Large-area electronics based on polymeric semiconductors, for applications such as display systems, often require the deposition and patterning of solution processable polymeric materials over large areas. Various printing techniques have been used to achieve the deposition and patterning. However, each of these printing techniques suffers from a number of problems.
One polymeric material deposition method uses ink jet printing to deposit droplets of polymeric material. However, ink jet printing is a slow sequential process. Using multiple ink jet nozzles to print in parallel speeds up the process but also dramatically increases complexity and expense.
A second patterning method uses liquid embossing. A publication by Buithaup et al., Applied Physics Letters 79 (10) 1525, (2001), describes depositing an “ink” on a substrate and patterning the ink in a liquid embossing process. In order to pattern the ink, a stamp displaces the “ink” and creates a reverse or negative image on the substrate relative to the pattern in the stamp. In addition, after removal of the stamp, the “ink” is still liquid and is cured before handling. The curing process reduces the robustness and throughput of the process. Furthermore, heating the substrate to cure the “ink” can also degrade the electrical properties of the embossed polymer.
S. Y. Chou in U.S. Pat. No. 5,772,905 describes using conventional embossing and nanoprint lithography to flow a thin film under a stamp to create a pattern. An anisotropic etching step, such as reactive ion etching (RIE), finishes the pattern definition. Conventional nanoprint lithography often involves exposing the patterned polymer to high temperatures, UV exposure and etching processes. These processes result in a harsh environment that potentially degrades the electrical properties of the polymeric semiconductor.
Still other techniques use a surface-energy pattern on a substrate to pattern a polymer. C. R. Kagan et al. in Appl. Phys. Lett. 79 (21) 3536 (2001) describes patterning self-assembled monolayers using such a surface-energy pattern. Such patterns are typically generated using surface energy modulation. However, use of such a system in electronic device fabrication is restricted to surfaces on which a self-assembled monolayer can be deposited (typically the noble metals such as gold or palladium). An additional coating step, typically accomplished through dip-coating the surface-energy pattern of the substrate over the entire substrate area is complex and slow, lowering throughput and yield.
Thus an improved method of patterning a polymer is needed.
A method of forming and using a stamping procedure to pattern a surface is described. In the method, a liquid carrier solution including a liquid carrier and a precipitate is deposited on a substrate. A relief pattern on a stamp is brought into contact with the liquid carrier solution such that raised portions of the relief pattern absorbs the liquid carrier leaving a thin precipitate layer between the raised portions of the relief pattern and the substrate. Both liquid carrier and precipitate are removed from substrate regions between the substrate and non-raised portions of the relief pattern. When, the stamp is removed, a precipitate pattern or residue pattern that matches the raised portions of the relief pattern on the stamp remains on the substrate.
A novel stamping procedure to pattern a polymer is described. In the procedure a relief pattern that includes raised portions and non-raised portions is formed on a stamp. The relief pattern is brought into contact with a polymer. When the relief pattern is removed, the remaining polymer pattern matches the raised portions of the relief pattern.
A surface 112 of relief master 108 includes a negative of the relief pattern to be formed on stamp 104. A number of well known techniques, including but not limited to, photolithography and wax printing patterning, may be used to form surface 112 of relief master 108. In one example, height 116 of raised portions 120 on surface 112 of relief master 108 exceeds the width 124 of the raised portion resulting in a height to width ratio in excess of approximately 0.1. In one embodiment, non-raised or “recessed” portions 128 of stamps formed from such relief masters will have a width to depth ratio of less than approximately 10. Actual dimensions of the stamp and the ratios of width to depth may vary considerably as will be later discussed in connection with
After oxidation, stamp 104 is exposed to a reacting solution 404. In one embodiment, a compound in reacting solution 104 forms covalent bonds to the stamp. An example of a compound that forms such covalent bonds are chlorosilane compounds. A hexadecane solution of benzyltrichlorosilane (BTS) is one example of a suitable chlorosilane compound. The reaction with reacting solution 104 reduces stamp hydrophobicity.
For simplicity, the discussion that follows, the material that precipitates will be described as a polymer and the liquid carrier will be a solvent, although other materials may be used and the claims should not be limited to solvents and liquid polymers.
When forming an electronic device, the precipitate carried by the liquid carrier is a semiconductor material that often has electrical properties suitable for forming an electronic device. The solvent solution keeps the semiconductor in a liquid state. One example of a typical polymer is poly-9.9′, dioctyl-fluorene-cobithiophene (F8T2).
After polymer deposition,
The remaining precipitate, or dry semiconductor and/or polymer material 804 may have distinctive characteristics. One example characteristic is a very uniform deposition of polymer material 804 across substrate 608. In other deposition techniques that rely on evaporation, a “coffee ring” effect may occur in that uneven evaporation of solute causes uneven distribution of precipitate, more particularly, a very slight increase in precipitate height occurs toward the center of the deposited layer. By using a stamp that uniformly absorbs solvent across the surface of polymer material 804, the described stamping technique can be adjusted to avoid such uneven effects.
Stamp 904 is pressed into polymer solution 908 forming an airtight or conformal contact. A force, typically from a pressure differential, forces liquid in polymer solution 908 into recesses 912, 916. The pressure differential may be caused by inducing a gas flow along channels coupling the recessed areas of the stamp to lower the pressure in the recessed areas of the stamp. Alternately, the reduced hydrophobic nature of the stamp surface causes capillary action that draws the liquid polymer solution into the recess such that a concave meniscus 918 forms in the recess. The edge of concave meniscus 918 wets the walls of the stamp recess.
Arrows 934 in
Arrows 938 of
After removal of stamp 904, the stamp recess walls, such as recesses 912, 916 are coated with a thin polymer film while the stamp raised portions 929, 930, 931 remain largely uncoated. In order to minimize distortion in the pattern from stamp swelling, stamp 904 is preferably significantly larger than the volume of solvent absorbed.
In
After flat surface 1104 is removed, the relief surface 1008 is exposed to a second chlorosilane compound 1204, such as tridecafluoro-1,1,2,2,-tetrahydrooctyl trichlorosilane (FTS) as shown in
In the preceding description, a number of details have been provided. For example, polymer compounds and particular treatments of adjusting the stamp surface have been described. However, such details are included to assist the reader in understanding various ways in which the invention may be used and should not be interpreted to limit the scope of the invention. The invention itself should only be limited by the following claims.
It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims. Unless specifically recited in a claim, steps or components of claims should not be implied or imported from the specification or any other claims as to any particular order, number, position, size, shape, angle, color, or material.
This is a divisional of U.S. application Ser. No. 10/703,049, filed Nov. 6, 2003 by the same inventors, and claims priority therefrom. The contents of original U.S. application Ser. No. 10/703,049 are hereby incorporated by reference. This divisional application is being filed in response to a restriction requirement in that prior application and contains re-written and/or additional claims to the restricted subject matter.
Number | Date | Country | |
---|---|---|---|
Parent | 10703049 | Nov 2003 | US |
Child | 11508377 | Aug 2006 | US |