Method for making an integrated circuit substrate having laminated laser-embedded circuit layers

Abstract
A method for making an integrated circuit substrate having laminated laser-embedded circuit layers provides a multi-layer high-density mounting and interconnect structure for integrated circuits. A prepared substrate, which may be a rigid double-sided dielectric or film dielectric with conductive patterns plated, etched or printed on one or both sides is laminated with a thin-film dielectric on one or both sides. The thin-film is laser-ablated to form channels and via apertures and conductive material is plated or paste screened into the channels and apertures, forming a conductive interconnect pattern that is isolated by the channel sides and vias through to the conductive patterns on the prepared substrate. An integrated circuit die and external terminals can then be attached to the substrate, providing an integrated circuit having a high-density interconnect.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a divisional of U.S. patent application Ser. No. 10/392,738 entitled “INTEGRATED CIRCUIT SUBSTRATE HAVING LAMINATED LASER-EMBEDDED CIRCUIT LAYERS”, now U.S. Pat. No. 6,930,257, issued Aug. 16, 2005, which is a Continuation-in-Part of U.S. patent application entitled “INTEGRATED CIRCUIT SUBSTRATE HAVING LASER-EMBEDDED CONDUCTIVE PATTERNS AND METHOD THEREFOR”, Ser. No. 10/138,225 filed May 1, 2002, now U.S. Pat. No. 6,930,256, issued Aug. 16, 2005, by the same inventors and assigned to the same assignee. The above-referenced parent application is also a Continuation-in-Part of U.S. patent application entitled “INTEGRATED CIRCUIT FILM SUBSTRATE HAVING EMBEDDED CONDUCTIVE PATTERNS AND VIAS”, Ser. No. 10/261,868 filed Oct. 1, 2002, now abandoned, having at least one common inventor and assigned to the same assignee. The specifications of the above-referenced patent applications are herein incorporated by reference.


FIELD OF THE INVENTION

The present invention relates generally to semiconductor packaging, and more specifically, to a substrate having laminated circuit layers added to a prepared substrate for providing electrical inter-connection within an integrated circuit package.


BACKGROUND OF THE INVENTION

Semiconductors and other electronic and opto-electronic assemblies are fabricated in groups on a wafer. Known as “dies”, the individual devices are cut from the wafer and are then bonded to a carrier. The dies must be mechanically mounted and electrically connected to a circuit. For this purpose, many types of packaging have been developed, including “flip-chip”, ball grid array and leaded grid array among other mounting configurations. These configurations typically use a planar printed circuit etched on the substrate with bonding pads and the connections to the die are made by either wire bonding or direct solder connection to the die.


Multi-layer substrates have been used to increase interconnect density, as a high interconnect density is required in present-day integrated circuits such as very-large-scale-integrated (VLSI) circuits. However, the cost of a typical multi-layer substrate is substantially higher than a single or double-sided circuit substrate. The thickness of a typical multi-layer substrate is generally a sum of equal dielectric layers along with the metal conductor layers.


Multi-layer substrate also typically have the same layer thickness and are limited to line pitch and conductor spacing without incorporating the advantages disclosed in the above-referenced patent applications.


Therefore, it would be desirable to provide a method and substrate having multiple conductive layers without the associated cost and thickness of a typical multi-layer substrate. It would further be desirable to provide increased conductor density and reduced inter-conductor spacing within an integrated substrate having multiple layers.


SUMMARY OF THE INVENTION

The above objectives of providing a thin, low-cost multi-layer substrate having increased interconnect density is provided in a substrate having laminated layers including laser-embedded conductive patterns and a method for manufacturing.


