The representative embodiments are best understood from the following detailed description when read with the accompanying drawing figures. It is emphasized that the various features are not necessarily drawn to scale. In fact, the dimensions may be arbitrarily increased or decreased for clarity of discussion. Wherever applicable and practical, like reference numerals refer to like elements.
a-1b are schematic cross-sectional views illustrating a method of fabricating a semiconductor device in accordance with a representative embodiment.
a and 12b are cross-sectional views of a triple-path LDMOST, which is arranged for fast switching, in accordance with a representative embodiment.
In the following detailed description, for purposes of explanation and not limitation, specific details are set forth in order to provide a thorough understanding of example embodiments according to the present teachings. However, it will be apparent to one having ordinary skill in the art having had the benefit of the present disclosure that other embodiments according to the present teachings that depart from the specific details disclosed herein remain within the scope of the appended claims. Moreover, descriptions of apparati, devices, materials and methods known to one of ordinary skill in the art may be omitted so as to not obscure the description of the example embodiments. Such apparati, devices, methods and materials are clearly within the scope of the present teachings.
The methods of representative embodiments described herein, are not limited to Si substrates; and are applicable to other semiconductor materials including, but not limited to: SiC, Ge, SiGe, InP, GaAs, GaN. In general, the RESURF principle of the present teachings may be applied to the formation of pn junctions in a semiconductor substrate.
a illustrates a sequence of fabricating the extended drain for a HV semiconductor device by a method in accordance with a representative embodiment. The method is described in a sequence A, B, C in
Initially, a high-ohmic p-type substrate 1, which is illustratively Si is mask implanted with n-type dopant atoms to form a first region 2. In this example phosphorous (P) atoms are used with an implantation-energy of approximately 100 keV and a dose of approximately 6×1012 at/cm2. Next, a high temperature diffusion step is carried out to drive the n-type dopant deeper into the p-type substrate 1. This sequence forms a comparatively deep n-type region, which may be referred to herein as a Deep Resurf n, or DRN, and is labeled as such in the doping profile in
a (‘B’) illustrates an implant sequence according to a representative embodiment. A second region 3 is formed by masked implanting a p-type dopant such as Boron (B) or Indium (In), into a surface 4 of the substrate 1. Illustratively, B-dopant atoms are implanted at an energy of approximately 100 keV to approximately 180 keV and a dose of approximately 6×1012 at/cm2. Thus, a p-type layer substantially at the surface 4 is formed. Optionally, the p-type dopant atoms can be diffused, or activated during epitaxial growth in a subsequent step. The p-type second region 3 is indicated here as Resurf p, or RP, in the doping profile.
a (‘C’) illustrates the epitaxial growth of a p-type Si layer 5 having a thickness of approximately 2 μm to approximately 4 μm over the surface 4. Illustratively, the layer 5 is grown at approximately 1150° C. As described more fully herein, the p-type epilayer 5 may be the first epilayer in a multilayer stack formed by repeating the growth and doping sequences of the representative embodiment described in connection to
Subsequent to being grown, the epilayer 5 is implanted (illustratively without a mask) with P-atoms at an implant energy of approximately 100 keV to approximately 300 keV and a dose of approximately 1.4e12 at/cm2. After implantation, the P-atoms are optionally diffused to provide a third region 6 (DRN2) with n-type dopant in
Illustratively, the thickness of the epilayer 5 is less than 4.5 μm. By choosing the thickness of the epilayer to be not too thick, only a limited temperature budget is required for diffusing dopant atoms of opposite conductivity type into the first epitaxial layer for locally overdoping the dopant concentration in the epilayer, until the dopants intersect with the up-diffused dopant from the DRN-layer. The thinner the epilayer 5, the lower the thermal budget necessary for diffusing the dopant atoms in the epilayer 5, and the better the control over the dopant concentration in the epilayer 5. As already mentioned, a good control of the dopant concentration is beneficial in RESURF devices.
In representative embodiments, the growth of the first epitaxial layer 5 is carried out at a temperature below 150° C. The first epitaxial layer 5 is grown on a comparatively highly-doped surface layer of the first conductivity type. In order to restrict the segregation and/or evaporation of dopant atoms from the surface layer when starting the epitaxial growth process of the first epitaxial layer, the temperature is usefully below 1150° C. Alternative ways to reduce the segregation of dopant atoms (in particular Boron), is to ramp up the epitaxy reactor, and to omit all additional temperature steps usually done such as a H2 bake or furnace anneal step. In order to form a layer at or close to the surface, the energy of the implantation of the second dopants is usefully below 350 keV.
In the representative embodiments, the first conductivity type is p-type. The use of a p-type substrate 1 in combination with a p-type epitaxial layer 5 facilitates electrically insulating n-type transistors. Here at the intersection of the DMOS body and the up-diffused RP-layer, which is normally inside the epitaxial layer, the p-type dope enhances the junction isolation, whereas the use of an n-type epitaxial layer of much higher dope-level and without the DRN2 implantation is counter-acting the device isolation. As is known, junction isolation is more easily fabricated and cheaper than deep trench isolation.
