1. Field of the Invention
This invention relates to the manufacture of photovoltaic solar cells. More particularly, this invention relates to methods for utilizing heavily doped silicon feedstock to produce substrates for photovoltaic applications by dopant compensation during crystal growth.
2. Description of the Background Art
Photovoltaic (PV) devices for producing electrical energy directly from sunlight have become increasingly popular in recent years. Worldwide production of PV cells in 2005 exceeded 1,500 MW, with power output determined under standard test conditions (1 kW/m2 light intensity, Air Mass 1.5 Global spectrum, and cell at 25° C.). With these solar cells typically encased in a module having a selling price of approximately $5/W, the 1,500 MW production represents a $7.5 B/year industry. Furthermore, the worldwide industry output, measured in MW/year, has a compounded annual growth rate in excess of 30%. Silicon solar cells comprise more than 90% of the market. The starting silicon wafer represents over half the cost of a completed silicon solar cell. This high cost is not due to the unavailability of silicon, since silicon is the second most abundant element in the earth's crust, behind only oxygen. Rather, it is due to the high cost of purifying silicon to a level required for semiconductor applications, including PV, which is typically in the parts-per-billion (ppb) range. It is particularly important to have high purity levels of silicon with respect to transition metals (e.g., iron, titanium, vanadium, molybdenum, tungsten). It is equally important to have high purity levels of silicon with respect to atoms from Group III (e.g., boron, aluminum) and Group V (e.g., phosphorus, arsenic) in the Periodic Table of the Elements which serve as p-type and n-type dopants, respectively, in silicon. Some silicon purification processes are quite effective in reducing the concentration of transition metals to an acceptable level, but are not sufficiently effective in reducing the dopant atoms to an acceptable level.
It is an object of this invention to provide an improvement which overcomes the aforementioned inadequacies of the prior art methods for purifying silicon and provides an improvement which is a significant contribution to the advancement of the art of manufacturing solar cells.
Another object of this invention is to provide a method for using relatively low-cost silicon with low metal impurity concentration but contains a high dopant impurity concentration for solar cell substrates.
Another object of this invention is to provide a method for using relatively low-cost silicon with low metal impurity concentration by adding a measured amount of dopant before and/or during silicon crystal growth so as to nearly balance, or compensate, the p-type and n-type dopants in the crystal, thereby controlling the net doping concentration within an acceptable range for manufacturing high efficiency solar cells.
Another object of this invention is to provide a method for compensating silicon feedstock having a dopant concentration to produce solar grade silicon, comprising the steps of calculating an initial compensating dopant based upon the dopant concentration to produce a desired resistivity, adding the initial compensating dopant to the silicon feedstock and then melting and directionally solidifying the silicon feedstock to achieve the desired resistivity over at least a portion of an ingot produced from the silicon feedstock.
Another object of this invention is to provide a method for compensating silicon to produce solar grade silicon for solar cells, comprising the steps of analyzing the silicon feedstock for elements that behave as p type dopants or n type dopants and determining their initial concentrations; based upon the initial concentrations the p type dopants and n type dopants, calculating the necessary amount of compensating dopant required to achieve a desired resistivity range over at least a portion of the solar grade silicon; adding the compensating dopant to the silicon feedstock; and melting and directionally solidify said feedstock to achieve the desired resistivity over at least a portion of the solar grade silicon.
Another object of this invention is to provide a method for compensating excessively doped silicon while in a melt, comprising the steps of: (1) adding an initial amount of compensating dopant to the excessively doped silicon while in the melt to initially compensate the excessively doped silicon in the melt to an approximate initially-compensated resistivity; (2) sampling the initially compensated doped silicon while in the melt to measure its initially-compensated resistivity; (3) computing a second amount of compensating dopant needed to added to the initially compensated doped silicon while in the melt to compensate the initially-compensated silicon in the melt to an approximate second-compensated resistivity; and (4) adding the second amount of compensating dopant to the initially compensated silicon in the melt.
Another object of this invention is to provide a method for compensating silicon to produce solar grade silicon, comprising the steps of: analyzing the silicon feedstock for dopant concentrations, calculating the necessary compensating dopant required to produce the desired resistivity during directional solidification, and melting said feedstock and adding the compensating dopant during directional solidification to achieve the desired resistivity.