The substrate comprises a prepared substrate layer that may be a rigid dielectric layer or a film having conductive patterns disposed on one or more surfaces. One or more thin-film dielectric sheets are laminated on one or more sides of the prepared substrate and laser-embedding is used to generate a circuit pattern within the one or more thin-film dielectric sheets in order to embed conductors in channels beneath the surface of the thin-film dielectric sheets. Conductive material is then plated or paste screened into the channels. The process can be extended to multiple layers to create a sandwich structure for very high conductor density applications.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a pictorial diagram depicting a cross sectional side view of a prepared substrate for forming a laminated substrate in accordance with an embodiment of the invention;



FIG. 1B is a pictorial diagram depicting a top view of a prepared substrate for forming a laminated substrate in accordance with an embodiment of the invention;



FIGS. 2A-2D are pictorial diagrams depicting cross-sectional side views of various stages of preparation of a laminated substrate in accordance with an embodiment of the invention; and



FIGS. 3A and 3B are pictorial diagrams depicting integrated circuits in accordance with embodiments of the invention.





The invention, as well as a preferred mode of use and advantages thereof, will best be understood by reference to the following detailed description of illustrative embodiments when read in conjunction with the accompanying drawings, wherein like reference numerals indicate like parts throughout.


DETAILED DESCRIPTION

The above-incorporated patent applications disclose various processes and structures for manufacturing low-cost substrates having high conductor density and electrical integrity by laser-embedding conductive patterns below the surface of a substrate. The present invention transforms a prepared substrate having conductors etched, printed or plated on surfaces thereof into a laminated multi-layer substrate having laser-embedded conductors in the laminated layers. The addition of laser-embedded laminated layers provides a very high conductor density, while adding a low incremental cost to a low-cost substrate.


Referring now to the figures and in particular to FIG. 1A, a side view of prepared substrate 10 for use in forming a laminated substrate in accordance with an embodiment of the present invention is depicted. Circuit patterns are provided on both sides of substrate 10 by metal layers 16A and 16B with via connections 14 providing interconnectivity between metal layers 16A and 16B, but the present invention may be implemented with single-sided or multi-layer prepared substrates, as well. FIG. 1B shows a top view of prepared substrate 10 showing an exemplary pattern formed by metal layers 16A and 16B.


Referring now to FIG. 2A, the first stage in laminating the prepared substrate to form a modified substrate 10A is shown. Adhesive layers 20A and 20B are applied to each side of substrate 10 for attachment of thin-film dielectric layers. FIG. 2B shows application of thin film dielectric layers 22A and 22B to each side of substrate 10A to form laminated substrate 10B. While the depicted embodiment of the process shows a separate application of adhesive 20A and 20B and thin-film layers 22A and 22B, a single application of a film having an adhesive backing may be applied to prepared substrate 10 in accordance with another embodiment of the process of the present invention, yielding the structure depicted in FIG. 2B (substrate 10B) in a single application step.


Referring now to FIG. 2C, laminated substrate 10B is laser-ablated on each side to form apertures 24A and 24B for vias, and channels 26A and 26B for circuit patterns. Channels 26A and 26B are shown as having a bottom within thin-film dielectric layers 22A and 22B, but laser-ablation may be performed to place the bottom of channels 26A and 26B at the top of or within adhesive layers 20A and 20B, providing direct contact with adhesive layers 20A and 20B and metal that will be subsequently deposited within channels 26A and 26B, improving the adhesion of the deposited metal to the substrate. In an alternative embodiment of the present invention, a thin-film dielectric layer having laser-ablated channels 26A and 26B and via apertures 24A and 24B may be aligned with and applied to substrate 10A in one step. Further, the alternative thin-film process may apply a thin-film dielectric layer having laser-ablated channels 26A and 26B and via apertures 24A and 24B along with an adhesive backing as described above may be aligned and applied to substrate 10 in a single step.


After substrate 10C is formed, metal is plated or paste-screened within channels 26A and 26B and via apertures 24A and 24B to form circuit patterns 29A, 29B and vias 28A, 28B beneath the top surface of substrate 10C forming substrate 10D. Metal may be over-plated and subsequently etched to conform with the outside surfaces of thin-film dielectric layers 22A and 22B, or may be slightly over-etched to place the outside surfaces of circuit patterns 29A, 293 and vias 28A, 288 below the outside surfaces of thin-film dielectric layers 22A and 22B. Alternatives to metal such as conductive polymers or materials having conductive fibers suspended in a mixture may also be applied within channels 26A and 26B and via apertures 24A and 24B to form circuit patterns 29A, 29B and vias 28A, 28B in accordance with alternative embodiments of the present invention.


