1. Field of the Invention
The present invention is directed to a spectrally diverse and spatially sensitive apparatus, sometimes referred to as a spectral imager, and associated methods. More particularly, the present invention is directed to an apparatus having spectral and spatial sensitivity by including multiple arrays of wavelength differentiating elements which are not designed for a specific wavelength.
2. Description of Related Art
Conventional spectrometers typically use gratings or thin film filters to discriminate between wavelengths. Gratings are expensive and generally throw away a lot of light due to the modal filtering performed by the gratings. Thin film filters need to be provided in an array for each spectrometer and require multiple coating passes, also increasing cost.
Further, both of these solutions are designed to provide a particular band pass, e.g., a notch filter which only allows a very narrow wavelength range through. An example of such a filter spectrum is shown in
Much of the development in spectrometers has been directed to providing higher resolution systems, which, while increasing accuracy, serves to exacerbate the waste of light. Further, these systems tend to be very sensitive to incident angle. Finally, as wavelength resolution increases, the sensitivity to noise also increases. For many uses, this is acceptable. However, there are many situations using a spectrometer that cannot afford throwing away light and need to be angularly robust.
While spectrometers offer advantages for identifying spectral content of certain wave fronts, they may be unable to discriminate spatial information. Additional benefits may be recognized with a sensing apparatus that is able to provide spatial imaging content while maintaining increased efficiency and angular robustness in sensing spectral information.
The present invention is therefore directed to a spectrometer and associated methods that substantially overcome one or more of the problems due to the limitations and disadvantages of the related art.
It is a feature of the present invention to provide a spectrometer that exploits much of the input light. It is another feature of the present invention to provide a spectrometer that includes a plurality of individual filters, each of which do not have a narrow band pass. It is yet another feature of the present invention to provide a spectrometer which is relatively insensitive to angle.
At least one of the above and other features and advantages may be realized by providing a spectrometer for use with a desired wavelength range including an array of filters, each filter outputting at least two non-contiguous wavelength peaks within the desired wavelength range, the array of filters being spectrally diverse over the desired wavelength range, wherein each filter in the array of filters outputs a spectrum of a first resolution, an array of detectors, each detector receiving an output of a corresponding filter, and a processor receiving signals from each detector, the processor outputting a reconstructed spectrum having a second resolution, the second resolution being higher than any of the first resolution of each filter.
Each filter may include a substrate and a pattern on the substrate, the pattern being in a material having a higher refractive index than that of the substrate. The pattern may have features on the order of or smaller than a wavelength of the desired wavelength range. The pattern varies in at least one of depth and period across the array of filters. Input light may be transmitted through the substrate and the pattern or may be reflected from the pattern. A period of the pattern across the array of filters may be on the order of or smaller than a wavelength of the desired wavelength range.
Each filter may include an etalon. The etalons in the array of filters may have varying cavity lengths. The cavity length may be on an order of magnitude of a wavelength in the desired wavelength range. The etalon may be an air gap etalon or a solid etalon. The varying cavity length may be realized by providing steps of varying height for each etalon.
The processor may output a reconstructed spectrum of input light by applying the inverse filter function to the signals output by the detectors. The outputs of the array of filters may be substantially constant with respect to an angle of light incident thereon. The array of filters may be provided directly on the array of detectors. Any two filters in the array of filters may have transmittance vectors that are linearly independent of one another and are not orthogonal. Multiple filters of the array of filters may pass overlapping wavelength ranges. Each detector includes a plurality of sensing portions. The array of filters may be continuous.
At least one of the above and other features and advantages of the present invention may be realized by providing a method of making a spectrometer for use with a desired wavelength range, including forming an array of filters, each filter outputting at least two non-contiguous wavelength peaks within the desired wavelength range, the array of filters being spectrally diverse over the desired wavelength range, wherein each filter in the array of filters is varied across the array, and providing an array of detectors, each detector receiving an output of a corresponding filter.
Spatial information may be obtained using an apparatus that includes a plurality of imaging units, each imaging unit including first and second filters and first and second photosensing regions. In this device, the filters output at least two discrete wavelength peaks within a desired wavelength range and are spectrally diverse over the desired wavelength range. Further, each photosensing region receives an output of a corresponding filter. The device may include a processor that receives signals from each imaging unit and generates a reconstructed spatial image comprised of discrete spatial units corresponding to each imaging unit.
