(A) Field of the Invention
The present invention relates to a method for fabricating group III (Al, Ga, and In)-Nitride thin films to build and also protect electronic devices. Particularly, this invention discloses a method for fabricating thin films of AlN, GaN, InN, and Al—Ga—In multicomponent nitride alloy on sapphire and glass by electron beam evaporation technique and demonstrate a method for applying the thin film coating technique to protect solar cell against space radiation and atmospheric induced degradation.
(B) Description of the Related Art
Group III-nitride system such as AlN, GaN, InN, and their alloys such as Al(1-x)GaxN, In(1-x)GaxN, Al(1-x)InxN are widely used in the semiconductor industry in a variety of applications because of its wide and tunable band gap, high thermal conductance, piezoelectric qualities, and radiation hardness [references 0035-0062]. The thermal stability and doping capabilities make this system very useful for UV, blue and green LED and Laser Diodes, visible blind UV photo detectors, rf electronics and high temperature and high power electronics. The current technologies used in producing AlN, GaN, and InN thin films and their alloys are Metal Organic Chemical Vapor Deposition (MOCVD), Hydride Vapor Phase Epitaxy (HVP), Molecular Beam Epitaxy (MBE), and Pulsed Laser Deposition (PLD) techniques. There is only one report that presents deposition of AlN thin film using electron beam deposition [0062]. This paper reports fabrication of AlN thin film for silicon-on-insulator (SOI) application. It does not report or represent any advancement of their method towards fabrication of optical coatings and crystalline AlN, GaN, Al—Ga—In—N alloy films that are needed for electronic and/or optoelectronic device applications and their applications for radiation hard electronics.
Due to large band gaps of AlN (6.2 eV) and GaN (3.4 eV) and their alloys (Al(1-x)GaxN with band gap ranging from 3.4 eV to 6.2 eV as a function of composition) coatings and thin films of group III-nitride material system are useful for optically transparent window in the visible range of optical spectrum for electronic devices such as solar cells, detectors, uv-visible, infrared cameras, lasers and their surface protection against any environment. For example, cover glasses made from SiO2 manufactured by a number of purveyors are currently used to shield solar cells from atmospheric degradation and damaging space radiation (for solar cell operating in space). Particularly, for space application, the effectiveness of cover glasses is, however, limited and leads to solar life limitations or weight penalties which are undesirable.
This patent discloses a method of fabrication of III-Nitride system using electron beam evaporation technique in reactive atmosphere created by e-beam evaporated metal and reactive ammonia (NH3) and use of such coatings and buffer layers for fabrication of optoelectronic, electronic devices, radiation hard electronics, high-temperature and high power electronics, with emphasis on method for fabricating cover for device protection.
The present invention provides a method for fabricating AlN, GaN, InN, and their alloy thin films on sapphire, glass, silicon, GaAs, solar sell devices, detectors and electronic components by reactive electron beam evaporation in an NH3 atmosphere. Using this method, large area III-nitride coatings and thin films can be fabricated. This invention thus can produce low cost and large area production of optically transparent and direct band gap materials capable of doping n-type and p-type impurities producing insulating, semiconducting, and conducting electronic grade coatings capable of surface protection of electronic devices and producing buffer layers and active device materials required for blue LEDs, laser diodes, high temperature and high power III-nitride devices, solar cells, and microelectromechnical (MEMS) devices.
The present invention proposes use of this method to produce compositionally tuned III-nitrides for device application such as surface protection of solar cell. To demonstrate application of this method, inventions of radiation hard coatings based on AlN for solar cell protection against space radiation and development of AlN buffer layer for active electronic applications are provided.
The method utilizes a standard high vacuum processing chamber with electron beam evaporation (E-Beam) system constructed by Blue Wave Semiconductors, Inc. Special features of the coating system include a large diameter chamber (ID 46 cm) for accommodation of large area substrate, adjustable beam voltage from 6 kV to 10 kV, a gas inlet for reactive gas processes, a substrate heater capable of reaching 1000° C. at the heater surface, and a quartz crystal in-situ thickness monitor for deposition rate and thickness control. A schematic representation of electron beam evaporation method for fabrication of group III-nitride films is shown in
AlN thin film deposits by a reactive process of energetic aluminum vapor produced by electron beam with ammonia gas on sapphire or quartz, or glass or silicon or electronic devices such as solar cell or detector or laser diode or light emitting diode, or transistors such as field effect transistors (FET) or MOSFETs or similar devices. The source material was pure aluminum pellets (99.999). The aluminum was evaporated in a partial pressure ranging from 1×10−1 Torr to 10−8 Torr of pure ammonia (99.999). First, a thin AlN buffer layer was grown at a substrate temperature of RT (room temperature) to 1000° C. at a deposition rate of aluminum film optimized to achieve desired results for a thickness of aluminum film in the range of 10 Å to 1000 Å. A second layer is then grown at a substrate temperature of RT to 1000° C. at a rate optimized to achieve desired results for a desired thickness. Similar process can be extended to GaN and InN and their alloys such as GaAlN and GaInN. To make these alloys thin films and heterostructures, two metals of appropriate weight fraction are kept in a crucible.
The material being evaporated is placed in the crucible and occupies about 80% of the crucible volume. This precaution is necessary to provide a stable molten pool of Al metal and avoiding accidental overflow or jumping of source chunks. The crucibles are water cooled to reduce the heating effects. Additionally, the crucible inserts are used to reduce the heat flow during deposition thereby allowing higher evaporation rates.
