The present invention relates generally to a method of fabricating a branched structure, such as a microstructure which may act as an adhesive.
Adhesives have applications ranging from day-to-day aspects of life to cutting edge technologies. Some examples of adhesives used in day-to-day aspects include tapes, fasteners and adhesive toys whilst the examples in cutting-edge technologies include manipulation of microscopic parts in micromanufacturing industries without the use of mechanical clamping, and manipulation of delicate organs such as nerves, tendons, arteries or veins, ureters and other soft tissues in the medical area. Thus, there is an ongoing need for improved adhesives.
Adhesive mechanisms in nature have been widely studied, but they have not been fully understood or exploited. One natural adhesive was uncovered from gecko's feet. The gecko not only can stick firmly to any kind of surface (dry and molecularly smooth or rough), but also can effectively release its feet with minimal effort. This adhesive mechanism is also found in Anolis lizards, some skinks and some insects. There are other remarkable abilities of gecko's feet, namely the self-cleaning mechanism of the feet and their reusability, which abilities surpass those of current adhesives. Prior studies have revealed that compliant, dry micro/nano-scale high aspect-ratio beta-keratin hairs are present on the underside of the gecko's feet and that these hairs allow the feet to adhere to any surface. This adhesion is mainly due to intermolecular forces, such as van der Waals force as well as capillary forces.
Some studies have been carried out on fabrication techniques for the microscopic hairs. For example, nanorobotic imprinting, nano-molding and electron beam lithography have been attempted as fabrication techniques. In nanorobotic imprinting, the shape of a master probe, such as an Atomic Force Microscope (AFM), an array of these probes, or some other high aspect ratio micro/nano-structure array is imprinted on a flat soft surface by indenting. The indented surface acts as a mold for silicone rubber or any other polymer. The polymer is separated from the wax template by peeling, resulting in nano-hairs. This process can be repeated autonomously to fabricate a large number of nano-hairs. In nano-molding, a membrane such as alumina with self organized high aspect ratio pores may be used as the soft surface whichacts as a mold for a liquid polymer such as polyimide or silicone rubber. Molding occurs under vacuum. After molding, the polyimide is cured and the alumnia membrane is etched away.
However, nano-molding and electron beam lithography are not suited for large scale production of synthetic adhesives as these techniques have low throughput as a result of their serial processing approach. Further, stiction problems have also been reported in nano-molding. And, indeed, no one has reported the fabrication of branched microstructures that mimic the structure of real gecko foot hairs so as to provide the rigidity to reduce stiction and the flexibility to conform to surface irregularities.
It would be highly desirable to fabricate structures that mimic the structure of real gecko foot hairs.
The present invention provides a method of forming a branched structure which comprises applying colloidal-sized particles over structures. The coated structures are then etched such that the structures are etched through the colloidal particles to form branched structures.
The etch may be a reactive ion etch. The structures may be microstructures formed as high aspect ratio microstructures. The colloidal-sized particles may be applied as a colloidal solution and a polyelectrolyte (PE) layer may be applied to the microstructures prior to the colloidal solution to promote adsorption of the colloidal particles.
In accordance with the present invention, there is provided a method of forming a branched structure, comprising: applying a layer of colloidal-sized particles over structures; etching said structures with a medium such that said structures are etched through said particles to form branched structures.
In accordance with another aspect of the present invention, there is provided a product for use as an intermediate in forming a branched structure, comprising: a plurality of microstructures on a substrate; an adsorbed mono-layer of colloidal particles on said micro structures.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects and advantages of the invention will be apparent from the description and drawings, and from the claims.
In the figures which illustrate example embodiments of the invention,
The spacing between colloids can be tuned by adjusting the sureface charge density through the variation of the salt (NaCl) concentration of the PE solutions.
A 70-100 μm thick epoxy-based negative photoresist sold under the identifier, SU-8 2050 by MicroChem. Corp., was spun on a four inch silicon p-wafer. An HMDS adhesion promotion layer was deposited by vacuum priming. The photoresist was soft baked on a hot plate at 65° C. for ten minutes and 95° C. for an hour to evaporate the solvent. A chromium (Cr) on glass mask with a patterned emulsion of film on one side was aligned with the photoresist, thus forming a coated wafer.
The coated wafer was left to cool down to room temperature and then exposed to ultra-violet radiation at 365 nm with a dose of 400 mJ/cm2 for 70 seconds. A post-bake exposure was performed on the hot plate at 50° C. for ten minutes and 95° C. for 30 minutes to selectively cross-link the exposed regions of the photoresist. PGMEA as supplied by MicroChem. was used for development. The resulting microstructures were alternately immersed into a polyelectrolyte solution made of polycation such as poly(diallyyldimethylammonium chloride) (PDDA)sold by Sigma Aldrich of molecular weight 70000 and a polyelectrolyte solution made of polyanion such as poly(acrylic acid) (PAA) sold by Sigma Aldrich of molecular weight 1200. Each immersion lasted for twenty minutes and was followed by washing with deionised (DI) water, and drying under a stream of dry nitrogen gas. A monolayer of 500 nm diameter silicon dioxide colloids was formed by immersing the microstructures in an aqueous colloidal suspension (1% wt) upside down for ten minutes. The colloidal film was then washed with DI water and dried. RIE was carried out with an oxygen plasma through the silicon dioxide colloids for 20-40 minutes in a plasma etching chamber with a radio frequency of 13.56 MHz at 15 m Torr oxygen pressure, 20 sccm flow speed and 100 Watts plasma power. The silicon dioxide colloids were removed from the microstructures with hydrofluoric acid solution.
With reference to
While two techniques have been described to create high aspect ratio microstructures, any other suitable technique may also be used, such as Lithographie, Galvanoformung und abformung (LIGA). Once the microstructures have been formed, the teachings of this invention may then be utilised to create branched microstructures.
While the described techniques were described as resulting in branched microstructures, the techniques could equally be used to form branched nanostructures.
Those skilled in the art will recognize that the adhesive branched structures of the invention may be utilized in a variety of ways. For example, the structures of the invention can be used in pick and place micromanufacturing, micromanipulation, and microsurgery applications. Other applications of the branched structures of the invention include: insect trapping, tape, robot feet or treads, gloves/pads for climbing, gripping, etc., clean room processing tools, micro-optical manipulation that does not scar a surface and leaves no residue or scratches, microbrooms, micro-vacuums, flake removal from wafers, optical location and removal of individual particles, climbing, throwing, and sticker toys, press-on fingernails, silent fasteners, a substrate to prevent adhesion on specific locations, a broom to clean disk drives, post-it notes, band aids, semiconductor transport, clothes fasteners, and the like.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the invention. Thus, the foregoing descriptions of specific embodiments of the present invention are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, obviously many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.