This application claims the benefit of German Patent Application No. DE 10 2011 105 679.7, filed Jun. 22, 2011, which is incorporated herein by reference as if fully set forth.
The invention relates to a method for the production of three-dimensional microstructures.
In a method of the present type first a source material is applied on a substrate, with here the properties of the source material can be changed by exposure to electromagnetic radiation. In lithographic methods of prior art such source materials are provided as positive or negative resists, for example. Then, using locally resolved exposure of the source material a three-dimensional source structure is written, either by a sequential layer-for-layer method or in a single step. Depending on the source material used (for example positive or negative resist) the source structure is removed from the source material or the source material is removed except for a source structure. Subsequently the source structure is molded from a target material, which the microstructure to be produced is to be made from. Conventional target materials are particular metals, metal alloys, semiconductors, and ceramics.
Microstructures in the sense of the present invention are such structures that extend perpendicular in reference to a substrate and exhibit an extension ranging from more than approx. 0.1 μm to approximately 1 mm. In the sense of the present invention microstructures are called “three-dimensional” which in a top view of the substrate exhibit undercuts inwardly or outwardly, with here a spatial periodicity not being required.
In prior art microstructures are usually molded via a matrix produced from a positive resist. The exposure of positive resists leads to a chemical or physical change at the exposed site. This change may develop for example by the disintegration of chemical bonds. In order to allow the production of three-dimensional structures the light source is focused in the positive resist, namely such that the chemical bonds of the resist are only disintegrated in the focus. This can be achieved by a non-linear effect, i.e. either the resist reacts non-linear and shows a limit of light intensity, below which no exposure may occur, or the method of the two- or multi-photon polymerization is used, i.e. the probability for exposure in the focus is increased by the intensity increased here in reference to the environment. The disintegration of chemical bonds in the positive resist leads to a selective solubility thereof in the subsequent development step. Only the exposed areas are washed out.
A respective method is known for example from the publication Gansel, Thiel, Rill, Decker, Bade, Saile, von Freymann, Linden, Wegener: Gold Helix Photonic Metamatertial as Broadband Circular Polarizer, Science, Volume 325, 1513 (September 2009). Here, three-dimensional microstructures are produced from gold such that positive resists are exposed and developed by a direct laser writing method based on a multi-photon absorption mechanism. By the exposure and/or the writing of a source structure hollow spaces develop during the development at those locations of the positive resist to which the laser had been focused. Subsequently, an electrolyte gold is galvanically precipitated into these hollow spaces.
Based on the properties of the positive resist this method of prior art is however subject to limitations: positive resists are generally unable to form well-defined structures with a height of more than a few 10 μm, because the resist itself cannot be applied with a thickness of more than a few 10 μm without the quality of the source structure being considerably compromised. Although it can be multiplied by repeated applications, this however increases the complexity with reduced quality of the source structure. Further, positive resists show the characteristic of offering relatively low resolution for optic lithography processes (particularly in three-dimensional exposure), so that structures finer than approximately 500 nm cannot be produced with the quality required.
Although negative resists are not subject to the above-mentioned limitations of the positive resists, however here the entire volume of the resists must be exposed, except for the areas, which later shall be separated as the target material. The increase in exposure period involved here is acceptable at best at laboratory scales. Alternatively, several methods can be used simultaneously or sequentially in order to minimize the writing time, for example by template exposure of large resist volumes on the substrate, however in this case complexity increases.
Additional examples for methods to produce three-dimensional microstructures, which however are not directly equivalent to the method of the present type, are disclosed in the publication “LIGA and its applications”, in Advanced Micro & Nanosystems, Volume 7, 1st edition, Wiley-VCH, 2009, and in the publication “Stereolithographie—das bekannteste Verfahren des Rapid Prototyping (Stereolighography—the best-known method for rapid prototyping)”, Volume V146092, Grin Verlag, 2010. In the first-mentioned publications of prior art, two and three-dimensional structures are produced by exposing resists, galvanic precipitation, and micro-molding. For this purpose, photo-templates are used, which are placed onto the resists. This way, high-aspect 2D-structures can be produced; by a targeted exposure from various angles and repeated exposure even more complex 3D-structures can be realized. In the second publication mentioned regarding prior art a stereo-lithographic method is described by which microstructures can be produced as well. Here, in a bath filled with the basic monomers of a light-sensitive plastic, thin plastic layers are cured by a laser. After each curing step the work piece is lowered a few millimeters into the liquid and returned to a position located lower by the amount of a layer thickness. This way, a three-dimensional structure is generated layer by layer.
The objective of the present invention, based on the above-described prior art, is to allow the production of three-dimensional microstructures in a method of the type mentioned at the outset with faster and/or with greater precision than previously possible and/or with greater height.
This objective is attained in a method according to the invention.
The core of the present invention comprises providing a shell-structure in the target material prior to the molding process. This shell-structure is a hollow structure representing the matrix for molding the micro-structure to be produced, i.e. the target material is inserted into the shell structure for molding such that the shape of the hollow space is yielded located in and/or encased by the shell structure. The shell structure itself usually exhibits a relatively small volume itself with regards to the space enclosed thereby so that its production requires only little time. This is essentially different from a process in which a negative resists is exposed everywhere outside a source structure. Another advantage may for example be higher resolution or functionality, which also may reduce the writing time.
The implementation of this inventive principle occurs here in a first step via spatially resolved exposure of a source material, for example a negative resist, with subsequently the unexposed areas being removed therefrom.
