1. Field of the Invention
This invention relates to a method of temporarily securing a die to a burn-in carrier for the purpose of burn-in and testing of the die. More specifically, this invention relates to a method of temporarily securing a die to a burn-in carrier through the use of adhesive tape for the purpose of burn-in and testing of the die.
2. State of the Art
Integrated circuit memory devices, such as dynamic random access memories (DRAMS) and static random access memories (SRAMS) are tested during manufacture and often prior to use. Such testing is for the purpose of ensuring that only known good dice are subsequently used.
One of the test procedures which is used to determine the viability of integrated semiconductor circuits is a burn-in procedure. The burn-in test is intended to stress the electrical interconnection of the die and drive any contaminants in the body of the die into the active circuitry, thus causing failure. This test is based on data indicating that dice that are prone to these types of failures will actually malfunction in the early part of their lifetime. By conducting burn-in tests, the early failures of the dice are detected and only known good dice are subsequently used in applications.
In the testing of a die prior to encapsulation, temporary electrical connection must be effected between the die and a test fixture. This is typically done by connecting the test fixture to the die using the bond pads of the die through the use of wire bonds or tape automated bonding. As is evident, the testing of an unpackaged or bare die requires a significant amount of handling. Since the test package must be separated from the die, the temporary packaging may be more complicated than either standard discrete packaging or multichip module packaging. The package must be compatible with any desired test and burn-in procedures without damaging the die at the bond pads or elsewhere during any such test or burn-in procedure.
In U.S. Pat. No. 4,899,107, a reusable burn-in test fixture for discrete tape automated bonding (TAB) dice is disclosed. The fixture consists of two halves, one of which is a die cavity plate for receiving semiconductor dice as the units under test and the other half establishes electrical contact with the dice and with the burn-in oven. The dice are held in position within the carrier by being resiliently mounted therein.
In U.S. Pat. No. 5,408,190, a reusable burn-in test fixture for discrete dice is disclosed. The reusable burn-in test fixture comprises two halves, the first half containing a cavity in which a die is inserted. As disclosed, a precured RTV silicone backing strip is used to retain a die in a face-up position in the carrier. The precured RTV strip, commonly known as a “gel pack,” exhibits a static charge sufficient and coefficient of friction sufficient to hold an intermediate substrate in place without the use of adhesive and elastomerically biases the die against the cover plate of the test fixture.
In U.S. Pat. No. 5,336,649, a precured RTV silicone strip, “gel pack,” is used for temporarily securing the die in place within a package body. The RTV silicone strip exhibits a static charge sufficient and coefficient of friction sufficient to hold the die in place within a burn-in carrier. Another embodiment discloses the use of a tape type die attach adhesive, known under the trademark of E.I. DuPont de Nemours of Wilmington, Del. as Kapton QL Die Attach Adhesive, to hold the die in place during burn-in. The adhesive is heated, but for a shorter time than for a permanently packaged die. This allows a standard process setup to be used for temporary die attachment while permitting the adhesive attachment of the die to be readily overcome subsequent to testing and burn-in. Also disclosed is the use of water soluble hot melt glass, a thermoplastic material, to temporarily hold the die during testing and burn-in. After testing, the hot melt glass is removed by dissolving it using deionized water, thereby freeing the die from the package. In yet another instance, the die may be adhesively bonded to the carrier through the use of a sugar and water solution. After testing, the package including the die is placed in deionized water, which causes the sugar to dissolve, thereby freeing the die from the package.
However, these prior types of die attachment techniques have inherent problems. They either require specific types of mechanical mounting arrangements to be designed into the burn-in carrier, or require that the silicone “gel pack” exhibit sufficient electrostatic charge to retain the die in the burn-in carrier, or require the careful spraying of the adhesive in the burn-in carrier to minimize overspray of the adhesive, or require the use of a water cleaning solution after testing and burn-in to remove the adhesive remnants.
The present invention is directed to a method of using adhesive tape to temporarily retain a die being temporarily held in a fixture during testing and burn-in. The method of the present invention uses a die cut piece of adhesively coated tape to hold a die in a test and burn-in fixture. Upon subsequent heating of the tape beyond the normal operating range of the adhesive coating on the tape, the die is removed from the tape, the tape is removed from the test and burn-in fixture, and the remaining adhesive, if any, is removed from the test and burn-in fixture.
The present invention will be better understood when the drawings are taken in conjunction with the description of the invention wherein:
Referring to drawing
Referring to drawing
Any suitable type of high temperature, pressure-sensitive 3 adhesively coated tape 30 may be used to retain the die 2 in the package body 12 during the testing and burn-in thereof. The adhesively coated tape 30 may be coated with adhesive on either a single side or on both sides, as desired. The tape 30 is cut to such size and shape as is necessary to fit within the package body 12 to retain the die 2 therein during testing and burn-in. It is not necessary that the adhesive tape 30 be cut to the size of the die 2 being held in the fixture 10 during testing and burn-in thereof. While any suitable high temperature, pressure-sensitive adhesive tape 30 may be used, it is preferred that the tape 30 have an adhesive thereon with a maximum working temperature of approximately 180 degrees Centigrade. Also, the tape 30 may use differing types of suitable adhesives thereon, such as pressure-sensitive silicone adhesive, acrylic adhesive, etc. It is also desirable for the adhesive on the tape 30 to leave a non-conductive ash when it oxidizes or bums to prevent any potential problems of electrical connections with any portion of any die 2 being tested or during burn-in. In situations where the die 2 does not need to be tested or subjected to burn-in temperatures of up to and including approximately 180 degrees Centigrade and where a lower testing and burn-in temperature is acceptable, an adhesive such as an acrylic adhesive which is suitable up to approximately 155 degrees Centigrade may be used. Also, for ease of processing, it is desirable that tape 30 be backed tape, such as through the use of paper or the like, so that the piece of the tape 30 to be used in the fixture 10 may be easily, readily cut by a suitable cutting die having the desired configuration without the cutting die cutting through the paper backing on the tape. In this manner, the piece of tape 30 used in the fixture 10 may be readily removed after cutting to size by a simple vacuum tool, such as a pick and place TEFLON® nose vacuum tool.
