This disclosure relates generally to semiconductor packaging, and more particularly to wafer-level chip scale (WLCSP) packaging for small, high volume die.
WLCSP refers to the technology of packaging an integrated circuit at wafer level, instead of the traditional process of assembling the package of each individual unit after wafer dicing. Conventional WLCSP technology extends wafer fab processes to include device interconnection and device protection processes.
A conventional method to implement WLCSP technology for small die requires that the die on a primary wafer be scribed and separated from the wafer. The die are then placed further apart on a secondary wafer so solder balls used to connect the die to a printed circuit board (PCB) will have enough space without affecting the next die. When the die are cut from the primary wafer and placed in the secondary wafer, the die need to be aligned perfectly or the results will be compromised. A separate process distributes the original bond pads to the now spaced-out ball pads. The use of the secondary wafer and the corresponding additional process steps results in a time-consuming and expensive WLCSP solution.
Another conventional method to implement WLCSP is to re-layout the die to a bigger size to accommodate the bigger pitch of the target balls. This method is also time-consuming and expensive because another die must be created with a different layout, which requires additional design time. Additionally, product and quality control personnel need to characterize and test the new design to ensure it operates within the design specifications. Customers may need to re-qualify the new die if they were using the original die.
The disclosed WLCSP solution overcomes the limitations of fan-out WLCSP solutions, and other conventional solutions for WLCSP for small, high volume die, by increasing the width of scribe regions between die on a semiconductor substrate to accommodate bonding structures (e.g., solder balls) that extend beyond peripheral edges of the die. The scribe regions can be widened in x and y directions on the wafer. The widened scribe regions can be incorporated into the design of the mask set.
Particular implementations of WLCSP provide advantages over conventional solutions, including but not limited to: 1) a reduction in the cost and time to make small WLCSP die; 2) the die layout does not have to be redesigned; 3) product and quality engineering time for WLCSP die evaluation is not increased; 4) customers do not need to re-qualify a new die layout; 5) single die probing can use the same hardware (probe card) since the die and pad locations have not changed; 6) time to market is reduced since the additional and time-consuming steps of scribing, sawing and placement of die on a secondary wafer are not performed; and 7) any changes in the original primary design database will have the same change for WLCSP die.
The details of one or more disclosed implementations are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages will become apparent from the description, the drawings and the claims.
In some implementations, widened scribe regions 206 can be widened based on the anticipated pitch of the solder balls (e.g., 400 μm). For example, scribe regions 206 can be widened in the mask set to accommodate portions of solder balls 204 that extend partially beyond the peripheral edges of die 202, plus some additional space to allow for sawing between solder balls 204 without damaging solder balls 204 or die 202. In some implementations, scribe regions 206 can be D+n μm wide where D is the diameter of the solder balls (e.g., 230 μm) and n is an additional distance that is sufficient to accommodate a saw blade (e.g., 100 μm) so that balls or die are not damaged during sawing. In some implementations, the width of scribe regions 206 are extended beyond a standard width by a given process, which is limited by a width of a saw blade that is used to separate the die during a sawing process to accommodate the balls that extend beyond the die.
Solder balls 204 can be placed directly (without redistribution metal or wires) on contact pads (not shown) of dies 202, allowing the widened scribe regions 206 to accommodate the portions of solder balls 204 that extend partially beyond the peripheral edges of die 202. Thus, there is no need for rewiring laminate structure 110 as used in the conventional fan-out WLCSP 100 or the corresponding additional process steps, such as multi-layer thin-film metal rerouting to each die 202 on wafer 200.
In some implementations, process 300 can begin by forming spaced-apart semiconductor die on the front surface of a semiconductor substrate (e.g., a wafer). Semiconductor die separated from each other on the semiconductor substrate by scribe regions that extend beyond a width that is at least based on a width of a saw blade that is used to separate the die during a sawing process (302). For each die, process 300 can continue by forming bonding structures on the front surface of the semiconductor substrate and electrically coupling the bonding structures to the die using, for example, metal contact pads. For each die, bonding structures can partially extend beyond the peripheral edges of the die and into a widened scribe region (304).
The semiconductor substrate can be sawed along the middle of each widened scribe region to separate the die, such that each die maintains an extended region surrounding an integrated circuit region (306), as shown in
While this document contains many specific implementation details, these should not be construed as limitations on the scope what may be claimed, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can, in some cases, be excised from the combination, and the claimed combination may be directed to a sub combination or variation of a sub combination.
Number | Name | Date | Kind |
---|---|---|---|
20020109133 | Hikita et al. | Aug 2002 | A1 |
20020127777 | Hikita et al. | Sep 2002 | A1 |
20030030138 | Kim | Feb 2003 | A1 |
20030032263 | Nagao et al. | Feb 2003 | A1 |
20100237494 | Kweon et al. | Sep 2010 | A1 |
20110079892 | Tsai et al. | Apr 2011 | A1 |
20110121449 | Lin et al. | May 2011 | A1 |
20110127631 | Kawashima | Jun 2011 | A1 |
20110221041 | Lin et al. | Sep 2011 | A1 |
20120034760 | Schuderer et al. | Feb 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20130026605 A1 | Jan 2013 | US |