Methods of forming a self-assembled block copolymer material

Information

  • Patent Grant
  • 10828924
  • Patent Number
    10,828,924
  • Date Filed
    Friday, June 8, 2018
    5 years ago
  • Date Issued
    Tuesday, November 10, 2020
    3 years ago
Abstract
Methods for fabricating stamps and systems for patterning a substrate, and devices resulting from those methods are provided.
Description
TECHNICAL FIELD

Embodiments of the invention relate to methods, a stamp and a system for patterning a substrate by use of self-assembling block copolymers, and devices resulting from those methods.


BACKGROUND OF THE INVENTION

Lithography is a key process in the fabrication of semiconductor integrated circuits. Photolithography typically involves projecting an image through a reticle or mask onto a thin film of photoresist or other material that covers a semiconductor wafer or other substrate, and developing the film to remove exposed or unexposed portions of the resist to produce a pattern in subsequent processing steps. In semiconductor processing, the continual shrinking in feature sizes and the increasing development of nanoscale mechanical, electrical, chemical and biological devices requires systems to produce nanoscale features. However, with conventional photolithography using light, the minimum feature size and spacing between patterns is generally on the order of the wavelength of the radiation used to expose the film. This limits the ability to produce sub-lithographic features of about 60 nm using conventional lithography.


Microcontact printing has been developed to create sublithographic features in semiconductor devices. This technique generally involves stamping or pressing a soft template or stamp bearing small scale topographic features onto a receptor substrate to form a pattern on the substrate. The features on the template are typically prepared by photolithography or electron (e-beam) lithography. For example, FIG. 1 illustrates a conventional soft template or stamp 10 formed, for example, from polydimethylsiloxane, with defined features 12 structured with a stamping surface 14 and sidewalls 16. The stamping surface 14 defines a dimension (d) of the pattern to be stamped onto a substrate. As shown in FIG. 2, the features 12 of the stamp are wetted with an ink 18 that is physisorbed or chemisorbed onto the stamping surface 14 and the sidewalls 16 of the features 12. As depicted in FIG. 3, the inked stamp 10 is brought into contact with a receptor substrate 20 (e.g., silicon wafer) and the ink 18 is transferred to regions of the substrate 20 where the ink 18 forms self-assembled monolayers (SAMs) 22 (FIG. 4).


However, resolution of small features is problematic because of inconsistent printing due to capillary forces that pull ink 18 sorbed to surfaces of the features 12 adjacent to the stamping surface 14 (e.g., the sidewalls 16) onto the substrate 20 (e.g., areas 24). Such wicking of the ink 18 material onto the substrate 20 also alters the intended dimension (d) of the stamped features (SAMs) 22, as defined by the stamping surfaces 14 of the stamp/template. In addition, the size and dimension of the stamped features 22 on the receptor substrate 20 are limited to the dimensions (d) of the lithographically formed features 12 defined on the stamp.


Other processes such as e-beam lithography and extreme ultraviolet (EUV) lithography have been used in attempts to form sub-lithographic features. However, the high costs associated with such lithographic tools have hindered their use.


Self-assembled block copolymer films have been prepared by patterning the surface of a substrate with chemical stripes (chemical templating), each stripe being preferentially wetted by the alternate blocks of a block copolymer. A block copolymer film with lamellar morphology, a periodicity matching the stripe pattern and both blocks being neutral wetting at the air interface (e.g., PS-PMMA) that is cast on the patterned substrate and thermally annealed will self-assemble so that the domains orient themselves above the preferred stripes and perpendicular to the surface. However, the process has no advantage over EUV lithography or other sub-lithographic patterning techniques since one of these patterning techniques must be used to form the substrate template pattern, and with the use of expensive patterning tools, the low-cost benefits of using block copolymers are lost.


It would be useful to provide a method and system for preparing sub-lithographic features that overcome existing problems.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are described below with reference to the following accompanying drawings, which are for illustrative purposes only. Throughout the following views, the reference numerals will be used in the drawings, and the same reference numerals will be used throughout the several views and in the description to indicate same or like parts.



FIG. 1 illustrates an elevational, cross-sectional view of a conventional stamp used in a microcontact printing application.



FIG. 2 illustrates a diagrammatic view of the stamp of FIG. 1, with ink physisorbed or chemisorbed onto the surface of the stamp, and a receptor substrate to be contacted by the inked stamp.



