This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2022-048244, filed on Mar. 24, 2022, the entire contents of which are incorporated herein by reference.
The present disclosure relates to a method of processing a substrate, a method of manufacturing a semiconductor device, a recording medium, and a substrate processing apparatus.
As a process of manufacturing a semiconductor device, for example, there is a modification treatment represented by an annealing treatment of heating a substrate in a process chamber by using a heater to change a composition and a crystal structure in a thin film formed on a surface of the substrate or repair crystal defects and the like in the filmed thin film. In recent years, semiconductor devices have become remarkably miniaturized and highly integrated, and along with this, there is a demand for modification treatment for a high-density substrate in which a pattern with a high aspect ratio is formed. In the related art, a heat treatment method in which microwaves are used are studied as a method of modifying such a high-density substrate.
In the related-art treatment where the microwaves are used, some films may be affected by thermal history depending on films formed on the substrate, and it may be difficult to uniformly process (modify) a film formed on the substrate at a low temperature while satisfying the thermal history demanded in a device manufacturing process.
Some embodiments of the present disclosure provide a technique capable of uniformly processing a film formed on a substrate while lowering a temperature of the substrate.
According to some embodiments of the present disclosure, there is provided a technique that includes: loading a substrate in which a treatment target film and an action target film are formed into a process chamber; irradiating the action target film with an electromagnetic wave; and causing the action target film to generate heat by the irradiation with the electromagnetic wave and modifying the treatment target film with a directionality by heating the treatment target film with the heat generated by the action target film.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the present disclosure.
Reference will now be made in detail to various embodiments, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. However, it will be apparent to one of ordinary skill in the art that the present disclosure may be practiced without these specific details. In other instances, well-known methods, procedures, systems, and components have not been described in detail so as not to unnecessarily obscure aspects of the various embodiments.
Some embodiments of the present disclosure will now be described with reference to the drawings. The drawings used in the following description are schematic, and dimensional relationships, ratios, and the like of various components shown in the drawing may not match actual ones. Further, dimensional relationship, ratios, and the like of various components among plural drawings may not match one another.
In the embodiments, a substrate processing apparatus 100 according to the present disclosure is configured as a single-wafer heat treatment apparatus that performs various heat treatments on a wafer, and will be described with an apparatus that performs annealing treatment (modification treatment) in which electromagnetic waves are used, which will be described later. In the substrate processing apparatus 100 of the embodiments of the present disclosure, a FOUP (Front Opening Unified Pod: hereinafter referred to as a pod) 110 is used as a storage container (carrier) in which a wafer 200 as a substrate is accommodated. The pod 110 is also used as a transfer container configured to transfer the wafer 200 among various substrate processing apparatuses.
As shown in
Gate valves 205-1 and 205-2 that open/close the process chambers 201-1 and 202-2, respectively, are arranged on the left side of
As shown in
Here, an internal pressure of the pod 110, an internal pressure of the transfer chamber 203, and an internal pressure of the process chamber 201 are controlled to be the atmospheric pressure or a pressure higher by about 10 to 200 Pa (gauge pressure) than the atmospheric pressure. The internal pressure of the transfer chamber 203 may be higher than the internal pressure of the process chamber 201, and the internal pressure of the process chamber 201 may be higher than the internal pressure of the pod 110.
A process furnace with a substrate processing structure as shown in
As shown in
A mounting stage 210 is installed in the process chamber 201, and the boat 217 as the substrate holder configured to hold the wafer 200 as the substrate is mounted on the upper surface of the mounting stage 210. The boat 217 holds the wafer 200 to be processed and quartz plates 101a and 101b as heat insulating plates placed vertically above and below the wafer 200 to sandwich the wafer 200 at predetermined intervals. Further, susceptors 103a and 103b such as a silicon plate (Si plate) and a silicon carbide plate (SiC plate) may be placed between the quartz plates 101a and 101b and the wafer 200, respectively. In the embodiments of the present disclosure, the quartz plates 101a and 101b and the susceptors 103a and 103b are the same components, respectively, and they will be referred to as a quartz plate 101 and a susceptor 103 respectively in a case where they may not be distinguished from each other.