The above-described process may be extended to the application of multiple thin-film laminations on a prepared substrate. Additional adhesive/thin-film/conductor layers may be applied as described above to substrate 10D with connections to channel 29A, 29B and via 28A, 28B conductors provided by vias laser-ablated through the additional thin-film dielectric layers. Via apertures may be laser-ablated through multiple thin-film laminations in one step, providing a uniform aperture wall for vias extending through multiple thin-film dielectric layers.


Referring now to FIG. 3A, an integrated circuit 30A in accordance with an embodiment of the present invention is depicted. An integrated circuit die 32A is attached to substrate 10D using a bonding agent such as epoxy. While die 32A is depicted as mounted above substrate 10D, a die mounting recess may also be laser-ablated or otherwise provided in substrate 10D, reducing the package height. For example, a die mounting aperture may be provided completely through thin-film dielectric layer 22A in an area free of channels and vias, to reduce the package height by the thickness of thin film-dielectric layer 22A. A cavity in prepared substrate 10 may also be provided and aligned with an aperture in thin-film dielectric layer 22A to further reduce package height.


Electrical interconnects 34A (wires) from die 32A are wire bonded to the circuit pattern on the top side of substrate 10D electrically connecting die 32A to bonding areas 36A provided by channel circuit patterns 29A and/or vias 28A. External terminals 38, depicted as solder balls, are attached to BGA lands 36B provided by channel circuit patterns 29B and/or vias 28B, providing a complete integrated circuit that may be encapsulated.


Referring now to FIG. 43B, an integrated circuit 30B in accordance with an alternative embodiment of the invention is depicted. Die 32B is a “flip-chip” die that is directly bonded to bonding areas 36C of a substrate 10E via solder balls 34B. External solder ball terminals 38 are provided as in the embodiment of FIG. 3A. Substrate 10E is fabricated in the same manner as substrate 10D, but may have a differing configuration to support the flip-chip die 32B interconnect.


The above description of embodiments of the invention is intended to be illustrative and not limiting. Other embodiments of this invention will be obvious to those skilled in the art in view of the above disclosure and fall within the scope of the present invention.