FIG. 3 illustrates the inked stamp of FIG. 2, brought into contact with the receptor substrate, according to a conventional microcontact printing process.



FIG. 4 illustrates a subsequent processing step with the formation of SAMs from the transferred ink on the receptor substrate.



FIG. 5 illustrates a diagrammatic top plan view of a portion of a substrate of a stamp at a preliminary processing stage according to an embodiment of the present disclosure, showing the substrate with trenches. FIGS. 5A and 5B are elevational, cross-sectional views of the substrate depicted in FIG. 5 taken along lines 5A-5A and 5B-5B, respectively.



FIG. 6 is a top plan view of a portion of a substrate according to another embodiment showing the substrate with trenches for forming a stamp with a hexagonal close-packed array of perpendicular cylinders.



FIGS. 7 and 8 illustrate diagrammatic top plan views of the stamp of FIG. 5 at various stages of the fabrication of a self-assembled block copolymer film according to an embodiment of the present disclosure. FIGS. 7A-8A illustrate elevational, cross-sectional views of embodiments of a portion of the substrate depicted in FIGS. 7 and 8 taken, respectively, along lines 7A-7A and lines 8A-8A. FIG. 7B is a cross-sectional view of the substrate depicted in FIG. 7 taken along lines 7B-7B.



FIG. 9 is a top plan view of the stamp of FIG. 6 at a subsequent stage of fabrication showing a self-assembled polymer film composed of a hexagonal array of cylinders within the trenches.



FIG. 10 is a top plan view of the stamp of FIG. 5 at a subsequent stage of fabrication according to another embodiment of the invention, showing a self-assembled polymer film composed of a single row of cylinders with the trenches. FIG. 10A is a cross-sectional view of the substrate depicted in FIG. 10 taken along lines 10A-10A.



FIG. 11 is a top plan view of the stamp of FIG. 5 at a subsequent stage of fabrication according to another embodiment of the invention, showing a self-assembled polymer film composed of a parallel row of half-cylinders with the trenches. FIG. 11A is a cross-sectional view of the substrate depicted in FIG. 10 taken along lines 11A-11A.



FIG. 12 illustrates a diagrammatic top plan view of a portion of a stamp at a preliminary processing stage according to another embodiment of the disclosure, showing a chemically differentiated stamping surface. FIG. 12A is an elevational, cross-sectional view of the substrate depicted in FIG. 12 taken along lines 12A-12A.



FIGS. 13 and 14 illustrate diagrammatic top plan views of the stamp of FIG. 12 at subsequent processing stages. FIGS. 13A and 14A illustrate elevational, cross-sectional views of a portion of the substrate depicted in FIGS. 13 and 14 taken, respectively, along lines 13A-13A and lines 14A-14A. FIGS. 13B and 14B are cross-sectional views of the substrate of FIGS. 13-14 taken, respectively, along lines 13B-13B and lines 14B-14B.



FIGS. 15-18 illustrate subsequent steps in the use of the stamp of FIGS. 8 and 8A in a contact printing process to form a pattern on a substrate according to an embodiment of the invention. FIG. 18A is a cross-sectional view of the substrate shown in FIG. 18, taken along lines 18A-18A.



FIGS. 19 and 20 illustrate an embodiment of the use of a chemically differentiated surface of the substrate shown in FIG. 18A for the selective deposit and formation of a self-assembled block copolymer film, shown in a cross-sectional view.



FIGS. 21 and 22 illustrate the use of the self-assembled block copolymer film of FIG. 20 after removal of one of the polymer blocks, as a mask to etch the substrate and filling of the etched opening.



FIG. 23 illustrates another embodiment of the use of the stamped pattern of an ink material shown in FIG. 18A to guide deposition of a material onto exposed portions of the substrate to form a chemically differentiated surface, shown in a cross-sectional view.



FIG. 24 illustrates the use of the deposited material of the structure shown in FIG. 23 as a mask to etch the underlying substrate.



FIG. 25 illustrates yet another embodiment of the use of the stamped pattern of an ink material shown in FIG. 18A as a seed material for selective deposition of an additional material to increase the thickness and/or hardness of the ink elements on the substrate, shown in a cross-sectional view.



