This disclosure relates to the fabrication of electronic devices, the electroplating of semiconductor substrates, and electroplating systems and apparatuses.
The fabrication of integrated circuits often involves one or more steps of electroplating a layer of conductive metal onto the surface of a semiconductor wafer. For example, in some IC fabrication procedures, an electroplating operation may be used to fill with metal the various features formed in the surface of a semiconductor wafer such as, for instance, the trenches and vias used as conductive paths between various circuit elements.
In a typical electroplating operation, the surface of the wafer is exposed to an electroplating bath fluid which contains dissolved ions of the metal to be electroplated, and an electrical circuit is created between an electrode in the bath (which serves as an anode) and surface of the wafer (which serves as the cathode). Flow of current through this circuit upon application of an applied electrical potential difference causes electrons to flow to the cathodic wafer surface and reduce dissolved metal ions in its vicinity thereby resulting in the plating out of solution of neutral elemental metal onto the surface of the wafer.
However, for this circuit to be completed and for electrochemical reduction of dissolved metal ions to occur, the surface of the wafer (serving as the circuit's cathode) must be, at least to a certain extent, relatively conductive. Accordingly, since the bare surface of a semiconductor wafer is not generally substantially conductive, the actual electroplating step in an electroplating operation (sometimes referred to as “electrofill”) is often preceded by the deposition of a conductive seed layer (typically quite thin) which initially provides the necessary conductive surface. Deposition of the seed layer may be accomplished by any feasible method of depositing the seed material. Suitable methods may include, for example, physical vapor deposition (PVD), chemical vapor deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), conformal film deposition (CFD), atomic layer deposition (ALD), and the like. Oftentimes, the seed layer is separated from an insulating silicon dioxide layer or other dielectric by a barrier layer. Furthermore, oftentimes, seed layer deposition and electroplating is followed by an edge bevel removal (EBR) operation that removes seed metal deposited at the edge of the wafer where its presence is not desired.
As the semiconductor industry advances, future technology regimes are likely to require extremely thin and resistive seed layers for electroplating operations. High-resistance seed layers cause it to be much more challenging to achieve a uniform electroplating thickness/current across the wafer surface because, when very resistive seed layers are used, the potential at the edge of the wafer—i.e., at the point of electrical contact—is much greater than in the center of the wafer—further away from the electrical contact. This center to edge variation in electrical potential can lead to significantly thicker plating at the edge of the wafer versus its center, a phenomenon oftentimes referred to as the “terminal effect.” The effect is undesirable, of course, because it reduces usable wafer surface area in the edge region. Future use of larger-diameter wafers may further exacerbate the problem. Thus, effective methods and apparatuses are needed for controlling ionic current during electroplating so as to better control the thickness of the metal deposited at the edge of semiconductor substrates in electroplating operations.
Disclosed herein are methods of electroplating one or more semiconductor substrates in an electroplating cell. The methods may include placing a first substrate, an anode, and an electroplating solution in an electroplating cell such that the substrate and the anode are located on opposite sides of a fluidically-permeable plate, the plate having multiple pores which, when immersed in the electroplating solution, provide a fluidic connection between said electroplating solution on opposite sides of the plate. The methods may further include setting the configuration of one or more seals which, when in their sealing configuration, substantially seal a subset of the pores of the fluidically-permeable plate, the subset located in an edge region of the plate, and the methods may also include applying an electrical potential between the anode and the first substrate sufficient to cause electroplating on the first substrate, wherein the rate of electroplating in an edge region of the first substrate is affected by the configuration of the one or more seals. In some embodiments, the one or more seals, when in their sealing configuration, seal the subset of pores in the edge region by contacting the fluidically-permeable plate in the edge region. In some embodiments, the one or more seals comprise two inflatable seals which, when in their sealing configuration, are inflated so as to contact the fluidically-permeable plate in the edge region, and wherein setting the configuration of the one or more seals comprises inflating and/or deflating one or more of the seals.
Also disclosed herein are apparatuses for electroplating one or more semiconductor substrates. The apparatuses may include an electroplating cell, a substrate holder configured to hold a substrate within the electroplating cell, a fluidically-permeable plate located within the electroplating cell and oriented substantially parallel to a substrate held in the substrate holder, a power supply configured to apply an electrical potential between an anode in the electroplating cell and a substrate held on the substrate holder sufficient to cause electroplating on the substrate, and a controller comprising a processor and a memory. In some embodiments, the plate may have multiple pores which, when immersed in electroplating solution, provide a fluidic connection between electroplating solution on opposite sides of the plate. In some embodiments, the apparatus may further include one or more seals which, when in their sealing configuration, substantially seal a subset of the pores of the fluidically-permeable plate, the subset located in an edge region of the plate. In some embodiments, the controller may be configured to set the configuration of the one or more seals such that during application of electrical potential by the power supply, the rate of electroplating in an edge region of the substrate is affected by the configuration of the one or more seals.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, the present invention may be practiced without some or all of these specific details. In other instances, well known process operations or hardware have not been described in detail so as to not unnecessarily obscure the inventive aspects of the present work. While the invention will be described in conjunction with specific detailed embodiments, it is to be understood that these specific detailed embodiments are not intended to limit the scope of the inventive concepts disclosed herein.
In the following description it is also to be noted that the term “substrate” refers to any semiconductor based structure, object, or device suitable for electroplating and/or upon which electroplating may be desired. Oftentimes such a substrate is more specifically a “wafer” or a “wafer substrate” as those terms are commonly used in the art. However, for purposes of this disclosure, the terms “wafer” or “wafer substrate” are to be interpreted as referring to any “substrate” for electroplating, as just described.
Disclosed herein are improved electroplating apparatuses which employ a dynamically tunable substrate shielding feature which allows the rate of electroplating to be adjusted and/or controlled near the edge of a substrate being electroplated. Methods of electroplating one or more substrates employing such a dynamically tunable shielding feature are also described herein.
