Embodiments described herein relate generally to a method for manufacturing a semiconductor device.
There is proposed a memory device of a three-dimensional structure in which a plurality of electrode layers are stacked with an insulator on a substrate. A proposed material of the electrode layer is metal silicide. Thermal reaction for forming metal silicide involves volume expansion. A process taking the volume expansion into consideration is required.
According to one embodiment, a method for manufacturing a semiconductor device includes forming a stacked body above a substrate. The stacked body includes a plurality of first layers and a plurality of second layers. The first and second layers include a first layer and a second layer alternately stacked. The method includes forming a slit extending in a stacking direction in the stacked body. The method includes removing the first layers by etching through the slit to form an air gap between the second layers. The air gap communicates with the slit. The method includes forming a silicon film on an upper surface side of the air gap, a lower surface side of the air gap, and a side surface side of the air gap, the side surface side being different from the slit side, while leaving part of the air gap between the silicon film formed on the upper surface side of the air gap and the silicon film formed on the lower surface side of the air gap. The method includes after the forming the silicon film, forming a metal film on a side surface of the slit. The method includes forming a plurality of metal silicide layers between the second layers by causing reaction between the metal film and the silicon film. The method includes removing unreacted part of the metal film formed on the side surface of the slit.
In the embodiment, the semiconductor device is described with reference to e.g. a semiconductor memory device including a memory cell array of a three-dimensional structure.
In
The memory cell array 1 includes a substrate 10, a stacked body 100 provided on the major surface of the substrate 10, a plurality of columnar parts CL, a plurality of interconnect parts LI, and an upper interconnect provided above the stacked body 100.
The columnar part CL is formed like a circular column or elliptical column extending in the stacking direction (Z-direction) in the stacked body 100. The interconnect part LI spreads in the stacking direction (Z-direction) and the X-direction of the stacked body 100. The interconnect part LI separates the stacked body 100 into a plurality of blocks (or fingers) in the Y-direction.
The plurality of columnar parts CL are arranged in e.g. a staggered arrangement. Alternatively, the plurality of columnar parts CL may be arranged in a square lattice along the X-direction and the Y-direction.
A plurality of bit lines BL are provided above the stacked body 100. The plurality of bit lines BL are e.g. metal films extending in the Y-direction. The plurality of bit lines BL are separated from each other in the X-direction,
The upper end of the semiconductor body, described later, of the columnar part CL is connected to the bit line BL through a contact part Cb. A plurality of columnar parts CL are connected to one common bit line BL. The plurality of columnar parts CL connected to the common bit line BL include columnar parts CL each selected from one of the blocks separated in the Y-direction by the interconnect part LI.
The stacked body 100 includes a plurality of metal silicide layers 70 stacked on the major surface of the substrate 10. The plurality of metal silicide layers 70 are stacked in the direction (Z-direction) perpendicular to the major surface of the substrate 10 with an insulating layer 72 interposed.
An insulating film 41 is provided between the major surface of the substrate 10 and the lowermost metal silicide layer 70. An insulating film 42 is provided on the uppermost metal silicide layer 70. An insulating film 43 is provided on the insulating film 42.
The columnar part CL includes a memory film 30, a semiconductor body 20, and an insulating core film 50. The semiconductor body 20, the memory film 30, and the core film 50 extend continuously along the stacking direction of the stacked body 100.
The semiconductor body 20 extends like a pipe in the stacking direction (Z-direction) in the stacked body 100. The memory film 30 is provided between the metal silicide layer 70 and the semiconductor body 20. The memory film 30 surrounds the semiconductor body 20 from the outer peripheral side. The core film 50 is provided inside the pipe-shaped semiconductor body 20. The upper end of the semiconductor body 20 is connected to the bit line BL through the contact part Cb shown in
The memory film 30 is a stacked film including a tunnel insulating film 31, a charge storage film (charge storage part) 32, and a block insulating film 33. The block insulating film 33, the charge storage film 32, and the tunnel insulating film 31 are provided between the metal silicide layer 70 and the semiconductor body 20 sequentially from the metal silicide layer 70 side. The tunnel insulating film 31 is in contact with the semiconductor body 20. The block insulating film 33 is in contact with the metal silicide layer 70. The charge storage film 32 is provided between the block insulating film 33 and the tunnel insulating film 31.
