METHOD FOR PREVENTING Al-Cu BOTTOM DAMAGE USING TiN LINER

Abstract
A semiconductor device and related method for fabricating the same include providing a stacked structure including an insulating base layer and lower and upper barrier layers with a conductive layer in between, etching the stacked structure to provide a plurality of conductive columns that each extend from the lower barrier layer, each of the conductive columns having an overlying upper barrier layer cap formed from the etched upper barrier layer, wherein the lower barrier layer is partially etched to provide a land region between each of the conductive lines, forming a liner layer over the etched stacked structure exposing the land region, and etching the liner layer and removing the exposed land region to form a plurality of conductive lines
Description
BACKGROUND

1. Technical Field


The present invention relates to conductive lines of a semiconductor device, and more particularly, to a method for preventing damage to a conductive line during fabrication of a semiconductor device.


2. Related Art


As sizes of conductive lines of semiconductor devices are designed below sub-micron ranges, such as AlCu at about 0.1 μm, it is difficult to protect sidewalls of metal lines (ML) during fabrication processing. One solution includes using a heavy polymer gas flow during ML etch processing to protect the sidewall of the ML lines against damage. However, this solution results in producing ML lines having wider bottom portions and suffers from a tight overlay window of adjacent ML line formation. Conversely, in an attempt to relieve the overlay window problem, a light polymer gas flow is used to protect the sidewall of the ML lines against etching damage.



FIGS. 1A-1C are schematic cross-sectional views of a conventional method for fabricating conductive lines of a semiconductor device using the light polymer gas flow. In FIG. 1A, a basic stacked structure 1 includes an oxide layer 10, a lower barrier TiN/Ti layer 20, an Al—Cu layer 30, an upper barrier layer TiN/Ti 50, a TEOS layer 50, a bottom antireflective coating layer 60, and a photoresist layer 70. Here, the photoresist layer 70 has been patterned.


In FIG. 1B, the stacked structure 1 (in FIG. 1) is etched and processed, thereby patterning the TEOS layer 50. Accordingly, the stacked structure 1 (in FIG. 1A) is processed to form an etched stacked structure 2.


In FIG. 1C, the etched stacked structure 2 (in FIG. 1B) is dry etched and processed, thereby producing the metal line structure 3. Here, the metal line structure 3 includes a plurality of conductive lines 32 mutually separated by trenches 14 formed through an upper surface of the oxide layer 12, thereby forming lower TiN/Ti barriers 22, the conductive lines 32, the upper TiN/Ti barriers 42, and the TEOS caps 52.


As shown in FIG. 1C, by using the light polymer gas flow during final etch processes, notches 34 are formed around lower portions of the conductive lines 32 during etching of the lower TiN/Ti barrier layer 20 (in FIG. 1B). Accordingly, the conductive lines 32 are significantly damaged. Thus, each of the conductive lines 32 are mechanically weakened at the interface with corresponding ones of the lower TiN/Ti barriers 22.


Thus, a method is required that can prevent notch formation of conductive lines during etching processing, and provide adequate relief of the overlay window.


SUMMARY

A method of fabricating conductive lines of a semiconductor device while preventing damage to the conductive lines is described here.


In one aspect, a method for fabricating a semiconductor device includes providing a stacked structure including an insulating base layer and lower and upper barrier layers with a conductive layer in between, etching the stacked structure to provide a plurality of conductive columns that each extend from the lower barrier layer, each of the conductive columns having an overlying upper barrier layer cap formed from the etched upper barrier layer, wherein the lower barrier layer is partially etched to provide a land region between each of the conductive lines, forming a liner layer over the etched stacked structure exposing the land region, and etching the liner layer and removing the exposed land region to form a plurality of conductive lines.