Another object of this invention is to provide a method for compensating silicon to produce solar grade silicon, comprising the steps of: analyzing the silicon feedstock for dopant concentrations; calculating the necessary compensating dopant required to produce the desired resistivity during directional solidification; and melting said feedstock and adding the compensating dopant during directional solidification to permit flipping from n type to p type and to preclude return flipping from p type to n type, or visa versa.
Another object of this invention is to provide a silicon in the form of a silicon ingot, sheet, a silicon ribbon or a silicon wafer for solar cells manufactured in accordance with one of the methods of the invention.
Another object of this invention is to provide a silicon in the form of a silicon ingot, sheet, a silicon ribbon or a silicon wafer for solar cells comprising both p and n type dopant whereby the difference between the p and n type dopants results in a resistivity between about 0.1 and 10 ohm-cm.
The foregoing has outlined some of the pertinent objects of the invention. These objects should be construed to be merely illustrative of some of the more prominent features and applications of the intended invention. Many other beneficial results can be attained by applying the disclosed invention in a different manner or modifying the invention within the scope of the disclosure. Accordingly, other objects and a fuller understanding of the invention may be had by referring to the summary of the invention and the detailed description of the preferred embodiment in addition to the scope of the invention defined by the claims taken in conjunction with the accompanying drawings.
For the purpose of summarizing this invention, this invention comprises methods for utilizing heavily doped silicon feedstock to produce substrates for photovoltaic applications by dopant compensation during crystal growth.
By way of background, compensation dopants impact the material properties of the silicon substrate including the minority carrier lifetime and diffusion constant. The most important material property for solar cells is lifetime, which is the average time that a photogenerated electron remains free (in the conduction band) before it returns to a bound state (in the valence band) by recombining with a hole. It is within this lifetime period that the electron must be collected by the internal action of the solar cell in order for the electron to contribute to the flow of electrical current from the cell.
Lifetime is determined by the rate at which photogenerated electrons and holes recombine, as described by the Shockley-Read-Hall (SRH) expression. (See, for example, D. L. Meier, J. M. Hwang, and R. B. Campbell, “The Effect of Doping Density and Injection Level on Minority Carrier Lifetime as Applied to Bifacial Dendritic Web Silicon Solar Cells,” IEEE Transactions on Electron Devices, volume ED-35, pages 70-79, 1988.) This recombination rate depends only on net doping concentration, not on total doping concentration. This means, for example, that a silicon wafer with a given level of structural and chemical defects will have the same excess (photogenerated) carrier lifetime whether the p-type doping level is 1×1016 B/cm3 (single dopant) or 10×1016 B/cm3 and 9×1016 P/cm3 (compensating p-type and n-type dopants), with a net p-type doping density of 1×1016 cm−3 and a total doping density of 19×1014 cm−3. Thus, the SRH expression shows there is no lifetime penalty associated with compensated silicon relative to uncompensated silicon for the same net doping density. In addition, the SRH expression also shows that lifetime generally increases as the net doping density decreases. Improved lifetime can therefore be achieved in accordance with this invention by partially compensating heavily-doped silicon in order to reduce the net doping density.
The second important material property of the silicon substrate is the diffusion constant for photogenerated minority carriers. The diffusion constant is important because minority carriers must, during their lifetime, move by diffusion from where they are created within the silicon wafer to (typically) the front region of the solar cell. There, the built-in electric field associated with the p-n junction collects the minority carriers. A high diffusion constant is desirable so the minority carriers can move quickly to the collecting region. Unlike lifetime, the diffusion constant may be determined by the total doping concentration rather than the net doping concentration.
