This invention relates generally to scanning probe microscopy (hereinafter “SPM”), and in particular, to an SPM probe formed with an integrated tip and to a method of printing with an SPM probe.
A scanning probe microscope is an important instrument for science and technology. One of the first scanning probe microscopes ever developed was called a Scanning Tunneling Microscope (STM). Another device within the scanning probe microscope family is an Atomic Force Microscope (hereinafter “AFM”). Nowadays, scanning probe microscopes are used to measure surface properties with atomic resolution. For example, scanning probe microscopes can be used to observe the structure of double helix of DNA. The capability of scanning probe microscopes has spread to include imaging of magnetic, optical, thermal, electrostatic charges, and many more. Scanning probe microscopes are also used for biological sensors as the static bending and resonant frequency of a scanning probe microscope is sensitive to the biochemical substances absorbed on it. Scanning probe microscopes are also used to perform nanolithography, such as dip pen nanolithography, and nanomanipulation, that is, interacting with objects on a molecular and an atomic scale.
Scanning probe microscopes use a probe having a flexible cantilever beam with a sharp tip attached at the distal end to perform their measurements. The cantilever beam is very soft, often with a force constant on the order of 0.1 N/m or less. The tip is used to interact with the surface of interest. In an AFM for example, the repulsive force between the surface and the tip causes the cantilever beam to bend. The minute amount of bending in the cantilever beam is picked up by using sensitive instruments, such as by optical deflection. By raster scanning the tip over a sample surface area, a local topological map can be produced. If the tip of the probe is relatively sharp, the topological map may be made with atomic resolution. Typically, the radius of curvature of tips range below 500 nanometers.
Needless to say, the SPM probe's cantilever beam with integrated tip is a performance limiting device in the overall scanning probe microscope system. Many research groups as well as companies that commercialize the scanning probe microscope spend much time to develop the cantilever beam and the tip of the probe. Using current fabrication methods, the cantilever beam is typically made of silicon nitride or single crystal silicon while the tip is typically etched by bulk silicon etching using wet etching chemicals or plasma etching. There are a number of major drawbacks to existing fabrication methods. First, the tips are made sharp using a special, time-sensitive processes that is not very efficient. Additionally, it is difficult to produce large arrays of tips with uniform sharpness. Moreover, the cantilevers are made of inorganic thin films such as silicon nitride or single crystal silicon which require a high temperature process and multiple process steps, such as a bulk silicon etch, to produce. Furthermore, certain processes require removal of a substrate upon which the probes are fabricated upon in order to remove the probe, and more specifically, the cantilever, from the substrate. Thus, a need exists for an improved method for fabricating an SPM probe.
Additionally, there is a need for an improved method for fabricating an SPM probe, including an array of SPM probes, using an efficient process, low cost materials, and a uniform profile. Such probes can then be used in a variety of ways, such as, for SPM, chemical/bio sensing, and nanolithography such as DPN.
There is also a need for an improved method for microcontact printing. Microcontact printing (μCP) is a soft lithography method capable of creating micro-scale structures on a microscopic level. Microcontact printing uses a stamp to transfer chemical or biological materials, also known as “ink,” onto a solid substrate. Microcontact printing creates impressions with the patterned stamp by placing the stamp near, or in contact with, the solid substrate. Microcontact printing does not form images by dragging the stamp across the solid substrate. Repeated contact with the solid substrate can form dots, lines, curves, and other such shapes. The stamp can be made of a variety of materials, such as metals, polymers, and elastomeric materials. One of the more commonly used elastomeric materials is poly(dimethylsiloxane) (PDMS), which is an inert material that is compatible with many chemical and biological inks. Microcontact printing has been used to pattern self-assembled monolayers of alkanethiols, proteins, chemical precursors, and other biological materials on a variety of substrates. Microcontact printing has also been used to transfer chemical or biological materials (inks) onto a solid substrate. However, microcontact printing invariably requires a dedicated photolithography mask to produce inverse mold features, and is limited with respect to multi-ink and alignment registration capabilities. Additionally, the production of the mask can be relatively costly and time consuming, particularly when sub-micrometer features are desired. Moreover, for many applications, such as the generation of proteomic and gene chips, well aligned, sub-micrometer scale features made of many different inks are desirable. Thus, a need exists for a less costly and less time consuming method for microcontact printing.
