1. Field of the Invention
The present invention generally relates to a method for depositing a dielectric film in a trench of a substrate by plasma-enhanced atomic layer deposition (PEALD). The present invention also relates to a method for increasing a sidewall coverage of a dielectric film deposited by PEALD.
2. Related Art
As a method of depositing a film having a good step coverage, atomic layer deposition (ALD) using chemisorption of a precursor is commonly performed. In this method, a film deposits more evenly in trenches of semiconductor circuits than does a film by CVD or the like. However, in plasma-enhanced atomic layer deposition (PEALD), since a sidewall of a trench of a substrate undergoes less ion bombardment than does a top surface of the substrate, surface reaction at the sidewall is less active than on the top surface, causing a problem that an etch rate of a film at the sidewall is different from (higher than) that on the top surface. In particular, when a precursor has an adsorption inhibition problem due to e.g., the presence of hydrocarbon components in the molecule of the precursor, the step coverage of a film deposited on a sidewall becomes low (e.g. 40% or less).
Conventionally, by increasing the process temperature or the like, the quality of a dielectric film (e.g., density, hardness) deposited on a sidewall is improved so that the etch rate at the sidewall can be decreased. However, the improvement is partial, and the problem in different etch rates between the sidewall and the top surface is not sufficiently resolved.
Any discussion of problems and solutions in relation to the related art has been included in this disclosure solely for the purposes of providing a context for the present invention, and should not be taken as an admission that any or all of the discussion was known at the time the invention was made.
In some embodiments of the present invention, the thickness of film deposited on a target side of a trench of semiconductor circuits (substrate) can be controlled. In some embodiments, the thickness of film deposited on a sidewall of a trench relatively increases, i.e., the thickness of film deposited on a top (blanket) surface of the substrate relatively decreases. In one approach, the thickness of film on a sidewall of a trench can be controlled by controlling chemisorption of a precursor on a surface using a chemisorption-inhibitor gas to which the substrate is exposed as a preliminary treatment before depositing a film thereon, wherein functional groups exposed on the top surface of the substrate are terminated by Si—H bonds using a chemisorption-inhibitor gas such as hydrogen gas, thereby interfering with chemisorption of the precursor on the top surface and relatively increasing the deposition rate of film on the sidewall. In some embodiments of the present invention, another approach other than the above approach is taken, wherein when depositing a silicon-based dielectric film such as a SiC or SiN film by PEALD, a hydrogen-containing gas is used as a reactant gas so as to cause not only deposition of a film but also etching of the film by a plasma. Since more species excited by a plasma reach a flat surface, i.e., a top surface of a substrate and a bottom of a trench of the substrate, than excited species reaching a sidewall of the substrate, by controlling process parameters including feed quantity of a precursor and intensity and duration of a hydrogen plasma, controlling and balancing deposition and etching of film can be accomplished predominantly on a flat surface, whereby the thickness of film at the sidewall of the trench can be adjusted relative to the thickness of film on the flat surface of the substrate (the sidewall receives less effect of a plasma than does the flat surface). In the above, a film is being deposited by excited species of precursor while being etched by hydrogen and argon plasma, for example.
For purposes of summarizing aspects of the invention and the advantages achieved over the related art, certain objects and advantages of the invention are described in this disclosure. Of course, it is to be understood that not necessarily all such objects or advantages may be achieved in accordance with any particular embodiment of the invention. Thus, for example, those skilled in the art will recognize that the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
Further aspects, features and advantages of this invention will become apparent from the detailed description which follows.
These and other features of this invention will now be described with reference to the drawings of preferred embodiments which are intended to illustrate and not to limit the invention. The drawings are greatly simplified for illustrative purposes and are not necessarily to scale.
In this disclosure, “gas” may include vaporized solid and/or liquid and may be constituted by a single gas or a mixture of gases. Likewise, an article “a” or “an” refers to a species or a genus including multiple species. In this disclosure, a process gas introduced to a reaction chamber through a showerhead may be comprised of, consist essentially of, or consist of a precursor and a reactant gas. The reactant gas may include a gas involving oxidizing and/or nitriding the precursor when RF power is applied to the reactant gas. The reactant gas can be introduced continuously to a reaction space if it is not reactive to the precursor without RF power. The precursor can be introduced with a carrier gas such as a noble gas. A gas other than the process gas, i.e., a gas introduced without passing through the showerhead, may be used for, e.g., sealing the reaction space, which includes a seal gas such as a noble gas. In some embodiments, “film” refers to a layer continuously extending in a direction perpendicular to a thickness direction substantially without pinholes to cover an entire target or concerned surface, or simply a layer covering a target or concerned surface. In some embodiments, “layer” refers to a structure having a certain thickness formed on a surface or a synonym of film or a non-film structure. A film or layer may be constituted by a discrete single film or layer having certain characteristics or multiple films or layers, and a boundary between adjacent films or layers may or may not be clear and may be established based on physical, chemical, and/or any other characteristics, formation processes or sequence, and/or functions or purposes of the adjacent films or layers. Further, in this disclosure, any two numbers of a variable can constitute a workable range of the variable as the workable range can be determined based on routine work, and any ranges indicated may include or exclude the endpoints. Additionally, any values of variables indicated (regardless of whether they are indicated with “about” or not) may refer to precise values or approximate values and include equivalents, and may refer to average, median, representative, majority, etc. in some embodiments. The terms “constituted by” and “having” refer independently to “typically or broadly comprising”, “comprising”, “consisting essentially of”, or “consisting of” in some embodiments.
In the present disclosure where conditions and/or structures are not specified, the skilled artisan in the art can readily provide such conditions and/or structures, in view of the present disclosure, as a matter of routine experimentation.
In all of the disclosed embodiments, any element used in an embodiment can be replaced with any elements equivalent thereto, including those explicitly, necessarily, or inherently disclosed herein, for the intended purposes. Further, the present invention can equally be applied to apparatuses and methods.
In this disclosure, any defined meanings do not necessarily exclude ordinary and customary meanings in some embodiments.
In some embodiments, the term “precursor” refers generally to a compound that participates in the chemical reaction that produces another compound, and particularly to a compound that constitutes a film matrix or a main skeleton of a film, whereas the term “reactant” refers to a compound that activates a precursor, modifies a precursor, or catalyzes a reaction of a precursor.
The dielectric film includes, but is not limited to, a low-k film constituted by a silicon carbide such as SiC, SiCN, and SiCON, a silicon oxide such as SiO, or a silicon nitride such as SiN, having a dielectric constant of about 3 to 6, typically about 3.5 to 4.5 In some embodiments, the dielectric film is formed in trenches, vias, or other recesses including side walls and bottom surfaces (collectively referred to as “trenches”) by plasma-enhanced ALD or other plasma-assisted cyclic deposition methods. The trench may have a depth of about 10 nm to about 1,000 nm, typically about 100 nm to about 500 nm, and an aspect ratio of about 1 to about 10, typically about 2 to about 5 (e.g., a trench having a width of about 30 nm, a depth of about 110 nm, and an aspect ratio of about 4, formed as a pattern in a silicon substrate). The thickness of the deposited dielectric film may be in a range of about 2 nm to about 500 nm, typically about 10 nm to about 100 nm, more typically about 15 nm to about 30 nm (a desired film thickness can be selected as deemed appropriate according to the application and purpose of film, etc.).
The embodiments will be explained with respect to preferred embodiments. However, the present invention is not limited to the preferred embodiments.
In an embodiment, in a method for forming a dielectric film in a trench on a substrate by plasma-enhanced atomic layer deposition (PEALD) performing one or more process cycles, each process cycle comprises: (i) feeding a silicon-containing precursor in a pulse to a reaction space where the substrate is placed, said precursor being constituted by one or more hydrocarbon-containing compounds selected from the group consisting of: SiH2R2, Si2H2R4, SiR2X2, Si2R6, SiH3R, Si2H4R2, SiH2RX, C3H6SiH2, C2H4SiH2, C2H4Si2H2, SiNHSiR4H2, SiNHSiR6, and SiHX2R, wherein each X is independently chain or cyclic CxHy, and each R is independently chain or cyclic CxHy, cyclic NxCyHz, N(CxHy)2, N(CxHy)H, O(CxHy), or OH, wherein x, y, and z are integers (e.g., x is an integer of 1 to 5, y is an integer of 1 to 10, and z is an integer of 3 to 15); (ii) supplying a hydrogen-containing reactant gas to the reaction space at a flow rate of more than about 30 sccm but less than about 800 sccm (e.g., about 50 sccm to about 500 sccm) in the absence of nitrogen-containing gas; (iii) supplying a noble gas to the reaction space; and (iv) applying RF power to the reaction space in the presence of the hydrogen-containing reactant gas and the noble gas and in the absence of any precursor in the reaction space, to form a monolayer constituting a dielectric film on a substrate at a growth rate of less than one atomic layer thickness per cycle. The growth rate per cycle or thickness of a monolayer refers to an average growth rate per cycle calculated based on the measured thickness of a deposited film and the number of cycles performed for the deposited film, or based on the total growth rate of the resultant deposited dielectric film. The one atomic layer thickness refers to a theoretical thickness of one atomic layer formed from a precursor gas without considering lamination or the interface between monolayers. The term “monolayer” refers to a layer formed by one process cycle of PEALD, which may not be a continuous film.
In some embodiments, the growth rate of the monolayer is less than about 0.1 nm per cycle (e.g., about 0.003 nm to about 0.09 nm). In general, the theoretical one atomic layer thickness is about 0.1 nm to about 0.5 nm, typically about 0.2 nm to about 0.3 nm. When the above-mentioned hydrocarbon-containing compound is used as a precursor, due to adsorption inhibition of the precursor by the hydrocarbon components on a substrate surface, the average growth rate of the film per cycle on a flat horizontal surface (a blanket surface) becomes less than one atomic layer thickness. In that case, in general, the growth rate of the monolayer on a sidewall is even worse than that on the blanket surface, resulting in a low step coverage on the sidewall (e.g., 40% or less). However, according to some embodiments of the present invention disclosed herein, the step coverage on the sidewall can surprisingly be increased to 80% or higher.
In some embodiments, the precursor has a chemical formula where at least one of X or R is an unsaturated hydrocarbon having, e.g., a carbon double or triple bond. In general, when the precursor includes more carbon atoms in its molecule, i.e., including fewer hydrogen atoms, more deposition of film takes place, rather than etching of film. In some embodiments, the precursor has a cyclic structure. In some embodiments, the precursor is one or more compounds selected from the group consisting of: SiH2R2 such as dimethylsilane, divinylsilane, and dipyridylsilane; Si2H2R4 such as tertamethyldisilane; SiR2X2 such as divinyldimethylsilane and dimethyldipyridylsilane; Si2R6 such as hexamethydisilane; SiH3R such as silylacetylene and allylsilane; Si2H4R2 such as divinyldisilane and dimethyldisilane; SiH2RX such as viylmethylsilane; C3H6SiH2 such as silacyclobutane; silacycloethane; disilacycloethane; SiNHSiR4H2 such as tetramethyldisilazane; SiNHSiR6 such as hexamethyldisilazane; and SiHX2R such as dimethylpridyldisilane.
In some embodiments, the reactant gas is hydrogen gas. In some embodiments, the reactant gas is a hydrocarbon gas such as hexane In some embodiments, the noble gas is argon. A combination of H2 and Ar is most effective in counteracting deposition of film, wherein H2 in a plasma state likely causes chemical etching whereas Ar in a plasma state likely causes physical spattering (bombardment at an angle of about 45°) on the surface of a substrate. Thus, H2 in a plasma state is effective to etch predominantly a film on a flat surface, whereas Ar in a plasma state is effective to etch rather uniformly a film on the flat surface and a film at the sidewall. Unlike Ar, He in a plasma state does not likely cause physical spattering, and thus, a combination of H2 and Ar, rather than a combination of H2 and He, is used in some embodiments.
In some embodiments, a ratio of flow rate of the noble gas, typically Ar, to flow rate of the hydrogen-containing reactant, typically hydrogen gas, is about 5:1 to about 100:1, preferably about 10:1 to about 60:1. In the above, the flow rate of the noble gas includes a carrier gas for carrying a precursor in addition to a dilution gas. When the flow rate of the hydrogen-containing reactant, typically hydrogen gas, is too low, etching effect is not sufficient to control growth rate of film on a flat surface, whereas when the flow rate is too high, etching effect is predominant and no film is deposited on the flat surface.
When a hydrogen plasma is used, both the etching effect and the deposition effect can be obtained, and can be balanced by adjusting the flow rate of hydrogen, the number of RF pulses per cycle, the feed of a precursor, etc. The etching by a hydrogen plasma may occur as follows, for example:
SiO2+4H—Si+2H2O,SiO2+2H→Si+H2O2
Si+xH→SiHx
On the other hand, deposition by a hydrogen plasma may occur via removing a ligand which promotes chemisorption, and via formation of dangling bonds. Further, deposition may occur through re-deposition of dissociated components by etching.
In some embodiments, in step (iii), the noble gas is supplied to the reaction space at a flow rate of about 1,000 sccm to about 5,000 sccm, preferably about 2,000 sccm to about 4,000 sccm.
In some embodiments, the reactant gas is supplied continuously to the reaction space throughout each process cycle. In some embodiments, the noble gas is continuously supplied to the reaction space throughout the process cycle.
In some embodiments, in step (iv), no gas other than the reactant gas and the noble gas is supplied to the reaction space.
In some embodiments, in step (i), the precursor is fed in an amount of about 0.00002 g/cycle to about 0.01 g/cycle and in a pulse having a duration of about 0.1 seconds to about 1.0 seconds. Since ALD is a self-limiting adsorption reaction process, the number of deposited precursor molecules is determined by the number of reactive surface sites and is independent of the precursor exposure after saturation, and a supply of the precursor is such that the reactive surface sites are saturated thereby per cycle. In other embodiments the plasma may be generated remotely and provided to the reaction chamber. The feed amount of precursor can be determined depending on the molecular weight of precursor.
In some embodiments, each process cycle further comprises a purging step between steps (i) and (iv), and between steps (iv) and (i) if the process cycle is repeated. In some embodiments, in step (iv), RF power is applied to the reaction space in two occurrences between which a purging step is conducted (in some embodiments, three or more occurrences per cycle). In some embodiments, in step (iv), RF power applied to the reaction space is about 0.028 W/cm2 to about 0.28 W/cm2, preferably 0.07 W/cm2 to about 0.21 W/cm2. When a combination of H2 and Ar is used as a reactant gas, etching can occur at a low RF power. In some embodiments, the duration of a pulse of RF power is about 0.2 seconds to about 5 seconds, preferably about 0.5 seconds to about 1 second. The longer the duration of a pulse of RF power, the greater the reduction of thickness becomes. If application of RF power is divided into multiple sessions, the reduction of thickness can significantly be lowered. By adjusting the duration of RF power application and the number of RF power applications per cycle, the step coverage at the sidewall and on the flat surface can be desirably adjusted.
In some embodiments, the temperature during the process cycle is about 50° C. to about 500° C., preferably about 100° C. to about 300° C.
In some embodiments, the dielectric film is a film of SiC, SiCN, SiN, SiOCN, or SiO. For example, a SiN film can be deposited when a precursor having a Si—N bond such as silylamine compounds or aminosilane compounds is used, whereas a SiO film can be deposited when a precursor having a Si—O bond such as alkoxide compounds is used, even when only hydrogen gas and argon gas are used as a reactant gas.
In some embodiments, a sidewall coverage of the deposited dielectric film is about 80% or higher, typically about 80% to about 130%, wherein the sidewall coverage is defined as a ratio of thickness of film on a sidewall of the trench to thickness of film on a blanket surface of the trench.
In some embodiments, a method for increasing a sidewall coverage of a dielectric film deposited according to any deposition method disclosed herein is provided, wherein in step (i), the precursor is fed in a pulse having a first duration, in step (ii), the reactant gas is supplied at a first flow rate, and in step (iv), RF power is applied in a pulse having a first duration, and the dielectric film has a first sidewall coverage, said sidewall coverage being defined as a ratio of thickness of film on a sidewall of the trench to thickness of film on a blanket surface of the substrate, said method comprising: (a) setting a second duration of the pulse of the precursor in step (i), a second flow rate of the reactant gas in step (ii), and a second duration of the pulse of RF power in step (iv), wherein at least one of the second flow rate of the reactant gas and the second duration of the pulse of RF power is higher than the first flow rate of the reactant gas and the first duration of the pulse of RF power, respectively, and/or the second duration of the pulse of the precursor is shorter than the first duration of the pulse of the precursor; and (b) repeating steps (i) to (iv) using the second flow rate of the reactant gas and the second duration of the pulse of RF power, thereby depositing a dielectric film having a second sidewall coverage which is higher than the first sidewall coverage.
In some embodiments, the film is deposited by PEALD under conditions shown in Table 1 below.
In this disclosure, the word “continuously” refers to at least one of the following: without breaking a vacuum, without being exposed to air, without opening a chamber, as an in-situ process, without interruption as a step in sequence, and without changing main process conditions, depending on the embodiment. In some embodiments, an auxiliary step such as a delay between steps or other step immaterial or insubstantial in the context does not count as a step, and thus, the word “continuously” does not exclude an intervening auxiliary step.
In the sequence illustrated in
The precursor may be provided with the aid of a carrier gas. Since ALD is a self-limiting adsorption reaction process, the number of deposited precursor molecules is determined by the number of reactive surface sites and is independent of the precursor exposure after saturation, and a supply of the precursor is such that the reactive surface sites are saturated thereby per cycle. A plasma for deposition may be generated in situ, for example, in an ammonia gas that flows continuously throughout the deposition cycle. In other embodiments the plasma may be generated remotely and provided to the reaction chamber.
As mentioned above, each pulse or phase of each deposition cycle is preferably self-limiting. An excess of reactants is supplied in each phase to saturate the susceptible structure surfaces. Surface saturation ensures reactant occupation of all available reactive sites (subject, for example, to physical size or “steric hindrance” restraints) and thus ensures excellent step coverage. In some embodiments the pulse time of one or more of the reactants can be reduced such that complete saturation is not achieved and less than a monolayer is adsorbed on the substrate surface.
The process cycle can be performed using any suitable apparatus including an apparatus illustrated in
In some embodiments, in the apparatus depicted in
In some embodiments, a dual chamber reactor (two sections or compartments for processing wafers disposed closely to each other) can be used, wherein a reactant gas and a noble gas can be supplied through a shared line whereas a precursor gas is supplied through unshared lines.
A skilled artisan will appreciate that the apparatus includes one or more controller(s) (not shown) programmed or otherwise configured to cause the deposition and reactor cleaning processes described elsewhere herein to be conducted. The controller(s) are communicated with the various power sources, heating systems, pumps, robotics, and gas flow controllers or valves of the reactor, as will be appreciated by the skilled artisan.