Claims
  • 1. A method for manufacturing a substrate for a semiconductor package, comprising: laminating a thin-film dielectric layer to a dielectric layer having a plated, etched or printed circuit first conductive pattern on at least one side to produce a laminated assembly comprising: providing the dielectric layer with the first conductive pattern on the at least one side of the dielectric layer; andapplying an adhesive layer simultaneously to both the at least one side of the dielectric layer and the first conductive pattern, the adhesive layer being on an inside surface of the thin-film dielectric layer opposing an outside surface of the thin-film dielectric layer, wherein the adhesive layer forms part of the thin-film dielectric layer;laser-drilling a plurality of perforations on the outside surface of the thin-film dielectric layer, wherein the perforations comprise: conductor channels from the outside surface of the thin-film dielectric layer to contact the adhesive layer, wherein the adhesive layer remains between the conductor channels and the first conductive pattern; andblind via holes formed from the outside surface of the thin-film dielectric layer through the thin-film dielectric layer and the adhesive layer to contact the first conductive pattern; anddepositing metal within the perforations to form electrical contact to the first conductive pattern.
  • 2. A method for manufacturing a substrate for a semiconductor package, comprising: laminating a thin-film dielectric layer to a dielectric layer having a plated, etched or printed circuit first conductive pattern on at least one side to produce a laminated assembly comprising: providing the dielectric layer with the first conductive pattern on the at least one side of the dielectric layer;applying an adhesive layer simultaneously to both the at least one side of the dielectric layer and the first conductive pattern; andapplying an inside surface of the thin-film dielectric layer opposing an outside surface of the thin-film dielectric layer to the adhesive layer;laser-drilling a plurality of perforations on the outside surface of the thin-film dielectric layer, wherein the perforations comprise: conductor channels from the outside surface of the thin-film dielectric layer to contact the adhesive layer, wherein the conductor channels comprise bottoms within the adhesive layer, wherein the adhesive layer remains between the bottoms of the conductor channels and the first conductive pattern; andblind via holes formed from the outside surface of the thin-film dielectric layer through the thin-film dielectric layer and the adhesive layer to contact the first conductive pattern; anddepositing metal within the perforations to form electrical contact to the first conductive pattern.
  • 3. The method of claim 2 further comprising: mounting the thin-film dielectric layer in a laser drilling machine.
  • 4. The method of claim 3, wherein the mounting and laser-drilling are performed subsequent to the laminating.
  • 5. The method of claim 3, wherein the mounting and laser-drilling are performed prior to the laminating.
  • 6. The method of claim 3, wherein the dielectric layer is a tape having the first conductive pattern formed on a top side thereof, and wherein the laminating laminates the thin-film dielectric layer to the tape.
  • 7. The method of claim 3, wherein the dielectric layer is a rigid dielectric having the first conductive pattern formed on a top side thereof, and wherein the laminating laminates the thin-film dielectric layer to the rigid dielectric.
  • 8. The method of claim 3, wherein the laser-drilling drills at least a portion of the perforations such that the conductor channels are formed in the outside surface of the thin-film dielectric layer that do not contact the first conductive pattern.
  • 9. The method of claim 3, wherein the depositing comprising plating metal within the perforations.
  • 10. The method of claim 3, wherein the depositing comprising paste-screening metal within the perforations.
  • 11. The method of claim 3, wherein the dielectric layer has a second conductive pattern formed on another side opposing the at least one side, and wherein the method further comprises: second laminating another thin-film dielectric layer to the other side of the dielectric layer;second mounting the other thin-film dielectric layer in a laser drilling machine;second laser-drilling another plurality of perforations on an outside surface of the other thin-film dielectric layer; andsecond depositing metal within the other perforations to form electrical contact to the second conductive pattern.
  • 12. The method of claim 11, wherein the dielectric layer is a multi-layer circuit board having at least one internal circuit material pattern, and wherein the second laser-drilling drills into the multi-layer circuit board to the at least one internal circuit material pattern, and wherein the second depositing deposits metal to make contact with the at least one internal circuit material pattern of the multi-layer circuit board.
  • 13. The method of claim 2 wherein the depositing metal forms circuit patterns in the conductor channels and vias in the blind via holes, the circuit patterns and vias being beneath the outside surface of the thin-film dielectric layer.
  • 14. A method for manufacturing a substrate for a semiconductor package, comprising: laminating a thin-film dielectric layer to a dielectric layer having a plated, etched or printed circuit first conductive pattern on at least one side to produce a laminated assembly comprising: providing the dielectric layer with the first conductive pattern on the at least one side of the dielectric layer;applying an adhesive layer simultaneously to both the at least one side of the dielectric layer and the first conductive pattern; andapplying an inside surface of the thin-film dielectric layer opposing an outside surface of the thin-film dielectric layer to the adhesive layer;laser-drilling a plurality of perforations on the outside surface of the thin-film dielectric layer, wherein the perforations comprise: conductor channels from the outside surface of the thin-film dielectric layer to contact the adhesive layer, wherein the conductor channels comprise bottoms at the top of the adhesive layer, wherein the adhesive layer remains between the bottoms of the conductor channels and the first conductive pattern; andblind via holes formed from the outside surface of the thin-film dielectric layer through the thin-film dielectric layer and the adhesive layer to contact the first conductive pattern; anddepositing metal within the perforations to form electrical contact to the first conductive pattern.
US Referenced Citations (175)
Number Name Date Kind
3324014 Modjeska Jun 1967 A
3778900 Haining et al. Dec 1973 A
3868724 Perrino Feb 1975 A
3916434 Garboushian Oct 1975 A
4322778 Barbour et al. Mar 1982 A
4508754 Stepan Apr 1985 A
4532152 Elarde Jul 1985 A
4532419 Takeda Jul 1985 A
4604799 Gurol Aug 1986 A
4642160 Burgess Feb 1987 A
4685033 Inone Aug 1987 A
4706167 Sullivan Nov 1987 A
4716049 Patraw Dec 1987 A
4786952 MacIver et al. Nov 1988 A
4806188 Rellick Feb 1989 A
4811082 Jacobs et al. Mar 1989 A
4897338 Spicciati et al. Jan 1990 A
4905124 Banjo et al. Feb 1990 A
4915983 Lake et al. Apr 1990 A
4964212 Deroux-Dauphin et al. Oct 1990 A
4974120 Kodai et al. Nov 1990 A
4996391 Schmidt Feb 1991 A
5021047 Movern Jun 1991 A
5053357 Lin et al. Oct 1991 A
5072075 Lee et al. Dec 1991 A
5081520 Yoshii et al. Jan 1992 A