According to one aspect of the present invention, a method for fabricating a scanning probe microscope probe is provided. The method includes forming a structural layer on a substrate. The substrate forms a cavity. A sacrificial layer is located between the substrate and the structural layer. In one embodiment, the method further includes selectively removing the sacrificial layer. In one embodiment, the method further includes releasing the structural layer from the substrate.
According to another aspect of the present invention, a method for fabricating a scanning probe microscope probe is provided. The method includes forming a structural layer on a substrate. The structural layer has a tip layer and a beam layer. The substrate forms a cavity and the tip layer is in the cavity. The beam layer is on the tip layer. A sacrificial layer is located between the substrate and the tip layer. The method further includes patterning the structural layer.
According to another aspect of the present invention, a scanning probe microscope probe is provided. The probe includes a tip having a first material and a cantilever beam connected with the tip. The cantilever beam includes a second material. The first material includes one of a metal, an oxide, and a polymer, and the second material includes one of a metal, an oxide, and a polymer.
According to another aspect of the present invention, a method for contact printing is provided. The method includes positioning a scanning probe microscopy probe having a tip near a substrate, wherein ink is transferred from the tip to the substrate. The tip comprises a polymer.
It should be appreciated that for simplicity and clarity of illustration, elements shown in the Figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements are exaggerated relative to each other for clarity. Further, where considered appropriate, reference numerals have been repeated among the Figures to indicate corresponding elements.
The present invention describes a method for fabricating scanning probe microscopy (SPM) probes. The probes are fabricated by forming a structural layer on a substrate, wherein the substrate forms a cavity. A sacrificial layer is located between the substrate and the structural layer. Upon forming the structural layer, the sacrificial layer is selectively removed, and the probe is then released from the substrate. The substrate may then later be reused to form additional probes. In this manner, an SPM probe can be fabricated that has a well defined tip. Additionally, since the substrate can be reused, the materials cost for producing the probe can be reduced. Moreover, the above-described method for fabricating a probe allows for a variety of materials to be used to manufacture the probe.
Shown in
Probe 27 includes a tip 30 comprising a first material and a cantilever beam 28 comprising a second material. In one embodiment, the first material and the second material are the same material, while in another embodiment, the first material and the second material are different materials. Preferably, the first material and the second material each comprise a material selected from the group consisting of metals such as permalloy, copper, tungsten, titanium, aluminum, silver, and gold; oxides such as silicon dioxide, silicon oxide, and silicon oxynitride; nitrides such as silicon nitride and titanium nitride; and polymers such as poly(dimethylsiloxane) (PDMS), polyimide, parylene, and elastomers such as silicone and rubber. The first and second materials may be formed by chemical reaction with the substrate 20, for example by oxidation, or by coating, for example with chemical vapor deposition or oblique angle physical vapor deposition.
