Method of and apparatus for sealing an hermetic lid to a semiconductor die

Abstract
A method and apparatus of hermetically passivating a semiconductor device includes sealing a lid directly onto a semiconductor substrate. An active device is formed on the surface of the substrate and is surrounded by a substantially planar lid sealing region, which in turn is surrounded by bonding pads. A first layer of solderable material is formed on the lid sealing region. A lid is provided which has a second layer of solderable material in a configuration corresponding to the first layer. A solder is provided between the first layer and second layer of solderable materials. In the preferred embodiment, the solder is formed over the second layer. Heat is provided to hermetically join the lid to the semiconductor device without requiring a conventional package. Preferably the first and second layers are sandwiches of conventionally known solderable materials which can be processed using conventional semiconductor techniques. An angle between the lid and the semiconductor device can be controlled by adjusting relative widths of one or both the layers of solderable materials.
Description




FIELD OF THE INVENTION




This invention relates to the field of passivating semiconductor die, especially hermetically. More particularly, this invention relates to mounting and sealing an optically transparent lid onto an optically active semiconductor integrated circuit.




BACKGROUND OF THE INVENTION




In the manufacture of integrated circuits (chips) it is well known that it is desirable to encapsulate the chip protected from mechanical damage and contamination. These techniques are known to passivate the chips. There are a variety of well known techniques available for encapsulating the chip. These techniques include mounting the chip within a cavity in a package, wire bonding the chip to a lead frame and then enclosing the package with a lid. Another well known technique includes mounting the chip to a lead frame, wire bonding the chip to the lead frame and then passivating the chip and a portion of the lead frame in a molded plastic or plastic epoxy body. A third common technique for passivating a chip includes flip-chip bonding the chip to a printed circuit board and then covering the chip with a plastic resin.




An EPROM is a read-only memory device. The program or data which is stored in an EPROM can only be erased by causing or allowing optical radiation (ultraviolet and visible) to impinge on the surface of the EPROM. Accordingly, conventional chip packaging techniques are inadequate because they are opaque to optical radiation. To solve this problem, makers of ultraviolet and visible EPROMs mount the EPROM chip within the cavity of a ceramic package and hermeticallly seal the assembly with an optically transparent lid.




Micro-electro-mechanical devices (MEMs) are another well known class of silicon semiconductors devices. MEMs are useful for a variety of applications including strain gauges, accelerometers, electronic levels, and also for displays or other optical devices. Because of their extremely small moving parts, MEMs are particularly susceptible to ambient conditions. Accordingly, MEMs are traditionally sealed within the cavity of an hermetic package which is then hermetically sealed to control the environment to which the MEM is subjected.




When the MEM is to be used in a display application, it is required that optical energy (light) be able to penetrate the package, impinge on the surface of the MEM for modulation, and then escape from the package for forming a display image. The ability of light to enter and leave the package is also required for other optical devices as well. Though conventional ceramic packages are hermetic, because they are opaque they are unsuitable for use with a display or optical MEM. In certain display or optical MEM applications, the MEM is mounted within the cavity of a ceramic package. The assembly is made hermetic by affixing a transparent lid to the ceramic package with an hermetic seal in much the same way as an EPROM package.




It is well known that much of the cost associated with manufacturing silicon semiconductor devices is incurred through the packaging technology. This is particularly true with hermetic ceramic packages. The cost of packages including an optically transparent window is considerably more expensive still.




Under certain circumstances when building a display or other optical MEM assembly it is important that the MEM and transparent lid have a precise physical relationship to one another. For some applications, it is important that the MEM and transparent lid be precisely parallel to one another. For other applications, it is important that the MEM and transparent lid are a precise angle between the structures. Conventional silicon semiconductor chip packaging technology does not take into account an ability to control an angle between the chip and the package lid.




What is needed is a method of and an apparatus for hermetically sealing MEMs intended for use in a display application. What is needed is a method of and an apparatus for hermetically sealing MEMs intended for use in an optical application. What is further needed is a method of and an apparatus for sealing MEMs having a high pin count. Also what is needed is a method of and an apparatus for protecting MEMs which is relatively inexpensive. There is a need for a method of and an apparatus for hermetically sealing the display MEM which can be mounted to the MEM through an uncomplicated manufacturing process. What is further needed is a method and apparatus for sealing display MEMs where an angle of the lid relative to the MEM can be precisely controlled through the assembly process.




SUMMARY OF THE INVENTION




A method and apparatus of hermetically passivating a semiconductor device includes sealing a lid directly onto a semiconductor substrate. An active device is formed on the surface of the substrate and is surrounded by a substantially planar lid sealing region, which in turn is surrounded by bonding pads. A first layer of solderable material is formed on the lid sealing region. A lid is provided which has a second layer of solderable material in a configuration corresponding to the first layer. A solder layer is provided between the first layer and second layer of solderable materials. In the preferred embodiment, the solder is formed over the second layer. Heat is provided to hermetically join the lid to the semiconductor device without requiring a conventional package. Preferably the first and second layers are sandwiches of conventionally known solderable materials which can be processed using conventional semiconductor techniques. An angle between the lid and the semiconductor device can be controlled by adjusting relative widths of one or both the layers of solderable materials.




Alternatively, the lid can be sealed to the substrate using other techniques. In a first alternative, an epoxy can be used. An optional first spacing material is formed in the lid sealing region. An epoxy is formed in a configuration corresponding to the lid sealing region. The lid and the semiconductor device are aligned and heated to hermetically join them together.




In a second alternative, a glass frit can be used. An optional second spacing material is formed in the lid sealing region. A glass frit is formed in a configuration corresponding to the lid sealing region. The lid and the semiconductor device are aligned and heated to hermetically join them together.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

shows a simplified cross section view of the preferred embodiment.





FIG. 2

shows a block diagram exemplary plan view of a semiconductor device according to the present invention.





FIG. 3

shows a simplified schematic cross section diagram of the lid and the semiconductor device prior to sealing the lid.





FIG. 4

shows a simplified schematic cross section diagram of the lid sealed to the semiconductor device according to the present invention with somewhat more detail than FIG.


3


.





FIG. 5

shows a schematic cross section diagram of the lid according to the present invention with somewhat more detail than FIG.


3


.





FIG. 6

shows a schematic cross section diagram of an alternate embodiment of the lid according to the present invention with somewhat more detail than FIG.


3


.





FIG. 7

shows a schematic cross section diagram of the semiconductor device according to the present invention with somewhat more detail than FIG.


3


.





FIG. 8

shows a schematic cross section diagram of an alternate embodiment of the semiconductor device according to the present invention with somewhat more detail than FIG.


3


.





FIG. 9

shows a schematic cross section of an embodiment for generating a predetermined angle of tilt prior to sealing the lid to the semiconductor device.





FIG. 10

shows an exaggerated schematic cross section of the embodiment of

FIG. 9

tilted in place after the lid is sealed to the semiconductor device.





FIG. 11

shows a plan view of a fixture for aligning the lid to the semiconductor device.





FIG. 12

shows a side view of the fixture of FIG.


11


.





FIG. 13

shows a graph representing temperature versus time for a process of sealing a lid to a semiconductor device according to the present invention.





FIG. 14

shows a graph representing pressure versus time for the process of sealing a lid to a semiconductor device according to the present invention.





FIG. 15

shows a schematic cross sectional representation of a wafer saw concurrently separating lids and semiconductor devices.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




The present invention was developed to hermetically seal the mechanically active portion of a MEM for a display device. In particular, the MEM is a diffraction grating light valve™ light modulator. Examples of the grating light valve™ light modulator are found U.S. Pat. Nos. 5,311,360 and 5,841,579. The developers of this technology have learned that if ambient moisture becomes deposited upon the ribbon structures that surface charging occurs which prevents suitable operation of the grating light valve™ light modulator. To avoid this sort of problem, it is preferable that the mechanically active portion of the MEM structure is passivated in an hermetic package. In addition, it is important to seal the form of glass or other transparent material having suitable optical characteristics.




In contrast to other hermetically passivating technologies for a silicon semiconductor device, the hermetic lid of the present invention is sealed directly onto the surface of the silicon semiconductor device. It will be readily apparent to those of ordinary skill in the art that the passivating technology of the present invention can also be used for hermetically sealing other types of devices including non-silicon or non-semiconductor devices or for use with non-transparent lid structures.





FIG. 1

shows a representative cross section view of the silicon semiconductor device to which the transparent lid is hermetically sealed. The silicon semiconductor device of preferred embodiment is a grating light valve™ light modulator for forming a display. The cross-section drawing

FIG. 1

is not drawn to scale nor does it include all the elements necessarily found in an operational grating light valve™ light modulator. These omissions are not intended to be limiting but rather are made in this document to avoid obscuring the invention in unnecessary and extraneous details.