FIG. 26 illustrates the use of the ink pattern with added material shown in FIG. 25 as a mask to etch openings in the underlying substrate.



FIGS. 27-32 illustrate steps in another embodiment of a method according to the invention to chemically pattern a substrate, shown in a cross-sectional view.



FIGS. 31 and 32 illustrate the removal of non-crosslinked polymer material and the use of the inked pattern to direct self-assembly of a block copolymer material.



FIG. 33 illustrates an elevational, cross-sectional view of an embodiment of a substrate bearing a neutral wetting layer at a preliminary processing step.



FIG. 34 illustrates the substrate of FIG. 33 at a subsequent processing step.



FIGS. 35-39 illustrate an embodiment of a process according to the invention for forming a chemically patterned master template for forming a stamp for use in inducing self-assembly of a lamellar-phase block copolymer material on a substrate.



FIG. 35 illustrates a perspective view of a base substrate at a preliminary processing stage bearing a hydrophilic material on the surface.



FIGS. 36-39 illustrate the substrate of FIG. 35 at subsequent processing stages to form a patterned master template.



FIGS. 37A, 38A, and 39A illustrate top plan views and



FIGS. 37B, 38B, and 39B illustrate elevational, cross-sectional views of the substrates shown in FIGS. 37, 38, and 39, respectively.



FIGS. 40-43 illustrate another embodiment of a process for forming a chemically patterned master template for use in forming a stamp for directing self-assembly of a lamellar-phase block copolymer material.



FIG. 40 illustrates a perspective view of a base substrate at a preliminary processing stage bearing a hydrophobic material on the surface.



FIGS. 41-43 illustrate the substrate of FIG. 40 at subsequent processing stages to form a patterned master template.



FIGS. 41A, 42A, and 43A illustrate top plan views and



FIGS. 41B, 42B, and 43B illustrate elevational, cross-sectional views of the substrates shown in FIGS. 41, 42, and 43, respectively.



FIGS. 44-47 illustrate an embodiment according to the invention for forming a stamp on a master template as illustrated in FIG. 39.



FIG. 44 illustrates a perspective view of a master template with a material for forming the stamp in a preliminary processing stage.



FIG. 45 illustrates the master template/stamp material complex at a subsequent processing step.



FIGS. 44A and 45A illustrate top plan views and FIGS. 44B and 45B illustrate elevational, cross-sectional views of the master template/stamp material complex shown in FIGS. 44 and 45, respectively.



FIGS. 46 and 47 illustrate elevational, cross-sectional views of the master template/stamp material complex of FIG. 45 at subsequent processing steps showing the removal of the chemically patterned stamp from the master template.



FIG. 47A illustrates a perspective view of the stamp of FIG. 47, showing the chemically patterned surface of the stamp.



FIGS. 48-52 illustrate an embodiment of the invention for using the stamp illustrated in FIGS. 47 and 47A for directing ordering of a lamellar-phase block copolymer material.



FIGS. 48 and 49 illustrate elevational, cross-sectional views of the stamp brought into contact with the block copolymer material on a substrate.



FIG. 50 illustrates an elevational, cross-sectional view of the annealing of the block copolymer material in contact with the stamp.



FIG. 50A illustrates a top plan view of the surface of the annealed block copolymer material of FIG. 50.



FIGS. 51 and 52 illustrate the removal of the chemically patterned stamp from the annealed and self-assembled block copolymer material of FIG. 50, shown in an elevational, cross-sectional view.



FIGS. 53-55 illustrate the use of the self-assembled lamellar-phase block copolymer material of FIG. 52 to mask and etch an underlying substrate.



FIG. 53 illustrates an elevational, cross-sectional view of the block copolymer material of FIG. 52 at a subsequent processing step to selectively remove polymer domains to form a mask with openings to the substrate.



FIGS. 54 and 55 illustrate the substrate shown in FIG. 53 at subsequent processing stages to form and fill openings in the substrate.



FIGS. 53A, 54A, and 55A are top plan views of the substrate shown in FIGS. 53, 54, and 55, respectively.



FIGS. 56-58 illustrate another embodiment of a process for forming a chemically patterned master template and stamp for directing self-assembly of a cylinder-phase block copolymer material.