The case 102 as the process container is formed with, for example, a circular cross section and is formed as a flat closed container. Further, the transfer housing 202 is made of, for example, metal material such as aluminum (Al) or stainless steel (SUS). A space surrounded by the case 102 may be referred to as the process chamber 201 or a reaction area 201 as a process space, and a space surrounded by the transfer housing 202 may be referred to as the transfer chamber 203 or the transfer area 203 as a transfer space. Further, the process chamber 201 and the transfer chamber 203 are not limited to being configured to be adjacent to each other in the horizontal direction as in the embodiments of the present disclosure, but may be configured to be adjacent to each other in the vertical direction.
As shown in
An electromagnetic wave supplier as a heater, which will be described in detail later, is installed at the side surface of the case 102, and an electromagnetic wave such as microwaves supplied from the electromagnetic wave supplier is introduced into the process chamber 201 to heat the wafer 200 and the like, thus processing the wafer 200.
The mounting stage 210 is supported by a shaft 255 as a rotary shaft. The shaft 255 penetrates a bottom of the case 102, and is further connected to a driver 267 that performs a rotation operation outside the transfer container 202. By operating the driver 267 to rotate the shaft 255 and the mounting stage 210, it is possible to rotate the wafer 200 placed on the boat 217. Further, the circumference of the lower end portion of the shaft 255 is covered with a bellows 212 to keep the inside of the process chamber 201 and the transfer area 203 airtight.
Here, the mounting stage 210 may be configured to be raised or lowered by the driver 267 depending on a height of the substrate loading/unloading port 206 so that the wafer 200 is at a wafer transfer position when the wafer 200 is transferred, and the wafer 200 is at a processing position (wafer processing position) in the process chamber 201 when the wafer 200 is processed.
An exhauster configured to exhaust the atmosphere of the process chamber 201 is installed below the process chamber 201 and on the outer peripheral side of the mounting stage 210. As shown in
Here, the pressure regulator 244 is not limited to the APC valve but may be configured to be used together with a normal opening/closing valve and a normal pressure regulating valve, as long as it may receive pressure information (a feedback signal from a pressure sensor 245 to be described later) in the process chamber 201 and regulate an exhaust amount.
The exhauster (also referred to as an exhaust system or an exhaust line) mainly includes the exhaust port 221, the exhaust pipe 231, and the pressure regulator 244. The exhaust port may be installed to surround the mounting stage 210 such that a gas may be exhausted from the entire circumference of the wafer 200. Further, the vacuum pump 246 may be included in the exhauster.
The cap flange 104 is provided with a gas supply pipe 232 configured to supply process gases for various substrate processing, such as an inert gas, a precursor gas, and a reaction gas, into the process chamber 201.
The gas supply pipe 232 is provided with a mass flow controller (MFC) 241, which is a flow rate controller (flow rate control part), and a valve 243, which is an opening/closing valve, sequentially from the upstream side of the gas supply pipe 232. For example, a source of nitrogen (N2) gas, which is an inert gas, is connected to the upstream side of the gas supply pipe 232 to supply the nitrogen gas into the process chamber 201 via the MFC 241 and the valve 243. When a plurality of kinds of gases are used when processing the substrate, the plurality of kinds of gases may be supplied by using a structure in which a gas supply pipe provided with a MFC, which is a flow rate controller, and a valve, which is an opening/closing valve sequentially from the upstream side thereof, is connected to the gas supply pipe 232 at the downstream side of the valve 243. Further, a gas supply pipe provided with a MFC and a valve may be installed for each gas type.
