The embodiment discussed herein relates to a method of manufacturing a resistance change element storing data by utilizing change in a resistance value.
In recent years, further size reduction, lower power consumption and higher functionality have been demanded for information apparatuses such as computers. Along with these demands, there has also been a demand for non-volatile semiconductor memories that enable higher integration, operate at a higher speed, and retain stored data even when power is not supplied. As one of the next generation non-volatile semiconductor memories capable of meeting such demands, a resistance change memory (Resistive Random Access Memory: hereinafter referred to as “ReRAM”) including a resistance change element has been developed (see, for example, Non Patent Citations 1, 2).
In a ReRAM, data is stored by utilizing change in a resistance value of a resistance change element. As depicted in
In the low resistance state, as depicted by d in the Figure, the inclination of the curved line depicting the relationship between the voltage and the current is large. When the current flowing into the resistance change element becomes a specified value (as depicted by e in the Figure), the resistance change element transitions to the high resistance state (as depicted by f in the Figure), and the current decreases rapidly.
As described above, the resistance change element transitions to the low resistance state when a voltage equal to or higher than a specified voltage is applied in the high resistance state, while the resistance change element transitions to the high resistance state when a current equal to or higher than a specified current is applied in the low resistance state. The resistance value in the low resistance state is approximately several kΩ and the resistance value in the high resistance state is from approximately several tens kΩ to 1 MΩ. Note that, in general, the change from the high resistance state to the low resistance state is referred to as “set” and the change from the low resistance state to the high resistance state is referred to as “reset”.
Since the NiO film constituting the resistance change element is an oxide, the electrodes holding both sides of the NiO film is in an easily-oxidizable state. For this reason, the electrodes of the resistance change element are formed of a metal which is hardly oxidized. Specifically, the electrodes are formed of a noble metal such as Pt or Ir (iridium). Patent Citation 1 describes a non-volatile memory having a resistance change element with the structure in which a film made of any of transition metal oxides such as NiO, TiO2, HfO, ZrO, ZnO, WO3, CoO, and Nb2O5 is sandwiched in between a pair of electrodes.
According to an aspect of the embodiment, a method of manufacturing a resistance change element includes forming a first noble metal film made of any one of a noble metal and a noble metal oxide above a semiconductor substrate, forming a transition metal film on the first noble metal film, forming a transition metal oxide film by oxidizing a surface of the transition metal film, and forming a second noble metal film made of any one of a noble metal and a noble metal oxide on the transition metal oxide film.
The object and advantages of the embodiment will be realized and attained by means of the elements and combinations particularly pointed out in the claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are not restrictive of the embodiments, as claimed.
The inventors of the present application and the like have found the following problem in a related ReRAM. Specifically, as depicted in
The inventors of the present application and the like have carried out various experiments and studies with an intention to reduce the driving current of ReRAM. As a result, it has been found that the driving current of a resistance change element can be reduced when an Ni (nickel) film is formed on the ground-side (negative polarity-side) electrode of the resistance change element and a transition metal oxide film (NiOx film) is formed by performing an oxidation treatment to the surface of the Ni film. It is not apparent why the driving current decreases when the Ni film is formed between the ground-side electrode and transition metal oxide film of the resistance change element. However, it can be assumed that if there is no Ni film, the diffusion of elements from the noble metal electrode to the transition metal oxide film or the diffusion of oxygen from the transition metal oxide film to the noble metal electrode occurs to cause driving voltage to be higher and driving current to be larger, whereas if the Ni film is formed between the ground-side electrode and the transition metal oxide film, such a phenomenon does not occur.
Hereinafter, a preferred embodiment will be described with reference to the accompanying drawings.
The lower electrode 21a and the upper electrode 21b may be formed of a noble metal other than Pt, for example, Pd (palladium), Ru (ruthenium), or Ir (iridium), or an oxide thereof. In the present embodiment, the lower electrode 21a is formed of Pt. Subsequently, the transition metal film 22 is formed by sputtering Ni onto the lower electrode 21a. After that, the surface of the transition metal film 22 is oxidized in an oxidizing atmosphere to form the transition metal oxide film 23 made of NiOx. In this case, if the entire transition metal film 22 is oxidized, the effect of reducing a driving current cannot be obtained. Therefore, it is necessary to adjust a temperature and time of oxidation treatment so as to control the thickness of the remaining transition metal film 22. For this reason, it is significant to check in advance the relationship between the temperature and time of oxidation treatment and the thickness of the remaining transition metal film. The thicknesses of the transition metal film and the transition metal oxide film after oxidation treatment are checked by the cross-sectional SEM (Scanning Electron Microscope) observation, the film crystallinity measurement, or the elemental analysis in the depth direction by using the XPS (X-ray Photoelectron Spectroscopy).