A conductive ribbon


100


including a metallic conductive and reflective covering


102


is formed over the semiconductor substrate


104


with an air gap


106


between the ribbon


100


and the substrate


104


. A conductive electrode


108


is formed on the surface of the substrate


104


and is covered by an insulating layer


110


. The conductive electrode


108


is positioned underneath the ribbon


100


and an air gap


106


is formed therebetween. The reflective covering


102


extends beyond the region of the mechanically active ribbon


100


and is configured as a conventional bond pad


112


at its distal end. The device is passivated with a conventional overlying insulating passivation layer


114


. The passivation layer


114


does not cover the bond pads


112


nor the ribbon structures


100


/


102


. Control and power signals are coupled to the semiconductor device using conventional wire bonding structures


116


.




According to conventional semiconductor manufacturing techniques, devices are packed as densely onto the surface of the semiconductor substrate as possible. Here however, because the optical glass is hermetically sealed directly onto the semiconductor device, the bond pads


112


are removed a considerable distance from the ribbon structures


100


/


102


to provide a lid sealing region


118


. Solderable material


120


is formed onto the lid sealing regions


118


using conventional semiconductor processing techniques.




Because the preferred application for the present invention is for hermetically sealing a grating light valve™ light modulator for use in a display application, the lid


122


is preferably formed of optical quality material. It will be understood by persons of ordinary skill in the art that the lid


122


can be coated with an optically sensitive material for any of a variety of purposes including but not limited to filtering unwanted radiation, enhancing reflectivity, or decreasing reflectivity. Additionally, the lid


122


can also be configured to have optical characteristics. In other words, the lid


122


can be a lens of any convenient type.




Once the lid


122


is formed to a size appropriate to fit concurrently over the lid sealing regions


118


a solderable material


124


is formed in a ring surrounding the periphery of one face of the lid


122


using conventional semiconductor processing techniques. Next, a solder


126


is deposited onto the solderable material


124


so that the lid


122


can be joined to the semiconductor device. Though not shown to scale, it is clear from the drawing of

FIG. 1

that a significant space exists between the lid


122


and the ribbon structures


100


/


102


to avoid interfering with one another. In this way, the ribbon structures


100


/


102


are free to move upwardly and downwardly.





FIG. 2

shows a plan view of an exemplary device according to the present invention wherein the various regions are shown as blocks. It will be apparent to persons of ordinary skill in the art that the precise dimensions and ratios between the various structures can be modified significantly and still fall within the spirit and scope of these teachings. According to the preferred embodiment of the present invention the lid


122


is an optical element intended for mounting over a light valve™ light modulator to be used as a display engine. The ribbon structures of the grating light valve™ light modulator comprise a mechanically active region


140


. Surrounding the mechanically active region


140


is the lid sealing region


118


. Where appropriate, identical reference numerals will be used in the several drawings to identify the same elements. As previously described, the lid sealing region


118


is passivated and includes no mechanically active elements such as traditionally found in a MEM device. Similarly, the lid sealing region


118


also includes no bond pads where other off chip interface structures such as the lid


122


would interfere with the effective operation of such. It is possible that the lid sealing region


118


could include active electronic elements. However, in the event that the lid sealing region


118


did include active electronic elements effort must be taken to planarize that region in order to provide the surface to which the lid


122


can properly mate.




The bonding region


142


surrounds the lid sealing region


118


. The bonding region


142


includes the several bond pads


112


necessary for making interconnection from the semiconductor device to off-chip circuits and systems. In the case of the display element such as the grating light valve™ light modulator of the present invention more than one thousand bond pads


112


are required. Other types of semiconductor devices will require more or fewer bond pads depending upon their intended application.





FIG. 3

shows a schematic cross-sectional representation of a first embodiment of present invention. As previously discussed a solderable material


150


is formed onto the lid sealing region


152


of the semiconductor device


154


. A solderable material


156


is also formed around the peripheral edges of the transparent lid


158


. A layer of solder


160


is formed over the layer of solderable material


156


. It will be apparent to one of ordinary skill in the art that the solder could also be applied to the first layer of solderable material. However, the inventors prefer applying the solder to the lid to avoid contaminating the wafer with solder.




The transparent lid


158


is brought into contact with and aligned to the semiconductor device


154


. Heat is applied to the assembly allowing the solder


160


to flow. Surface tension of the solder


160


′ after it has become a liquid causes it to remain between the solderable material


150


on the semiconductor device


154


and the solderable material


156


on the transparent lid


158


. The solder


160


′ is identified with a prime (′) on the reference numeral to signify that the structure has changed because of flowing and resolidifying. The assembly is heated for a sufficient time to allow the solder


160


to flow and wet all solderable surfaces. Once the heat is removed the solder


160


′ re-solidifies and the transparent lid


158


is hermetically sealed to the semiconductor device


154


as shown in the cross section view of FIG.


4


.





FIG. 5

shows a cross section view of the lid and the metallization layers. According to the preferred embodiment, the solderable material


156


actually comprises a sandwich of layers. In the preferred embodiment, the solderable layer


156


includes a first layer


156


A formed against the transparent lid


158


. A second layer


156


B is formed over the first layer


156


A and the layer of solder


160


is then formed over the second layer


156


B. In the preferred embodiment using these layers, the first layer


156


A is a layer of chrome of about 300 angstroms and the second layer


156


B is a layer of gold of about 10,000 angstroms. The layer of solder


160


is preferably 80 Au/20 Sn solder about 50 microns thick.




According to the preferred embodiment, the transparent lid


158


is segmented prior to forming the metallization layers thereon. The inventors have learned through experimentation that the cost of masking the side edges of the transparent lid


158


exceeds the cost of the materials. Thus, in actual practice gold and chrome are also formed on the side edges of the transparent lid


158


. While this is not preferred, it causes no deleterious effects. As manufacturing processes develop, the golden chrome on the side edges of the transparent lid


158


may be deleted.





FIG. 6

shows a cross-section view of another embodiment of the lid and metallization layers. In this embodiment, the solderable material


156


also comprises a sandwich of layers. Here, the solderable layer includes a first layer


156


C formed against the transparent lid


158


. A second layer


156


D is formed over the first layer


156


C and a third layer


156


E is formed over the second layer


156


D. The layer of solder


160


is then formed over the third layer


156


E. In this embodiment the first layer


156


C is a layer of chrome of about 300 angstroms, the second layer


156


D is a layer of nickel of about 500 angstroms and the third layer


156


E is a layer of gold of about 10,000 angstroms. The layer of solder


160


is preferably 80 Au/


20


Sn solder about 50 microns thick.





FIG. 7

shows a cross-section view of an embodiment of the solderable region


152


of the semiconductor device


154


. For simplicity, the active portion of the semiconductor device


154


is not shown. The layer of solderable material is actually formed of a sandwich of layers. The sandwich of layers is formed using conventional lift-off semiconductor processing techniques. In other words, a layer of photo resist is deposited onto the surface of the semiconductor wafer. Using conventional masking techniques, openings are formed through the photo resist. The layers of solderable material are then deposited over the wafer including into the openings formed through the photo resist. Upon removal of the photo resist, the solderable material only remains on the surface of the semiconductor wafer in the lid sealing region


152


.




A first layer


150


A is formed in the lid sealing region


152


of the semiconductor device


154


. A second layer


150


B is formed over the first layer


150


A. In this embodiment, the first layer


150


A is a layer of chrome of about 500 angstroms. The second layer


150


B is a layer of palladium of about 1000 angstroms.





FIG. 8

shows a cross-section view of another embodiment of the solderable region


152


. In this embodiment, the solderable layer


150


comprises a three layer sandwich. A first layer


150


C is formed in the lid sealing region


152


of the semiconductor device


154


. A second layer


150


D is formed over the first layer


150


C and a third layer


150


E is formed over the second layer


150


D using conventional lift off techniques. In this embodiment, the first layer


150


C is a layer of titanium of about 300 angstroms, the second layer


150


D is a layer of nickel of about 1000 angstroms and the third layer


150


E is a layer of platinum of about 1000 angstroms.




It will be apparent that the angle between the transparent lid


158


and the semiconductor device


154


can affect the optical characteristics of the assembly. For example, optical energy reflecting between the surface of the semiconductor device


154


and the bottom side of the transparent lid


158


can interfere constructively or destructively. There are applications which require the transparent lid


158


and semiconductor device


154


to be parallel and applications which require a predetermined angle between these elements. The present invention also provides uses of this technology and ability to control and select the pre-determined angle between the transparent lid


158


and semiconductor device


154


.




Once melted, the solder


160


will flow to all wetted surfaces. However, the surface tension of the solder


160


will be prevented from flowing beyond the boundaries of the solderable layers


150


and


156


. Owing to the viscous properties of solder, the solder cannot flow circumferentially around the periphery of a ringed structure such as described in this invention.