In compensated silicon, all dopant impurity atoms are ionized (donor ions have a positive charge and acceptor ions have a negative charge), so that carriers (electrons and holes) are scattered by all dopants. Thus, some penalty is paid in solar cell efficiency for having compensated silicon rather than uncompensated silicon. (Efficiency is defined as the ratio of electrical power out of the cell to light power incident on the cell.) For example, if silicon is doped p-type to 1 ohm-cm (typical of current multicrystalline silicon cell technology) using only boron as the dopant (1.43×1016 B/cm3), the diffusion constant for minority carrier electrons is 31.3 cm2/s. If, on the other hand, silicon is doped p-type to 1 ohm-cm by compensating a high concentration of boron (14.30×1016 B/cm3) with a somewhat lower concentration of phosphorus (12.87×1016 P/cm3), the diffusion constant for electrons is reduced to 13.8 cm2/s. If a lifetime of 15 •s is assumed, the electron diffusion length for uncompensated 1 ohm-cm silicon is 217 •m, while the diffusion length for compensated 1 ohm-cm silicon is 144 •m, where diffusion length is given by (diffusion constant×lifetime)1/2. For this example, the efficiency calculated by finite element model PC1D is 14.0% for the uncompensated silicon (Jsc of 30.6 m/cm2 and Voc of 0.605 V) while the efficiency calculated for the compensated silicon is 13.4% (Jac of 29.6 MA/cm2 and Voc of 0.595 V). Thus, the approximate efficiency penalty for compensated silicon, coming not from lifetime but from diffusion constant, is approximately 0.6% (absolute) where the majority doping concentration is 10 times the net doping concentration. Of course, in cases where the majority doping is less than 10 times the net doping, the efficiency penalty is less. In an extreme case where the majority doping compensation is 100 times the net doping concentration, the diffusion constant for electrons is reduced to 7.2 cm2/s and the efficiency is calculated to be 12.8% (Jac of 28.6 mA/cm2 and Voc of 0.587 V). The efficiency penalty is then 1.2% (absolute) using the same assumptions as above (net p-type doping of 1.43×1016 B/cm3, lifetime of 15 μs).
It is noted that since compensated silicon involves (nearly) balancing the concentration of one dopant type against the opposite type, there is a practical limit to how closely this balancing can be achieved. A net doping concentration that is 10% of the majority doping concentration is possible. Obtaining a net doping that is 1% of the majority doping may be achieved only with difficulty.
As supported by the theoretical expectations for lifetime and diffusion constant in compensated silicon described above, good solar cell performance can be obtained using silicon feedstock containing multiple dopant impurities. For example, in accordance with the present invention, silicon ingots may be prepared with aluminum levels in the range 0.04-0.10 ppma, boron levels in the range 0.5-2.5 ppma, and phosphorus levels in the range 0.2-2.0 ppma as determined by mass spectroscopy (R. K. Dawless, R. L. Troup, and D. L. Meier, “Production of Extreme-Purity Aluminum and Silicon by Fractional Crystallization Processing,” Journal of Crystal Growth, volume 89, pages 68-74, 1988). When such silicon is used as a feedstock to produce dendritic web crystals for solar cell substrates, resistivities from below 0.17 Ω-cm up to 3.5 Ω-cm may be obtained. It is believed that in most cases the crystals would be p-type, but in some cases they would be n-type, depending on the relative concentration of p-type and n-type dopants in the feedstock and on their respective segregation coefficients. Expected Solar cell efficiencies range from 8.3% to 14.6%. Accordingly, good quality cells (14.6%) can be obtained from crystals with compensating dopants (primarily boron and phosphorus). Even without controlling the compensation in order to achieve a desired net doping, p-type and n-type dopants in the crystal would nearly balance to give relatively high resistivity (0.86 Ω-cm) leading to cells with respectable efficiency. Accordingly, the manufacturing method of present invention utilizes a controlled dopant compensation to produce crystals from which good quality solar cells can be fabricated consistently.
