Methods of forming a pattern on a substrate

Information

  • Patent Grant
  • 8846517
  • Patent Number
    8,846,517
  • Date Filed
    Thursday, December 19, 2013
    11 years ago
  • Date Issued
    Tuesday, September 30, 2014
    10 years ago
Abstract
A method of forming a pattern on a substrate includes forming longitudinally elongated first lines and first sidewall spacers longitudinally along opposite sides of the first lines elevationally over an underlying substrate. Longitudinally elongated second lines and second sidewall spacers are formed longitudinally along opposite sides of the second lines. The second lines and the second sidewall spacers cross elevationally over the first lines and the first sidewall spacers. The second sidewall spacers are removed from crossing over the first lines. The first and second lines are removed in forming a pattern comprising portions of the first and second sidewall spacers over the underlying substrate. Other methods are disclosed.
Description
TECHNICAL FIELD

Embodiments disclosed herein pertain to methods of forming a pattern on a substrate, for example in the fabrication of integrated circuitry.


BACKGROUND

Integrated circuits are often formed on a semiconductor substrate such as a silicon wafer or other semiconductive material. In general, layers of various materials which are semiconductive, conductive, or electrically insulative are used to form the integrated circuits. By way of examples, the various materials may be doped, ion implanted, deposited, etched, grown, etc. using various processes. A continuing goal in semiconductor processing is to strive to reduce the size of individual electronic components, thereby enabling smaller and denser integrated circuitry.


One technique for patterning and processing semiconductor substrates is photolithography. Such may include deposition of a patternable masking layer commonly known as photoresist. Such materials can be processed to modify their solubility in certain solvents, and are thereby readily usable to form patterns on a substrate. For example, portions of a photoresist layer can be exposed to actinic energy through openings in a radiation-patterning tool, such as a mask or reticle, to change the solvent solubility of the exposed regions versus the unexposed regions compared to the solubility in the as-deposited state. Thereafter, the exposed or unexposed regions can be removed, depending on the type of photoresist, to leave a masking pattern of the photoresist on the substrate. Adjacent areas of the underlying substrate next to the masked portions can be processed, for example by etching or ion implanting, to effect the desired processing of the substrate adjacent the masking material. In certain instances, multiple different layers of photoresist and/or a combination of photoresists with non-radiation sensitive masking materials are used. Further, patterns may be formed on substrates without using photoresist.


The continual reduction in feature sizes places ever greater demands on the techniques used to form those features. For example, photolithography is commonly used to form patterned features such as conductive lines and arrays of contact openings to underlying circuitry. A concept commonly referred to as “pitch” can be used to describe the sizes of the repeating features in conjunction with spaces immediately adjacent thereto. Pitch may be defined as the distance between an identical point in two neighboring features of a repeating pattern in a straight-line cross section, thereby including the maximum width of the feature and the space to the next immediately adjacent feature. However, due to factors such as optics and light or radiation wavelength, photolithography techniques tend to have a minimum pitch below which a particular photolithographic technique cannot reliably form features. Thus, minimum pitch of a photolithographic technique is an obstacle to continued feature size reduction using photolithography.


Pitch doubling or pitch multiplication is one proposed method for extending the capabilities of photolithographic techniques beyond their minimum pitch. Such typically forms features narrower than minimum photolithography resolution by depositing one or more spacer-forming layers to have a total lateral thickness which is less than that of the minimum capable photolithographic feature size. The spacer-forming layers are commonly anisotropically etched to form sub-lithographic features, and then the features which were formed at the minimum photolithographic feature size are etched from the substrate.


Using such techniques where pitch is actually halved, the reduction in pitch is conventionally referred to as pitch “doubling”. More generally, “pitch multiplication” encompasses increase in pitch of two or more times, and also of fractional values other than integers. Thus conventionally, “multiplication” of pitch by a certain factor actually involves reducing the pitch by that factor.


In addition to minimum feature size and placement of such features, it is often highly desirable that the features as-formed be uniform in dimension. Accordingly, uniformity when forming a plurality of features may also be of concern, and is increasingly a challenge as the minimum feature dimensions reduce.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagrammatic top view of a substrate in process in accordance with an embodiment of the invention.



FIG. 2 is a cross-sectional view taken through line 2-2 in FIG. 1.



FIG. 3 is a view of the FIG. 1 substrate at a processing step subsequent to that shown by FIG. 1.



FIG. 4 is a cross-sectional view taken through line 4-4 in FIG. 3.



FIG. 5 is a view of the FIG. 3 substrate at a processing step subsequent to that shown by FIG. 3.



FIG. 6 is a cross-sectional view taken through line 6-6 in FIG. 5.



FIG. 7 is a view of the FIG. 5 substrate at a processing step subsequent to that shown by FIG. 5.



FIG. 8 is a cross-sectional view taken through line 8-8 in FIG. 7.



FIG. 9 is a cross-sectional view taken through line 9-9 in FIG. 7.



FIG. 10 is a view of the FIG. 7 substrate at a processing step subsequent to that shown by FIG. 7.



FIG. 11 is a cross-sectional view taken through line 11-11 in FIG. 10.



FIG. 12 is a cross-sectional view taken through line 12-12 in FIG. 10.



FIG. 13 is a cross-sectional view taken through line 13-13 in FIG. 10.



FIG. 14 is a view of the FIG. 11 substrate at a processing step subsequent to that shown by FIG. 11.



FIG. 15 is a view of the FIG. 12 substrate at a processing step subsequent to that shown by FIG. 12 and corresponding in processing sequence to that of FIGS. 14 and 16.



FIG. 16 is a view of the FIG. 13 substrate at a processing step subsequent to that shown by FIG. 13 and corresponding in processing sequence to that of FIGS. 14 and 15.



FIG. 17 is a view of the FIG. 10 substrate at a processing step subsequent to that shown by FIGS. 14, 15, and 16.