Because all layers are concurrently formed using conventional semiconductor processing techniques, the thickness of each one of the several layers is uniform throughout each one of the entire layer. To control the relative angle between the transparent lid


158


and semiconductor device


154


the relative width of one side of the solderable layer


150


is adjusted.

FIG. 9

shows a simplified cross-section of this embodiment. Recall that the lid sealing region


152


of the semiconductor device


154


is essentially a rectangular ring. The mask for forming the solderable layer


150


is modified along one edge of the rectangular ring to form a wider layer


150


′.





FIG. 10

shows a cross-section of the embodiment of

FIG. 9

once the lid


158


has aligned to the semiconductor device


154


and the assembly is heated to hermetically seal the construction. After the solder


160


is heated beyond melting point it flows to all wetted surfaces. Because the layer


150


′ is wider than the layer


150


, the solder


160


″ must necessarily spread wider than the solder


160


″′. Further, because the solder does not flow circumferentially around the periphery of the ringed structure, the transparent lid


158


is closer to the semiconductor device


154


over the wide solderable layer


150


′ than over the conventional solderable layer


150


.




It will be apparent to persons of ordinary skill in the art that the thickness of the resulting solder and hence the angle between the transparent lid


158


and semiconductor device


154


could also be adjusted by modifying the width of the solderable layer


156


which is coupled to the transparent lid


158


. The angle could also be adjusted by concurrently modifying the widths of both the solderable layer


150


and its corresponding solderable layer


156


. However, because the wafer of semiconductor devices


154


is made with the sequence of wafer masks, and because the lids are individually aligned to the wafer it is easier to adjust the angle by only adjusting the width of the solderable layer


150


as appropriate.





FIG. 11

shows a plan view of a fixture


200


for aligning transparent lids to semiconductor devices on a wafer.

FIG. 12

shows a side view partially in cross section of the same fixture


200


. Common reference numerals will be used to identify identical elements in the

FIGS. 11 and 12

. The fixture


200


includes a graphite base


202


. The base


202


includes a cut-out


204


appropriately sized to accept a semiconductor wafer. Four threaded locking elements


206


(screws) pass upwardly through the base


202


through a plurality of holes


208


.




An intermediate plate


210


includes holes


214


aligned to accept the threaded locking elements


206


. The intermediate plate


210


also includes thirty-seven apertures


212


sized to accept the transparent lids


158


(FIG.


3


). The intermediate plate


210


also includes three channels


216


positioned to allow moisture to escape from the semiconductor devices


154


(

FIG. 3

) during a subsequent heating operation. Alignment pins


218


are mounted to the base


202


and pass through the intermediate plate


210


. A pair of holding plates


220


also include holes


222


which are positioned to accept the threaded locking elements


206


.




In use, a wafer is aligned and mounted within the cut-out


204


of the base


202


with the semiconductor devices


154


(

FIG. 3

) facing away from the base


202


. The intermediate plate


210


is then installed to the base


202


over the wafer. A transparent lid


158


is then inserted into each of the apertures


212


. It will be apparent that a test operation could be performed on the semiconductor devices


154


while still in the wafer form and bad devices could be marked so that no transparent lid


158


need be sealed to such bad devices. A weighted cap-panel


224


is rested over the transparent lids


158


to apply an appropriate amount of downward pressure owing to gravity.




Once the assembly described relative to

FIGS. 11 and 12

is fully constructed it is placed into an environmental chamber.

FIG. 13

shows a graph representing temperature in ° C. versus time.

FIG. 14

shows a graph representing atmospheric pressure in torr and/or atm versus time. Once the ambient atmosphere is removed, the assembly is exposed to a back fill gas comprising 10% He, 10% H and 80% N at less than 1 ppm water. The two graphs of

FIGS. 13 and 14

are displayed in conjunction to a single time line and the process of forming the hermetic seal of the present invention is so described herein.




The assembly is inserted into the environmental chamber with initial conditions of ambient temperature and atmosphere. Immediately, the atmosphere is evacuated to a vacuum pressure of 0.1 torr. This cycle lasts for approximately the first minute. Then the assembly is subjected to a pressure of 2 atm of the back fill gas for about 15 to 30 seconds and then the atmosphere is evacuated to a vacuum pressure of 0.0001 torr. This first evacuation continues and during the evacuation, at about five minutes, the chamber is heated to about 190° C. This is less than the melting point of the solder. This step of heating is to dry all residual moisture from the semiconductor devices


154


(

FIG. 3

) and also from the lids


158


(

FIG. 3

) and is known as a drying vacuum bake. During the drying vacuum bake, at about 7.5 minutes, the atmosphere is again evacuated to about 0.0001 torr for about one minute. Thereafter, at about 9.5 minutes, the pressure is increased to 2 atm with the back fill gas. Once the pressure reaches 2 atm, at about 10 minutes, the chamber is heated beyond the melting temperature of the solder and held at that temperature for about 3 minutes. The temperature is then allowed to return to room temperature. After the melting temperature is traversed, so that the solder solidifies and the semiconductor device is hermetic, the air pressure is returned to ambient. The heating steps are undertaken by a radiant heat source, though any other convenient means of heating will suffice.




It will be recalled that layers of solderable material must first be formed so that the solder will appropriately adhere to both the lid and the semiconductor device. There are certain advantages to this. With a MEM, it is important that the lid does not interfere with the free movement of the mechanical MEM structure. The layers of solderable material can be used to increase the distance between the lid and the semiconductor device. However, materials other than solder can be used to seal the lids to the semiconductor devices. The materials for the structures can be appropriately substituted as described below.




A polymeric epoxy ring can be formed in the lid sealing region or around the periphery of the lid, or both. The lid and the semiconductor device are then brought together, heated and cooled to passivate the semiconductor device. Depending upon the thickness of the epoxy layer(s) and its relative viscosity, the lid and the semiconductor device may be sufficiently far apart to avoid having the lid interfere with the operation of the MEM. If simple experimental results indicate otherwise, any suitable material can be first deposited in the lid sealing region, around the periphery of the lid, or both to increase the spacing between the lid and the semiconductor device. The spacing material can be SiO


2


, for example as that material is readily manufacturable in an conventional semiconductor manufacturing facility.




Another material that can be used in place of the polymeric epoxy is glass frit. But for this substitution, the glass material can be used in the same way as the polymeric epoxy described above.




It will be apparent to one of ordinary skill in the art that the lids and their respective rings of solderable layers and overlying layers of solder could be formed on a wafer of transparent material. Then the transparent wafer and the semiconductor wafer need merely be fixtured and aligned before subjecting that combination to the temperature cycling taught in

FIGS. 13 and 14

. To separate the devices into separate devices, one could simply use a narrow wafer saw blade and cut through the transparent wafer to only a predetermined depth to form individual lids and then in a second operation, use the same narrow blade to separate the semiconductor devices. In an alternate embodiment, a single narrow blade with a berm could be used to separate these devices in a single operation. As shown in

FIG. 15

, the lids


158


are separated by the berm


300


and the semiconductor devices


154


are concurrently separated by the tip of the saw blade


302


.




When the lids


158


are all concurrently formed in a wafer and then brought together with a wafer of semiconductor devices


154


, it will be apparent to one of ordinary skill in the art that the semiconductor devices


154


and the lids


158


will necessarily be parallel to one another. To form a predetermined angle between the semiconductor devices


154


and the lids


158


, either one or both of the semiconductor devices


154


and the lids


158


can have a non-uniform peripheral region as previously described. Once the semiconductor devices


154


and the lids


158


are initially joined together using one of the techniques described above, the assembly is cut to form individual units. Thereafter, these units can be reheated to allow the seal to flow and provide the desired angle between the semiconductor devices


154


and the lids


158


.




The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of principles of construction and operation of the invention. Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modifications may be made in the embodiment chosen for illustration without departing from the spirit and scope of the invention.



