METHOD OF MAKING MEMS WAFERS

Information

  • Patent Application
  • 20070015341
  • Publication Number
    20070015341
  • Date Filed
    June 14, 2006
    18 years ago
  • Date Published
    January 18, 2007
    18 years ago
Abstract
A wafer level package for a MEMS device is made by bonding a MEMS wafer and a lid wafer together to form a hermetically sealed cavity. One or more vias filled with conductive or semiconductive material is etched one of the wafers to form one or more rods extending through the wafer. The rods provide electrical connection to components within the hermetically sealed cavity.
Description
FIELD OF THE INVENTION

This invention relates to a method of making MEMS wafers, and in particular to a method of obtaining a hermetic seal while providing an electrical connection to components within the sealed wafer.


BACKGROUND OF THE INVENTION

The manufacture of Micro-Electro-Mechanical-Systems (MEMS), such as micro-gyroscopes, micro-accelerometers, resonant accelerometers, RF devices, RF resonators, micro-mirrors, micro-motors, micro-actuators and other such micro-devices integrating at least one moving and/or particular component operating under sub-atmospheric conditions creates a very serious challenge for packaging. The vast majority of MEMS-based devices require the encapsulation to be done before wafer dicing so as to protect against micro-contamination from particles and dicing slurry while the wafers are processed like a standard semiconductor chip, and avoid the need for dedicated equipment or processes for dicing, mounting and molding. Most MEMS-based gyroscopes, MEMS-based accelerometers, MEMS-based inertial sensors, MEMS-based RF switching devices, MEMS-based resonators and other such MEMS devices, which are susceptible to a reduction of performance due to gas-induced damping (reduction of Q-factor) or gas-induced degradation, are influenced by the hermeticity of the packaging.


A sealed package to encapsulate the moving and/or particular components in vacuum or in a controlled atmosphere in a sealed protection micro-cavity is necessary to ensure reliable operation.


This micro-cavity is typically fabricated using microelectronics fabrication technologies to produce, on the wafer itself, a hermetic wafer-level package over each one of the various MEMS devices present on the wafer. Various approaches have been proposed to generate such a sealed wafer-level package, of which only a few permit the fabrication of a truly hermetically sealed hermetic package.


SUMMARY OF THE INVENTION

The present invention provides a novel technique for producing hermetically sealed micro-cavities between a so called “LID wafer” and a so called “MEMS wafer” to control the micro-environment around the MEMS devices.


In accordance with the invention there is provide a method of making a MEMS device from two parts (normally a lid and MEMS body) which are subsequently hermetically sealed together comprising forming a least one via, and preferably an array of vias through one of the parts, made of a material such as silicon, depositing conductive material or semiconductive material, such as phosphorus doped amorphous silicon, in said vias to form rods, and subsequently joining said parts together, preferably using direct contact (such as silicon-silicon) bonding, to provide a sealed cavity with said one or more rods providing a conductive path to the cavity.


The conductive material can suitably be deposited by LPCVD (Low Pressure Chemical Vapor Deposition). Electrical contact can be made to components within the cavity through the one or more rods formed extending through the MEMS body. By forming the rods into arrays, the overall electrical resistance of the path to the cavity can be reduced.


Thus in one aspect the invention provides a method of making a wafer level package for a MEMS device including a MEMS wafer and a lid wafer bonded together to form a hermetically sealed cavity, comprising forming one or more vias filled with conductive or semiconductive material in one of said wafers to form one or more rods extending through said one wafer; and bonding said two wafers together to form a hermetically sealed cavity with said one or more rods providing electrical connection between one or more components within said cavity and a contact pad on an exposed face of said one wafer.


In another aspect the invention provides a method of making a wafer level package for a MEMS device, comprising etching deep vias into a first wafer from a front side thereof; filling said deep vias with conductive or semiconductive material to form rods; providing contact pads on exposed portions of said rods; providing seal rings on said first wafer; providing a second wafer with corresponding contact pads and seal rings; bonding said first and second wafers together to define a hermetically sealed cavity; exposing said rods from the backside of said wafer; and providing contact pads on said rods on the backside of said wafer; wherein said rods provide electrical connection through said first wafer to one or more components within said heremetically sealed cavity.


In yet another aspect the invention provides a MEMS device comprising a MEMS body containing MEMS components; a lid portion bonded to said MEMS body by seal rings to form a hermetically sealed cavity; and one or more conductive or semiconductive rods filling vias extending through the lid portion into the sealed cavity to provide electrical connection to one or more components within the sealed cavity.


In the semiconductive material phosphorus-doped amorphous silicon. Other suitable materials may be used.




BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described in more detail, by way of example only, with reference to the accompanying drawings, in which:



FIG. 1 illustrates the formation of alignment notches in a silicon wafer;



FIG. 2 shows the patterning of the front side of the wafer;



FIG. 3 illustrates the formation of deep vias;



FIG. 4 illustrates the deposition of a thermal oxide layer;



FIG. 5 illustrates the deposition of an ISDP layer;



FIG. 6 illustrates the CMP polishing of the ISPD layer;



FIG. 7 illustrates patterning of the via pads and seal rings;



FIG. 8 illustrates the dry etch of the front side;



FIG. 9 shows the stripping of the resist layer;



FIG. 10 shows the alignment of the wafer to a MEMS wafer;



FIG. 11 shows the bonding of the two wafers;



FIG. 12 shows the backgrinding of the lid wafer;



FIG. 13 shows the deposition of an oxide layer on the backside of the wafer;



FIG. 14 shows the patterning of contact regions;



FIG. 15 shows the etching of the contact regions;



FIG. 16 shows the application of a metal contact layer;



FIG. 17shows the patterning of the contact pads;



FIG. 18 shows the stripping of the resist;



FIG. 19 shows the electroless plating of a first additional metal layer;



FIG. 20 shows the electroless plating of a second additional metal layer; and



FIG. 21 shows the dicing of the wafer into individual components.


to 23 illustrate in an exemplary manner the steps in making a MEMS device in accordance with one embodiment of the invention.




DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The device accordance to the invention is made using a series of mask steps involving a photoresist masks. FIG. 1 shows a cross section through a silicon substrate 1 that will form the lid wafer of a MEMS device. The lid wafer starts off as a 600 μm DSP (double sided polished )wafer.


In a first step, a first mask (not shown) is applied to the backside 2 of the substrate 1 to form notches 10 that will serve as alignment marks. The notches 10 are formed under locations where vias are to be formed on the front side of the wafer. They are subsequently used for alignment purposes when the two wafers are brought together, as shown in FIG. 10, to ensure proper alignment.


In a second step (FIG. 2) a photoresist mask 3 is applied to the front side 4 of the substrate 1 to pattern 4.0 μm via openings 5. In a third step (FIG. 3), a deep reaction ion etch is performed to form the vias 50 extending 100 μm into the substrate 1.


In a next step (FIG. 4), after stripping the mask 3, a 1.0 μm thermal oxide layer 6 is applied over the front side 4 of the substrate such that it extends into the silicon substrate 1 to line the walls of the vias 50. Next, as shown in FIG. 5, an LPCVD deposition is carried out to form an in-situ phosphorus doped amorphous silicon (ISPD) layer 7, which extends into the deep vias 50 to form conductive rods 51. This layer 7 is then reduced to a thickness of 1.0 μm by chemical mechanical polishing (CMP) as shown in FIG. 6. The CMP process removes the notches 7a formed over the vias 5.


Next, as shown in FIG. 7, a third mask is applied and patterned to create via pad mask regions 9 and seal pad mask regions 11. A dry etch is then performed to remove the ISPD layer 7 except under the mask regions 9 and 11 (FIG. 8). The mask is then stripped away to expose via pads 13 and seal rings 14 (FIG. 9). The pads 13 and seal rings are aligned relative to the backside notches 10.


The next step, shown in FIG. 10 is to flip over the substrate 1 and align it to preformed MEMS silicon wafer 15. This contains the MEMS components and has been preformed with seal rings 16 and pads 17 with cantilevered extensions 17a extending into the MEMS cavity 19. The pads and seal rings are formed on a thermal oxide layer 18. The structure of the wafer 15 is formed in a similar manner to the structure of the body 1.


Next, as shown in FIG. 11, the two parts, substrate 1 and MEMS wafer 15 are brought together so that the respective pads 13, 17, and seal rings 14, 16 come together and form a pressure bond 55 formed by direct contact between the amorphous silicon contact pads and seal rings respectively.


Next, as shown in FIG. 12, the backside, which is now on top, of the flipped substrate 1 is ground away to expose the ends 20 of the rods 51 remote from the cavity 19.


As shown in FIG. 13, the backgrinding is followed by the PECVD deposition of a SiO2 layer 21, to which a fourth mask 22 is applied (FIG. 14). The fourth mask 22 is patterned to expose contact regions 23 over the rods 51. As shown in FIG. 15, the oxide layer 21 is etched away in the contact regions 23 to expose the ISDP material forming the rods 51 and the mask subsequently stripped away.


The next step, shown in FIG. 16, is to deposit a conductive layer 24 over the oxide layer 21. In this embodiment, the conductive layer is a double layer consisting of a 0.1 μm TiW sublayer followed by a 0.5 μm AlCu sublayer. The separate sublayers are not shown in the Figure.


Next, as shown in FIG. 17, a fifth mask is applied and patterned to form contact regions 25 over the vias 5. This is followed by a wet etch of the conductive layer 24 and subsequent stripping of the mask pad regions to expose the oxide layer 31 except in at the formed contacts 26 over the vias 5.