FIG. 18 is a cross-sectional view taken through line 18-18 in FIG. 17.



FIG. 19 is a cross-sectional view taken through line 19-19 in FIG. 17.



FIG. 20 is a cross-sectional view taken through line 20-20 in FIG. 17.



FIG. 21 is a cross-sectional view taken through line 21-21 in FIG. 17.



FIG. 22 is a cross-sectional view taken through line 22-22 in FIG. 17.



FIG. 23 is a view of the FIG. 17 substrate at a processing step subsequent to that shown by FIG. 17.



FIG. 24 is a cross-sectional view taken through line 24-24 in FIG. 23.



FIG. 25 is a cross-sectional view taken through line 25-25 in FIG. 23.



FIG. 26 is a view of the FIG. 23 substrate at a processing step subsequent to that shown by FIG. 23.



FIG. 27 is a cross-sectional view taken through line 27-27 in FIG. 26.



FIG. 28 is a cross-sectional view taken through line 28-28 in FIG. 26.



FIG. 29 is a view of the FIG. 26 substrate at a processing step subsequent to that shown by FIG. 26.



FIG. 30 is a cross-sectional view taken through line 30-30 in FIG. 29.



FIG. 31 is a view of the FIG. 29 substrate at a processing step subsequent to that shown by FIG. 29.



FIG. 32 is a cross-sectional view taken through line 32-32 in FIG. 31.



FIG. 33 is a view of the FIG. 31 substrate at a processing step subsequent to that shown by FIG. 31.



FIG. 34 is a cross-sectional view taken through line 34-34 in FIG. 33.



FIG. 35 is a view of a substrate showing alternate processing.



FIG. 36 is a cross-sectional view taken through line 36-36 in FIG. 35.



FIG. 37 is a view of a substrate showing alternate processing.



FIG. 38 is a cross-sectional view taken through line 38-38 in FIG. 37.





DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

Example methods of forming a pattern on a substrate are initially described with reference to FIGS. 1-28 with respect to a substrate fragment 10 and with reference to FIGS. 37 and 38 with respect to a substrate fragment 10a. Referring to FIGS. 1 and 2 and substrate fragment 10, longitudinally elongated lines 12 have been formed over a substrate 14. The material of lines 12 and the material of substrate 14, and other materials referred to herein, may be homogenous or non-homogenous. As an example, substrate 14 may comprise bulk monocrystalline silicon and/or a semiconductor-on-insulator substrate. As an additional example, substrate 14 may comprise dielectric material having conductive contacts or vias therein which extend vertically or otherwise into electrical connection with electronic device components, regions, or material received elevationally inward of the dielectric material. Substrate 14 may be a semiconductor substrate. In the context of this document, the term “semiconductor substrate” or “semiconductive substrate” is defined to mean any construction comprising semiconductive material, including, but not limited to, bulk semiconductive materials such as a semiconductive wafer (either alone or in assemblies comprising other materials thereon), and semiconductive material layers (either alone or in assemblies comprising other materials). The term “substrate” refers to any supporting structure, including, but not limited to, the semiconductive substrates described above.


Only two lines 12 are shown for clarity in the figures, although likely thousands or millions of such lines may be fabricated over a substrate area of interest. Further, example lines 12 are shown as being of constant and equal width and height relative one another, as well as being equally spaced from one another by a distance equal to their width. Alternate shapes, sizes and/or configurations can be used.


Example substrate 14 is shown as comprising a base substrate 16 (e.g., semiconductor material) having material 18 and material 20 formed thereover. Material 20 may be used in forming a pattern over underlying substrate 16/18. Material 20 may comprise suitable masking material, for example hard-masking material, and one or more antireflective coating materials. An example material 20 is a Si—O—N-comprising material formed to an example thickness from about 50 Angstroms to about 500 Angstroms. An example material 18 is undoped polysilicon formed to an example thickness from about 50 Angstroms to 2,000 Angstroms. Regardless, any of materials 16, 18, and 20 may be conductive, dielectric, and/or semiconductive.


Referring to FIGS. 3 and 4, lines 12 (not shown) have been laterally trimmed to reduce their widths by half and then used as masking while etching material 20, thereby forming longitudinally elongated first lines 22 elevationally over an underlying substrate 16/18. Lines 12 (not shown) have been removed thereafter and/or during such etching. Greater, lesser, or no lateral trimming might be conducted of lines 12 (FIGS. 1 and 2) in producing first lines 22 of FIGS. 3 and 4. Further, alternate or yet-to-be developed techniques may be used in producing first lines 22. First lines 22 may be considered as respectively having opposite sides 23, tops 24 (i.e, elevationally outermost surfaces), and ends 25. Such are shown as being planar, with sides 23 being parallel one another and tops 24 of different lines being co-planar. Other constructions may be used. Further, first lines 22 may be straight linear or non-linear (e.g. have multiple angled segments, curved segments, and/or be curvilinear, etc.), and may run parallel or non-parallel relative one another.


Referring to FIGS. 5 and 6, masking material 28 and masking material 30 have been formed over first lines 22. Masking material 28 may be of different composition from that of material 20. As an example where material 20 comprises a Si—O—N-comprising material, material 28 may comprise carbon. In one embodiment, material 28 may be formed by depositing and patterning a spin-on material, for example spin-on carbon. Material 28 may be formed to greater, lesser, or equal thickness as material 20 of first lines 22. Material 30 may comprise hard-masking material and/or one or more antireflective coatings and may be of the same composition as material 20. Lines 32 (e.g., photoresist) have been formed over and cross masking material 28/30. Such are shown as being parallel and straight linear and cross first lines 22 orthogonally, although non-parallel, non-linear, non-orthogonally crossing, and/or other orientations and shapes may be used.