After complete processing the net doses in the DRN and RP layers are each approximately 2e12 at/cm2, in the DRN2 layer approximately 1e12 at/cm2. The sheet resistance of the third region (DRN2) after processing is approximately 6 kOhm/square. As will become clearer as the description continues, the forming of the epitaxial layer 5 of the first conductivity type allows for easier access in depth to other layers of the first conductivity type and to the substrate.
Beneficially, the second region 3 of the first conductivity type is formed by a relatively low-energy implantation at the surface 4 and followed by epitaxial growth of an epitaxial layer 5 of the same first conductivity type on that surface layer. The combination of an implantation at the surface 4 and epitaxial growth circumvents the need for a high-energy dopant implantation (e.g., several MeVs) to realize the extended drain structure. A reduction in cost per wafer is obtained. Moreover, by omitting a high-energy implantation in the MeV range, the method can be applied in wafer-fabrication/processing facilities (wafer-fabs) with comparatively routine modification; and beneficially avoids wafer damage and subsequent repair that is often required prior to further processing. This offers significant advantages in flexibility to manufacture semiconductor devices in different wafer-fabs all over the world. Moreover, as will be appreciated by one of ordinary skill in the art, device reliability can be improved by reducing, if not eliminating, implant damage.
In accordance with the representative embodiments, the dopant concentration in the epitaxial layer 5 is well controlled, and particularly well-controlled to comparatively low dopant concentrations useful in high-voltage RESURF devices. To this end, according to the present teachings, epitaxial layer 5 of the first conductivity type is implanted with a third dopant to form a third region 6 of the second conductivity type in the epitaxial layer 5, the third region forming with the second region a pn junction. Improved control of dopant concentration can be obtained by overdoping locally the relatively low dopant concentration of the epitaxial layer 5 (e.g., p-type) by means of implantation dopant (e.g. n-type). This method allows a comparatively tight control of dopant atoms in the various p-n layers used for RESURF purposes. RESURF is obtained when the p-n layers under reverse-bias voltage are fully depleted before premature internal breakdown occurs. The depletion region is dependent on the dopant concentration of both the p and n layers. As such, in order to obtain fully-depleted p-n layers without exceeding the critical value of the electric field for breakdown, a good control of the dopant concentration is beneficial.
In an advantageous embodiment of the method suitable for RESURF the first epitaxial layer 5 is comparatively high-ohmic. As such, during epitaxial growth a relatively low concentration of dopant atoms is incorporated. The high-ohmic epitaxial layer 5 may be used in combination with a well-controlled implantation of ions of opposite conductivity type and subsequent optional diffusion described above. Because the dopant concentration in the high-ohmic epitaxial layer is comparatively low, only low dopant levels are necessary to compensate. In particular, dopant concentrations below 5e16 at/cm3 can be easily obtained with a very good control by implantation. However, some doping of the epitaxial layer 5 is useful to provide device isolation and contact to body/substrate 1.
As described more fully herein, the formation of alternating p-n layers by surface implantation combined with epitaxial growth and subsequently local overdoping of the epitaxial layer with a dopant of opposite conductivity type may be repeated one or more times. A plurality of stacked p-n layers may be formed on the substrate in this way. By applying these stacked p-n layers in the extended drain of a HVFET, the advantages are significant: by increasing the number of layers of the second type, the ON-resistance (Ron) is reduced at only slightly increased processing cost.
After forming of the alternating pn layers described in connection with
Next, a p-type body and lateral channel-region 25 (usefully a double-diffused MOS (DMOS) type, self-aligned to the poly-silicon gate 22) are formed by implantation and subsequent diffusion. Next are applied an n+ source 26, usefully self-aligned to the poly-silicon gate, and an n+ drain 27, usefully self-aligned to the FOX 20. An intermetallic dielectric layer is the deposited by TEOS or LTO to a thickness of approximately 1.0 μm, followed by opening contact-windows and deposition and etching of metallization for source with a field-plate 28, for a gate (not shown) and for drain with a field-plate 29. Usefully, this is covered by a dielectric scratch protection also enhancing the HV stabilization, in which openings for bond-pads are made.
In the ON-state, electrons flow from the source and MOS-channel to the drain through the two n-channel drift regions (Dual path). The total ON-state resistance (Ron) of the HV MOSFET now consists of the two resistances in parallel, which as will be appreciated by one of ordinary skill in the art, significantly lowers the ON resistance of the device. HV-DMOS transistors are used as switches in HV power supplies. The switches allow power conversion at approximately 100 kHz to approximately 500 kHz. For those power switches the ON-resistance (Ron) and Breakdown voltage (BVdS) values are very important parameters.