A gas supply system (gas supplier) mainly includes the gas supply pipe 232, the MFC 241, and the valve 243. When an inert gas flows through the gas supply system, the gas supply system is also referred to as an inert gas supply system. As the inert gas, in addition to the N2 gas, for example, a rare gas such as an Ar gas, a He gas, a Ne gas, or a Xe gas may be used.
A temperature sensor 263, which is a non-contact temperature measuring apparatus, is installed at the cap flange 104. By regulating an output of a microwave oscillator 655, which will be described later, based on temperature information detected by the temperature sensor 263, the substrate is heated such that a temperature distribution of the substrate becomes a desired temperature distribution. The temperature sensor 263 includes a radiation thermometer such as an IR (Infrared Radiation) sensor. The temperature sensor 263 is installed to measure a surface temperature of the quartz plate 101a or a surface temperature of the wafer 200. In a case where the above-mentioned susceptor is provided, the temperature sensor 263 may be configured to measure a surface temperature of the susceptor.
When the temperature of the wafer 200 (wafer temperature) is described in the present disclosure, it will be described as referring to a case where it means a wafer temperature converted by temperature conversion data to be described later, that is, an estimated wafer temperature, a case where it means a temperature obtained by directly measuring the temperature of the wafer 200 with the temperature sensor 263, and a case where it means both of them.
By acquiring a transition of temperature change for each of the quartz plate 101 or the susceptor 103 and the wafer 200 in advance by the temperature sensor 263, temperature conversion data showing a correlation between the temperature of the quartz plate 101 or the susceptor 103 and the temperature of the wafer 200 may be stored in a memory 121c or an external memory 123. By creating the temperature conversion data in advance in this way, the temperature of the wafer 200 may be estimated by measuring the temperature of the quartz plate 101, and it is possible to control the output of the microwave oscillator 655, that is, control the heater, based on the estimated temperature of the wafer 200.
The present disclosure is not limited to the above-mentioned radiation thermometer to measure the temperature of the wafer 200. The temperature of the wafer 200 may be measured by using a thermocouple or a combination of a thermocouple and a non-contact thermometer. However, when the temperature is measured by using the thermocouple, the thermocouple may be arranged in the vicinity of the wafer 200 to measure the temperature. That is, since the thermocouple may be arranged in the process chamber 201, the thermocouple itself may be heated by the microwaves supplied from the microwave oscillator to be described later, such that the temperature may not be accurately measured. Therefore, a non-contact thermometer may be used as the temperature sensor 263.
Further, the temperature sensor 263 is not limited to being installed at the cap flange 104, but may be installed at the mounting stage 210. Further, the temperature sensor 263 may be configured to indirectly measure the temperature by reflecting a light radiating from a measurement window installed at the cap flange 104 or the mounting stage 210 with a mirror or the like, as well as may be directly installed at the cap flange 104 or the mounting stage 210. Further, the number of temperature sensors 263 is not limited to one, and a plurality of temperature sensors 263 may be installed.
Electromagnetic wave introduction ports 653-1 and 653-2 are installed at the sidewall of the case 102. One ends of waveguides 654-1 and 654-2 configured to supply electromagnetic waves into the process chamber 201 are connected to the electromagnetic wave introduction ports 653-1 and 653-2, respectively. Microwave oscillators (electromagnetic wave sources) 655-1 and 655-2 as electromagnetic wave oscillators serving as heating sources configured to supply electromagnetic waves into the process chamber 201 to perform a heating are connected to the other ends of the waveguides 654-1 and 654-2, respectively. The microwave oscillators 655-1 and 655-2 supply the electromagnetic waves such as microwaves to the waveguides 654-1 and 654-2, respectively. A magnetron, a klystrons, and the like are used as the microwave oscillators 655-1 and 655-2. Hereinafter, the electromagnetic wave introduction ports 653-1 and 653-2, the waveguides 654-1 and 654-2, and the microwave oscillators 655-1 and 655-2 will be described as an electromagnetic wave introduction port 653, a waveguide 654, and a microwave oscillator 655, respectively, when they may not be distinguished from each other.