The preferred tape 30 for use in the present invention is Temp-R-Tape ® of Kapton, K100, K102, K103, K104, K250, K250X and K350, a trademark of DuPont, pressure-sensitive tapes manufactured from DuPont's polyimide film, as sold by CHR Industries, Inc. of New Haven, Conn. Such preferred type tape has an adhesive thickness which varies from 0.0015 inches to 0.0045 inches, a backing thickness of 0.0005 inches to 0.002 inches, and a maximum adhesive working temperature range from 150 degrees Centigrade to 180 degrees Centigrade.
Referring to drawing
As shown, in the step 100 of the method of the present invention, a test/burn-in fixture 10 suitable for use with the die 2 to be tested is provided. A cutting die is used to cut the desired piece of high temperature, pressure-sensitive tape 30 to size to fit into the test/burn-in fixture 10 as step 200. The cut piece of tape 30 is transferred in step 300 to the test/burn-in fixture 10 by any suitable means, such as through the use of a TEFLON® nose, pick and place tool 38 (
Referring to drawing
From the foregoing it can be seen that many changes, additions, deletions, etc., may be made to the present invention which fall within the scope thereof such that different types of tape having differing types of adhesives may be used. Different types of cleaning of the fixture 10 may be used to remove any adhesive remaining thereon. The tape 30 may be placed in the fixture 10 by various suitable means, other than using a vacuum, to transfer the tape 30. The fixture 10 may be of any suitable type to retain the die 2 during testing and burn-in. The die 2 may be connected to the fixture 10 by any suitable means such as wire bonding or tape automated bonding.
This application is a continuation of application Ser. No. 08/581,905, filed Jan. 2, 1996, now U.S. Pat. No. 6,551,845, issued Apr. 22, 2003.
Number | Name | Date | Kind |
---|---|---|---|
4447720 | Ogawa et al. | May 1984 | A |
4796078 | Phelps, Jr. et al. | Jan 1989 | A |
4826705 | Drain et al. | May 1989 | A |
4897360 | Guckel et al. | Jan 1990 | A |
4899107 | Corbett et al. | Feb 1990 | A |
4992850 | Corbett et al. | Feb 1991 | A |
5048179 | Shindo et al. | Sep 1991 | A |
5118567 | Komiyama et al. | Jun 1992 | A |
5145009 | Mheidle et al. | Sep 1992 | A |
5173451 | Kinsman et al. | Dec 1992 | A |
5177032 | Fogal et al. | Jan 1993 | A |
5180974 | Mitchell et al. | Jan 1993 | A |
5208188 | Newman | May 1993 | A |
5218168 | Mitchell et al. | Jun 1993 | A |
5256598 | Farnworth et al. | Oct 1993 | A |
5304842 | Farnworth et al. | Apr 1994 | A |
5336649 | Kinsman et al. | Aug 1994 | A |
5349234 | DesJardin et al. | Sep 1994 | A |
5367253 | Wood et al. | Nov 1994 | A |
5381234 | Barbee et al. | Jan 1995 | A |
5406459 | Tsukamoto et al. | Apr 1995 | A |
5408190 | Wood et al. | Apr 1995 | A |
5411921 | Negoro | May 1995 | A |
5424254 | Damiot | Jun 1995 | A |
5424652 | Hembree et al. | Jun 1995 | A |
5440240 | Wood et al. | Aug 1995 | A |
5442386 | Childers et al. | Aug 1995 | A |
5495179 | Wood et al. | Feb 1996 | A |
5495699 | Buckley, Jr. | Mar 1996 | A |
5620928 | Lee et al. | Apr 1997 | A |
5661336 | Phelps et al. | Aug 1997 | A |
5696033 | Kinsman | Dec 1997 | A |
5700697 | Dlugokecki | Dec 1997 | A |
5874319 | Dunaway et al. | Feb 1999 | A |
6064221 | Moden et al. | May 2000 | A |
6261927 | Natarajan et al. | Jul 2001 | B1 |
6380756 | Moden et al. | Apr 2002 | B1 |
6538463 | Moden et al. | Mar 2003 | B1 |
6551845 | Moden et al. | Apr 2003 | B1 |
Number | Date | Country |
---|---|---|
07235555 | Sep 1995 | JP |
09017810 | Jan 1997 | JP |
WO 9629730 | Sep 1996 | WO |
Number | Date | Country | |
---|---|---|---|
20030138980 A1 | Jul 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08581905 | Jan 1996 | US |
Child | 10395477 | US |