Claims
  • 1. A method of forming an hermetic seal to a semiconductor device comprising the steps of:a. forming an active semiconductor device on a semiconductor substrate; b. forming a lid sealing region surrounding the active semiconductor device, the lid sealing region having passivation spacer layer formed thereon such that the passivation spacer layer surrounds but does not substantially cover the active semiconductor device; c. forming means for electrically coupling to the active semiconductor device on the surface of the substrate and outside the lid sealing region; d. forming a first layer of solderable material on the passivation spacer layer; e. on an optically transparent lid, forming a second layer of solderable material in a pattern conforming to the first layer of solderable material; f. aligning the first layer of solderable material to the second layer of solderable material while providing a layer of solder therebetween; and g. applying heat to melt the solder and seal the lid to the lid sealing region, wherein the passivation spacer layer is configured to position the lid a finite distance from the active semiconductor device.
  • 2. A method of forming an hermetic seal between a lid and a semiconductor device, wherein the lid and the semiconductor device are not parallel to one another comprising the steps of:a. providing an active semiconductor device on a semiconductor substrate; b. forming a substantially planarized lid sealing region surrounding the active semiconductor device; c. forming means for electrically coupling to the active semiconductor device on the surface of the substrate and outside the lid sealing region; d. forming a first layer of solderable material on the lid sealing region; e. on an optically transparent lid, forming a second layer of solderable material in a pattern conforming to the first layer of solderable material; f. aligning the first layer of solderable material to the second layer of solderable material while providing a layer of solder therebetween; and g. applying heat to melt the solder and seal the lid to the lid sealing region, wherein at least one of the first layer of solderable material and the second layer of solderable material has a substantially non-uniform cross section.
  • 3. A method of forming hermetic seal between a lid and a semiconductor device, wherein the lid and the semiconductor device are not parallel to one another comprising the steps of:a. providing an active semiconductor device on a semiconductor substrate; b. forming a substantially planarized lid sealing region surrounding the active semiconductor device; c. forming means for electrically coupling to the active semiconductor device on the surface of the substrate and outside the lid sealing region; d. forming a first layer of solderable material on the lid sealing region; e. on an optically transparent lid, forming a second layer of solderable material in a pattern conforming to the first layer of solderable material; f. aligning the first layer of solderable material to the second layer of solderable material while providing a layer of solder therebetween; and g. applying heat to melt the solder and seal the lid to the lid sealing region, wherein at least one of the first layer of solderable material and the second layer of solderable material has a substantially non-uniform cross section around their respective lengths.
  • 4. The method according to claim 3 wherein the lid sealing region and the first layer of solderable material have a substantially rectangular configuration having four legs joined at substantially right angles and one of the legs of the first layer of solderable material has a substantially dissimilar cross sectional area from the other three legs.
  • 5. A method of concurrently forming an hermetic seal to each of a plurality of active semiconductor devices each comprising a plurality of ribbons all formed on a single semiconductor substrate comprising the steps of:a. providing the plurality of active semiconductor devices on the semiconductor substrate; b. forming a lid sealing region surrounding each of the active semiconductor devices, the lid sealing region having a passivation layer formed thereon such that the passivation spacer aver surrounds but does not substantially cover each of the active semiconductor devices; c. forming means for electrically coupling to each of the active semiconductor devices on the surface of the substrate and outside the lid sealing region for each of the active semiconductor devices; d. forming a first layer of solderable material on each of the passivation spacer layers; e. on an optically transparent wafer, forming a second layer of solderable material in a pattern conforming to the first layer of solderable material; f. aligning the first layer of solderable material to the second layer of solderable material while providing a layer of solder therebetween; and g. applying heat to melt the solder and seal the wafer to the lid sealing regions, wherein the passivation spacer layer is configured to position the lid a finite distance from the active semiconductor device.
  • 6. A method of forming an hermetic seal between a transparent wafer and a semiconductor wafer having a plurality of semiconductor devices comprising the steps of:a. providing a wafer having a plurality of active semiconductor devices ribbons on a semiconductor substrate; b. forming a substantially planarized lid sealing region surrounding each one of the active semiconductor devices; c. forming means for electrically coupling to each one of the active semiconductor devices on the surface of the substrate and outside each one of the lid sealing regions; d. forming a first layer of solderable material on each one of the lid sealing regions; e. on an optically transparent wafer, forming a second layer of solderable material in a pattern conforming to the first layer of solderable material; f. aligning the first layer of solderable material to the second layer of solderable material while providing a layer of solder therebetween; and g. applying heat to melt the solder and seal the optically transparent wafer to the lid sealing regions, wherein at least one of the first layer of solderable material and the second layer of solderable material has a substantially non-uniform cross section around their respective lengths.
  • 7. A method of forming an hermetic seal between a plurality of lids from an optically transparent wafer and a wafer of semiconductor devices, wherein at least one of the lids and its respective semiconductor device are not parallel to one another, the method comprising the steps of:a. providing a plurality of active semiconductor devices on a semiconductor substrate; b. forming a substantially planarized lid sealing region surrounding each one of the active semiconductor devices; c. forming means for electrically coupling to each one of the active semiconductor devices on the surface of the substrate and outside each respective one of the lid sealing regions; d. concurrently forming a first layer of solderable material on the lid sealing regions; e. on an optically transparent wafer, forming a second layer of solderable material in a pattern conforming to the first layer of solderable material; f. aligning the first layer of solderable material to the second layer of solderable material while providing a layer of solder therebetween; and g. applying heat to melt the solder and seal the wafer to the lid sealing regions, wherein at least one of the first layer of solderable material and the second layer of solderable material has a substantially non-uniform cross section around their respective lengths;h. concurrently separating the semiconductor devices from the lids to form units; and i. re-heating the units to provide a non-parallel relationship between the lids and their respective semiconductor devices.
  • 8. The method according to claim 7 wherein the lid sealing region and the first layer of solderable material have a substantially rectangular configuration having four legs joined at substantially right angles and one of the legs of the first layer of solderable material has a substantially dissimilar cross sectional area from the other three legs.
  • 9. A method of forming an hermetic seal to a semiconductor device comprising the steps of:a. providing an active semiconductor device on a semiconductor substrate; b. forming a lid sealing region on the semiconductor device and surrounding the active semiconductor device, the lid sealing region having a passivation spacer layer formed thereon; c. forming means for electrically coupling to the active semiconductor device on the surface of the substrate and outside the lid sealing region; d. forming a layer of polymeric epoxy on the passivation spacer layer; e. providing a substantially flat optically transparent lid sized to conform to the lid sealing region; f. aligning the lid to the layer of polymeric epoxy; and g. applying heat to melt the polymeric epoxy and seal the lid to the lid sealing region.
  • 10. The method according to claim 9 further comprising a spacing layer formed between the layer of polymeric epoxy and the display device.
  • 11. The method according to claim 9 further comprising a spacing layer formed between the layer of polymeric epoxy and the lid.
  • 12. A method of forming an hermetic seal to a semiconductor device comprising the steps of:a. providing an active semiconductor device on a semiconductor substrate; b. forming a lid sealing region surrounding the active semiconductor device, the lid sealing region having a passivation spacer layer formed thereon; c. forming means for electrically coupling to the active semiconductor device on the surface of the substrate and outside the lid sealing region; d. forming a layer of glass frit on the passivation spacer layer; e. providing a substantially flat optically transparent lid sized to conform to the lid sealing region; f. aligning the lid to the layer of glass frit; and g. applying heat to melt the glass frit and seal the lid to the lid sealing region, wherein the passivation spacer layer is configured to position the lid a finite distance from the active semiconductor device.
  • 13. The method according to claim 12 further comprising a spacing layer formed between the layer of glass frit and the display device.
  • 14. The method according to claim 12 further comprising a spacing layer formed between the layer of glass frit and the lid.
Parent Case Info

This Patent Application is a Divisional Patent Application of the U.S. patent application Ser. No. 09/124,710, filed Jul. 29, 1998, now U.S. Pat. No. 6,303,986. The U.S. patent application Ser. No. 09/124,710, filed Jul. 29, 1998 now U.S. Pat. No. 6,303,986 is hereby incorporated by reference.