A frequency of an electromagnetic wave generated by the microwave oscillator 655 may be controlled to fall within a frequency range of 13.56 MHz or more and 24.125 GHz or less. Further, the frequency may be controlled to 2.45 GHz or 5.8 GHz.
Here, the frequencies of the microwave oscillators 655-1 and 655-2 may be the same frequency or may be different frequencies.
Further, it is described in the embodiments of the present disclosure that two microwave oscillators 655 are arranged at a side surface of the case 102. However, the present disclosure is not limited thereto, and one or more microwave oscillators may be arranged at the side surface of the case 102. Further, the microwave oscillators may be arranged at different side surfaces such as opposite side surfaces of the case 102. The electromagnetic wave supplier (also referred to as an electromagnetic wave supplier, a microwave supplier, or a microwave supplier) as a heater mainly includes the microwave oscillators 655-1 and 655-2, the waveguides 654-1 and 654-2, and the electromagnetic wave introduction ports 653-1 and 653-2.
A controller 121, which will be described later, is connected to each of the microwave oscillators 655-1 and 655-2. The temperature sensor 263 configured to measure the temperature of the quartz plate 101a or 101b or the wafer 200 accommodated in the process chamber 201 is connected to the controller 121. The temperature sensor 263 measures the temperature of the quartz plate 101 or the susceptor 103, or the temperature of the wafer 200 by the above-described method and transmits the measured temperature to the controller 121, and the controller 121 controls the outputs of the microwave oscillators 655-1 and 655-2 to control the heating of the wafer 200.
Here, the microwave oscillators 655-1 and 655-2 are controlled by the same control signal transmitted from the controller 121. However, the present disclosure is not limited thereto, and the microwave oscillators 655-1 and 655-2 may be individually controlled by transmitting individual control signals from the controller 121 to the microwave oscillators 655-1 and 655-2, respectively.
As shown in
The memory 121c includes, for example, a flash memory, a hard disk drive (HDD), or the like. A control program that controls operations of a substrate processing apparatus, a process recipe in which sequences and conditions of annealing (modification) treatment are written, etc. are readably stored in the memory 121c. The process recipe functions as a program configured to cause the controller 121 to execute each sequence in the substrate processing process, which will be described later, to obtain a predetermined result. Hereinafter, the process recipe and the control program may be generally and simply referred to as a “program.” Furthermore, the process recipe may be simply referred to as a “recipe.” When the term “program” is used herein, it may indicate a case of including the recipe, a case of including the control program, or a case of including both the recipe and the control program. The RAM 121b is constituted as a memory area (work area) in which programs or data read by the CPU 121a are temporarily stored.
The I/O port 121d is connected to the MFC 241, the valve 243, the pressure sensor 245, the APC valve 244, the vacuum pump 246, the temperature sensor 263, the driver 267, the microwave oscillator 655, and so on.
The CPU 121a is configured to be capable of reading and executing the control program from the memory 121c. The CPU 121a is also configured to be capable of reading the recipe from the memory 121c according to an input of an operation command from the input/output device 122. The CPU 121a is configured to be capable of controlling the flow rate regulating operation of various kinds of gases by the MFC 241, the opening/closing operation of the valve 243, the pressure regulating operation performed by the APC valve 244 based on the pressure sensor 245, the actuating and stopping operation of the vacuum pump 246, the output regulating operation performed by the microwave oscillator 655 based on the temperature sensor 263, the operation of rotating the mounting stage 210 (or the boat 217) and adjusting the rotation speed of the mounting stage 210 with the driver 267 or the operation of raising/lowering the mounting stage 210, and so on, according to contents of the read recipe.