Referring to FIGS. 7-9, lines 32 (not shown) have been used as masking while etching into hard-masking material 30 (not shown) and subsequently into masking material 28 in forming lines 34 there-from. Lines 32 (not shown) and masking material 30 (not shown) have ultimately been removed. The etching to form lines 34 has ideally been conducted selectively relative to material 20 of first lines 22. In the context of this document, selectivity in an etch requires removal of one material at a rate relative to another material of at least 2:1.


Referring to FIGS. 10-13, lines 34 (not shown) have been laterally trimmed in forming longitudinally elongated second lines 36 which are elevationally over and cross first lines 22. FIGS. 10-12 show the lateral trimming being effective to reduce the width of lines 32 in FIGS. 7-9 by half, although greater, lesser, or no lateral trimming may occur. Further where lateral trimming does occur, such may occur with respect to lines 32 of FIGS. 5 and 6 prior to or in addition to any lateral trimming of material 28 in lines 36. Alternate or additional techniques, whether existing or yet-to-be developed, may be used in forming second lines 36 elevationally over and crossing first lines 22. Second lines 36 may be considered as respectively comprising opposite sides 37, tops 38 (i.e, elevationally outermost surfaces), and ends 39. Such are shown as being planar, with sides 37 being parallel one another and tops 38 of different lines being co-planar. Other constructions may be used. Further, second lines 36 may be straight linear or non-linear (e.g. have multiple angled segments, curved segments, and/or be curvilinear, etc.), and may run parallel or non-parallel relative one another.


In one embodiment, second lines 36 are elevationally thicker between first lines 22 then atop of first lines 22, for example as is apparent in viewing FIGS. 11 and 12. Regardless, in one embodiment and as shown, underlying substrate 16/18 has a planar elevationally outermost surface 17 over which first lines 22 and second lines 36 are received, with each of the first and second lines extending to elevationally outermost surface 17.


Referring to FIGS. 14-16, masking material 42 has been formed over tops 24, 38, and sides 23, 37 of the crossing first and second lines 22, 36, respectively. Masking material 42 may also be formed over ends 25 and 39 of the crossing first and second lines, as shown. In one embodiment, masking material 42 is formed to less-than-fill the void space that is between immediately adjacent second lines (i.e., a void space which is defined elevationally by a maximum height of second lines 36 and laterally by the space between immediately adjacent second lines 36). Masking material 42 will ideally be of a composition which enables first lines 22 and second lines 36 to ultimately be selectively etched relative to masking material 42. Masking material 42 is shown as being formed to a thickness which is less than an equal width of the first and second lines, although lesser or greater thickness may be used, including thickness that is substantially equal to width of the first and second lines. Masking material 42 may be formed to a thickness that is less than a minimum photolithographic feature dimension. Masking material 42 may be elevationally thicker between first lines 22 than elevationally over first lines 22, for example as shown with respect to thickness T1 (FIGS. 14 and 15) and thickness T2 (FIG. 14). Masking material 42 is ideally deposited in a very conformal and thickness-controlled manner (e.g., by chemical vapor deposition or atomic layer deposition) to achieve precise control of feature width.


Referring to FIGS. 17-22, masking material 42 has been removed to expose tops 24, 38 of first lines 22 and second lines 36, respectively, and in one embodiment to expose all of second line tops 38. In one embodiment, such may be considered as forming first sidewall spacers 44 longitudinally along opposite sides of first lines 22, and forming second sidewall spacers 46 longitudinally along opposite sides of second lines 36, wherein the second lines and second sidewall spacers cross elevationally over the first lines and first sidewall spacers. Masking material 42 is shown without cross-hatching in FIG. 17 for better clarity in showing first sidewall spacers 44 where such are beneath and crossed by second sidewall spacers 46 in such figure. In one embodiment, for example as shown and described, the first and second sidewall spacers may be formed at the same time. The act of removing may be, by way of example, by anisotropic etching, and which may be maskless (i.e., no mask being over the substrate during the act of removing). The first sidewall spacers and/or the second sidewall spacers may be formed as a respective ring around the individual first and/or second lines, for example as shown.


Referring to FIGS. 23-25, second sidewall spacers 46 have been removed from crossing over first lines 22. Cross-hatching of masking material 42 in the top view of FIG. 23 is shown consistent with that of FIGS. 24 and 25. In one embodiment and as shown, second sidewall spacers 36 extend completely between immediately adjacent first lines 22 after having been removed from crossing over first lines 22. Regardless, in one embodiment at least some of masking material 42 remains along sidewalls of second lines 36 between immediately adjacent first lines 22. In one embodiment, the act of removing may also remove masking material 42 from being received over all of ends 25 of first lines 22 (as shown), and in one embodiment from being received over all of ends 39 of second lines 36 (not shown). Regardless, the processing starting at the completion of forming the FIGS. 14-16 structure through and to producing a structure such as that shown in FIGS. 23-25 may occur in a continuous manner without stopping to produce an intermediate structure like that of FIGS. 17-22. For example where first sidewall spacers 44 and second sidewall spacers 46 are formed by anisotropic etching of a masking material, that anisotropic etching may be started with respect to the structure of FIGS. 14-16 and continued without stopping to proceed directly to that of FIGS. 23-25. Nevertheless, in one embodiment, the first and second sidewalls spacers are formed in such a continuous process even if only transiently.


