The present invention generally relates to integrated circuit transistors and more particularly to an improved structure and method that reduces the height of the gate electrode and simultaneously confines active dopants within each electrode, thereby maximizing integrated circuit performance.
Challenges are encountered during conventional processing of high-performance complementary metal oxide semiconductor (CMOS) devices. As the feature size of transistors is scaled down, it is not only the size of electrodes (source, drain, and gate), but also the distance between them that becomes smaller, as they are formed closer to each other. The closer proximity increases electric field between the electrodes during operation of the device. For the overall integrated circuit performance, therefore, it becomes more and more critical to minimize parasitic capacitance between the electrodes, and at the same time, to maximize the drive currents without increasing the off-state leakage of the devices.
The height of gate poly stack affects parasitic capacitance between the gate and the source and drain (S/D) contact structures and their electrical extensions such as extension doping overlap with gate and metallization contacts. The reduction of poly height i.e. the smaller sidewall area of the poly gate lines decreases the peripheral components of outer-fringe capacitance between the gate poly line and the source/drain electrodes and their associated contact structures. The gate-to-source/drain extension capacitances substantially affects the overall speed of the integrated circuits for logic applications in addition to the current drivability and power. Therefore, it is desirable to reduce the height of the gate.
Conventional CMOS processing with self-aligned source/drain/gate implantation limits the amount by which the gate height can be reduced. Implanting dopants with a sufficient energy to dope the source and drain regions and for halo formation using the poly gate as a self-aligned mask can cause the dopants to penetrate through the poly gate and the gate dielectric into the channel as the gate height is decreased. Therefore, as the gate height is decreased, the risk of gate impurity contaminating the underlying gate oxide increases. To avoid this, some conventional processes reduce the total thermal budget of the manufacturing process. However, reducing the overall thermal budget can lead to insufficient dopant activation in other electrodes and as a result, drive currents may be limited. Alternatively, the self-aligned gate/source/drain and halo implant energy may be drastically reduced to mitigate the dopant penetration; however, the low energy implants for the source/drain and the halo cause high source/drain parasitic resistance and insufficient halo doping in the channel, degrading drive currents and short-channel rolloff characteristics.
In addition, the maximum sidewall spacer length achievable with a gate of reduced height—poses challenges. With the shorter gate height, the maximum size of the spacer is reduced due to the reduced step height for the RIE (reactive ion etch) of a deposited spacer material of a given thickness, resulting in lateral encroachment of S/D dopants, and a higher probability of silicide bridging between the gate and the S/D. This problem becomes more severe when using epitaxially grown raised source and drain structures because epitaxial overgrowth occurs on top of the gate with reduced height. The undesirably overgrown epitaxial polysilicon over the gate would also be silicided which would form a conductive path between the gate and the raised source and drain regions, resulting in failure of transistor function.
Besides the problems discussed above with respect to shortening the height of the gate, conventional CMOS processing with RSD (raised source/drain) also suffers from unnecessary transient enhanced diffusion (TED). More specifically impurities, such as boron, can diffuse into the channel from halo implants for N-type field effect transistor (NFET), from extension and source/drain implants for P-type field effect transistor (PFET) during RSD processing. More specifically, the silicon selective epitaxial process to build RSD on thin SOI structures is normally performed at temperatures around 700C to 900C for an extended thermal cycles more than several minutes. This thermal condition is typically known to cause the most significant TED of major dopants, particularly boron, causing detrimental effects on short channel devices such as increased roll off of threshold voltage.
The invention provides a method to form an integrated circuit transistor having a reduced gate height. The invention provides a methodology of forming a laminated structure having a substrate, a gate conductor above the substrate, and at least one sacrificial layer above the gate conductor. The invention patterns the laminated structure into at least one gate stack extending from the substrate by forming spacers adjacent the gate stack and forms doping regions of the substrate not protected by the spacers to form the source and drain regions adjacent the gate stack. The invention then removes the spacers and the sacrificial layer.
The height of the gate conductor is smaller than a gate height associated with the spacing of the source and drain regions created by the spacers. The size of the spacers is controlled by the combined height of the gate conductor and the sacrificial layer, such that the spacers provide larger spacing for the combined height when compared to the height of the gate conductor alone. The larger spacing positions the source and drain regions further from the gate conductor when compared to source and drain regions formed with spacers formed only to the height of the gate conductor.