FIG. 56 illustrates a perspective view of a master template having a surface bearing dots composed of a hydrophilic material amidst a hydrophobic material.



FIG. 56A is a top plan view and FIG. 56B is an elevational, cross-sectional view of the master template shown in FIG. 56.



FIG. 57 illustrates an embodiment of a stamp formed from the master template of FIG. 56 in an elevational, cross-sectional view. FIG. 57A is a top plan view of the surface of the stamp of FIG. 57.



FIG. 58 illustrates an embodiment of the use of the stamp of FIG. 57 to direct ordering of a cylindrical-phase block copolymer material in an elevational, cross-sectional view. FIG. 58A illustrates a top plan view of the surface of the annealed and ordered block copolymer material of FIG. 58.



FIG. 59 illustrates an elevational, cross-sectional view of the use of the self-assembled cylindrical-phase block copolymer material of FIGS. 58 and 58A to mask and etch an underlying substrate.



FIG. 60 illustrates the substrate shown in FIG. 59 at a subsequent processing stage to fill the cylindrical openings in the substrate. FIG. 60A is a top plan view of the substrate shown in FIG. 60.



FIG. 61 illustrates geometries for an integrated circuit layout that can be prepared using embodiments of the invention.





DETAILED DESCRIPTION

The following description with reference to the drawings provides illustrative examples of devices and methods according to embodiments of the invention. Such description is for illustrative purposes only and not for purposes of limiting the same.


In the context of the current application, the term “semiconductor substrate” or “semiconductive substrate” or “semiconductive wafer fragment” or “wafer fragment” or “wafer” will be understood to mean any construction comprising semiconductor material, including, but not limited to, bulk semiconductive materials such as a semiconductor wafer (either alone or in assemblies comprising other materials thereon), and semiconductive material layers (either alone or in assemblies comprising other materials). The term “substrate” refers to any supporting structure, including, but not limited to, the semiconductive substrates, wafer fragments or wafers described above.


“Lo” is the inherent periodicity or pitch value (bulk period or repeat unit) of structures that self-assemble upon annealing from a self-assembling (SA) block copolymer or a blend of a block copolymer with one or more of its constituent homopolymers.


The term “chemical affinity” means the tendency of molecules to associate with each other based upon chemical forces between the molecules. The term “physiosorbed” means the physical adsorption of a molecule (e.g., ink material) to a surface, for example, through weak intermolecular interactions such as Van der Waals forces. The term “chemisorbed” means the chemical adsorption of a molecule (e.g., ink material) to a surface, for example, through chemically bonding such as through hydrogen bonds, ionic bonds, dithiol linkages, electrostatic bonds or other “weak” chemical bond.


In embodiments of the invention, a stamp or template is prepared by guided self-assembly of block copolymers, with both polymer domains at the air interface. Block copolymer films spontaneously assemble into periodic structures by microphase separation of the constituent polymer blocks after annealing, forming ordered domains at nanometer-scale dimensions. One of the polymer blocks has affinity for and is swelled by absorption of an ink chemical and a second polymer domain has substantially no affinity for the ink chemical and remains unchanged. The chemical ink can then be transferred from the stamp to a receptor substrate where the ink forms SAMs. The resolution of the imprinted SAMs exceed other microcontact techniques using self-assembled polymer films, and processing costs using the technique is significantly less than using electron beam lithography or EUV photolithography, which have comparable resolution.


The two-dimensional (2D) inked pattern that is formed on the receptor substrate can then be used, for example, as a template or pattern for self-assembled ordering of a block copolymer film that is cast onto the patterned receptor substrate. Following self-assembly on the receptor substrate, one block of the copolymer can then be selectively removed and the remaining patterned film used as an etch mask for patterning nanosized features into the underlying substrate.


Methods for fabricating a stamp composed of a self-assembled block copolymer thin film that defines nanometer-scale cylindrical and linear array patterns according to embodiments of the invention are illustrated in FIGS. 5-14B.