In a next step, shown in FIG. 19, a 1.0 μm layer 27 of Ni(P) is deposited by electroless plating over the contacts 26. Next, as shown in FIG. 20, a 0.1 μm layer 28 of Pd(P) is deposited by electroless plating over the layer 27. In a final step, shown in FIG. 21, the structure is diced and prepared for flip-chip bonding onto an FGBA (Fine-Ball-Grid-Array). As noted in FIG. 21, while the seal rings provide a hermetic seal, it is not critical that the bond to contact pads connected to the rods be hermetic because the material fills the vias extending to the surface and thus effectively prevents leakage into the cavity.


It will be noted that while the bond between the pads and the seal rings is hermetic, the via itself does not have to be hermetically sealed because it is filled with the ISPD material which provides a conductive path to the contact 17a within the cavity 30 of the MEMS device.


EXAMPLE

In a particular embodiment, if we assume that the resistivity of the aSi(P) rods within the vias is 800 μohm-cm, each via is 4 μm diameter and 100 μm tall, the resistance of the rods from bottom to top is then 800 μohm-cm×100 μm)/(3.14×4 μm2)=63.7 ohm. Thus, a single via connecting the TiW/AlCu pad has a series resistance of about 65 ohm. An array of four vias (occupying an array of about 16 μm×16 μm) would have a resistance of 16 ohms, and an array of 64 vias (occupying an array of about 64 μm×64 μm) would have a resistance of 1 ohm.


A single via may be capped by a single 24 μm×24 μm sealing pad of aSi(P) (phosphorus doped amorphous silicon) underneath of the LID wafer and a single 10 μm×10 μm sealing and connecting pad of TiW/AlCu. An array of 4 vias would be capped by a single 20 μm×20 μm sealing pad of aSi(P) underneath of the LID wafer and a single 20 μm×20 μm sealing and connecting pad of TiW/AlCu. Thus, improved hermetic sealing, improved mechanical robustness and lower connection resistance are achieved.


An array of 64 vias would typically be capped by a single 72 μm×72 μm sealing PAD of aSi(P) underneath of the lid wafer and a single 72 μm×72 μm sealing and connecting pad of TiW/AlCu. Such an arrangement results in an excellent hermetic seal, excellent mechanical robustness, and less then about 1 ohm connection resistance.


It will thus be appreciated that increasing the number of rods forming an array reduces the resistance of the connection. For example, with an array of 64 rods, the resistance of the connection to the sealed cavity can be reduced to one ohm.


Many variations of the invention are possible in accordance with the spirit of the invention. It will be appreciated that different materials from those illustrated in the drawings, which are purely exemplary, can be employed. For example, the metallic contacts 27 shown in FIG. 19 need to provide good electrical contact with the conductive material in the vias, but the actual composition is not critical. Any suitable metallic arrangement can be employed. Also, other methods of depositing the various materials can be employed.


Other features of the invention are lining the vias with an insulating material, such as SiO2, since the material forming the parts, such as silicon, may have some degree of conductivity, forming the rods in the lid wafer, flipping the lid wafer prior to bonding with the MEMS wafer, and etching back the flipped wafer after bonding to expose the rods prior to forming the contacts. One skilled in the art on looking at the exemplary Figures will appreciate that the underlying principles can be implemented in many different equivalent ways.


It should be noted that the resist, thermal oxide, and aSi(P) shown in FIGS. 3, 4, 6, and 7, though not shown, will also be deposited on the back side of the wafer as well.


In FIG. 21, the beam 17a of the MEMs device is electrically connected to the rod 32 through the bonded sealing rings, which are also made of phosphorus-doped amorphous silicon. Since the via is filled with amorphous silicon, the cavity 30 of the MEMS device is effectively sealed.