The tip 30 is connected with the cantilever beam 28, The tip 30 may take various forms and shapes, such as pyramidal, conical, wedge, and boxed. In one embodiment, the tip 30 takes a form having a base 40 at one end and a point 42 at another end opposed to the base 40, such as a pyramid, a wedge, and a cone. The width of the tip 30 at the base 40 is greater than the width of the tip 30 at the point 42, as illustrated in
In one embodiment, the tip 30 and the cantilever beam 28 are integrally formed, as illustrated in
The cantilever beam 28 has a connecting surface 44 opposed to a mounting surface 46, Preferably, the mounting surface 46 is connected with a handle 134, as illustrated in
Shown in
A cavity 22 is formed in the substrate 20, and more particularly, in the top surface 21 of the substrate 20, Preferably, the cavity 22 is formed by etching a shape into the substrate 20, however other means for forming the cavity 22 may be used. In one embodiment, the cavity 22 is formed using anisotropic etching. Preferably, the cavity 22 is formed by etching the substrate 20 wherein the cavity is bound by at least three surfaces that meet at a point. The size and shape of the cavity 22 may be controlled by adjusting the size of a mask opening used to form the cavity 22, and the and the amount of time the for the etching of the cavity 22, In one embodiment, the cavity 22 forms a sharp point at the bottom of the cavity 22, resulting in a tip 30 with a point 42, While in another embodiment, the bottom of the cavity 22 is flat, resulting in a tip 30 with a flat top 54, as illustrated in
Upon forming the cavity 22, a sacrificial layer 24 is formed on the substrate 20, as illustrated in
Upon forming the sacrificial layer 24, a structural layer 26 is formed on the sacrificial layer 24, as illustrated in
In one embodiment, the structural layer 26 comprises a 10:1 (v:v) mixture of PDMS-SYLGARD™ 184 Silicone Elastomer Base and SYLGARD™ 184 Silicone Elastomer Curing Agent. SYLGARD™ 184 Silicone Elastomer Base and SYLGARD™ 184 Silicone Elastomer Curing Agent may be obtained from Dow Coming Corporation (Midland, MI). In one embodiment, the structural layer 26 comprises HD-4000 polyimide. HD-4000 polyimide may be obtained from HD MicroSystems (Wilmington, Del.). The thickness of the structural layer 26 may vary, however, preferably, the thickness of the structural layer 26 is between 1 and 100 microns, and more preferably between 10 and 50 microns. In one embodiment, the structural layer 26 includes a tip layer 48 and a beam layer 50 on the tip layer 48, Preferably, the tip layer 48 is formed in the cavity 22, and more preferably, the tip layer 48 fills up the entire cavity 22, In one embodiment, upon forming the tip layer 48, excess amount of the tip layer 48 are removed using chemical-mechanical polishing, etching, or a sharp blade. In one embodiment, excess amount of the tip layer 48 are removed using a moving blade. In one embodiment, the tip layer 48 comprises a 10:1 (v:v) mixture of PDMS-SYLGARD™ 184 Silicone Elastomer Base and SYLGARD™ 184 Silicone Elastomer Curing Agent. Preferably, upon forming the tip layer 48, tip layer 48 is then cured at a temperature of 70° C. to 110° C. for a duration of 20 to 40 minutes. Upon forming the tip layer 48, the beam layer 50 is formed on the tip layer 48, In one embodiment, the beam layer 50 comprises a thin layer of HD-4000 polyimide that is spin coated, patterned, and cured to form the cantilever beam 28, Preferably, the tip layer 48 and the beam layer 50 comprise different materials. For example, in one embodiment, the tip layer 48 comprises a polymer while the beam layer 50 comprises a metal. In one embodiment, the tip layer 48 and the beam layer 50 comprise polyamide. In one embodiment, the tip layer 48 comprises a metal while the beam layer 50 comprises a polymer, such as polyamide or parylene. In one embodiment, the tip layer 48 comprises an elastomer and the beam layer 50 comprises polyamide. The formation of the structural layer 26 should not disrupt the substrate 20 or the sacrificial layer 24, Upon forming the structural layer 26, the structural layer 26 is patterned to form a probe 27 having a cantilever beam 28 and a tip 30, as described above.
Upon forming the probe 27, the sacrificial layer 24 is removed, as illustrated in
By forming the probe 27 using the above-described method, the tip 30 of the probe is well defined by the inverted cavity 22 and therefore the process of forming a sharp tip 30, or a tip 30 with a small radius of curvature is possible by controlling the geometry of the inverted cavity 22 instead of controlling the geometry of the tip 30 itself. Additionally, since the substrate 20 can be reused, the materials cost for producing the probe 27 can be reduced. Moreover, the above-described method for fabricating a probe 27 allows for a variety of materials to be used to manufacture the probe 27 in additional to allowing the tip 30 and the cantilever beam 28 to comprise different types of materials. Furthermore, since the above-described method for fabricating a probe 27 involves only two layers, a sacrificial layer 24 and a structural layer 26, the method is highly efficient in comparison with prior methods, and thus allows for probes 27 to be formed at lower cost.
