention, and not a limitation thereof.
It should be understood that these embodiments are only examples of the many advantageous uses of the innovative teachings herein. In general, statements made in the specification of the present application do not necessarily limit any of the various claimed inventions. Moreover, some statements may apply to some inventive features but not to others.
The circuit as described above is part of the design for an integrated circuit chip. The chip design is created in a graphical computer programming language, and stored in a computer storage medium (such as a disk, tape, physical hard drive, or virtual hard drive such as in a storage access network). If the designer does not fabricate chips or the photolithographic masks used to fabricate chips, the designer transmits the resulting design by physical means (e.g., by providing a copy of the storage medium storing the design) or electronically (e.g., through the Internet) to such entities, directly or indirectly. The stored design is then converted into the appropriate format (e.g., GDSII) for the fabrication of photolithographic masks, which typically include multiple copies of the chip design in question that are to be formed on a wafer. The photolithographic masks are utilized to define areas of the wafer (and/or the layers thereon) to be etched or otherwise processed.
The methods as discussed above are used in the fabrication of integrated circuit chips.
The resulting integrated circuit chips can be distributed by the fabricator in raw wafer form (that is, as a single wafer that has multiple unpackaged chips), as a bare chip, or in a packaged form. In the latter case, the chip is mounted in a single chip package (such as a plastic carrier, with leads that are affixed to a motherboard or other higher level carrier) or in a multichip package (such as a ceramic carrier that has either or both surface interconnections or buried interconnections). In any case, the chip is then integrated with other chips, discrete circuit elements, and/or other signal processing devices as part of either (a) an intermediate product, such as a motherboard, or (b) an end product. The end product can be any product that includes integrated circuit chips, ranging from toys and other low-end applications to advanced computer products having a display, a keyboard, or other input device, and a central processor.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which can be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure. Further, the terms and phrases used herein are not intended to be limiting; but rather, to provide an understandable description of the invention.
The terms “a” or “an”, as used herein, are defined as one as or more than one. The term plurality, as used herein, is defined as two as or more than two. Plural and singular terms are the same unless expressly stated otherwise. The term another, as used herein, is defined as at least a second or more. The terms including and/or having, as used herein, are defined as comprising (i.e., open language). The term coupled, as used herein, is defined as connected, although not necessarily directly, and not necessarily mechanically. The terms program, software application, and the like as used herein, are defined as a sequence of instructions designed for execution on a computer system. A program, computer program, or software application may include a subroutine, a function, a procedure, an object method, an object implementation, an executable application, an applet, a servlet, a source code, an object code, a shared library/dynamic load library and/or other sequence of instructions designed for execution on a computer system.
Although specific embodiments of the invention have been disclosed, those having ordinary skill in the art will understand that changes can be made to the specific embodiments without departing from the spirit and scope of the invention. The scope of the invention is not to be restricted, therefore, to the specific embodiments, and it is intended that the appended claims cover any and all such applications, modifications, and embodiments within the scope of the present invention.
This application is a continuation of prior U.S. application Ser. No. 13/347,161, filed Jan. 10, 2012, now U.S. Pat. No. ______. The entire disclosure of U.S. application Ser. No. 13/347,161 is herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 13347161 | Jan 2012 | US |
Child | 13618186 | US |