The present invention is further explained with reference to working examples below. However, the examples are not intended to limit the present invention. In the examples where conditions and/or structures are not specified, the skilled artisan in the art can readily provide such conditions and/or structures, in view of the present disclosure, as a matter of routine experimentation. Also, the numbers applied in the specific examples can be modified by a range of at least ±50% in some embodiments, and the numbers are approximate.
A silicon carbide film was formed on a Si substrate (0300 mm) having trenches with an aspect ratio of 3.5 (a width of 30 nm, and a depth of 110 nm) by PEALD using a sequence illustrated in
In Table 3, the Example numbers with “*” indicate comparative examples. Each obtained film was evaluated. Table 4 shows the results of evaluation. DVDMS is divinyldimethylsilane, and HMDS is hexamethyldisilane.
In Table 4, “GPC” represents growth rate per cycle, “Sidewall Coverage@AR3” represents a percentage of thickness of film deposited on a sidewall relative to thickness of film deposited on a blanket surface at a trench having an aspect ratio of 3, and “Remarks” describes damage observed on a surface of an underlying layer after deposition.
In the above examples, when no hydrogen gas was used as a reactant in Example 1, the sidewall coverage was significantly low, since no hydrogen gas was used, and sufficient argon plasma did not reach the sidewall of the trench, whereby sufficient active sites on the silicon-containing hydrocarbon precursor were not formed at the sidewall, i.e., the sidewall coverage was poor (35%). On the other hand, when excessive hydrogen gas (800 sccm) was used in Example 2, etching took place particularly on the top surface, and no film was deposited. However, when an appropriate quantity of hydrogen gas was used in Examples 12 (50 sccm) and 13 (300 sccm), etching desirably took place on the top surface, thereby interfering with deposition of film on the top surface and significantly increasing the sidewall coverage (115% in Example 12; 130% in Example 13). Further, when RF power was applied in two sessions in Example 11, the etching effect by hydrogen gas became weaker, and deposition by hydrogen gas was promoted. As a result, the GPC was increased, especially at the sidewall, thereby increasing the sidewall coverage (85%) as well as the GPC (0.06 nm/cycle), as compared with Example 12 (the sidewall coverage was 115%, and the GPC was 0.02 nm/cycle) and Example 1 (the sidewall coverage was 35%, and the GPC was 0.03 nm/cycle). The above differences between Examples 11 and 12 are opposite to those between Examples 8 and 10 discussed below. This may be because in Examples 11 and 12, the precursor possessed a carbon double bond (vinyl), and when the double bond was opened by a hydrogen plasma, chemisorption and formation of dangling bonds could have been promoted, more than etching.
When the duration of feed pulse was increased from 0.1 second (Example 8) to 0.5 seconds (Example 7), 0.6 seconds (Example 6), 0.8 seconds (Example 5), and 1.0 seconds (Example 4), the GPC was increased accordingly from 0.006 nm/cycle (Example 8) to 0.009 nm/cycle (Example 7), 0.02 nm/cycle (Example 6), 0.05 nm/cycle (Example 5), and 0.07 nm/cycle (Example 4), whereas the sidewall coverage was decreased accordingly from 130% (Example 8) to 125% (Example 7), 94% (Example 6), 85% (Example 5), and 80% (Example 4). When comparing Example 4 (with 50 sccm of hydrogen gas) and Example 3 (with 0 sccm of hydrogen gas), the GPC was lower in Example 4 (0.07 nm/cycle) than that in Example 3 (0.12 nm/cycle), the sidewall coverage was significantly higher in Example 4 (80%) than that in Example 3 (40%) due to the etching effect of a hydrogen plasma which was more prominent on the blanket surface than the sidewall. When the duration of feed pulse was as short as 0.1 second in Example 8, fine damage on the surface of the substrate was observed. Further, when the duration of RF power pulse was shorter in Example 9 (0.5 seconds) than in Example 8 (1.0 second), the GPC was slightly increased whereas the sidewall coverage was substantially unchanged. Further, when RF power was applied in two sessions in Example 10 as compared with Example 8 (one session), the etching effect by hydrogen gas became stronger, and deposition by hydrogen gas was least promoted. As a result, the GPC was low (0.004 nm/cycle), as compared with Example 8 (0.006 nm/cycle). The above differences between Examples 8 and 10 are opposite to those between Examples 11 and 12 discussed above. This may be because in Examples 8 and 10, the precursor did not possess a carbon double bond, and the etching effect of a hydrogen plasma became more prominent by two-session application, resulting in lower GPC in Example 10 (0.004 nm/cycle) than that in Example 8 (0.006 nm/cycle), and higher sidewall coverage in Example 10 (150%) than that in Example 8 (130%).
Accordingly, it was confirmed that by adjusting the duration of feed pulse, the duration of RF power pulse, and/or the flow rate of hydrogen gas, the sidewall coverage and the GPC can be desirably adjusted.
It will be understood by those of skill in the art that numerous and various modifications can be made without departing from the spirit of the present invention. Therefore, it should be clearly understood that the forms of the present invention are illustrative only and are not intended to limit the scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
D56051 | Cohn | Aug 1920 | S |
2161626 | Loughner et al. | Jun 1939 | A |
2745640 | Cushman | May 1956 | A |
2990045 | Root | Sep 1959 | A |
3089507 | Drake et al. | May 1963 | A |
3094396 | Sylvester et al. | Jun 1963 | A |
3232437 | Hultgren | Feb 1966 | A |
3833492 | Bollyky | Sep 1974 | A |
3854443 | Baerg | Dec 1974 | A |
3862397 | Anderson et al. | Jan 1975 | A |
3887790 | Ferguson | Jun 1975 | A |
4054071 | Patejak | Oct 1977 | A |
4058430 | Suntola et al. | Nov 1977 | A |
4134425 | Gussefeld et al. | Jan 1979 | A |
4145699 | Hu et al. | Mar 1979 | A |
4176630 | Elmer | Dec 1979 | A |
4181330 | Kojima | Jan 1980 | A |
4194536 | Stine et al. | Mar 1980 | A |
4322592 | Martin | Mar 1982 | A |
4389973 | Suntola et al. | Jun 1983 | A |
4393013 | McMenamin | Jul 1983 | A |
4401507 | Engle | Aug 1983 | A |
4414492 | Hanlet | Nov 1983 | A |
4436674 | McMenamin | Mar 1984 | A |
4479831 | Sandow | Oct 1984 | A |
4499354 | Hill et al. | Feb 1985 | A |
4512113 | Budinger | Apr 1985 | A |
4570328 | Price et al. | Feb 1986 | A |
4579623 | Suzuki et al. | Apr 1986 | A |
D288556 | Wallgren | Mar 1987 | S |
4653541 | Oehlschlaeger et al. | Mar 1987 | A |
4654226 | Jackson et al. | Mar 1987 | A |
4681134 | Paris | Jul 1987 | A |
4718637 | Contin | Jan 1988 | A |
4722298 | Rubin et al. | Feb 1988 | A |
4735259 | Vincent | Apr 1988 | A |
4753192 | Goldsmith et al. | Jun 1988 | A |
4756794 | Yoder | Jul 1988 | A |
4780169 | Stark et al. | Oct 1988 | A |
4789294 | Sato et al. | Dec 1988 | A |
4821674 | deBoer et al. | Apr 1989 | A |
4827430 | Aid et al. | May 1989 | A |
4837185 | Yau et al. | Jun 1989 | A |
4854263 | Chang et al. | Aug 1989 | A |
4857139 | Tashiro et al. | Aug 1989 | A |
4857382 | Liu et al. | Aug 1989 | A |
4882199 | Sadoway et al. | Nov 1989 | A |
4976996 | Monkowski et al. | Dec 1990 | A |
4978567 | Miller | Dec 1990 | A |
4984904 | Nakano et al. | Jan 1991 | A |
4985114 | Okudaira | Jan 1991 | A |
4986215 | Yamada | Jan 1991 | A |
4987856 | Hey | Jan 1991 | A |
4991614 | Hammel | Feb 1991 | A |
5013691 | Lory et al. | May 1991 | A |
5027746 | Frijlink | Jul 1991 | A |
5028366 | Harakal et al. | Jul 1991 | A |
5060322 | Delepine | Oct 1991 | A |
5062386 | Christensen | Nov 1991 | A |
5065698 | Koike | Nov 1991 | A |
5074017 | Toya et al. | Dec 1991 | A |
5098638 | Sawada | Mar 1992 | A |
5104514 | Quartarone | Apr 1992 | A |
5116018 | Friemoth et al. | May 1992 | A |
D327534 | Manville | Jun 1992 | S |
5119760 | McMillan et al. | Jun 1992 | A |
5167716 | Boitnott et al. | Dec 1992 | A |
5178682 | Tsukamoto et al. | Jan 1993 | A |
5183511 | Yamazaki et al. | Feb 1993 | A |
5192717 | Kawakami | Mar 1993 | A |
5194401 | Adams et al. | Mar 1993 | A |
5199603 | Prescott | Apr 1993 | A |
5221556 | Hawkins et al. | Jun 1993 | A |
5242539 | Kumihashi et al. | Sep 1993 | A |
5243195 | Nishi | Sep 1993 | A |
5246500 | Samata et al. | Sep 1993 | A |
5271967 | Kramer et al. | Dec 1993 | A |
5288684 | Yamazaki et al. | Feb 1994 | A |
5306946 | Yamamoto | Apr 1994 | A |
5315092 | Takahashi et al. | May 1994 | A |
5326427 | Jerbic | Jul 1994 | A |
5336327 | Lee | Aug 1994 | A |
5354580 | Goela et al. | Oct 1994 | A |
5356478 | Chen et al. | Oct 1994 | A |
5360269 | Ogawa et al. | Nov 1994 | A |
5380367 | Bertone | Jan 1995 | A |
5382311 | Ishikawa et al. | Jan 1995 | A |
5404082 | Hernandez et al. | Apr 1995 | A |
5413813 | Cruse et al. | May 1995 | A |
5415753 | Hurwitt et al. | May 1995 | A |
5421893 | Perlov | Jun 1995 | A |
5422139 | Fischer | Jun 1995 | A |
5430011 | Tanaka et al. | Jul 1995 | A |
5494494 | Mizuno et al. | Feb 1996 | A |
5496408 | Motoda et al. | Mar 1996 | A |
5504042 | Cho et al. | Apr 1996 | A |
5518549 | Hellwig | May 1996 | A |
5527417 | Iida et al. | Jun 1996 | A |
5531835 | Fodor et al. | Jul 1996 | A |
5574247 | Nishitani et al. | Nov 1996 | A |
5577331 | Suzuki | Nov 1996 | A |
5589002 | Su | Dec 1996 | A |
5589110 | Motoda et al. | Dec 1996 | A |
5595606 | Fujikawa et al. | Jan 1997 | A |
5601641 | Stephens | Feb 1997 | A |
5604410 | Vollkommer et al. | Feb 1997 | A |
5616947 | Tamura | Apr 1997 | A |
5621982 | Yamashita | Apr 1997 | A |
5632919 | MacCracken et al. | May 1997 | A |
D380527 | Velez | Jul 1997 | S |
5679215 | Barnes et al. | Oct 1997 | A |
5681779 | Pasch et al. | Oct 1997 | A |
5683517 | Shan | Nov 1997 | A |
5695567 | Kordina | Dec 1997 | A |
5718574 | Shimazu | Feb 1998 | A |
5724748 | Brooks | Mar 1998 | A |
5728223 | Murakami et al. | Mar 1998 | A |
5730801 | Tepman et al. | Mar 1998 | A |
5732744 | Barr et al. | Mar 1998 | A |
5736314 | Hayes et al. | Apr 1998 | A |
5777838 | Tamagawa et al. | Jul 1998 | A |
5781693 | Balance et al. | Jul 1998 | A |
5796074 | Edelstein et al. | Aug 1998 | A |
5801104 | Schuegraf et al. | Sep 1998 | A |
5819434 | Herchen et al. | Oct 1998 | A |
5827757 | Robinson, Jr. et al. | Oct 1998 | A |
5836483 | Disel | Nov 1998 | A |
5837320 | Hampden-Smith et al. | Nov 1998 | A |
5852879 | Schumaier | Dec 1998 | A |
5853484 | Jeong | Dec 1998 | A |
5855680 | Soininen et al. | Jan 1999 | A |
5855681 | Maydan et al. | Jan 1999 | A |
5873942 | Park | Feb 1999 | A |
5877095 | Tamura et al. | Mar 1999 | A |
D409894 | McClurg | May 1999 | S |
5908672 | Ryu | Jun 1999 | A |
5916365 | Sherman | Jun 1999 | A |
5920798 | Higuchi et al. | Jul 1999 | A |
5968275 | Lee et al. | Oct 1999 | A |
5975492 | Brenes | Nov 1999 | A |
5979506 | Aarseth | Nov 1999 | A |
5997588 | Goodwin | Dec 1999 | A |
5997768 | Scully | Dec 1999 | A |
D419652 | Hall et al. | Jan 2000 | S |
6013553 | Wallace | Jan 2000 | A |
6015465 | Kholodenko et al. | Jan 2000 | A |
6017779 | Miyasaka | Jan 2000 | A |
6024799 | Chen | Feb 2000 | A |
6035101 | Sajoto et al. | Mar 2000 | A |
6042652 | Hyun | Mar 2000 | A |
6044860 | Neu | Apr 2000 | A |
6050506 | Guo et al. | Apr 2000 | A |
6060691 | Minami et al. | May 2000 | A |
6074443 | Venkatesh | Jun 2000 | A |
6083321 | Lei et al. | Jul 2000 | A |
6086677 | Umotoy et al. | Jul 2000 | A |
6099302 | Hong et al. | Aug 2000 | A |
6122036 | Yamasaki et al. | Sep 2000 | A |
6124600 | Moroishi et al. | Sep 2000 | A |
6125789 | Gupta et al. | Oct 2000 | A |
6129044 | Zhao et al. | Oct 2000 | A |
6134807 | Komino | Oct 2000 | A |
6137240 | Bogdan et al. | Oct 2000 | A |
6140252 | Cho et al. | Oct 2000 | A |
6148761 | Majewski et al. | Nov 2000 | A |
6160244 | Ohashi | Dec 2000 | A |
6161500 | Kopacz et al. | Dec 2000 | A |
6162323 | Koshimizu et al. | Dec 2000 | A |
6180979 | Hofman et al. | Jan 2001 | B1 |
6187691 | Fukuda | Feb 2001 | B1 |
6190634 | Lieber et al. | Feb 2001 | B1 |
6194037 | Terasaki et al. | Feb 2001 | B1 |
6201999 | Jevtic | Mar 2001 | B1 |
6207932 | Yoo | Mar 2001 | B1 |
6212789 | Kato | Apr 2001 | B1 |
6218288 | Li et al. | Apr 2001 | B1 |
6250250 | Maishev et al. | Jun 2001 | B1 |
6271148 | Kao | Aug 2001 | B1 |
6274878 | Li et al. | Aug 2001 | B1 |
6281098 | Wang | Aug 2001 | B1 |
6287965 | Kang et al. | Sep 2001 | B1 |
D449873 | Bronson | Oct 2001 | S |
6296909 | Spitsberg | Oct 2001 | B1 |
6299133 | Waragai et al. | Oct 2001 | B2 |
6302964 | Umotoy et al. | Oct 2001 | B1 |
6303523 | Cheung | Oct 2001 | B2 |
6305898 | Yamagishi et al. | Oct 2001 | B1 |
6312525 | Bright et al. | Nov 2001 | B1 |
6315512 | Tabrizi et al. | Nov 2001 | B1 |
D451893 | Robson | Dec 2001 | S |
D452220 | Robson | Dec 2001 | S |
6325858 | Wengert | Dec 2001 | B1 |
6326597 | Lubomirsky et al. | Dec 2001 | B1 |
6329297 | Balish | Dec 2001 | B1 |
6342427 | Choi et al. | Jan 2002 | B1 |
6347636 | Xia | Feb 2002 | B1 |
6352945 | Matsuki | Mar 2002 | B1 |
6367410 | Leahey et al. | Apr 2002 | B1 |
6368987 | Kopacz et al. | Apr 2002 | B1 |
6370796 | Zucker | Apr 2002 | B1 |
6372583 | Tyagi | Apr 2002 | B1 |
6374831 | Chandran | Apr 2002 | B1 |
6375312 | Ikeda et al. | Apr 2002 | B1 |
D457609 | Piano | May 2002 | S |
6383566 | Zagdoun | May 2002 | B1 |
6383955 | Matsuki | May 2002 | B1 |
6387207 | Janakiraman | May 2002 | B1 |
6391803 | Kim et al. | May 2002 | B1 |
6398184 | Sowada et al. | Jun 2002 | B1 |
6410459 | Blalock et al. | Jun 2002 | B2 |
6413321 | Kim et al. | Jul 2002 | B1 |
6413583 | Moghadam et al. | Jul 2002 | B1 |