Shown in
Upon forming the cavity 122, a sacrificial layer 124 is formed on the substrate 120, as illustrated in
In one embodiment, upon patterning the structural layer 126, an adhesion island 132 is formed on the structural layer 126, as illustrated in
The handle 134 and the adhesion island 132 may be bonded in one of many ways, such as spin on bonding using photoresist or an adhesive polymer for adhesive bonding, which may be patterned (see for example “VOID-FREE FULL WAFER ADHESIVE BONDING” F. Niklaus, et al.); or high-temperature bonding, for example by heating the substrates together at about 1100° C. Preferably, the bonding process does not harm the substrate 20 or the probe 27. In one embodiment, the adhesion island 132 is bonded to the handle 134 using low-temperature bonding at less than 100° C. Alignment may be achieved using alignment mark, or using features present on the substrate 120, the handle 134, or the adhesion island 132,
Upon forming the probe 127, which includes the handle 134, the adhesion island 132, and the structural layer 126 which forms the beam 128 and the tip 130, the sacrificial layer 124 is removed, as illustrated in
In one embodiment, the structural layer 126 forms a hook 125, as illustrated in
The individual processing steps used in accordance with the present invention are well known to those of ordinary skill in the art, and are also described in numerous publications and treatises, including: Encyclopedia of Chemical Technology, Volume 14 (Kirk-Othmer, 1995, pp. 677-709); Semiconductor Device Fundamentals by Robert F. Pierret (Addison-Wesley, 1996); Silicon Processing for the VLSI Era by Wolf (Lattice Press, 1986, 1990, 1995, vols 1-3, respectively); and Microchip Fabrication: A Practical Guide to Semiconductor Processing by Peter Van Zant (4th Edition, McGraw-Hill, 2000). In order to etch through the substrate, techniques such as deep ion etching may be used (also known as the Bosch process).
The present invention also describes a method for contact printing with an SPM probe, herein know as scanning probe contact printing. The SPM probe is formed using any one of a variety of techniques. Preferably, the SPM probe, is formed as described above. Upon forming the SPM probe, the SPM probe is then mounted onto a scanning probe microscope, such as an atomic force microscope (AFM), or a scanning tunneling microscope (STM). In one embodiment, the SPM probe is inked before being mounted onto the scanning probe microscope. In another embodiment, the SPM probe is inked upon being mounted onto the scanning probe microscope. Upon mounting the SPM probe onto the scanning probe microscope, the SPM probe is then positioned and put near a substrate, whereupon ink is transferred from the SPM probe to the substrate. The use of a scanning probe microscope to position the SPM probe allows for a high degree of accuracy for aligning and positioning the SPM probe to the substrate.
The probe 227 can be any type of SPM probe. Preferably, the probe 227 is a probe 27, as described above. Preferably, the scanning probe microscopy (SPM) probe 227 used in this embodiment includes an integrated tip 230 which comprises a material that adheres to fluid 60, such as, polymers, and more specifically, elastomers, like poly(dimethylsiloxane), silicone, rubber, and polyimide. In one embodiment, the tip of the probe 227 comprises a silicone elastomer. Preferably, the tip 230 comprises a polyimide, since polyimides are photodefinable and generally commercially available with a wide range of mechanical properties and achievable film thicknesses. The probe 227 includes a cantilever beam 228. In order to effectively move the tip 230 around to print arbitrary patterns 68, the probe 227, and more specifically, the cantilever beam 228 of the probe 227, has to have appropriate stiffness. The force constant (k) is used as a criterion in probe design. It is calculated using the formula for a simple fixed-free cantilever beam under small displacement assumption:
where E is the modulus of elasticity of the material, and w, t, I are the width, thickness, and length of the rectangular cantilever, respectively, as illustrated in
Upon forming the probe 227, the probe 227 is then mounted onto a scanning probe microscope instrument, such as an atomic force microscope (AFM) 70, as illustrated in
Upon forming the probe 227, ink 60 is attached to the tip 230 of the probe 227, as illustrated in
In one embodiment, the tip 230 of the probe 227 does not form a point 42, but rather, the tip 230 forms a flat surface 290 which is inked, such as flat top 54 or 254, as illustrated by tips 30 in
Upon mounting the probe 227 onto the scanning probe microscope and attaching ink to the tip 230, also know as “inking the probe,” the probe 227, the probe 227 is then positioned and placed near or brought into contact with a substrate 62, whereupon the ink 60 is transferred from the probe 227 to the substrate 62, as illustrated in
Without further elaboration it is believed that on skilled in the art can, using the preceding description, utilize the invention to its fullest extent. The following example is merely illustrative of the invention and is not meant to limit the scope in any way whatsoever.