5108553 Foster et al. Apr 1992 A
5110664 Nakanishi et al. May 1992 A
5191174 Chang et al. Mar 1993 A
5229550 Birdra et al. Jul 1993 A
5239448 Perkins et al. Aug 1993 A
5247429 Iwase et al. Sep 1993 A
5263243 Taneda et al. Nov 1993 A
5283459 Hirano et al. Feb 1994 A
5293243 Degnan et al. Mar 1994 A
5371654 Beaman et al. Dec 1994 A
5379191 Carey et al. Jan 1995 A
5404044 Booth et al. Apr 1995 A
5440805 Daigle et al. Aug 1995 A
5463253 Waki et al. Oct 1995 A
5474957 Urushima Dec 1995 A
5474958 Djennas et al. Dec 1995 A
5508938 Wheeler Apr 1996 A
5530288 Stone Jun 1996 A
5531020 Durand et al. Jul 1996 A
5574309 Papapietro et al. Nov 1996 A
5581498 Ludwig et al. Dec 1996 A
5582858 Adamopoulos et al. Dec 1996 A
5616422 Ballard et al. Apr 1997 A
5637832 Danner Jun 1997 A
5674785 Akram et al. Oct 1997 A
5719749 Stopperan Feb 1998 A
5739579 Chiang et al. Apr 1998 A
5739581 Chillara Apr 1998 A
5739585 Akram et al. Apr 1998 A
5739588 Ishida et al. Apr 1998 A
5742479 Asakura Apr 1998 A
5774340 Chang et al. Jun 1998 A
5784259 Asakura Jul 1998 A
5798014 Weber Aug 1998 A
5822190 Iwasaki Oct 1998 A
5826330 Isoda et al. Oct 1998 A
5835355 Dordi Nov 1998 A
5847453 Uematsu et al. Dec 1998 A
5894108 Mostafazadeh et al. Apr 1999 A
5903052 Chen et al. May 1999 A
5936843 Ohshima et al. Aug 1999 A
5952611 Eng et al. Sep 1999 A
5990546 Igarashi et al. Nov 1999 A
6004619 Dippon et al. Dec 1999 A
6013948 Akram et al. Jan 2000 A
6021564 Hanson Feb 2000 A
6028364 Ogino et al. Feb 2000 A
6034427 Lan et al. Mar 2000 A
6035527 Tamm Mar 2000 A
6039889 Zhang et al. Mar 2000 A
6040622 Wallace Mar 2000 A
6060778 Jeong et al. May 2000 A
6069407 Hamzehdoost May 2000 A
6072243 Nakanishi Jun 2000 A
6081036 Hirano et al. Jun 2000 A
6115910 Ghahghahi Sep 2000 A
6119338 Wang et al. Sep 2000 A
6122171 Akram et al. Sep 2000 A
6127250 Sylvester et al. Oct 2000 A
6127833 Wu et al. Oct 2000 A
6160705 Stearns et al. Dec 2000 A
6162365 Bhatt et al. Dec 2000 A
6172419 Kinsman Jan 2001 B1
6175087 Keesler et al. Jan 2001 B1
6184463 Panchou et al. Feb 2001 B1
6194250 Melton et al. Feb 2001 B1
6204453 Fallon et al. Mar 2001 B1
6214641 Akram Apr 2001 B1
6235554 Akram et al. May 2001 B1
6239485 Peters et al. May 2001 B1
D445096 Wallace Jul 2001 S
D446525 Okamoto et al. Aug 2001 S
6274821 Echigo et al. Aug 2001 B1
6280641 Gaku et al. Aug 2001 B1
6316285 Jiang et al. Nov 2001 B1
6351031 Iijima et al. Feb 2002 B1
6352914 Ball et al. Mar 2002 B2
6353999 Cheng Mar 2002 B1
6365975 DiStefano et al. Apr 2002 B1
6368967 Besser Apr 2002 B1
6376906 Asai et al. Apr 2002 B1
6378201 Tsukada et al. Apr 2002 B1
6392160 Andry et al. May 2002 B1
6395578 Shin et al. May 2002 B1
6405431 Shin et al. Jun 2002 B1
6406942 Honda Jun 2002 B2
6407341 Anstrom et al. Jun 2002 B1
6407930 Hsu Jun 2002 B1
6418615 Rokugawa et al. Jul 2002 B1
6426550 Ball et al. Jul 2002 B2
6451509 Keesler et al. Sep 2002 B2
6472306 Lee et al. Oct 2002 B1
6479762 Kusaka Nov 2002 B2
6497943 Jimarez et al. Dec 2002 B1
6502774 Johansson et al. Jan 2003 B1
6517995 Jacobson et al. Feb 2003 B1
6528874 Iijima et al. Mar 2003 B1
6534391 Huemoeller et al. Mar 2003 B1
6534723 Asai et al. Mar 2003 B1
6544638 Fischer et al. Apr 2003 B2
6570258 Ma et al. May 2003 B2
6574106 Mori Jun 2003 B2
6586682 Strandberg Jul 2003 B2
6608757 Bhatt et al. Aug 2003 B1
6637105 Watanabe et al. Oct 2003 B1
6660559 Huemoeller et al. Dec 2003 B1
6715204 Tsukada et al. Apr 2004 B1
6727645 Tsujimura et al. Apr 2004 B2
6730857 Konrad et al. May 2004 B2
6740964 Sasaki May 2004 B2
6753612 Adae-Amoakoh et al. Jun 2004 B2
6787443 Boggs et al. Sep 2004 B1
6803528 Koyanagi Oct 2004 B1
6804881 Shipley et al. Oct 2004 B1
6815709 Clothier et al. Nov 2004 B2
6815739 Huff et al. Nov 2004 B2
6822334 Hori et al. Nov 2004 B2
6891261 Awaya May 2005 B2
6908863 Barns et al. Jun 2005 B2