6420279 | Ono et al. | Jul 2002 | B1 |
D461233 | Whalen | Aug 2002 | S |
D461882 | Piano | Aug 2002 | S |
6435798 | Satoh | Aug 2002 | B1 |
6436819 | Zhang | Aug 2002 | B1 |
6437444 | Andideh | Aug 2002 | B2 |
6445574 | Saw et al. | Sep 2002 | B1 |
6446573 | Hirayama et al. | Sep 2002 | B2 |
6450757 | Saeki | Sep 2002 | B1 |
6454860 | Metzner et al. | Sep 2002 | B2 |
6455445 | Matsuki | Sep 2002 | B2 |
6461435 | Littau et al. | Oct 2002 | B1 |
6468924 | Lee | Oct 2002 | B2 |
6472266 | Yu et al. | Oct 2002 | B1 |
6475276 | Elers et al. | Nov 2002 | B1 |
6475930 | Junker et al. | Nov 2002 | B1 |
6478872 | Chae et al. | Nov 2002 | B1 |
6482331 | Lu et al. | Nov 2002 | B2 |
6482663 | Backland | Nov 2002 | B1 |
6483989 | Okada et al. | Nov 2002 | B1 |
6494065 | Babbitt | Dec 2002 | B2 |
6499533 | Yamada | Dec 2002 | B2 |
6503562 | Saito et al. | Jan 2003 | B1 |
6503826 | Oda | Jan 2003 | B1 |
6511539 | Raaijmakers | Jan 2003 | B1 |
6521295 | Remington | Feb 2003 | B1 |
6521547 | Chang et al. | Feb 2003 | B1 |
6528430 | Kwan | Mar 2003 | B2 |
6528767 | Bagley et al. | Mar 2003 | B2 |
6531193 | Fonash et al. | Mar 2003 | B2 |
6531412 | Conti et al. | Mar 2003 | B2 |
6534395 | Werkhoven et al. | Mar 2003 | B2 |
6558755 | Berry et al. | May 2003 | B2 |
6569239 | Arai et al. | May 2003 | B2 |
6573030 | Fairbairn et al. | Jun 2003 | B1 |
6576062 | Matsuse | Jun 2003 | B2 |
6576064 | Griffiths et al. | Jun 2003 | B2 |
6576300 | Berry et al. | Jun 2003 | B1 |
6579833 | McNallan et al. | Jun 2003 | B1 |
6583048 | Vincent et al. | Jun 2003 | B1 |
6590251 | Kang et al. | Jul 2003 | B2 |
6594550 | Okrah | Jul 2003 | B1 |
6598559 | Vellore et al. | Jul 2003 | B1 |
6627503 | Ma et al. | Sep 2003 | B2 |
6632478 | Gaillard et al. | Oct 2003 | B2 |
6633364 | Hayashi | Oct 2003 | B2 |
6635117 | Kinnard et al. | Oct 2003 | B1 |
6638839 | Deng et al. | Oct 2003 | B2 |
6645304 | Yamaguchi | Nov 2003 | B2 |
6648974 | Ogliari et al. | Nov 2003 | B1 |
6649921 | Cekic et al. | Nov 2003 | B1 |
6652924 | Sherman | Nov 2003 | B2 |
6673196 | Oyabu | Jan 2004 | B1 |
6682973 | Paton et al. | Jan 2004 | B1 |
D486891 | Cronce | Feb 2004 | S |
6688784 | Templeton | Feb 2004 | B1 |
6689220 | Nguyen | Feb 2004 | B1 |
6692575 | Omstead et al. | Feb 2004 | B1 |
6692576 | Halpin et al. | Feb 2004 | B2 |
6699003 | Saeki | Mar 2004 | B2 |
6709989 | Ramdani et al. | Mar 2004 | B2 |
6710364 | Guldi et al. | Mar 2004 | B2 |
6713824 | Mikata | Mar 2004 | B1 |
6716571 | Gabriel | Apr 2004 | B2 |
6723642 | Lim et al. | Apr 2004 | B1 |
6730614 | Lim et al. | May 2004 | B1 |
6734090 | Agarwala et al. | May 2004 | B2 |
6740853 | Johnson et al. | May 2004 | B1 |
6743475 | Skarp et al. | Jun 2004 | B2 |
6743738 | Todd et al. | Jun 2004 | B2 |
6753507 | Fure et al. | Jun 2004 | B2 |
6756318 | Nguyen et al. | Jun 2004 | B2 |
6759098 | Han | Jul 2004 | B2 |
6760981 | Leap | Jul 2004 | B2 |
6784108 | Donohoe et al. | Aug 2004 | B1 |
D497977 | Engelbrektsson | Nov 2004 | S |
6815350 | Kim et al. | Nov 2004 | B2 |
6820570 | Kilpela et al. | Nov 2004 | B2 |
6821910 | Adomaitis et al. | Nov 2004 | B2 |
6824665 | Shelnut et al. | Nov 2004 | B2 |
6825134 | Law et al. | Nov 2004 | B2 |
6846515 | Vrtis | Jan 2005 | B2 |
6847014 | Benjamin et al. | Jan 2005 | B1 |
6858524 | Haukka et al. | Feb 2005 | B2 |
6858547 | Metzner | Feb 2005 | B2 |
6863019 | Shamouilian | Mar 2005 | B2 |
6864041 | Brown | Mar 2005 | B2 |
6872258 | Park et al. | Mar 2005 | B2 |
6872259 | Strang | Mar 2005 | B2 |
6874247 | Hsu | Apr 2005 | B1 |
6874480 | Ismailov | Apr 2005 | B1 |
6875677 | Conley, Jr. et al. | Apr 2005 | B1 |
6876017 | Goodner | Apr 2005 | B2 |
6884066 | Nguyen et al. | Apr 2005 | B2 |
6884319 | Kim | Apr 2005 | B2 |
6889864 | Lindfors et al. | May 2005 | B2 |
6895158 | Aylward et al. | May 2005 | B2 |
6899507 | Yamagishi et al. | May 2005 | B2 |
6909839 | Wang et al. | Jun 2005 | B2 |
6911092 | Sneh | Jun 2005 | B2 |
6913796 | Albano et al. | Jul 2005 | B2 |
6930059 | Conley, Jr. et al. | Aug 2005 | B2 |
6935269 | Lee et al. | Aug 2005 | B2 |
6939817 | Sandhu et al. | Sep 2005 | B2 |
6951587 | Narushima | Oct 2005 | B1 |
6953609 | Carollo | Oct 2005 | B2 |
6955836 | Kumagai et al. | Oct 2005 | B2 |
6972478 | Waite et al. | Dec 2005 | B1 |
6974781 | Timmermans et al. | Dec 2005 | B2 |
6976822 | Woodruff | Dec 2005 | B2 |
6984595 | Yamazaki | Jan 2006 | B1 |
6990430 | Hosek | Jan 2006 | B2 |
7021881 | Yamagishi | Apr 2006 | B2 |
7045430 | Ahn et al. | May 2006 | B2 |
7049247 | Gates et al. | May 2006 | B2 |
7053009 | Conley, Jr. et al. | May 2006 | B2 |
7055875 | Bonora | Jun 2006 | B2 |
7071051 | Jeon et al. | Jul 2006 | B1 |
7080545 | Dimeo, Jr. | Jul 2006 | B2 |
7084079 | Conti et al. | Aug 2006 | B2 |
7088003 | Gates et al. | Aug 2006 | B2 |
7092287 | Beulens et al. | Aug 2006 | B2 |
7098149 | Lukas et al. | Aug 2006 | B2 |
7109098 | Ramaswamy et al. | Sep 2006 | B1 |
7115838 | Kurara et al. | Oct 2006 | B2 |
7122085 | Shero et al. | Oct 2006 | B2 |
7122222 | Xiao et al. | Oct 2006 | B2 |
7129165 | Basol et al. | Oct 2006 | B2 |
7132360 | Schaeffer et al. | Nov 2006 | B2 |
7135421 | Ahn et al. | Nov 2006 | B2 |
7143897 | Guzman et al. | Dec 2006 | B1 |
7147766 | Uzoh et al. | Dec 2006 | B2 |
7153542 | Nguyen et al. | Dec 2006 | B2 |
7163721 | Zhang et al. | Jan 2007 | B2 |
7163900 | Weber | Jan 2007 | B2 |
7172497 | Basol et al. | Feb 2007 | B2 |
7192824 | Ahn et al. | Mar 2007 | B2 |
7192892 | Ahn et al. | Mar 2007 | B2 |
7195693 | Cowans | Mar 2007 | B2 |
7201943 | Park et al. | Apr 2007 | B2 |
7204887 | Kawamura et al. | Apr 2007 | B2 |
7205246 | MacNeil et al. | Apr 2007 | B2 |
7205247 | Lee et al. | Apr 2007 | B2 |
7207763 | Lee | Apr 2007 | B2 |
7208389 | Tipton et al. | Apr 2007 | B1 |
7211524 | Ryu et al. | May 2007 | B2 |
7234476 | Arai | Jun 2007 | B2 |
7235137 | Kitayama et al. | Jun 2007 | B2 |
7235482 | Wu | Jun 2007 | B2 |
7235501 | Ahn et al. | Jun 2007 | B2 |
7238596 | Kouvetakis et al. | Jul 2007 | B2 |
7265061 | Cho et al. | Sep 2007 | B1 |
D553104 | Oohashi et al. | Oct 2007 | S |
7290813 | Bonora | Nov 2007 | B2 |
7294582 | Haverkort et al. | Nov 2007 | B2 |
7296460 | Dimeo, Jr. | Nov 2007 | B2 |
7297641 | Todd et al. | Nov 2007 | B2 |
7298009 | Yan et al. | Nov 2007 | B2 |
D557226 | Uchino et al. | Dec 2007 | S |
7307178 | Kiyomori et al. | Dec 2007 | B2 |
7312148 | Ramaswamy et al. | Dec 2007 | B2 |
7312162 | Ramaswamy et al. | Dec 2007 | B2 |
7312494 | Ahn et al. | Dec 2007 | B2 |
7323401 | Ramaswamy et al. | Jan 2008 | B2 |
7326657 | Xia et al. | Feb 2008 | B2 |
7327948 | Shrinivasan | Feb 2008 | B1 |
7329947 | Adachi et al. | Feb 2008 | B2 |
7335611 | Ramaswamy et al. | Feb 2008 | B2 |
7354847 | Chan et al. | Apr 2008 | B2 |
7357138 | Ji et al. | Apr 2008 | B2 |
7381644 | Subramonium et al. | Jun 2008 | B1 |
7393418 | Yokogawa | Jul 2008 | B2 |
7393736 | Ahn et al. | Jul 2008 | B2 |
7393765 | Hanawa et al. | Jul 2008 | B2 |
7396491 | Marking et al. | Jul 2008 | B2 |
7399388 | Moghadam et al. | Jul 2008 | B2 |
7402534 | Mahajani | Jul 2008 | B2 |
7405166 | Liang et al. | Jul 2008 | B2 |
7405454 | Ahn et al. | Jul 2008 | B2 |
D575713 | Ratcliffe | Aug 2008 | S |
7411352 | Madocks | Aug 2008 | B2 |
7414281 | Fastow | Aug 2008 | B1 |
7416989 | Liu et al. | Aug 2008 | B1 |
7422653 | Blahnik et al. | Sep 2008 | B2 |
7422775 | Ramaswamy et al. | Sep 2008 | B2 |
7429532 | Ramaswamy et al. | Sep 2008 | B2 |
7431966 | Derderian et al. | Oct 2008 | B2 |
7437060 | Wang et al. | Oct 2008 | B2 |
7442275 | Cowans | Oct 2008 | B2 |
7475588 | Dimeo, Jr. | Jan 2009 | B2 |
7476291 | Wang et al. | Jan 2009 | B2 |
7479198 | Guffrey | Jan 2009 | B2 |
7482247 | Papasouliotis | Jan 2009 | B1 |
D585968 | Elkins et al. | Feb 2009 | S |
7489389 | Shibazaki et al. | Feb 2009 | B2 |
7494882 | Vitale | Feb 2009 | B2 |
7498242 | Kumar et al. | Mar 2009 | B2 |
7501292 | Matsushita et al. | Mar 2009 | B2 |
7503980 | Kida et al. | Mar 2009 | B2 |
D590933 | Vansell | Apr 2009 | S |
7514375 | Shanker et al. | Apr 2009 | B1 |
D593969 | Li | Jun 2009 | S |
7541297 | Mallick et al. | Jun 2009 | B2 |
7547363 | Tomiyasu et al. | Jun 2009 | B2 |
7550396 | Frohberg et al. | Jun 2009 | B2 |
7566891 | Rocha-Alvarez et al. | Jul 2009 | B2 |
7575968 | Sadaka et al. | Aug 2009 | B2 |
7579785 | Shinmen et al. | Aug 2009 | B2 |
7582555 | Lang | Sep 2009 | B1 |
7589003 | Kouvetakis et al. | Sep 2009 | B2 |
7589029 | Derderian et al. | Sep 2009 | B2 |
D602575 | Breda | Oct 2009 | S |
7598513 | Kouvetakis et al. | Oct 2009 | B2 |
7601223 | Lindfors et al. | Oct 2009 | B2 |
7601225 | Tuominen et al. | Oct 2009 | B2 |
7611751 | Elers | Nov 2009 | B2 |
7611980 | Wells et al. | Nov 2009 | B2 |
7618226 | Takizawa | Nov 2009 | B2 |
D606952 | Lee | Dec 2009 | S |
7629277 | Ghatnagar | Dec 2009 | B2 |
7632549 | Goundar | Dec 2009 | B2 |
7640142 | Tachikawa et al. | Dec 2009 | B2 |
7651583 | Kent et al. | Jan 2010 | B2 |
7651961 | Clark | Jan 2010 | B2 |
D609652 | Nagasaka | Feb 2010 | S |
D609655 | Sugimoto | Feb 2010 | S |
7678197 | Maki | Mar 2010 | B2 |
7678715 | Mungekar et al. | Mar 2010 | B2 |
7682657 | Sherman | Mar 2010 | B2 |
D613829 | Griffin et al. | Apr 2010 | S |
D614153 | Fondurulia et al. | Apr 2010 | S |
D614267 | Breda | Apr 2010 | S |
D614268 | Breda | Apr 2010 | S |
D614593 | Lee | Apr 2010 | S |
7690881 | Yamagishi | Apr 2010 | B2 |
7691205 | Ikedo | Apr 2010 | B2 |
7713874 | Milligan | May 2010 | B2 |
7720560 | Menser et al. | May 2010 | B2 |
7723648 | Tsukamoto et al. | May 2010 | B2 |
7727864 | Elers | Jun 2010 | B2 |
7732343 | Niroomand et al. | Jun 2010 | B2 |
7740705 | Li | Jun 2010 | B2 |
7745346 | Hausmann et al. | Jun 2010 | B2 |
7748760 | Kushida | Jul 2010 | B2 |
7754621 | Putjkonen | Jul 2010 | B2 |
7763869 | Matsushita et al. | Jul 2010 | B2 |
7767262 | Clark | Aug 2010 | B2 |
7771796 | Kohno et al. | Aug 2010 | B2 |
7780440 | Shibagaki et al. | Aug 2010 | B2 |
7789965 | Matsushita et al. | Sep 2010 | B2 |
7790633 | Tarafdar et al. | Sep 2010 | B1 |
7803722 | Liang | Sep 2010 | B2 |
7807578 | Bencher et al. | Oct 2010 | B2 |
7816278 | Reed et al. | Oct 2010 | B2 |
7824492 | Tois et al. | Nov 2010 | B2 |
7825040 | Fukazawa et al. | Nov 2010 | B1 |
7833353 | Furukawahara et al. | Nov 2010 | B2 |
7838084 | Derderian et al. | Nov 2010 | B2 |
7842518 | Miyajima | Nov 2010 | B2 |
7842622 | Lee et al. | Nov 2010 | B1 |
D629874 | Hermans | Dec 2010 | S |
7851019 | Tuominen et al. | Dec 2010 | B2 |
7851232 | van Schravendijk et al. | Dec 2010 | B2 |
7865070 | Nakamura | Jan 2011 | B2 |
7884918 | Hattori | Feb 2011 | B2 |
7888233 | Gauri | Feb 2011 | B1 |
D634719 | Yasuda et al. | Mar 2011 | S |
7897215 | Fair et al. | Mar 2011 | B1 |
7902582 | Forbes et al. | Mar 2011 | B2 |
7910288 | Abatchev et al. | Mar 2011 | B2 |
7915139 | Lang | Mar 2011 | B1 |
7919416 | Lee et al. | Apr 2011 | B2 |
7925378 | Gilchrist et al. | Apr 2011 | B2 |
7935940 | Smargiassi | May 2011 | B1 |
7939447 | Bauer et al. | May 2011 | B2 |
7955516 | Chandrachood et al. | Jun 2011 | B2 |
7963736 | Takizawa et al. | Jun 2011 | B2 |
7972980 | Lee et al. | Jul 2011 | B2 |
7981751 | Zhu et al. | Jul 2011 | B2 |
D643055 | Takahashi | Aug 2011 | S |
7992318 | Kawaji | Aug 2011 | B2 |
7994721 | Espiau et al. | Aug 2011 | B2 |
7998875 | DeYoung | Aug 2011 | B2 |
8003174 | Fukazawa | Aug 2011 | B2 |
8004198 | Bakre et al. | Aug 2011 | B2 |
8020315 | Nishimura | Sep 2011 | B2 |
8030129 | Jeong | Oct 2011 | B2 |
8038835 | Hayashi et al. | Oct 2011 | B2 |
8041197 | Kasai et al. | Oct 2011 | B2 |
8041450 | Takizawa et al. | Oct 2011 | B2 |
8043972 | Liu et al. | Oct 2011 | B1 |
8055378 | Numakura | Nov 2011 | B2 |
8060252 | Gage et al. | Nov 2011 | B2 |
8071451 | Berry | Dec 2011 | B2 |
8071452 | Raisanen | Dec 2011 | B2 |
8072578 | Yasuda et al. | Dec 2011 | B2 |
8076230 | Wei | Dec 2011 | B2 |
8076237 | Uzoh | Dec 2011 | B2 |
8082946 | Laverdiere et al. | Dec 2011 | B2 |
D652896 | Grether | Jan 2012 | S |
8092604 | Tomiyasu et al. | Jan 2012 | B2 |
D653734 | Sisk | Feb 2012 | S |
D654884 | Honma | Feb 2012 | S |
D655055 | Toll | Feb 2012 | S |
8119466 | Avouris | Feb 2012 | B2 |
8137462 | Fondurulia et al. | Mar 2012 | B2 |
8137465 | Shrinivasan et al. | Mar 2012 | B1 |
8138676 | Mills | Mar 2012 | B2 |
8142862 | Lee et al. | Mar 2012 | B2 |
8143174 | Xia et al. | Mar 2012 | B2 |
8147242 | Shibagaki et al. | Apr 2012 | B2 |
8173554 | Lee et al. | May 2012 | B2 |
8187951 | Wang | May 2012 | B1 |
8192901 | Kageyama | Jun 2012 | B2 |
8196234 | Glunk | Jun 2012 | B2 |
8197915 | Oka et al. | Jun 2012 | B2 |
8216380 | White et al. | Jul 2012 | B2 |
8231799 | Bera et al. | Jul 2012 | B2 |
D665055 | Yanagisawa et al. | Aug 2012 | S |
8241991 | Hsieh et al. | Aug 2012 | B2 |
8242031 | Mallick et al. | Aug 2012 | B2 |
8252114 | Vukovic | Aug 2012 | B2 |
8252659 | Huyghebaert et al. | Aug 2012 | B2 |
8252691 | Beynet et al. | Aug 2012 | B2 |
8272516 | Salvador | Sep 2012 | B2 |
8278176 | Bauer et al. | Oct 2012 | B2 |
8282769 | Iizuka | Oct 2012 | B2 |
8287648 | Reed et al. | Oct 2012 | B2 |
8293016 | Bahng et al. | Oct 2012 | B2 |
8298951 | Nakano | Oct 2012 | B1 |
8307472 | Saxon et al. | Nov 2012 | B1 |
8309173 | Tuominen et al. | Nov 2012 | B2 |
8323413 | Son | Dec 2012 | B2 |
8329599 | Fukazawa et al. | Dec 2012 | B2 |
8334219 | Lee et al. | Dec 2012 | B2 |
D676943 | Kluss | Feb 2013 | S |
8367528 | Bauer et al. | Feb 2013 | B2 |
8372204 | Nakamura | Feb 2013 | B2 |
8393091 | Kawamoto | Mar 2013 | B2 |
8394466 | Hong et al. | Mar 2013 | B2 |
8415259 | Lee et al. | Apr 2013 | B2 |
8440259 | Chiang et al. | May 2013 | B2 |
8444120 | Gregg et al. | May 2013 | B2 |
8445075 | Xu et al. | May 2013 | B2 |
8465811 | Ueda | Jun 2013 | B2 |
8466411 | Arai | Jun 2013 | B2 |