The probe 227 was mounted and tested on a Thermomicroscopes AutoProbe® M5 atomic force microscope (AFM). An organic molecule, 1-octadecanethiol (ODT), was used for the fluid 60, ODT (98%) may be obtained from Aldrich Chemical Company (Milwaukee, Wis.). The substrate 62 was a silicon chip coated with a 5-nm-thick chrome layer for adhesion promotion, and a 30-nm-thick gold layers. Preferably, the substrate 62 is formed from a single crystal silicon wafers ({100} orientation), which may be obtained from International Wafer Service (Portola Valley, Calif.). Gold (99.99%) for the gold layers may be obtained from Pure Tech (Brewster, N.Y.). A chromium evaporation source (chrome plated tungsten rod) to form the chrome layer may be obtained from R. D. Mathis Company (Long Beach, Calif.). A contact inking method, as described in “Contact-lnking Stamps for Microcontact Printing of Alkanethiols on Gold”, by L. Libioulle, A. Bietsch, H. Schmid, B. Michel, and E Delamarche, Langrnuir, 1999, 15, pp. 300-304, was used to ink the tip 230 of the probe 227 with ODT. The tip 230 comprises PDMS. A fluid pad from which the tip 230 was to received the fluid 60, was first prepared by immersing a PDMS piece (4 mm*4 mm*0.3 mm) in 3 mM ethanolic ODT solution for at least 12 hours. After the fluid pad was impregnated with ODT solution, the fluid pad was dried in a nitrogen stream for 10 seconds. The fluid pad was then stored in a small glass Petri dish before use.
The probe 227 was mounted on an AFM scanning head 70, as illustrated in
In our experiments, inking was first done by bringing the tip 230 into contact with a fluid pad, preferably, for between 5 and 15 minutes, and more preferably, for between 8 and 12 minutes. This allowed local transfer of ODT from the fluid pad to the tip 230, The similar elasticity and surface characteristics of the fluid pad and the tip 230 provided good contact at their interface, thus excessive contact force was not necessary. The quasi-continuous interface formed by both the PDMS surface of the fluid pad and the tip 230 also enabled homogeneous transfer of fluid 60 from the fluid pad to the tip 230,
After the tip 230 was inked with a sufficient amount of fluid 60, in this case ODT, the tip 230 was moved to a designated location and lowered to contact the gold surface 64 of the substrate 62 to form a pixel 66, After every formation of a pixel 66, the probe 227 was lifted and moved to another location to form another pixel 66, Because of the capillary adhesive force at the interface between the tip 230 and the substrate 62, upon contact, the probe 227 could be lifted up a distance of several microns without interrupting the contact and fluid transfer between the tip 230 and the substrate 62, Hence contact printing could be conducted with even no or negative contact force between the tip 230 and the substrate 62, In our experiments, all contact printings were conducted with a contact force (F) between −200 nN to 200 nN. Please note that the contact force readings of between −200 nN to 200 nN may not be the actual contact force, however this is just representative of the contact force. As defined herein, the contact force (F) or tip-substrate interaction force is the z (vertical) component of the force exerted on the probe tip 230 when the tip 230 is in contact with the substrate 62, When the tip 230 is lowered to just contact with the substrate 62 without any overdrive, the contact force (F) is assumed to be 0, Further lowering the probe handle (overdrive) will cause a repulsive force (+z direction) exerted on the tip 230 by the substrate 62, If the probe handle 134 is withdrawn for a small distance, the adhesive force at interface between the tip 230 and the substrate 62 will try to hold the tip 230 down on the substrate 62, thus exerting a pulling (attractive) force (−z direction) on the tip 230, In both cases, the magnitude of the contact force (F) can be estimated as F=kΔz under small displacement assumption, where k is the force constant of the cantilever and Δz equals to the small displacement of probe handle 134,
The feature size of tip-based contact printing is affected by several factors, including the tip geometry, the tip-substrate, the contact time, the relative humidity of environment, and other such parameters. With other parameters set, the printed pattern size of the pixel 66 is proportional to the contact time of the tip 230, As an example,
Lines and other complicated patterns 68 could be formed by placing pixels 66 close to each other.