US Referenced Citations (771)
Number Name Date Kind
1525550 Jenkins Feb 1925 A
1548262 Freedman Aug 1925 A
1814701 Ives Jul 1931 A
2415226 Sziklai Feb 1947 A
2783406 Vanderhooft Feb 1957 A
2920529 Blythe Jan 1960 A
2991690 Grey et al. Jul 1961 A
3256465 Weissenstern et al. Jun 1966 A
3388301 James Jun 1968 A
3443871 Chitayat May 1969 A
3553364 Lee Jan 1971 A
3576394 Lee Apr 1971 A
3600798 Lee Aug 1971 A
3656837 Sandbank Apr 1972 A
3657610 Yamamoto et al. Apr 1972 A
3693239 Dix Sep 1972 A
3743507 Ih et al. Jul 1973 A
3752563 Torok et al. Aug 1973 A
3781465 Ernstoff et al. Dec 1973 A
3783184 Ernstoff et al. Jan 1974 A
3792916 Sarna Feb 1974 A
3802769 Rotz et al. Apr 1974 A
3811186 Larnerd et al. May 1974 A
3861784 Torok Jan 1975 A
3862360 Dill et al. Jan 1975 A
3871014 King et al. Mar 1975 A
3886310 Guldberg et al. May 1975 A
3896338 Nathanson et al. Jul 1975 A
3915548 Opittek Oct 1975 A
3935499 Oess Jan 1976 A
3935500 Oess et al. Jan 1976 A
3938881 Biegelsen et al. Feb 1976 A
3941456 Schilz et al. Mar 1976 A
3942245 Jackson et al. Mar 1976 A
3943281 Keller et al. Mar 1976 A
3947105 Smith Mar 1976 A
3969611 Fonteneau Jul 1976 A
3980476 Wysocki Sep 1976 A
3991416 Byles et al. Nov 1976 A
4001663 Bray Jan 1977 A
4004849 Shattuck Jan 1977 A
4006968 Ernstoff et al. Feb 1977 A
4009939 Okano Mar 1977 A
4011009 Lama et al. Mar 1977 A
4012116 Yevick Mar 1977 A
4012835 Wallick Mar 1977 A
4017158 Booth Apr 1977 A
4020381 Oess et al. Apr 1977 A
4021766 Aine May 1977 A
4034211 Horst et al. Jul 1977 A
4034399 Drukier et al. Jul 1977 A
4035068 Rawson Jul 1977 A
4067129 Abramson et al. Jan 1978 A
4084437 Finnegan Apr 1978 A
4090219 Ernstoff et al. May 1978 A
4093346 Nishino et al. Jun 1978 A
4093921 Buss Jun 1978 A
4093922 Buss Jun 1978 A
4100579 Ernstoff Jul 1978 A
4103273 Keller Jul 1978 A
4126380 Borm Nov 1978 A
4127322 Jacobson et al. Nov 1978 A
4135502 Peck Jan 1979 A
4139257 Matsumoto Feb 1979 A
4143943 Rawson Mar 1979 A
4163570 Greenaway Aug 1979 A
4184700 Greenaway Jan 1980 A
4185891 Kaestner Jan 1980 A
4190855 Inoue Feb 1980 A
4195915 Lichty et al. Apr 1980 A
4205428 Ernstoff et al. Jun 1980 A
4211918 Nyfeler et al. Jul 1980 A
4223050 Nyfeler et al. Sep 1980 A
4225913 Bray Sep 1980 A
4249796 Sincerbox et al. Feb 1981 A
4250217 Greenaway Feb 1981 A
4250393 Greenaway Feb 1981 A
4256787 Shaver et al. Mar 1981 A
4257016 Kramer, Jr. et al. Mar 1981 A
4257053 Gilbreath Mar 1981 A
4290672 Whitefield Sep 1981 A
4295145 Latta Oct 1981 A
4311999 Upton et al. Jan 1982 A
4327411 Turner Apr 1982 A
4327966 Bloom May 1982 A
4331972 Rajchman May 1982 A
4336982 Rector, Jr. Jun 1982 A
4338660 Kelley et al. Jul 1982 A
4343535 Bleha, Jr. Aug 1982 A
4346965 Spraque et al. Aug 1982 A
4348079 Johnson Sep 1982 A
4355463 Burns Oct 1982 A
4361384 Bosserman Nov 1982 A
4369524 Rawson et al. Jan 1983 A
4374397 Mir Feb 1983 A
4389096 Hori et al. Jun 1983 A
4391490 Hartke Jul 1983 A
4396246 Holman Aug 1983 A
4398798 Krawczak et al. Aug 1983 A
4400740 Traino et al. Aug 1983 A
4408884 Kleinknecht et al. Oct 1983 A
4414583 Hooker, III Nov 1983 A
4417386 Exner Nov 1983 A
4418397 Brantingham et al. Nov 1983 A
4420717 Wallace et al. Dec 1983 A
4422099 Wolfe Dec 1983 A
4426768 Black et al. Jan 1984 A
4430584 Someshwar et al. Feb 1984 A
4435041 Torok et al. Mar 1984 A
4440839 Mottier Apr 1984 A
4443819 Funada et al. Apr 1984 A
4443845 Hamilton et al. Apr 1984 A
4447881 Brantingham et al. May 1984 A
4454591 Lou Jun 1984 A
4456338 Gelbart Jun 1984 A
4460907 Nelson Jul 1984 A
4462046 Spight Jul 1984 A
4467342 Tower Aug 1984 A
4468725 Venturini Aug 1984 A
4483596 Marshall Nov 1984 A
4484188 Ott Nov 1984 A
4487677 Murphy Dec 1984 A
4492435 Banton et al. Jan 1985 A
4503494 Hamilton et al. Mar 1985 A
4511220 Scully Apr 1985 A
4538883 Sprague et al. Sep 1985 A
4545610 Lakritz et al. Oct 1985 A
4556378 Nyfeler et al. Dec 1985 A
4558171 Gantley et al. Dec 1985 A
4561011 Kohara et al. Dec 1985 A
4561044 Ogura et al. Dec 1985 A
4566935 Hornbeck Jan 1986 A
4567585 Gelbart Jan 1986 A
4571041 Gaudyn Feb 1986 A
4571603 Hornbeck et al. Feb 1986 A
4577932 Gelbart Mar 1986 A
4577933 Yip et al. Mar 1986 A
4588957 Balant et al. May 1986 A
4590548 Maytum May 1986 A
4594501 Culley et al. Jun 1986 A
4596992 Hornbeck Jun 1986 A
4615595 Hornbeck Oct 1986 A
4623219 Trias Nov 1986 A
4636039 Turner Jan 1987 A
4636866 Hattori Jan 1987 A
4641193 Glenn Feb 1987 A
4645881 LeToumelin et al. Feb 1987 A
4646158 Ohno et al. Feb 1987 A
4649085 Landram Mar 1987 A
4649432 Watanabe et al. Mar 1987 A
4652932 Miyajima et al. Mar 1987 A
4655539 Caulfield et al. Apr 1987 A
4660938 Kazan Apr 1987 A
4661828 Miller, Jr. et al. Apr 1987 A
4662746 Hornbeck May 1987 A
4663670 Ito et al. May 1987 A
4687326 Corby, Jr. Aug 1987 A
4698602 Armitage Oct 1987 A
4700276 Freyman et al. Oct 1987 A
4707064 Dobrowolski et al. Nov 1987 A
4709995 Kuribayashi et al. Dec 1987 A
4710732 Hornbeck Dec 1987 A
4711526 Hennings et al. Dec 1987 A
4714326 Usui et al. Dec 1987 A
4717066 Goldenberg et al. Jan 1988 A
4719507 Bos Jan 1988 A
4721629 Sakai et al. Jan 1988 A
4722593 Shimazaki Feb 1988 A
4724467 Yip et al. Feb 1988 A
4728185 Thomas Mar 1988 A
4743091 Gelbart May 1988 A
4744633 Sheiman May 1988 A
4747671 Takahashi et al. May 1988 A
4751509 Kubota et al. Jun 1988 A
4761253 Antes Aug 1988 A
4763975 Scifres et al. Aug 1988 A
4765865 Gealer et al. Aug 1988 A
4772094 Sheiman Sep 1988 A
4797694 Agostinelli et al. Jan 1989 A
4797918 Lee et al. Jan 1989 A
4801194 Agostinelli et al. Jan 1989 A
4803560 Matsunaga et al. Feb 1989 A
4804641 Arlt et al. Feb 1989 A
4807021 Okumura Feb 1989 A
4807965 Garakani Feb 1989 A
4809078 Yabe et al. Feb 1989 A
4811082 Jacobs et al. Mar 1989 A
4811210 McAulay Mar 1989 A
4814759 Gombrich et al. Mar 1989 A
4817850 Wiener-Avnear et al. Apr 1989 A
4824200 Isono et al. Apr 1989 A
4827391 Sills May 1989 A
4829365 Eichenlaub May 1989 A
4836649 Ledebuhr et al. Jun 1989 A
4856863 Sampsell et al. Aug 1989 A
4856869 Sakata et al. Aug 1989 A
