The present disclosure relates generally to the manufacture of semiconductor devices, and more particularly, to the fabrication and manufacture of a semiconductor device using a method to reduce critical dimensions (CD) using a tilted ion beam process.
In semiconductor processing technology, limitations inherent in the patterning or photolithography process result in certain critical dimensions (CDs). CDs are generally defined as the dimensions of the smallest geometrical features (line width, contact dimension, spacing, etc.) which can be formed during semiconductor device/circuit manufacturing using a given patterning or photolithography technology. For example, when a given pattern is transferred (or printed) onto a photoresist layer to create a masking layer for semiconductor processing, the printed features are generally spaced apart by at least the minimum CDs. This translates to certain limited dimensions (based on the CDs) for the structures to be formed on/in the semiconductor substrate.
It would be desirable to decrease CDs that result from a given patterning or photolithography process in order to decrease the minimum dimensions of the structures formed on/in the semiconductor substrate. Accordingly, there is a need for a new method or process that can control and reduce a given CD—which enables further reduction in feature dimensions.
In accordance with one advantageous embodiment, there is provided a method for semiconductor device processing. The method includes forming a multi-layer semiconductor stack, forming an optical layer above the semiconductor stack and having a first thickness, forming a first mask layer above the optical layer, and forming a second mask layer above the first mask layer. Portions of the second mask layer are selectively removing portions of the second mask layer to define a printed mask having openings therethrough and exposing corresponding portions of the first mask layer. Exposed portions of the first mask layer and corresponding portions of the optical layer are selectively removed according to the printed mask to expose corresponding portions of the semiconductor stack which generate substantially vertical sidewalls within the optical layer. At least one exposed portion of the semiconductor stack has an x dimension and a y dimension corresponding to dimensions of the printed mask. A tilted ion beam is directed towards at least one of the vertical sidewalls to remove a portion of one of the vertical sidewalls to form an angled sidewall which increases at least one of the x or y dimensions of the at least one exposed portion of the semiconductor substrate. The resulting optical layer forms a target mask. At least one exposed portion of the semiconductor stack is removed according to the target mask formed by the optical layer, the dimensions of the removed portion of semiconductor stack corresponding to the increased dimension of the target mask.
In another embodiment, there is provided a method of fabricating semiconductor devices. The method includes providing a multi-layer semiconductor substrate having a semiconductor stack, an optical layer disposed above the semiconductor stack having a first thickness, a first mask layer disposed above the optical layer, and a second mask layer disposed above the first mask layer. The method further includes selectively removing portions of the second mask layer to define a printed mask having openings therethrough and to expose portions of the first mask layer; selectively removing exposed portions of the first mask layer and the optical layer corresponding to the printed mask to expose portions of the semiconductor stack, the optical layer having openings therethrough with substantially vertical sidewalls; and selectively removing portions the substantially vertical sidewalls of the optical layer using a tilted ion beam to create a target mask that generates larger exposed portions of the semiconductor stack, at least one dimension of the larger exposed portions of the semiconductor stack having a corresponding dimension larger than the printed mask. The larger exposed portions of the semiconductor stack are etched or removed according to dimensions of the target mask.
In yet another embodiment, there is provided a method of generating a mask for use in fabricating semiconductor devices. The method includes forming an optical layer having a first thickness above a substrate; forming a first layer above the optical layer, and forming a masking layer above the first layer. Portions of the masking layer are selectively removed to define a printed mask having openings therethrough to expose portions of the first layer; exposed portions of the first layer and the optical layer corresponding to the printed mask are removed or etched to expose portions of the substrate, the optical layer has openings therethrough with substantially vertical sidewalls. The method further includes etching the substantially vertical sidewalls of the optical layer using an angled ion beam to form a target mask having at least one dimension larger than a dimension of the printed mask, and selectively removing exposed portions of the substrate according to the target mask.
The foregoing has outlined rather broadly the features and technical advantages of the present disclosure so that those skilled in the art may better understand the detailed description that follows. Additional features and advantages of the present disclosure will be described hereinafter that form the subject of the claims. Those skilled in the art should appreciate that they may readily use the concept and the specific embodiment(s) disclosed as a basis for modifying or designing other structures for carrying out the same or similar purposes of the present disclosure. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the claimed invention in its broadest form.
Before undertaking the Detailed Description below, it may be advantageous to set forth definitions of certain words and phrases used throughout this patent document: the terms “include” and “comprise,” as well as derivatives thereof, mean inclusion without limitation; the term “or,” is inclusive, meaning and/or; the phrases “associated with” and “associated therewith,” as well as derivatives thereof, may mean to include, be included within, interconnect with, contain, be contained within, connect to or with, couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to, be bound to or with, have, have a property of, or the like. Definitions for certain words and phrases are provided throughout this patent document, those of ordinary skill in the art should understand that in many, if not most instances, such definitions apply to prior uses, as well as future uses, of such defined words and phrases.