Referring to FIGS. 26-28, first lines 22 (not shown) and second lines 36 (not shown) have been removed in forming a pattern 49 which comprises spaced regions 51 of masking material 42 over underlying substrate 16/18. In one embodiment, spaced regions 51 comprise portions of first sidewall spacers 44 and second sidewall spacers 46. In one embodiment, the spaced regions are generally rectangular in horizontal cross-section (i.e, viewed from top-down) having adjacent sides of unequal length. In one embodiment and as shown, the rectangular spaced regions 51 have longer sides that are more than three times length of the shorter sides. This results in part from masking material 42 being formed to have a thinner lateral thickness along sidewalls of second lines 46 than the width of second lines 46. In one embodiment, the rectangular spaced regions are provided to be about three times length of the shorter sides, for example as shown in FIGS. 37 and 38 with respect to an alternate embodiment substrate fragment 10a. Like numerals from the above described embodiments have been used where appropriate, with some construction differences being indicated with the suffix “a”. FIGS. 37 and 38 correspond in structure to that of FIGS. 26 and 27, respectively, but wherein masking material 42 in a resultant pattern 49a has been formed to be thicker and equal to width of second lines 36 (not shown) than in the example shown in the FIGS. 14-28 embodiment, thereby forming laterally thicker first sidewall spacers 44a and second sidewall spacers 46a. Accordingly as shown, spaced rectangular regions 51a have longer sides that are about three times the length of the shorter sides. Longer sides less than three times the length of the shorter sides may be achieved by forming laterally thicker first sidewall spacers (not shown). Regardless, spaced regions 51/51a might be processed further, for example by being subject to lateral trimming.


Pattern 49 may be transferred in whole or in part to underlying substrate 16/18, if desired, in a number of different manners. Further, second sidewall spacers 46 that were over the ends of second lines 36 (not shown in FIGS. 26-28) may be removed or used in patterning underlying substrate material. Further, if removed, such may occur prior to or commensurate with the processing of FIGS. 23-25. Regardless, FIGS. 29 and 30 show example of subsequent processing where the end portions of spacers 46 (not shown) have been removed, and a fill material 50 has been formed laterally of masking material regions 51.


Referring to FIGS. 31 and 32, masking material regions 51 (not shown) have been removed in forming openings 54 in fill material 50. In one embodiment, such may form a contact opening mask 56 which comprises fill material 50.


Referring to FIGS. 33 and 34, contact opening mask 56 (not shown) has been used while etching contact openings 58 into underlying substrate 16/18, and has been removed.


In one embodiment, the pattern which is formed has a minimum feature width that is half of the half-pitch. For example, lines 34 in FIGS. 7-9 may be considered as precursor second lines having a pitch P and a half thereof designated as ½P. Precursor second lines 34 may be laterally trimmed in forming second lines, for example as shown in FIGS. 10-13. Pattern 49a in FIGS. 37 and 38 has a minimum feature width that is half of the half-pitch ½P in FIG. 7 (i.e., ¼P).



FIGS. 35 and 36 shows alternate example processing to that shown by FIGS. 29-34 with respect to a subsequently processed substrate 10b. Like numerals from the above-described embodiments have been used where appropriate, with some construction differences being indicated with the suffix “b”. In FIGS. 35 and 36, underlying substrate 16/18 has been etched into using remaining of the first and second sidewall spacers 44, 46 (e.g., spaced masking material regions 51) as an etch mask.


CONCLUSION

In some embodiments, a method of forming a pattern on a substrate comprises forming longitudinally elongated first lines and first sidewall spacers longitudinally along opposite sides of the first lines elevationally over an underlying substrate. Longitudinally elongated second lines and second sidewall spacers are formed longitudinally along opposite sides of the second lines. The second lines and the second sidewall spacers cross elevationally over the first lines and the first sidewall spacers. The second sidewall spacers are removed from crossing over the first lines. The first and second lines are removed in forming a pattern comprising portions of the first and second sidewall spacers over the underlying substrate.


In some embodiments, a method of forming a pattern on a substrate comprises forming longitudinally elongated first lines elevationally over an underlying substrate. Longitudinally elongated second lines and masking material are formed longitudinally along opposite sides of the second lines. The second lines and the masking material cross elevationally over the first lines. The second lines and the masking material are elevationally thicker between the first lines than elevationally over the first lines. The masking material is removed from crossing over the first lines while leaving at least some of the masking material along sidewalls of the second lines between immediately adjacent first lines. The first and second lines are removed in forming a pattern comprising spaced regions of the masking material over the underlying substrate.


In some embodiments, a method of forming a pattern on a substrate sequentially comprises forming longitudinally elongated first lines elevationally over an underlying substrate. Longitudinally elongated second lines are formed elevationally over and cross the first lines. A masking material is formed over tops and sides of the crossing first and second lines to less than fill void space between immediately adjacent second lines. The masking material is removed to expose the tops of the first and second lines. The first and second lines are removed in forming a pattern comprising spaced regions of the masking material over the underlying substrate.


In some embodiments, a method of forming a pattern on a substrate sequentially comprises forming longitudinally elongated first lines elevationally over an underlying substrate. Longitudinally elongated second lines are formed elevationally over and cross the first lines. The second lines are elevationally thicker between the first lines than over tops of the first lines. Masking material is formed over tops, sides and ends of the crossing first and second lines to less than fill void space between immediately adjacent second lines. The masking material is removed from over all of the tops and all of the ends of the first and second lines while leaving at least some of the masking material along sidewalls of the second lines between immediately adjacent first lines. The first and second lines are removed in forming a pattern comprising spaced regions of the masking material over the underlying substrate.


In compliance with the statute, the subject matter disclosed herein has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the claims are not limited to the specific features shown and described, since the means herein disclosed comprise example embodiments. The claims are thus to be afforded full scope as literally worded, and to be appropriately interpreted in accordance with the doctrine of equivalents.