4859012 Cohn Aug 1989 A
4859060 Katagiri et al. Aug 1989 A
4866488 Frensley Sep 1989 A
4882683 Rupp et al. Nov 1989 A
4893509 MacIver et al. Jan 1990 A
4896325 Coldren Jan 1990 A
4896948 Dono et al. Jan 1990 A
4897708 Clements Jan 1990 A
4902083 Wells Feb 1990 A
4915463 Barbee, Jr. Apr 1990 A
4915479 Clarke Apr 1990 A
4924413 Suwannukul May 1990 A
4926241 Carey May 1990 A
4930043 Wiegand May 1990 A
4934773 Becker Jun 1990 A
4940309 Baum Jul 1990 A
4943815 Aldrich et al. Jul 1990 A
4945773 Sickafus Aug 1990 A
4949148 Bartelink Aug 1990 A
4950890 Gelbart Aug 1990 A
4952925 Haastert Aug 1990 A
4954789 Sampsell Sep 1990 A
4956619 Hornbeck Sep 1990 A
4961633 Ibrahim et al. Oct 1990 A
4963012 Tracy et al. Oct 1990 A
4970575 Soga et al. Nov 1990 A
4978202 Yang Dec 1990 A
4982184 Kirkwood Jan 1991 A
4982265 Watanabe et al. Jan 1991 A
4984824 Antes et al. Jan 1991 A
4999308 Nishiura et al. Mar 1991 A
5003300 Wells Mar 1991 A
5009473 Hunter et al. Apr 1991 A
5013141 Sakata May 1991 A
5018256 Hornbeck May 1991 A
5022750 Flasck Jun 1991 A
5023905 Wells et al. Jun 1991 A
5024494 Williams et al. Jun 1991 A
5028939 Hornbeck et al. Jul 1991 A
5031144 Persky Jul 1991 A
5035473 Kuwayama et al. Jul 1991 A
5037173 Sampsell et al. Aug 1991 A
5039628 Carey Aug 1991 A
5040052 McDavid Aug 1991 A
5041395 Steffen Aug 1991 A
5041851 Nelson Aug 1991 A
5043917 Okamoto Aug 1991 A
5048077 Wells et al. Sep 1991 A
5049901 Gelbart Sep 1991 A
5058992 Takahashi Oct 1991 A
5060058 Goldenberg et al. Oct 1991 A
5061049 Hornbeck Oct 1991 A
5066614 Dunnaway et al. Nov 1991 A
5068205 Baxter et al. Nov 1991 A
5072239 Mitcham et al. Dec 1991 A
5072418 Boutaud et al. Dec 1991 A
5074947 Estes et al. Dec 1991 A
5075940 Kuriyama et al. Dec 1991 A
5079544 DeMond et al. Jan 1992 A
5081617 Gelbart Jan 1992 A
5083857 Hornbeck Jan 1992 A
5085497 Um et al. Feb 1992 A
5089903 Kuwayama et al. Feb 1992 A
5093281 Eshima Mar 1992 A
5096279 Hornbeck et al. Mar 1992 A
5099353 Hornbeck Mar 1992 A
5101184 Antes Mar 1992 A
5101236 Nelson et al. Mar 1992 A
5103334 Swanberg Apr 1992 A
5105207 Nelson Apr 1992 A
5105299 Anderson et al. Apr 1992 A
5105369 Nelson Apr 1992 A
5107372 Gelbart et al. Apr 1992 A
5112436 Bol May 1992 A
5113272 Reamey May 1992 A
5113285 Franklin et al. May 1992 A
5115344 Jaskie May 1992 A
5119204 Hashimoto et al. Jun 1992 A
5121343 Faris Jun 1992 A
5126812 Greiff Jun 1992 A
5126826 Kauchi et al. Jun 1992 A
5126836 Um Jun 1992 A
5128660 DeMond et al. Jul 1992 A
5129716 Holakovszky et al. Jul 1992 A
5132723 Gelbart Jul 1992 A
5132812 Takahashi et al. Jul 1992 A
5136695 Goldshlag et al. Aug 1992 A
5137836 Lam Aug 1992 A
5142303 Nelson Aug 1992 A
5142405 Hornbeck Aug 1992 A
5142677 Ehlig et al. Aug 1992 A
5144472 Sang, Jr. et al. Sep 1992 A
5147815 Casto Sep 1992 A
5148157 Florence Sep 1992 A
5148506 McDonald Sep 1992 A
5149405 Bruns et al. Sep 1992 A
5150205 Um et al. Sep 1992 A
5151718 Nelson Sep 1992 A
5151724 Kikinis Sep 1992 A
5151763 Marek et al. Sep 1992 A
5153770 Harris Oct 1992 A
5155604 Miekka et al. Oct 1992 A
5155615 Tagawa Oct 1992 A
5155778 Magel et al. Oct 1992 A
5155812 Ehlig et al. Oct 1992 A
5157304 Kane et al. Oct 1992 A
5159485 Nelson Oct 1992 A
5161042 Hamada Nov 1992 A
5162787 Thompson et al. Nov 1992 A
5164019 Sinton Nov 1992 A
5165013 Faris Nov 1992 A
5168401 Endriz Dec 1992 A
5168406 Nelson Dec 1992 A
5170156 DeMond et al. Dec 1992 A
5170269 Lin et al. Dec 1992 A
5170283 O'Brien et al. Dec 1992 A
5172161 Nelson Dec 1992 A
5172262 Hornbeck Dec 1992 A
5177724 Gelbart Jan 1993 A
5178728 Boysel et al. Jan 1993 A
5179274 Sampsell Jan 1993 A
5179367 Shimizu Jan 1993 A
5181231 Parikh et al. Jan 1993 A
5182665 O'Callaghan et al. Jan 1993 A
5185660 Um Feb 1993 A
5185823 Kaku et al. Feb 1993 A
5188280 Nakao et al. Feb 1993 A
5189404 Masimo et al. Feb 1993 A
5189505 Bartelink Feb 1993 A
5191405 Tomita et al. Mar 1993 A
5192864 McEwen et al. Mar 1993 A
5192946 Thompson et al. Mar 1993 A
5198895 Vick Mar 1993 A
5202785 Nelson Apr 1993 A
5206629 DeMond et al. Apr 1993 A
5206829 Thakoor et al. Apr 1993 A
5208818 Gelbart et al. May 1993 A
5208891 Prysner May 1993 A
5210637 Puzey May 1993 A
5212115 Cho et al. May 1993 A
5212555 Stoltz May 1993 A
5212582 Nelson May 1993 A
5214308 Nishiquchi et al. May 1993 A
5214419 DeMond et al. May 1993 A
5214420 Thompson et al. May 1993 A
5216278 Lin et al. Jun 1993 A
5216537 Hornbeck Jun 1993 A
5216544 Horikawa et al. Jun 1993 A
5219794 Satoh et al. Jun 1993 A
5220200 Blanton Jun 1993 A
5221400 Staller et al. Jun 1993 A
5221982 Faris Jun 1993 A
5224088 Atiya Jun 1993 A
5226099 Mignardi et al. Jul 1993 A
5229597 Fukatsu Jul 1993 A
5230005 Rubino et al. Jul 1993 A
5231363 Sano et al. Jul 1993 A
5231388 Stoltz Jul 1993 A
5231432 Glenn Jul 1993 A
5233456 Nelson Aug 1993 A
5233460 Partlo et al. Aug 1993 A
5233874 Putty et al. Aug 1993 A
5237340 Nelson Aug 1993 A
5237435 Kurematsu et al. Aug 1993 A
5239448 Perkins et al. Aug 1993 A
5239806 Maslakow Aug 1993 A
5240818 Mignardi et al. Aug 1993 A
5245686 Faris et al. Sep 1993 A
5247180 Mitcham et al. Sep 1993 A
5247593 Lin et al. Sep 1993 A
5249245 Lebby et al. Sep 1993 A
5251057 Guerin et al. Oct 1993 A
5251058 MacArthur Oct 1993 A
5254980 Hendrix et al. Oct 1993 A
5255100 Urbanus Oct 1993 A
5256869 Lin et al. Oct 1993 A
5258325 Spitzer et al. Nov 1993 A
5260718 Rommelmann et al. Nov 1993 A
5260798 Um et al. Nov 1993 A
5262000 Welbourn et al. Nov 1993 A
5272473 Thompson et al. Dec 1993 A
5278652 Urbanus et al. Jan 1994 A
5278925 Boysel et al. Jan 1994 A
5280277 Hornbeck Jan 1994 A
5281887 Engle Jan 1994 A
5281957 Schoolman Jan 1994 A
5285105 Cain Feb 1994 A
5285196 Gale, Jr. Feb 1994 A
5285407 Gale et al. Feb 1994 A
5287096 Thompson et al. Feb 1994 A
5287215 Warde et al. Feb 1994 A
5289172 Gale, Jr. et al. Feb 1994 A
5291317 Newswanger Mar 1994 A
5291473 Pauli Mar 1994 A
5293511 Poradish et al. Mar 1994 A
5296408 Wilbarg et al. Mar 1994 A
5296891 Vogt et al. Mar 1994 A
5296950 Lin et al. Mar 1994 A