In a first variant, which may be used when a negative resist is applied in a preferred embodiment, with a multi-photon exposure method being applied or the stereolithography or during laser sintering or the like, a three-dimensional source structure is written into the source material surrounding the form of the microstructure to be created as a matrix. This matrix then remains on the substrate, while the unexposed source material is removed. The source structure produced as the matrix can then be used as the shell structure according to the invention. If applicable, this shell structure must be opened prior to the removal of the unexposed source material so that the desired hollow structure and/or shell structure develops. In this variant of the method according to the invention the shell structure according to the invention is directly written into the source material so that an interim step for the production of a shell structure is unnecessary. As mentioned above, this can occur advantageously in a high-resolution negative resist, in which structures can be generated in the interesting range of height and/or distance from the substrate from approximately 0.1 μm to approximately 1 mm.
Another advantage of this variant of the method according to the invention comprises that the shell is not required to homogenously surround the later developing micro-hollow structure or in a surface-conforming manner. For example, this allows a targeted, guided motion (rotation or feed) of the filled micro-structure when the exterior surrounding the microstructure is filled with a different material and the shell is removed in a subsequent step, which opens decisive new possibilities for MEMS-applications.
In a second variant of the method according to the invention a source structure is written into the source material, which unlike the first variant does not describe the form to be produced as a template but which itself exhibits the form to be produced. The source structure can here completely fill the form of the microstructure to be produced; however it may be sufficient only to write the exterior contour of the shape of the microstructure to be produced into the source material as the source structure. Here, it is only important that the source structure is written into the source material, which remains after the removal of the unexposed source material and shows a closed exterior contour in the form of the microstructure to be produced.
Then a shell structure is generated around this remaining source structure as a supplementary structure, for example by way of coating, spraying, or vapor coating. If applicable, this shell structure must then be opened in order to allow access from the outside to the interior of the shell structure so that now the source structure can be removed. Subsequently the molding in the target material occurs by said material being inserted into the shell structure. Although this second variant requires one more processing step than the first variant, here the option is given though to use a variety of materials for the shell structure so that the shell structure can remain partially or entirely, after the actual microstructure has been produced. The shell structure can then accept a support function for the actual microstructure or, after the surrounding exterior space has been filled and the shell subsequently removed, allow certain motions of the microstructure.
If the shell structure must be opened to gain access to its interior within the scope of the invention this may occur mechanically, particularly by way of polishing, cutting, or the like, or via corroding methods, particularly using reactive ion etching or plasma etching.
The introduction of the target material into the shell structure preferably occurs by precipitation from a solution which generally occurs galvanically, however may also occur via electroless deposition/plating.
When molding the target material it is easily possible within the scope of the present invention to insert different target materials subsequently or simultaneously into the shell structure in order to provide the microstructure to be produced with the desired features. Preferably the target material comprises gold, silver, copper, nickel, tungsten, cobalt, and/or alloys of these metals as well as, for example, additional alloys, such as NiFe, NiCo, or SnPb, without being limited thereto.
The writing of the source structure into the source material occurs preferably by inserting a focused laser beam into the source material, as known per se (see e.g., S. Maruo, O. Nakamura, and S. Kawala, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132 (1997)). Here, three-dimensional structures can be written with high precision.
In order to allow inserting the target material into the shell structure using a galvanic process it is beneficial to use a substrate with an electrically conductive surface. This may be an electrically conductive substrate, or a substrate provided with an electrically conductive coating. For example the transparent oxide ITO may be used, but the direct writing on conductive substrates such as silicon is possible as well. Here, it is advantageous when those areas of the substrate surface surrounding the shell structure are covered at the outside by an isolating layer so that in order to insert the target material into the shell structure only the areas of the substrate surface located inside the shell structure remain electrically conductive. This ensures that the target material is also precipitated only inside the shell structure. Due to the fact that the shell structure according to the invention projects relatively far beyond the surface of the substrate such an electrically conductive coating can easily occur by an isolating material laterally flowing in, for example a resist. However it is also possible to equip the surface of the substrate to be provided with an electric insulation or the like, using a laterally isolating layer, or depending on the geometry of the three-dimensional structure also directly from the top by way of vapor-coating, spraying, or otherwise in a targeted or undirected fashion. A chemical functionalization can further lead to the desired spatial selectivity of the growth process in case of electroless plating.
Alternatively, a pre-structured substrate, for example a circuit board, may be used as the substrate, i.e. the substrate itself comprises an electrically isolating material, with electrically conductive structures of this type being embedded in the substrate such that at each area at which an interior area of a shell structure shall develop an electrically conductive passage is prepared towards its interior.
Several exemplary embodiments for applications of methods embodied according to the invention are described and explained in the following based on the attached drawings. Shown are:
Number | Date | Country | Kind |
---|---|---|---|
10 2011 105 679 | Jun 2011 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
7928004 | Seidel et al. | Apr 2011 | B2 |
8465910 | Singer et al. | Jun 2013 | B2 |
20080105355 | Kumar et al. | May 2008 | A1 |
20090194425 | Cohen et al. | Aug 2009 | A1 |
20100117268 | Hattori | May 2010 | A1 |
20100196660 | Dressler | Aug 2010 | A1 |
20100219156 | Hipwell et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
697 07 634 | Oct 2001 | DE |
10 2006 030 267 | Apr 2009 | DE |
10 2009 000 642 | Sep 2010 | DE |
Entry |
---|
Saile et al., “Advanced Micro & Nanosystems, LIGA and its Applications”, vol. 7, 1st edition, Wiley-VCH, 2009. |
Schnitker, Mark, “Stereolithographie—das bekannteste Verhafren des Rapid Prototyping”, http://www.grin.com, Document No. V146092. |
Maruo, Shoji, “Three-Dimension Microfabrication with Two-Photo-Absorbed Photopolymerization”, Optics Letters, vol. 22, No. 2, Jan. 15, 1997, pp. 132-134. |
Number | Date | Country | |
---|---|---|---|
20120325775 A1 | Dec 2012 | US |