As can be seen from
It can be seen from this
Next, in the configuration depicted in
Although it is not apparent why the characteristic cannot be sufficiently obtained when the thickness of the transition metal film (Ni film) exceeds 20 nm, it is presumable that the reaction between Pt and Ni develops to lead to an increase in unevenness on the surface of the NiOx film.
As can be seen from
In
(Manufacturing Method of ReRAM)
Firstly, the process to form the structure depicted in
Next, a p-type impurity such as boron (B) is introduced into an n-type transistor forming region (a memory cell region and an n-type transistor forming region of the driving circuit; hereinafter, the same) in the semiconductor substrate 50 to form a p-well 52. In addition, an n-type impurity such as phosphorus (P) is introduced into a p-type transistor forming region (a p-type transistor forming region of the driving circuit; hereinafter, the same) in the semiconductor substrate 50 to form an n-well (unillustrated).
Subsequently, the surfaces of the p-well 52 and the n-well (unillustrated) are thermally oxidized to form a gate insulating film 53. After that, a polysilicon film is formed on the entire upper surface of the semiconductor substrate 50 by the CVD (Chemical Vapor Deposition) method. The resultant polysilicon film is patterned by the photolithography method and the etching method to form gate electrodes 54. At this time, as depicted in
Thereafter, using the gate electrodes 54 as masks, an n-type impurity such as phosphorus (P) with low concentration is ion-implanted into the p-well 52 in the n-type transistor forming region, so that n-type low concentration impurity regions 56 are formed. Similarly, using the gate electrodes 54 as masks, a p-type impurity such as boron (B) with low concentration is ion-implanted into the n-well (unillustrated) in the p-type transistor forming region, so that p-type low concentration impurity regions (unillustrated) are formed.
Thereafter, side walls 57 are formed on both sides of the gate electrode 54. These side walls 57 are formed such that an insulating film made of SiO2, SiN, or the like is formed on the entire upper surface of the semiconductor substrate 50 by the CVD method, and then the resultant insulating film is etched back to be left only on the both sides of the gate electrode 54.
Thereafter, using the gate electrode 54 and the side walls 57 as masks, an n-type impurity with high concentration is ion-implanted into the p-well 52 in the n-type transistor forming region, so that the re-type high concentration impurity regions 58a, 58b are formed. Here, the high concentration impurity region 58a is an impurity region (drain) disposed between the gate electrode 54 and the element isolation film 51. The high concentration impurity region 58b is an impurity region (source) disposed between the two gate electrodes 54.
Similarly, using the gate electrode and side walls in the p-type transistor forming region as masks, a p-type impurity with high concentration is ion-implanted into the n-well (unillustrated) to from a p-type high concentration impurity region (unillustrated). In this manner, the transistor T having a source and a drain with the LDD (Lightly Doped Drain) structure in each transistor forming region is formed.
Next, the process to form the structure depicted in
Subsequently, by using the photolithography method and the etching method, contact holes reaching the n-type high concentration impurity regions 58a, 58b in the n-type transistor forming region from the upper surface of the first interlayer insulating film 61 are formed. After that, a TiN film (unillustrated) serving as a barrier metal is formed on the entire upper surface of the semiconductor substrate 50 by the sputtering method. Thereafter, a W film is formed on the TiN film by the sputtering method or the CVD method, while W is filled in the contact holes. After that, the W film and the TiN film are polished by the CMP method until the first interlayer insulating film 61 is exposed. In this manner, W plugs 62a, 62b made by being filled with W are formed in the contact holes. Here, the W plug 62a is a plug connected to the high concentration impurity region 58a and the W plug 62b is a plug connected to the high concentration impurity region 58b.