The semiconductor body 20, the memory film 30, and the metal silicide layer 70 constitute a memory cell MC. In
In the memory cell MC having the vertical transistor structure, the semiconductor body 20 is e.g. a channel body of silicon. The metal silicide layer 70 functions as a control gate. The charge storage film 32 functions as a data storage layer for storing charge injected from the semiconductor body 20.
The semiconductor memory device of the embodiment is a nonvolatile semiconductor memory device capable of electrically and freely erasing/writing data and retaining its memory content even when powered off.
The memory cell MC is e.g. a charge trap type memory cell. The charge storage film 32 includes a large number of trap sites for trapping charge in the insulating film, and includes e.g. silicon nitride film. Alternatively, the charge storage film 32 may be a conductive floating gate surrounded with an insulator.
The tunnel insulating film 31 serves as a potential barrier when charge is injected from the semiconductor body 20 into the charge storage film 32, or when the charge stored in the charge storage film 32 is released into the semiconductor body 20. The tunnel insulating film 31 includes e.g. silicon oxide film.
The block insulating film 33 prevents the charge stored in the charge storage film 32 from being released into the metal silicide layer 70. The block insulating film 33 suppresses back tunneling of electrons from the metal silicide layer 70 into the columnar part CL.
The block insulating film 33 includes e.g. silicon oxide film. Alternatively, the block insulating film 33 is a stacked film of a silicon oxide film and a film (e.g., metal oxide film) having higher dielectric constant than silicon oxide film. The film having higher dielectric constant may be provided on the metal silicide layer 70 side. A silicon oxide film may be provided between the film having higher dielectric constant and the charge storage film 32.
As shown in
A plurality of memory cells MC are provided between the drain side select transistor STD and the source side select transistor STS. The memory cells MC, the drain side select transistor STD, and the source side select transistor STS are series connected through the semiconductor body 20 and constitute one memory string. Such memory strings are arranged in e.g. a staggered arrangement in the plane direction parallel to the X-Y plane. Thus, the plurality of memory cells MC are provided three-dimensionally in the X-direction, the Y-direction, and the Z-direction.
As shown in
The lower end of the interconnect part LI is in contact with the substrate 10. The lower end of the semiconductor body 20 is in contact with the substrate 10. The substrate 10 is e.g. a silicon substrate doped with impurity and having conductivity.
A semiconductor region 81 is formed in the surface of the substrate 10 to which the lower end of the interconnect part LI extends. A plurality of semiconductor regions 81 are provided corresponding to the plurality of interconnect parts LI. The plurality of semiconductor regions 81 include p-type semiconductor regions 81 and n-type semiconductor regions 81. The p-type semiconductor region 81 supplies holes to the semiconductor body 20 through the substrate 10 at the time of erase operation. At the time of read operation, electrons are supplied from the interconnect part LI through the n-type semiconductor region 81 and the substrate 10 to the semiconductor body 20.
By controlling the potential applied to the lowermost metal silicide layer 70 provided on the surface (major surface) of the substrate 10 via the insulating film 41, a channel is induced in the surface of the substrate 10 between the semiconductor region 81 and the lower end of the semiconductor body 20. Thus, a current can be passed between the semiconductor region 81 and the lower end of the semiconductor body 20.
The lowermost metal silicide layer 70 functions as a control gate for inducing a channel in the surface of the substrate 10. The insulating film 41 functions as a gate insulating film.
The metal silicide layer 70 is e.g. a nickel silicide layer. This nickel silicide layer primarily contains e.g. NiSi or Ni2Si.
Increasing the density of the memory cells MC requires increasing the number of stacked metal silicide layers 70. Furthermore, it is desirable to suppress the increase of the total thickness of the stacked body 100 from the viewpoint of facilitating processing the stacked body 100. Thus, thinning the individual metal silicide layer 70 may be required with the increase of the number of stacked metal silicide layers 70.
Nickel silicide exhibits more gradual increase in resistivity with thinning than metals such as tungsten. Nickel silicide is less susceptible to the narrow line effect. Such a nickel silicide is suitable for the material of the thinned metal silicide layer 70.
Next, a method for manufacturing a semiconductor device of the embodiment is described with reference to
As shown in
The lowermost sacrificial layer 71 is formed on the insulating film 41. The lowermost insulating layer 72 is formed on the lowermost sacrificial layer 71. An insulating film 42 is formed on the uppermost sacrificial layer 71.