Electroplating apparatuses disclosed herein may accomplish this dynamically tunable shielding by adjusting and/or controlling the flow of ionic electroplating current through the pores of an ionically-resistive fluidically-permeable (IRFP) plate which is aligned with the surface of the substrate within the electroplating apparatus. In some embodiments, such an IRFP plate may serve as a high-resistance virtual anode (HRVA) relative to the substrate—which, of course, is the cathode. The HRVA feature is used to mitigate the terminal effect which tends to cause un-even plating, center to edge. However, the ability to configure, adjust, and/or vary flow of ionic current through certain portions of the IRFP plate may provide the mechanism for implementing the feature of dynamic shielding.
An example of an electroplating apparatus that with suitable modification may be used to implement the dynamic shielding feature is schematically illustrated in
Typically, the fluidic permeability of the IRFP plate 109 is the result of it having a multitude of pores—such as channels or holes through the plate—which providing a fluidic connection between one side of the plate and the other, though, in some embodiments (some of which are described below), the plate's fluidic permeability may be established by other mechanisms, such as the entire plate being made up of a porous material. In any event, when the IRFP plate is immersed in an electroplating solution, the pores provide a fluidic connection between said electroplating solution on opposite sides of the plate. A detailed description of various aspects of IRFP plates is provided below.
The presence of the IRFP plate in the vicinity of the substrate during electroplating and its particular configuration of pores affects the resistance of the plate to the flow of ionic electroplating current and thus potentially the rate of electroplating in different regions of the substrate's surface. To the extent that the plate generally resists the flow of ionic electroplating current through it and to the substrate, it may act as a high-resistance virtual anode (as mentioned above), promoting a uniform rate of electroplating center to edge. In some cases, the pattern of pores (e.g. holes) in the plate and/or the plate's porosity may vary over different regions of the plate. For example, certain regions of the plate may have higher (or lower) porosities leading to correspondingly higher (or lower) electroplating currents on the corresponding regions of the substrate surface. Higher (or lower) porosities may be achieved through having higher (or lower) pore densities, or though having larger (or smaller) pores, or both, depending on the embodiment. In any event, as indicated, dynamically tunable substrate shielding may be implemented by adjusting and/or controlling the flow of ionic current through the pores in the IRFP plate thereby tuning the electroplating rates in corresponding regions of the wafer's surface.
The ability to adjust and/or tune the rate of electroplating on the portion of the substrate's surface near to its edge (i.e., in the edge region of the substrate) is particularly beneficial. One reason such edge tuning is useful is that some substrates requiring electroplating may not be patterned out to their edge. An example is shown in
A lack of patterning in an edge region of the wafer is significant because, in a typical scenario, the un-patterned area remains covered with photoresist, and so it is not conductive and thus will not be plated upon in an electroplating operation. Of course, the non-plating of the unused edge region would not in itself be a problem, but the issue is that this lack of plating in the edge region causes excessive plating in the patterned region immediately adjacent to it (i.e., just radially inward).
One solution to this problem is to manually install a differently sized insert shield.
The effect is also illustrated in
However, this is not the case with the simulation shown in
Finally,
Thus, one way of dealing with the “current crowding” problem is to manually change the “shielding” of the cell by adding or removing one or more static fixed-size shields which, when in place, act to effectively block the flow of electroplating current in the vicinity of the edge of the wafer. Shield 151 in
An alternative is to compensate for changes in wafer edge patterning by dynamically changing the shielding in the vicinity of the edge of the wafer. While there are a variety of ways to accomplish this, one particularly effective technique is to set and/or adjust the configuration of a set of one or more seals which, when in their sealing configuration, substantially seal certain pores of the IRFP plate, specifically, pores in an edge region of the plate. By sealing these pores such that the fluidic connection they provide is broken (or at least substantially reduced), resistance to ionic current flow in the plate's edge region is increased which results in a reduction in electroplating rate in a corresponding edge region of the wafer. In this manner, it is feasible to tune the rate of electroplating in an edge region of the wafer depending on application—in particular, depending on the edge patterning exhibited by the wafer to be plated.
Thus, consistent with this approach, a series of substrates may be electroplated by selecting a first substrate for electroplating, setting an appropriate configuration of the aforementioned seal(s) to select an appropriate level of substrate edge shielding, placing the first substrate in the substrate holder of the electroplating apparatus, and applying an electrical potential between the anode and the first substrate sufficient to cause electroplating on the first substrate. After completion of the electroplating of the first substrate, such an approach may then proceed by selecting a second substrate for electroplating which potentially may have a diameter significantly different than the diameter of the first substrate, replacing the first substrate with the second substrate in the substrate holder, adjusting the configuration of the one or more seal(s) to select an appropriate level of substrate edge shielding for the second substrate, and finally applying an electrical potential between the anode and the second substrate sufficient to cause electroplating on the second substrate. Once the second substrate is finished electroplating, such a method of processing a series of substrates may continue in this manner, selecting appropriate shielding conditions and electroplating additional substrates, until the whole series of substrates are electroplated as desired.
One particular example of an electroplating apparatus having a group of seals for sealing pores in an edge region of the apparatus's IRFP plate—so as to affect the aforementioned adjustment and/or control of ionic current near the edge of wafer being electroplated and to implement the foregoing approach—is shown in
A far-away view of the IRFP plate 119 and inflatable seals 160, as well as anode membrane 115 and substrate holder 109, is displayed in
Referring again to
In conjunction with the addition of a dynamically controlled pore sealing mechanism, in some embodiments, an IRFP plate may be employed which exhibits a non-constant porosity over its surface. This may be in order to enhance the variable shielding effect of the seals. In particular, in some embodiments, an IRFP plate may be used which has a greater average porosity in its edge region (where pores may be sealed) than the average porosity over one or more other portions of the plate (or all other portions of the plate). Increased porosity in the edge region may be accomplished through greater pore number density per unit area, or by increasing the average size of the pores, or both, depending on the embodiment. In some embodiments, the average porosity in the edge region may be at least about 1.1 times the average porosity over the other portions of the plate. In some embodiments, the average porosity in the edge region may be at least about 1.2 times, or more particularly at least about 1.5 times, or still more particularly at least about 2.5 times, or yet still more particularly at least about 3 times the average porosity over the other portions of the plate. Suitable IRFP plates, some with non-constant porosities and other features, are discussed in further detail below.