5298460 Nishiguchi et al. Mar 1994 A
5299037 Sakata Mar 1994 A
5299289 Omae et al. Mar 1994 A
5300813 Joshi et al. Apr 1994 A
5301062 Takahashi et al. Apr 1994 A
5303043 Glenn Apr 1994 A
5303055 Hendrix et al. Apr 1994 A
5307056 Urbanus Apr 1994 A
5307185 Jones et al. Apr 1994 A
5310624 Ehrlich May 1994 A
5311349 Anderson et al. May 1994 A
5311360 Bloom et al. May 1994 A
5312513 Florence et al. May 1994 A
5313479 Florence May 1994 A
5313648 Ehlig et al. May 1994 A
5313835 Dunn May 1994 A
5315418 Sprague et al. May 1994 A
5315423 Hong May 1994 A
5315429 Abramov May 1994 A
5319214 Gregory et al. Jun 1994 A
5319668 Luecke Jun 1994 A
5319789 Ehlig et al. Jun 1994 A
5319792 Ehlig et al. Jun 1994 A
5320709 Bowden et al. Jun 1994 A
5321416 Bassett et al. Jun 1994 A
5323002 Sampsell et al. Jun 1994 A
5323051 Adams et al. Jun 1994 A
5325116 Sampsell Jun 1994 A
5327286 Sampsell et al. Jul 1994 A
5329289 Sakamoto et al. Jul 1994 A
5330301 Brancher Jul 1994 A
5330878 Nelson Jul 1994 A
5331454 Hornbeck Jul 1994 A
5334991 Wells et al. Aug 1994 A
5339116 Urbanus et al. Aug 1994 A
5339177 Jenkins et al. Aug 1994 A
5340772 Rosotker Aug 1994 A
5345521 McDonald et al. Sep 1994 A
5347321 Gove Sep 1994 A
5347378 Handschy et al. Sep 1994 A
5347433 Sedlmayr Sep 1994 A
5348619 Bohannon et al. Sep 1994 A
5349687 Ehlig et al. Sep 1994 A
5351052 D'Hont et al. Sep 1994 A
5352926 Andrews Oct 1994 A
5354416 Okudaira Oct 1994 A
5357369 Pilling et al. Oct 1994 A
5357803 Lane Oct 1994 A
5359349 Jambor et al. Oct 1994 A
5359451 Gelbart et al. Oct 1994 A
5361131 Tekemori et al. Nov 1994 A
5363220 Kuwayama et al. Nov 1994 A
5365283 Doherty et al. Nov 1994 A
5367585 Ghezzo et al. Nov 1994 A
5371543 Anderson Dec 1994 A
5371618 Tai et al. Dec 1994 A
5382961 Gale, Jr. Jan 1995 A
5387924 Gale, Jr. et al. Feb 1995 A
5389182 Mignardi Feb 1995 A
5391881 Jeuch et al. Feb 1995 A
5392140 Ezra et al. Feb 1995 A
5392151 Nelson Feb 1995 A
5394303 Yamaji Feb 1995 A
5398071 Gove et al. Mar 1995 A
5399898 Rostoker Mar 1995 A
5404365 Hiiro Apr 1995 A
5404485 Ban Apr 1995 A
5408123 Murai Apr 1995 A
5410315 Huber Apr 1995 A
5411769 Hornbeck May 1995 A
5412186 Gale May 1995 A
5412501 Fisli May 1995 A
5418584 Larson May 1995 A
5420655 Shimizu May 1995 A
5420722 Bielak May 1995 A
5426072 Finnila Jun 1995 A
5427975 Sparks et al. Jun 1995 A
5430524 Nelson Jul 1995 A
5435876 Alfaro et al. Jul 1995 A
5438477 Pasch Aug 1995 A
5439731 Li et al. Aug 1995 A
5442411 Urbanus et al. Aug 1995 A
5442414 Janssen et al. Aug 1995 A
5444566 Gale et al. Aug 1995 A
5445559 Gale et al. Aug 1995 A
5446479 Thompson et al. Aug 1995 A
5447600 Webb Sep 1995 A
5448314 Heimbuch et al. Sep 1995 A
5448546 Pauli Sep 1995 A
5450088 Meier et al. Sep 1995 A
5450219 Gold et al. Sep 1995 A
5451103 Hatanaka et al. Sep 1995 A
5452024 Sampsell Sep 1995 A
5452138 Mignardi et al. Sep 1995 A
5453747 D'Hont et al. Sep 1995 A
5453778 Venkateswar et al. Sep 1995 A
5453803 Shapiro et al. Sep 1995 A
5454160 Nickel Oct 1995 A
5454906 Baker et al. Oct 1995 A
5455445 Kurtz et al. Oct 1995 A
5455455 Badehi Oct 1995 A
5455602 Tew Oct 1995 A
5457493 Leddy et al. Oct 1995 A
5457566 Sampsell et al. Oct 1995 A
5457567 Shinohara Oct 1995 A
5458716 Alfaro et al. Oct 1995 A
5459492 Venkateswar Oct 1995 A
5459528 Pettitt Oct 1995 A
5459592 Shibatani et al. Oct 1995 A
5459610 Bloom et al. Oct 1995 A
5461197 Hiruta et al. Oct 1995 A
5461410 Venkateswar et al. Oct 1995 A
5461411 Florence et al. Oct 1995 A
5461547 Ciupke et al. Oct 1995 A
5463347 Jones et al. Oct 1995 A
5463497 Muraki et al. Oct 1995 A
5465175 Woodgate et al. Nov 1995 A
5467106 Salomon Nov 1995 A
5467138 Gove Nov 1995 A
5467146 Huang et al. Nov 1995 A
5469302 Lim Nov 1995 A
5471341 Warde et al. Nov 1995 A
5473512 Degani et al. Dec 1995 A
5475236 Yoshizaki Dec 1995 A
5480839 Ezawa et al. Jan 1996 A
5481118 Tew Jan 1996 A
5481133 Hsu Jan 1996 A
5482564 Douglas et al. Jan 1996 A
5482818 Nelson Jan 1996 A
5483307 Anderson Jan 1996 A
5485172 Sawachika et al. Jan 1996 A
5485304 Kaeriyama Jan 1996 A
5485354 Ciupke et al. Jan 1996 A
5486698 Hanson et al. Jan 1996 A
5486841 Hara et al. Jan 1996 A
5486946 Jachimowicz et al. Jan 1996 A
5488431 Gove et al. Jan 1996 A
5489952 Gove et al. Feb 1996 A
5490009 Venkateswar et al. Feb 1996 A
5491510 Gove Feb 1996 A
5491612 Nicewarner, Jr. Feb 1996 A
5491715 Flaxl Feb 1996 A
5493177 Muller et al. Feb 1996 A
5493439 Engle Feb 1996 A
5497172 Doherty et al. Mar 1996 A
5497197 Gove et al. Mar 1996 A
5497262 Kaeriyama Mar 1996 A
5499060 Gove et al. Mar 1996 A
5499062 Urbanus Mar 1996 A
5500761 Goossen et al. Mar 1996 A
5502481 Dentinger et al. Mar 1996 A
5504504 Markandey et al. Apr 1996 A
5504514 Nelson Apr 1996 A
5504575 Stafford Apr 1996 A
5504614 Webb et al. Apr 1996 A
5506171 Leonard et al. Apr 1996 A
5506597 Thompson et al. Apr 1996 A
5506720 Yoon Apr 1996 A
5508558 Robinette, Jr. et al. Apr 1996 A
5508561 Tago et al. Apr 1996 A
5508565 Hatakeyama et al. Apr 1996 A
5508750 Hewlett et al. Apr 1996 A
5508840 Vogel et al. Apr 1996 A
5508841 Lin et al. Apr 1996 A
5510758 Fujita et al. Apr 1996 A
5510824 Nelson Apr 1996 A
5512374 Wallace et al. Apr 1996 A
5512748 Hanson Apr 1996 A
5515076 Thompson et al. May 1996 A
5516125 McKenna May 1996 A
5517340 Doany et al. May 1996 A
5517347 Sampsell May 1996 A
5517357 Shibayama May 1996 A
5517359 Gelbart May 1996 A
5519251 Sato et al. May 1996 A
5519450 Urbanus et al. May 1996 A
5521748 Sarraf May 1996 A
5523619 McAllister et al. Jun 1996 A
5523628 Williams et al. Jun 1996 A
5523803 Urbanus et al. Jun 1996 A
5523878 Wallace et al. Jun 1996 A
5523881 Florence et al. Jun 1996 A
5523920 Machuga et al. Jun 1996 A
5524155 Weaver Jun 1996 A
5534107 Gray et al. Jul 1996 A
5534883 Koh Jul 1996 A
5539422 Heacock et al. Jul 1996 A
5544306 Deering et al. Aug 1996 A
5552635 Kim et al. Sep 1996 A
5554304 Suzuki Sep 1996 A
5576878 Henck Nov 1996 A
5602671 Hornbeck Feb 1997 A
5606181 Sakuma et al. Feb 1997 A
5606447 Asada et al. Feb 1997 A