As shown in
A plurality of sacrificial layers (silicon nitride layers) 71 and a plurality of insulating layers (silicon oxide layers) 72 are continuously etched by RIE technique using e.g. fluorine-containing gas without switching the gas. This enables processing with high throughput.
The films constituting the columnar part CL are formed in the memory hole MH. First, as shown in
As shown in
Then, as shown in
After removing the mask layer 45, as shown in
The cover film 20a and the semiconductor film 20b are formed as e.g. an amorphous silicon film, and then crystallized into a polycrystalline silicon film by heat treatment. The cover film 20a and the semiconductor film 20b constitute the aforementioned semiconductor body 20.
As shown in
Then, by RIE technique using a mask, not shown, a plurality of slits ST are formed in the stacked body 100 including the insulating film 43, the insulating film 42, the sacrificial layers 71, the insulating layers 72, and the insulating film 41. The slit ST penetrates through the stacked body 100 to the substrate 10. The slit ST extends in the depth direction of the page of
Impurity is implanted by ion implantation technique into the substrate 10 exposed at the bottom of the slit ST. Thus, a p-type or n-type semiconductor region 81 is formed in the surface of the substrate 10 at the bottom of the slit ST.
Next, the sacrificial layer 71 is removed with an etchant or etching gas supplied through the slit ST. For instance, the silicon nitride layer as the sacrificial layer 71 is removed with an etchant containing phosphoric acid.
As shown in
The plurality of insulating layers 72 stacked with the air gap 44 are supported by the columnar part CL. The lower end of the columnar part CL is supported by the substrate 10. The upper end of the columnar part CL is supported by the insulating film 42 and the insulating film 43.
As shown in
Next, as shown in
As shown in
The film thickness of the silicon film 91 is thinner than half the height of the air gap 44 (distance between the vertically adjacent insulating layers 72). Thus, the air gap 44 is not filled with the silicon film 91. As shown in
In the example shown in
Next, as shown in
The cover silicon film 92 is formed on the side surface of the silicon film 91 exposed to the slit ST, and occludes the opening on the slit ST side of the air gap 44a. The opening on the slit ST side of the air gap 44a is occluded in the state in which the air gap 44a is maintained between the silicon film 91 formed on the upper surface 72a of the insulating layer 72 and the silicon film 91 formed on the lower surface 72b of the insulating layer 72.
Next, the cover silicon film 92 formed on the side surface of the slit ST and the silicon film 91 formed on the side surface of the slit ST are removed by e.g. wet etching technique with an alkaline chemical or RIE technique. At this time, the cover silicon film 92 and the silicon film 91 deposited at the bottom of the slit ST are also removed.
Etching of the silicon film 91 formed on the side surface of the slit ST proceeds with the opening on the slit ST side of the air gap 44a being occluded. This can suppress etching of the silicon film 91 between the insulating layers 72 by the etchant or etching gas intruding into the air gap 44a.
Thus, the cover silicon film 92 and the silicon film 91 formed on the side surface of the slit ST are removed. As shown in
Next, as shown in
The metal film 93 is formed on the side surface 72c of each insulating layer 72 along the side surface of the slit ST. Furthermore, part of the metal film 93 is formed also in the air gap 44a. The metal film 93 is formed between the silicon film 91 formed on the upper surface 72a of the insulating layer 72 and the silicon film 91 formed on the lower surface 72b of the insulating layer 72. The metal film 93 is formed also on the bottom of the slit ST.
Next, thermal reaction is caused between the metal film 93 and the silicon film 91 by annealing treatment. As shown in
For instance, a nickel silicide layer as the metal silicide layer 70 is formed by reaction between nickel in the nickel film as the metal film 93 and silicon in the silicon film 91.
In this annealing treatment, a metal silicide film (not shown in
As shown in
Metal silicidation of the silicon film 91 involves volume expansion. The volume of the metal silicide layer 70 is made larger than the volume of the silicon film 91. An excessive volume expansion at this time may incur tilt or collapse of the stacked portion extending in the depth direction of the page between the slits ST in
According to the embodiment, the air gap 44 between the vertically adjacent insulating layers 72 is not completely filled with the silicon film 91. As shown in
For instance, the nickel silicide layer as the metal silicide layer 70 primarily contains NiSi (nickel monosilicide) or Ni2Si (dinickel silicide). The composition of metal silicide can be controlled by the amount of silicon and metal supplied to the reaction, and the annealing treatment condition (e.g., temperature). Volume expansion at the time of forming metal silicide depends on the composition of metal silicide.