In another aspect, a method for fabricating a semiconductor device includes etching completely through an upper barrier layer and a conductive layer, without etching completely through a lower barrier layer disposed beneath the conductive layer, to form a plurality of conductive lines extending from the lower barrier layer, forming a liner layer to completely cover the conductive lines and to partially cover portions of the lower barrier layer disposed between the conductive lines, and etching completely through the lower barrier layer after the forming of the liner layer to form a plurality of lower barrier layers, wherein each of the plurality of lower barrier layers correspond to one of the plurality of conductive lines.


These and other features, aspects, and embodiments of the invention are described below in the section entitled “Detailed Description.”





BRIEF DESCRIPTION OF THE DRAWINGS

Features, aspects, and embodiments are described in conjunction with the attached drawings, in which:



FIGS. 1A-1C are schematic cross-sectional views of a conventional method for fabricating conductive lines of a semiconductor device using the light polymer gas flow; and



FIGS. 2A-2D are schematic cross-sectional views of an exemplary method for fabricating conductive lines of a semiconductor device according to one embodiment.





DETAILED DESCRIPTION


FIGS. 2A-2D are schematic cross-sectional views of an exemplary method for fabricating conductive lines of a semiconductor device according to one embodiment. In FIG. 2A, a stacked structure 100 includes a base oxide layer 110, a lower TiN/Ti barrier layer 120, an Al—Cu conductive layer 130, an upper TiN/Ti barrier layer 140, and a patterned TEOS layer 150.


In FIG. 2B, the stacked structure 100 is etched to form a preliminary conductive structure 200. For example, the light polymer gas flow is performed during a plasma etching process to produce the conductive structure 200. Here, the plasma etching process may include a low bias power of about 0˜60 W, a BCl3 etchant gas flow of about 0˜30 sccm, and a polymer gas flow including CHF3 at about 0-20 sccm and N2 at about 0˜20 sccm. Accordingly, the preliminary conductive structure 200 may include a plurality of trenches 122 defining a plurality of conductive columns that include a lower oxide base 112, a patterned lower TiN/Ti barrier layer 120, a plurality of conductive lines 132, a patterned upper TiN/Ti barrier layer 142, and a plurality of TEOS caps 152. Here, as a result of the etching process, the lower TiN/Ti barrier layer 120 is only partially etched to form a plurality of exposed land regions 124 between adjacent ones of the conductive lines 132. In addition, a width of first end portions of the etched sidewalls 134 of the conductive lines 132 are substantially equal to a width of etched sidewalls 126 of the lower TiN/Ti barrier layer 120, and second portions of the etched sidewalls 134 of the conductive lines 132 are undercut at an undercut region 162 with regard to the patterned upper TiN/Ti barrier layer 142 and the TEOS cap 152.


In FIG. 2C, a liner layer 160, such as TiN, is deposited on the conductive structure 200. For example, TiN having a thickness of about 100 Å to about 200 Å may be provided to completely cover the TEOS caps 152, the patterned upper TiN/Ti barrier layers 142, the conductive lines 132, and the etched sidewalls 126 of the lower TiN/Ti barrier layer 120. As shown, the liner layer 160 is conformal to the undercut region 162 and includes a lower portion 164 that terminates at ends of the land regions 124. Accordingly, the liner layer 160 leaves only the land regions 124 of the lower TiN/Ti barrier layer 120 exposed.


In FIG. 2D, a dry plasma etching is performed to produce a conductive line structure 300. Here, the etching removes the land regions 124 (in FIG. 2C) and portions of the oxide layer 122 to provide trenches 128 between each of the conductive lines 132, thereby forming a plurality of lower TiN/Ti barrier layers 126. In addition, the liner layer 160 (in FIG. 2C) is patterned to provide tapered sidewall structures 166 along the sidewalls 134 of the conductive lines 132. Moreover, the tapered sidewall structures 166 of the liner layer 160 (in FIG. 2C) are provided having a first thickness portion 168a adjacent to the undercut region 162 and a second thickness portion 168b adjacent to an interface between the conductive line 132 and the lower TiN/Ti barrier layer 120. For example, the first thickness portion 168a may be substantially aligned with a lower width of the upper TiN/Ti barrier layer 120 and the second thickness portion 168b may be substantially aligned with an upper width of the lower TiN/Ti barrier layer 126. In some circumstances, it may be desirable to form the second thickness portion 168b to be substantially zero, i.e., the tapered sidewall structures 166 may end at the upper width of the lower TiN/Ti barrier layer 126.