Comparison results of lines generated with different contact time between the substrate 62 and the tip 230 are shown in
In the above-described scanning probe contact printing method, the amount of interaction force and lateral friction between the tip 230 and the substrate 62 have also reduced the amount of wear to the tip 230, The PDMS tip 230 used in the experiments showed no apparent change of curvature radius after more than 24 hours of the scanning probe contact printing method. In addition, the scanning probe contact printing method also proved an efficient method to fill the tip 230 with sufficient ink. Additionally, a cleanroom environment should improve the quality of the patterns 68 formed by the above-described scanning probe contact printing method.
Numerous additional variations in the presently preferred embodiments illustrated herein will be determined by one of ordinary skill in the art, and remain within the scope of the appended claims and their equivalents. For example, while the examples provided above relate to silicon-based semiconductor substrates, it is contemplated that alternative semiconductor materials can likewise be employed in accordance with the present invention, and that the semiconductor substrates may be undoped, P-doped, or N-doped. Suitable materials for the substrates include but are not limited to silicon, gallium arsenide, germanium, gallium nitride, aluminum phosphide, Sil-xGex and AlxGal-xAs alloys, wherein x is greater than or equal to zero and less than or equal to one, the like, and combinations thereof. Additional examples of materials for use, methods, and terms used in accordance with the present invention are set forth in the following references: “Semiconductor Device Fundamentals” by Robert F. Pierret, p. 4, Table 1.1, Addison-Wesley, 1996; “Soft Lithography and Microfabrication,” by C. Brittain, K. Paul, and G. whitesides, Physics World 1998, 11, 31-36; “Patterning Self-Assembled Monolayers: Applications in Materials Science,” by A. Kumar, H. A. Biebuyck, and G. M. Whitesides, Langmuir, 1994, 10, pp. 1498-1511; “Fabrication and Imaging of Two-Dimensional Patterns of Proteins Adsorbed on Self-Assembled Monolayers by Scanning Electron Microscopy”, by G. P. Lopez, H. A. Biebuyck, R. Harter, A. Kumar, and G. M. Whitesides, Journal of the American Chemical Society, 1993, 115, pp. 10774-10781; “Micro-Stamp Patterns of Biomolecules for High-Resolution Neuronal Networks,” by D. W. Branch, J. M. Corey, J. A. Weyhenmeyer, G. J. Brewer, and B. C. Wheeler, Medical and Biological Engineering and Computing, vol. 36, pg. 135-141; “Patterning of a Polysiloxane Precursor to Silicate Glasses by Microcontact Printing,” by C. Marzolin, A. Terfort, J. Tien, and G. Whitesides, Thin Solid Films, 1998, 315, 9-12; “Soft Lithography”, by Y. Xia and G. M. Whitesides, Annual Review of Material Science, 1998, 28, pp. 153-84; “Precision Patterning of PDMS Thin Films: A New Fabrication Method and Its Applications,” by K. Ryu, C. Liu, 6th International Symposium on Micro Total Analysis System (μTAS), Nara, Japan, 2002; and “Contact-Inking Stamps for Microcontact Printing of Alkanethiols on Gold,” by L. Libioulle, A. Bietsch, H. Schmid, B. Michel, and E Delamarche, Langinuir, 1999, 15, pp. 300-304,
Although the invention has been described and illustrated with reference to specific illustrative embodiments thereof, it is not intended that the invention be limited to those illustrative embodiments. Those skilled in the art will recognize that variations and modifications can be made without departing from the spirit of the invention.