5610438 Wallace et al. Mar 1997 A
5623361 Engle Apr 1997 A
5629566 Doi et al. May 1997 A
5629801 Staker et al. May 1997 A
5640216 Hasegawa et al. Jun 1997 A
5658698 Yagi et al. Aug 1997 A
5661592 Bornstein et al. Aug 1997 A
5661593 Engle Aug 1997 A
5663817 Frapin et al. Sep 1997 A
5668611 Ernstoff et al. Sep 1997 A
5673139 Johnson Sep 1997 A
5677783 Bloom et al. Oct 1997 A
5689361 Damen et al. Nov 1997 A
5691836 Clark Nov 1997 A
5694740 Martin et al. Dec 1997 A
5696560 Songer Dec 1997 A
5699740 Gelbart Dec 1997 A
5704700 Kappel et al. Jan 1998 A
5707160 Bowen Jan 1998 A
5712649 Tosaki Jan 1998 A
5713652 Zavracky et al. Feb 1998 A
5726480 Pister Mar 1998 A
5731802 Aras et al. Mar 1998 A
5734224 Tagawa et al. Mar 1998 A
5742373 Alvelda Apr 1998 A
5744752 McHerron et al. Apr 1998 A
5745271 Ford et al. Apr 1998 A
5757354 Kawamura May 1998 A
5757536 Ricco et al. May 1998 A
5764280 Bloom et al. Jun 1998 A
5768009 Little Jun 1998 A
5770473 Hall et al. Jun 1998 A
5793519 Furlani et al. Aug 1998 A
5798743 Bloom Aug 1998 A
5798805 Ooi et al. Aug 1998 A
5801074 Kim et al. Sep 1998 A
5802222 Rasch et al. Sep 1998 A
5808323 Spaeth et al. Sep 1998 A
5808797 Bloom et al. Sep 1998 A
5815126 Fan et al. Sep 1998 A
5825443 Kawasaki et al. Oct 1998 A
5832148 Yariv Nov 1998 A
5835255 Miles Nov 1998 A
5835256 Huibers Nov 1998 A
5837562 Cho Nov 1998 A
5841579 Bloom et al. Nov 1998 A
5841929 Komatsu et al. Nov 1998 A
5844711 Long, Jr. Dec 1998 A
5847859 Murata Dec 1998 A
5862164 Hill Jan 1999 A
5868854 Kojima et al. Feb 1999 A
5886675 Aye et al. Mar 1999 A
5892505 Tropper Apr 1999 A
5895233 Higashi et al. Apr 1999 A
5898515 Furlani et al. Apr 1999 A
5903243 Jones May 1999 A
5903395 Rallison et al. May 1999 A
5910856 Ghosh et al. Jun 1999 A
5912094 Aksyuk et al. Jun 1999 A
5912608 Asada Jun 1999 A
5914801 Dhuler et al. Jun 1999 A
5915168 Salatino et al. Jun 1999 A
5919548 Barron et al. Jul 1999 A
5920411 Duck et al. Jul 1999 A
5920418 Shiono et al. Jul 1999 A
5923475 Kurtz et al. Jul 1999 A
5926309 Little Jul 1999 A
5926318 Hebert Jul 1999 A
5942791 Shorrocks et al. Aug 1999 A
5949390 Nomura et al. Sep 1999 A
5949570 Shiono et al. Sep 1999 A
5953161 Troxell et al. Sep 1999 A
5955771 Kurtz et al. Sep 1999 A
5963788 Barron et al. Oct 1999 A
5978127 Berg Nov 1999 A
5982553 Bloom et al. Nov 1999 A
5986634 Alioshin et al. Nov 1999 A
5986796 Miles Nov 1999 A
5995303 Honguh et al. Nov 1999 A
5999319 Castracane Dec 1999 A
6004912 Gudeman Dec 1999 A
6012336 Eaton et al. Jan 2000 A
6016222 Setani et al. Jan 2000 A
6025859 Ide et al. Feb 2000 A
6038057 Brazas, Jr. et al. Mar 2000 A
6040748 Gueissaz Mar 2000 A
6046840 Huibers Apr 2000 A
6055090 Miles Apr 2000 A
6057520 Goodwin-Johansson May 2000 A
6061166 Furlani et al. May 2000 A
6061489 Ezra May 2000 A
6062461 Sparks et al. May 2000 A
6064404 Aras et al. May 2000 A
6069392 Tai et al. May 2000 A
6071652 Feldman et al. Jun 2000 A
6075632 Braun Jun 2000 A
6084626 Ramanujan et al. Jul 2000 A
6088102 Manhart Jul 2000 A
6090717 Powell et al. Jul 2000 A
6091521 Popovich Jul 2000 A
6096576 Corbin et al. Aug 2000 A
6096656 Matzke et al. Aug 2000 A
6097352 Zavracky et al. Aug 2000 A
6101036 Bloom Aug 2000 A
6115168 Zhao et al. Sep 2000 A
6122299 DeMars et al. Sep 2000 A
6123985 Robinson et al. Sep 2000 A
6124145 Stemme et al. Sep 2000 A
6130770 Bloom Oct 2000 A
6144481 Kowarz et al. Nov 2000 A
6147789 Gelbart Nov 2000 A
6154259 Hargis et al. Nov 2000 A
6154305 Dickensheets et al. Nov 2000 A
6163026 Bawolek et al. Dec 2000 A
6163402 Chou et al. Dec 2000 A
6169624 Godil et al. Jan 2001 B1
6172796 Kowarz et al. Jan 2001 B1
6172797 Huibers Jan 2001 B1
6177980 Johnson Jan 2001 B1
6181458 Brazas, Jr. et al. Jan 2001 B1
6188519 Johnson Feb 2001 B1
6195196 Kimura et al. Feb 2001 B1
6197610 Toda Mar 2001 B1
6210988 Howe et al. Apr 2001 B1
6215579 Bloom et al. Apr 2001 B1
6219015 Bloom et al. Apr 2001 B1
6222954 Riza Apr 2001 B1
6229650 Reznichenko et al. May 2001 B1
6229683 Goodwin-Johansson May 2001 B1
6241143 Kuroda Jun 2001 B1
6249381 Suganuma Jun 2001 B1
6251842 Gudeman Jun 2001 B1
6252697 Hawkins et al. Jun 2001 B1
6254792 Van Buskirk et al. Jul 2001 B1
6261494 Zavracky et al. Jul 2001 B1
6268952 Godil et al. Jul 2001 B1
6271145 Toda Aug 2001 B1
6271808 Corbin Aug 2001 B1
6274469 Yu Aug 2001 B1
6282213 Gutin et al. Aug 2001 B1
6290859 Fleming et al. Sep 2001 B1
6290864 Patel et al. Sep 2001 B1
6300148 Birdsley et al. Oct 2001 B1
6303986 Shook Oct 2001 B1
6310018 Behr et al. Oct 2001 B1
6313901 Cacharelis Nov 2001 B1
6323984 Trisnadi Nov 2001 B1
6327071 Kimura Dec 2001 B1
6342960 McCullough Jan 2002 B1
6346430 Raj et al. Feb 2002 B1
6356577 Miller Mar 2002 B1
6356689 Greywall Mar 2002 B1
6359333 Wood et al. Mar 2002 B1
6384959 Furlani et al. May 2002 B1
6387723 Payne et al. May 2002 B1
6392309 Wataya et al. May 2002 B1
6396789 Guerra et al. May 2002 B1
6418152 Davis Jul 2002 B1
6421179 Gutin et al. Jul 2002 B1
6438954 Goetz et al. Aug 2002 B1
6445502 Islam et al. Sep 2002 B1
6452260 Corbin et al. Sep 2002 B1
6466354 Gudeman Oct 2002 B1
6479811 Kruschwitz et al. Nov 2002 B1
6480634 Corrigan Nov 2002 B1
6497490 Miller et al. Dec 2002 B1
6525863 Riza Feb 2003 B1
6563974 A. Riza May 2003 B2
6565222 Ishii et al. May 2003 B1
6569717 Murade May 2003 B1
20010019454 Tadic-Galeb et al. Sep 2001 A1
20020015230 Pilossof et al. Feb 2002 A1
20020021485 Pilossof Feb 2002 A1
20020079432 Lee et al. Jun 2002 A1
20020105725 Sweatt et al. Aug 2002 A1
20020112746 DeYoung et al. Aug 2002 A1
20020131228 Potter Sep 2002 A1
20020131230 Potter Sep 2002 A1
20020135708 Murden et al. Sep 2002 A1
20020176151 Moon et al. Nov 2002 A1
20020195418 Kowarz et al. Dec 2002 A1
20020196492 Trisnadi et al. Dec 2002 A1
20030056078 Johansson et al. Mar 2003 A1
Foreign Referenced Citations (7)
Number Date Country
43 23 799 Jan 1994 DE
0 089 044 Sep 1983 EP
0 851 492 Jul 1998 EP
WO 9013913 Nov 1990 WO
WO 9602941 Feb 1996 WO
WO 9805935 Feb 1998 WO
WO 0007225 Feb 2000 WO