Method for forming conductive structures

Information

  • Patent Grant
  • 7833893
  • Patent Number
    7,833,893
  • Date Filed
    Tuesday, July 10, 2007
    17 years ago
  • Date Issued
    Tuesday, November 16, 2010
    14 years ago
Abstract
A method of forming a method a conductive wire. The method includes forming a dielectric hardmask layer on a dielectric layer; forming an electrically conductive hardmask layer on the dielectric hardmask layer; forming a trench extending through the conductive and dielectric hardmask layers into the dielectric layer; depositing a liner/seed layer on the conductive hardmask layer and the sidewalls and bottom of the trench; filling the trench with a fill material; removing the liner/seed layer from the top surface of the conductive hardmask layer; removing the fill material from the trench; electroplating a metal layer onto exposed surfaces of the conductive hardmask layer and liner/seed layer; and removing the metal layer and the conductive hardmask layer from the dielectric hardmask layer so the metal layer and edges of the liner/seed layer are coplanar with the top surface of the dielectric hardmask layer.
Description
FIELD OF THE INVENTION

The present invention relates to the field of integrated circuit fabrication; more specifically, it relates to a method of making electrically conductive plated interconnect structures for integrated circuits.


BACKGROUND OF THE INVENTION

Modern integrated circuits are comprised of devices such as transistors formed in a semiconductor layer and electrically conductive wires formed in inter-level dielectric layers above the semiconductor layer that interconnect the devices into circuits. Because of its low resistance, copper has become a prime material for these wires. However, as the dimensions of the wires has decreased, defects such as voids have been found in narrow copper wires that locally increase the resistance of the copper wires and which can lead to circuit failures. Therefore there is a need for a fabrication process for copper interconnects that is less susceptible to voiding than current fabrication processes.


SUMMARY OF THE INVENTION

A first aspect of the present invention is a method of forming a conductive wire, comprising: (a) forming a dielectric layer on a substrate; (b) forming a dielectric hardmask layer on a top surface of the dielectric layer; (c) forming an electrically conductive hardmask layer on a top surface of the dielectric hardmask layer; (d) forming a trench extending from a top surface of the conductive hardmask layer, through the conductive hardmask layer, through the dielectric hardmask layer and into the dielectric layer, the trench having sidewalls and a bottom; after (d), (e) depositing a continuous liner/seed layer on the top surface of the conductive hardmask layer and the sidewalls and bottom of the trench; after (e), (f) filling the trench with a fill material; after (f), (g) removing the liner/seed layer from the top surface of conductive hardmask layer; after (g), (h) removing the fill material from the trench; (i) electroplating a metal layer onto exposed surface of the conductive hardmask layer and the liner/seed layer, the metal layer filling the trench; and (j) performing a chemical-mechanical-polish to remove the metal layer from the conductive hardmask layer and to remove the conductive hardmask layer from the dielectric hardmask layer, after the chemical mechanical polish, top surfaces of the metal layer, an edge of the liner/seed layer and the top surface of the dielectric hardmask layer are coplanar.





BRIEF DESCRIPTION OF THE DRAWINGS

The features of the invention are set forth in the appended claims. The invention itself, however, will be best understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:



FIGS. 1 through 8 are cross-section views illustrating fabrication of an interconnect structure according to the present invention.





DETAILED DESCRIPTION OF THE INVENTION

A damascene process is one in which wire trenches or via openings are formed in a dielectric layer, an electrical conductor of sufficient thickness to fill the trenches is deposited on a top surface of the dielectric, and a chemical-mechanical-polish (CMP) process is performed to remove excess conductor and make the surface of the conductor co-planar with the surface of the dielectric layer to form damascene wires (or damascene vias). When only a trench and a wire (or a via opening and a via) is formed the process is called single-damascene.


A dual-damascene process is one in which via openings are formed through the entire thickness of a dielectric layer followed by formation of trenches part of the way through the dielectric layer in any given cross-sectional view. All via openings are intersected by integral wire trenches above and by a wire trench below, but not all trenches need intersect a via opening. An electrical conductor of sufficient thickness to fill the trenches and via opening is deposited on a top surface of the dielectric and a CMP process is performed to make the surface of the conductor in the trench co-planar with the surface the dielectric layer to form dual-damascene wires and dual-damascene wires having integral dual-damascene vias.


The present invention will be described using a single-damascene process, but it should be understood the present invention maybe practiced using a dual-damascene process as well.