8470187 | Ha | Jun 2013 | B2 |
8484846 | Dhindsa | Jul 2013 | B2 |
8492170 | Xie et al. | Jul 2013 | B2 |
8496756 | Cruse et al. | Jul 2013 | B2 |
8506713 | Takagi | Aug 2013 | B2 |
8535767 | Kimura | Sep 2013 | B1 |
D691974 | Osada et al. | Oct 2013 | S |
8551892 | Nakano | Oct 2013 | B2 |
8563443 | Fukazawa | Oct 2013 | B2 |
8569184 | Oka | Oct 2013 | B2 |
8591659 | Fang et al. | Nov 2013 | B1 |
8592005 | Ueda | Nov 2013 | B2 |
8608885 | Goto et al. | Dec 2013 | B2 |
8617411 | Singh | Dec 2013 | B2 |
8633115 | Chang et al. | Jan 2014 | B2 |
8647722 | Kobayashi et al. | Feb 2014 | B2 |
8664627 | Ishikawa et al. | Mar 2014 | B1 |
8667654 | Gros-Jean | Mar 2014 | B2 |
8668957 | Dussarrat et al. | Mar 2014 | B2 |
8669185 | Onizawa | Mar 2014 | B2 |
8683943 | Onodera et al. | Apr 2014 | B2 |
8711338 | Liu et al. | Apr 2014 | B2 |
D705745 | Kurs et al. | May 2014 | S |
8720965 | Hino et al. | May 2014 | B2 |
8722546 | Fukazawa et al. | May 2014 | B2 |
8726837 | Patalay et al. | May 2014 | B2 |
8728832 | Raisanen et al. | May 2014 | B2 |
8742668 | Nakano et al. | Jun 2014 | B2 |
8764085 | Urabe | Jul 2014 | B2 |
8784950 | Fukazawa et al. | Jul 2014 | B2 |
8784951 | Fukazawa et al. | Jul 2014 | B2 |
8785215 | Kobayashi et al. | Jul 2014 | B2 |
8790743 | Omori et al. | Jul 2014 | B1 |
8802201 | Raisanen et al. | Aug 2014 | B2 |
8820809 | Ando et al. | Sep 2014 | B2 |
8821640 | Cleary et al. | Sep 2014 | B2 |
8841182 | Chen et al. | Sep 2014 | B1 |
8845806 | Aida et al. | Sep 2014 | B2 |
D715410 | Lohmann | Oct 2014 | S |
8864202 | Schrameyer | Oct 2014 | B1 |
D716742 | Jang et al. | Nov 2014 | S |
8877655 | Shero et al. | Nov 2014 | B2 |
8883270 | Shero et al. | Nov 2014 | B2 |
8901016 | Ha et al. | Dec 2014 | B2 |
8911826 | Adachi et al. | Dec 2014 | B2 |
8912101 | Tsuji et al. | Dec 2014 | B2 |
D720838 | Yamagishi et al. | Jan 2015 | S |
8933375 | Dunn et al. | Jan 2015 | B2 |
8940646 | Chandrasekharan | Jan 2015 | B1 |
D723153 | Borkholder | Feb 2015 | S |
8946830 | Jung et al. | Feb 2015 | B2 |
8956983 | Swaminathan | Feb 2015 | B2 |
D724553 | Choi | Mar 2015 | S |
D724701 | Yamagishi et al. | Mar 2015 | S |
D725168 | Yamagishi | Mar 2015 | S |
8967608 | Mitsumori et al. | Mar 2015 | B2 |
8986456 | Fondurulia et al. | Mar 2015 | B2 |
8991887 | Shin et al. | Mar 2015 | B2 |
8993054 | Jung et al. | Mar 2015 | B2 |
D726365 | Weigensberg | Apr 2015 | S |
D726884 | Yamagishi et al. | Apr 2015 | S |
9005539 | Halpin et al. | Apr 2015 | B2 |
9017481 | Pettinger et al. | Apr 2015 | B1 |
9018093 | Tsuji et al. | Apr 2015 | B2 |
9018111 | Milligan et al. | Apr 2015 | B2 |
9021985 | Alokozai et al. | May 2015 | B2 |
9023737 | Beynet et al. | May 2015 | B2 |
9029253 | Milligan et al. | May 2015 | B2 |
9029272 | Nakano | May 2015 | B1 |
D732145 | Yamagishi | Jun 2015 | S |
D732644 | Yamagishi et al. | Jun 2015 | S |
D733261 | Yamagishi et al. | Jun 2015 | S |
D733843 | Yamagishi et al. | Jul 2015 | S |
D734377 | Hirakida | Jul 2015 | S |
D735836 | Yamagishi | Aug 2015 | S |
9096931 | Yednak et al. | Aug 2015 | B2 |
9117657 | Nakano et al. | Aug 2015 | B2 |
9117866 | Marquardt et al. | Aug 2015 | B2 |
D739222 | Chadbourne | Sep 2015 | S |
9123510 | Nakano et al. | Sep 2015 | B2 |
9129897 | Pore | Sep 2015 | B2 |
9136108 | Matsushita et al. | Sep 2015 | B2 |
9142393 | Okabe et al. | Sep 2015 | B2 |
9169975 | Sarin et al. | Oct 2015 | B2 |
9171714 | Mori | Oct 2015 | B2 |
9171716 | Fukuda | Oct 2015 | B2 |
D743513 | Yamagishi | Nov 2015 | S |
9177784 | Raisanen et al. | Nov 2015 | B2 |
9190263 | Ishikawa et al. | Nov 2015 | B2 |
9196483 | Lee et al. | Nov 2015 | B1 |
9202727 | Dunn et al. | Dec 2015 | B2 |
9228259 | Haukka et al. | Jan 2016 | B2 |
9240412 | Xie et al. | Jan 2016 | B2 |
20010017103 | Takeshita et al. | Aug 2001 | A1 |
20010018267 | Shinriki et al. | Aug 2001 | A1 |
20010019777 | Tanaka et al. | Sep 2001 | A1 |
20010019900 | Hasegawa | Sep 2001 | A1 |
20010028924 | Sherman | Oct 2001 | A1 |
20010046765 | Cappellani et al. | Nov 2001 | A1 |
20010049202 | Maeda et al. | Dec 2001 | A1 |
20020001974 | Chan | Jan 2002 | A1 |
20020011210 | Satoh et al. | Jan 2002 | A1 |
20020014204 | Pyo | Feb 2002 | A1 |
20020064592 | Datta et al. | May 2002 | A1 |
20020076507 | Chiang et al. | Jun 2002 | A1 |
20020079714 | Soucy et al. | Jun 2002 | A1 |
20020088542 | Nishikawa et al. | Jul 2002 | A1 |
20020098627 | Pomarede et al. | Jul 2002 | A1 |
20020108670 | Baker et al. | Aug 2002 | A1 |
20020110991 | Li | Aug 2002 | A1 |
20020114886 | Chou et al. | Aug 2002 | A1 |
20020115252 | Haukka et al. | Aug 2002 | A1 |
20020172768 | Endo et al. | Nov 2002 | A1 |
20020187650 | Blalock et al. | Dec 2002 | A1 |
20020197849 | Mandal | Dec 2002 | A1 |
20030003635 | Paranjpe et al. | Jan 2003 | A1 |
20030010452 | Park et al. | Jan 2003 | A1 |
20030012632 | Saeki | Jan 2003 | A1 |
20030019428 | Ku et al. | Jan 2003 | A1 |
20030019580 | Strang | Jan 2003 | A1 |
20030025146 | Narwankar et al. | Feb 2003 | A1 |
20030040158 | Saitoh | Feb 2003 | A1 |
20030042419 | Katsumata et al. | Mar 2003 | A1 |
20030049375 | Nguyen et al. | Mar 2003 | A1 |
20030054670 | Wang et al. | Mar 2003 | A1 |
20030059535 | Luo et al. | Mar 2003 | A1 |
20030059980 | Chen et al. | Mar 2003 | A1 |
20030066826 | Lee et al. | Apr 2003 | A1 |
20030075925 | Lindfors et al. | Apr 2003 | A1 |
20030082307 | Chung et al. | May 2003 | A1 |
20030091938 | Fairbairn et al. | May 2003 | A1 |
20030094133 | Yoshidome et al. | May 2003 | A1 |
20030111963 | Tolmachev et al. | Jun 2003 | A1 |
20030134038 | Paranjpe | Jul 2003 | A1 |
20030141820 | White et al. | Jul 2003 | A1 |
20030157436 | Manger et al. | Aug 2003 | A1 |
20030168001 | Sneh | Sep 2003 | A1 |
20030170583 | Nakashima | Sep 2003 | A1 |
20030180458 | Sneh | Sep 2003 | A1 |
20030183156 | Dando | Oct 2003 | A1 |
20030192875 | Bieker et al. | Oct 2003 | A1 |
20030198587 | Kaloyeros | Oct 2003 | A1 |
20030209323 | Yokogaki | Nov 2003 | A1 |
20030228772 | Cowans | Dec 2003 | A1 |
20030232138 | Tuominen et al. | Dec 2003 | A1 |
20040009679 | Yeo et al. | Jan 2004 | A1 |
20040013577 | Ganguli et al. | Jan 2004 | A1 |
20040013818 | Moon et al. | Jan 2004 | A1 |
20040016637 | Yang et al. | Jan 2004 | A1 |
20040018307 | Park et al. | Jan 2004 | A1 |
20040018750 | Sophie et al. | Jan 2004 | A1 |
20040023516 | Londergan et al. | Feb 2004 | A1 |
20040029052 | Park et al. | Feb 2004 | A1 |
20040036129 | Forbes et al. | Feb 2004 | A1 |
20040063289 | Ohta | Apr 2004 | A1 |
20040071897 | Verplancken et al. | Apr 2004 | A1 |
20040077182 | Lim et al. | Apr 2004 | A1 |
20040079960 | Shakuda | Apr 2004 | A1 |
20040080697 | Song | Apr 2004 | A1 |
20040082171 | Shin et al. | Apr 2004 | A1 |
20040101622 | Park et al. | May 2004 | A1 |
20040103914 | Cheng et al. | Jun 2004 | A1 |
20040106249 | Huotari | Jun 2004 | A1 |
20040124549 | Curran | Jul 2004 | A1 |
20040134429 | Yamanaka | Jul 2004 | A1 |
20040144980 | Ahn et al. | Jul 2004 | A1 |
20040146644 | Xia et al. | Jul 2004 | A1 |
20040168627 | Conley et al. | Sep 2004 | A1 |
20040169032 | Murayama et al. | Sep 2004 | A1 |
20040198069 | Metzner et al. | Oct 2004 | A1 |
20040200499 | Harvey et al. | Oct 2004 | A1 |
20040209477 | Buxbaum et al. | Oct 2004 | A1 |
20040212947 | Nguyen | Oct 2004 | A1 |
20040214445 | Shimizu et al. | Oct 2004 | A1 |
20040219793 | Hishiya et al. | Nov 2004 | A1 |
20040221807 | Verghese et al. | Nov 2004 | A1 |
20040247779 | Selvamanickam et al. | Dec 2004 | A1 |
20040261712 | Hayashi et al. | Dec 2004 | A1 |
20040266011 | Lee et al. | Dec 2004 | A1 |
20050003662 | Jursich et al. | Jan 2005 | A1 |
20050008799 | Tomiyasu et al. | Jan 2005 | A1 |
20050019026 | Wang et al. | Jan 2005 | A1 |
20050020071 | Sonobe et al. | Jan 2005 | A1 |
20050023624 | Ahn et al. | Feb 2005 | A1 |
20050034674 | Ono | Feb 2005 | A1 |
20050037154 | Koh et al. | Feb 2005 | A1 |
20050051093 | Makino et al. | Mar 2005 | A1 |
20050054228 | March | Mar 2005 | A1 |
20050059262 | Yin et al. | Mar 2005 | A1 |
20050064207 | Senzaki et al. | Mar 2005 | A1 |
20050064719 | Liu | Mar 2005 | A1 |
20050066893 | Soininen | Mar 2005 | A1 |
20050069651 | Miyoshi | Mar 2005 | A1 |
20050070123 | Hirano | Mar 2005 | A1 |
20050070729 | Kiyomori et al. | Mar 2005 | A1 |
20050072357 | Shero et al. | Apr 2005 | A1 |
20050074983 | Shinriki et al. | Apr 2005 | A1 |
20050092249 | Kilpela et al. | May 2005 | A1 |
20050095770 | Kumagai et al. | May 2005 | A1 |
20050100669 | Kools et al. | May 2005 | A1 |
20050101154 | Huang | May 2005 | A1 |
20050106893 | Wilk | May 2005 | A1 |
20050110069 | Kil et al. | May 2005 | A1 |
20050120962 | Ushioda et al. | Jun 2005 | A1 |
20050123690 | Derderian et al. | Jun 2005 | A1 |
20050133161 | Carpenter et al. | Jun 2005 | A1 |
20050142361 | Nakanishi | Jun 2005 | A1 |
20050145338 | Park et al. | Jul 2005 | A1 |
20050153571 | Senzaki | Jul 2005 | A1 |
20050173003 | Laverdiere et al. | Aug 2005 | A1 |
20050181535 | Yun et al. | Aug 2005 | A1 |
20050187647 | Wang et al. | Aug 2005 | A1 |
20050191828 | Al-Bayati et al. | Sep 2005 | A1 |
20050199013 | Vandroux et al. | Sep 2005 | A1 |
20050208718 | Lim et al. | Sep 2005 | A1 |
20050212119 | Shero | Sep 2005 | A1 |
20050214457 | Schmitt et al. | Sep 2005 | A1 |
20050214458 | Meiere | Sep 2005 | A1 |
20050218462 | Ahn et al. | Oct 2005 | A1 |
20050221618 | AmRhein et al. | Oct 2005 | A1 |
20050223994 | Blomiley et al. | Oct 2005 | A1 |
20050227502 | Schmitt et al. | Oct 2005 | A1 |
20050229848 | Shinriki | Oct 2005 | A1 |
20050229972 | Hoshi et al. | Oct 2005 | A1 |
20050241176 | Shero et al. | Nov 2005 | A1 |
20050241763 | Huang et al. | Nov 2005 | A1 |
20050255257 | Choi et al. | Nov 2005 | A1 |
20050258280 | Goto et al. | Nov 2005 | A1 |
20050260347 | Narwankar et al. | Nov 2005 | A1 |
20050260850 | Loke | Nov 2005 | A1 |
20050263075 | Wang et al. | Dec 2005 | A1 |
20050263932 | Heugel | Dec 2005 | A1 |
20050271813 | Kher et al. | Dec 2005 | A1 |
20050274323 | Seidel et al. | Dec 2005 | A1 |
20050282101 | Adachi | Dec 2005 | A1 |
20050287725 | Kitagawa | Dec 2005 | A1 |
20050287771 | Seamons et al. | Dec 2005 | A1 |
20060013946 | Park et al. | Jan 2006 | A1 |
20060014384 | Lee et al. | Jan 2006 | A1 |
20060014397 | Seamons et al. | Jan 2006 | A1 |
20060016783 | Wu et al. | Jan 2006 | A1 |
20060019033 | Muthukrishnan et al. | Jan 2006 | A1 |
20060019502 | Park et al. | Jan 2006 | A1 |
20060021703 | Umotoy et al. | Feb 2006 | A1 |
20060024439 | Tuominen et al. | Feb 2006 | A2 |
20060046518 | Hill et al. | Mar 2006 | A1 |
20060051520 | Behle et al. | Mar 2006 | A1 |
20060051925 | Ahn et al. | Mar 2006 | A1 |
20060060930 | Metz et al. | Mar 2006 | A1 |
20060062910 | Meiere | Mar 2006 | A1 |
20060063346 | Lee et al. | Mar 2006 | A1 |
20060068121 | Lee et al. | Mar 2006 | A1 |
20060068125 | Radhakrishnan | Mar 2006 | A1 |
20060105566 | Waldfried et al. | May 2006 | A1 |
20060110934 | Fukuchi | May 2006 | A1 |
20060113675 | Chang et al. | Jun 2006 | A1 |
20060113806 | Tsuji et al. | Jun 2006 | A1 |
20060128168 | Ahn et al. | Jun 2006 | A1 |
20060130767 | Herchen | Jun 2006 | A1 |
20060137609 | Puchacz et al. | Jun 2006 | A1 |
20060147626 | Blomberg | Jul 2006 | A1 |
20060148180 | Ahn et al. | Jul 2006 | A1 |
20060163612 | Kouvetakis et al. | Jul 2006 | A1 |
20060172531 | Lin et al. | Aug 2006 | A1 |
20060191555 | Yoshida et al. | Aug 2006 | A1 |
20060193979 | Meiere et al. | Aug 2006 | A1 |
20060199357 | Wan et al. | Sep 2006 | A1 |
20060205223 | Smayling | Sep 2006 | A1 |
20060208215 | Metzner et al. | Sep 2006 | A1 |
20060213439 | Ishizaka | Sep 2006 | A1 |
20060223301 | Vanhaelemeersch et al. | Oct 2006 | A1 |
20060226117 | Bertram et al. | Oct 2006 | A1 |
20060228888 | Lee et al. | Oct 2006 | A1 |
20060236934 | Choi et al. | Oct 2006 | A1 |
20060240574 | Yoshie | Oct 2006 | A1 |
20060240662 | Conley et al. | Oct 2006 | A1 |
20060251827 | Nowak | Nov 2006 | A1 |
20060257563 | Doh et al. | Nov 2006 | A1 |
20060257584 | Derderian et al. | Nov 2006 | A1 |
20060258078 | Lee et al. | Nov 2006 | A1 |
20060258173 | Xiao et al. | Nov 2006 | A1 |
20060260545 | Ramaswamy et al. | Nov 2006 | A1 |
20060264060 | Ramaswamy et al. | Nov 2006 | A1 |
20060264066 | Bartholomew | Nov 2006 | A1 |
20060266289 | Verghese et al. | Nov 2006 | A1 |
20060269692 | Balseanu | Nov 2006 | A1 |
20060278524 | Stowell | Dec 2006 | A1 |
20070006806 | Imai | Jan 2007 | A1 |
20070010072 | Bailey et al. | Jan 2007 | A1 |
20070020953 | Tsai et al. | Jan 2007 | A1 |
20070022954 | Iizuka et al. | Feb 2007 | A1 |
20070028842 | Inagawa et al. | Feb 2007 | A1 |
20070031598 | Okuyama et al. | Feb 2007 | A1 |
20070031599 | Gschwandtner et al. | Feb 2007 | A1 |
20070032082 | Ramaswamy et al. | Feb 2007 | A1 |
20070037412 | Dip et al. | Feb 2007 | A1 |
20070042117 | Kupurao et al. | Feb 2007 | A1 |
20070049053 | Mahajani | Mar 2007 | A1 |
20070054499 | Jang | Mar 2007 | A1 |
20070059948 | Metzner et al. | Mar 2007 | A1 |
20070062453 | Ishikawa | Mar 2007 | A1 |
20070065578 | McDougall | Mar 2007 | A1 |
20070066010 | Ando | Mar 2007 | A1 |
20070066079 | Kloster et al. | Mar 2007 | A1 |
20070077355 | Chacin et al. | Apr 2007 | A1 |
20070082132 | Shinriki | Apr 2007 | A1 |
20070084405 | Kim | Apr 2007 | A1 |
20070096194 | Streck et al. | May 2007 | A1 |
20070098527 | Hall et al. | May 2007 | A1 |
20070107845 | Ishizawa et al. | May 2007 | A1 |
20070111545 | Lee et al. | May 2007 | A1 |
20070116873 | Li et al. | May 2007 | A1 |
20070123037 | Lee et al. | May 2007 | A1 |
20070125762 | Cui et al. | Jun 2007 | A1 |
20070128538 | Fairbairn et al. | Jun 2007 | A1 |
20070134942 | Ahn et al. | Jun 2007 | A1 |
20070146621 | Yeom | Jun 2007 | A1 |
20070148990 | Deboer et al. | Jun 2007 | A1 |
20070155138 | Tomasini et al. | Jul 2007 | A1 |