Claims
  • 1. A method of forming a pattern on a substrate sequentially comprising: forming longitudinally elongated first lines elevationally over an underlying substrate;forming longitudinally elongated second lines elevationally over and crossing the first lines;forming a masking material in spaces between sides of the crossing first and second lines to less than fill void space between immediately adjacent second lines; andremoving the first and second lines in forming a pattern comprising spaced regions of the masking material over the underlying substrate.
  • 2. A method of forming a pattern on a substrate, comprising: forming longitudinally elongated first lines and first sidewall spacers longitudinally along opposite sides of the first lines elevationally over an underlying substrate;forming longitudinally elongated second lines and second sidewall spacers longitudinally along opposite sides of the second lines, the second lines and the second sidewall spacers crossing elevationally over the first lines and the first sidewall spacers, the first and second sidewall spacers being together formed during a single anisotropic etch of masking material;removing the second sidewall spacers from crossing over the first lines; andremoving the first and second lines in forming a pattern comprising portions of the first and second sidewall spacers over the underlying substrate.
  • 3. The method of claim 2 wherein the second sidewall spacers extend completely between immediately adjacent first lines after the removing of the second sidewall spacers from crossing over the first lines.
  • 4. The method of claim 2 wherein the second lines are elevationally thicker between the first lines than atop the first lines.
  • 5. A method of forming a pattern on a substrate, comprising: forming longitudinally elongated first lines and first sidewall spacers longitudinally along opposite sides of the first lines elevationally over an underlying substrate;forming longitudinally elongated second lines and second sidewall spacers longitudinally along opposite sides of the second lines, the second lines and the second sidewall spacers crossing elevationally over the first lines and the first sidewall spacers, the second sidewall spacers having elevationally outermost surfaces that are elevationally inward of elevationally outermost surfaces of the second lines;removing the second sidewall spacers from crossing over the first lines; andremoving the first and second lines in forming a pattern comprising portions of the first and second sidewall spacers over the underlying substrate.
  • 6. The method of claim 5 comprising forming the first sidewall spacers as a ring around the respective first lines.
  • 7. The method of claim 5 comprising forming the second sidewall spacers as a ring around the respective second lines.
  • 8. The method of claim 5 wherein the first and second sidewall spacers are together formed during a single anisotropic etch of masking material.
  • 9. The method of claim 5 wherein forming the second sidewall spacers comprises depositing and subsequently anisotropically etching a masking material.
  • 10. The method of claim 9 wherein the removing of the second sidewall spacers from crossing over the first lines comprises continuing the anisotropically etching of the masking material without stopping the etching between the forming of the second sidewall spacers and the removing of the second sidewall spacers from crossing over the first lines.
  • 11. A method of forming a pattern on a substrate, comprising: forming longitudinally elongated first lines and first sidewall spacers longitudinally along opposite sides of the first lines elevationally over an underlying substrate;forming longitudinally elongated second lines and second sidewall spacers longitudinally along opposite sides of the second lines, the second lines and the second sidewall spacers crossing elevationally over the first lines and the first sidewall spacers, the first and second lines physically contacting one another where such cross;removing the second sidewall spacers from crossing over the first lines; andremoving the first and second lines in forming a pattern comprising portions of the first and second sidewall spacers over the underlying substrate.
  • 12. The method of claim 11 wherein the second sidewall spacers extend completely between immediately adjacent first lines after the removing of the second sidewall spacers from crossing over the first lines.
  • 13. The method of claim 11 wherein the second lines are elevationally thicker between the first lines than atop the first lines.
  • 14. A method of forming a pattern on a substrate, comprising: forming longitudinally elongated first lines elevationally over an underlying substrate;forming longitudinally elongated second lines and masking material longitudinally along opposite sides of the second lines and the first lines, the second lines and the masking material crossing elevationally over the first lines, the second lines and the masking material being elevationally thicker between the first lines than elevationally over the first lines;removing the masking material from crossing over the first lines and from being along a majority of length of the first lines while leaving at least some of the masking material along sidewalls of the second lines between immediately adjacent first lines; andremoving the first and second lines in forming a pattern comprising spaced regions of the masking material over the underlying substrate.
  • 15. The method of claim 14 comprising forming the first and second lines to have respective planar elevationally outermost surfaces.
  • 16. A method of forming a pattern on a substrate, comprising: forming longitudinally elongated first lines and first sidewall spacers longitudinally along opposite sides of the first lines elevationally over an underlying substrate;forming longitudinally elongated second lines and second sidewall spacers longitudinally along opposite sides of the second lines, the second lines and the second sidewall spacers crossing elevationally over the first lines and the first sidewall spacers;removing the second sidewall spacers from crossing over the first lines;removing the first and second lines in forming a pattern comprising portions of the first and second sidewall spacers over the underlying substrate;after removing the first and second lines, forming fill material laterally of the portions of the first and second sidewall spacers;removing remaining of the portions of the first and second sidewall spacers in forming a mask comprising the fill material; andusing the mask while etching contact openings into the underlying substrate.
  • 17. The method of claim 16 wherein the portions of the first and second spacers in the pattern are generally rectangular in horizontal cross-section having adjacent sides of unequal length.
  • 18. The method of claim 17 wherein the rectangular portions have longer sides that are about three times length of the shorter sides.
  • 19. The method of claim 17 wherein the rectangular portions have longer sides that are more than three times length of the shorter sides.
RELATED PARENT DATA

This patent resulted from a continuation of U.S. patent application Ser. No. 13/542,913, filed Jul. 6, 2012, entitled “Methods of Forming a Pattern on a Substrate” naming Vishal Sipani and Anton J. deVilliers as inventors, the disclosure of which is incorporated by reference.