The epitaxial layer 5 initially was p-type after epitaxial growth. After diffusion of the P atoms, a third region of n-type (DRN2) 6 is formed, which forms with the second region (RP) a pn junction. Due to thermal processing such as the diffusion of the body after epitaxy, the various layers in the drift extension have some overlap, related with compensation of dope. Some small dopant compensation takes place between DRN2 and RP layers, typically approximately 25%, depending on the thickness of the epitaxial layer 5. The n-type P atoms of the first region (DRN) compensate for a certain (large) amount the p-type concentration of the second region (RP). In this example approximately 65% of the dopant concentration of the DRN and RP layers is compensated. The dopant concentration in the p-n layers is critical when used for RESURF. So the implantation dose of both the B as well as the P is critical in combination with the thermal budget.
The use of epitaxial growth of the first conductivity type beneficially isolates the device under the source to the body region. Here at the intersection of the DMOS body 25 and the up-diffused RP-layer 3a, which is normally inside the epitaxial layer, the p-type dope enhances the junction isolation, whereas the use of an n-type epitaxial layer of much higher dope-level and without the DRN2 implantation is counter-acting the device isolation. With an epilayer 4 of the second conductivity type together with a shallow body-diffusion 25, the device isolation with the up-diffused RP layer 3a could prove problematic. The same applies if more alternating layers are used in representative embodiments described herein. On the other hand the up-diffused DRN layer 2 must intersect sufficiently with DRN26 for the on-state current. This sets rather tight limits to the thickness of the epitaxial layer. With these restrictions, the HV LDMOST of
In a high-ohmic p-substrate 1 a first n-type region 2 (DRN) and second p-type region 3 (RP) are formed (‘D’). Next, a now slightly thicker p-type epitaxy 5 is grown on interface 4 and implanted with dopants using a mask and forming a third n-type region 6 (DRN2), which is optionally diffused. A fourth region 7 of p-type (RP2) is implanted using a mask substantially at the surface (i.e., at or close to the surface). A second p-type epitaxial layer 9 is grown over an interface 8 (‘F’). This epilayer 9 is implanted with usefully a blanket n-type layer 10 (without a mask) thereby forming a fifth region (DRN3), which is n-type (‘G’).
a and 12b are cross-sectional views of a triple-path LDMOST, which is arranged for fast switching, in accordance with a representative embodiment. The triple path LDMOST shown in
As shown in
Further improved embodiments of the LDMOST can be obtained by including one or more of the measures indicated below. Notably, further description of the noted Source and Drain Fingertips may be found in the related application filed concurrently.
At the Source Fingertips the drift region may be longer and the field-plate to source ‘stretched.’ Moreover, the n-layers (such as DRN and DRN2) may be somewhat withdrawn and/or mask-diluted (by having only locally openings for the implantation) as described in the related application filed concurrently. Furthermore, the p-layers may remain present since the source is not active here, in order to compensate for the effect of junction curvature.
Also at the Drain Fingertips the drift region may be longer and the field-plate to drain ‘stretched’. The p-layers (such as RP and RP2) may be slightly withdrawn and/or mask-diluted (by having only locally openings for the implantation) as described in the related application filed concurrently. Furthermore, the drain fingertips may have no source thereabout in order to prevent a concentration of current in this region and to compensate for the effect of junction curvature.
As noted previously, the methods of the present teachings can be combined with the manufacturing of other transistors or devices on an integrated circuit. The LDMOSTs as described above can be combined with a HV-NJFET, with CMOS circuitry and/or with a HV-PMOS. Small modifications to the LDMOST might be desirable. For example, at the Drain fingertip a HV-NJFET can be included, which is particularly useful for providing a start-up current to a low voltage (LV) control section or chip. It is also possible to integrate CMOS circuitry. In this case the body region surrounding the source might be replaced by a P-well implanted and diffused before the Poly-gate is applied, which P-well now also can be used for LV NMOS and CMOS.
Also an integrated HV-PMOS device is possible. This might be useful for example for sensing an isolated output (secondary) at the non-isolated primary (switching) side.
In connection with illustrative embodiments, high voltage semiconductor devices and methods of fabricating the devices are described. One of ordinary skill in the art appreciates that many variations that are in accordance with the present teachings are possible and remain within the scope of the appended claims. These and other variations would become clear to one of ordinary skill in the art after inspection of the specification, drawings and claims herein. The invention therefore is not to be restricted except within the spirit and scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
WO/IB006/0539 | Oct 2006 | IB | international |
The present application is a continuation of International Patent Application WO/IB2006/0539 to Adrianus W. Ludikhuize, et al., filed on Oct. 22, 2006, which in turn claims priority from European Patent Application (NXP Docket Number PH002312EP1) filed on Nov. 2, 2005. The present application is also related to U.S. Patent Application (NXP Docket Number PH008356) filed on even dated herewith. Priority is hereby claimed under under 35 U.S.C. §365(c) and 35 U.S.C. §120 from the referenced International Patent Application. The disclosures of these cross-referenced patent applications are specifically incorporated herein by reference.