FIGS. 1 through 8 are cross-section views illustrating fabrication of an interconnect structure according to the present invention. In FIG. 1, formed on a top surface of a substrate 100 is a dielectric hardmask layer 105. Formed on a top surface of hardmask layer 105 is an electrically conductive hardmask layer 110. In one example, dielectric hardmask layer 105 comprises organosilicate glass (SiCOH), porous SiCOH, silicon dioxide (SiO2), silicon nitride (Si3N4), silicon carbide (SiC), silicon oxy nitride (SiON), silicon oxy carbide (SiOC), plasma-enhanced silicon nitride (PSiNx) or NBLok (SiC(N,H)). In one example, dielectric hardmask layer 105 is between about 5 nm and about 100 nm thick. In one example conductive hardmask layer 110 comprises tungsten (W), titanium (Ti), tantalum (Ta), titanium nitride (TiN), tantalum nitride (TaN), an electrically conductive oxide such as indium oxide (In203), (SnO2), cadmium stannate (Cd2SnO4), zinc oxide (ZnO) or an electrically conductive doped oxide such as tin doped indium oxide (In203:Sn), aluminum doped zinc oxide (ZnO:Al) or fluorine doped tin oxide (SnO2:F). In one example, conductive hardmask layer 110 is between about 5 nm and about 100 nm thick.


In FIG. 2, trenches 115 have been formed through dielectric hardmask 105 and conductive hardmask 110 into substrate 100. Trenches 115 have a minimum width W. In one example W is 65 μm or less. In one example, structures which are to electrically contact wires that will be formed in trenches 115 (as described infra) are exposed in the bottom of trenches 115. In one example, substrate 100 includes a dielectric layer 117, and trenches 115 extend through dielectric 117 to a metal wire or contact formed in substrate 100.


In FIG. 3, a continuous electrically conductive liner/seed layer 120 is deposited over the top surface of conductive hardmask layer 110, the sidewalls and bottom of trenches 115 and any edges of dielectric hardmask layer 105 and conductive hardmask layer 110 exposed in trenches 115. In one example, liner/seed layer 120 comprises, in order of deposition, a first layer of TaN, a second layer of Ta and a third layer of copper (Cu), ruthenium (Ru) or iridium (Ir). In one example, liner/seed layer 120 comprises, in order of deposition, a first layer of TiN, a second layer of Ti and a third layer of copper (Cu), ruthenium (Ru) or iridium (Ir). In one example, liner/seed layer 120 is between about 5 nm and about 10 nm thick. As the width W of trenches 115 decreases, liner/seed layer 120 tends to build up thicker at the top edge of the trench, narrowing the top of the trench to a width less than W. This narrowing is not shown in FIG. 3, but can cause trench fill problems when conventional copper plating processes are used to fill in trenches 115. Due to the presence of conductive hardmask layer 110, the embodiments of the present invention overcome this problem as described infra.


In FIG. 4, a fill layer 125 is formed on top of seed layer 120. Fill layer completely fills trenches 115. In one example, fill layer 125 comprises an organic polymer or resin or a photoresist layer. In one example, fill layer 125 is spin applied. In one example, after application, fill layer 125 may be cured by heating above room temperature or by exposure to ultraviolet radiation.


In FIG. 5, fill layer 125 is removed from the top surface of liner/seed layer 120. In one example, fill layer is removed using a reactive ion etch (RIE) processes selective to liner/seed layer 120 (i.e., etches fill layer 125 faster than liner/seed layer 120. Fill layer 125 remains in trenches 115, though it may recess below the top surface of the liner/seed layer as illustrated in FIG. 5.


In FIG. 6, liner/seed layer 120 is removed from the top surface of conductive hardmask layer 110. In one example, liner/seed layer 120 is removed by chemical-mechanical polishing (CMP). In one example, liner/seed layer 120 is removed by RIE using a process selective to conductive hardmask layer 110. In one example, liner/seed layer 120 is removed by wet etching. In one example, liner/seed layer 120 is removed by electro-etching. In one example, liner/seed layer may 120 is removed by a combination of two or more of CMP, RIE, wet etching and electro-etching. Since any narrowing of the width of trenches 115 would have occurred by build-up of liner/seed layer 120 at the top edges of the trenches as described supra, most if not all of this excess material is removed by the CMP process. Conductive hardmask layer 110 remains for subsequent electroplating processes as described infra. Conductive hardmask layer 110 and liner/seed layer 120 are in physical and electrical contact proximate to the top of trenches 115.


In FIG. 6A, fill layer 125 (see FIG. 6) is removed from trenches 115, exposing liner/seed layer 120 on the sidewalls and bottom of trenches 115. In one example, fill layer 125 is removed by a super critical carbon dioxide removal process. Then, in FIG. 7, an electrically conductive layer 130 (e.g., a metal or Cu) is electro-plated on to the exposed surfaces of conductive hardmask layer 110 and liner/seed layer 120. Since conductive hardmask layer 110 and liner/seed layer are in electrical contact, plating current is carried by conductive hardmask layer 110 to liner/seed layer 120 so metal is plated out of the plating solution to completely fill trenches 115.