Examples of Using Dynamically Tunable Shielding to Compensate for Wafers Having Different Degrees of Edge Patterning
In configuration 1 shown in
Configuration 3, however, where the middle of the 3 seals is closed, results in significantly more uniform plating for the 280 mm wafer in
Finally, it is noted that configuration 4, where the radially innermost seal is closed, results in too little plating in the edge region of both wafers. It should also be noted that closing the radially innermost seal, seal 161, also blocks ionic current flow through the pores regulated directly by seals 162 and 163 due to their being no fluidic path to these pores when seal 161 is closed, irrespective of whether seals 162 and 163 are open or closed. This is evident from the construction of the portions of the electroplating apparatus housing the inflatable seals, as shown in
Examples of Using Dynamically Tunable Shielding to Compensate for the Terminal Effect as Amplified by the Use of Thin Seed Layers
It is well-understood in the art that because thinner seed layers are more resistive, they amplify the terminal effect problem (as described above) which results in too much plating in the wafer edge region (which is closer to the electrical leads). These figures illustrate that the use of dynamically tunable shielding may be used to compensate for the different degrees of terminal effect as results from the different seed layer thicknesses. Specifically, for each of the four different seed layer thicknesses of 500 Å, 1000 Å, 1500 Å, and 2000 Å, it is seen that a configuration of the 3 seals may be chosen from one of the four figures,
Referring first to
Additional Electroplating Methods Employing Dynamically Tunable Shielding
Another potential advantage of dynamically tunable substrate shielding (at least in some embodiments) is the capability of changing the substrate shielding during the course of an electroplating operation as performed on a single substrate. This may be useful, for instance, if a wafer is such that it would be optimally electroplated under a shielding condition which is intermediate between those provided by the set seal configurations of the electroplating apparatus. Despite the fact that the optimal shielding configuration is not available, an apparatus implementing a dynamically tunable shielding feature may nevertheless approximate the optimal intermediate level of shielding by time-averaging the shielding provided by the two closest seal configurations. Thus, during the electroplating of such a substrate which may benefit from intermediate shielding, the configuration of an apparatus's seals may be adjusted multiple times over the course of the electroplating operation in order to vary the rate of electroplating in said substrate's edge region multiple times so that the time average rate of electroplating is improved.
Detailed Example of an Electroplating Apparatuses
The anode 113 is disposed below the wafer 107 within the electroplating cell 103 and is separated from the wafer region by an anode membrane 115, which is an ion selective membrane in some implementations. The region below the anode membrane is often referred to as an “anodic region” or as an “anode chamber” and electrolyte within this chamber as “anolyte,” while the region above the anode membrane is often referred to as a “cathodic region” or as a “cathode chamber” and the electrolyte within this chamber as “catholyte.” The anode membrane 115 allows ionic communication between the anodic and cathodic regions of the electroplating cell, while preventing any particles generated at the anode from entering the proximity of the wafer and contaminating it. The anode membrane may also be useful in redistributing current flow during the electroplating processes and thereby improve electroplating uniformity. Anode membranes are further described in U.S. Pat. No. 6,126,798 and U.S. Pat. No. 6,569,299, both of which are hereby incorporated by reference in their entirety for all purposes.
The electroplating solution may be continuously provided to electroplating cell 103 by a pump 117. Generally, the electroplating solution flows upwards through an anode membrane 115 and an IRFP plate 119 to the center of wafer 107 and then radially outward and across the wafer. In some implementations, the electroplating solution may be provided into the anodic region of the electroplating cell from the side of the electroplating cell. In some implementations, the electroplating solution may be supplied through separate inlets into anodic and cathodic regions of the electroplating cell.
The IRFP plate 119 may be located in close proximity of the wafer (within about 10 millimeters or between about 3 to 8 millimeters, in various embodiments) and may serve as a constant current source to the wafer. That is, the IRFP plate 119 shapes the ionic current near the wafer to provide a relatively uniform current distribution over the wafer surface. The element may contain a plurality of one-dimensional through holes, as described further below. Further details regarding IRFP plates may be found in U.S. patent application Ser. No. 12/291,356, titled “METHOD AND APPARATUS FOR ELECTROPLATING,” and filed Nov. 7, 2008, which is hereby incorporated by reference in its entirety for all purposes. In addition, further details regarding IRFP plates are provided below.
After the electroplating solution flows across the surface of the wafer, some of the solution may overflow the electroplating cell 103 to an overflow reservoir 121, as indicated by arrows 123. The electroplating solution may be filtered (not shown) and returned to pump 117, as indicated by arrow 125, completing the recirculation of the electroplating solution.
During electroplating, of course, current is supplied to the wafer surface so that the electrochemical reduction of whatever metal is being plated (e.g., Cu2++2e−→Cu) may occur. Thus, a DC power supply 135 can be used to control current flow to the wafer 107. The power supply 135 has a negative output lead 139 electrically connected to the wafer 107 through one or more slip rings, brushes, or contacts (not shown). The positive output lead 141 of the power supply 135 is electrically connected to the anode 113 located in electroplating cell 103. The power supply may have an output voltage of up to about 250 volts, for example. During use, the power supply 135 biases the wafer 107 to have a negative potential relative to the anode 113. This causes an electrical current to flow from the anode 113 to the wafer 107. The electrical circuit described above may also include one or several diodes that will prevent reversal of the current flow, when such reversal is not desired.