The foregoing has outlined rather broadly the more pertinent and important features of the present invention in order that the detailed description of the invention that follows may be better understood so that the present contribution to the art can be more fully appreciated. Additional features of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and the specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
For a fuller understanding of the nature and objects of the invention, reference should be had to the following detailed description taken in connection with the accompanying drawings in which:
In accordance with the present invention, the distribution of dopants within a crystal is first calculated (if not already known). More specifically, solar cells in commercial production often are made from p-type silicon substrates with resistivity varying from 0.5 Ω-cm to 5 Ω-cm, corresponding to net acceptor concentrations ranging from 3.04×1016 cm−3 to 2.70×1015 cm−3. By way of example, a silicon feedstock having a high boron dopant concentration of 1.14×1017 cm−3 may be used to produce a silicon ingot by the directional solidification process. Since the segregation coefficient (ratio of concentration in the solid to concentration in the liquid) is 0.80 for boron, the doping density of boron in the first silicon to grow would be 9.12×1016 cm−3, or three times the desired amount. Because boron accumulates in the melt during directional solidification, the boron concentration in the crystal would become even larger as the crystal grows. The concentration of boron in the solid silicon would be calculated by the Scheil equation (E. Scheil, Z. Metallkd., volume 34, page 70, 1942) which assumes perfect stirring in the molten liquid and no diffusion of boron in the solid:
C
s(fs)=kC0(1−fs)(k-1) (1)
where Cs is the concentration of boron in the solid silicon, k is the segregation coefficient of boron, C0 is the concentration of boron in the initial melt, and fs is the fraction of the total mass of silicon that has solidified.
However, as shown in
In practice, the dopant concentration(s) in the starting silicon feedstock may be determined by an analytical technique, such as glow discharge mass spectroscopy (GDMS) or inductively coupled plasma mass spectroscopy (ICPMS), and a suitable amount of dopant to be added to the starting charge may be calculated so as to make the majority of the crystal suitable for solar cell substrates. Usually the dopant would be added in the form of very low resistivity (0.002-0.005 Ω-cm) silicon pieces. This method for achieving the desired net doping concentration may be termed “Initial Compensation Only”, since a single adjustment to the doping in the feedstock would be made in the starting silicon charge prior to melting the silicon and no adjustment would be made during crystal growth. This would suggest an accurate assay of the silicon feedstock (e.g., by GDMS or ICPMS) so that the amount of dopant present in the feedstock would be known and the required amount of compensating dopant could be calculated to bring most of the silicon crystal into an acceptable range. Although applicable to any number of dopants in the silicon feedstock, boron and phosphorous dopants are preferred since they are available in significant quantity. It is noted that this approach is simple in that the growth hardware and the growth process for directional solidification need not necessarily be changed. However, it does suggest that the assay of the silicon feedstock be representative of the whole charge, and also be sufficiently accurate and precise to allow a calculation of the amount of dopant to be added in the initial compensation.
In accordance with the present invention, compensating dopant may be added into the crystal growth period itself to substantially increase the fraction of the ingot which has net doping in the desired range. More specifically, as shown in
Although calculations may be made to determine the required additions of dopant to maintain the resistivity and type of the crystal in the desired range, a preferred approach in accordance with the present invention as shown in
After sampling, the required compensating dopant may then added through a second port in the furnace as growth continues. This sampling and dopant addition preferably occurs without compromising the growth ambient which is usually an inert atmosphere (e.g., argon) under reduced pressure (below atmospheric). For example, the required isolation between the growth chamber and the melt sampling and dopant addition ports on the furnace may be achieved with a load-lock system.
It is noted that during the sampling, the height of the column of liquid silicon that is drawn up into the quartz tube may be controlled by the pressure difference between the furnace ambient and the interior of the quartz tube. For example, if the furnace ambient is maintained at 100 mbar and the interior of the quartz tube is evacuated with a vacuum pump, this pressure difference of 100 mbar would draw silicon in the quartz tube to a height of approximately 44 cm. The solidification of the silicon in the tube is preferably controlled so that the silicon at the top of the column solidifies first. Because of segregation of dopants in the silicon, this first-to-solidify in the sample column of silicon would mimic the dopant concentration in the large crystal. Thus, by measuring the resistivity and type of the topmost silicon in the sampling tube, the resistivity and type of silicon that is simultaneously freezing in the crystal may be determined. However, if it is desired to maintain the pressure of the ambient in the furnace at some relatively high value (e.g., 600 mbar), then the pressure in the sampling tube may be controlled to draw only a desired and manageable amount of silicon into the tube. For example, with an ambient pressure of 600 mbar, reducing the pressure in the tube to 500 mbar will also draw 44 cm of liquid silicon into the tube for analysis. In each of these techniques, a silicon sample may be obtained at any point during crystal solidification to represent the crystal at that time. Then, adjustments to the doping of the melt may accordingly be made in real time to maintain the net doping in the solidifying crystal within a desired range.