As a result, the conductive lines 132 may be provided without having notches formed at the base region of the conductive lines 132. Accordingly, the conductive lines 132 may be provided having improved mechanical strength by preventing formation of notches during final etching of the lower TiN/Ti barrier layer 120, and the overlay window between adjacent ones of the plurality of conductive lines can be relieved.


While certain embodiments of the inventions have been described above, it will be understood that the embodiments described are by way of example only. Accordingly, the inventions should not be limited based on the described embodiments. Rather, the scope of the inventions described herein should only be limited in light of the claims that follow when taken in conjunction with the above description and accompanying drawings.

Claims
  • 1. A method for fabricating a semiconductor device, comprising: providing a stacked structure including an insulating base layer, a lower barrier layer covering the insulating base layer, a conductive layer on the lower barrier layer, and an upper barrier layer on the conductive layer;etching the stacked structure to provide a plurality of conductive columns that each extend from the lower barrier layer, each of the conductive columns having an overlying upper barrier layer cap formed from the etched upper barrier layer, wherein the lower barrier layer is partially etched to provide a land region in the lower barrier layer between each of the conductive lines;forming a liner layer over the top and sides of the etched stacked structure while exposing the land region; andetching the liner layer and removing at least a portion of the exposed land region to form a plurality of conductive lines extending from the insulating base layer.
  • 2. The method according to claim 1, wherein the etching of the stacked structure includes a plasma etch using a polymer gas flow including CHF3 at about 20 sccm and N2 at about 20 sccm.
  • 3. The method according to claim 1, wherein the forming of the liner layer includes deposition of TiN to a thickness of about 100 Ř200 Å.
  • 4. The method according to claim 1, wherein the etching of the liner layer includes dividing the lower barrier layer into a plurality of lower barrier layers.
  • 5. The method according to claim 4, wherein each of the plurality of lower barrier layers are electrically separated from each other.
  • 6. The method according to claim 1, wherein the etching of the stacked structure includes formation of an undercut region at an interface between the conductive column and the overlying upper barrier layer cap.
  • 7. The method according to claim 6, wherein the etching of the liner layer includes formation of a first thickness portion of the liner layer within the undercut region.
  • 8. The method according to claim 7, wherein the liner layer includes a second thickness portion substantially adjacent to an interface between the lower barrier layer and the conductive column.
  • 9. The method according to claim 8, wherein the first thickness portion is greater than the second thickness portion.
  • 10. The method according to claim 7, wherein the first thickness portion is substantially aligned with a lower width of the upper barrier layer, and the second thickness portion is substantially aligned with an upper width of the lower barrier layer.
  • 11. The method according to claim 1, wherein the etching of the liner layer includes etching completely through portions of the lower barrier layer.
  • 12. The method according to claim 11, wherein the etching of the liner layer includes formation of a trench into the insulating base layer.
  • 13. The method according to claim 12, wherein sidewalls of the etched lower barrier layer and sidewalls of the trench are substantially coplanar.
  • 14. The method according to 1, wherein the conductive columns are tapered.
  • 15. The method according to claim 1, wherein the conductive layer includes Al—Cu.
  • 16. The method according to claim 1, wherein the lower and upper barrier layers each includes at least one of TiN and Ti.
  • 17. A method for fabricating a semiconductor device, comprising: etching completely through an upper barrier layer and a conductive layer under the upper barrier layer without etching completely through a lower barrier layer beneath the conductive layer to form a plurality of conductive lines extending from the lower barrier layer;forming a liner layer to completely cover the conductive lines and to partially cover portions of the lower barrier layer disposed between the conductive lines; andetching completely through the lower barrier layer after the forming of the liner layer to form a plurality of lower barrier layers,wherein each of the plurality of lower barrier layers correspond to one of the plurality of conductive lines.