The volume expansion ratio is higher in turning silicon into Ni2Si than in turning silicon into NiSi. Thus, the height of the air gap 44a left between the silicon films 91 in forming the metal silicide layer 70 primarily containing Ni2Si is preferably larger than the height of the air gap 44a left between the silicon films 91 in forming the metal silicide layer 70 primarily containing NiSi. This height refers to the height along the stacking direction of the stacked body 100.
For instance, the height of the air gap 44a left between the silicon films 91 in forming the metal silicide layer 70 primarily containing Ni2Si is preferably 38% or more of the height of the original air gap 44 (distance between the vertically adjacent insulating layers 72). The height of the air gap 44a left between the silicon films 91 in forming the metal silicide layer 70 primarily containing NiSi is preferably 17% or more of the height of the original air gap 44 (distance between the vertically adjacent insulating layers 72).
From the viewpoint of resistance reduction, preferably, the air gap 44 between the insulating layers 72 is completely filled with the metal silicide layer 70 without leaving voids, unreacted silicon film 91, and unreacted metal film 93 in the air gap 44 between the insulating layers 72. For instance, in the case of nickel silicide, NiSi has lower resistance than Ni2Si. Thus, preferably, the air gap 44 is completely filled with NiSi. This is preferable also from the viewpoint of easy process control because NiSi has lower volume expansion ratio than Ni2Si as described above.
The volume of the NiSi film formed by reaction between the silicon film and the nickel film tends to be smaller than the total of the volume of the silicon film and the volume of the nickel film before the reaction. Thus, it may be difficult to form a metal silicide layer (NiSi layer) 70 without voids between the insulating layers 72 only from the metal film (nickel film) 93 formed in the air gap 44a.
However, according to the embodiment, in the aforementioned annealing treatment, the metal (nickel) in the metal film (nickel film) 93 formed on the side surface of the slit ST also diffuses into the silicon film 91 between the insulating layers 72. Thus, the metal silicide layer (NiSi layer) 70 can be formed without voids between the insulating layers 72.
The metal film 93 does not need to be formed in the air gap 44a between the silicon films 91. Alternatively, the metal film 93 formed in the air gap 44a may include voids. Even in these cases, the metal silicide layer 70 can be formed without voids between the insulating layers 72 by appropriately controlling the film thickness of the metal film 93 formed on the side surface of the slit ST. Thickening the metal film 93 formed on the side surface of the slit ST increases the amount of metal diffusion from the metal film 93 into the silicon film 91 between the insulating layers 72. This enables metal silicidation without voids.
Unreacted metal film 93 remains on the side surface of the slit ST. The unreacted metal film 93 is removed. For instance, the nickel film (metal film 93) unreacted with silicon is removed with sulfuric acid/hydrogen peroxide mixture supplied to the slit ST.
Thus, the unreacted metal film 93 is removed. As shown in
As shown in
The insulating film 63 formed at the bottom of the slit ST is removed by RIE technique. Then, as shown in
In the aforementioned example step shown in
Alternatively, as shown in
After removing the unreacted metal film 93 in the slit ST shown in
Thus, the insulating layer 72 is removed. As shown in
The air gap 40 is formed between the metal silicide layers 70, which are control gates of the memory cells MC adjacent in the stacking direction. This can reduce the interconnect capacitance between the vertically adjacent metal silicide layers 70 and enables fast operation of the memory cell MC. Furthermore, this can suppress interference between adjacent cells such as threshold variation due to capacitive coupling between the vertically adjacent metal silicide layers 70.
Next, an alternative example of the method for forming the metal silicide layer 70 is described with reference to
As shown in
Also in this case, the air gap 44 is not filled with the silicon film 91. An air gap 44a remains between the silicon film 91 formed on the lower surface 72b of the insulating layer 72, and the silicon film 91 formed on the upper surface 72a of the insulating layer 72. The opening on the slit ST side of the air gap 44a is not occluded with the silicon film 91. The air gap 44a communicates with the slit ST.