Claims
  • 1. A method of making a wafer level package for a MEMS device including a MEMS wafer and a lid wafer bonded together to form a hermetically sealed cavity, comprising: forming one or more vias filled with conductive or semiconductive material in one of said wafers to form one or more rods extending through said one wafer; and bonding said two wafers together to form a hermetically sealed cavity with said one or more rods providing electrical connection between one or more components within said cavity and a contact pad on an exposed face of said one wafer.
  • 2. A method as claimed in claim 1, further comprising providing contact pads at each end of said rods on opposite surfaces of said one wafer.
  • 3. A method as claimed in claim 2, wherein groups of said rods are arranged in arrays and connected in parallel between said contact pads.
  • 4. A method as claimed in claim 3, wherein said wafers are bonded together by seal rings enclosing said rods within said hermetically sealed cavity.
  • 5. A method as claimed in claim 4, wherein contact pads connected to said rods within said sealed cavity are bonded to corresponding pads on the other wafer.
  • 6. A method as claimed in claim 1, wherein said wafers are bonded together by direct contact bonding.
  • 7. A method as claimed in claim 6, wherein said wafers are silicon wafers.
  • 8. A method as claimed in claim 1, wherein said vias are filled with doped silicon.
  • 9. A method as claimed in claim 8, wherein said doped silicon is phosphorus doped amorphous silicon.
  • 10. A method as claimed in claim 1, wherein said vias are lined with insulating material prior to depositing said conductive or semiconductive material.
  • 11. A method as claimed in claim 1, comprising providing seal rings on said respective wafers surrounding said cavity, and bonding said wafers together at said seal rings to define said hermetically sealed cavity.
  • 12. A method as claimed in claim 11, wherein said seal rings are bonded together by direct contact pressure bonding.
  • 13. A method of making a wafer level package for a MEMS device, comprising: etching deep vias into a first wafer from a front side thereof; filling said deep vias with conductive or semiconductive material to form rods; providing contact pads on exposed portions of said rods; providing seal rings on said first wafer; providing a second wafer with corresponding contact pads and seal rings; bonding said first and second wafers together to define a hermetically sealed cavity; exposing said rods from the backside of said wafer; and providing contact pads on said rods on the backside of said wafer; wherein said rods provide electrical connection through said first wafer to one or more components within said heremetically sealed cavity.
  • 14. A method as claimed in claim 13, wherein groups of said rods are arranged in arrays connected in parallel between contact pads at each end thereof to increase electrical conductivity.
  • 15. A method as claimed in claim 13, wherein said first wafer is a lid wafer and said second wafer is a MEMS wafer including MEMS components in said cavity which is closed by said lid wafer.
  • 16. A method as claimed in claim 13, wherein said vias are lined with an insulating material prior to depositing said conductive or semiconductive material.
  • 17. A method as claimed in claim 16, wherein said wafers are silicon wafers.
  • 18. A method as claimed in claim 17, wherein said insulating material is thermal oxide.
  • 19. A method as claimed in claim 18, wherein said conductive or semiconductive material is doped silicon.
  • 20. A method as claimed in claim 19, wherein said conductive or semiconductive material is phosphorus doped amorphous silicon.
  • 21. A method as claimed in claim 13, wherein a portion of the backside of the wafer is removed to expose the rods, an insulating layer is formed on the surface of the remaining portion of the wafer, holes are etched through said insulating layer, a conductive layer is deposited on said insulating layer so as to contact the exposed rods, and a further etch is carried out to remove said conductive layer except in the vicinity of the exposed rods to provide said contact pads.
  • 22. A method as claimed in claim 21, wherein one or more additional conductive layers are electroless plated onto said conductive layer to form said contact pads.
  • 23. A method as claimed in claim 13, wherein said wafers are subsequently diced into individual MEMS devices.
  • 24. A MEMS device comprising: a MEMS body containing MEMS components; a lid portion bonded to said MEMS body by seal rings to form a hermetically sealed cavity; and one or more conductive or semiconductive rods filling vias extending through the lid portion into the sealed cavity to provide electrical connection to one or more components within the sealed cavity.
  • 25. A MEMS device as claimed in claim 24, wherein said one or more conductive rods are grouped in arrays between contact pads on opposite faces of said lid portion, the rods of each array being connected in parallel to increase electrical conductivity between the contact pads.
  • 26. A MEMS device as claimed in claim 24, wherein the lid and body portions are made of silicon, and said rods are made of doped amorphous silicon.
  • 27. A MEMS device as claimed in claim 26, wherein said portions are bonded together through direct contact silicon-to-silicon bonding.
  • 28. A MEMS device as claimed in claim 27, wherein said portions are bonded together with seal rings made of doped amorphous silicon.
  • 29. A MEMS device as claimed in claim 24, wherein the contact pads on said rods are bonded to pads on said wafer having cantilvered arms extending into said cavity.
  • 30. A MEMS device as claimed in claim 24, wherein said vias are lined with insulating material.
  • 31. A MEMS device as claimed in claim 30, wherein said insulating material is thermal oxide.
  • 32. A MEMS device as claimed in claim 25, wherein the contact pads on the backside of the lid portion have a multilayer structure comprising a deposited conductive layer including one or more sublayers and one or more layers deposited by electroless plating.
  • 33. A MEMS device as claimed in claim 32, wherein said contact pads on the backside of the layer comprise a sublayer of TiW, a sublayer of AlCu, and a layer of Ni(P) and a layer of Pd(P).
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit under 35 USC 119(e) of prior U.S. provisional application No. 60/691,276, filed Jun. 17, 2005, the contents of which are herein incorporated by reference.

Provisional Applications (1)
Number Date Country
60691276 Jun 2005 US