The present invention relates to a method for a, in particular, non-destructive testing of an integrated circuit which is installed on a printed circuit board, for example. For this purpose, the circuitry of the integrated circuit is prepared according to the present invention. The present invention further relates to such an integrated circuit which is, in particular, provided to carry out the method.
Integrated circuits (ICs) which are, for example, used in control units of motor vehicles are tested in an unpackaged state via IC-internal testing structures in so-called built-in self-tests during the IC manufacture. For this purpose, a comprehensive testing structure is integrated into the IC in which every point of the circuit may be reached and tested via internal bus systems starting from a test access port (TAP). For the test, this testing structure is contacted with the aid of needle adapters. After the test, the ICs are packaged, i.e., cast in a housing, so that the TAP is no longer accessible for other tests.
To obtain a diagnosis, it is nowadays customary to unsolder an IC from the control unit, the control unit being destroyed in the process, and to test its functions on an IC tester. Due to the high number of combinatory states, the test depth thus achievable is not very high. Due to the ever smaller structures, the unsoldering is increasingly associated with the risk of the test specimen being destroyed.
Another diagnostic step requires milling open the IC and contacting the TAP. The complexity of this procedure is high and the risk of the test specimen being destroyed is also high. With the aid of the described method, the ICs are tested in the integrated state without running the risk of being destroyed.
Here, it is conventional to conduct the TAP of all ICs in a circuit to the outside with the aid of additional contacts on every IC and to connect them on the printed circuit board via a separate bus system to a computer which is able to control these IC tests. This, however, results in every IC costing more due to the contacts as well as due to the additional printed conductors so that this method is out of the question for large-scale production.
Therefore, it should be achieved that the IC tests also work in the integrated state, i.e., when the IC is integrated into the control unit and the control unit is installed into the vehicle. Moreover, it should be achieved that testability is provided without the need of an additional test bus in the control unit, which is associated with corresponding costs, e.g., due to an additional printed conductor surface and connecting pins.
Against this background, an example method for testing an integrated circuit and an integrated circuit are provided.
With the aid of the described example method, it is possible to carry out an IC test even in the integrated state. No additional test bus is necessary.
It is understood that the above-named features and the features explained below are usable not only in the particular given combination, but also in other combinations or individually, without departing from the scope of the present invention.
The present invention is illustrated schematically on the basis of specific example embodiments shown in the figures and described in greater detail below.
Furthermore,
The individual lines of test bus 14 are provided for signals, namely TDO 22, TRST 24, TCK 26, TMS 28, and TDI 30. TAP 16 has n input/output ports, namely DR_132 for test data, DR_234 for a set-up, a stimulation, and an observation, as well as DR_n 36 (as shown).
The lines of control bus 20 are also provided for signals, namely SO 40, SI 42, CS 44, and CLK 46.
Test bus 14 and control bus 20 are separate from one another in circuit 10 shown in
Furthermore,
The individual lines of test bus 104 are provided for signals, namely TDO 112, TRST 114, TCK 116, TMS 118, and TDI 120. TAP 106 has n input/output ports, namely DR_1122 for test data, DR_2124 for a set-up, a stimulation, and an observation, as well as DR_n 126 (as illustrated).
The lines of control bus 110 are also provided for signals, namely SO 130, SI 132, CS 134, and CLK 136.
By inserting a multiplex circuit 150 and 152, it is achieved that circuit 100 works as before.
To save housing pins, the SPI pins are conducted to TAP (test access port) 106 via multiplexer 150 and 152. Multiplexer 150 and 152 is activated via a locking mechanism. This locking mechanism is defined by a special SW key as well as by the use of a special sequence control.
The locking mechanism may be operated with the aid of SW keys to switch over between a running mode and a test mode.
After activating the multiplexer, the SPI pins physically available on the ASIC housing are mapped on the internal test interface. In this exemplary embodiment, the multiplexer is switched as follows when activated by the locking mechanism mentioned previously:
Here, a differentiation should be made on whether the control unit is in the running mode according to
This locking mechanism may distinguish itself in that it must be carried out in a defined sequence control.
The present invention thus enables a self-test of circuit 100, without the need of having a separate test bus.
Number | Date | Country | Kind |
---|---|---|---|
102010002460.0 | Mar 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/051706 | 2/7/2011 | WO | 00 | 12/11/2012 |