The sacrificial layer above the gate conductor is formed by forming a sacrificial oxide layer above the gate conductor and forming additional sacrificial layers above the oxide layer. The sacrificial oxide layer protects the gate conductor. The laminated structure has a silicon layer below the gate conductor and further dopes source/drain electrodes and the gate conductor together in a self-aligned implantation after the patterning process.
The combined height of the gate conductor and the sacrificial layer prevents the impurity from reaching the silicon layer and without the sacrificial layer the doping process would implant an impurity through the gate conductor and gate dielectric layer to the silicon layer. The laminated structure has a silicon layer below the gate conductor. The source/drain electrodes and the gate conductor are doped together in a self-aligned implantation after the patterning process. The invention also provides a second doping process of doping halo regions below the gate conductor in a self-aligned implantation with an impurity of an opposite polarity to that used in the first doping process. The combined height of the gate conductor and the sacrificial layer prevents impurities from reaching the silicon layer, and without the sacrificial layer, the doping processes would implant impurities through the gate conductor and gate dielectric layer to the silicon layer.
The invention further provides a method of epitaxially growing raised source and drain regions above the substrate layer adjacent the temporary spacers, such that the temporary spacers separate the raised source and drain regions from the gate stack. Then the invention grows an additional dielectric layer on the raised source and drain regions, removes the temporary spacers without removing the sacrificial material, performs a halo implant in the raised source and drain regions and in exposed regions of the silicon layer and forms a permanent spacer adjacent the gate stack. The permanent spacer is thinner than the temporary spacer. Next, the invention implants impurities into the raised source and drain regions and exposed regions of the silicon, forms a final spacer filling the exposed regions of the silicon between the permanent spacer and the raised source and drain regions. This is followed by implanting additional impurities into the raised source and drain regions and exposed regions of the silicon, annealing to activate all impurities, etching back the additional dielectric layer on the raised source and drain regions, and saliciding both the gate conductor and the raised source and drain regions.
The artificial increase in gate height achieved with the sacrificial layer at the top of the gate stack allows the formation of larger disposable spacers. The invention uses a two-step spacer formation process for spacer width modulation (sacrificial and permanent spacers). With the larger spacers, the invention also avoids the dopant encroachment and silicide bridging problems that can occur when the reduced gate height limits and decreases the achievable size of the spacers.
The invention will be better understood from the following detailed description of preferred embodiments with reference to the drawings, in which:
The invention presents a novel method of scaling down dimensions of all the electrodes in CMOS devices on SOI, including gate height. The invention resolves the problems associated with gate height reduction by providing a sacrificial layer above the gate poly. The buffer layer on top of the gate polysilicon artificially increases the gate height during the subsequent process integration, thereby making it possible to perform source, drain, and halo implantation at an energy high enough to sufficiently dope the source/drain and channel regions without incurring the problem of boron penetration through the poly gate and gate dielectric layer (as discussed above). In other words, the conventional self-aligned implantation process can be utilized with the invention because the thickness of the buffer layer causes the impurities to be implanted to the same depth within the inventive device structure including the source/drain and halo junctions and sidewall spacer size, as they would be with conventional taller gate structures.
The artificial increase in gate height achieved with the sacrificial layer at the top of the gate stack allows the formation of larger disposable spacers. The invention uses a two-step spacer formation process for spacer width modulation (sacrificial and permanent spacers). With the larger spacers, the invention also avoids the dopant encroachment and silicide bridging problems that can occur when the reduced gate height limits and decreases the achievable size of the spacers (as discussed above).
To avoid the boron diffusion problem discussed above, the invention implants boron for N-halo, P-extension and P-type source and drains after the raised source/drains are formed. This process still allows slow diffusing dopants, such as arsenic, to be introduced before the RSD processing. Additionally, the width of the spacer is made relatively larger for PFET boron/BF2 source/drain implants than for NFET arsenic implant, in order to give more room for boron diffusion in the PFET sources and drains. The invention decouples NFET and PFET dopant species. More specifically, the invention decouples boron implantation using the large disposable spacers to minimize any effects of lateral encroachment of boron during the RSD selective epitaxial process.