In FIG. 8, a CMP is performed to remove portions of metal layer 130 (see FIG. 7), conductive hardmask layer 110 (see FIG. 7) and dielectric hardmask layer 105 (see FIG. 7) to form wires 135 in substrate 100. Top surfaces of wires 135 are substantially coplanar with the top surface of substrate 100. Wires 135 comprise a liner 120A (formed from liner/seed layer 120) and a core conductor 130A (formed from conductive layer 130. Alternatively, in FIG. 7A, dielectric hardmask layer 105 is not removed, is which case top surfaces of wires 135 are coplanar with the top surface of dielectric hardmask layer 105.


Thus, the embodiments of the present invention provide a fabrication process for formation of copper interconnects that is less susceptible to voiding than current fabrication processes.


The description of the embodiments of the present invention is given above for the understanding of the present invention. It will be understood that the invention is not limited to the particular embodiments described herein, but is capable of various modifications, rearrangements and substitutions as will now become apparent to those skilled in the art without departing from the scope of the invention. Therefore, it is intended that the following claims cover all such modifications and changes as fall within the true spirit and scope of the invention.

Claims
  • 1. A method of forming a conductive wire, comprising: (a) forming a dielectric layer on a substrate;(b) forming a dielectric hardmask layer on a top surface of said dielectric layer;(c) forming an electrically conductive hardmask layer on a top surface of said dielectric hardmask layer;(d) forming a trench extending from a top surface of said electrically conductive hardmask layer, through said electrically conductive hardmask layer, through said dielectric hardmask layer and into said dielectric layer, said trench having sidewalls and a bottom;after (d), (e) depositing a continuous electrically conductive liner/seed layer on said top surface of said electrically conductive hardmask layer and said sidewalls and bottom of said trench;after (e), (f) forming a layer of an organic fill material on the entire top surface of said electrically conductive liner/seed layer, said fill material completely filling said trench;after (f), (g) removing said layer of organic fill material from said top surface of said electrically conductive hardmask layer and recessing said organic material below said top surface of said electrically conductive hardmask layer using a reactive ion etch process selective to said electrically conductive liner/seed layer so a top surface of said organic fill material is between the top surface of said electrically conductive liner/seed layer and above said top surface of said dielectric hardmask layer;after (g), (h) removing said electrically conductive liner/seed layer from said top surface of said electrically conductive hardmask layer;after (h), (i) removing all remaining fill material from said trench, said electrically conductive liner/seed layer remaining on the entire surface of said sidewalls and said bottom of said trench;after (i), (j) electroplating a metal layer onto exposed surface of said electrically conductive hardmask layer and said electrically conductive liner/seed layer, said metal layer filling said trench; andafter (j), (k) performing a chemical-mechanical-polish to remove said metal layer from said electrically conductive hardmask layer and to remove said electrically conductive hardmask layer from said dielectric hardmask layer, after said chemical mechanical polish, top surfaces of said metal layer, an edge of said electrically conductive liner/seed layer and said top surface of said dielectric hardmask layer are coplanar.
  • 2. The method of claim 1, further including: between (h) and (i), performing a further chemical mechanical polish to remove said dielectric hardmask layer from said dielectric layer, after said further chemical mechanical polish, a top surface of said metal layer, an edge of said liner/seed layer and said top surface of said dielectric layer are coplanar.
  • 3. The method of claim 1, wherein (f) includes: spin applying said organic fill material.
  • 4. The method of claim 1, wherein said electrically conductive liner/seed layer comprises a first layer and a second layer deposited on said first layer.
  • 5. The method of claim 1, wherein said dielectric hardmask layer comprises organosilicate glass, porous organosilicate glass, silicon dioxide, silicon nitride, silicon carbide, silicon oxy nitride, silicon oxy carbide, plasma-enhanced silicon nitride or (SiC(N,H)).