US Referenced Citations (259)
Number Name Date Kind
4910168 Tsai Mar 1990 A
5008207 Blouse et al. Apr 1991 A
5013680 Lowrey et al. May 1991 A
5047117 Roberts Sep 1991 A
5254218 Roberts et al. Oct 1993 A
5328810 Lowrey et al. Jul 1994 A
5372916 Ogawa et al. Dec 1994 A
5382315 Kumar Jan 1995 A
5420067 Hsu May 1995 A
5429988 Huang et al. Jul 1995 A
5573837 Roberts et al. Nov 1996 A
5593813 Kim Jan 1997 A
5616510 Wong Apr 1997 A
5905279 Nitayama et al. May 1999 A
5916821 Kerber Jun 1999 A
6063688 Doyle et al. May 2000 A
6087263 Clampitt et al. Jul 2000 A
6140217 Jones et al. Oct 2000 A
6174818 Tao et al. Jan 2001 B1
6207490 Lee Mar 2001 B1
6235574 Tobben et al. May 2001 B1
6249335 Hirukawa et al. Jun 2001 B1
6303272 Furukawa et al. Oct 2001 B1
6352932 Clampitt et al. Mar 2002 B1
6383952 Subramanian et al. May 2002 B1
6429123 Tseng Aug 2002 B1
6483136 Yoshida et al. Nov 2002 B1
6545904 Tran Apr 2003 B2
6548385 Lai Apr 2003 B1
6548401 Trivedi Apr 2003 B1
6566280 Meagley et al. May 2003 B1
6580136 Mandelman et al. Jun 2003 B2
6599844 Koh et al. Jul 2003 B2
6605541 Yu Aug 2003 B1
6627524 Scott Sep 2003 B2
6630379 Mandelman et al. Oct 2003 B2
6638441 Chang et al. Oct 2003 B2
6649958 Fujisawa Nov 2003 B2
6667502 Agarwal et al. Dec 2003 B1
6703323 Kong et al. Mar 2004 B2
6710390 Parekh et al. Mar 2004 B2
6734107 Lai et al. May 2004 B2
6735132 Siek May 2004 B2
6753220 Juengling Jun 2004 B2
6756619 Tran Jun 2004 B2
6774051 Chung et al. Aug 2004 B2
6811817 Sugeta et al. Nov 2004 B2
6826069 Kurjanowicz et al. Nov 2004 B2
6864184 Gabriel Mar 2005 B1
6872512 Yamashita Mar 2005 B2
6893972 Rottstegge et al. May 2005 B2
6905975 Boettiger et al. Jun 2005 B2
6916594 Bok et al. Jul 2005 B2
6951822 Scholz Oct 2005 B2
7023069 Blanchard Apr 2006 B2
7037840 Katz May 2006 B2
7042038 Yoshida et al. May 2006 B2
7049652 Mokhlesi et al. May 2006 B2
7064376 Shau Jun 2006 B2
7067385 Manning Jun 2006 B2
7074533 Fuller et al. Jul 2006 B2
7098105 Juengling Aug 2006 B2
7115525 Abatchev et al. Oct 2006 B2
7125781 Manning et al. Oct 2006 B2
7151040 Tran et al. Dec 2006 B2
7166533 Happ Jan 2007 B2
7199005 Sandhu et al. Apr 2007 B2
7202127 Musch et al. Apr 2007 B2
7202174 Jung et al. Apr 2007 B1
7230292 Graettinger Jun 2007 B2
7253118 Tran et al. Aug 2007 B2
7265059 Rao et al. Sep 2007 B2
7271108 Sadjadi Sep 2007 B2
7314810 Jung et al. Jan 2008 B2
7320911 Basceri et al. Jan 2008 B2
7339252 Blanchard Mar 2008 B2
7361609 Hah et al. Apr 2008 B2
7384849 Parekh et al. Jun 2008 B2
7387939 Manning Jun 2008 B2
7390749 Kim et al. Jun 2008 B2
7390750 Ramkumar et al. Jun 2008 B1
7396781 Wells Jul 2008 B2
7439152 Manning Oct 2008 B2
7442976 Juengling Oct 2008 B2
7517753 Manning Apr 2009 B2
7521371 DeBruler Apr 2009 B2
7521378 Fucsko et al. Apr 2009 B2
7524607 Ho et al. Apr 2009 B2
7537866 King Liu May 2009 B2
7544563 Manning Jun 2009 B2
7553760 Yang et al. Jun 2009 B2
7557013 Bhat et al. Jul 2009 B2
7557015 Sandhu et al. Jul 2009 B2
7582412 Cameron et al. Sep 2009 B2
7682924 Bhat et al. Mar 2010 B2
7687387 Inaba et al. Mar 2010 B2
7696076 Jung et al. Apr 2010 B2
7713818 Chan May 2010 B2
7754591 Jung Jul 2010 B2
7790357 Jung Sep 2010 B2
7790360 Alapati et al. Sep 2010 B2
7807575 Zhou Oct 2010 B2
1842601 Lee et al. Nov 2010 A1
7846646 Kamijima Dec 2010 B2
7851135 Jung et al. Dec 2010 B2
7855038 Hah et al. Dec 2010 B2
7897460 Parekh et al. Mar 2011 B2
7923371 Shinohe Apr 2011 B2
7959818 Jung Jun 2011 B2
8067286 Parekh et al. Nov 2011 B2
8083953 Millward et al. Dec 2011 B2
8083958 Li et al. Dec 2011 B2
8148052 Vanleenhove et al. Apr 2012 B2
8247302 Sills Aug 2012 B2
8273634 Sills Sep 2012 B2
8338304 Zhou Dec 2012 B2
8440576 Hong May 2013 B2
8629048 Sipani et al. Jan 2014 B1
8629527 Parekh et al. Jan 2014 B2
20020037617 Kim et al. Mar 2002 A1
20020043690 Doyle et al. Apr 2002 A1
20020094688 Mitsuiki Jul 2002 A1
20020130348 Tran Sep 2002 A1
20030001214 Yoshida et al. Jan 2003 A1
20030006410 Doyle Jan 2003 A1
20030008968 Sugeta et al. Jan 2003 A1
20030091936 Rottstegge et al. May 2003 A1
20030096903 Sugeta et al. May 2003 A1
20040043546 Makoto et al. Mar 2004 A1
20040198065 Lee et al. Oct 2004 A1
20040253535 Cameron et al. Dec 2004 A1
20050058950 Sugeta et al. Mar 2005 A1
20050130068 Kondoh et al. Jun 2005 A1
20050142497 Ryou et al. Jun 2005 A1
20050164478 Chan et al. Jul 2005 A1
20050173740 Jin Aug 2005 A1
20050214683 Nishimura et al. Sep 2005 A1
20050255696 Makiyama et al. Nov 2005 A1
20050272220 Waldfried et al. Dec 2005 A1
20060011947 Juengling Jan 2006 A1
20060024621 Nolscher et al. Feb 2006 A1
20060046200 Abatchev et al. Mar 2006 A1
20060046422 Tran et al. Mar 2006 A1
20060046484 Abatchev et al. Mar 2006 A1
20060063384 Hah et al. Mar 2006 A1
20060088788 Kudo et al. Apr 2006 A1
20060099347 Sugeta et al. May 2006 A1
20060115978 Specht et al. Jun 2006 A1
20060118785 Allen et al. Jun 2006 A1
20060154182 Brodsky Jul 2006 A1
20060240361 Lee et al. Oct 2006 A1
20060262511 Abatchev et al. Nov 2006 A1
20060263699 Abatchev et al. Nov 2006 A1
20060273456 Sant et al. Dec 2006 A1
20060278911 Eppich Dec 2006 A1
20060281266 Wells Dec 2006 A1
20060286795 Yosho Dec 2006 A1
20070003878 Paxton et al. Jan 2007 A1
20070010058 Juengling Jan 2007 A1
20070020565 Koh et al. Jan 2007 A1
20070023805 Wells et al. Feb 2007 A1
20070026684 Parascandola et al. Feb 2007 A1
20070037066 Hsiao Feb 2007 A1
20070045712 Haller et al. Mar 2007 A1
20070048674 Wells Mar 2007 A1
20070048930 Figura et al. Mar 2007 A1
20070049003 Smythe Mar 2007 A1
20070049011 Tran Mar 2007 A1
20070049030 Sandhu et al. Mar 2007 A1
20070049035 Tran Mar 2007 A1
20070049040 Bai et al. Mar 2007 A1
20070077524 Koh et al. Apr 2007 A1
20070077743 Rao et al. Apr 2007 A1
20070085152 Butler et al. Apr 2007 A1
20070096182 Schloesser et al. May 2007 A1
20070099431 Li May 2007 A1
20070105357 Nejad et al. May 2007 A1
20070123015 Chinthakindi et al. May 2007 A1
20070145464 Voshell et al. Jun 2007 A1
20070148984 Abatchev et al. Jun 2007 A1
20070161251 Tran et al. Jul 2007 A1
20070181929 Juengling Aug 2007 A1
20070190463 Sandhu et al. Aug 2007 A1
20070197014 Jeon et al. Aug 2007 A1
20070202671 Jung Aug 2007 A1
20070202697 Jung Aug 2007 A1
20070205438 Juengling Sep 2007 A1
20070205443 Juengling Sep 2007 A1
20070224537 Nozaki et al. Sep 2007 A1
20070238053 Hashimoto Oct 2007 A1
20070238299 Niroomand et al. Oct 2007 A1
20070248916 Kamijima Oct 2007 A1
20070261016 Sandhu et al. Nov 2007 A1
20070264828 Jung et al. Nov 2007 A1
20070264830 Huang et al. Nov 2007 A1
20070278183 Lee et al. Dec 2007 A1
20070281219 Sandhu Dec 2007 A1
20070281488 Wells et al. Dec 2007 A1
20070281493 Fucsko et al. Dec 2007 A1
20080002475 Yang et al. Jan 2008 A1
20080008969 Zhou et al. Jan 2008 A1
20080026327 Koo Jan 2008 A1
20080032243 Jung Feb 2008 A1
20080032508 Chang Feb 2008 A1
20080044770 Nozaki et al. Feb 2008 A1
20080057692 Wells et al. Mar 2008 A1
20080063986 Jung Mar 2008 A1
20080064213 Jung Mar 2008 A1
20080070165 Fischer et al. Mar 2008 A1
20080076070 Koh et al. Mar 2008 A1
20080085612 Smythe et al. Apr 2008 A1
20080090416 Rahu et al. Apr 2008 A1
20080113483 Wells May 2008 A1
20080113511 Park et al. May 2008 A1
20080122125 Zhou May 2008 A1
20080171438 Sinha et al. Jul 2008 A1
20080171446 Kim et al. Jul 2008 A1
20080176152 Hah et al. Jul 2008 A1
20080176406 Ikeda et al. Jul 2008 A1
20080193658 Millward Aug 2008 A1
20080199806 Hatakeyama et al. Aug 2008 A1
20080199814 Brzozowy et al. Aug 2008 A1
20080206950 Bhat et al. Aug 2008 A1
20080210900 Wojtczak et al. Sep 2008 A1
20080220600 Alapati et al. Sep 2008 A1
20080254627 Wells Oct 2008 A1
20080261349 Abatchev et al. Oct 2008 A1
20080292991 Wallow et al. Nov 2008 A1
20080296732 Olson Dec 2008 A1
20080305636 Kim et al. Dec 2008 A1
20090074958 Xiao Mar 2009 A1
20090108415 Lenski et al. Apr 2009 A1
20090117739 Shin et al. May 2009 A1
20090130601 Jeon May 2009 A1
20090130612 Yang May 2009 A1
20090130852 Kewley May 2009 A1
20090212016 Cheng et al. Aug 2009 A1
20090214823 Cheng et al. Aug 2009 A1
20090291397 deVilliers Nov 2009 A1
20090298274 Kajiwara Dec 2009 A1
20100009512 Fishburn Jan 2010 A1
20100021573 Gonzalez et al. Jan 2010 A1
20100028809 Vanleenhove et al. Feb 2010 A1
20100040980 Nishimura et al. Feb 2010 A1