The power supply 135 may be connected to a controller 147, which allows modulation of current and electrical potential provided to the elements of the electroplating module 101. For example, the controller may allow electroplating either in current-controlled or potential-controlled regimes. The controller 147 may include program instructions specifying current and voltage levels that need to be applied to various elements of the electroplating module, as well as times at which these levels need to be changed. For example, it may include program instructions for transitioning from potential-control to current-control upon immersion of the wafer into the electroplating solution. Controllers for electroplating apparatuses like that shown in
Another optional feature of an electroplating module are one or more shields, such as shield 149, which in the embodiment shown in
Detailed Description of Ionically-Resistive Fluidically-Permeable Plates
Various features and characteristics of ionically-resistive fluidically-permeable (IRFP) plates which are used in electroplating apparatuses to affect flow of ionic current to a substrate during an electroplating operation are now described. Depending on the embodiment, many of these features and characteristics are suitable for the IRFP plate 119 of the electroplating apparatus of
In various embodiments, a flat IRFP plate having multiple pores is deployed within the electroplating apparatus a short distance from the plating surface, e.g., the flat surface of the IRFP plate is about 1-10 mm from the plating surface. The dimension of the plate parallel to the substrate surface may be substantially coextensive with the substrate (e.g., the plate may have a diameter of about 300 mm when used with an apparatus for plating 300 mm substrates, or 450 mm when used for plating 450 mm substrates, etc.).
In various embodiments, the apparatus may provide very high vertical flow rates through the multiple pores in the IRFP plate. In various embodiments, these pores are holes in the IRFP plate that are independent of one another (i.e., non-interconnecting—there is no (or little) fluidic communication between individual holes) and are oriented in a primarily vertical orientation to direct flow upwards at the wafer surface a short distance above the pore exit. Typically, there are many such pores in the IRFP plate, often at least about 1000 such pores, or even at least about 5000 such pores; generally, there may be between about 1,000 to 25,000 such pores.
Electrolyte flowing out of these pores may produce a set of individual “microjets” of high velocity fluid that directly impinge on the wafer surface. In accordance with specific embodiments described herein, the flow rate of fluid emanating from an individual pore in the IRFP plate in the direction perpendicular to the wafer surface is on the order of about 10 cm/second or greater, more typically about 15 cm/second or greater. In some cases, it is about 20 cm/second or greater. When operating at such high vertical flow rates through the IRFP plate, high plating rates can be attained, typically on the order of about 5 micrometers/minutes or higher, particularly in a feature being formed in a through resist layer of photoresist, e.g., with a 1:1 aspect ratio and say 50 microns deep.
The distance from the plate (and the pores of the plate) to the wafer surface is generally less than 10 mm, thereby minimizing any potential dissipation of the above stated fluid velocity before striking the wafer surface. In certain embodiments, a wafer holder and associated positioning mechanism hold a rotating wafer very close to the IRFP plate. In typical cases, the separation distance is about 1-10 millimeters, or about 2-8 millimeters.
The overall volumetric flow passing through the IRFP plate is directly tied to the linear flow rate from the individual holes in the plate. For an IRFP plate of about 300 mm diameter having a large number of equal diameter holes, a volumetric flow through the plate holes may be greater than about 5 liters/minute, or greater than about 10 liter/minute, or sometime as great as 40 liters/minute or higher. As an example, a volumetric flow rate of 24 liters/minute produces a linear flow velocity at the exit of each hole of a typical plate of about 18.2 cm/sec.
In various embodiments, the IRFP plate has a sufficiently low porosity and pore size to provide a viscous backpressure and high vertical impinging flow rates at normal operating volumetric flow rate. In some cases, between about 0.1% and 10% of the IRFP plate is open area allowing fluid to reach the wafer surface. In particular embodiments, between about 1% and 5% the plate is open area. In a specific example, the open area of the plate is about 3.2% and the effective total open cross sectional area is about 23 cm2.
The porosity of the IRFP plate can be implemented in many different ways. In various embodiments, it is implemented with many vertical holes of small diameter. In some cases the plate does not consist of individual “drilled” holes, but is created by a sintered plate of continuously porous material. Examples of such sintered plates are described in U.S. Pat. No. 6,964,792, which is herein incorporated by reference in its entirety for all purposes. In some embodiments, drilled non-communicating holes have a diameter of between about 0.01 to 0.05 inches. In some cases, the holes have a diameter of between about 0.02 to 0.03 inches. As mentioned above, in various embodiments, the holes have a diameter that is at most about 0.2 times the gap distance between the IRFP plate and the wafer. The holes are generally circular in cross section, but need not be. Further, to ease construction, all holes in the plate may have the same diameter. However this need not be the case, and so both the individual size and local density of holes may vary over the plate surface as specific requirements may dictate.
As an example, a solid IRFP plate made of a suitable ceramic or plastic (generally a dielectric insulating and mechanically robust material), having a large number of small holes provided therein, e.g. at least about 1000 or at least about 3000 or at least about 5000 or at least about 6000. The porosity of the plate is typically less than about 5 percent so that the total flow rate necessary to create a high impinging velocity is not too great. Using smaller holes helps to create a large pressure drop across the plate than larger holes, aiding in creating a more uniform upward velocity through the plate.
Generally, the distribution of holes over the IRFP plate is of uniform density and non-random. In some cases, however, the density of holes may vary, particularly in the radial direction. For instance, in order to enhance the capability of an electroplating apparatus to dynamically tune shielding (and the rate of electroplating) in the edge regions of the wafers being electroplated, an IRFP plate may be employed which has a greater porosity in its edge region relative to the rest of its surface. This may be accomplished by the plate having a higher average number of holes per unit area and/or higher average hole diameter in an edge region of the plate relative to the rest of the plate.
In some embodiments, the IRFP plate provides ionic resistance substantial enough to generate a substantially uniform potential and current distribution over the substrate's radius when electroplating onto relatively thin metallized or otherwise highly resistive surfaces. This significant ionic resistance is important, because the cross wafer resistance and resistance from the wafer periphery to its center may remain high throughout the entire process. Having a significant ionic resistance throughout the entire plating process allow a useful means of maintaining a uniform plating process and enables the use of thinner seed layers than would be otherwise possible. This addresses the “terminal effect” as described in U.S. patent application Ser. No. 12/291,356, previously incorporated by reference.
Moreover, it is noted that since, in certain embodiments, the IRFP plate approximates a nearly constant current source in close proximity to the substrate (cathode) being electroplated, the plate may be referred to as a high-resistance virtual anode (HRVA). In contrast, an actual anode in the same close substrate proximity would be significantly less apt to supply a nearly constant current to the substrate, but would merely support a constant potential at the anode metal surface, thereby allowing the current to be greatest where the net resistance from the anode plane to the terminus (e.g., to peripheral contact points on the substrate) is smaller. Thus, because the IRFP plate may be viewed as the surface from which the anodic current is emanating, it may be considered and referred to as a “virtual current source,” or more particularly, as a “virtual anode.” The relatively high ionic-resistance of the plate (with respect to the electrolyte) is what leads to further advantageous, electroplating uniformity when compared to having a metallic anode located at the same physical location.
The high ionic resistance of the IRFP plate is also affected by the thickness and conductivity of the plate. The low conductivity (or high resistivity) of the plate can be achieved by either selecting a material that has a low ionic conductivity, or by choosing an ionically insulating material and drilling holes through the material to introduce anisotropic ionic conductivity, as described above. In the latter case, examples of ionically resistive materials of which the plate may be constructed include polyethylene, polypropylene, polyvinylidene difluoride (PVDF), polytetrafluoroethylene, polysulphone, and polycarbonate, or combinations thereof. In one embodiment, the plate may be between about 5 and 10 mm thick. The final conductivity of the plate may be between about 1% and 20% of the conductivity of the plating solution media, although plates with conductivities that are lower than about 1% of the conductivity of the plating solution may also be used.
In many embodiments, the pores (e.g. holes) of the IRFP plate are not interconnected, but rather are non-communicating, i.e., they are isolated from each other and do not form interconnecting channels within the body of the plate. Such holes may be referred to as 1-D through-holes because they extend in one dimension, in one example, normal (perpendicular) to the plating surface of the wafer. That is, in some embodiments, the channels are oriented at an angle of about 90° with respect to the substrate-facing surface of the plate. Moreover, because such non-communicating through-holes with directionality normal to the face of the plate (and to the surface of the substrate) do not allow for lateral movement of ionic current or fluid motion within the plate, the center-to-edge current and flow movements are blocked within the plate (in this type of embodiment), leading to further improvement in radial plating uniformity. Thus, in certain embodiments, the plate has predominantly an anisotropic conductance, allowing current flow substantially in the z-direction (i.e., perpendicular to the plate and substrate surfaces), and substantially preventing current flow in the r-direction (the radial direction parallel to the surfaces of the plate and substrate). In actual application, due to the finite size of the holes drilled through the plate, there will be some r-directed current flow inside the holes, but this level of current is negligible as compared to the ionic current that flows in the z-direction.
In other embodiments, the through-holes of the IRFP plate may be oriented at angles which are non-normal (not perpendicular) to the face of the plate. In some embodiments, the holes may be about 20° to about 60° with respect to the substrate-facing surface of the plate, or in another embodiment, about 30° to about 50° with respect to the substrate-facing surface of the plate. In some embodiments, the plate includes through-holes oriented at different angles. The hole pattern on the plate can include uniform, non-uniform, symmetric and asymmetric elements, i.e. the density and pattern of holes may vary across the plate. In certain embodiments, the channels are arranged to avoid long range linear paths parallel to the substrate-facing surface that do not encounter one of the channels. In one embodiment, the channels are arranged to avoid long range linear paths of about 10 mm or greater that are parallel to the substrate-facing surface that do not encounter one of the channels.
Electroplating Systems
The electroplating apparatus of
The electroplating system 800 shown in
Finally, in some embodiments, an electronics unit 839 may serve as a system controller providing the electronic and interface controls required to operate electroplating system 800. The system controller typically includes one or more memory devices and one or more processors configured to execute instructions so that the electroplating system can perform its intended process operations. Machine-readable media containing instructions for controlling process operations in accordance with the implementations described herein may be coupled to the system controller. Unit 839 may also provide a power supply 899 for the system.
In operation, a robotic wafer transfer mechanism may be used for transferring wafers to and from one or more wafer storage devices, one or more electroplating modules, and one or more seed layer analysis systems (although, it is noted that in some embodiments, a seed layer analysis system may analyze wafers while held in the wafer holder of an electroplating module). For example, referring again to
A front-end robot arm 840 may select a wafer from a wafer cassette such as the cassette 829A or the cassette 829B. The cassettes 829A or 829B may be front opening unified pods (FOUPs). A FOUP is an enclosure designed to hold wafers securely and safely in a controlled environment and to allow the wafers to be removed for processing or measurement by tools equipped with appropriate load ports and robotic handling systems. The front-end robot arm 840 may hold the wafer using a vacuum attachment or some other attaching mechanism. The front-end robot arm 840 may interface with the cassettes 829A or 829B, a transfer station 850, or an aligner 831. From the transfer station 850, back-end robot arm 825 may gain access to the wafer. The transfer station 850 may be a slot or a position to and from which front-end robot arm 840 and back-end robot arm 825 may pass wafers without going through the aligner 831. In some implementations, however, to ensure that a wafer is properly aligned on the back-end-robot 825 for precision delivery to an electroplating module, the back-end robot arm 825 may align the wafer with aligner 831. Back-end robot arm 825 may also deliver a wafer to one of the electrofill modules 809, 811, or 813 or to one of the three post-electrofill modules 815, 817, and 819.
In situations where the aligner module 831 is to be used to ensure that the wafer is properly aligned on back-end robot arm 825 for precision delivery to an either an electroplating module 809, 811, or 813, or an EBR module 815, 817, and 819 (assuming these PEMs perform EBR), back-end robot arm 825 transports the wafer to aligner module 831. In certain embodiments, aligner module 831 includes alignment arms against which back-end robot arm 825 pushes the wafer. When the wafer is properly aligned against the alignment arms, the back-end robot arm 825 moves to a preset position with respect to the alignment arms. In other embodiments, the aligner module 831 determines the wafer center so that the back-end robot arm 825 picks up the wafer from the new position. It then reattaches to the wafer and delivers it to one of the electroplating modules 809, 811, or 813, or EBR modules 815, 817, and 819.
Thus, in a typical operation of forming a layer of metal on a wafer using the electroplating system 800, back-end robot arm 825 transports a wafer from wafer cassette 829A or 829B to aligner module 831 for pre-electroplating centering adjustment, then to electroplating module 809, 811, or 813 for electroplating, then back to aligner module 831 for pre-EBR centering adjustment, and then to EBR module 815, 817, or 819 for edge bevel removal. Of course, in some embodiments, a centering/alignment step may be omitted if realignment of the wafer is typically not necessary.
As described more fully below, the electroplating operation may involve loading the wafer in a clamshell type wafer holder and lowering the clamshell into an electroplating bath contained within a cell of one of electroplating modules 809, 811, or 813 where the electroplating is to take place. The cell oftentimes contains an anode which serves as a source of the metal to be plated (although the anode may be remote), as well as an electroplating bath solution oftentimes supplied by the central electrofill bath reservoir 823 along with optional chemical additives from a dosing system 833. The EBR operation subsequent to the electroplating operation typically involves removing unwanted electroplated metal from the edge bevel region and possibly the backside of the wafer by way of applying an etchant solution which is provided by chemical dilution module 821. After EBR, the wafer is typically cleaned, rinsed, and dried.
Finally, it is noted that after post-electrofill processing is complete, back-end robot arm 825 may retrieve the wafer from the EBR module and returns it to cassette 829A or 829B. From there the cassettes 829A or 829B may be provided to other semiconductor wafer processing systems such as a chemical mechanical polishing system, for example.
System Controllers
In some implementations, a controller is part of a system, which may be part of the above-described examples. Such systems can comprise semiconductor processing equipment, including a processing tool or tools, chamber or chambers, a platform or platforms for processing, and/or specific processing components (a wafer pedestal, a gas flow system, etc.). These systems may be integrated with electronics for controlling their operation before, during, and after processing of a semiconductor wafer or substrate. The electronics may be referred to as the “controller,” which may control various components or subparts of the system or systems. The controller, depending on the processing requirements and/or the type of system, may be programmed to control any of the processes, methods, and/or operations disclosed herein, including the delivery of processing gases, temperature settings (e.g., heating and/or cooling), pressure settings, vacuum settings, power settings, radio frequency (RF) generator settings, RF matching circuit settings, frequency settings, flow rate settings, fluid delivery settings, positional and operation settings, wafer transfers into and out of a tool and other transfer tools and/or load locks connected to or interfaced with a specific system.
Broadly speaking, the controller may be defined as electronics having various integrated circuits, logic, memory, and/or software that receive instructions, issue instructions, control operation, enable cleaning operations, enable endpoint measurements, and the like. The integrated circuits may include chips in the form of firmware that store program instructions, digital signal processors (DSPs), chips defined as application specific integrated circuits (ASICs), and/or one or more microprocessors, or microcontrollers that execute program instructions (e.g., software). Program instructions may be instructions communicated to the controller in the form of various individual settings (or program files), defining operational parameters for carrying out a particular process on or for a semiconductor wafer or to a system. The operational parameters may, in some embodiments, be part of a recipe defined by process engineers to accomplish one or more processing steps during the fabrication of one or more layers, materials, metals, oxides, silicon, silicon dioxide, surfaces, circuits, and/or dies of a wafer.
The controller, in some implementations, may be a part of or coupled to a computer that is integrated with, coupled to the system, otherwise networked to the system, or a combination thereof. For example, the controller may be in the “cloud” or all or a part of a fab host computer system, which can allow for remote access of the wafer processing. The computer may enable remote access to the system to monitor current progress of fabrication operations, examine a history of past fabrication operations, examine trends or performance metrics from a plurality of fabrication operations, to change parameters of current processing, to set processing steps to follow a current processing, or to start a new process. In some examples, a remote computer (e.g. a server) can provide process recipes to a system over a network, which may include a local network or the Internet. The remote computer may include a user interface that enables entry or programming of parameters and/or settings, which are then communicated to the system from the remote computer. In some examples, the controller receives instructions in the form of data, which specify parameters for each of the processing steps to be performed during one or more operations. It should be understood that the parameters may be specific to the type of process to be performed and the type of tool that the controller is configured to interface with or control. Thus as described above, the controller may be distributed, such as by comprising one or more discrete controllers that are networked together and working towards a common purpose, such as the processes and controls described herein. An example of a distributed controller for such purposes would be one or more integrated circuits on a chamber in communication with one or more integrated circuits located remotely (such as at the platform level or as part of a remote computer) that combine to control a process on the chamber.
Without limitation, example systems may include a plasma etch chamber or module, a deposition chamber or module, a spin-rinse chamber or module, a metal plating chamber or module, a clean chamber or module, a bevel edge etch chamber or module, a physical vapor deposition (PVD) chamber or module, a chemical vapor deposition (CVD) chamber or module, an atomic layer deposition (ALD) chamber or module, an atomic layer etch (ALE) chamber or module, an ion implantation chamber or module, a track chamber or module, and any other semiconductor processing system that may be associated with or used in the fabrication and/or manufacturing of semiconductor wafers.
As noted above, depending on the process step or steps to be performed by the tool, the controller might communicate with one or more of other tool circuits or modules, other tool components, cluster tools, other tool interfaces, adjacent tools, neighboring tools, tools located throughout a factory, a main computer, another controller, or tools used in material transport that bring containers of wafers to and from tool locations and/or load ports in a semiconductor manufacturing factory.
Although the foregoing disclosed techniques, operations, processes, methods, systems, apparatuses, tools, films, chemistries, and compositions have been described in detail within the context of specific embodiments for the purpose of promoting clarity and understanding, it will be apparent to one of ordinary skill in the art that there are many alternative ways of implementing the foregoing embodiments which are within the spirit and scope of this disclosure. Accordingly, the embodiments described herein are to be viewed as illustrative of the disclosed inventive concepts rather than restrictively, and are not to be used as an impermissible basis for unduly limiting the scope of any claims eventually directed to the subject matter of this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3880725 | Van Raalte et al. | Apr 1975 | A |
4304641 | Grandia et al. | Dec 1981 | A |
4696729 | Santini | Sep 1987 | A |
5078852 | Yee et al. | Jan 1992 | A |
5169684 | Takagi | Dec 1992 | A |
5312352 | Leschinsky et al. | May 1994 | A |
5312532 | Andricacos et al. | May 1994 | A |
5620581 | Ang | Apr 1997 | A |
5723028 | Poris | Mar 1998 | A |
5774019 | Koyama et al. | Jun 1998 | A |
6004440 | Hanson et al. | Dec 1999 | A |
6027631 | Broadbent | Feb 2000 | A |
6071388 | Uzoh | Jun 2000 | A |
6074544 | Reid et al. | Jun 2000 | A |
6099702 | Reid et al. | Aug 2000 | A |
6106687 | Edelstein | Aug 2000 | A |
6110346 | Reid et al. | Aug 2000 | A |
6126798 | Reid et al. | Oct 2000 | A |
6132587 | Jorne et al. | Oct 2000 | A |
6132805 | Moslehi | Oct 2000 | A |
6156167 | Patton et al. | Dec 2000 | A |
6162344 | Reid et al. | Dec 2000 | A |
6168693 | Uzoh et al. | Jan 2001 | B1 |
6174425 | Simpson et al. | Jan 2001 | B1 |
6179983 | Reid et al. | Jan 2001 | B1 |
6193860 | Weling | Feb 2001 | B1 |
6228231 | Uzoh | May 2001 | B1 |
6261433 | Landau | Jul 2001 | B1 |
6322674 | Berner et al. | Nov 2001 | B1 |
6391166 | Wang | May 2002 | B1 |
6391168 | Ueno | May 2002 | B1 |
6402923 | Mayer et al. | Jun 2002 | B1 |
6425991 | Tran et al. | Jul 2002 | B1 |
6497801 | Woodruff et al. | Dec 2002 | B1 |
6527920 | Mayer et al. | Mar 2003 | B1 |
6551483 | Mayer et al. | Apr 2003 | B1 |
6569299 | Reid et al. | May 2003 | B1 |
6599412 | Graham et al. | Jul 2003 | B1 |
6627051 | Berner et al. | Sep 2003 | B2 |
6632335 | Kunisawa et al. | Oct 2003 | B2 |
6716334 | Reid et al. | Apr 2004 | B1 |
6755954 | Mayer et al. | Jun 2004 | B2 |
6773571 | Mayer et al. | Aug 2004 | B1 |
6800187 | Reid et al. | Oct 2004 | B1 |
6843894 | Berner et al. | Jan 2005 | B2 |
6919010 | Mayer et al. | Jul 2005 | B1 |
6988932 | Ashjaee et al. | Jan 2006 | B2 |
7288177 | Barrese et al. | Oct 2007 | B2 |
7323094 | Simpson et al. | Jan 2008 | B2 |
7383521 | Smith et al. | Jun 2008 | B2 |
7622024 | Mayer et al. | Nov 2009 | B1 |
7682498 | Mayer et al. | Mar 2010 | B1 |
7737035 | Lind et al. | Jun 2010 | B1 |
7837841 | Chen et al. | Nov 2010 | B2 |
7854828 | Reid et al. | Dec 2010 | B2 |
7967969 | Mayer et al. | Jun 2011 | B2 |
8262871 | Mayer et al. | Sep 2012 | B1 |
8308931 | Reid et al. | Nov 2012 | B2 |
8475636 | Mayer et al. | Jul 2013 | B2 |
8475637 | Mayer et al. | Jul 2013 | B2 |
8475644 | Mayer et al. | Jul 2013 | B2 |
8603305 | Rash et al. | Dec 2013 | B2 |
8795480 | Mayer et al. | Aug 2014 | B2 |
8858774 | Mayer et al. | Oct 2014 | B2 |
9260793 | Mayer et al. | Feb 2016 | B2 |
9309604 | Mayer et al. | Apr 2016 | B2 |
9567685 | Kagajwala et al. | Feb 2017 | B2 |
20020017456 | Graham et al. | Feb 2002 | A1 |
20020020627 | Kunisawa et al. | Feb 2002 | A1 |
20020046952 | Graham et al. | Apr 2002 | A1 |
20020119671 | Lee | Aug 2002 | A1 |
20020125141 | Wilson et al. | Sep 2002 | A1 |
20030038035 | Wilson et al. | Feb 2003 | A1 |
20030079995 | Contolini et al. | May 2003 | A1 |
20030168340 | Kaja et al. | Sep 2003 | A1 |
20030201166 | Zheng et al. | Oct 2003 | A1 |
20040084316 | Muranaka | May 2004 | A1 |
20040094427 | Economikos et al. | May 2004 | A1 |
20040149584 | Nagai et al. | Aug 2004 | A1 |
20050145499 | Kovarsky et al. | Jul 2005 | A1 |
20050164498 | Ide et al. | Jul 2005 | A1 |
20060201814 | Hafezi et al. | Sep 2006 | A1 |
20060243598 | Singh et al. | Nov 2006 | A1 |
20070029193 | Brcka | Feb 2007 | A1 |
20080179180 | McHugh et al. | Jul 2008 | A1 |
20100032303 | Reid et al. | Feb 2010 | A1 |
20100032304 | Mayer et al. | Feb 2010 | A1 |
20100032310 | Reid et al. | Feb 2010 | A1 |
20100044236 | Mayer et al. | Feb 2010 | A1 |
20100116672 | Mayer et al. | May 2010 | A1 |
20120000786 | Mayer et al. | Jan 2012 | A1 |
20120061246 | Feng et al. | Mar 2012 | A1 |
20120258408 | Mayer et al. | Oct 2012 | A1 |
20130137242 | He et al. | May 2013 | A1 |
20130313123 | Abraham et al. | Nov 2013 | A1 |
20130327650 | Mayer et al. | Dec 2013 | A1 |
20140144781 | He | May 2014 | A1 |
20140231245 | Sandmann et al. | Aug 2014 | A1 |
20150060291 | Mayer et al. | Mar 2015 | A1 |
20160115611 | Mayer et al. | Apr 2016 | A1 |
20160215408 | Kagajwala et al. | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
1 236 627 | Jul 1986 | CA |
1531028 | Sep 2004 | CN |
1624207 | Jun 2005 | CN |
1705774 | Dec 2005 | CN |
101056718 | Oct 2007 | CN |
100487855 | May 2009 | CN |
101736376 | Jun 2010 | CN |
1179617 | Feb 2002 | EP |
2003-268591 | Sep 2003 | JP |
10-0707121 | Apr 2007 | KR |
223678 | Nov 2004 | TW |
201107536 | Mar 2011 | TW |
WO 9914401 | Mar 1999 | WO |
WO 9964647 | Dec 1999 | WO |
WO2005043593 | May 2005 | WO |
WO2010144330 | Dec 2010 | WO |
Entry |
---|
U.S. Appl. No. 14/602,910, filed Jan. 22, 2015, entitled “Apparatus and Method for Dynamic Control of Plated Uniformity With the Use of Remote Electric Current.” |
US Office Action, dated May 26, 2010, issued in U.S. Appl. No. 11/506,054. |
US Notice of Allowance, dated Aug. 13, 2010, issued in U.S. Appl. No. 11/506,054. |
US Office Action, dated Sep. 19, 2011, issued in U.S. Appl. No. 12/291,356. |
US Final Office Action, dated Feb. 27, 2012, issued in U.S. Appl. No. 12/291,356. |
US Notice of Allowance, dated Jul. 27, 2012, issued in U.S. Appl. No. 12/291,356. |
US Office Action, dated Jun. 24, 2011, issued in U.S. Appl. No. 12/481,503. |
US Final Office Action, dated Mar. 1, 2012, issued in U.S. Appl. No. 12/481,503. |
US Office Action, dated Jul. 9, 2012, issued in U.S. Appl. No. 12/481,503. |
US Final Office Action, dated Dec. 19, 2012, issued in U.S. Appl. No. 12/481,503. |
US Notice of Allowance dated Mar. 1, 2013 issued in U.S. Appl. No. 12/481,503. |
US Office Action, dated Jun. 24, 2011, issued in U.S. Appl. No. 12/606,030. |
US Final Office Action, dated Mar. 1, 2012, issued in U.S. Appl. No. 12/606,030. |
US Office Action, dated Jun. 28, 2012, issued in U.S. Appl. No. 12/606,030. |
US Office Action, dated Jul. 13, 2012, issued in U.S. Appl. No. 12/606,030. |
US Final Office Action, dated Dec. 17, 2012, issued in U.S. Appl. No. 12/606,030. |
US Notice of Allowance dated Mar. 1, 2013 issued in U.S. Appl. No. 12/606,030. |
US Office Action, dated Feb. 25, 2014, issued in U.S. Appl. No. 13/438,443. |
US Notice of Allowance, dated Jun. 11, 2014, issued in U.S. Appl. No. 13/438,443. |
Chinese First Office Action dated May 15, 2013 issued in CN Application No. 200910209697.2. |
Chinese Second Office Action dated Dec. 10, 2013 issued in CN Application No. 200910209697.2. |
PCT International Search Report and Written Opinion, dated Jan. 12, 2011, issued in PCT/US2010/037520. |
PCT International Preliminary Report on Patentability and Written Opinion, dated Dec. 22, 2011, issued in PCT/US2010/037520. |
Chinese First Office Action dated Nov. 6, 2013 issued in CN Application No. 201080032109.3. |
Chinese Second Office Action dated Jun. 10, 2014 issued in CN Application No. 201080032109.3. |
Taiwan Office Action dated Jul. 31, 2014 issued in TW Application No. 099118603. |
US Office Action, dated Jun. 16, 2016, issued in U.S. Appl. No. 14/602,910. |
US Notice of Allowance, dated Oct. 6, 2016, issued in U.S. Appl. No. 14/602,910. |
US Office Action, dated Jul. 29, 2015, issued in U.S. Appl. No. 13/907,265. |
US Notice of Allowance, dated Dec. 30, 2015, issued in U.S. Appl. No. 13/907,265. |
US Notice of Allowance, dated Oct. 2, 2015, issued in U.S. Appl. No. 14/483,942. |
US Notice of Allowance [Corrected Notice of Allowability], dated Nov. 10, 2015, issued in U.S. Appl. No. 14/483,942. |
US Notice of Allowance [Corrected Notice of Allowability], dated Jan. 20, 2016, issued in U.S. Appl. No. 14/483,942. |
US Office Action, dated Jan. 15, 2016, issued in U.S. Appl. No. 13/687,937. |
Korean First Office Action dated Jun. 23, 2016 issued in KR 10-2012-7000614. |
Chinese First Office Action dated Oct. 13, 2015 issued in CN 201210098129.1. |
Chinese Second Office Action dated Jun. 6, 2016 issued in CN 201210098129.1. |
Taiwan Office Action dated Nov. 10, 2015 issued in TW USSN 101111926. |
Taiwan Office Action dated Aug. 2, 2016 issued in TW 101144354. |
US Office Action, dated Feb. 10, 2017, issued in U.S. Appl. No. 14/067,616. |
Chinese Third Office Action dated Nov. 18, 2016 issued in CN 201210098129.1. |
U.S. Final Office Action, dated May 1, 2017, issued in U.S. Appl. No. 13/687,937. |
Chinese First Office Action dated Mar. 31, 2017 issued in Application No. CN 201510556374.6. |
Number | Date | Country | |
---|---|---|---|
20160177466 A1 | Jun 2016 | US |