The present application is a divisional of U. S. application Ser. No. 10/440,022, filed May 16, 2003, which is incorporated herein by reference to the extent permitted by law.
This invention was made with Government support under the National Science Foundation under the NSF Program (Grant No. 0118025), DARPA Grant No. DAAD-19-00-1-0414 and AFOSR Grant No. F49620-00-1-0283 and by DARPA/AFOSR Grant No. ARMY NW 0650 300 F245. The government may have certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
5053100 | Hayes et al. | Oct 1991 | A |
5514501 | Tarlov | May 1996 | A |
5610898 | Takimoto et al. | Mar 1997 | A |
5883387 | Matsuyama et al. | Mar 1999 | A |
5922214 | Liu et al. | Jul 1999 | A |
5923637 | Shimada et al. | Jul 1999 | A |
6156215 | Shimada et al. | Dec 2000 | A |
6284113 | Bjornson et al. | Sep 2001 | B1 |
6291140 | Andreoli et al. | Sep 2001 | B1 |
6353219 | Kley | Mar 2002 | B1 |
6409900 | Parce et al. | Jun 2002 | B1 |
6429025 | Parce et al. | Aug 2002 | B1 |
6444111 | Montgomery | Sep 2002 | B1 |
6555389 | Ullman et al. | Apr 2003 | B1 |
6635311 | Mirkin et al. | Oct 2003 | B1 |
6642129 | Liu et al. | Nov 2003 | B2 |
6827979 | Mirkin et al. | Dec 2004 | B2 |
6867443 | Liu et al. | Mar 2005 | B2 |
6943417 | Boland et al. | Sep 2005 | B2 |
7034854 | Cruchon-Dupeyrat et al. | Apr 2006 | B2 |
7042828 | Kley | May 2006 | B2 |
7081624 | Liu et al. | Jul 2006 | B2 |
20010020588 | Adourian et al. | Sep 2001 | A1 |
20010036674 | Indermuhle et al. | Nov 2001 | A1 |
20020025279 | Weigl et al. | Feb 2002 | A1 |
20020123153 | Moon et al. | Sep 2002 | A1 |
20030017077 | Hahn et al. | Jan 2003 | A1 |
20030026740 | Staats | Feb 2003 | A1 |
20030049381 | Mirkin et al. | Mar 2003 | A1 |
20030082080 | Zimmermann et al. | May 2003 | A1 |
20040007053 | Lutter et al. | Jan 2004 | A1 |
20040018116 | Desmond et al. | Jan 2004 | A1 |
20040175631 | Crocker et al. | Sep 2004 | A1 |
20040223886 | Liu et al. | Nov 2004 | A1 |
20040228962 | Liu et al. | Nov 2004 | A1 |
20050201257 | Champion et al. | Sep 2005 | A1 |
20050236566 | Liu | Oct 2005 | A1 |
Number | Date | Country |
---|---|---|
0786642 | Jul 1997 | EP |
0786642 | Jul 1997 | EP |
1388369 | Feb 2004 | EP |
WO9956176 | Nov 1999 | WO |
WO 9956176 | Nov 1999 | WO |
WO 0041213 | Jul 2000 | WO |
WO 0191855 | Dec 2001 | WO |
WO 2004105046 | Dec 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20040226464 A1 | Nov 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10440022 | May 2003 | US |
Child | 10671381 | US |