This application claims the benefit of and priority to Korean patent application no. KR10-2004-0054280, filed on Jul. 13, 2004, the entire contents of which are incorporated by reference herein in its entirety.
1. Field of the Invention
The present invention generally relates to a method for manufacturing a device isolation film of a semiconductor device, and more specifically, to a method for manufacturing a device isolation film of a semiconductor device wherein a liner nitride film exposed by etching a liner oxide in a peripheral region is oxidized using plasma prior to the formation of the device isolation film to prevent or reduce a Hot Electron Induced Punchthrough (HEIP) phenomenon and/or to improve characteristics of a semiconductor device.
2. Description of the Related Art
a through 1e are cross-sectional diagrams illustrating a conventional method for manufacturing a device isolation film of a semiconductor device.
Referring to
Referring to
Referring to
Referring to
Referring to
The conventional method discussed may reduce a leakage current due to the liner nitride film and the liner oxide film. However, an electron trap is formed at an interface of the nitride film and the oxide film in the pMOS region where a pMOS transistor is formed to trap hot electrons.
Trapped hot electrons may induce a HEIP phenomenon. The HEIP phenomenon refers to a state when a current flow is generated in a channel region even though a voltage is not applied to a gate of the PMOS transistor. The HEIP phenomenon increases a stand-by current of a DRAM, which degrades device characteristics and yield.
In order to address these problems, manufacturing methods have been proposed that increase the thickness of the sidewall oxide film. However, as the thickness of the sidewall oxide film increases, gap-fill characteristics deteriorate and active region width decreases. The deterioration of gap-fill characteristics and decrease in active region width reduces the current driving capability and threshold voltage of a transistor, and degrades refresh characteristics of the transistor. As such, a need exists for an improved method for manufacturing a device isolation film of a semiconductor device.
Other problems with the prior art not described above can also be overcome using the teachings of the present invention, as would be readily apparent to one of ordinary skill in the art after reading this disclosure.
A method for a method for manufacturing a device isolation film of a semiconductor device is provided, wherein a liner nitride film exposed by removing a liner oxide film in a peripheral region is oxidized using plasma prior to the formation of a device isolation film so that HEIP phenomenon is reduced or prevented, thereby improving semiconductor device characteristics such as a refresh characteristic and a current driving capability.
According to one embodiment of the present invention, there is provided a method for manufacturing a device isolation film of a semiconductor device, comprising sequentially forming a pad oxide film and a pad nitride film on a semiconductor substrate, wherein the semiconductor substrate comprises a peripheral region including a pMOS region and an nMOS region, and a cell region; etching a predetermined region of the pad nitride film, the pad oxide film and the semiconductor substrate where a device isolation film is to be formed to form a trench; forming a sidewall oxide film on a surface of the trench; sequentially forming a liner nitride film and a liner oxide film on surface of the semiconductor substrate including the trench and the pad nitride film; at least removing a portion of the liner oxide film in the PMOS region of the NMOS and pMOS regions of the peripheral region to expose a portion of the liner nitride film under the removed portion of the liner oxide film; oxidizing the exposed portion the liner nitride film; forming a gap-filling oxide film on the semiconductor substrate to fill up the trench; performing a planarization process to expose the pad nitride film; and removing the pad nitride film and the pad oxide film.
a through 1e are cross-sectional diagrams illustrating a conventional method for manufacturing a device isolation film of a semiconductor device.
a through 2g are cross-sectional diagrams illustrating a method for manufacturing a device isolation film of a semiconductor device in accordance with an embodiment of the present invention.
a and 3b are cross-sectional diagrams illustrating a method for manufacturing a device isolation film of a semiconductor device in accordance with another embodiment of the present invention.
Reference will now be made in detail to exemplary embodiments of the present invention. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
a through 2g are cross-sectional diagrams illustrating a method for manufacturing a device isolation film of a semiconductor device in accordance with an embodiment of the present invention.
Referring to
Referring to
Referring to
Referring to
In accordance with another embodiment of the present invention, as shown in
Referring to
Referring to
Referring to
As described above, in accordance with various embodiments of the present invention, the liner nitride film is exposed by removing the liner oxide the film in peripheral region and then oxidized using plasma prior to the formation of a device isolation film to reduce the generation of an electron trap, thereby reducing or preventing occurrence of the HEIP phenomenon and/or degradation of the semiconductor device due to the HEIP phenomenon. In addition, the HEIP phenomenon can be effectively controlled or prevented without substantially increasing the thickness of the sidewall oxide film, thereby reducing or preventing a decrease in driving current and threshold voltage of a transistor and a deterioration of refresh characteristics of a semiconductor device.
The foregoing description of various embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the invention. The embodiments were chosen and described in order to explain the principles of the invention and its practical application to enable one skilled in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated.
Number | Date | Country | Kind |
---|---|---|---|
10-2004-0054280 | Jul 2004 | KR | national |
Number | Date | Country | |
---|---|---|---|
Parent | 10998967 | Nov 2004 | US |
Child | 12032586 | US |