The imaging spectrometer may incorporate an array of filters that are grouped in arrays of imaging units. Each imaging unit includes at least first and second filters and each filter outputs at least two discrete wavelength peaks in addition to being spectrally diverse within a desired wavelength range. The plurality of imaging units are arranged in a nominally recurring spatial pattern and the size of the imaging units are sufficiently large that each imaging unit is spatially diverse over the array of recurring imaging units and within the desired wavelength range. The first and second filters may be sized to correspond to sensing regions of an imaging sensor.
A spatially sensitive spectrometer may be constructed by forming a plurality of imaging units by combining first and second filters and first and second photosensing regions. Each filter may be characterized as including at least two discrete wavelength peaks within the desired wavelength range, with the first and second filters being spectrally diverse over the desired wavelength range. Spatial information may be achieved by arranging each photosensing region to receive light output of a corresponding filter and further arranging the plurality of imaging units into a nominally recurring spatial pattern, with the first and second photosensing regions in each imaging unit being spatially diverse over the recurring spatial pattern.
The above and other features and advantages of the present invention will become readily apparent to those of skill in the art by describing in detail embodiments thereof with reference to the attached drawings, in which:
In contrast to the conventional notch filter, a filter according to the present invention, as shown in
The response of the spectrometer may be generally represented as:
I
n
=∫F
n(λ)S(λ)dλ (1)
where I is the intensity of light output from the spectrometer, F is the individual filter response for each of n filters and S is the input spectrum. In discretized form:
Thus, knowing the filter response and the output of the spectrometer, the input spectrum may be represented as:
S
m
=F
nm
−1
I
n (3)
While the number of such filters required to achieve a sufficient level of resolution will be greater than the number of bandpass filters for comparable resolution, a spectrometer using such filters may have a higher light efficiency and may be more angularly robust.
A first embodiment of the present invention realizes a spectrally diverse output by creating a highly dispersive structure 10, shown in
The substrate 14 may be fused silica or Pyrex. The high index material may be silicon or titanium dioxide. The high index material should be patternable, have an index of refraction higher than that of the substrate and be at least sufficiently transmissive at the wavelengths of interest. The relative indices between the substrate and the material having the pattern aid in the creation of a spectrally diverse output. The pattern may have sub-wavelength or near wavelength features, i.e., on the order of the wavelength of light of interest or smaller. The pattern may result in the substrate being exposed, may leave some of the high index material on the substrate even where an indent is present or there may be another layer of material between the high index material and the substrate.
An example of such a structure to be used in the visible to near infrared range includes a fused silica substrate with patterned silicon having a period of 0.6 microns and a thickness or depth of 0.65 microns. A plot of transmittance of zero-order light versus wavelength for this example is shown in
Another example of such a spectrometer for use in the visible to near infrared region has gratings in silicon on silica having the same period, here 0.6 microns, with varying sub-wavelength depths in the silicon, e.g., 0.3, 0.33 and 0.36 microns. A plot of transmittance of zero-order light versus wavelength for this example is shown in
A plurality of these structures 10 may be provided in an array 20 as shown in
To achieve a sufficiently spectrally diverse output, the period and/or depth of the pattern may be iteratively altered until the desired output is obtained. The filter may also be used in a reflective mode in which the input light is incident on the structure at an angle, e.g., 45°. This may result in improved contrast, since the difference in refractive index between the high index pattern and the ambient environment is typically greater than that between the high index pattern and the substrate.
In another configuration of the present invention, spectrally diverse transmission may be realized using etalons 60 to create the filters, an example of which is shown in
where x=λ−λ0, λ0 is a middle wavelength in the range of interest, Δλ=λmax−λmin, where λmax is the maximum wavelength in the range and λmin is the minimum wavelength in the range, and F′ is defined between −π to π. If this is then approximated as a Fourier series assuming the output is a true sinusoid, then:
The number n selected will determine the number of etalon/detector pairs needed, i.e., 2n, so that there is an etalon for each sine and cosine. Etalons having behavior that may not be so approximated with sufficient accuracy may still be used in accordance with the present invention, although the mathematical model required will be more complicated. While this model may be useful in beginning a design of the etalons, the more general approach outlined above in equations (1) to (3) is used to obtain the reconstructed spectra.
Each etalon has multiple resonance peaks, as can be seen with the three representative outputs as shown in
For operation in the visible region, these etalons may have cavity lengths of less than 10 microns. If the cavity lengths are too long, e.g., roughly greater than 100 microns, the etalon becomes highly angularly sensitive and the spectrometer constructed there from has a low light efficiency. If the cavity lengths are too short, e.g., roughly 1 micron or less, there is lower resolving power and limited contrast.