The controller 121 may be configured by installing, on the computer, the aforementioned program stored in the external memory (for example, a magnetic disk such as a hard disk, an optical disc such as a CD, a magneto-optical disc such as a MO, or a semiconductor memory such as a USB memory or a SSD) 123. The memory 121c or the external memory 123 is configured as a computer-readable recording medium. Hereinafter, the memory 121c and the external memory 123 may be generally and simply referred to as a “recording medium.” When the term “recording medium” is used herein, it may indicate a case of including the memory 121c, a case of including the external memory 123, or a case of including both the memory 121c and the external memory 123. Furthermore, the program may be provided to the computer by using communication means or unit such as the Internet or a dedicated line, instead of using the external memory 123.
Next, by using the process furnace of the above-described substrate processing apparatus 100, as a process of manufacturing a semiconductor device, an example of a method of modifying (crystallizing) an amorphous silicon (Si) film 2002 as a film (treatment target film or target film), which is a target of heat treatment (modification treatment), formed on a wafer 200 will be described along with a process flow shown in
As shown in
The SiO film 2001 is a film formed by diffusing oxygen (O) on the surface of a silicon substrate with an oxygen atmosphere set in a reaction chamber with a predetermined temperature (for example, 900 degrees C.). Further, in a case where the amorphous Si film 2002 is a P-containing Si film, it is a film formed by supplying, for example, SiH4 (monosilane) and PH3 (phosphine) into the reaction chamber with a predetermined temperature (for example, 500 degrees C. to 650 degrees C.). Further, the metal-containing film 2003 is a film formed by supplying a metal-containing gas into the reaction chamber with a predetermined temperature. For example, in a case where the metal-containing film 2003 is a TiN film, it is a film formed by supplying, for example, TiCl4 (titanium tetrachloride) and NH3 (ammonia) into the reaction chamber with a predetermined temperature (for example, 300 degrees C. to 500 degrees C.). The SiO film 2001, the amorphous Si film 2002, and the metal-containing film 2003 are formed on the wafer 200 in a substrate processing apparatus, for example, a batch-type substrate processing apparatus, different from the above-described substrate processing apparatus 100.
In the following description, the operation of each component constituting the substrate processing apparatus 100 is controlled by the controller 121. Further, as in the above-described process furnace structure, since the same processing content, that is, the same recipe is used in a plurality of process furnaces in the substrate processing process in the embodiments of the present disclosure, a substrate processing process in which one of the process furnaces is used will be described, and the substrate processing processes in which other process furnaces are used will not be described.
When the term “wafer” is used in the present disclosure, it may refer to “a wafer itself” or “a wafer and a stacked body of certain layers or films formed on a surface of the wafer.” When the phrase “a surface of a wafer” is used in the present disclosure, it may refer to “a surface of a wafer itself” or “a surface of a certain layer formed on a wafer.” When the expression “a certain layer is formed on a wafer” is used in the present disclosure, it may mean that “a certain layer is formed directly on a surface of a wafer itself” or that “a certain layer is formed on a layer formed on a wafer.” When the term “substrate” is used in the present disclosure, it may be synonymous with the term “wafer.”
As shown in
When the loading of the wafer 200 into the process chamber 201 is completed, the internal atmosphere of the process chamber 201 is controlled such that the internal pressure of the process chamber 201 becomes a predetermined pressure (for example, 10 to 102,000 Pa). Specifically, while exhausting the interior of the process chamber 201 by the vacuum pump 246, the valve opening state of the pressure regulator 244 is feedback-controlled based on the pressure information detected by the pressure sensor 245, such that the internal pressure of the process chamber 201 is set to the predetermined pressure. At the same time, the electromagnetic wave supplier may be controlled with preheating to control the heating to a predetermined temperature (S502). When the temperature is raised to a predetermined substrate processing temperature by the electromagnetic wave supplier, the temperature may be raised with an output smaller than an output of a modifying step, which will be described later, such that the wafer 200 is not deformed or damaged. Further, when the substrate processing is performed under the atmospheric pressure, the process may be controlled to proceed to an inert gas supplying step S503, which will be described later, after regulating the in-furnace temperature without regulating the in-furnace pressure.