6913952 Moxham et al. Jul 2005 B2
6919514 Konrad et al. Jul 2005 B2
6930256 Huemoeller et al. Aug 2005 B1
6930257 Hiner et al. Aug 2005 B1
6940170 Parikh Sep 2005 B2
6989593 Khan et al. Jan 2006 B2
6998335 Fan et al. Feb 2006 B2
7028400 Hiner et al. Apr 2006 B1
7033928 Kawano Apr 2006 B2
7061095 Boggs et al. Jun 2006 B2
7145238 Huemoeller et al. Dec 2006 B1
7214609 Jiang et al. May 2007 B2
7242081 Lee Jul 2007 B1
7292056 Matsuda Nov 2007 B2
7345361 Mallik et al. Mar 2008 B2
7372151 Fan et al. May 2008 B1
7435352 Mok et al. Oct 2008 B2
20010041436 Parikh Nov 2001 A1
20020017712 Bessho et al. Feb 2002 A1
20020140105 Higgins, III et al. Oct 2002 A1
20030000738 Rumsey et al. Jan 2003 A1
20030128096 Mazzochette Jul 2003 A1
20050194353 Johnson et al. Sep 2005 A1
20050205295 Tsuk Sep 2005 A1
20060157854 Takewaki et al. Jul 2006 A1
20060197228 Daubenspeck et al. Sep 2006 A1
20070114203 Kang May 2007 A1
20070273049 Khan et al. Nov 2007 A1
20070290376 Zhao et al. Dec 2007 A1
20080230887 Sun et al. Sep 2008 A1
Foreign Referenced Citations (5)
Number Date Country
05-109975 Apr 1993 JP
05-136323 Jun 1993 JP
07-017175 Jan 1995 JP
08-190615 Jul 1996 JP
10-334205 Dec 1998 JP
Non-Patent Literature Citations (18)
Entry
IBM Technical Disclosure Bulletin, “Microstructure Solder Mask by Means of a Laser”, vol. 36, Issue 11, p. 589, Nov. 1, 1993. (NN9311589).
Wolf et al., “Silicon Processing for the VLSI Era: vol. 1—Process Technology”, 1986, pp. 407-408.
Huemoeller et al., U.S. Appl. No. 10/947,124, filed Sep. 22, 2004, entitled “Method for Making an Integrated Circuit Substrate Having Embedded Back-Side Access Conductors and Vias”.
Huemoeller et al., U.S. Appl. No. 11/045,402, filed Jan. 28, 2005, entitled “Method for Making a Semiconductor Package Substrate Having a Printed Circuit Pattern Atop and Within a Dielectric”.
Huemoeller et al., U.S. Appl. No. 11/166,005, filed Jun. 24, 2005, entitled “Circuit-On-Foil Process for Manufacturing a Laminated Semiconductor Package Substrate Having Embedded Conductive Patterns”.
Huemoeller et al., U.S. Appl. No. 11/182,985, filed Jul. 14, 2005, entitled “Semiconductor Package Having Laser-Embedded Terminals”.
Huemoeller et al., U.S. Appl. No. 11/189,593, filed Jul. 26, 2005, entitled “Integral Plated Semiconductor Package Substrate Stiffener”.
Huemoeller et al., U.S. Appl. No. 11/527,827, filed Sep. 26, 2006, entitled “Semiconductor Package and Substrate Having Multi-Level Vias Fabrication Method”.
Huemoeller et al., U.S. Appl. No. 11/543,540, filed Oct. 4, 2006, entitled “Method and Structure for Creating Embedded Metal Features”.
Rusli et al., U.S. Appl. No. 11/621,402, filed Jan. 9, 2007, entitled “Embedded Circuit Pattern Fabrication Method and Structure”.
Huemoeller et al., U.S. Appl. No. 11/982,637, filed Nov. 1, 2007, entitled “Circuit-On-Foil Process for Manufacturing a Laminated Semiconductor Package Substrate Having Embedded Conductive Patterns”.
Huemoeller et al., U.S. Appl. No. 11/903,002, filed Sep. 19, 2007, entitled “Substrate Having Stiffener Fabrication Method”.
Huemoeller et al., “Multi-level Circuit Substrate and Fabrication Method”, U.S. Appl. No. 12/151,857, filed May 9, 2008.
Hiner et al., “Extended Landing Pad Substrate Package Structure and Method”, U.S. Appl. No. 12/351,596, filed Jan. 9, 2009.
Berry et al., “Thin Stacked Interposer Package”, U.S. Appl. No. 11/865,617, filed Oct. 1, 2007.
Scanlan, “Package-on-package (PoP) with Through-mold Vias”, Advanced Packaging, Jan. 2008, 3 pages, vol. 17, Issue 1, PennWell Corporation.
Kim et al., “Application of Through Mold Via (TMV) as PoP base package”, 58th ECTC Proceedings, May 2008, Lake Buena Vista, FL, 6 pages, IEEE.
Huemoeller et al., “Method and Structure for Creating Embedded Metal Features”, U.S. Appl. No. 12/462,665, filed Aug. 5, 2009.