  • 18. The method according to claim 17, wherein the etching completely through the upper barrier layer and the conductive layer includes plasma etching using a polymer gas flow.
  • 19. The method according to claim 18, wherein the etching completely through the lower barrier layer includes etching into a insulating base layer disposed beneath the lower barrier layer.
  • 20. The method according to claim 17, further comprising etching the liner layer simultaneously with the etching completely through the lower barrier layer.
  • 21. The method according to claim 20, wherein the etched liner layer remains solely on sidewalls of the conductive lines.
  • 22. A semiconductor device, comprising: a plurality of conductive columns extending from an insulating base layer and each comprising a lower barrier layer on the insulating base layer, a conductive layer on the lower barrier layer, and an overlying upper barrier layer on the conductive layer;a liner layer over at least portions of the sides of the conductive columns.
  • 23. The device method according to claim 22, wherein the liner layer includes TiN at a thickness of about 100 Ř200 Å.
  • 24. The device according to claim 22, wherein the lower barrier layers of each of the plurality of conductive columns are electrically separated from each other.
  • 25. The device according to claim 22, wherein the liner layer includes a first thickness portion over an undercut region at an interface between a conductive layer of a column and its overlying upper barrier layer.
  • 26. The device according to claim 25, wherein the liner layer further includes a second thickness portion substantially adjacent to an interface between the lower barrier layer and the conductive layer.
  • 27. The device according to claim 26, wherein the first thickness portion is greater than the second thickness portion.
  • 28. The device according to claim 26, wherein the first thickness portion is substantially aligned with a lower width of the upper barrier layer, and the second thickness portion is substantially aligned with an upper width of the lower barrier layer.
  • 29. The device according to claim 22, further comprising a trench in the insulating base layer between the conductive columns.
  • 30. The device according to claim 29, wherein sidewalls of the lower barrier layer and sidewalls of the trench are substantially coplanar.
  • 31. The device according to 22, wherein the conductive layers are tapered.
  • 32. The device according to claim 22, wherein the conductive layers include Al—Cu.
  • 33. The device according to claim 22, wherein the lower and upper barrier layers each includes at least one of TiN and Ti.
  • 34. A semiconductor device, comprising: a plurality of conductive columns extending from an insulating base layer and each comprising a lower barrier layer on the insulating base layer, a conductive layer on the lower barrier layer, and an overlying upper barrier layer on the conductive layer, wherein the conductive columns are electrically insulated from each other;wherein the conductive layers in each of the conductive columns are tapered creating an undercut region at an interface between a conductive layer of a column and its overlying upper barrier layer;a liner layer over at least portions of the sides of the conductive columns, wherein the liner layer includes a first thickness portion over the undercut regions, and a second thickness portion substantially adjacent to an interface between the lower barrier layer and the conductive layer.
  • 35. The device method according to claim 34, wherein the liner layer includes TiN at a thickness of about 100 Ř200 Å.
  • 36. The device according to claim 34, wherein the first thickness portion is greater than the second thickness portion.
  • 37. The device according to claim 34, wherein the first thickness portion is substantially aligned with a lower width of the upper barrier layer, and the second thickness portion is substantially aligned with an upper width of the lower barrier layer.
  • 38. The device according to claim 34, further comprising a trench in the insulating base layer between the conductive columns.
  • 39. The device according to claim 38, wherein sidewalls of the lower barrier layer and sidewalls of the trench are substantially coplanar.
  • 40. The device according to claim 34, wherein the conductive layers include Al—Cu.
  • 41. The device according to claim 34, wherein the lower and upper barrier layers each includes at least one of TiN and Ti.