20070158026 | Amikura | Jul 2007 | A1 |
20070163440 | Kim et al. | Jul 2007 | A1 |
20070166457 | Yamoto et al. | Jul 2007 | A1 |
20070166966 | Todd et al. | Jul 2007 | A1 |
20070166999 | Vaarstra | Jul 2007 | A1 |
20070173071 | Afzali-Ardakani et al. | Jul 2007 | A1 |
20070175393 | Nishimura et al. | Aug 2007 | A1 |
20070175397 | Tomiyasu et al. | Aug 2007 | A1 |
20070186952 | Honda et al. | Aug 2007 | A1 |
20070207275 | Nowak et al. | Sep 2007 | A1 |
20070209590 | Li | Sep 2007 | A1 |
20070210890 | Hsu et al. | Sep 2007 | A1 |
20070215048 | Suzuki et al. | Sep 2007 | A1 |
20070218200 | Suzuki et al. | Sep 2007 | A1 |
20070218705 | Matsuki et al. | Sep 2007 | A1 |
20070224777 | Hamelin | Sep 2007 | A1 |
20070224833 | Morisada et al. | Sep 2007 | A1 |
20070232031 | Singh et al. | Oct 2007 | A1 |
20070232071 | Balseanu et al. | Oct 2007 | A1 |
20070232501 | Tonomura | Oct 2007 | A1 |
20070234955 | Suzuki et al. | Oct 2007 | A1 |
20070237697 | Clark | Oct 2007 | A1 |
20070241688 | DeVancentis et al. | Oct 2007 | A1 |
20070248767 | Okura | Oct 2007 | A1 |
20070249131 | Allen et al. | Oct 2007 | A1 |
20070251444 | Gros-Jean et al. | Nov 2007 | A1 |
20070252244 | Srividya et al. | Nov 2007 | A1 |
20070252532 | DeVincentis et al. | Nov 2007 | A1 |
20070264807 | Leone et al. | Nov 2007 | A1 |
20070275166 | Thridandam et al. | Nov 2007 | A1 |
20070277735 | Mokhesi et al. | Dec 2007 | A1 |
20070281496 | Ingle et al. | Dec 2007 | A1 |
20070298362 | Rocha-Alvarez et al. | Dec 2007 | A1 |
20080003824 | Padhi et al. | Jan 2008 | A1 |
20080003838 | Haukka et al. | Jan 2008 | A1 |
20080006208 | Ueno et al. | Jan 2008 | A1 |
20080023436 | Gros-Jean et al. | Jan 2008 | A1 |
20080026574 | Brcka | Jan 2008 | A1 |
20080026597 | Munro et al. | Jan 2008 | A1 |
20080029790 | Ahn et al. | Feb 2008 | A1 |
20080036354 | Letz et al. | Feb 2008 | A1 |
20080038485 | Fukazawa et al. | Feb 2008 | A1 |
20080054332 | Kim et al. | Mar 2008 | A1 |
20080054813 | Espiau et al. | Mar 2008 | A1 |
20080057659 | Forbes et al. | Mar 2008 | A1 |
20080061667 | Gaertner et al. | Mar 2008 | A1 |
20080066778 | Matsushita et al. | Mar 2008 | A1 |
20080069955 | Hong et al. | Mar 2008 | A1 |
20080075881 | Won et al. | Mar 2008 | A1 |
20080076266 | Fukazawa et al. | Mar 2008 | A1 |
20080081104 | Hasebe et al. | Apr 2008 | A1 |
20080081113 | Clark | Apr 2008 | A1 |
20080081121 | Morita et al. | Apr 2008 | A1 |
20080085226 | Fondurulia et al. | Apr 2008 | A1 |
20080092815 | Chen et al. | Apr 2008 | A1 |
20080113094 | Casper | May 2008 | A1 |
20080113096 | Mahajani | May 2008 | A1 |
20080113097 | Mahajani et al. | May 2008 | A1 |
20080124197 | van der Meulen et al. | May 2008 | A1 |
20080124908 | Forbes et al. | May 2008 | A1 |
20080124946 | Xiao et al. | May 2008 | A1 |
20080133154 | Krauss et al. | Jun 2008 | A1 |
20080149031 | Chu et al. | Jun 2008 | A1 |
20080152463 | Chidambaram et al. | Jun 2008 | A1 |
20080153311 | Padhi et al. | Jun 2008 | A1 |
20080173240 | Furukawahara | Jul 2008 | A1 |
20080173326 | Gu et al. | Jul 2008 | A1 |
20080176375 | Erben et al. | Jul 2008 | A1 |
20080178805 | Paterson et al. | Jul 2008 | A1 |
20080179715 | Coppa | Jul 2008 | A1 |
20080182075 | Chopra | Jul 2008 | A1 |
20080182390 | Lemmi et al. | Jul 2008 | A1 |
20080191193 | Li et al. | Aug 2008 | A1 |
20080199977 | Weigel et al. | Aug 2008 | A1 |
20080203487 | Hohage et al. | Aug 2008 | A1 |
20080211423 | Shinmen et al. | Sep 2008 | A1 |
20080211526 | Shinma | Sep 2008 | A1 |
20080216077 | Emani et al. | Sep 2008 | A1 |
20080220619 | Matsushita et al. | Sep 2008 | A1 |
20080224240 | Ahn et al. | Sep 2008 | A1 |
20080233288 | Clark | Sep 2008 | A1 |
20080237572 | Chui et al. | Oct 2008 | A1 |
20080241384 | Jeong | Oct 2008 | A1 |
20080242116 | Clark | Oct 2008 | A1 |
20080248310 | Kim et al. | Oct 2008 | A1 |
20080257494 | Hayashi et al. | Oct 2008 | A1 |
20080261413 | Mahajani | Oct 2008 | A1 |
20080264337 | Sano et al. | Oct 2008 | A1 |
20080267598 | Nakamura | Oct 2008 | A1 |
20080277715 | Ohmi et al. | Nov 2008 | A1 |
20080282970 | Heys et al. | Nov 2008 | A1 |
20080295872 | Riker et al. | Dec 2008 | A1 |
20080299326 | Fukazawa | Dec 2008 | A1 |
20080302303 | Choi et al. | Dec 2008 | A1 |
20080305246 | Choi et al. | Dec 2008 | A1 |
20080305443 | Nakamura | Dec 2008 | A1 |
20080315292 | Ji et al. | Dec 2008 | A1 |
20080317972 | Hendriks | Dec 2008 | A1 |
20090000550 | Tran et al. | Jan 2009 | A1 |
20090000551 | Choi et al. | Jan 2009 | A1 |
20090011608 | Nabatame | Jan 2009 | A1 |
20090020072 | Mizunaga et al. | Jan 2009 | A1 |
20090023229 | Matsushita | Jan 2009 | A1 |
20090029528 | Sanchez et al. | Jan 2009 | A1 |
20090029564 | Yamashita et al. | Jan 2009 | A1 |
20090033907 | Watson | Feb 2009 | A1 |
20090035947 | Horii | Feb 2009 | A1 |
20090041952 | Yoon et al. | Feb 2009 | A1 |
20090041984 | Mayers et al. | Feb 2009 | A1 |
20090045829 | Awazu | Feb 2009 | A1 |
20090050621 | Awazu | Feb 2009 | A1 |
20090061644 | Chiang et al. | Mar 2009 | A1 |
20090061647 | Mallick et al. | Mar 2009 | A1 |
20090085156 | Dewey et al. | Apr 2009 | A1 |
20090090382 | Morisada | Apr 2009 | A1 |
20090093094 | Ye et al. | Apr 2009 | A1 |
20090095221 | Tam et al. | Apr 2009 | A1 |
20090104789 | Mallick et al. | Apr 2009 | A1 |
20090107404 | Ogliari et al. | Apr 2009 | A1 |
20090120580 | Kagoshima et al. | May 2009 | A1 |
20090122293 | Shibazaki | May 2009 | A1 |
20090136668 | Gregg et al. | May 2009 | A1 |
20090136683 | Fukasawa et al. | May 2009 | A1 |
20090139657 | Lee et al. | Jun 2009 | A1 |
20090142935 | Fukuzawa et al. | Jun 2009 | A1 |
20090146322 | Weling et al. | Jun 2009 | A1 |
20090156015 | Park et al. | Jun 2009 | A1 |
20090209081 | Matero | Aug 2009 | A1 |
20090211523 | Kuppurao et al. | Aug 2009 | A1 |
20090211525 | Sarigiannis et al. | Aug 2009 | A1 |
20090239386 | Suzaki et al. | Sep 2009 | A1 |
20090242957 | Ma et al. | Oct 2009 | A1 |
20090246374 | Vukovic | Oct 2009 | A1 |
20090246399 | Goundar | Oct 2009 | A1 |
20090246971 | Reid et al. | Oct 2009 | A1 |
20090250955 | Aoki | Oct 2009 | A1 |
20090261331 | Yang et al. | Oct 2009 | A1 |
20090269506 | Okura et al. | Oct 2009 | A1 |
20090275205 | Kiehlbauch et al. | Nov 2009 | A1 |
20090277510 | Shikata | Nov 2009 | A1 |
20090283041 | Tomiyasu et al. | Nov 2009 | A1 |
20090283217 | Lubomirsky et al. | Nov 2009 | A1 |
20090286400 | Heo et al. | Nov 2009 | A1 |
20090286402 | Xia et al. | Nov 2009 | A1 |
20090289300 | Sasaki et al. | Nov 2009 | A1 |
20090304558 | Patton | Dec 2009 | A1 |
20090311857 | Todd et al. | Dec 2009 | A1 |
20100001409 | Humbert et al. | Jan 2010 | A1 |
20100006031 | Choi et al. | Jan 2010 | A1 |
20100014479 | Kim | Jan 2010 | A1 |
20100015813 | McGinnis et al. | Jan 2010 | A1 |
20100024727 | Kim et al. | Feb 2010 | A1 |
20100025796 | Dabiran | Feb 2010 | A1 |
20100040441 | Obikane | Feb 2010 | A1 |
20100041179 | Lee | Feb 2010 | A1 |
20100041243 | Cheng et al. | Feb 2010 | A1 |
20100055312 | Kato et al. | Mar 2010 | A1 |
20100055442 | Kellock | Mar 2010 | A1 |
20100075507 | Chang et al. | Mar 2010 | A1 |
20100089320 | Kim | Apr 2010 | A1 |
20100093187 | Lee et al. | Apr 2010 | A1 |
20100102417 | Ganguli et al. | Apr 2010 | A1 |
20100116209 | Kato | May 2010 | A1 |
20100124610 | Aikawa et al. | May 2010 | A1 |
20100124618 | Kobayashi et al. | May 2010 | A1 |
20100124621 | Kobayashi et al. | May 2010 | A1 |
20100126605 | Stones | May 2010 | A1 |
20100130017 | Luo et al. | May 2010 | A1 |
20100134023 | Mills | Jun 2010 | A1 |
20100136216 | Tsuei et al. | Jun 2010 | A1 |
20100140221 | Kikuchi et al. | Jun 2010 | A1 |
20100144162 | Lee et al. | Jun 2010 | A1 |
20100151206 | Wu et al. | Jun 2010 | A1 |
20100159638 | Jeong | Jun 2010 | A1 |
20100162752 | Tabata et al. | Jul 2010 | A1 |
20100170441 | Won et al. | Jul 2010 | A1 |
20100178137 | Chintalapati et al. | Jul 2010 | A1 |
20100178423 | Shimizu et al. | Jul 2010 | A1 |
20100184302 | Lee et al. | Jul 2010 | A1 |
20100193501 | Zucker et al. | Aug 2010 | A1 |
20100195392 | Freeman | Aug 2010 | A1 |
20100221452 | Kang | Sep 2010 | A1 |
20100230051 | Iizuka | Sep 2010 | A1 |
20100233886 | Yang et al. | Sep 2010 | A1 |
20100243166 | Hayashi et al. | Sep 2010 | A1 |
20100244688 | Braun et al. | Sep 2010 | A1 |
20100255198 | Cleary et al. | Oct 2010 | A1 |
20100255625 | De Vries | Oct 2010 | A1 |
20100259152 | Yasuda et al. | Oct 2010 | A1 |
20100270675 | Harada | Oct 2010 | A1 |
20100275846 | Kitagawa | Nov 2010 | A1 |
20100285319 | Kwak et al. | Nov 2010 | A1 |
20100294199 | Tran et al. | Nov 2010 | A1 |
20100301752 | Bakre et al. | Dec 2010 | A1 |
20100304047 | Yang et al. | Dec 2010 | A1 |
20100307415 | Shero et al. | Dec 2010 | A1 |
20100317198 | Antonelli | Dec 2010 | A1 |
20100322604 | Fondurulia et al. | Dec 2010 | A1 |
20110000619 | Suh | Jan 2011 | A1 |
20110006402 | Zhou | Jan 2011 | A1 |
20110006406 | Urbanowicz et al. | Jan 2011 | A1 |
20110014795 | Lee | Jan 2011 | A1 |
20110027999 | Sparks et al. | Feb 2011 | A1 |
20110034039 | Liang et al. | Feb 2011 | A1 |
20110048642 | Mihara et al. | Mar 2011 | A1 |
20110052833 | Hanawa et al. | Mar 2011 | A1 |
20110056513 | Hombach et al. | Mar 2011 | A1 |
20110056626 | Brown et al. | Mar 2011 | A1 |
20110061810 | Ganguly et al. | Mar 2011 | A1 |
20110070380 | Shero et al. | Mar 2011 | A1 |
20110081519 | Dillingh | Apr 2011 | A1 |
20110086516 | Lee et al. | Apr 2011 | A1 |
20110089469 | Merckling | Apr 2011 | A1 |
20110097901 | Banna et al. | Apr 2011 | A1 |
20110107512 | Gilbert | May 2011 | A1 |
20110108194 | Yoshioka et al. | May 2011 | A1 |
20110108741 | Ingram | May 2011 | A1 |
20110108929 | Meng | May 2011 | A1 |
20110117490 | Bae et al. | May 2011 | A1 |
20110117737 | Agarwala et al. | May 2011 | A1 |
20110124196 | Lee | May 2011 | A1 |
20110139748 | Donnelly et al. | Jun 2011 | A1 |
20110143032 | Vrtis et al. | Jun 2011 | A1 |
20110143461 | Fish et al. | Jun 2011 | A1 |
20110159202 | Matsushita | Jun 2011 | A1 |
20110159673 | Hanawa et al. | Jun 2011 | A1 |
20110175011 | Ehrne et al. | Jul 2011 | A1 |
20110183079 | Jackson et al. | Jul 2011 | A1 |
20110183269 | Zhu | Jul 2011 | A1 |
20110192820 | Yeom et al. | Aug 2011 | A1 |
20110198736 | Shero et al. | Aug 2011 | A1 |
20110210468 | Shannon et al. | Sep 2011 | A1 |
20110220874 | Hanrath | Sep 2011 | A1 |
20110236600 | Fox et al. | Sep 2011 | A1 |
20110239936 | Suzaki et al. | Oct 2011 | A1 |
20110254052 | Kouvetakis | Oct 2011 | A1 |
20110256675 | Avouris | Oct 2011 | A1 |
20110256726 | Lavoie et al. | Oct 2011 | A1 |
20110256727 | Beynet et al. | Oct 2011 | A1 |
20110256734 | Hausmann et al. | Oct 2011 | A1 |
20110265549 | Cruse et al. | Nov 2011 | A1 |
20110265951 | Xu et al. | Nov 2011 | A1 |
20110275166 | Shero et al. | Nov 2011 | A1 |
20110281417 | Gordon et al. | Nov 2011 | A1 |
20110283933 | Makarov et al. | Nov 2011 | A1 |
20110294075 | Chen et al. | Dec 2011 | A1 |
20110308460 | Hong et al. | Dec 2011 | A1 |
20120003500 | Yoshida et al. | Jan 2012 | A1 |
20120006489 | Okita | Jan 2012 | A1 |
20120024479 | Palagashvili et al. | Feb 2012 | A1 |
20120032311 | Gates et al. | Feb 2012 | A1 |
20120043556 | Dube et al. | Feb 2012 | A1 |
20120052681 | Marsh | Mar 2012 | A1 |
20120070136 | Koelmel et al. | Mar 2012 | A1 |
20120070997 | Larson | Mar 2012 | A1 |
20120090704 | Laverdiere et al. | Apr 2012 | A1 |
20120098107 | Raisanen et al. | Apr 2012 | A1 |
20120100464 | Kageyama | Apr 2012 | A1 |
20120103264 | Choi et al. | May 2012 | A1 |
20120103939 | Wu et al. | May 2012 | A1 |
20120107607 | Takaki et al. | May 2012 | A1 |
20120114877 | Lee | May 2012 | A1 |
20120121823 | Chhabra | May 2012 | A1 |
20120122302 | Weidman et al. | May 2012 | A1 |
20120128897 | Xiao et al. | May 2012 | A1 |
20120135145 | Je et al. | May 2012 | A1 |
20120156108 | Fondurulia et al. | Jun 2012 | A1 |
20120160172 | Wamura et al. | Jun 2012 | A1 |
20120164327 | Sato | Jun 2012 | A1 |
20120164837 | Tan et al. | Jun 2012 | A1 |
20120164842 | Watanabe | Jun 2012 | A1 |
20120171391 | Won et al. | Jul 2012 | A1 |
20120171874 | Thridandam et al. | Jul 2012 | A1 |
20120207456 | Kim et al. | Aug 2012 | A1 |
20120212121 | Lin | Aug 2012 | A1 |
20120214318 | Fukazawa et al. | Aug 2012 | A1 |
20120220139 | Lee et al. | Aug 2012 | A1 |
20120225561 | Watanabe | Sep 2012 | A1 |
20120240858 | Taniyama et al. | Sep 2012 | A1 |
20120263876 | Haukka et al. | Oct 2012 | A1 |
20120270339 | Xie et al. | Oct 2012 | A1 |
20120270393 | Pore et al. | Oct 2012 | A1 |
20120289053 | Holland et al. | Nov 2012 | A1 |
20120295427 | Bauer | Nov 2012 | A1 |
20120304935 | Oosterlaken et al. | Dec 2012 | A1 |
20120305196 | Mori et al. | Dec 2012 | A1 |
20120315113 | Hiroki | Dec 2012 | A1 |
20120318334 | Bedell et al. | Dec 2012 | A1 |
20120321786 | Satitpunwaycha et al. | Dec 2012 | A1 |
20120322252 | Son et al. | Dec 2012 | A1 |
20120325148 | Yamagishi et al. | Dec 2012 | A1 |
20120328780 | Yamagishi et al. | Dec 2012 | A1 |
20130005122 | Schwarzenbach et al. | Jan 2013 | A1 |
20130011983 | Tsai | Jan 2013 | A1 |
20130014697 | Kanayama | Jan 2013 | A1 |
20130014896 | Shoji et al. | Jan 2013 | A1 |
20130019944 | Hekmatshoar-Tabai et al. | Jan 2013 | A1 |
20130019945 | Hekmatshoar-Tabai et al. | Jan 2013 | A1 |
20130023129 | Reed | Jan 2013 | A1 |
20130048606 | Mao et al. | Feb 2013 | A1 |
20130064973 | Chen et al. | Mar 2013 | A1 |
20130068970 | Matsushita | Mar 2013 | A1 |
20130078392 | Xiao et al. | Mar 2013 | A1 |
20130081702 | Mohammed et al. | Apr 2013 | A1 |
20130084156 | Shimamoto et al. | Apr 2013 | A1 |
20130084714 | Oka et al. | Apr 2013 | A1 |
20130104988 | Yednak et al. | May 2013 | A1 |
20130104992 | Yednak et al. | May 2013 | A1 |
20130115383 | Lu et al. | May 2013 | A1 |
20130115763 | Takamure et al. | May 2013 | A1 |
20130122712 | Kim et al. | May 2013 | A1 |
20130126515 | Shero et al. | May 2013 | A1 |
20130129577 | Halpin et al. | May 2013 | A1 |
20130134148 | Tachikawa | May 2013 | A1 |
20130168354 | Kanarik | Jul 2013 | A1 |
20130180448 | Sakaue et al. | Jul 2013 | A1 |
20130183814 | Huang et al. | Jul 2013 | A1 |
20130210241 | Lavoie et al. | Aug 2013 | A1 |
20130217239 | Mallick et al. | Aug 2013 | A1 |
20130217240 | Mallick et al. | Aug 2013 | A1 |
20130217241 | Underwood et al. | Aug 2013 | A1 |
20130217243 | Underwood et al. | Aug 2013 | A1 |
20130224964 | Fukazawa | Aug 2013 | A1 |
20130230814 | Dunn et al. | Sep 2013 | A1 |
20130256838 | Sanchez et al. | Oct 2013 | A1 |
20130264659 | Jung | Oct 2013 | A1 |
20130288480 | Sanchez et al. | Oct 2013 | A1 |
20130292047 | Tian et al. | Nov 2013 | A1 |
20130292676 | Milligan et al. | Nov 2013 | A1 |
20130292807 | Raisanen et al. | Nov 2013 | A1 |
20130295779 | Chandra et al. | Nov 2013 | A1 |
20130319290 | Xiao et al. | Dec 2013 | A1 |
20130323435 | Xiao et al. | Dec 2013 | A1 |
20130330165 | Wimplinger | Dec 2013 | A1 |
20130330911 | Huang et al. | Dec 2013 | A1 |
20130330933 | Fukazawa et al. | Dec 2013 | A1 |
20130337583 | Kobayashi et al. | Dec 2013 | A1 |
20140000843 | Dunn et al. | Jan 2014 | A1 |
20140014642 | Elliot et al. | Jan 2014 | A1 |
20140014644 | Akiba et al. | Jan 2014 | A1 |
20140020619 | Vincent et al. | Jan 2014 | A1 |
20140027884 | Tang et al. | Jan 2014 | A1 |
20140033978 | Adachi et al. | Feb 2014 | A1 |
20140036274 | Marquardt et al. | Feb 2014 | A1 |
20140048765 | Ma et al. | Feb 2014 | A1 |
20140056679 | Yamabe et al. | Feb 2014 | A1 |
20140060147 | Sarin et al. | Mar 2014 | A1 |
20140062304 | Nakano et al. | Mar 2014 | A1 |
20140067110 | Lawson et al. | Mar 2014 | A1 |
20140073143 | Alokozai et al. | Mar 2014 | A1 |
20140077240 | Roucka et al. | Mar 2014 | A1 |
20140084341 | Weeks | Mar 2014 | A1 |
20140087544 | Tolle | Mar 2014 | A1 |
20140094027 | Azumo et al. | Apr 2014 | A1 |
20140096716 | Chung et al. | Apr 2014 | A1 |
20140099798 | Tsuji | Apr 2014 | A1 |
20140103145 | White et al. | Apr 2014 | A1 |
20140116335 | Tsuji et al. | May 2014 | A1 |
20140120487 | Kaneko | May 2014 | A1 |
20140127907 | Yang | May 2014 | A1 |
20140141625 | Fukazawa et al. | May 2014 | A1 |
20140159170 | Raisanen et al. | Jun 2014 | A1 |
20140174354 | Arai | Jun 2014 | A1 |
20140175054 | Carlson et al. | Jun 2014 | A1 |
20140182053 | Huang | Jul 2014 | A1 |
20140217065 | Winkler et al. | Aug 2014 | A1 |
20140220247 | Haukka et al. | Aug 2014 | A1 |
20140225065 | Rachmady et al. | Aug 2014 | A1 |
20140227072 | Lee et al. | Aug 2014 | A1 |
20140251953 | Winkler et al. | Sep 2014 | A1 |
20140251954 | Winkler et al. | Sep 2014 | A1 |
20140283747 | Kasai et al. | Sep 2014 | A1 |
20140346650 | Raisanen et al. | Nov 2014 | A1 |
20140349033 | Nonaka et al. | Nov 2014 | A1 |
20140363980 | Kawamata et al. | Dec 2014 | A1 |
20140363985 | Jang et al. | Dec 2014 | A1 |
20140367043 | Bishara et al. | Dec 2014 | A1 |
20150004316 | Thompson et al. | Jan 2015 | A1 |
20150004317 | Dussarrat et al. | Jan 2015 | A1 |
20150007770 | Chandrasekharan et al. | Jan 2015 | A1 |
20150014632 | Kim et al. | Jan 2015 | A1 |
20150021599 | Ridgeway | Jan 2015 | A1 |
20150024609 | Milligan et al. | Jan 2015 | A1 |
20150048485 | Tolle | Feb 2015 | A1 |
20150078874 | Sansoni | Mar 2015 | A1 |
20150086316 | Greenberg | Mar 2015 | A1 |
20150091057 | Xie et al. | Apr 2015 | A1 |
20150096973 | Dunn et al. | Apr 2015 | A1 |
20150099072 | Takamure et al. | Apr 2015 | A1 |
20150132212 | Winkler et al. | May 2015 | A1 |
20150140210 | Jung et al. | May 2015 | A1 |
20150147483 | Fukazawa | May 2015 | A1 |
20150147877 | Jung | May 2015 | A1 |
20150167159 | Halpin et al. | Jun 2015 | A1 |
20150170954 | Agarwal | Jun 2015 | A1 |
20150174768 | Rodnick | Jun 2015 | A1 |
20150184291 | Alokozai et al. | Jul 2015 | A1 |
20150187568 | Pettinger et al. | Jul 2015 | A1 |
20150217456 | Tsuji et al. | Aug 2015 | A1 |
20150240359 | Jdira et al. | Aug 2015 | A1 |
20150267295 | Hill et al. | Sep 2015 | A1 |
20150267297 | Shiba | Sep 2015 | A1 |
20150267299 | Hawkins | Sep 2015 | A1 |
20150267301 | Hill et al. | Sep 2015 | A1 |
20150284848 | Nakano et al. | Oct 2015 | A1 |
20150287626 | Arai | Oct 2015 | A1 |
20150308586 | Shugrue et al. | Oct 2015 | A1 |
20150315704 | Nakano et al. | Nov 2015 | A1 |
20160013024 | Milligan et al. | Jan 2016 | A1 |
20160024656 | White et al. | Jan 2016 | A1 |
20160051964 | Tolle et al. | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
1563483 | Jan 2005 | CN |
101330015 | Dec 2008 | CN |
101522943 | Sep 2009 | CN |
101423937 | Sep 2011 | CN |
102008052750 | Jun 2009 | DE |
2036600 | Mar 2009 | EP |
2426233 | Jul 2012 | EP |
03-044472 | Feb 1991 | JP |
H04115531 | Apr 1992 | JP |
06-53210 | Feb 1994 | JP |
07-130731 | May 1995 | JP |
07-034936 | Aug 1995 | JP |
7-272694 | Oct 1995 | JP |
H07283149 | Oct 1995 | JP |
08-181135 | Jul 1996 | JP |
H08335558 | Dec 1996 | JP |
10-064696 | Mar 1998 | JP |
10-0261620 | Sep 1998 | JP |
2845163 | Jan 1999 | JP |
2001-15698 | Jan 2001 | JP |
2001342570 | Dec 2001 | JP |
2004014952 | Jan 2004 | JP |
2004091848 | Mar 2004 | JP |
2004128019 | Apr 2004 | JP |
2004134553 | Apr 2004 | JP |
2004294638 | Oct 2004 | JP |
2004310019 | Nov 2004 | JP |
2004538374 | Dec 2004 | JP |
2005507030 | Mar 2005 | JP |
2006186271 | Jul 2006 | JP |
3140111 | Mar 2008 | JP |
2008060304 | Mar 2008 | JP |
2008527748 | Jul 2008 | JP |
2008202107 | Sep 2008 | JP |
2009016815 | Jan 2009 | JP |
2009099938 | May 2009 | JP |
2010067940 | Mar 2010 | JP |
2010097834 | Apr 2010 | JP |
2010205967 | Sep 2010 | JP |
2010251444 | Oct 2010 | JP |
2012089837 | May 2012 | JP |
2012146939 | Aug 2012 | JP |
20100020834 | Feb 2010 | KR |
I226380 | Jan 2005 | TW |
200701301 | Jan 2007 | TW |
9832893 | Jul 1998 | WO |
2004008827 | Jan 2004 | WO |
2004010467 | Jan 2004 | WO |
2006054854 | May 2006 | WO |
2006056091 | Jun 2006 | WO |
2006101857 | Jun 2006 | WO |
2006078666 | Jul 2006 | WO |
2006080782 | Aug 2006 | WO |
2007140376 | Dec 2007 | WO |
2010039363 | Apr 2010 | WO |
2010118051 | Jan 2011 | WO |
2011019950 | Feb 2011 | WO |
2013078065 | May 2013 | WO |
2013078066 | May 2013 | WO |
Entry |
---|
USPTO; Office Action dated Aug. 27, 2010 in U.S. Appl. No. 12/118,596. |
USPTO; Office Action dated Feb. 15, 2011 in U.S. Appl. No. 12/118,596. |
USPTO; Notice of Allowance dated Aug. 4, 2011 in U.S. Appl. No. 12/118,596. |
USPTO; Non-Final Office Action dated Apr. 1, 2010 in U.S. Appl. No. 12/357,174. |
USPTO; Final Office Action dated Sep. 1, 2010 in U.S. Appl. No. 12/357,174. |
USPTO; Notice of Allowance dated Dec. 13, 2010 in U.S. Appl. No. 12/357,174. |
USPTO; Non-Final Office Action dated Dec. 29, 2010 in U.S. Appl. No. 12/362,023. |
USPTO; Non-Final Office Action dated Jul. 26, 2011 in U.S. Appl. No. 12/416,809. |
USPTO; Final Office Action dated Dec. 6, 2011 in U.S. Appl. No. 12/416,809. |
USPTO; Notice of Allowance dated Jun. 16, 2011 in U.S. Appl. No. 12/430,751. |
USPTO; Notice of Allowance dated Jul. 27, 2011 in U.S. Appl. No. 12/430,751. |
USPTO; Notice of Allowance dated Oct. 1, 2010 in U.S. Appl. No. 12/467,017. |
USPTO; Non-Final Office Action dated Mar. 18, 2010 in U.S. Appl. No. 12/489,252. |
USPTO; Notice of Allowance dated Sep. 2, 2010 in U.S. Appl. No. 12/489,252. |
USPTO; Non-Final Office Action dated Dec. 15, 2010 in U.S. Appl. No. 12/553,759. |
USPTO; Final Office Action dated May 4, 2011 in U.S. Appl. No. 12/553,759. |
USPTO; Non-Final Office Action dated Sep. 6, 2011 in U.S. Appl. No. 12/553,759. |
USPTO; Notice of Allowance dated Jan. 24, 2012 in U.S. Appl. No. 12/553,759. |
USPTO; Non-Final Office Action dated Oct. 19, 2012 in U.S. Appl. No. 12/618,355. |
USPTO; Final Office Action dated May 8, 2013 in U.S. Appl. No. 12/618,355. |
USPTO; Non-Final Office Action dated Apr. 8, 2015 in U.S. Appl. No. 12/618,355. |
USPTO; Final Office Action dated Oct. 22, 2015 in U.S. Appl. No. 12/618,355. |
USPTO; Non-Final Office Action dated Feb. 16, 2012 in U.S. Appl. No. 12/618,419. |
USPTO; Final Office Action dated Jun. 22, 2012 in U.S. Appl. No. 12/618,419. |
USPTO; Non-Final Office Action dated Nov. 27, 2012 in U.S. Appl. No. 12/618,419. |
USPTO; Notice of Allowance dated Apr. 12, 2013 in U.S. Appl. No. 12/618,419. |
USPTO; Non-Final Office Action dated Dec. 6, 2011 in U.S. Appl. No. 12/718,731. |
USPTO; Notice of Allowance dated Mar. 16, 2012 in U.S. Appl. No. 12/718,731. |
USPTO; Restriction Requirement dated Jan. 15, 2013 in U.S. Appl. No. 12/754,223. |
USPTO; Office Action dated Feb. 26, 2013 in U.S. Appl. No. 12/754,223. |
USPTO; Final Office Action dated Jun. 28, 2013 in U.S. Appl. No. 12/754,223. |
USPTO; Office Action dated Feb. 25, 2014 in U.S. Appl. No. 12/754,223. |
USPTO; Final Office Action dated Jul. 14, 2014 in U.S. Appl. No. 12/754,223. |
USPTO; Non-Final Office Action dated Mar. 25, 2015 in U.S. Appl. No. 12/754,223. |
USPTO; Final Office Action dated Aug. 12, 2015 in U.S. Appl. No. 12/754,223. |
USPTO; Office Action dated Apr. 23, 2013 in U.S. Appl. No. 12/763,037. |
USPTO; Final Office Action dated Oct. 21, 2013 in U.S. Appl. No. 12/763,037. |
USPTO; Office Action dated Oct. 8, 2014 in U.S. Appl. No. 12/763,037. |
USPTO; Notice of Allowance dated Jan. 27, 2015 in U.S. Appl. No. 12/763,037. |
USPTO; Non-Final Office Action dated Jan. 24, 2011 in U.S. Appl. No. 12/778,808. |
USPTO; Notice of Allowance dated May 9, 2011 in U.S. Appl. No. 12/778,808. |
USPTO; Notice of Allowance dated Oct. 12, 2012 in U.S. Appl. No. 12/832,739. |
USPTO; Non-Final Office Action dated Oct. 16, 2012 in U.S. Appl. No. 12/847,848. |
USPTO; Final Office Action dated Apr. 22, 2013 in U.S. Appl. No. 12/847,848. |
USPTO; Notice of Allowance dated Jan. 16, 2014 in U.S. Appl. No. 12/847,848. |
USPTO; Restriction Requirement dated Sep. 25, 2012 in U.S. Appl. No. 12/854,818. |
USPTO; Office Action dated Dec. 6, 2012 in U.S. Appl. No. 12/854,818. |
USPTO; Final Office Action dated Mar. 13, 2013 in U.S. Appl. No. 12/854,818. |
USPTO; Office Action dated Aug. 30, 2013 in U.S. Appl. No. 12/854,818. |
USPTO; Final Office Action dated Mar. 26, 2014 in U.S. Appl. No. 12/854,818. |
USPTO; Office Action dated Jun. 3, 2014 in U.S. Appl. No. 12/854,818. |
USPTO; Non-Final Office Action dated Jul. 11, 2012 in U.S. Appl. No. 12/875,889. |
USPTO; Notice of Allowance dated Jan. 4, 2013 in U.S. Appl. No. 12/875,889. |
USPTO; Notice of Allowance dated Jan. 9, 2012 in U.S. Appl. No. 12/901,323. |
USPTO; Non-Final Office Action dated Nov. 20, 2013 in U.S. Appl. No. 12/910,607. |
USPTO; Final Office Action dated Apr. 28, 2014 in U.S. Appl. No. 12/910,607. |
USPTO; Notice of Allowance dated Aug. 15, 2014 in U.S. Appl. No. 12/910,607. |
USPTO; Non-Final Office Action dated Oct. 24, 2012 in U.S. Appl. No. 12/940,906. |
USPTO; Final Office Action dated Feb. 13, 2013 in U.S. Appl. No. 12/940,906. |
USPTO; Notice of Allowance dated Apr. 23, 2013 in U.S. Appl. No. 12/940,906. |
USPTO; Non-Final Office Action dated Dec. 7, 2012 in U.S. Appl. No. 12/953,870. |
USPTO; Final Office Action dated Apr. 22, 2013 in U.S. Appl. No. 12/953,870. |
USPTO; Non-Final Office Action dated Sep. 19, 2012 in U.S. Appl. No. 13/016,735. |
USPTO; Final Office Action dated Feb. 11, 2013 in U.S. Appl. No. 13/016,735. |
USPTO; Notice of Allowance dated Apr. 24, 2013 in U.S. Appl. No. 13/016,735. |
USPTO; Non-Final Office Action dated Apr. 4, 2012 in U.S. Appl. No. 13/030,438. |
USPTO; Final Office Action dated Aug. 22, 2012 in U.S. Appl. No. 13/030,438. |
USPTO; Notice of Allowance dated Oct. 24, 2012 in U.S. Appl. No. 13/030,438. |
USPTO; Non-Final Office Action dated Dec. 3, 2012 in U.S. Appl. No. 13/040,013. |
USPTO; Notice of Allowance dated May 3, 2013 in U.S. Appl. No. 13/040,013. |
USPTO; Notice of Allowance dated Sep. 13, 2012 in U.S. Appl. No. 13/085,698. |
USPTO; Non-Final Office Action dated Mar. 29, 2013 in U.S. Appl. No. 13/094,402. |
USPTO; Final Office Action dated Jul. 17, 2013 in U.S. Appl. No. 13/094,402. |
USPTO; Notice of Allowance dated Sep. 30, 2013 in U.S. Appl. No. 13/094,402. |
USPTO; Restriction Requirement dated May 8, 2013 in U.S. Appl. No. 13/102,980. |
USPTO; Office Action dated Oct. 7, 2013 in U.S. Appl. No. 13/102,980. |
USPTO; Final Office Action dated Mar. 25, 2014 in U.S. Appl. No. 13/102,980. |
USPTO; Notice of Allowance dated Jul. 3, 2014 in U.S. Appl. No. 13/102,980. |
USPTO; Non-Final Office Action dated Jul. 17, 2014 in U.S. Appl. No. 13/154,271. |
USPTO; Final Office Action dated Jan. 2, 2015 in U.S. Appl. No. 13/154,271. |
USPTO; Non-Final Office Action dated May 27, 2015 in U.S. Appl. No. 13/154,271. |
USPTO; Final Office Action dated Nov. 23, 2015 in U.S. Appl. No. 13/154,271. |
USPTO; Notice of Allowance dated Feb. 10, 2016 in U.S. Appl. No. 13/154,271. |
USPTO; Non-Final Office Action dated Oct. 27, 2014 in U.S. Appl. No. 13/169,951. |
USPTO; Final Office Action dated May 26, 2015 in U.S. Appl. No. 13/169,591. |
USPTO; Non-Final Office Action dated Sep. 1, 2015 in U.S. Appl. No. 13/169,951. |
USPTO; Non-Final Office Action dated Jun. 24, 2014 in U.S. Appl. No. 13/181,407. |
USPTO; Final Office Action dated Sep. 24, 2014 in U.S. Appl. No. 13/181,407. |
USPTO; Non-Final Office Action dated Jan. 2, 2015 in U.S. Appl. No. 13/181,407. |
USPTO; Final Office Action dated Apr. 8, 2015 in U.S. Appl. No. 13/181,407. |
USPTO; Non-Final Office Action dated Jan. 23, 2013 in U.S. Appl. No. 13/184,351. |
USPTO; Final Office Action dated Jul. 29, 2013 in U.S. Appl. No. 13/184,351. |
USPTO; Non-Final Office Action dated Jul. 16, 2014 in U.S. Appl. No. 13/184,351. |
USPTO; Final Office Action dated Feb. 17, 2015 in U.S. Appl. No. 13/184,351. |
USPTO; Non-Final Office Action dated Aug. 10, 2015 in U.S. Appl. No. 13/184,351. |
USPTO; Non-Final Office Action dated Sep. 17, 2014 in U.S. Appl. No. 13/187,300. |
USPTO; Final Office Action dated Apr. 15, 2015 in U.S. Appl. No. 13/187,300. |
USPTO; Non-Final Office Action dated Apr. 7, 2016 in U.S. Appl. No. 13/187,300. |
USPTO; Non-Final Office Action dated Oct. 1, 2012 in U.S. Appl. No. 13/191,762. |
USPTO; Final Office Action dated Apr. 10, 2013 in U.S. Appl. No. 13/191,762. |
USPTO; Notice of Allowance dated Aug. 15, 2013 in U.S. Appl. No. 13/191,762. |
USPTO; Non-Final Office Action dated Oct. 22, 2012 in U.S. Appl. No. 13/238,960. |
USPTO; Final Office Action dated May 3, 2013 in U.S. Appl. No. 13/238,960. |
USPTO; Non-Final Office Action dated Apr. 26, 2013 in U.S. Appl. No. 13/250,721. |
USPTO; Notice of Allowance dated Sep. 11, 2013 in U.S. Appl. No. 13/250,721. |
USPTO; Non-Final Office Action dated Jul. 2, 2014 in U.S. Appl. No. 13/283,408. |
USPTO; Final Office Action dated Jan. 29, 2015 in U.S. Appl. No. 13/283,408. |
USPTO; Non-Final Office Action dated Jun. 17, 2015 in U.S. Appl. No. 13/283,408. |
USPTO; Final Office Action dated Dec. 18, 2015 in U.S. Appl. No. 13/283,408. |
USPTO; Notice of Allowance dated Mar. 28, 2016 in U.S. Appl. No. 13/283,408. |
USPTO; Restriction Requirement dated Dec. 16, 2013 in U.S. Appl. No. 13/284,642. |
USPTO; Restriction Requirement dated Apr. 21, 2014 in U.S. Appl. No. 13/284,642. |
USPTO; Office Action dated Jul. 30, 2014 in U.S. Appl. No. 13/284,642. |
USPTO; Notice of Allowance dated Feb. 11, 2015 in U.S. Appl. No. 13/284,642. |
USPTO; Office Action dated Jan. 28, 2014 in U.S. Appl. No. 13/312,591. |
USPTO; Final Office Action dated May 14, 2014 in U.S. Appl. No. 13/312,591. |
USPTO; Non-Final Office Action dated Nov. 26, 2014 in U.S. Appl. No. 13/312,591. |
USPTO; Final Office Action dated Mar. 20, 2015 in U.S. Appl. No. 13/312,591. |
USPTO; Notice of Allowance dated May 14, 2015 in U.S. Appl. No. 13/312,591. |
USPTO; Non-Final Office Action dated Apr. 9, 2014 in U.S. Appl. No. 13/333,420. |
USPTO; Notice of Allowance dated Sep. 15, 2014 in U.S. Appl. No. 13/333,420. |
USPTO; Office Action dated Jan. 10, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Office Action dated Feb. 11, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Final Office Action dated May 17, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Office Action dated Aug. 29, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Final Office Action dated Dec. 18, 2013 in U.S. Appl. No. 13/339,609. |
USPTO; Notice of Allowance dated Apr. 7, 2014 in U.S. Appl. No. 13/339,609. |
USPTO; Non-Final Office Action dated Oct. 10, 2012 in U.S. Appl. No. 13/406,791. |
USPTO; Final Office Action dated Jan. 31, 2013 in U.S. Appl. No. 13/406,791. |
USPTO; Non-Final Office Action dated Apr. 25, 2013 in U.S. Appl. No. 13/406,791. |
USPTO; Final Office Action dated Aug. 23, 2013 in U.S. Appl. No. 13/406,791. |
USPTO; Non-Final Office Action dated Dec. 4, 2013 in U.S. Appl. No. 13/406,791. |
USPTO; Final Office Action dated Apr. 21, 2014 in U.S. Appl. No. 13/406,791. |
USPTO; Non-Final Office Action dated Jan. 14, 2013 in U.S. Appl. No. 13/410,970. |
USPTO; Notice of Allowance dated Feb. 14, 2013 in U.S. Appl. No. 13/410,970. |
USPTO; Non-Final Office Action dated Feb. 13, 2014 in U.S. Appl. No. 13/411,271. |
USPTO; Non-Final Office Action dated Jul. 31, 2014 in U.S. Appl. No. 13/411,271. |
USPTO; Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 13/411,271. |
USPTO; Notice of Allowance dated Oct. 6, 2015 in U.S. Appl. No. 13/411,271. |
USPTO; Restriction Requirement dated Oct. 29, 2013 in U.S. Appl. No. 13/439,528. |
USPTO; Office Action dated Feb. 4, 2014 in U.S. Appl. No. 13/439,528. |
USPTO; Final Office Action dated Jul. 8, 2014 in U.S. Appl. No. 13/439,528. |
USPTO; Notice of Allowance dated Oct. 21, 2014 in U.S. Appl. No. 13/439,528. |
USPTO; Non-Final Office Action dated Apr. 11, 2013 in U.S. Appl. No. 13/450,368. |
USPTO; Notice of Allowance dated Jul. 17, 2013 in U.S. Appl. No. 13/450,368. |
USPTO; Office Action dated May 23, 2013 in U.S. Appl. No. 13/465,340. |
USPTO; Final Office Action dated Oct. 30, 2013 in U.S. Appl. No. 13/465,340. |
USPTO; Notice of Allowance dated Feb. 12, 2014 in U.S. Appl. No. 13/465,340. |
USPTO; Non-Final Office Action dated Oct. 17, 2013 in U.S. Appl. No. 13/493,897. |
USPTO; Notice of Allowance dated Mar. 20, 2014 in U.S. Appl. No. 13/493,897. |
USPTO; Office Action dated Dec. 20, 2013 in U.S. Appl. No. 13/535,214. |
USPTO; Final Office Action dated Jun. 18, 2014 in U.S. Appl. No. 13/535,214. |
USPTO; Notice of Allowance dated Oct. 23, 2014 in U.S. Appl. No. 13/535,214. |
USPTO; Non-Final Office Action dated Sep. 11, 2013 in U.S. Appl. No. 13/550,419. |
USPTO; Final Office Action dated Jan. 27, 2014 in U.S. Appl. No. 13/550,419. |
USPTO; Notice of Allowance dated May 29, 2014 in U.S. Appl. No. 13/550,419. |
USPTO; Non-Final Office Action dated Aug. 8, 2014 in U.S. Appl. No. 13/563,066. |
USPTO; Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/563,066. |
USPTO; Notice of Allowance dated Jun. 12, 2015 in U.S. Appl. No. 13/563,066. |
USPTO; Notice of Allowance dated Jul. 16, 2015 in U.S. Appl. No. 13/563,066. |
USPTO; Non-Final Office Action dated Nov. 7, 2013 in U.S. Appl. No. 13/565,564. |
USPTO; Final Office Action dated Feb. 28, 2014 in U.S. Appl. No. 13/565,564. |
USPTO; Non-Final Office Action dated Jul. 2, 2014 in U.S. Appl. No. 13/565,564. |
USPTO; Notice of Allowance dated Nov. 3, 2014 in U.S. Appl. No. 13/565,564. |
USPTO; Non-Final Office Action dated Aug. 30, 2013 in U.S. Appl. No. 13/570,067. |
USPTO; Notice of Allowance dated Jan. 6, 2014 in U.S. Appl. No. 13/570,067. |
USPTO; Non-Final Office Action dated Oct. 15, 2014 in U.S. Appl. No. 13/597,043. |
USPTO; Final Office Action dated Mar. 13, 2015 in U.S. Appl. No. 13/597,043. |
USPTO; USPTO; Notice of Allowance dated Aug. 28, 2015 in U.S. Appl. No. 13/597,043. |
USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/597,108. |
USPTO; Final Office Action dated Jun. 1, 2015 in U.S. Appl. No. 13/597,108. |
USPTO; Non-Final Office Action dated Dec. 8, 2015 in U.S. Appl. No. 13/597,108. |
USPTO; Notice of Allowance dated Mar. 27, 2014 in U.S. Appl. No. 13/604,498. |
USPTO; Office Action dated Nov. 15, 2013 in U.S. Appl. No. 13/612,538. |
USPTO; Office Action dated Jul. 10, 2014 in U.S. Appl. No. 13/612,538. |
USPTO; Non-Final Office Action dated Apr. 15, 2015 in U.S. Appl. No. 13/646,403. |
USPTO; Final Office Action dated Oct. 15, 2015 in U.S. Appl. No. 13/646,403. |
USPTO; Notice of Allowance dated Feb. 2, 2016 in U.S. Appl. No. 13/646,403. |
USPTO; Non-Final Office Action dated May 15, 2014 in U.S. Appl. No. 13/646,471. |
USPTO; Final Office Action dated Aug. 18, 2014 in U.S. Appl. No. 13/646,471. |
USPTO; Non-Final Office Action dated Dec. 16, 2014 in U.S. Appl. No. 13/646,471. |
USPTO; Final Office Action dated Apr. 21, 2015 in U.S. Appl. No. 13/646,471. |
USPTO; Non-Final Office Action dated Aug. 19, 2015 in U.S. Appl. No. 13/646,471. |
USPTO; Final Office Action dated Jan. 22, 2016 in U.S. Appl. No. 13/646,471. |
USPTO; Non-Final Office Action dated May 28, 2015 in U.S. Appl. No. 13/651,144. |
USPTO; Final Office Action dated Nov. 19, 2015 in U.S. Appl. No. 13/651,144. |
USPTO; Non-Final Office Action dated Nov. 19, 2015 in U.S. Appl. No. 14/659,437. |
USPTO; Non-Final Office Action dated Jun. 18, 2015 in U.S. Appl. No. 13/665,366. |
USPTO; Non-Final Office Action dated Apr. 3, 2015 in U.S. Appl. No. 13/677,133. |
USPTO; Notice of Allowance dated Aug. 4, 2015 in U.S. Appl. No. 13/677,133. |
USPTO; Office Action dated Jun. 2, 2014 in U.S. Appl. No. 13/677,151. |
USPTO; Final Office Action dated Nov. 14, 2014 in U.S. Appl. No. 13/677,151. |
USPTO; Notice of Allowance dated Feb. 26, 2015 in U.S. Appl. No. 13/677,151. |
USPTO; Non-Final Office Action dated Aug. 20, 2013 in U.S. Appl. No. 13/679,502. |
USPTO; Final Office Action dated Feb. 25, 2014 in U.S. Appl. No. 13/679,502. |
USPTO; Notice of Allowance dated May 2, 2014 in U.S. Appl. No. 13/679,502. |
USPTO; Non-Final Office Action dated Jul. 21, 2015 in U.S. Appl. No. 13/727,324. |
USPTO; Final Office Action dated Jan. 22, 2016 in U.S. Appl. No. 13/727,324. |
USPTO; Non-Final Office Action dated Oct. 24, 2013 in U.S. Appl. No. 13/749,878. |
USPTO; Non-Final Office Action dated Jun. 18, 2014 in U.S. Appl. No. 13/749,878. |
USPTO; Final Office Action dated Dec. 10, 2014 in U.S. Appl. No. 13/749,878. |
USPTO; Notice of Allowance Mar. 13, 2015 dated in U.S. Appl. No. 13/749,878. |
USPTO; Office Action dated Apr. 23, 2014 in U.S. Appl. No. 13/784,362. |
USPTO; Notice of Allowance dated Aug. 13, 2014 in U.S. Appl. No. 13/784,362. |
USPTO; Non-Final Office Action dated Dec. 19, 2013 in U.S. Appl. No. 13/784,388. |
USPTO; Notice of Allowance dated Jun. 4, 2014 in U.S. Appl. No. 13/784,388. |
USPTO; Restriction Requirement dated May 8, 2014 in U.S. Appl. No. 13/791,246. |
USPTO; Non-Final Office Action dated Sep. 19, 2014 in U.S. Appl. No. 13/791,246. |
USPTO; Final Office Action dated Mar. 25, 2015 in U.S. Appl. No. 13/791,246. |
USPTO; Non-Final Office Action dated Oct. 26, 2015 in U.S. Appl. No. 13/791,246. |
USPTO; Final Office Action dated Apr. 20, 2016 in U.S. Appl. No. 13/791,246. |
USPTO; Non-Final Office Action dated Nov. 6, 2015 in U.S. Appl. No. 13/791,339. |
USPTO; Final Office Action dated Apr. 12, 2016 in U.S. Appl. No. 13/791,339. |
USPTO; Non-Final Office Action dated Mar. 21, 2014 in U.S. Appl. No. 13/799,708. |
USPTO; Notice of Allowance dated Oct. 31, 2014 in U.S. Appl. No. 13/799,708. |
USPTO; Restriction Requirement dated Jun. 26, 2014 in U.S. Appl. No. 13/874,708. |
USPTO; Non-Final Office Action dated Oct. 9, 2014 in U.S. Appl. No. 13/874,708. |
USPTO; Notice of Allowance dated Mar. 10, 2015 in U.S. Appl. No. 13/874,708. |
USPTO; Notice of Allowance dated Apr. 10, 2014 in U.S. Appl. No. 13/901,341. |
USPTO; Notice of Allowance dated Jun. 6, 2014 in U.S. Appl. No. 13/901,341. |
USPTO; Non-Final Office Action dated Jan. 2, 2015 in U.S. Appl. No. 13/901,372. |
USPTO; Final Office Action dated Apr. 16, 2015 in U.S. Appl. No. 13/901,372. |
USPTO; Non-Final Office Action dated Jul. 8, 2015 in U.S. Appl. No. 13/901,400. |
USPTO; Final Office Action dated Jan. 14, 2016 in U.S. Appl. No. 13/901,400. |
USPTO; Notice of Allowance dated Aug. 5, 2015 in U.S. Appl. No. 13/901,372. |
USPTO; Non-Final Office Action dated Apr. 24, 2014 in U.S. Appl. No. 13/912,666. |
USPTO; Final Office Action dated Sep. 25, 2014 in U.S. Appl. No. 13/912,666. |
USPTO; Non-Final Office Action dated Jan. 26, 2015 in U.S. Appl. No. 13/912,666. |
USPTO; Notice of Allowance dated Jun. 25, 2015 in U.S. Appl. No. 13/912,666. |
USPTO; Non-Final Office Action dated Dec. 16, 2014 in U.S. Appl. No. 13/915,732. |
USPTO; Final Office Action dated Apr. 10, 2015 in U.S. Appl. No. 13/915,732. |
USPTO; Notice of Allowance dated Jun. 19, 2015 in U.S. Appl. No. 13/915,732. |
USPTO; Notice of Allowance dated Mar. 17, 2015 in U.S. Appl. No. 13/923,197. |
USPTO; Non-Final Office Action dated Sep. 12, 2014 in U.S. Appl. No. 13/941,134. |
USPTO; Notice of Allowance dated Jan. 20, 2015 in U.S. Appl. No. 13/941,134. |
USPTO; Restriction Requirement dated Apr. 30, 2015 in U.S. Appl. No. 13/941,216. |
USPTO; Non-Final Office Action dated Jul. 30, 2015 in U.S. Appl. No. 13/941,216. |
USPTO; Restriction Requirement dated Sep. 16, 2014 in U.S. Appl. No. 13/948,055. |
USPTO; Non-Final Office Action dated Oct. 30, 2014 in U.S. Appl. No. 13/948,055. |
USPTO; Non-Final Office Action dated Jun. 29, 2015 in U.S. Appl. No. 13/966,782. |
USPTO; Final Office Action dated Jan. 4, 2016 in U.S. Appl. No. 13/966,782. |
USPTO; Notice of Allowance dated Oct. 7, 2015 in U.S. Appl. No. 13/973,777. |
USPTO; Non-Final Office Action dated Feb. 20, 2015 in U.S. Appl. No. 14/018,231. |
USPTO; Notice of Allowance dated Jul. 20, 2015 in U.S. Appl. No. 14/018,231. |
USPTO; Restriction Requirement Action dated Jan. 28, 2015 in U.S. Appl. No. 14/018,345. |
USPTO; Non-Final Office Action dated Apr. 7, 2015 in U.S. Appl. No. 14/018,345. |
USPTO; Final Office Action dated Sep. 14, 2015 in U.S. Appl. No. 14/018,345. |
USPTO; Notice of Allowance dated Jan. 14, 2016 in U.S. Appl. No. 14/018,345. |
USPTO; Notice of Allowance dated Mar. 17, 2016 in U.S. Appl. No. 14/018,345. |
USPTO; Non-Final Office Action dated Mar. 26, 2015 in U.S. Appl. No. 14/031,982. |
USPTO; Final Office Action dated Aug. 28, 2015 in U.S. Appl. No. 14/031,982. |
USPTO; Notice of Allowance dated Nov. 17, 2015 in U.S. Appl. No. 14/031,982. |
USPTO; Non-Final Office Action dated Apr. 28, 2015 in U.S. Appl. No. 14/040,196. |
USPTO; Notice of Allowance dated Sep. 11, 2015 in U.S. Appl. No. 14/040,196. |
USPTO; Non-Final Action dated Dec. 3, 2015 in U.S. Appl. No. 14/050,150. |
USPTO; Non-Final Office Action dated Dec. 15, 2014 in U.S. Appl. No. 14/065,114. |
USPTO; Final Office Action dated Jun. 19, 2015 in U.S. Appl. No. 14/065,114. |
USPTO; Non-Final Office Action dated Oct. 7, 2015 in U.S. Appl. No. 14/065,114. |
USPTO; Notice of Allowance dated Feb. 22, 2016 in U.S. Appl. No. 14/065,114. |
USPTO; Non-Final Office Action dated Nov. 14, 2014 in U.S. Appl. No. 14/069,244. |
USPTO; Notice of Allowance dated Mar. 25, 2015 in U.S. Appl. No. 14/069,244. |
USPTO; Non-Final Office Action dated Sep. 9, 2015 in U.S. Appl. No. 14/090,750. |
USPTO; Final Office Action dated Feb. 11, 2016 U.S. Appl. No. 14/090,750. |
USPTO; Non-Final Office Action dated Mar. 19, 2015 in U.S. Appl. No. 14/079,302. |
USPTO; Final Office Action dated Sep. 1, 2015 in U.S. Appl. No. 14/079,302. |
USPTO; Non-Final Office Action dated Mar. 19, 2015 in U.S. Appl. No. 14/166,462. |
USPTO; Notice of Allowance dated Sep. 3, 2015 in U.S. Appl. No. 14/166,462. |
USPTO; Non-Final Office Action dated Nov. 17, 2015 in U.S. Appl. No. 14/172,220. |
USPTO; Office Action dated May 29, 2014 in U.S. Appl. No. 14/183,187. |
USPTO; Final Office Action dated Nov. 7, 2014 in U.S. Appl. No. 14/183,187. |
USPTO; Non-Final Office Action dated Mar. 16, 2015 in U.S. Appl. No. 14/183,187. |
USPTO; Final Office Action dated Jul. 10, 2015 in U.S. Appl. No. 14/183,187. |
USPTO; Non-Final Office Action dated Jan. 11, 2016 in U.S. Appl. No. 14/188,760. |
USPTO; Non-Final Office Action dated Oct. 8, 2015 in U.S. Appl. No. 14/218,374. |
USPTO; Final Office Action dated Feb. 23, 2016 in U.S. Appl. No. 14/218,374. |
USPTO; Non-Final Office Action dated Sep. 22, 2015 in U.S. Appl. No. 14/219,839. |
USPTO; Non-Final Office Action dated Nov. 25, 2015 in U.S. Appl. No. 14/219,879. |
USPTO; Final Office Action dated Mar. 25, 2016 in U.S. Appl. No. 14/219,839. |
USPTO; Non-Final Office Action dated Sep. 18, 2015 in U.S. Appl. No. 14/244,689. |
USPTO; Notice of Allowance dated Feb. 11, 2016 in U.S. Appl. No. 14/244,689. |
USPTO; Non-Final Office Action dated Oct. 7, 2015 in U.S. Appl. No. 14/246,969. |
USPTO; Non-Final Office Action dated Nov. 20, 2015 in U.S. Appl. No. 14/260,701. |
USPTO; Non-Final Office Action dated Aug. 19, 2015 in U.S. Appl. No. 14/268,348. |
USPTO; Non-Final Office Action dated Jan. 6, 2016 in U.S. Appl. No. 14/268,348. |
USPTO; Non-Final Office Action dated Oct. 20, 2015 in U.S. Appl. No. 14/281,477. |
USPTO; Notice of Allowance dated Feb. 23, 2016 in U.S. Appl. No. 14/327,134. |
USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 14/457,058. |
USPTO; Final Office Action dated Jul. 14, 2015 in U.S. Appl. No. 14/457,058. |
USPTO; Non-Final Office Action dated Nov. 6, 2015 in U.S. Appl. No. 14/457,058. |
USPTO; Non-Final Office Action dated Nov. 24, 2015 in U.S. Appl. No. 14/498,036. |
USPTO; Final Office Action dated Apr. 5, 2016 in U.S. Appl. No. 14/498,036. |
USPTO; Non-Final Office Action dated Apr. 10, 2015 in U.S. Appl. No. 14/505,290. |
USPTO; Notice of Allowance dated Aug. 21, 2015 in U.S. Appl. No. 14/505,290. |
USPTO; Non-Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 14/563,044. |
USPTO; Final Office Action dated Jul. 16, 2015 in U.S. Appl. No. 14/563,044. |
USPTO; Notice of Allowance dated Oct. 15, 2015 in U.S. Appl. No. 14/563,044. |
USPTO; Notice of Allowance dated Dec. 2, 2015 in U.S. Appl. No. 14/563,044. |
USPTO; Non-Final Office Action dated Oct. 1, 2015 in U.S. Appl. No. 14/571,126. |
USPTO; Final Office Action dated Feb. 22, 2016 in U.S. Appl. No. 14/571,126. |
USPTO; Non-Final Office Action dated Nov. 25, 2015 in U.S. Appl. No. 14/598,532. |
USPTO; Non-Final Office Action dated Jan. 15, 2016 in U.S. Appl. No. 14/606,364. |
USPTO; Non-Final Office Action dated Mar. 3, 2016 in U.S. Appl. No. 14/622,603. |
USPTO; Non-Final Office Action dated Mar. 21, 2016 in U.S. Appl. No. 14/659,152. |
USPTO; Final Office Action dated Mar. 17, 2016 in U.S. Appl. No. 14/659,437. |
USPTO;Notice of Allowance dated Mar. 25, 2016 in U.S. Appl. No. 14/693,138. |
USPTO; Non-Final Office Action dated Mar. 30, 2016 in U.S. Appl. No. 14/808,979. |
USPTO; Non-Final Office Action dated Mar. 22, 2016 in U.S. Appl. No. 14/987,420. |
USPTO; Non-Final Office Action dated Mar. 16, 2015 in U.S. Appl. No. 29/447,298. |
USPTO; Notice of Allowance dated Jul. 6, 2015 in U.S. Appl. No. 29/447,298. |
USPTO; Notice of Allowance dated Nov. 26, 2014 in U.S. Appl. No. 29/481,301. |
USPTO; Notice of Allowance dated Feb. 17, 2015 in U.S. Appl. No. 29/481,308. |
USPTO; Notice of Allowance dated Jan. 12, 2015 in U.S. Appl. No. 29/481,312. |
USPTO; Notice of Allowance dated Apr. 30, 2015 in U.S. Appl. No. 29/481,315. |
USPTO; Notice of Allowance dated May 11, 2015 in U.S. Appl. No. 29/511,011. |
USPTO; Notice of Allowance dated May 11, 2015 in U.S. Appl. No. 29/514,153. |
USPTO; Notice of Allowance dated Dec. 14, 2015 in U.S. Appl. No. 29/514,264. |
PCT; International Search report and Written Opinion dated Nov. 12, 2010 in Application No. PCT/US2010/030126. |
PCT; International Preliminary Report on Patentability dated Oct. 11, 2011 Application No. PCT/US2010/030126. |
PCT; International Search report and Written Opinion dated Jan. 20, 2011 in Application No. PCT/US2010/045368. |
PCT; International Search report and Written Opinion dated Feb. 6, 2013 in Application No. PCT/US2012/065343. |
PCT; International Search report and Written Opinion dated Feb. 13, 2013 in Application No. PCT/US2012/065347. |
Chinese Patent Office; Office Action dated Jan. 10, 2013 in Application No. 201080015699.9. |
Chinese Patent Office; Office Action dated Jan. 12, 2015 in Application No. 201080015699.9. |
Chinese Patent Office; Office Action dated May 24, 2013 in Application No. 201080036764.6. |
Chinese Patent Office; Office Action dated Jan. 2, 2014 in Application No. 201080036764.6. |
Chinese Patent Office; Office Action dated Jul. 1, 2014 in Application No. 201080036764.6. |
Chinese Patent Office; Office Action dated Feb. 8, 2014 in Application No. 201110155056. |
Chinese Patent Office; Office Action dated Sep. 16, 2014 in Application No. 201110155056. |
Chinese Patent Office; Office Action dated Feb. 9, 2015 in Application No. 201110155056. |
Japanese Patent Office; Office Action dated Jan. 25, 2014 in Application No. 2012-504786. |
Japanese Patent Office; Office Action dated Dec. 1, 2014 in Application No. 2012-504786. |
Korean Patent Office; Office Action dated Dec. 10, 2015 in Application No. 10-2010-0028336. |
Taiwan Patent Office; Office Action dated Jul. 4, 2014 in Application No. 099110511. |
Taiwan Patent Office; Office Action dated Dec. 19, 2014 in Taiwan Application No. 099127063. |
Bearzotti, et al., “Fast Humidity Response of a Metal Halide-Doped Novel Polymer,” Sensors and Actuators B, 7, pp. 451-454, (1992). |
Bhatnagar et al., “Copper Interconnect Advances to Meet Moore's Law Milestones,” Solid State Technology, 52, 10 (2009). |
Buriak, “Organometallic Chemistry on Silicon and Germanium Surfaces,” Chemical Reviews, 102, 5 (2002). |
Cant et al., “Chemisorption Sites on Porous Silica Glass and on Mixed-Oxide Catalysis,” Can. J. Chem. 46, 1373 (1968). |
Chang et al. “Small-Subthreshold-Swing and Low-Voltage Flexible Organic Thin-Film Transistors Which Use HfLaO as the Gate Dielectric,” IEEE Electron Device Letters, 30, 2, IEEE Electron Device Society 133-135 (2009). |
Chen et al., “A Self-Aligned Airgap Interconnect Scheme,” IEEE International Interconnect Technology Conference, 1-3, 146-148 (2009). |
Choi et al., “Improvement of Silicon Direct Bonding using Surfaces Activated by Hydrogen Plasma Treatment,” Journal of the Korean Physical Society, 37, 6, 878-881 (2000). |
Choi et al., “Low Temperature Formation of Silicon Oxide Thin Films by Atomic Layer Deposition Using NH3/O2 Plasma,” ECS Solid State Letters, 2(12) 114-116 (2013). |
Crowell, “Chemical methods of thin film deposition: Chemical vapor deposition, atomic layer deposition, and related technologies,” Journal of Vacuum Science & Technology A 21.5, S88-S95 (2003). |
Cui et al., “Impact of Reductive N2/H2 Plasma on Porous Low-Dielectric Constant SiCOH Thin Films,” Journal of Applied Physics 97, 113302, 1-8 (2005). |
Dingemans et al., “Comparison Between Aluminum Oxide Surface Passivation Films Deposited with Thermal Aid,” Plasma Aid and Pecvd, 35th IEEE PVCS, Jun. 2010. |
Drummond et al., “Hydrophobic Radiofrequency Plasma-Deposited Polymer Films. Dielectric Properties and Surface Forces,” Colloids and Surfaces A, 129-130, 117-129 (2006). |
Easley et al., “Thermal Isolation of Microchip Reaction Chambers for Rapid Non-Contact DNA Amplification,” J. Micromech. Microeng. 17, 1758-1766 (2007). |
Ge et al., “Carbon Nanotube-Based Synthetic Gecko Tapes,” Department of Polymer Science, PNAS, 10792-10795 (2007). |
George et al., “Atomic Layer Deposition: An Overview,” Chem. Rev. 110, 111-131 (2010). |
Grill et al., “The Effect of Plasma Chemistry on the Damage Induced Porous SiCOH Dielectrics,” IBM Research Division, RC23683 (W0508-008), Materials Science, 1-19 (2005). |
Gupta et al., “Conversion of Metal Carbides to Carbide Derived Carbon by Reactive Ion Etching in Halogen Gas,” Proceedings of SPIE—The International Society for Optical Engineering and Nanotechnologies for Space Applications, ISSN: 0277-786X (2006). |
Heo et al., “Structural Characterization of Nanoporous Low-Dielectric Constant SiCOH Films Using Organosilane Precursors,” NSTI—Nanotech, vol. 4, 122-123 (2007). |
H.J. Yun et al., “Comparison of Atomic Scale Etching of Poly-Si in Inductively Coupled Ar and He Plasmas,” Korean Journal of Chemical Engineering, 24, 670-673 (2007). |
Jung et al., “Double Patterning of Contact Array with Carbon Polymer,” Proc. Of SPIE, 6924, 69240C, 1-10 (2008). |
Katamreddy et al., “ALD and Characterization of Aluminum Oxide Deposited on Si(100) using Tris(diethylamino) Aluminum and Water Vapor,” Journal of the Electrochemical Society, 153 (10) C701-C706 (2006). |
Kim et al., “Passivation Effect on Low-k S/OC Dielectrics by H2 Plasma Treatment,” Journal of the Korean Physical Society, 40, 1, 94-98 (2002). |
Kim et al., “Characteristics of Low Tempemure High Quality Silicon Oxide by Plasma Enhanced Atomic Layer Deposition with In-Situ Plasma Densification Process,” The Electrochemical Society, ECS Transactions, College of Information and Communication Engineerign, Sungkyunkwan University, 53(1), 321-329 (2013). |
King, Plasma Enhanced Atomic Layer Deposition of SiNx: H and SiO2, J. Vac. Sci. Technol., A29(4) (2011). |
Kobayshi et al. “Temperature Dependence of SiO2 Film Growth with Plasma-Enhanced Atomic Layer Deposition,” International Journal on the Science and Technology of Condensed Matter, 520, 3994-3998, (2012). |
Koo et al., “Characteristics of Al2O3 Thin Films Deposited Using Dimethylaluminum Isopropoxide and Trimethylaluminum Precursors by the Plasma-Enhanced Atomic-Layer Deposition Method,” Journal of Physical Society, 48, 1, 131-136 (2006). |
Koutsokeras et al. Texture and Microstructure Evolution in Single-Phase TixTal—xN Alloys of Rocksalt Structure. Journal of Applied Physics, 110, 043535-1-043535-6, (2011). |
Krenek et al. “IR Laser CVD of Nanodisperse Ge—Si—Sn Alloys Obtained by Dielectric Breakdown of GeH4/SiH4/SnH4 Mixtures”, NanoCon, Brno, Czech Republic, EU (2014). |
Kurosawa et al., “Synthesis and Characterization of Plasma-Polymerized Hexamethyldisiloxane Films,” Thin Solid Films, 506-507, 176-179 (2006). |
Lieberman, et al., “Principles of Plasma Discharges and Materials Processing,” Second Edition, 368-381. |
Lim et al., “Low-Temperature Growth of SiO2 Films by Plasma-Enhanced Atomic Layer Deposition,” ETRI Journal, 27 (1), 118-121 (2005). |
Liu et al., “Research, Design, and Experimen of End Effector for Wafer Transfer Robot,” Industrial Robot: An International Journal, 79-91 (2012). |
Mackus et al., “Optical Emission Spectroscopy as a Tool for Studying Optimizing, and Monitoring Plasma-Assisted Atomic Layer Deposition Processes,” Journal of Vacuum Science and Technology, 77-87 (2010). |
Maeno, “Gecko Tape Using Carbon Nanotubes,” Nitto Denko Gihou, 47, 48-51. |
Maeng et al., “Electrical properties of atomic layer disposition Hf02 and Hf0xNy on Si Substrates with Various Crystal Orientations,” Journal of the Electrochemical Society, 155, Department of Materials Science and Engineering, Pohang University of Science and Technology, H267-H271 (2008). |
Marsik et al., “Effect of Ultraviolet Curing Wavelength on Low-k Dielectric Material Properties and Plasma Damage Resistance,” Sciencedirect.com, 519, 11, 3619-3626 (2011). |
Moeen, “Design, Modelling and Characterization of Si/SiGe Structures for IR Bolometer Applications,” KTH Royal Institute of Technology. Information and Communication Technology, Department of Integrated Devices and Circuits, Stockholm Sweden (2015). |
Morishige et al., “Thermal Desorption and Infrared Studies of Ammonia Amines and Pyridines Chemisorbed on Chromic Oxide,” J.Chem. Soc., Faraday Trans. 1, 78, 2947-2957 (1982). |
Mukai et al., “A Study of CD Budget in Spacer Patterning Technology,” Proc. Of SPIE, 6924, 1-8 (2008). |
Nogueira et al., “Production of Highly Hydrophobic Films Using Low Frequency and High Density Plasma,” Revista Brasileira de Aplicacoes de Vacuo, 25(1), 45-53 (2006). |
Novaro et al., “Theoretical Study on a Reaction Pathway of Ziegler-Natta-Type Catalysis,” J. Chem. Phys. 68(5), 2337-2351 (1978). |
Radamson et al.,“Growth of Sn-alloyed Group IV Materials for Photonic and Electronic Applications”, Manufacturing Nano Structures, 5, 129-144. |
Schmatz et al., “Unusual Isomerization Reactions in 1.3-Diaza-2-Silcyclopentanes,” Organometallics, 23, 1180-1182 (2004). |
Scientific and Technical Information Center EIC 2800 Search Report dated Feb. 16, 2012. |
S.D. Athavale et al., “Realization of Atomic Layer Etching of Silicon”, Journal of Vacuum Science and Technology B, 14, 3702-3705 (1996). |
Shamma et al., “PDL Oxide Enabled Doubling,” Proc. Of SPIE, 6924, 69240D, 1-10 (2008). |
Varma, et al., “Effect of Metal Halides on Thermal, Mechanical, and Electrical Properties of Polypyromelitimide Films,” Journal of Applied Polymer Science, 32, 3987-4000, (1986). |
Wirths, et al, “SiGeSn Growth tudies Using Reduced Pressure Chemical Vapor Deposition Towards Optoeleconic Applications,” This Soid Films, 557, 183-187 (2014). |
Yun et al., “Behavior of Various Organosilicon Molecules in PECVD Processes for Hydrocarbon-Doped Silicon Oxide Films,” Solid State Phenomena, 124-126, 347-350 (2007). |