The mobility of the majority carriers may be measured (e.g., by the Hall effect) on the sample drawn from the melt. Mobility (μ) depends on the total dopant concentration and therefore it may be used as an indicator of that concentration over the range 1015 cm−3 to 1019 cm−3. Resistivity (ρ) depends on the concentration of majority carriers and the majority carrier mobility. For example, the resistivity (ρ) of a p-type sample is given as:
ρ=(qμpp)−1 (2)
where p is the concentration of holes, μp is the hole mobility, and q is the charge on the electron. A measurement of both ρ and μp may be used to determine p, the net doping concentration from Eq. 2. The total doping concentration may be determined from μp. With a knowledge of both total doping and net doping, the amount and type of dopant to be added to the melt to maintain net doping within a desired range may be calculated with some confidence, particularly if the dopant species are known (e.g., boron and phosphorus). It should be pointed out that determination of type and resistivity of the melt sample is adequate for making adjustments to the melt, but that the additional determination of majority carrier mobility enables more refined control since the net doping of Eq. 2 can then be determined more precisely.
In accordance with the present invention, continuous or semi-continuous feeding of the melt with compensating dopant may be employed, rather than the discrete additions of dopant as indicated in
A candidate silicon feedstock, identified as “Brand A-6N,” was procured. A GDMS analysis indicated a very high concentration of boron and phosphorus, with boron at 4.6 ppmw (12.0 ppma or 6.0×1017 cm−3) and phosphorus at 15 ppmw (13.6 ppma or 6.8×1017 cm−3). Note that the boron concentration in the feedstock is 20 times the maximum value desired in the silicon crystal (3.0×1016 cm−3). Troublesome metals were generally below their respective GDMS detection limits, with V below 0.005 ppmw, Li, Ti, Mn, Co, Ni, Ag, and W all below 0.01 ppmw, S, Cu, Zn, Ga, As, Mo, Sb, and Pb all below 0.05 ppmw, and Cr below 0.1 ppmw. Only Fe and Al were detected at 0.06 ppmw and at 0.32 ppmw, respectively. A full-sized ingot (ID 060206-2), with a mass of 265 kg, was produced at Solar Power Industries in a DSS (directional solidification of silicon) furnace using 225 kg of the Brand A-6N feedstock and 40 kg of undoped silicon.
Wafers cut from Brick D3 of Ingot 060206-2 were processed into 156 mm square cells in Lot 060214-11. Efficiency values for the 265 cells produced from such brick are shown in
A noticeable feature of
The benefits observed in Ingot 060206-2 of this Example 1 indicate the value of controlled dopant compensation. Even with the very high concentrations of boron and phosphorus in feedstock Brand A-6N, some 13% cells were obtained. With controlled dopant compensation, done either initially before melting or with multiple dopant adjustments during growth, market-worthy cells may be produced in spite of a very high concentration of dopants in the silicon feedstock. Similar results were also obtained for cells from Brick D2 of Ingot 060206-2, thereby indicating that the effects which were observed and described above are reproducible.
In order to demonstrate the benefits of dopant compensation in a controlled manner, a full-sized (265 kg) silicon ingot was produced using intrinsic silicon with boron added at a concentration of 0.5 ppmw (6.5×1016 B/cm3). This represented silicon feedstock which had a residual boron content at a level which may be obtained by some low-cost purification processes. With a segregation coefficient of 0.80, the expected boron concentration at the beginning (bottom) of a directionally-solidified ingot is 5.2×1016 B/cm3. This is almost twice the maximum level of 3.0×1016 B/cm3 desired in a substrate for solar cells, and which would increase as the crystal grows as the melt becomes more highly concentrated in boron. To bring the net doping concentration into the desired range for this simulated impure feedstock, the excess boron was compensated with arsenic in the initial silicon charge. The purpose was to demonstrate that feedstock that has a higher-than-desired dopant impurity concentration may be compensated into a desired doping range and that solar cells of good efficiency may be made in spite of the compensating dopants.