The etalons 60 forming the filters of a second embodiment are shown in
Alternatively, as shown in
A further alternative etalon forming the filters of a fourth embodiment is shown in
Again, a spectrometer using the etalon array includes a corresponding detector array 55 and a processor 50. The etalons are located between the input light and the detectors. The etalons may be at an intermediate image plane or right against the detector array.
An example of spectra output from an array of twenty etalons 60 configured as the stepped air gap etalon of
The input spectrum used to generate these spectra is shown in
Since the filters of the spectrometer of the present invention are to be varied and are for providing spectral diversity rather than a specific response, the inherent variation arising from the manufacture of the filters may provide a more robust spectrometer. Particularly when these filters are made at the wafer level, variation across the wafer may actually help in increasing the spectral diversity. This allows the manufacturing tolerances to be eased.
While the above embodiments illustrate a detector element associated with a filter, the detector element may include more than one sensing region. Thus, light output from a single filter may be incident on more than one sensing region, and then an average signal from all these sensing regions may be output to the processor. This helps to reduce noise in the system.
Additionally, while the filters discussed above were assumed to be discrete filters in an array of filters, these filters may be continuous and the array becomes an arbitrary one of convenience of illustration. For example, instead of the stepped etalon of
Thus, by characterizing the filter function for each filter in an array of filters and then providing the inverse of these filter functions to the output of a corresponding detector array, an input spectrum may be reconstructed. According to the present invention, a spectrally diverse function may be created across an array of filters, either iteratively or deterministically. While no individual filter can discriminate a particular wavelength, the cumulative effect across the filters allows input light to be characterized across a desired wavelength range with a needed resolution. Properly designed, taking into account remaining filters of the array, the increase in the number of filters will increase the resolution. The transmittance vector of any two filters may be linearly independent and not orthogonal.
As suggested above, filters may be associated with detectors having a single sensing region or more than one sensing region. These different combinations are depicted graphically in
The filter response at step 1320 detected by sensing region D2 is depicted by the spectral output identified by the arrow labeled R1. The spectral output is represented as a multi-modal response curve of transmittance T over a range of wavelengths □ (lambda). This same or similar spectral output will also be sensed by sensing region D1 since the cavity 1310 length at step 1320 is the same for sensing region D1 as it is for D2. This particular embodiment is one example of a filter that is associated with multiple detectors. In this case, an average signal from these sensing regions D1, D2 may be output to the processor.
Different sensing regions D3-D11 will generate different spectral outputs because each is associated with different cavity 1310 lengths. For example, the filter response at step 1322 detected by sensing region D4 is depicted by the spectral output identified by the arrow labeled R3. Spectral output R3 is different than spectral output R1 because of the difference in cavity 1310 length between steps 1320 and 1322. In some cases, a sensing region (e.g., D3 in the embodiment shown) may be positioned (intentionally or unintentionally) to receive electromagnetic energy from multiple filters. In this scenario, the sensing region D3 may detect, at least partially or in some combination, the filter response (identified by response R2) associated with each of the varying height steps 1320, 1322. Ultimately, as long as the array of filters 1310 and array of detectors 1355 cumulatively provide the needed spectral diversity, then the wavelengths of input light may be discerned with acceptable accuracy.
In
In another implementation, a certain amount of spatial information may be discerned from a repeating filter structure 1400. Generally, a spectrometer is unable to provide spatial information. By incorporating a repeating filter structure 1400, a certain amount of spatial information may be acquired.
In one embodiment, Filter Arrays 1, 2, and 3 in
This spatial information can be extended to a 2-dimensional map as shown in
As shown in
With the arrangement shown in
While the present invention is described herein with reference to illustrative embodiments for particular applications, it should be understood that the present invention is not limited thereto. Those having ordinary skill in the art and access to the teachings provided herein will recognize additional modifications, applications, and embodiments within the scope thereof and additional fields in which the invention would be of significant utility without undue experimentation.
This is a divisional application based on pending application Ser. No. 12/292,312, filed Nov. 17, 2008, which in turn is a continuation-in-part application based on application Ser. No. 11/723,279, filed Mar. 19, 2007, and issued as U.S. Pat. No. 7,453,575 B2, which is a continuation application based on application Ser. No. 10/879,519, filed Jun. 30, 2004, and issued as U.S. Pat. No. 7,202,955 B2, the entire contents of all of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12292312 | Nov 2008 | US |
Child | 13737284 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10879519 | Jun 2004 | US |
Child | 11723279 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11723279 | Mar 2007 | US |
Child | 12292312 | US |