Next, the silicon film 91 exposed in the slit ST and formed along the side surface of the slit ST is oxidized. The silicon film 91 formed on the side surface 72c of the insulating layer 72, the silicon film 91 formed at the corner of the upper surface 72a and the side surface 72c of the insulating layer 72, and the silicon film 91 formed at the corner of the lower surface 72b and the side surface 72c of the insulating layer 72 are oxidized. Thus, as shown in
For instance, as shown in
The silicon oxide film 95 is formed on the side surface 72c of the insulating layer 72. This disconnects the silicon film 91 connected in the vertical direction (stacking direction of the stacked body 100).
In the case of etching the silicon film 91 formed on the side surface 72c of the insulating layer 72 by e.g. RIE technique, the gas used in this etching may be adsorbed on the surface of the silicon film 91 formed near the opening of the air gap 44a. This adsorbed gas component may hamper the diffusion of metal from the metal film 93 formed on the side surface of the slit ST into the silicon film 91 formed on the upper surface 72a of the insulating layer 72 and the silicon film 91 formed on the lower surface 72b of the insulating layer 72. This may prevent complete metal silicidation of the silicon film 91 between the insulating layers 72, and prevent resistance reduction of the control gate of the memory cell MC and the select transistor STD, STS.
According to the embodiment, the silicon film 91 formed on the side surface 72c of the insulating layer 72 is oxidized as shown in
Next, as shown in
The metal film 93 covers the side surface 72c of the insulating layer 72 via the silicon oxide film 95. Furthermore, part of the metal film 93 is formed also in the air gap 44a. The metal film 93 is formed between the silicon film 91 formed on the upper surface 72a of the insulating layer 72 and the silicon film 91 formed on the lower surface 72b of the insulating layer 72.
Next, thermal reaction is caused between the metal film 93 and the silicon film 91 by annealing treatment. As shown in
As shown in
Also in this example, the air gap 44 between the vertically adjacent insulating layers 72 is not completely filled with the silicon film 91. As shown in
Then, unreacted metal film 93 remaining on the side surface of the slit ST is removed. For instance, the nickel film (metal film 93) unreacted with silicon is removed with sulfuric acid/hydrogen peroxide mixture supplied to the slit ST.
The unreacted metal film 93 is removed. As shown in
The end part 70b on the slit ST side of the metal silicide layer 70 is formed between the vertically adjacent silicon oxide films 95. As shown in
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modification as would fall within the scope and spirit of the inventions.
This application is based upon and claims the benefit of priority from U.S. Provisional Patent Application 62/266,936, filed on Dec. 14, 2015; the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
7927967 | Nomura et al. | Apr 2011 | B2 |
8013383 | Kidoh et al. | Sep 2011 | B2 |
8258033 | Watanabe | Sep 2012 | B2 |
8618603 | Ozawa et al. | Dec 2013 | B2 |
8653579 | Matsunami et al. | Feb 2014 | B2 |
9136275 | Yoo | Sep 2015 | B2 |
9450023 | Konevecki | Sep 2016 | B1 |
9570464 | Wakatsuki | Feb 2017 | B1 |
20130032873 | Kiyotoshi | Feb 2013 | A1 |
20140175530 | Chien | Jun 2014 | A1 |
20140225181 | Makala | Aug 2014 | A1 |
20140353738 | Makala | Dec 2014 | A1 |
20150060992 | Taekyung et al. | Mar 2015 | A1 |
20160071871 | Kamigaichi | Mar 2016 | A1 |
20160118398 | Yon | Apr 2016 | A1 |
20160168704 | Choi | Jun 2016 | A1 |
20160225786 | Lee | Aug 2016 | A1 |
20160268191 | Hu | Sep 2016 | A1 |
20160268293 | Kamigaichi | Sep 2016 | A1 |
20160293618 | Namkoong | Oct 2016 | A1 |
20160358933 | Rabkin | Dec 2016 | A1 |
20170062455 | Nomura | Mar 2017 | A1 |
20170062460 | Nishida | Mar 2017 | A1 |
20170062464 | Aoyama | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
2011-119510 | Jun 2011 | JP |
Number | Date | Country | |
---|---|---|---|
20170170069 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
62266936 | Dec 2015 | US |