The “A” figures represent an N-type device while the “B” Figures represent a P-type device. Further, to simplify the drawings, only one half of each of the structures (e.g., the left half) has been illustrated in
In
The oxide 10 isolates the silicon layer 11 from electrical contact with the underlying substrate (not shown). This type of structure is known as Silicon-On-Insulator (SOI) structure because the silicon 11 is over an insulator (in this case oxide 10). In such a structure, the oxide 10 is referred to as a buried oxide (BOX). The buried oxide 10 isolates the transistor from any underlying structures. The invention described below shows its particular application to such SOI structures. However, this invention is applied to both SOI and bulk Si substrate technologies with equal applicability and importance.
Item 12 represents the gate oxide; item 13 represents the gate conductor. The gate conductor 13 can be any conductive material such as a metal, alloy, conductive oxide, polysilicon, etc. The thickness of the gate conductor layer 13 determines the final height of the gate conductor.
Items 14-16 are sacrificial insulator materials that will be removed from the final structure and are utilized only during the manufacturing process. In this example, item 14 is an oxide, item 15 is a nitride, and item 16 is a hard insulator material (e.g., tetraethylorthosilicate (TEOS)); however any number and type of sacrificial materials could be utilized depending upon the specific needs of the designer when creating the device being manufactured in association with disposable and final spacer materials and corresponding etch selectivity. Items 14-16 artificially increase the height of the gate during the following processing steps. This allows the height of the gate to be reduced without suffering detrimental side effects such as those discussed above. The preferable ratio of the height of the gate conductor to the sacrificial layers is determined by various design elements such as silicide thickness, target spacer width, RSD thickness, and source/drain/halo implantation energies for the substrate type, as well as the gate stack RIE process for the target gate length of the technology.
In
In
The additional thickness provided by the sacrificial layers 14-16 allows a sufficiently high-energy—implantation (e.g. boron higher than 5 keV, arsenic higher than 10 keV, and phosphorus higher than 8 keV) to be utilized for doping not only the gate but also the source, drain, and halo regions without impurity penetration through the gate oxide 12 into the channel region of silicon 11. In other words, the conventional implant process that is self-aligned with the gate stack can be utilized with the invention because the thickness of the buffer layer causes the impurities to be implanted to the same depth within the inventive gate structure, as they would be with conventional taller gate structures. Therefore, the invention allows well-known implantation technology to be utilized, thereby simplifying and reducing the cost of manufacturing the device. Further, the invention allows this conventional processing, yet eliminates the risk of unwanted impurity penetration by providing the sacrificial layers 14-16 above the actual gate conductor 13.
Then, as shown
In
As also shown and
In
In
In
In
In
Therefore, as shown above, the invention resolves the problems associated with gate height reduction by providing a sacrificial layer above the gate during processing. By reducing the poly height without incurring the various conventional problems, this invention accomplishes the ultimate goal of reducing the parasitic capacitance between the silicided gate electrode and the source/drain electrodes and their electrically connected metallization/contact structures. The reduced height of the poly gate in combination with raised source/drains also achieves higher drive currents without the expense of increasing the gate-to-source/drain parasitic capacitance and degrading the overall circuit performance. The buffer layer on top of the gate polysilicon artificially increases the gate height during processing, thereby making it possible to use sufficiently high energy implantation of the PFET source/drain and gate, without incurring the conventional boron penetration problem. Additional variation of this embodiment may include implantation of NFET source/drain and gate using phosphorus or arsenic at a sufficiently high energy before the removal of the buffer layer 16 in
The artificial increase in gate height achieved with the sacrificial layer at the top of the gate stack allows the formation of larger disposable spacers. Without the sacrificial buffer layers 14-16, a simply reduced gate height would make it difficult to form a disposable spacer large enough to separate the raised source/drain regions from the gate sidewall in
To avoid the boron diffusion problem discussed above, the invention implants boron for N-halo, P-extension and P-type source and drains after the raised source/drains are formed. This process still allows slow diffusing dopants, such as arsenic, to be introduced before the RSD processing. Additionally, the width of the final spacer is made relatively larger for PFETs than for NFETs, in order to give more room for boron diffusion in the PFET sources and drains.
As an extension of the preferred embodiment, another embodiment of this invention is described as follows. In
The artificial increase in gate height achieved with the sacrificial layer at the top of the gate stack allows the formation of larger disposable spacers. The invention uses a two-step spacer formation process for spacer width modulation (sacrificial and permanent spacers). With the larger spacers, the invention also avoids the dopant encroachment and silicide bridging problems that can occur when the reduced gate height limits and decreases the achievable size of the spacers.
While the invention has been described in terms of preferred embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims.