1. Field of the Invention
The invention relates generally to microelectromechanical systems (MEMS), and more particularly to interferometric modulators and display devices comprising such interferometric modulators.
2. Description of Related Art
Microelectromechanical systems (MEMS) include micro mechanical elements, actuators, and electronics. Micromechanical elements may be created using deposition, etching, and or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices. One type of MEMS device is called an interferometric modulator. As used herein, the term interferometric modulator or interferometric light modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference. In certain embodiments, an interferometric modulator may comprise a pair of conductive plates, one or both of which may be transparent and/or reflective in whole or part and capable of relative motion upon application of an appropriate electrical signal. In a particular embodiment, one plate may comprise a stationary layer deposited on a substrate and the other plate may comprise a metallic membrane separated from the stationary layer by an air gap. As described herein in more detail, the position of one plate in relation to another can change the optical interference of light incident on the interferometric modulator. Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed.
The systems, methods, and devices described herein each have several aspects, no single one of which is solely responsible for their desirable attributes. Without limiting the scope of these systems, methods, and devices, their more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of Certain Embodiments” one will understand how the features described herein provide advantages over established technology.
In various aspects, methods are provided for manufacturing a microelectromechanical systems (MEMS) device, wherein the methods reduce or prevent the accumulation of charges on surfaces of one or more structural elements of the MEMS device. In some aspects, methods are provided for etching a sacrificial layer, the methods including the steps of exposing a sacrificial material to a gas phase chemical etchant and an ionized gas, the ionized gas being substantially non-etching against the sacrificial material; and etching the sacrificial material, wherein the etching involves removing a substantial portion of the sacrificial material.
In some additional aspects, methods are provided for manufacturing a MEMS device, wherein the methods include the steps of depositing a sacrificial material on a substrate; depositing a structural material over the sacrificial material; and etching the sacrificial material. The etching involves exposing the sacrificial material to a gas phase chemical etchant and an ionized gas, wherein the ionized gas is substantially non-reactive with the sacrificial material.
In further aspects, MEMS devices are provided herein which are manufactured according to a method that includes the steps of depositing a sacrificial material on a substrate; depositing a structural material over the sacrificial material; and etching the sacrificial material. The etching in this embodiment involves exposing the sacrificial material to a gas phase chemical etchant and an ionized gas, wherein the ionized gas is substantially non-reactive with the sacrificial material.
In some additional aspects, an apparatus is provided that includes a plurality of MEMS devices manufactured according to methods described herein. In various embodiments, the apparatus may further include a display; a processor configured to process image data and communicate with the display; and a memory device configured to communicate with the processor.
These and other embodiments are described in more detail below.
The following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout. As will be apparent from the following description, the embodiments may be implemented in any device that is configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual or pictorial. More particularly, it is contemplated that the embodiments may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry). MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices.
In several preferred aspects, methods are provided for reducing or preventing the formation of surface-associated electrical charges (“surface charges”) during the manufacture of an interferometric modulator or other MEMS device, relative to established methods. In various embodiments, the formation of surface charges is reduced or prevented by etching sacrificial materials with a gas phase chemical etchant in the presence of an ionized gas. Etching in the presence of the ionized gas preferably neutralizes charged species produced during the etching process, which are then removed along with other etching byproducts. Advantageously, reducing surface charges according to methods provided herein yields improvements in one or more aspects of MEMS manufacturing methods and MEMS devices manufactured by such methods.
One interferometric modulator display embodiment comprising an interferometric MEMS display element is illustrated in
The depicted portion of the pixel array in
The optical stacks 16a and 16b (collectively referred to as optical stack 16), as referenced herein, typically comprise several fused layers, which can include an electrode layer, such as indium tin oxide (ITO), a partially reflective layer, such as chromium, and a transparent dielectric. The optical stack 16 is thus electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more of the above layers onto a transparent substrate 20. The partially reflective layer can be formed from a variety of materials that are partially reflective such as various metals, semiconductors, and dielectrics. The partially reflective layer can be formed of one or more layers of materials, and each of the layers can be formed of a single material or a combination of materials.
In some embodiments, the layers of the optical stack are patterned into parallel strips, and may form row electrodes in a display device as described further below. The movable reflective layers 14a, 14b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes of 16a, 16b) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, the movable reflective layers 14a, 14b are separated from the optical stacks 16a, 16b by a defined gap 19. A highly conductive and reflective material such as aluminum may be used for the reflective layers 14, and these strips may form column electrodes in a display device.
With no applied voltage, the cavity 19 remains between the movable reflective layer 14a and optical stack 16a, with the movable reflective layer 14a in a mechanically relaxed state, as illustrated by the pixel 12a in
In one embodiment, the processor 21 is also configured to communicate with an array driver 22. In one embodiment, the array driver 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to a display array or panel 30. The cross section of the array illustrated in
In typical applications, a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row. A row pulse is then applied to the row 1 electrode, actuating the pixels corresponding to the asserted column lines. The asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row. A pulse is then applied to the row 2 electrode, actuating the appropriate pixels in row 2 in accordance with the asserted column electrodes. The row 1 pixels are unaffected by the row 2 pulse, and remain in the state they were set to during the row 1 pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame. Generally, the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second. A wide variety of protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention.
In the
The display device 40 includes a housing 41, a display 30, an antenna 43, a speaker 45, an input device 48, and a microphone 46. The housing 41 is generally formed from any of a variety of manufacturing processes as are well known to those of skill in the art, including injection molding, and vacuum forming. In addition, the housing 41 may be made from any of a variety of materials, including but not limited to plastic, metal, glass, rubber, and ceramic, or a combination thereof. In one embodiment the housing 41 includes removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.
The display 30 of exemplary display device 40 may be any of a variety of displays, including a bi-stable display, as described herein. In other embodiments, the display 30 includes a flat-panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD as described above, or a non-flat-panel display, such as a CRT or other tube device, as is well known to those of skill in the art. However, for purposes of describing the present embodiment, the display 30 includes an interferometric modulator display, as described herein.
The components of one embodiment of exemplary display device 40 are schematically illustrated in
The network interface 27 includes the antenna 43 and the transceiver 47 so that the exemplary display device 40 can communicate with one ore more device s over a network. In one embodiment the network interface 27 may also have some processing capabilities to relieve requirements of the processor 21. The antenna 43 is any antenna known to those of skill in the art for transmitting and receiving signals. In one embodiment, the antenna transmits and receives RF signals according to the IEEE 802.11 standard, including IEEE 802.11(a), (b), or (g). In another embodiment, the antenna transmits and receives RF signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna is designed to receive CDMA, GSM, AMPS or other known signals that are used to communicate within a wireless cell phone network. The transceiver 47 pre-processes the signals received from the antenna 43 so that they may be received by and further manipulated by the processor 21. The transceiver 47 also processes signals received from the processor 21 so that they may be transmitted from the exemplary display device 40 via the antenna 43.
In an alternative embodiment, the transceiver 47 can be replaced by a receiver. In yet another alternative embodiment, network interface 27 can be replaced by an image source, which can store or generate image data to be sent to the processor 21. For example, the image source can be a memory device, such as a digital video disc (DVD) or a hard-disc drive that contains image data, or a software module that generates image data.
Processor 21 generally controls the overall operation of the exemplary display device 40. The processor 21 receives data, such as compressed image data from the network interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data. The processor 21 then sends the processed data to the driver controller 29 or to frame buffer 28 for storage. Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation, and gray-scale level.
In one embodiment, the processor 21 includes a microcontroller, CPU, or logic unit to control operation of the exemplary display device 40. Conditioning hardware 52 generally includes amplifiers and filters for transmitting signals to the speaker 45, and for receiving signals from the microphone 46. Conditioning hardware 52 may be discrete components within the exemplary display device 40, or may be incorporated within the processor 21 or other components.
The driver controller 29 takes the raw image data generated by the processor 21 either directly from the processor 21 or from the frame buffer 28 and reformats the raw image data appropriately for high speed transmission to the array driver 22. Specifically, the driver controller 29 reformats the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 30. Then the driver controller 29 sends the formatted information to the array driver 22. Although a driver controller 29, such as a LCD controller, is often associated with the system processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. They may be embedded in the processor 21 as hardware, embedded in the processor 21 as software, or fully integrated in hardware with the array driver 22.
Typically, the array driver 22 receives the formatted information from the driver controller 29 and reformats the video data into a parallel set of waveforms that are applied many times per second to the hundreds and sometimes thousands of leads coming from the display's x-y matrix of pixels.
In one embodiment, the driver controller 29, array driver 22, and display array 30 are appropriate for any of the types of displays described herein. For example, in one embodiment, driver controller 29 is a conventional display controller or a bi-stable display controller (e.g., an interferometric modulator controller). In another embodiment, array driver 22 is a conventional driver or a bi-stable display driver (e.g., an interferometric modulator display). In one embodiment, a driver controller 29 is integrated with the array driver 22. Such an embodiment is common in highly integrated systems such as cellular phones, watches, and other small area displays. In yet another embodiment, display array 30 is a typical display array or a bi-stable display array (e.g., a display including an array of interferometric modulators).
The input device 48 allows a user to control the operation of the exemplary display device 40. In one embodiment, input device 48 includes a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a touch-sensitive screen, a pressure- or heat-sensitive membrane. In one embodiment, the microphone 46 is an input device for the exemplary display device 40. When the microphone 46 is used to input data to the device, voice commands may be provided by a user for controlling operations of the exemplary display device 40.
Power supply 50 can include a variety of energy storage devices as are well known in the art. For example, in one embodiment, power supply 50 is a rechargeable battery, such as a nickel-cadmium battery or a lithium ion battery. In another embodiment, power supply 50 is a renewable energy source, a capacitor, or a solar cell, including a plastic solar cell, and solar-cell paint. In another embodiment, power supply 50 is configured to receive power from a wall outlet.
In some implementations control programmability resides, as described above, in a driver controller which can be located in several places in the electronic display system. In some cases control programmability resides in the array driver 22. Those of skill in the art will recognize that the above-described optimization may be implemented in any number of hardware and/or software components and in various configurations.
The details of the structure of interferometric modulators that operate in accordance with the principles set forth above may vary widely. For example,
In embodiments such as those shown in
Two possible configurations for the deformable layer 34 are shown in
In several aspects, methods are provided herein for manufacturing MEMS devices, including but not limited to interferometric modulators, wherein the methods yield substantial improvements in one or more aspects of MEMS manufacturing processes and/or MEMS devices made by such methods. Methods described herein can be practiced in conjunction with any number of methods known in the semiconductor, integrated circuit, and/or MEMS fields. Methods provided herein typically involve a series of material deposition, patterning, and etching steps, along with various additional steps, such as cleaning, masking, removing, washing, doping, charging, heating, cooling, moving, storing, connecting (e.g., to other components), testing, and the like. Examples of suitable techniques are described, for example, in U.S. Pat. No. 6,040,937 and U.S. Patent Application No. 2004/0051929. Methods for manufacturing a particular device may entail significant variations from established methods, however, depending for example on the type and configuration of the device being manufactured.
A significant problem in the manufacture of MEMS devices is the accumulation of surface-associated electrical charges (“surface charges”), which can lead to a variety of manufacturing and/or performance issues. For example, accumulated surface charges can attract and hold particulate contaminants that interfere with optical, mechanical, and/or other aspects of MEMS devices. Surface charges can also cause electrostatic discharge (ESD) events, which can permanently damage circuitry and/or other components. Surface charge-related problems may be manifested as manufacturing defects, which can decrease production efficiency and/or product quality, and/or as “latent” defects, which can cause system failures or other problems at various post-manufacturing stages, such as product packaging, transport, storage, and/or use. Latent defects are particularly problematic, due, for example, to difficulties in detecting defective products and diagnosing related reliability and/or performance issues.
MEMS devices manufactured by established methods typically accumulate a substantial number of surface charges, requiring additional processing steps to remove such surface charges and/or reduce their deleterious effects. A variety of methods for addressing surface charges in MEMS devices are known in the art (e.g., in the art of semiconductor manufacturing). For example, MEMS manufacturing processes typically incorporate materials and/or handling steps for discharging surface charges by grounding one or more components of a MEMS device. Although grounding can successfully eliminate some surface charges, other surface charges, such as those associated with insulating materials (e.g., dielectric layers) or with conductive materials that are structurally inaccessible, are not susceptible to discharge by grounding. Devices can also be exposed to ionized air or another ionized gas, for example in a “clean room” or a microenvironment therein, in order to neutralize surface charges. While ionization methods can effectively dissipate some surface charges, others are resistant to neutralization, such as those residing on surfaces isolated from the surrounding environment. Moreover, the accumulation of surface charges and/or their subsequent neutralization can alter surface chemistries or other material properties, and thereby negatively effect optical, mechanical, and/or other properties of MEMS devices.
In addition to the above methods for eliminating surface charges, a wide range of techniques have been developed to counteract or compensate for the effects of surface charges on the manufacture and operation of MEMS devices. Such methods include, for example, the incorporation of additional layers and coatings (e.g., insulating layers, anti-stiction coatings), the incorporation of additional structures (e.g., stiction bumps), limitations on operational parameters (e.g., actuation voltages), and/or other modifications. These methods are typically costly, time-consuming, and only partially effective. Accordingly, preventing the accumulation of surface charges according to methods described herein can provide a host of improvements in MEMS devices and manufacturing processes.
In some aspects, the formation of surface charges on one or more structural elements of a MEMS device is reduced or prevented via methods provided herein for etching a sacrificial material. Without being limited to a particular theory, it is believed that a primary mechanism underlying the accumulation of surface charges on MEMS devices is triboelectric charging, whereby charge transfer occurs between two or more surfaces that come into contact and then separate during the manufacturing process. Etching processes are particularly problematic with regard to surface charges, since they typically involve the removal of sacrificial materials that have extensive contacts with structural or other materials. The term “sacrificial” is used herein according to its ordinary meaning(s), for example to describe materials that are removed in the course of manufacturing a MEMS device (e.g., a sacrificial material) and/or structures comprising such materials (e.g., a sacrificial layer). In various embodiments, the separation of surface contacts between a sacrificial material and structural materials comprising a MEMS device results in triboelectric charging of the surfaces, for example via the donation and acceptance of electrons between the surfaces to produce local regions of positive and negative charge. In addition, charged species created via chemical etching, as well as charged contaminants, can adsorb, condense (physisorb), chemisorb, and/or otherwise adhere to one or more surfaces of a MEMS device.
In some aspects, methods provided herein prevent or reduce the formation and/or accumulation of surfaces charges by etching sacrificial materials with a gas phase chemical etchant in the presence of an ionized gas, wherein the ionized gas is preferably substantially non-etching against the sacrificial material and/or the materials comprising the MEMS device. Without being bound by a particular theory, it is believed that etching in the presence of an ionized gas neutralizes charged species that would otherwise adhere to one or more surfaces of the device. In various embodiments, charge-neutralized species do not substantially adhere to surfaces of the MEMS device, but rather are removed along with other byproducts of the etching process, for example via a vacuum source. In contrast to established methods, methods provided herein can prevent the initial formation of surface charges, as opposed to removing or compensating for surface charges after they have formed. Advantageously, methods provided herein may yield improvements in efficiency, cost, assembly time, accuracy, reproducibility (e.g., lower tolerances) and/or other aspects of MEMS manufacturing methods. Also provided herein are MEMS devices having reduced levels of surface charges and systems comprising such devices. In various embodiments, such devices and systems exhibit improved durability, reliability, performance, and/or other aspects relative to devices and systems manufactured by other methods.
Layers, coatings, and/or other structural elements may be described herein as being “on” (e.g., deposited on, or formed on), “over”, “above”, “adjacent”, “between”, etc. in relation to other structural elements. As used herein, these terms can mean directly and/or indirectly on, over, above, adjacent, between, etc., as a variety of intermediate layers and/or other structural elements can be interposed between structural elements recited herein. Similarly, structural elements recited herein, such as substrates or layers, can comprise a single component (e.g., a monolayer) or a multi-component structure (e.g., a laminate comprising multiple layers of the recited material, with or without layers of additional materials). In addition to the above-mentioned connotations, the term “on” can denote that a structural element is attached, connected, joined or otherwise associated with another element in any manner maintaining the elements in proximity to one another. A structural element described as “on” another can be integral to, or separate/distinct from the other element, and the elements can be associated permanently, irreversibly, etc., or removably, separably, etc. Use of the terms “one or more,” “at least one,” and the like with respect to an object or element does not in any way indicate the absence of a potential plural arrangement of objects or elements in connection with instances in which such term(s) are not used.
The term “microelectromechanical systems (MEMS) device,” as used herein, refers generally to any such device at any stage of manufacture, including “pre-release” devices (e.g., devices having one or more sacrificial layers which are removed at subsequent processing steps) and “post-release” devices (e.g., devices comprising the structural elements of the operational device). While various embodiments may be described with reference to a particular structure or device, methods and products provided herein are not limited to the exemplified devices or any particular class of device, but rather are generally applicable to any compatible MEMS device.
In some preferred embodiments, the MEMS device manufactured by methods provided herein is an interferometric modulator, such those illustrated in
In the illustrated process, an optical stack 16 is deposited on a transparent substrate 20, as shown in
Formation of the optical stack is followed by deposition of a first sacrificial layer 120, which may comprise several sublayers (e.g., sublayers 120(a), 120(b), and 120(c), described below). In some embodiments, an etch stop layer (not shown), for example comprising Al2O3, is formed on the optical stack 16 prior to deposition of the first sacrificial layer 120 to protect the optical stack 16 from subsequent etching steps. With reference to
The use of multiple sublayers to form one or more sacrificial layers in methods provided herein allows for the manufacture of interferometric modulators having a wide range of cavity dimensions, depending for example on the desired optical and electromechanical properties of the interferometric modulator. For example, adjacent interferometric modulators comprising a pixel within a display device can have interferometric cavity dimensions corresponding to the combined thicknesses of one, two, three or more sacrificial sublayers, such as the sublayers 120(a), 120(b), and 120(c) in
To form the pre-release structure illustrated in
As illustrated in
In various embodiments, etching of one or more sacrificial layers of a MEMS device, such as sacrificial layers 120, 122, and the optional sacrificial layer over deformable layer 34, comprises exposing the sacrificial layer(s) to a gas phase chemical etchant in the presence of an ionized gas. In some embodiments, one or more surfaces of a MEMS device that were in contact with, or close proximity to, a sacrificial layer have a reduced level of fixed electrical charge. For example, with reference to
Those skilled in the art will understand that the selection of the sacrificial material, the gas phase chemical etchant, and the ionized gas depends on a variety of factors, including the methods and conditions used to deposit the sacrificial materials (which can effect their physical and/or chemical properties), and the etching conditions used to remove them. Those skilled in the art will also understand that virtually all materials are etchable under certain conditions, and that the description herein of a material as selectively etchable or etch resistant, or of an etchant and/or ionized gas as being non-etching, is in comparison with other materials or gases under particular conditions. Thus, in many instances, appropriate sacrificial materials, etchants, and/or ionized gases are determined empirically, under controlled conditions. Alternatively, etchant-sacrificial material combinations useful for a variety of purposes are known in the art and/or are commercially available.
The gas phase etchant, ionized gas, and sacrificial material(s) used in methods provided herein are generally selected so that the sacrificial materials are selectively etchable against the structural materials and/or the substrate of the MEMS device, using the chemical etching methods provided herein. In some preferred embodiments, the gas phase chemical etchant is substantially non-etching against the structural materials and/or the substrate. For example, in some embodiments, the gas phase chemical etchant etches the sacrificial materials at a rate greater than about 5×, preferably greater than about 10×, and more preferably greater than about 40× the rate of the structural materials and/or the substrate. In further embodiments, the gas phase chemical etchant is substantially non-etching against the structural materials and/or the substrate in the presence of the ionized gas.
In some preferred embodiments, the ionized gas is substantially non-etching against the sacrificial materials. For example, in some embodiments, the ionized gas etches the sacrificial materials at a rate that is about 10× less or lesser, more preferably about 40× less or lesser, and even more preferably about 100× less or lesser than the rate of etching by the gas phase chemical etchant. Advantageously, using an ionized gas that is substantially non-etching against the sacrificial materials allows the MEMS device to be exposed to the ionized gas for extended periods during the manufacturing process. For example, in some preferred embodiments, the MEMS device is exposed to the ionized gas for a period of time prior to introduction of the chemical etchant, as well as throughout the etching process, to prevent formation of charged species in the absence of the ionized gas. In further embodiments, the MEMS device is exposed to the ionized gas prior to, during, and/or after the deposition of one or more sacrificial layers, for example to prevent triboelectric charge formation due to contacts between the sacrificial materials and the structural materials and/or the substrate. Advantageously, the use of an ionized gas that is substantially non-etching allows methods described herein to be carried out without the need to significantly alter established manufacturing protocols. For example, in various embodiments, one or more deposition and/or etching steps in the manufacture of a MEMS device is/are carried out in the presence of a substantially non-etching ionized gas under the same or substantially similar conditions used in the absence of the ionized gas.
While not being bound by a particular theory, it is believed that, in some embodiments, the degree of charge formation is related to the nature and extent of contacts between the sacrificial and structural materials. For example, in various embodiments, charge formation is affected by the area and duration of contact between surfaces, the rate and direction of separation, humidity, and/or “contact resistance” at the surface-surface interface. In some preferred embodiments, the degree of triboelectric charging is minimized by methods provided herein by etching under conditions in which the gas phase etchant spontaneously etches the sacrificial material via chemical processes (e.g., by converting the sacrificial material to volatile chemical species that are removed from the reaction chamber along with other etching byproducts), without substantial etching by physical processes (e.g., ion bombardment, sputtering, etc.). Thus, the sacrificial layer is preferably etched in a substantially isotropic (non-directional) manner, consistent with purely chemical etching processes.
In various preferred embodiments, chemical etching is carried out without substantial physical etching by performing the etching under substantially non-energized conditions. For example, etching conditions are preferably of sufficiently low energy to maintain the chemical etchant in the gaseous phase (e.g., without conversion to a plasma) throughout the etching process and any subsequent steps in which the etchant contacts the MEMS device. In various embodiments, the etching process is carried out without exposing the gas phase etchant to energizing conditions, such as elevated temperatures, elevated pressures, radiation (e.g., UV or other light), electromagnetic energy, and/or other conditions capable of energizing the gaseous etchant. For example, in various embodiments, etching according to methods provided herein is performed at a pressure of less than about 100 torr, more preferably less than about 50 torr, and even more preferably less than about 10 torr; at a temperature of less than about 200° C., more preferably less than about 150° C., and even more preferably less than about 100° C.; and/or for a duration of less than about 10 minutes, more preferably less than about 5 minutes, and even more preferably less than about 1 minute.
In some embodiments, the gas phase chemical etchant is a noble halide-fluoride gas etchant, such as a helium-, neon-, argon-, krypton-, xenon-, or radon-fluoride gas. In some preferred embodiments, the etchant is KrF2, XeF2, XeF4, or XeF6, with XeF2 being particularly preferred. In some embodiments, the gas phase chemical etchant is a halogen-fluoride gas, such as BrFx (e.g., BrF, BrF3, or BrF5), ClFx (e.g., ClF, ClF3, or ClF5), IFx (e.g., IF5 or IF7), XeFx (e.g., XeF2), or combinations thereof. In further embodiments, the gas phase chemical etchant comprises a gas phase acid, such as HF, HBr, or HI, a chlorine or bromine gas, such as Cl2, BrI3, BrCl3 or AICl3, or any combination of the above etchants. In some embodiments, the etchant further comprises an additional gaseous component (e.g., a diluent). For example, the gas phase chemical etchant can be combined with N2 gas or another inert gas, such as Ar, Xe, He, and the like.
A variety of sacrificial materials can be chemically etched by methods provided herein without substantial etching via physical processes. For example, in various embodiments, the sacrificial material may comprise polycrystalline silicon, amorphous silicon, silicon oxide, silicon nitride, aluminum, titanium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten, manganese, various polymers (e.g., organic polymers), and/or combinations thereof. In some embodiments, the sacrificial material comprises a sacrificial layer, such as the sacrificial layer 120 in
As described above, the selection of sacrificial materials and chemical etchants may require empirical determination of the etch rates of the sacrificial material relative to various structural materials under defined conditions. Accordingly, various examples described herein provide general guidelines for the selection of such materials, but should not be construed as universally applicable or exhaustive of useful materials. In some embodiments, etching is monitored, for example by measuring the reflectivity of the device, or the release of etching byproducts. In other embodiments, the etching is allowed to proceed for a fixed duration, for example a duration previously determined to provide a desirable degree of etching and/or selectivity. Those skilled in the art will also understand that the etching rate of a layer of sacrificial material can vary based on the thickness of the layer, the spacing and orientation of surrounding layers, the direction of etching, and other factors. In various embodiments, the amount of a gas phase etchant used to etch a sacrificial layer is an amount sufficient to etch the sacrificial material at a desired rate, for example at least 1 nm/sec, and more preferably at least 5 nm/sec, and even more preferably at least 10 nm/sec or more. In various embodiments, the amount of ionized gas used in methods described herein is between about 1% and about 99% by weight of the etchant-ionized gas mixture, and preferably less than about 50%, or more preferably less than about 25%, or even more preferably less than about 10% by weight of the etchant-ionized gas mixture. Skilled artisans can readily determine etchant-ionized gas ratios, etching conditions, and the like for particular MEMS devices by routine experimentation, in light of the teachings provided herein.
In various embodiments, the ionized gas is an ionized inert gas, such as N2, Ar, Xe, He, and the like. In some preferred embodiments, the ionized gas is substantially non-reactive (e.g., substantially non-etching) against sacrificial and/or structural materials comprising the MEMS device. In further embodiments, the ionized gas is substantially non-etching against such materials in the presence of the gas phase chemical etchant. The ionized gas preferably comprises both positively and negatively charged molecules, in order to neutralize both types of charged species during the etching process. However, in some embodiments, the ionized gas may be comprised substantially or wholly of either positively or negatively charged molecules, for example where ionized gases of a certain composition have been previously established as being effective in reducing surface charges.
Methods and apparatuses for producing ionized gases and delivering them to a targeted microenvironment are known in the art, and are described, e.g., in U.S. Pat. Nos. 5,594,247 and 5,898,268. For example, in some embodiments, an inert gas is ionized by a “corona discharge” method, wherein the gas is exposed to needle shaped electrodes that ionize the gas molecules upon application of an ionizing voltage to the electrodes. In some embodiments, a negative voltage is applied to one or more electrodes, producing primarily positive ions, whereas in other embodiments a positive voltage is applied, producing primarily negative ions. Mixtures of positive and negative ions can be produced by mixing negative and positive ionized species produced as described above, and/or by applying an alternating current to a single electrode, preferably with a temporal pulse-pause protocol designed to maximize the yield of both species (e.g., by minimizing recombination of charged species). In various embodiments, ionized species are directed to an etching chamber or other microenvironment containing a MEMS device by applying vacuum, pressure, and/or electromagnetic forces, and/or by other methods known in the art. In some embodiments, the ionized gas is introduced to the etching chamber using an ion gun, a variety of which are known in the art and commercially available.
In some preferred embodiments, the inert gas has a low “ionization energy,” such that it is readily ionized under relatively low-energy conditions, for example at ambient temperatures and pressures. N2 and Ar gases are particularly preferred in some embodiments. In some preferred embodiments, the ion source is placed in close proximity to the area targeted for charge reduction, since gases having a low ionization energy typically recombine readily to form uncharged species. In addition, in further embodiments, ionized gas molecules are accelerated towards the target area, for example using an ion gun, so that the ionized molecules reside in the etching chamber for a substantial portion of their ‘half-life’.
It will be understood by skilled artisans that MEMS devices can be exposed to the gas phase chemical etchant and the ionized gas in a variety of ways, depending on the particular device being manufactured, the equipment and materials being utilized, etc. For example, a number of methods and apparatuses are known in the semiconductor, MEMS, and integrated circuit fields for controlling the microenvironment surrounding a device during one or more steps of its manufacture. For example, various steps in the manufacture of a MEMS device can be carried out in separate, sealed microenvironments within which one or more specific processing steps are carried out (e.g., processing “tools”).
In some embodiments, etching according to methods provided herein is carried out in a sealed etching chamber, which allows gases and particulate matter to be introduced and removed from the chamber in a controlled manner, and at a controlled rate. To minimize the formation of surface charges, the gas phase etchant is preferably introduced to the etching chamber in a manner that minimizes its exposure to sacrificial materials in the absence of the ionized gas. Thus, in some preferred embodiments, the ionized gas is dispersed throughout the chamber prior to introducing the gas phase etchant. For example, the ionized gas can be continuously circulated through the etching chamber and the gas phase etchant can be bled into the circulation of the ionized gas. In other embodiments, the gas phase etchant and the ionized gas are introduced to the chamber together (e.g., each gas can flow from a separate source into a common conduit, which in turn carries the mixture to the etching chamber), or are combined in the etching chamber (e.g., each gas can be introduced into the chamber from a separate source). In some preferred embodiments, the etchant is XeF2, which can be produced by sublimation from solid crystals, for example by maintaining the crystals at room temperature.
Methods provided herein are useful for reducing surface charges on any surface of a MEMS device that contacts a sacrificial layer during the manufacturing process. For example, with reference to
In some preferred embodiments, methods provided herein reduce surface charges on one or more surfaces (“optically active” surfaces) within the optical path of an interferometric modulator. As described above with reference to
In further preferred embodiments, methods provided herein reduce surfaces charges on one or more surfaces that are movable during the operation of a MEMS device (“mechanically active” surfaces). For example, in some embodiments, charged particles can adhere to and locally deform the mechanical layer of an interferometric modulator (e.g., the layer 34 in
In further preferred embodiments, methods provided herein reduce surfaces charges on one or more structural elements comprising an insulating material. For example, in some embodiments, the optical stack 16 in
In some additional aspects, MEMS devices produced by methods described herein are provided, as well as systems incorporating such devices. MEMS devices with reduced amounts of surface charges can exhibit a variety of improved characteristics, including but not limited to, reduced corrosion, erosion, and/or wear, better optical and/or mechanical properties, improved adherence to manufacturing tolerances, and other desirable properties.
Those skilled in the art will understand that changes in the apparatus and manufacturing process described above are possible, for example, adding and/or removing components and/or steps, and/or changing their orders. Moreover, the methods, structures, and systems described herein are useful for fabricating other electronic devices, including other types of MEMS devices, for example, other types of optical modulators.
Moreover, while the above detailed description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the spirit of the invention. As will be recognized, the present invention may be embodied within a form that does not provide all of the features and benefits set forth herein, as some features may be used or practiced separately from others.
Number | Name | Date | Kind |
---|---|---|---|
2534846 | Ambrose et al. | Dec 1950 | A |
3439973 | Paul et al. | Apr 1969 | A |
3443854 | Weiss | May 1969 | A |
3616312 | McGriff et al. | Oct 1971 | A |
3653741 | Marks | Apr 1972 | A |
3656836 | de Cremoux et al. | Apr 1972 | A |
3725868 | Malmer, Jr. et al. | Apr 1973 | A |
3813265 | Marks | May 1974 | A |
3955880 | Lierke | May 1976 | A |
4099854 | Decker et al. | Jul 1978 | A |
4190488 | Winters | Feb 1980 | A |
4196396 | Smith | Apr 1980 | A |
4228437 | Shelton | Oct 1980 | A |
4377324 | Durand et al. | Mar 1983 | A |
4389096 | Hori et al. | Jun 1983 | A |
4392711 | Moraw et al. | Jul 1983 | A |
4403248 | te Velde | Sep 1983 | A |
4441791 | Hornbeck | Apr 1984 | A |
4445050 | Marks | Apr 1984 | A |
4459182 | te Velde | Jul 1984 | A |
4482213 | Piliavin et al. | Nov 1984 | A |
4500171 | Penz et al. | Feb 1985 | A |
4519676 | te Velde | May 1985 | A |
4531126 | Sadones | Jul 1985 | A |
4560435 | Brown et al. | Dec 1985 | A |
4566935 | Hornbeck | Jan 1986 | A |
4571603 | Hornbeck et al. | Feb 1986 | A |
4596992 | Hornbeck | Jun 1986 | A |
4615595 | Hornbeck | Oct 1986 | A |
4617608 | Blonder et al. | Oct 1986 | A |
4662746 | Hornbeck | May 1987 | A |
4663083 | Marks | May 1987 | A |
4681403 | te Velde et al. | Jul 1987 | A |
4710732 | Hornbeck | Dec 1987 | A |
4748366 | Taylor | May 1988 | A |
4786128 | Birnbach | Nov 1988 | A |
4790635 | Apsley | Dec 1988 | A |
4856863 | Sampsell et al. | Aug 1989 | A |
4859060 | Kitagirin et al. | Aug 1989 | A |
4880493 | Ashby et al. | Nov 1989 | A |
4900136 | Goldburt et al. | Feb 1990 | A |
4900395 | Syverson et al. | Feb 1990 | A |
4937496 | Neiger et al. | Jun 1990 | A |
4954789 | Sampsell | Sep 1990 | A |
4956619 | Hornbeck | Sep 1990 | A |
4965562 | Verhulst | Oct 1990 | A |
4982184 | Kirkwood | Jan 1991 | A |
5018256 | Hornbeck | May 1991 | A |
5022745 | Zahowski et al. | Jun 1991 | A |
5028939 | Hornbeck et al. | Jul 1991 | A |
5037173 | Sampsell et al. | Aug 1991 | A |
5044736 | Jaskie et al. | Sep 1991 | A |
5061049 | Hornbeck | Oct 1991 | A |
5075796 | Schildkraut et al. | Dec 1991 | A |
5078479 | Vuilleumier | Jan 1992 | A |
5079544 | DeMond et al. | Jan 1992 | A |
5083857 | Hornbeck | Jan 1992 | A |
5096279 | Hornbeck et al. | Mar 1992 | A |
5099353 | Hornbeck | Mar 1992 | A |
5124834 | Cusano et al. | Jun 1992 | A |
5136669 | Gerdt | Aug 1992 | A |
5142405 | Hornbeck | Aug 1992 | A |
5142414 | Koehler | Aug 1992 | A |
5153771 | Link et al. | Oct 1992 | A |
5162787 | Thompson et al. | Nov 1992 | A |
5168406 | Nelson | Dec 1992 | A |
5170156 | DeMond et al. | Dec 1992 | A |
5172262 | Hornbeck | Dec 1992 | A |
5179274 | Sampsell | Jan 1993 | A |
5192395 | Boysel et al. | Mar 1993 | A |
5192946 | Thompson et al. | Mar 1993 | A |
5206629 | DeMond et al. | Apr 1993 | A |
5212582 | Nelson | May 1993 | A |
5214419 | DeMond et al. | May 1993 | A |
5214420 | Thompson et al. | May 1993 | A |
5216537 | Hornbeck | Jun 1993 | A |
5226099 | Mignardi et al. | Jul 1993 | A |
5228013 | Bik | Jul 1993 | A |
5231532 | Magel et al. | Jul 1993 | A |
5233385 | Sampsell | Aug 1993 | A |
5233456 | Nelson | Aug 1993 | A |
5233459 | Bozler et al. | Aug 1993 | A |
5254980 | Hendrix et al. | Oct 1993 | A |
5272473 | Thompson et al. | Dec 1993 | A |
5278652 | Urbanus et al. | Jan 1994 | A |
5280277 | Hornbeck | Jan 1994 | A |
5287096 | Thompson et al. | Feb 1994 | A |
5293272 | Jannson et al. | Mar 1994 | A |
5296950 | Lin et al. | Mar 1994 | A |
5299041 | Morin et al. | Mar 1994 | A |
5305640 | Boysel et al. | Apr 1994 | A |
5311360 | Bloom et al. | May 1994 | A |
5312513 | Florence et al. | May 1994 | A |
5323002 | Sampsell et al. | Jun 1994 | A |
5324683 | Fitch et al. | Jun 1994 | A |
5325116 | Sampsell | Jun 1994 | A |
5326430 | Cronin et al. | Jul 1994 | A |
5327286 | Sampsell et al. | Jul 1994 | A |
5330617 | Haond | Jul 1994 | A |
5331454 | Hornbeck | Jul 1994 | A |
5339116 | Urbanus et al. | Aug 1994 | A |
5345328 | Fritz et al. | Sep 1994 | A |
5347377 | Revelli, Jr. et al. | Sep 1994 | A |
5355357 | Yamamori et al. | Oct 1994 | A |
5358601 | Cathey | Oct 1994 | A |
5365283 | Doherty et al. | Nov 1994 | A |
5381232 | van Wijk | Jan 1995 | A |
5381253 | Sharp et al. | Jan 1995 | A |
5401983 | Jokerst et al. | Mar 1995 | A |
5411769 | Hornbeck | May 1995 | A |
5444566 | Gale et al. | Aug 1995 | A |
5446479 | Thompson et al. | Aug 1995 | A |
5448314 | Heimbuch et al. | Sep 1995 | A |
5452024 | Sampsell | Sep 1995 | A |
5454906 | Baker et al. | Oct 1995 | A |
5457493 | Leddy et al. | Oct 1995 | A |
5457566 | Sampsell et al. | Oct 1995 | A |
5459602 | Sampsell | Oct 1995 | A |
5459610 | Bloom et al. | Oct 1995 | A |
5461411 | Florence et al. | Oct 1995 | A |
5474865 | Vasudev | Dec 1995 | A |
5489952 | Gove et al. | Feb 1996 | A |
5497172 | Doherty et al. | Mar 1996 | A |
5497197 | Gove et al. | Mar 1996 | A |
5499037 | Nakagawa et al. | Mar 1996 | A |
5499062 | Urbanus | Mar 1996 | A |
5500635 | Mott | Mar 1996 | A |
5500761 | Goossen et al. | Mar 1996 | A |
5503952 | Suzuki et al. | Apr 1996 | A |
5506597 | Thompson et al. | Apr 1996 | A |
5515076 | Thompson et al. | May 1996 | A |
5517347 | Sampsell | May 1996 | A |
5523803 | Urbanus et al. | Jun 1996 | A |
5526051 | Gove et al. | Jun 1996 | A |
5526172 | Kanack | Jun 1996 | A |
5526327 | Cordova, Jr. | Jun 1996 | A |
5526688 | Boysel et al. | Jun 1996 | A |
5535047 | Hornbeck | Jul 1996 | A |
5548301 | Kornher et al. | Aug 1996 | A |
5551293 | Boysel et al. | Sep 1996 | A |
5552924 | Tregilgas | Sep 1996 | A |
5552925 | Worley | Sep 1996 | A |
5559358 | Burns et al. | Sep 1996 | A |
5563398 | Sampsell | Oct 1996 | A |
5567334 | Baker et al. | Oct 1996 | A |
5570135 | Gove et al. | Oct 1996 | A |
5579149 | Moret et al. | Nov 1996 | A |
5581272 | Conner et al. | Dec 1996 | A |
5583688 | Hornbeck | Dec 1996 | A |
5589852 | Thompson et al. | Dec 1996 | A |
5597736 | Sampsell | Jan 1997 | A |
5600383 | Hornbeck | Feb 1997 | A |
5602671 | Hornbeck | Feb 1997 | A |
5606441 | Florence et al. | Feb 1997 | A |
5608468 | Gove et al. | Mar 1997 | A |
5610438 | Wallace et al. | Mar 1997 | A |
5610624 | Bhuva | Mar 1997 | A |
5610625 | Sampsell | Mar 1997 | A |
5619059 | Li et al. | Apr 1997 | A |
5619365 | Rhoads et al. | Apr 1997 | A |
5619366 | Rhoads et al. | Apr 1997 | A |
5622814 | Miyata et al. | Apr 1997 | A |
5629790 | Neukermans et al. | May 1997 | A |
5633652 | Kanbe et al. | May 1997 | A |
5636052 | Arney et al. | Jun 1997 | A |
5636185 | Brewer et al. | Jun 1997 | A |
5638084 | Kalt | Jun 1997 | A |
5638946 | Zavracky | Jun 1997 | A |
5641391 | Hunter et al. | Jun 1997 | A |
5646768 | Kaeiyama | Jul 1997 | A |
5647819 | Fujita et al. | Jul 1997 | A |
5650834 | Nakagawa et al. | Jul 1997 | A |
5650881 | Hornbeck | Jul 1997 | A |
5654741 | Sampsell et al. | Aug 1997 | A |
5657099 | Doherty et al. | Aug 1997 | A |
5659374 | Gale, Jr. et al. | Aug 1997 | A |
5665997 | Weaver et al. | Sep 1997 | A |
5673139 | Johnson | Sep 1997 | A |
5674757 | Kim | Oct 1997 | A |
5683591 | Offenberg | Nov 1997 | A |
5703710 | Brinkman et al. | Dec 1997 | A |
5706022 | Hato | Jan 1998 | A |
5710656 | Goosen | Jan 1998 | A |
5719068 | Suzawa et al. | Feb 1998 | A |
5726480 | Pister | Mar 1998 | A |
5739945 | Tayebati | Apr 1998 | A |
5745193 | Urbanus et al. | Apr 1998 | A |
5745281 | Yi et al. | Apr 1998 | A |
5771116 | Miller et al. | Jun 1998 | A |
5784190 | Worley | Jul 1998 | A |
5784212 | Hornbeck | Jul 1998 | A |
5793504 | Stoll | Aug 1998 | A |
5808780 | McDonald | Sep 1998 | A |
5818095 | Sampsell | Oct 1998 | A |
5822110 | Dabbaj | Oct 1998 | A |
5822170 | Cabuz et al. | Oct 1998 | A |
5824608 | Gotoch et al. | Oct 1998 | A |
5825528 | Goosen | Oct 1998 | A |
5835255 | Miles | Nov 1998 | A |
5838484 | Gossen et al. | Nov 1998 | A |
5842088 | Thompson | Nov 1998 | A |
5867302 | Fleming et al. | Feb 1999 | A |
5896796 | Chih | Apr 1999 | A |
5912758 | Knipe et al. | Jun 1999 | A |
5943158 | Ford et al. | Aug 1999 | A |
5959763 | Bozler et al. | Sep 1999 | A |
5967163 | Pan et al. | Oct 1999 | A |
5972193 | Chou et al. | Oct 1999 | A |
5976902 | Shih | Nov 1999 | A |
5986796 | Miles et al. | Nov 1999 | A |
6016693 | Viani et al. | Jan 2000 | A |
6028690 | Carter et al. | Feb 2000 | A |
6031653 | Wang | Feb 2000 | A |
6038056 | Florence et al. | Mar 2000 | A |
6040937 | Miles | Mar 2000 | A |
6049317 | Thompson et al. | Apr 2000 | A |
6055090 | Miles et al. | Apr 2000 | A |
6057903 | Colgan et al. | May 2000 | A |
6061075 | Nelson et al. | May 2000 | A |
6099132 | Kaeriyama | Aug 2000 | A |
6100872 | Aratani et al. | Aug 2000 | A |
6113239 | Sampsell et al. | Sep 2000 | A |
6115326 | Puma et al. | Sep 2000 | A |
6147790 | Meier et al. | Nov 2000 | A |
6158156 | Patrick | Dec 2000 | A |
6160833 | Floyd et al. | Dec 2000 | A |
6165890 | Kohl et al. | Dec 2000 | A |
6166422 | Qian et al. | Dec 2000 | A |
6180428 | Peeters et al. | Jan 2001 | B1 |
6194323 | Downey et al. | Feb 2001 | B1 |
6195196 | Kimura et al. | Feb 2001 | B1 |
6201633 | Peeters et al. | Mar 2001 | B1 |
6204080 | Hwang | Mar 2001 | B1 |
6215221 | Cabuz et al. | Apr 2001 | B1 |
6232936 | Gove et al. | May 2001 | B1 |
6243149 | Swanson et al. | Jun 2001 | B1 |
6246398 | Koo | Jun 2001 | B1 |
6249039 | Harvey et al. | Jun 2001 | B1 |
6282010 | Sulzbach et al. | Aug 2001 | B1 |
6284560 | Jech et al. | Sep 2001 | B1 |
6288472 | Cabuz et al. | Sep 2001 | B1 |
6295154 | Laor et al. | Sep 2001 | B1 |
6297072 | Tilmans et al. | Oct 2001 | B1 |
6323982 | Hornbeck | Nov 2001 | B1 |
6327071 | Kimura et al. | Dec 2001 | B1 |
6329297 | Balish et al. | Dec 2001 | B1 |
6335831 | Kowarz et al. | Jan 2002 | B2 |
6351329 | Greywal | Feb 2002 | B1 |
6356254 | Kimura | Mar 2002 | B1 |
6359673 | Stephenson | Mar 2002 | B1 |
6376787 | Martin et al. | Apr 2002 | B1 |
6377233 | Colgan et al. | Apr 2002 | B2 |
6391675 | Ehmke et al. | May 2002 | B1 |
6392233 | Channin et al. | May 2002 | B1 |
6392781 | Kim et al. | May 2002 | B1 |
6407851 | Islam et al. | Jun 2002 | B1 |
6447126 | Hornbeck | Sep 2002 | B1 |
6448622 | Franke et al. | Sep 2002 | B1 |
6452465 | Brown et al. | Sep 2002 | B1 |
6456420 | Goodwin-Johansson | Sep 2002 | B1 |
6465355 | Horsley | Oct 2002 | B1 |
6466354 | Gudeman | Oct 2002 | B1 |
6466358 | Tew | Oct 2002 | B2 |
6473274 | Maimone et al. | Oct 2002 | B1 |
6480177 | Doherty et al. | Nov 2002 | B2 |
6496122 | Sampsell | Dec 2002 | B2 |
6513911 | Ozaki et al. | Feb 2003 | B1 |
6522801 | Aksyuk et al. | Feb 2003 | B1 |
6531945 | Ahn et al. | Mar 2003 | B1 |
6545335 | Chua et al. | Apr 2003 | B1 |
6548908 | Chua et al. | Apr 2003 | B2 |
6549338 | Wolverton et al. | Apr 2003 | B1 |
6552840 | Knipe | Apr 2003 | B2 |
6574033 | Chui et al. | Jun 2003 | B1 |
6577785 | Spahn et al. | Jun 2003 | B1 |
6589625 | Kothari et al. | Jul 2003 | B1 |
6600201 | Hartwell et al. | Jul 2003 | B2 |
6602791 | Ouellet et al. | Aug 2003 | B2 |
6606175 | Sampsell et al. | Aug 2003 | B1 |
6608268 | Goldsmith | Aug 2003 | B1 |
6610440 | LaFollette et al. | Aug 2003 | B1 |
6618187 | Pilossof | Sep 2003 | B2 |
6625047 | Coleman, Jr. | Sep 2003 | B2 |
6630786 | Cummings et al. | Oct 2003 | B2 |
6632698 | Ives | Oct 2003 | B2 |
6635919 | Melendez et al. | Oct 2003 | B1 |
6642913 | Kimura et al. | Nov 2003 | B1 |
6643069 | Dewald | Nov 2003 | B2 |
6650455 | Miles | Nov 2003 | B2 |
6657832 | Williams et al. | Dec 2003 | B2 |
6666561 | Blakley | Dec 2003 | B1 |
6674090 | Chua et al. | Jan 2004 | B1 |
6674562 | Miles et al. | Jan 2004 | B1 |
6674563 | Chui et al. | Jan 2004 | B2 |
6680792 | Miles | Jan 2004 | B2 |
6687896 | Royce et al. | Feb 2004 | B1 |
6710908 | Miles et al. | Mar 2004 | B2 |
6713235 | Ide et al. | Mar 2004 | B1 |
6720267 | Chen et al. | Apr 2004 | B1 |
6736987 | Cho | May 2004 | B1 |
6741377 | Miles | May 2004 | B2 |
6741384 | Martin et al. | May 2004 | B1 |
6741503 | Farris et al. | May 2004 | B1 |
6743570 | Harnett et al. | Jun 2004 | B2 |
6747785 | Chen et al. | Jun 2004 | B2 |
6747800 | Lin | Jun 2004 | B1 |
6756317 | Sniegowski et al. | Jun 2004 | B2 |
6768097 | Viktorovitch et al. | Jul 2004 | B1 |
6775174 | Huffman et al. | Aug 2004 | B2 |
6778155 | Doherty et al. | Aug 2004 | B2 |
6778306 | Sniegowski et al. | Aug 2004 | B2 |
6782166 | Grote et al. | Aug 2004 | B1 |
6794119 | Miles | Sep 2004 | B2 |
6806110 | Lester et al. | Oct 2004 | B2 |
6811267 | Allen et al. | Nov 2004 | B1 |
6812482 | Fleming et al. | Nov 2004 | B2 |
6819469 | Koba | Nov 2004 | B1 |
6822628 | Dunphy et al. | Nov 2004 | B2 |
6829132 | Martin et al. | Dec 2004 | B2 |
6853129 | Cummings et al. | Feb 2005 | B1 |
6855610 | Tung et al. | Feb 2005 | B2 |
6859218 | Luman et al. | Feb 2005 | B1 |
6861277 | Monroe et al. | Mar 2005 | B1 |
6862022 | Slupe | Mar 2005 | B2 |
6862029 | D'Souza et al. | Mar 2005 | B1 |
6867896 | Miles | Mar 2005 | B2 |
6870581 | Li et al. | Mar 2005 | B2 |
6870654 | Lin et al. | Mar 2005 | B2 |
6882458 | Lin et al. | Apr 2005 | B2 |
6882461 | Tsai et al. | Apr 2005 | B1 |
6905621 | Ho et al. | Jun 2005 | B2 |
6912022 | Lin et al. | Jun 2005 | B2 |
6913942 | Patel et al. | Jul 2005 | B2 |
6952303 | Lin et al. | Oct 2005 | B2 |
6953702 | Miller et al. | Oct 2005 | B2 |
6958847 | Lin | Oct 2005 | B2 |
6972891 | Patel et al. | Dec 2005 | B2 |
6980350 | Hung et al. | Dec 2005 | B2 |
6982820 | Tsai | Jan 2006 | B2 |
6995890 | Lin | Feb 2006 | B2 |
6999225 | Lin | Feb 2006 | B2 |
6999236 | Lin | Feb 2006 | B2 |
7008812 | Carley | Mar 2006 | B1 |
7012726 | Miles | Mar 2006 | B1 |
7027202 | Hunter et al. | Apr 2006 | B1 |
7041224 | Patel et al. | May 2006 | B2 |
7041571 | Strane | May 2006 | B2 |
7049164 | Bruner | May 2006 | B2 |
7078293 | Lin et al. | Jul 2006 | B2 |
7110158 | Miles | Sep 2006 | B2 |
7119945 | Cummings et al. | Oct 2006 | B2 |
7123216 | Miles | Oct 2006 | B1 |
7172915 | Lin et al. | Feb 2007 | B2 |
7198973 | Lin et al. | Apr 2007 | B2 |
7221495 | Miles et al. | May 2007 | B2 |
7256107 | Takeuchi et al. | Aug 2007 | B2 |
7321457 | Heald | Jan 2008 | B2 |
7446926 | Sampsell | Nov 2008 | B2 |
7450295 | Tung et al. | Nov 2008 | B2 |
20010003487 | Miles | Jun 2001 | A1 |
20010026951 | Vergani et al. | Oct 2001 | A1 |
20010040649 | Ozaki | Nov 2001 | A1 |
20010040675 | True et al. | Nov 2001 | A1 |
20020003400 | Lee | Jan 2002 | A1 |
20020014579 | Dunfield | Feb 2002 | A1 |
20020015215 | Miles | Feb 2002 | A1 |
20020021485 | Pilossof | Feb 2002 | A1 |
20020024711 | Miles | Feb 2002 | A1 |
20020027636 | Yamada | Mar 2002 | A1 |
20020036304 | Ehmke et al. | Mar 2002 | A1 |
20020054424 | Miles | May 2002 | A1 |
20020055253 | Rudhard | May 2002 | A1 |
20020071169 | Bowers et al. | Jun 2002 | A1 |
20020075555 | Miles | Jun 2002 | A1 |
20020086455 | Franosch et al. | Jul 2002 | A1 |
20020110948 | Huang et al. | Aug 2002 | A1 |
20020117728 | Brosnihhan et al. | Aug 2002 | A1 |
20020126364 | Miles | Sep 2002 | A1 |
20020135857 | Fitzpatrick et al. | Sep 2002 | A1 |
20020137072 | Mirkin et al. | Sep 2002 | A1 |
20020149828 | Miles | Oct 2002 | A1 |
20020160125 | Johnson et al. | Oct 2002 | A1 |
20020162569 | Kuo et al. | Nov 2002 | A1 |
20020168136 | Atia et al. | Nov 2002 | A1 |
20030003682 | Moll et al. | Jan 2003 | A1 |
20030006468 | Ma et al. | Jan 2003 | A1 |
20030029831 | Kawase | Feb 2003 | A1 |
20030043157 | Miles | Mar 2003 | A1 |
20030054588 | Patel et al. | Mar 2003 | A1 |
20030062186 | Boroson et al. | Apr 2003 | A1 |
20030072070 | Miles | Apr 2003 | A1 |
20030090350 | Feng et al. | May 2003 | A1 |
20030112096 | Potter | Jun 2003 | A1 |
20030138213 | Jin et al. | Jul 2003 | A1 |
20030152872 | Miles | Aug 2003 | A1 |
20030201784 | Potter | Oct 2003 | A1 |
20030202264 | Weber et al. | Oct 2003 | A1 |
20030202265 | Reboa et al. | Oct 2003 | A1 |
20030202266 | Ring et al. | Oct 2003 | A1 |
20030231373 | Kowarz | Dec 2003 | A1 |
20040010115 | Sotzing | Jan 2004 | A1 |
20040027636 | Miles | Feb 2004 | A1 |
20040027701 | Ishikawa | Feb 2004 | A1 |
20040028849 | Stark et al. | Feb 2004 | A1 |
20040035821 | Doan et al. | Feb 2004 | A1 |
20040038513 | Kohl et al. | Feb 2004 | A1 |
20040051929 | Sampsell et al. | Mar 2004 | A1 |
20040053434 | Bruner | Mar 2004 | A1 |
20040058532 | Miles et al. | Mar 2004 | A1 |
20040061543 | Nam et al. | Apr 2004 | A1 |
20040063322 | Yang | Apr 2004 | A1 |
20040080807 | Chen et al. | Apr 2004 | A1 |
20040080832 | Singh | Apr 2004 | A1 |
20040087086 | Lee | May 2004 | A1 |
20040100677 | Huibers et al. | May 2004 | A1 |
20040124073 | Pilans et al. | Jul 2004 | A1 |
20040124483 | Partridge et al. | Jul 2004 | A1 |
20040124495 | Chen et al. | Jul 2004 | A1 |
20040125281 | Lin et al. | Jul 2004 | A1 |
20040125282 | Lin et al. | Jul 2004 | A1 |
20040125536 | Arney et al. | Jul 2004 | A1 |
20040132243 | Kurosawa | Jul 2004 | A1 |
20040136076 | Tayebati | Jul 2004 | A1 |
20040145049 | McKinnell et al. | Jul 2004 | A1 |
20040145811 | Lin et al. | Jul 2004 | A1 |
20040147056 | McKinnell et al. | Jul 2004 | A1 |
20040147198 | Lin et al. | Jul 2004 | A1 |
20040148009 | Buzzard | Jul 2004 | A1 |
20040150869 | Kasai | Aug 2004 | A1 |
20040160143 | Shreeve et al. | Aug 2004 | A1 |
20040161921 | Ryu | Aug 2004 | A1 |
20040174583 | Chen et al. | Sep 2004 | A1 |
20040175577 | Lin et al. | Sep 2004 | A1 |
20040179281 | Reboa | Sep 2004 | A1 |
20040179445 | Park | Sep 2004 | A1 |
20040191937 | Patel et al. | Sep 2004 | A1 |
20040191946 | Patel et al. | Sep 2004 | A1 |
20040197526 | Mehta | Oct 2004 | A1 |
20040207897 | Lin | Oct 2004 | A1 |
20040207898 | Lin et al. | Oct 2004 | A1 |
20040209192 | Lin et al. | Oct 2004 | A1 |
20040209195 | Lin | Oct 2004 | A1 |
20040212026 | Van Brocklin et al. | Oct 2004 | A1 |
20040217264 | Wood et al. | Nov 2004 | A1 |
20040217378 | Martin et al. | Nov 2004 | A1 |
20040217919 | Pichl et al. | Nov 2004 | A1 |
20040218251 | Piehl et al. | Nov 2004 | A1 |
20040218334 | Martin et al. | Nov 2004 | A1 |
20040218341 | Martin et al. | Nov 2004 | A1 |
20040227493 | Van Brocklin et al. | Nov 2004 | A1 |
20040240027 | Lin et al. | Dec 2004 | A1 |
20040240032 | Miles | Dec 2004 | A1 |
20040240138 | Martin et al. | Dec 2004 | A1 |
20040245588 | Nikkel et al. | Dec 2004 | A1 |
20040263944 | Miles et al. | Dec 2004 | A1 |
20050001828 | Martin et al. | Jan 2005 | A1 |
20050003667 | Lin et al. | Jan 2005 | A1 |
20050014374 | Partridge et al. | Jan 2005 | A1 |
20050020089 | Shi et al. | Jan 2005 | A1 |
20050024557 | Lin | Feb 2005 | A1 |
20050034822 | Kim et al. | Feb 2005 | A1 |
20050035699 | Tsai | Feb 2005 | A1 |
20050036095 | Yeh et al. | Feb 2005 | A1 |
20050036192 | Lin et al. | Feb 2005 | A1 |
20050038950 | Adelmann | Feb 2005 | A1 |
20050042117 | Lin | Feb 2005 | A1 |
20050045276 | Patel et al. | Mar 2005 | A1 |
20050046922 | Lin et al. | Mar 2005 | A1 |
20050046948 | Lin | Mar 2005 | A1 |
20050057442 | Way | Mar 2005 | A1 |
20050068583 | Gutkowski et al. | Mar 2005 | A1 |
20050068605 | Tsai | Mar 2005 | A1 |
20050068606 | Tsai | Mar 2005 | A1 |
20050068608 | Campbell et al. | Mar 2005 | A1 |
20050069209 | Damera-Venkata et al. | Mar 2005 | A1 |
20050078348 | Lin | Apr 2005 | A1 |
20050098840 | Fuertsch et al. | May 2005 | A1 |
20050118832 | Korzenski et al. | Jun 2005 | A1 |
20050124135 | Ayazi et al. | Jun 2005 | A1 |
20050168849 | Lin | Aug 2005 | A1 |
20050170670 | King et al. | Aug 2005 | A1 |
20050195462 | Lin | Sep 2005 | A1 |
20050195467 | Kothari et al. | Sep 2005 | A1 |
20050202649 | Hung et al. | Sep 2005 | A1 |
20050206993 | Doan et al. | Sep 2005 | A1 |
20060066932 | Chui et al. | Mar 2006 | A1 |
20060066935 | Cummings et al. | Mar 2006 | A1 |
20060076311 | Tung et al. | Apr 2006 | A1 |
20060077502 | Tung et al. | Apr 2006 | A1 |
20060077503 | Palmateer et al. | Apr 2006 | A1 |
20060077529 | Chui et al. | Apr 2006 | A1 |
20060119922 | Faase et al. | Jun 2006 | A1 |
20060177950 | Lin | Aug 2006 | A1 |
20060256420 | Miles et al. | Nov 2006 | A1 |
20060257070 | Lin et al. | Nov 2006 | A1 |
20070111533 | Korzenski et al. | May 2007 | A1 |
20070117396 | Wu et al. | May 2007 | A1 |
20070155051 | Wang et al. | Jul 2007 | A1 |
20070196944 | Chou et al. | Aug 2007 | A1 |
20070206267 | Tung et al. | Sep 2007 | A1 |
20070249078 | Tung et al. | Oct 2007 | A1 |
20070249079 | Sasagawa et al. | Oct 2007 | A1 |
20070249081 | Luo et al. | Oct 2007 | A1 |
20070269748 | Miles | Nov 2007 | A1 |
20080026328 | Miles | Jan 2008 | A1 |
20080068699 | Miles | Mar 2008 | A1 |
20080094687 | Heald | Apr 2008 | A1 |
20080130089 | Miles | Jun 2008 | A1 |
20080157413 | Lin | Jul 2008 | A1 |
20080226929 | Chung et al. | Sep 2008 | A1 |
20090022884 | Chui et al. | Jan 2009 | A1 |
20090315567 | Chou et al. | Dec 2009 | A1 |
20090323168 | Miles et al. | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
681 047 | Dec 1992 | CH |
157313 | May 1991 | CN |
092109265 | Nov 2003 | CN |
199 38 072 | Mar 2000 | DE |
102 28 946 | Jan 2004 | DE |
0 035 299 | Sep 1983 | EP |
0173808 | Mar 1986 | EP |
0 667 548 | Aug 1995 | EP |
0694801 | Jan 1996 | EP |
0695959 | Feb 1996 | EP |
0 788 005 | Aug 1997 | EP |
0878824 | Nov 1998 | EP |
1197778 | Apr 2002 | EP |
1 209 738 | May 2002 | EP |
1258860 | Nov 2002 | EP |
1 452 481 | Sep 2004 | EP |
49-004993 | Jan 1974 | JP |
05275401 | Oct 1993 | JP |
10-020328 | Jan 1998 | JP |
10500224 | Jan 1998 | JP |
10-148644 | Jun 1998 | JP |
10-209176 | Aug 1998 | JP |
10-267658 | Oct 1998 | JP |
11211999 | Aug 1999 | JP |
11243214 | Sep 1999 | JP |
2000-40831 | Feb 2000 | JP |
2001-085519 | Mar 2001 | JP |
2002-287047 | Mar 2001 | JP |
2002 062493 | Feb 2002 | JP |
2002-207182 | Jul 2002 | JP |
2002-243937 | Aug 2002 | JP |
2002-270575 | Sep 2002 | JP |
2002-328313 | Nov 2002 | JP |
2002-355800 | Dec 2002 | JP |
2003-001598 | Jan 2003 | JP |
2004-102022 | Apr 2004 | JP |
2004-133281 | Apr 2004 | JP |
2004106074 | Apr 2004 | JP |
2004-212656 | Jul 2004 | JP |
2005-051007 | Feb 2005 | JP |
2002-9270 | Oct 1999 | KR |
2000-0033006 | Jun 2000 | KR |
WO 9105284 | Apr 1991 | WO |
WO 9210925 | Jun 1992 | WO |
WO9530924 | Nov 1995 | WO |
WO9717628 | May 1997 | WO |
WO9952006 | Oct 1999 | WO |
WO9952006 | Oct 1999 | WO |
WO 0114248 | Mar 2001 | WO |
WO 0163657 | Aug 2001 | WO |
WO 0224570 | Mar 2002 | WO |
WO 03007049 | Jan 2003 | WO |
WO 03052506 | Jun 2003 | WO |
WO 03069413 | Aug 2003 | WO |
WO03073151 | Sep 2003 | WO |
WO2004006003 | Jan 2004 | WO |
WO 2004015741 | Feb 2004 | WO |
WO2004026757 | Apr 2004 | WO |
WO 2004055885 | Jul 2004 | WO |
WO 2004079056 | Sep 2004 | WO |
WO 2005019899 | Mar 2005 | WO |
WO 2005061378 | Jul 2005 | WO |
WO 2005085932 | Sep 2005 | WO |
WO 2006036385 | Apr 2006 | WO |
WO 2006036437 | Apr 2006 | WO |
WO2006036542 | Apr 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20080029481 A1 | Feb 2008 | US |