Claims
- 1. A method for providing a boundary scan cell, the method comprising:providing a functional flip-flop having a data input and a data output; providing boundary scan circuitry having a data input and a data output, said boundary scan circuitry comprising a capture stage flip-flop and an update stage flip-flop, said capture stage flip-flop having a data input, a data output, a boundary scan input, a boundary scan output, and a clock input and said update stage flip-flop having a data input, a data output, and an update enable input; and providing a multiplexor having a first input, a second input, an output, and a boundary scan enable input, wherein said first input of said multiplexor is coupled to a functional path, said second input of said multiplexor is coupled to said data output of said boundary scan circuitry, said output of said multiplexor is coupled to said data input of said functional flip-flop, said data output of said capture stage flip-flop is coupled to said data input of said update stage flip-flop, said data input of said capture stage flip-flop is coupled to said data input of said boundary scan circuitry, and said data output of said update stage flip-flop is coupled to said data output of said boundary scan circuitry.
- 2. A method for providing a boundary scan cell, the method comprising:providing a functional flip-flop having a data input, a pulse input, an inverse pulse input, and a data output; providing boundary scan circuitry having a data input and a data output; providing a multiplexor having a first input, a second input, a boundary scan enable input, and an output; and providing a boundary scan clock module having a clock input, a multiplexor select input, a pulse output, and an inverse pulse output, wherein said first input of said multiplexor is coupled to a functional path, said second input of said multiplexor is coupled to said data output of said boundary scan circuitry, said output of said multiplexor is coupled to said data input of said functional flip-flop, said pulse output of said boundary scan clock module is coupled to said pulse input of said functional flip-flop, said inverse pulse output of said boundary scan clock module is coupled to said inverse pulse input of said functional flip-flop, and said clock module comprises: a delay having an input and an output, a logic with timing calibration circuit having a first input, a second input, a third input, a first output, and a second output, a first inverter having an input and an output, a second inverter having an input and an output, and a third inverter having an input and an output, wherein said clock input is coupled to said first input of said logic with timing calibration circuit and to said input of said delay, said output of said delay is coupled to said second input of said logic with timing calibration circuit, said multiplexor select input is coupled to said third input of said logic with timing calibration, said first output of said logic with timing calibration circuit is coupled to said input of said first inverter, said output of said first inverter is coupled to said input of said second inverter, said output of said second inverter is coupled to said pulse output, said second output of said logic with timing calibration circuit is coupled to said input of said third inverter, said output of said third inverter is coupled to said inverse pulse output.
- 3. A method for providing a boundary scan cell, the method comprising:providing a multiplexor having a first input, a second input, a boundary scan enable input, and an output, wherein said first input is coupled to a functional path; providing a functional flip-flop having a data input, a pulse input, an inverse pulse input, and a data output, wherein said data input of said functional flip-flop is coupled to said output of said multiplexor; providing boundary scan circuitry having a data input and a data output, wherein said data output of said boundary scan circuitry is coupled to said second input of said multiplexor; and providing a boundary scan clock module having a clock input, a multiplexor select input, a pulse output, and an inverse pulse output, wherein said pulse output of said boundary scan clock module is coupled to said pulse input of said functional flip-flop, said inverse pulse output of said boundary scan clock module is coupled to said inverse pulse input of said functional flip-flop, and said boundary scan clock module comprises: a logic with timing calibration circuit having a first input, a second input, a first output, and a second output, wherein said first input of said logic with timing calibration circuit is coupled to said clock input of said boundary scan clock module, said second input of said logic with timing calibration circuit is coupled to said multiplexor select input of said boundary scan clock module, and said first output of said logic with timing calibration circuit is coupled to said pulse output of said boundary scan clock module, and an inverter having an input and an output, wherein said input of said inverter is coupled to said second output of said logic with timing calibration circuit and said output of said inverter is coupled to said inverse pulse output of said boundary scan clock module.
STATEMENT OF RELATED APPLICATION
This application claims priority based on provisional application serial No. 60/199,672, entitled “BOUNDARY SCAN CELL DESIGN FOR HIGH PERFORMANCE I/O CELLS” by Gajendra P. Singh, Jaya Prakash Samala, Sridhar Narayanan, and Ishwardutt Parulkar, filed on Apr. 25, 2000.
US Referenced Citations (11)
Provisional Applications (1)
|
Number |
Date |
Country |
|
60/199672 |
Apr 2000 |
US |