20100068656 Yeh et al. Mar 2010 A1
20100081265 Mashita et al. Apr 2010 A1
20100093175 Niroomand et al. Apr 2010 A1
20100129980 Sandhu et al. May 2010 A1
20100130015 Nakajima et al. May 2010 A1
20100130016 deVilliers May 2010 A1
20100144150 Sills et al. Jun 2010 A1
20100144151 Sills et al. Jun 2010 A1
20100144153 Sills et al. Jun 2010 A1
20100203740 Li Aug 2010 A1
20110018055 Ohta et al. Jan 2011 A1
20110127677 Konishi Jun 2011 A1
20110147984 Cheng et al. Jun 2011 A1
20130009283 Zhou Jan 2013 A1
20130078574 Peeters et al. Mar 2013 A1
Foreign Referenced Citations (75)
Number Date Country
1550889 Dec 2004 CN
1752844 Mar 2006 CN
1761063 Apr 2006 CN
101026087 Aug 2007 CN
101145515 Mar 2008 CN
200980148546.9 Nov 2012 CN
200980148548.8 Feb 2013 CN
200980148590.X Feb 2013 CN
201080013110.1 May 2013 CN
0171111 Feb 1986 EP
1272974 Oct 2003 EP
09830819.0 Mar 2013 EP
10756541.8 May 2013 EP
09743197.7 Jun 2013 EP
09830818.2 Jul 2013 EP
098308120.8 Aug 2013 EP
56046531 Apr 1951 JP
58157135 Sep 1983 JP
59211231 Nov 1984 JP
64035916 Jul 1989 JP
1-292829 Nov 1989 JP
3270227 Dec 1991 JP
06-077180 Mar 1994 JP
6275577 Sep 1994 JP
2002-217170 Aug 2002 JP
2003234279 Aug 2003 JP
2004134574 Apr 2004 JP
2004247399 Sep 2004 JP
2005-243681 Sep 2005 JP
2006245625 Sep 2006 JP
2007017993 Jan 2007 JP
2007294511 Nov 2007 JP
2007305976 Nov 2007 JP
2008-072097 Mar 2008 JP
2008-072101 Mar 2008 JP
2009269974 Dec 2009 JP
20030056601 Jul 2003 KR
20030049198 Aug 2003 KR
20030089063 Nov 2003 KR
10-2004-0016678 Feb 2004 KR
4025289 Mar 2004 KR
20040057582 Jul 2004 KR
10-2007-0076793 Jul 2007 KR
10-2007-0122049 Dec 2007 KR
10-0784062 Dec 2007 KR
10-2008-0024053 Mar 2008 KR
10-2008-0039008 May 2008 KR
20080038983 May 2008 KR
201300853-7 Jun 2013 SG
200702903 Jan 2007 TW
200818405 Apr 2008 TW
200834660 Aug 2008 TW
098113229 Sep 2012 TW
098139941 Dec 2012 TW
098139943 Dec 2012 TW
099140232 Jul 2013 TW
098139942 Dec 2013 TW
WO 2006104654 Oct 2006 WO
WO2007027558 Mar 2007 WO
PCTUS2007015729 Jan 2008 WO
WO 2008008338 Jan 2008 WO
WO 2008059440 May 2008 WO
PCTUS2009039793 Oct 2009 WO
PCTUS2009041500 Dec 2009 WO
PCTUS2009063978 May 2010 WO
PCTUS2009063999 May 2010 WO
PCTUS2009064004 May 2010 WO
PCTUS2010025495 Sep 2010 WO
PCTUS2009039793 Nov 2010 WO
PCTUS2009041500 Dec 2010 WO
PCTUS2009063978 Jun 2011 WO
PCTUS2009063999 Jun 2011 WO
PCTUS2009064004 Jun 2011 WO
PCTUS2010055488 Jun 2011 WO
PCTUS2010025495 Sep 2011 WO
Non-Patent Literature Citations (15)
Entry
U.S. Appl. No. 11/714,378, filed Mar. 5, 2007, Preliminary Amendment.
U.S. Appl. No. 13/101,485, filed May 5, 2011, Light et al.
Clariant, Polysilazane SODs Spinful 400 Series for STI/PMD Application; Oct. 19, 2009; 1 pp.
EE et al., “Innovative Solutions to Enhance the Legacy Equipments Towards One Generation Ahead in Flip Chip BGA 0.8mm Ball Pitch Technology”, Sep. 2005; 4 pp.
Fritze et al., “Enhanced Resosulation for Future Fabrication”, Jan. 2003, 5 pp.
Gallia et al., “A Flexible Gate Array Architecture for High-speed and High-Density Applications”, Mar. 1996, pp. 430-436.
Hori et al., “Sub-40nm Half-Pitch Double Patterning with Resist Freezing Process”, 2008 8 pp.
Lee et al., “Double-Patterning Technique Using Plasma Treatment of Photoresist”,Sep. 20, 2007, 5 pp.
Liau et al., “Softbake and Post-exposure Bake Optimization for Process Window Improvement and Optical Proximity Effect Tuning”, 2006, 7 pp.
Lu, “Advanced Cell Structuresw for Dynamic RAMs”, Jan. 1989, pp. 27- 36.
Ma, “Plasma Resist Image Stabilization Technique (PRIST)”, 1980, 2 pp.
Owa et al., “Immersion Lithography Ready for 45nm Manufacturing and Beyond”, 2007, pp. 238-244.
Pease et al., “Lithography and Other Patterning Techniques for Future Electronics”, Feb. 2008, pp. 248-270.
Tan et al., “Current Status of Nanonex Nanoimprint Solutions”, 2004, 9 pp.
Terai et al., “Newly developed RELACS Process and materials for 64 nm node device and beyond”; Oct. 2005; pp. 20-21.
Related Publications (1)
Number Date Country
20140127909 A1 May 2014 US
Continuation in Parts (1)
Number Date Country
Parent 13542913 Jul 2012 US
Child 14133962 US