  • 6. The method of claim 1, wherein said electrically conductive hardmask layer comprises tungsten, titanium, tantalum, titanium nitride, tantalum nitride an electrically conductive oxide, indium oxide, tin oxide, cadmium stannate, zinc oxide, an electrically conductive doped oxide, tin doped indium oxide, aluminum doped zinc oxide or fluorine doped tin oxide.
  • 7. The method of claim 1, wherein said fill material comprises an organic polymer, a resin or a photoresist.
  • 8. The method of claim 1, wherein said dielectric hardmask layer is between about is between about 5 nm and about 100 nm thick.
  • 9. The method of claim 1, wherein said electrically conductive hardmask layer is between about 5 nm and about 100 nm thick.
  • 10. The method of claim 1, wherein said liner/seed layer is between about 5 nm and about 20 nm thick.
  • 11. The method of claim 1, wherein a minimum width of said trench is about 65 nm or less.
  • 12. The method of claim 1, wherein said remaining fill material is removed from said trench using a super critical carbon dioxide process.
  • 13. The method of claim 1, wherein said electrically conductive liner/seed layer is removed by chemical-mechanical polishing (CMP).
  • 14. The method of claim 1, wherein said electrically conductive liner/seed layer is removed by reactive ion etching using a process selective to said electrically conductive hardmask layer.
  • 15. The method of claim 1, wherein said electrically conductive liner/seed layer is removed by wet etching.
  • 16. The method of claim 1, wherein said electrically conductive liner/seed layer is removed by electro-etching.
  • 17. The method of claim 1, wherein said electrically conductive liner/seed layer is removed by a combination of two or more of chemical-mechanical polishing, reactive ion etching, wet etching and electro-etching.
  • 18. The method of claim 3, further including: after said spin applying, curing said organic fill layer by heating said organic fill layer to a temperature above room temperature.
  • 19. The method of claim 4, wherein said first layer comprises titanium, tantalum, titanium nitride, tantalum nitride or layers thereof and said second layer comprises copper.
  • 20. The method of claim 3, further including: after said spin applying, curing said organic fill layer by exposing said organic fill layer to ultraviolet light.
US Referenced Citations (66)
Number Name Date Kind
4666556 Fulton et al. May 1987 A
5008216 Huang et al. Apr 1991 A
5047815 Yasuhira et al. Sep 1991 A
5223447 Lee et al. Jun 1993 A
5665202 Subramanian et al. Sep 1997 A
5786263 Perera Jul 1998 A
5963828 Allman et al. Oct 1999 A
6051880 Kikuta Apr 2000 A
6093966 Venkatraman et al. Jul 2000 A
6117782 Lukanc et al. Sep 2000 A
6140223 Kim et al. Oct 2000 A
6251528 Uzoh et al. Jun 2001 B1
6251753 Yeh et al. Jun 2001 B1
6258692 Chu et al. Jul 2001 B1
6291332 Yu et al. Sep 2001 B1
6368484 Volant et al. Apr 2002 B1
6429134 Kubota et al. Aug 2002 B1
6486055 Jung et al. Nov 2002 B1
6486057 Yeh et al. Nov 2002 B1
6534378 Ramkumar et al. Mar 2003 B1
6573601 Dennison et al. Jun 2003 B2
6677232 Hong et al. Jan 2004 B2
6720232 Tu et al. Apr 2004 B1
6812144 Shim Nov 2004 B2
6818552 Daniels et al. Nov 2004 B2
6825561 Agarwala et al. Nov 2004 B1
6831310 Mathew et al. Dec 2004 B1
6897508 Sneh May 2005 B2
6914316 Yun et al. Jul 2005 B2
6927138 Takenaka Aug 2005 B2
7091133 Goundar et al. Aug 2006 B2
7138337 Lin Nov 2006 B2
7176123 Kim et al. Feb 2007 B2
7282447 Dennison et al. Oct 2007 B2
7312131 Wu Dec 2007 B2
7332396 Lin et al. Feb 2008 B2
7387943 Kim et al. Jun 2008 B2
7416987 Hieda et al. Aug 2008 B2
7442979 Shea Oct 2008 B2
7504725 Kim et al. Mar 2009 B2
20010014525 Ireland Aug 2001 A1
20010027019 Ishii et al. Oct 2001 A1
20020135040 Li et al. Sep 2002 A1
20030143322 Ning Jul 2003 A1
20030166345 Chang Sep 2003 A1
20040036051 Sneh Feb 2004 A1
20040212086 Dotta et al. Oct 2004 A1
20050020090 Dennison et al. Jan 2005 A1
20050153538 Tsai et al. Jul 2005 A1
20050170661 Economikos et al. Aug 2005 A1
20060063375 Sun et al. Mar 2006 A1
20060088977 Yang Apr 2006 A1
20060192266 Willer et al. Aug 2006 A1
20060234443 Yang et al. Oct 2006 A1
20060276041 Uchikura et al. Dec 2006 A1
20070004190 Dambrauskas et al. Jan 2007 A1
20070059915 Akram Mar 2007 A1
20070077720 Heineck et al. Apr 2007 A1
20070155119 Muemmler et al. Jul 2007 A1
20070164443 Florian et al. Jul 2007 A1
20070190742 Chou et al. Aug 2007 A1
20070249129 Hall et al. Oct 2007 A1
20070281487 Dennison et al. Dec 2007 A1
20080020503 Sheats et al. Jan 2008 A1
20080253097 Kawano Oct 2008 A1
20080283960 Lerner Nov 2008 A1
Related Publications (1)
Number Date Country
20090017616 A1 Jan 2009 US