When energetic electron beam falls on the metals, they go through melting and then mixing of two liquids in the crucible making it homogeneous metal alloys for the evaporation. By adjusting the initial weight of the metals, desired alloy composition in the depositing film can be obtained which essentially controls the structural, optical, electrical and doping properties. The evaporation rate of individual metal element in the crucible is also found to be dependent on the electron beam power. For electronic doping epitaxial thin films for device fabrication, impurity elements can be added into the evaporation alloy. System is designed to have multiple pockets in which different metals, alloys or doped alloys can be loaded and in-situ heterostructures of electronic and optoelectronic materials can be fabricated at room temperature or elevated temperatures. Chemical doping through injecting small amount of doping gas is also attainable while electron beam deposition process.
Experimentation showed that quality of films depended on the deposition rate of aluminum, the flow rate of ammonia and the substrate temperature. Qualitatively, higher temperatures required higher gas flow rates and higher aluminum deposition rates. When the process was under saturated with aluminum deposition the films were amorphous and powder like. When the process was over saturated with aluminum deposition the films were metallic.
We have optimized deposition process parameters for fabrication of high quality thin film nitride and oxide layers. Among various process parameters, evaporation rate and substrate temperature are the most important parameters influencing properties of the deposited films. Primary consideration when deciding a deposition rate, using electron gun (e-gun), is the film properties at the development stage and eventually the production rate, since very high rates are not compatible with certain film properties. It is thus important to consider various parameters in e-gun evaporation since the beginning of the product development. The ease of evaporation and fabricating good quality thin films depends on different factors, e.g. power supply ratings, system geometry, source material, evaporation rate, substrate-source distance etc. In the present case, the desired evaporation rates are easily possible by 10 kilowatt power supply interfaced with the e-gun.
AlN coatings have been characterized by x-ray diffraction, UV-Visible spectroscopy, scanning electron microscopy and electrical resistivity. X-ray diffraction results indicated that the coatings fabricated under 300° C. are essentially amorphous to nanocrystalline regime while coatings fabricated at higher temperatures (400-900° C.) are oriented and crystalline. No detectable metallic aluminum impurity was observed.
Previous experiments revealed that metal vapor evaporation requires a specific growth rate for a temperature. If the rate was too high we got metallic films and if the rate was too low we got a particulate material. There exists a phase diagram of growth temperature, NH3 pressure, and evaporation rate.
We made similar attempts for fabrication of GaN film using Ga evaporation. The film was grown in an ammonia atmosphere (1×104 Torr). Using a temperature of 800° C. has so far given us the best results with a deposition rate of 3-4 Å/s. We have also successfully achieved AlGaN alloys in which UV cut-off can be tunable. For example,
Use of ALN and Algan Film as a Protective Coating for Solar Cell
The present invention relates to protecting the above described on board solar cells and/or the related electronic circuits which are exposed to the radiation commonly experienced in space. In essence, the invention is to apply radiation-hard coatings and materials or parts made there from to be utilized for protecting solar cells in space applications specifically in space vehicles and/or space ships and/or space shuttles. The protection can be provided with radiation-hard coatings in conjunction with or without coverglass. In addition to energetic particles that exist in space, ultra violet (UV) photons are also damaging to space electronics. This means that the ability to tune the bandage of the coating to allow maximal transmission and control UV absorption in visible range through UV is more critical.
Thus, the invention further relates to the use of two separate strategies to protect the solar cells and/or electronic circuit or structure as described in
The selection of AlGaN is well suited for cover glass application since the composite coatings possess a strong bond strength between the constitute elements, excellent mechanical strength, high radiation hardness, and chemical inertness, wide band gaps, high optical transparency in visible region, tunable UV region, and tunable electrical conductivity. Also, the materials undoubtedly exceed radiation hardness because their lattices are dense and the displaced atoms will be forced back into their correct sites.
“This application claims priority to U.S. Provisional Application Ser. No. 60/830,713 filed Jul. 14, 2006, entitled “METHOD OF GROWING INSULATING, SEMICONDUCTING, AND CONDUCTING GROUP III-NITRIDE THIN FILMS AND COATINGS, AND USE AS RADIATION HARD COATINGS FOR ELECTRONICS AND OPTOELECTRONIC DEVICES”, which is incorporated herein by reference in its entirety.”
This invention was made with Government support under Contract No. FA9453-04-M-0116 and FA 9453-050C-0039 awarded by the U.S. Air Force. The Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
6129465 | Hoyt et al. | Oct 2000 | A |
6323053 | Nishikawa et al. | Nov 2001 | B1 |
6335218 | Ota et al. | Jan 2002 | B1 |
6452216 | Tsuda et al. | Sep 2002 | B1 |
6521917 | Takayama et al. | Feb 2003 | B1 |
6534332 | Bourret-Courchesne | Mar 2003 | B2 |
6589857 | Ogawa et al. | Jul 2003 | B2 |
6765244 | Shibata et al. | Jul 2004 | B2 |
6781164 | Hori et al. | Aug 2004 | B2 |
6872967 | Kano et al. | Mar 2005 | B2 |
6888867 | Sawaki et al. | May 2005 | B2 |
6891201 | Tsuda et al. | May 2005 | B2 |
6903364 | Takayama et al. | Jun 2005 | B1 |
6984840 | Kuramata et al. | Jan 2006 | B2 |
6984841 | Tsuda et al. | Jan 2006 | B2 |
7009215 | D'Evelyn et al. | Mar 2006 | B2 |
7033439 | Shibata et al. | Apr 2006 | B2 |
7033858 | Chai et al. | Apr 2006 | B2 |
7180088 | Sugawara | Feb 2007 | B2 |
7193246 | Tanizawa et al. | Mar 2007 | B1 |
Number | Date | Country | |
---|---|---|---|
60830713 | Jul 2006 | US |