For a more complete understanding of the present disclosure, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, wherein like numbers designate like objects, and in which:
The present disclosure describes a novel method of processing and fabricating semiconductor devices by reducing critical dimensions inherent in a given photolithography process. A typical patterned mask layer is generated via transfer of the pattern to the masking layer (e.g., printing). The pattern features printed have a desired set of dimensions, and these dimensions are usually based on the minimum dimensions (critical dimensions) applicable to the given type of photolithography equipment (e.g., stepper, reticles, etc.) utilized. Thus, using the patterned mask, the physical dimensions of the deposited/formed structure(s) are limited to the critical dimensions attributable to the photolithography system. The present disclosure provides for a method or process to reduce one or more critical dimensions in the conventional masking and formation process. For example, when a pattern defines two separate features (e.g., two separate metal regions)—which would normally be separated by the critical dimension—the present process enables a reduction in the spacing between the features thereby allowing smaller features and line widths. This may be accomplished by forming a conventional mask on top of another layer and forming the other layer with a similar pattern to the conventional mask but which has increased dimensions (in at least one direction and/or axis)—resulting in a potential smaller spacing between two features. This does not necessarily reduce a given stucture's size, but allows denser placement of structures (e.g., closer together).
Turning to
In one embodiment, the semiconductor stack 200 may include one or more of the following types and/or layers of materials or regions: substrate, inter-level dielectric, metal, source/drain regions, gate dielectric, gate stack, and the like, or other layers of material. Above the semiconductor stack 200, there is formed the optical layer 210 having a thickness t. The optical layer 210 may include, but is not limited to, carbon, amorphous carbon, or other layer or material containing carbon. In another embodiment, the optical layer 210 is formed of material susceptible to etching or removal via an ion beam—which may depend on the type and/or energy of ions utilized.
The first masking layer 220 is formed above the optical layer 210, as shown. The first masking layer 220 may be formed using an anti-reflective coating (ARC) material, such as an organic polymer-based layer or material, silicon oxynitride (SiON), Si-containing organic ARC (SiARC) or Ti-containing organic ARC (TiARC). One purpose of using anti-reflective material is to act as a light absorption layer to minimize reflection of light during lithography to form the openings in the second masking layer 230 (e.g., photoresist). Above the first masking layer 220 there is formed the second masking layer 230. As will be appreciated, the second masking layer 230 may be formed with conventional photoresist material and pattern etched via conventional processes.
Now turning to
Now turning to
This process generates angled sidewalls 250a in the optical layer 210. As will be appreciated, the resulting exposed portions of the semiconductor stack are larger than the corresponding openings through the masking layers 220/230 (the openings are configured with dimensions of P1 and P2, and the exposed portions of the stack 200 have dimensions of T1 and T2).
Any suitable ion beam etch process may be utilized, including oxygen or nitrogen combined with argon or helium. A halogen gas, such as chlorine, fluorine or bromine, can be added to the aforementioned ion beam.
Now turning to
With reference to
Now turning to
While
It will be understood that well known processes have not been described in detail and have been omitted for brevity. Although specific steps, structures and materials may have been described, the present disclosure may not limited to these specifics, and others may substituted as is well understood by those skilled in the art, and various steps may not necessarily be performed in the sequences shown.
It will be understood that the present disclosure may be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of this disclosure. For example, as used herein, the singular forms “a”, “an”, and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, the use of the terms “a”, “an”, etc., do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced items. The terms “comprises” and/or “comprising”, or “includes” and/or “including”, when used in this specification, specify the presence of stated features, regions, structures, elements, and/or components, but do not preclude the presence or addition of one or more other of these. Reference throughout this specification to “one embodiment,” “an embodiment,” “embodiments,” “exemplary embodiments,” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure.
If used, the terms “overlying” or “atop”, “positioned on” or “positioned atop”, “underlying”, “beneath” or “below” mean that a first element, such as a first structure, e.g., a first layer, is present on a second element, such as a second structure, e.g., a second layer, wherein intervening elements, such as an interface structure, e.g. interface layer, may be present between the first element and the second element.
As used herein, “depositing” or “forming” may include any now known or later developed techniques appropriate for the material to be deposited or formed including but not limited to, for example: chemical vapor deposition (CVD), low-pressure CVD (LPCVD), plasma-enhanced CVD (PECVD), semi-atmosphere CVD (SACVD) and high density plasma CVD (HDPCVD), rapid thermal CVD (RTCVD), ultra-high vacuum CVD (UH-VCVD), limited reaction processing CVD (LRPCVD), metal-organic CVD (MOCVD), sputtering deposition, ion beam deposition, electron beam deposition, laser assisted deposition, thermal oxidation, thermal nitridation, spin-on methods, physical vapor deposition (PVD), atomic layer 20 deposition (ALD), chemical oxidation, molecular beam epitaxy (MBE), plating, evaporation.
While this disclosure has described certain embodiments and generally associated methods, alterations and permutations of these embodiments and methods will be apparent to those skilled in the art. Accordingly, the above description of example embodiments does not define or constrain this disclosure. Other changes, substitutions, and alterations are also possible without departing from the spirit and scope of this disclosure, as defined by the following claims.