This application claims priority from R.O.C. Patent Application No. 093132796, filed Oct. 28, 2004, the entire disclosure of which is incorporated herein by reference.
The present invention relates to a method for forming an oxide, and more particularly to a method for forming a field oxide.
The active area of the metal oxide semiconductor (MOS) device is generally isolated with the field oxide formed by the local oxidation of silicon (LOCOS) in the manufacturing process of integrated circuit (IC) above 0.25 μm.
With consideration of the oxidation reaction rate, the wet oxidation process is extensively used for forming the field oxide in industry nowadays. The chemical equation of the wet oxidation process is H2+O2+Si→SiO2+H2O, and the reaction condition and process are shown in
While forming the field oxide 16, the active area of the MOS device is covered with the pad oxide 12 and the nitride film 13, therefore the reaction gas cannot permeate the nitride film 13 and react with the silicon substrate 11. The gas can only react with the silicon substrate 11 not covered with the nitride film 13 in an isotropic way. Due to the speedy reaction rate of the wet oxidation process, the field oxide forming rate at 45° and 90° angle is faster than that at 0° to 30° angle to the silicon substrate 11. Hence, it is easy to form the active area with a tip 111 as shown in
Therefore, it is desirable to develop a method for forming an even field oxide without tip and dealing with the conventional defects.
Embodiments of the present invention provide a method for forming the field oxide, which overcomes the problem of forming the active area with a tip in the conventional process due to the fact that the field oxide forming rate at 45° and 90° angle is faster than that at 0° to 30° angle to the silicon substrate, and avoids the breakdown of the gate oxide of the MOS device caused by the field concentration at the tip of the active area.
A method for forming a field oxide according to one embodiment of the present invention comprises the following steps: providing a semiconductor structure having a substrate, a pad oxide, and a patterned barrier layer; performing a dry oxidation process to form a first field oxide on the substrate in a region not covered with the barrier layer by introducing pure dry oxygen; and performing a wet oxidation process to form a second field oxide adjacent the first field oxide by introducing hydrogen and oxygen.
The method for forming a field oxide according to another embodiment of the present invention comprises the following steps: providing a substrate and forming a pad oxide and a barrier layer in order thereon; performing a photolithographic process for forming a patterned mask layer on a surface of the barrier layer, wherein the mask layer is used for defining an active area of the substrate; etching the barrier layer and removing the barrier layer in a region not covered with the mask layer; performing a dry oxidation process to form a first field oxide on the substrate not covered with the barrier layer by introducing pure dry oxygen; and performing a wet oxidation process to form a second field oxide adjacent the first field oxide by introducing hydrogen and oxygen.
a)–(d) are schematic diagrams showing the conventional process for forming the field oxide of the MOS device;
a)–(e) are schematic diagrams showing the process for forming the filed oxide according to an embodiment of the present invention;
a)–(e) are schematic diagrams showing the process for forming the filed oxide according to one embodiment of the present invention. As shown in
In this embodiment, the thermal oxidation process comprises a dry oxidation process and a wet oxidation process. The detailed steps of the thermal oxidation process are described in connection with
The reaction gas including hydrogen and oxygen is introduced into the oxidation furnace to perform a wet oxidation process for forming a field oxide 462 such as silicon dioxide adjacent the field oxide 461 after the field oxide 461 comes to a predetermined thickness. The reaction equation is H2+O2+Si→SiO2+H2O. In some embodiments of the present invention, the TEL IW-6D machine produced by TOKYO ELECTRON LIMITED is used to perform the wet oxidation process. The field oxide 462 with a thickness substantially of about 1000–3000 Å (preferably about 1000 Å) is formed under about 1000–1150° C. and 1 atmosphere (atm) for about 5–30 minutes (preferably about 12 minutes), wherein the flow ratio of hydrogen to oxygen is 5500 sccm: 3300 sccm to 2000 sccm: 2000 sccm. Next, the semiconductor structure as shown in
As shown in
The field oxide 461 and 462 are formed by a local oxidation of silicon (LOCOS) process but not limited thereto. The present invention is also applicable to all processes for forming the adjacent oxidation layer. The difference between the reaction rates of the dry and wet oxidation processes is used to form an even oxidation layer, so as to avoid the electric leakage of the active area 401 of the MOS device and improve the breakdown voltage of the gate oxide. Therefore the quality and the electric property of the MOS device are ameliorated with the process of the present invention.
In addition, the dry and wet oxidation processes are performed in the same oxidation furnace at the same reaction temperature. The pure dry oxygen is introduced into the oxidation furnace to perform the dry oxidation process for forming the first field oxide 461 with a predetermined thickness, and then the hydrogen and oxygen are introduced instead of the pure dry oxygen to perform the wet oxidation process and accelerate the formation rate of the second field oxide 462 to achieve a desired thickness. Therefore the repeats of raising and lowering temperature of the oxidation furnace are avoided, so that the yield is increased and the cost is reduced at the same time.
To sum up, the method for forming the field oxide of the present embodiment is to perform the dry oxidation process by introducing pure dry oxygen for reacting with the silicon substrate not covered with the barrier layer at high temperature. Because the reaction rate of the dry oxidation process is slow, an even field oxide is formed. After that, the hydrogen and oxygen is introduced to perform the wet oxidation process and accelerate the reaction rate for forming the field oxide to achieve a desired thickness. Accordingly, the formation of active area with a tip is inhibited, and thus the breakdown voltage of the gate oxide and the quality and electric property of the MOS device are improved. Moreover, the method for forming the field oxide of the present embodiment is performed in the same oxidation furnace at the same reaction temperature, and hence the repeats of raising and lowering temperature of the oxidation furnace is avoided, so as to increase the yield and reduce the cost.
It is to be understood that the above description is intended to be illustrative and not restrictive. Many embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.
Number | Date | Country | Kind |
---|---|---|---|
93132796 A | Oct 2004 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
4551910 | Patterson | Nov 1985 | A |
5128730 | Coe et al. | Jul 1992 | A |
5817581 | Bayer et al. | Oct 1998 | A |
5972779 | Jang | Oct 1999 | A |
5985738 | Jang et al. | Nov 1999 | A |
6033991 | Ramkumar et al. | Mar 2000 | A |
6153481 | Jang et al. | Nov 2000 | A |
6440819 | Luning | Aug 2002 | B1 |
20010055862 | Bevk | Dec 2001 | A1 |
Number | Date | Country | |
---|---|---|---|
20060094254 A1 | May 2006 | US |