Next, the process to form the structure depicted in
Next, the process to form the structure depicted in
Next, the process to form the structure depicted in
Subsequently, as depicted in
Thereafter, as depicted in
Next, the process to form the structure depicted in
Subsequently, as depicted in
Thereafter, by the sputtering method, a conducting film (unillustrated) having the laminated structure of TiN/Al/TiN/Ti, for example, is formed on the third interlayer insulating film 72 and the W plug 73. After that, the conducting film is patterned by the photolithography method and the etching method to form, as depicted in
In the ReRAM configured as such, the wiring 74, the gate electrode 54 of each transistor T, and the wiring 63b respectively are a bit line, a word line, and a ground line. When the resistance change element 71 is set, the transistor T is turned on to apply a predetermined voltage to the resistance change element 71 through the wiring 74 (bit line) by setting the lower electrode 67a to a ground potential. Additionally, when the resistance change element 71 is reset, the transistor T is turned on to apply a predetermined current to the resistance change element 71 through the wiring (bit line) 74 by setting the lower electrode 67a to a ground potential. Furthermore, when the state of the resistance change element 71 is detected, the transistor T is turned on to check a resistance between the wiring (bit line) 74 and the wiring 63b (ground line).
In the ReRAM according to the present embodiment, the resistance change element 71 is configured of the lower electrode 67a made of Pt, the transition metal film 68a made of Ni, the transition metal oxide film 69a made of NiOx, and the upper electrode 70a made of Pt. Therefore, there is such an effect that a driving voltage is low and a driving current is small. In this manner, the ReRAM can be highly integrated to meet such demands that information apparatuses are further reduced in size and save power consumption while having higher functionality.
Note that, the present embodiment has been described by using the example in which the present embodiment is applied to a stack-type ReRAM. However, the present embodiment is also applicable to a planer-type ReRAM.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions, nor does the organization of such examples in the specification relate to a showing of the superiority and inferiority of the invention. Although the embodiment of the present inventions has been described in detail, it should be understood that the various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the invention.
This application is a continuation of prior International Patent Application No. PCT/JP2006/325300, filed Dec. 19, 2006, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
7420198 | Baek et al. | Sep 2008 | B2 |
7525832 | Muraoka et al. | Apr 2009 | B2 |
7741669 | Baek et al. | Jun 2010 | B2 |
20040245557 | Seo et al. | Dec 2004 | A1 |
20050153504 | Kawazoe et al. | Jul 2005 | A1 |
20050206892 | Wang et al. | Sep 2005 | A1 |
20060054950 | Baek et al. | Mar 2006 | A1 |
20060098472 | Ahn et al. | May 2006 | A1 |
20060131554 | Joung et al. | Jun 2006 | A1 |
20070048990 | Zhuang et al. | Mar 2007 | A1 |
20090008620 | Baek et al. | Jan 2009 | A1 |
20090067215 | Muraoka et al. | Mar 2009 | A1 |
20100224850 | Baek et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
1555700 | Jul 2005 | EP |
2004-363604 | Dec 2004 | JP |
2005-203389 | Jul 2005 | JP |
2006-140489 | Jun 2006 | JP |
2006-324447 | Nov 2006 | JP |
2006-0023860 | Mar 2006 | KR |
2005024839 | Mar 2005 | WO |
2006115208 | Nov 2006 | WO |
Entry |
---|
European Search Report dated Dec. 22, 2010, issued in corresponding European Patent Application No. 06834970.3. |
Gibbons, J. F. et al.; “Switching Properties of Thin NiO films”; Solid-State Electronics UK, vol. 7, No. 11, Nov. 1964, pp. 785-797, XP2612768. |
Courtade, L. et al.; “Microstructure and resistance switching in NiO binary oxide films obtained from Ni oxidation”; Non-Volatile Memory Technology Symposium, 2006. NVMTS 2006. 7th Annual, IKEEE, PI, Nov. 1, 2006, pp. 94-99, XP031175743. |
Korean Office Action dated Feb. 17, 2011, issued in corresponding Korean Patent Application No. 10-2009-7012532. |
International Search Report of PCT/JP2006/325300, Mailing Date of Mar. 6, 2007. |
K. Kinoshita et al., “Bias Polarity Dependent Data Retention of Resistive Random Access Memory Consisting of Binary Transition Metal Oxide,” Applied Physics Letters. Published Sep. 6, 2006,vol. 89, pp. 103509-1-103509-3, cited in ISR. |
S. Seo et al., “Reproducible Resistance Switching in Polycrystalline NIO Films,” Applied Physics Letters, vol. 85, No. 23, Dec. 6, 2004, pp. 5655-5657, cited in ISR. |
European Office Action dated Sep. 5, 2011, issued in corresponding European Patent Application No. 06834970.3. |
Number | Date | Country | |
---|---|---|---|
20100083487 A1 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2006/325300 | Dec 2006 | US |
Child | 12519805 | US |