When the internal pressure and the internal temperature of the process chamber 201 are controlled to predetermined values by the in-furnace pressure/temperature regulating step S502, the driver 267 rotates the shaft 255 to rotate the wafer 200 via the boat 217 on the mounting stage 210. At this time, an inert gas such as a nitrogen gas is supplied via the gas supply pipe 232 (S503). Further, at this time, the internal pressure of the process chamber 201 is a predetermined value in a range of 10 Pa or more and 102,000 Pa or less and is regulated to be, for example, 101,300 Pa or more and 101,650 Pa or less. The shaft may be rotated during the substrate loading step S501, that is, after the wafer 200 is loaded into the process chamber 201.
When the interior of the process chamber 201 is maintained at the predetermined pressure, the microwave oscillator 655 supplies microwaves into the process chamber 201 for a predetermined time (heating time or processing time), for example, for 600 seconds, via the above-described components. When the microwaves are supplied into the process chamber 201, the metal-containing film 2003 is irradiated and heated with the microwaves. That is, the metal-containing film 2003 is irradiated with the microwaves to generate heat, and the adjacent amorphous Si film 2002 is heated.
Here, when the metal-containing film 2003 generates heat due to the microwave irradiation, since an atom-to-atom distance (also referred to as a crystal lattice distance) in the amorphous Si film 2002 at an interface with the metal-containing film 2003 approximates an atom-to-atom distance in the metal-containing film 2003, the amorphous Si film 2002 is crystallized with being aligned to the metal-containing film 2003. More specifically, when the metal-containing film 2003 is a titanium nitride (TiN) film, a surface separation of TiN is about 2.1 Å and a surface separation of Si is about 1.9 Å, which is close to that of TiN. Therefore, the amorphous Si film 2002 is crystallized with being aligned to TiN. As a result, crystal lattices of the amorphous Si film 2002 are aligned in order from the amorphous Si film 2002 on the side of the metal-containing film 2003, such that the amorphous Si film 2002 may be crystallized. That is, by selectively heating the crystals of the metal-containing film 2003, which are action target grains, with the microwaves, the amorphous Si of the adjacent amorphous Si film 2002 is crystallized from the interface of the metal-containing film 2003. As a result, the amorphous Si film 2002 may be crystallized uniformly with a large crystal grain size within the film.
As described above, since the amorphous Si film 2002 is in contact with the metal-containing film 2003, when the metal-containing film 2003 generates the heat due to the microwave irradiation, the amorphous Si film 2002 is modified (crystallized) with a directionality from the side of the contact surface with the metal-containing film 2003, as indicated by an arrow in
Therefore, since the amorphous Si film 2002 may be modified into a crystalline Si film 2004 with the directionality from the amorphous Si film 2002 on the side of the contact surface with the metal-containing film 2003, the amorphous silicon film formed on the surface of the wafer 200 may be modified (crystallized) into a polysilicon film. Therefore, it is possible to uniformly modify the wafer 200.
As the action target film, the metal-containing film 2003 whose crystal lattice constant is the same as or close to the crystal lattice constant of the amorphous Si film 2002 which is the treatment target film may be used. As a result, a crystallization speed may be increased, thereby widening a crystallized region.
Here, as shown in
Further, in thermal annealing treatment by resistance heating, the temperature may rise uniformly regardless of a type or a structure of a film formed on the wafer 200 due to radiation, convection, or transfer of heat from the heater. Further, when the amorphous silicon film is modified into the polysilicon film, since annealing treatment is performed at a heating temperature higher than the normal crystallization temperature, the temperature may be controlled by a method such as solid phase crystallization of aligning crystal planes or metal induced crystallization of controlling a grain size by lowering a crystal temperature. A temperature range in the method such as the solid phase crystallization or the metal induced crystallization is narrow because it is a mixed crystal temperature range for crystallization. Further, long-term thermal annealing treatment is performed for crystallization while suppressing variations in the crystal grain size.