Analysis based on Eq. 1 indicated that arsenic at a concentration of 8.0×1016 As/cm3 should be added to the initial charge in order to create an ingot which is p-type with net doping below 3.0×1016 cm−3 over as much of the ingot as possible. The results of the analysis are given in
Ingot 060802-1 of Example 2 was grown by directional solidification under the conditions given above. Sixteen bricks were cut from the ingot, each nominally 156 mm×156 mm×240 mm.
Wafers were cut from Brick B2 with a nominal thickness of 240 μm. Type and resistivity were measured for the wafers after saw damage was removed by a KOH etch. Excess carrier lifetime was measured by the quasi-steady state photoconductivity decay (QSSPCD) technique after the wafer surfaces were passivated by a phosphorus diffusion having a sheet resistance of approximately 40 Ω/□ to give an n+pn+ or an n+nn+ structure. Results are given in following Table 1 for wafers from the bottom of the brick to the top:
Note in Table 1 that the measured wafer resistivities are consistent with the calculated net doping curve of
Solar cells, 156 mm square, were fabricated from the wafers cut from Brick B2 in cell processing lot 060809-9. The measured efficiencies of cells from the bottom of the brick to the top are depicted in
For comparison, cells were also made from wafers cut from Ingot 060501-1 which had the same quality of intrinsic silicon as Ingot 060802-1, but doped only with boron to a resistivity of approximately 2 Ω-cm with no compensating n-type dopant. These cells had a median efficiency of 13.8%, with short-circuit current of 7.52 A, open-circuit voltage of 0.598 V, and fill factor of 0.746. The highest efficiency was 14.5%. Note that cells from the compensated ingot had median efficiency 0.3% (absolute) lower than the median efficiency for cells from the uncompensated ingot. This difference was consistent with the efficiency penalty for compensated silicon associated with reduced minority carrier diffusion constant described earlier.
Dendritic web silicon ribbon crystals were grown in Run SPI-101-5. The dendritic web crystal growth technique was different from the directional solidification technique employed in the above Examples in that crystals are grown at atmospheric pressure rather than at reduced pressure, the melt volume was much smaller at 0.3 kg rather than 265 kg, crystals were single crystal ribbon that exit the growth chamber rather than a multicrystalline ingot which remained inside the growth chamber, and melt volume remained approximately constant during a crystal growth run rather than decreasing during the run. It is also noted that operation at atmospheric pressure facilitated adding dopant to the melt and also sampling the melt.
The dendritic web growth run started with a 335 g melt to which 2.3×1019 boron atoms were added via silicon doped with boron to 0.0045 Ω-cm. The dendritic web crystal grown from this melt was measured to be p-type with a resistivity of 0.18 Ω-cm. This resistivity was less than the minimum of 0.5 Ω-cm desired for solar cell substrates. Consequently, the melt was compensated by adding arsenic (n-type dopant) after the melt was replenished with intrinsic silicon to replace the silicon removed from the melt in the form of the crystal. A total of 3.8×1019 arsenic atoms were added via silicon doped with arsenic to 0.0028 Ω-cm. A dendritic web crystal grown after this addition of arsenic to compensate the boron was measured to be p-type with a resistivity of 6.9 Ω-cm. Thus, the resistivity was raised above the minimum level of 0.5 Ω-cm, as desired.
The melt was sampled by inserting a quartz tube into the melt and drawing some molten silicon into the tube with the aid of a vacuum pump. The silicon sample was allowed to cool and solidify in the quartz tube, and the tube was then withdrawn from the furnace. The quartz tube with silicon sample inside is shown in
The dendritic web crystal growth of Example 3 demonstrates that the resistivity and type of a silicon crystal may be adjusted during a crystal growth run to an acceptable value (>0.5 Ω-cm, p-type) by adding compensating dopant to the melt and that the melt may be sampled by drawing molten silicon into a quartz tube, then testing the solidified sample to determine net dopant type and resistivity.
The present disclosure includes that contained in the appended claims, as well as that of the foregoing description. Although this invention has been described in its preferred form with a certain degree of particularity, it is understood that the present disclosure of the preferred form has been made only by way of example and that numerous changes in the details of construction and the combination and arrangement of parts may be resorted to without departing from the spirit and scope of the invention.
Now that the invention has been described,