In the present disclosure, the above-described problems may be solved by heating the metal-containing film 2003 provided to be in contact with the amorphous Si film 2002 by the microwaves. Further, since the amorphous Si film may be heated from the inside thereof, it is possible to increase the crystal grain size and uniformly modify (crystallize) the amorphous Si film from the amorphous Si film on the side of the metal-containing film 2003.
After a preset processing time elapses, the rotation of the boat 217, the supply of the gas, the supply of the microwaves, and the exhaust of the exhaust pipe are stopped.
After the internal pressure of the process chamber 201 is returned to the atmospheric pressure, the gate valve 205 is opened such that the process chamber 201 is spatially in fluid communication with the transfer chamber 203. After that, the wafer 200 placed on the boat is unloaded to the transfer chamber 203 by the tweezers 125a of the transfer machine 125 (S505).
By repeating the above-described operations, the wafer 200 is modified and the process proceeds to the next substrate processing process.
As the next substrate processing process, for example, in a case where the above-mentioned metal-containing film (action target film or assist film) 2003 is useless due to the device characteristics, the metal-containing film may be removed. In a case where the action target film is useful due to the device characteristics, the action target film may not be removed.
In the present disclosure, a microwave absorption rate of the metal-containing film 2003 is larger than those of other films (for example, the SiO film 2001) on the wafer 200 excluding the wafer 200 and the amorphous Si film 2002, and the larger the difference thereof, the more thermal histories of other films (for example, the SiO film 2001) may be suppressed.
Although the above-described description is made by using the microwaves, since absorption characteristics of substance contained in the action target film (assist film) also depend on a wavelength of an electromagnetic wave, the present disclosure may use wavelengths of various electromagnetic waves other than the microwaves.
According to the embodiments of the present disclosure, one or more effects set forth below may be obtained.
(a) By using the metal-containing film (action target film) 2003 and irradiating the metal-containing film 2003 with the microwaves when modifying (heat-treating) the amorphous Si film (treatment target film) 2002, it is possible to modify (crystallize) the amorphous Si film 2002 with the directionality.
Therefore, it is possible to uniformly modify (crystallize) the amorphous Si film from the amorphous Si film on the side of the metal-containing film 2003, making it possible to uniformly process the film formed on the substrate while lowering the temperature of the wafer 200.
(b) It is possible to selectively heat the metal-containing film (action target film) 2003, and since the amorphous Si film 2002 may be heated from the inside thereof, the crystal grain size may be increased.
(c) Since the metal-containing film (action target film) 2003 may be selectively heated, it is possible to raise a temperature in a region to be diffused. Further, the processing temperature may be shortened.
As described above, according to the present disclosure, it is possible to provide a technique of modifying a film formed on a substrate while lowering the temperature of the substrate.
Examples will be described below.
In
The second comparative example shows the refractive index of the amorphous Si film of the sample shown in
The third comparative example shows the refractive index of the amorphous Si film of the sample shown in
The present example shows the refractive index of the amorphous Si film of the sample shown in
That is, it is confirmed that the refractive index of the amorphous Si film is made smaller when the microwaves are used than when the microwaves are not used. Further, it is confirmed that the amorphous Si film is crystallized by heating the metal-containing film in contact with the amorphous Si film by the microwave irradiation. In other words, it is confirmed that the above-described action target film may be efficiently heated to crystallize the amorphous film by heating the above-described action target film by the microwave (electromagnetic wave) irradiation.
According to some embodiments of the present disclosure, it is possible to uniformly process a film formed on a substrate while lowering a temperature of the substrate.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosures. Indeed, the embodiments described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the disclosures. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosures.
Number | Date | Country | Kind |
---|---|---|---|
2022-048244 | Mar 2022 | JP | national |