In some embodiments, the stamp is prepared under processing conditions that use a graphoepitaxy technique utilizing the sidewalls of trenches as constraints to induce orientation and registration of a film of a self-assembling diblock copolymer to form an ordered array pattern registered to the trench sidewalls. Graphoepitaxial techniques can be used to order cylindrical-phase diblock copolymers in one dimension, for example, parallel lines of half-cylinders, hexagonal close-packed arrays of perpendicular cylinders, or a single row of perpendicular cylinders within lithographically defined trenches. A desired pattern of cylinders on the stamp can be prepared by providing trenches having walls that are selective to one polymer block of a block copolymer and a floor composed either of a material that is block-sensitive or preferentially wetting to one of the blocks of the block copolymer in trenches where lines of parallel half-cylinders are desired, or a material that is neutral wetting to both blocks in trenches where an array of perpendicular cylinders are desired.


Additionally, in some embodiments, the trench floors can be chemically differentiated to provide a wetting pattern to control orientation of the microphase separated and self-assembling cylindrical domains in a second dimension, for example, parallel lines of half-cylinders or perpendicular-oriented cylinders. The trench floors are structured or composed of surface materials to provide a neutral wetting surface or preferential wetting surface to impose ordering on a block copolymer film that is then cast on top of the substrate and annealed to produce desired arrays of nanoscaled lines and/or cylinders.


As illustrated in FIGS. 5-5B, a base substrate 28 is provided, which can be silicon, silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, among other materials. In some embodiments, a neutral wetting material 30 is formed over the base substrate 28. A material layer 32 to be etched can then be formed over the neutral wetting material 30 and etched to form trenches 34. Portions of the material layer 32 form a spacer 36 between the trenches 34. The trenches 34 are structured with opposing sidewalls 38, opposing ends 40, a floor 42, a width (wt), a length (It) and a depth (Dt).


As illustrated in FIG. 6, in embodiments for forming a stamp 26′ with a hexagonal close-packed array of perpendicular cylinders, ends 40′ of trenches 34′ are angled to sidewalls 38′, for example, at an about 60° angle, and in some embodiments, the trench ends are slightly rounded. In other embodiments, the material layer 32 can be formed on the base substrate 28, etched to form the trenches 34, and then a neutral wetting material (e.g., random copolymer) 30 can be applied to the trench floors 42 and crosslinked. Non-crosslinked random copolymer material outside the trenches 34 (e.g., on the spacers 36) can be subsequently removed.


The trenches can be formed using a lithographic tool having an exposure system capable of patterning at the scale of Lo (10-100 nm). Such exposure systems include, for example, extreme ultraviolet (EUV) lithography, proximity X-rays and electron beam (e-beam) lithography, as known and used in the art. Conventional photolithography can attain (at smallest) about 58 nm features.


A method called “pitch doubling” or “pitch multiplication” can also be used for extending the capabilities of photolithographic techniques beyond their minimum pitch, as described, for example, in U.S. Pat. No. 5,328,810 (Lowrey et al.), U.S. Pat. No. 7,115,525 (Abatchev et al.), US 2006/0281266 (Wells), now U.S. Pat. No. 7,396,781, issued Jul. 8, 2008, and US 2007/0023805 (Wells), now U.S. Pat. No. 7,776,715, issued Aug. 17, 2010. Briefly, a pattern of lines is photolithographically formed in a photoresist material overlying a layer of an expendable material, which in turn overlies a substrate, the expendable material layer is etched to form placeholders or mandrels, the photoresist is stripped, spacers are formed on the sides of the mandrels, and the mandrels are then removed, leaving behind the spacers as a mask for patterning the substrate. Thus, where the initial photolithography formed a pattern defining one feature and one space, the same width now defines two features and two spaces, with the spaces defined by the spacers. As a result, the smallest feature size possible with a photolithographic technique is effectively decreased down to about 30 nm or less.


The boundary conditions of the trench sidewalls 38 in both the x- and y-axis impose a structure wherein each trench contains “n” number of features (e.g., cylinders, lamellae, etc.). Factors in forming a single array or layer of nanostructures within the trenches include the width and depth of the trench, the formulation of the block copolymer to achieve the desired pitch (Lo), and the thickness (t) of the copolymer film. The length (l) of the trenches is at or about nLo where n is an integer multiple of Lo, typically within a range of about n*10−n*100 nm (with n being the number of features or structures (i.e., cylinders)). The depth (Dt) of the trenches 34 is about equal to Lo (Dt˜Lo) such that a cast block copolymer material 44 of about Lo will fill the trenches, and is generally over a range of about 10-100 nm. The trenches 34 are constructed with a width (wt) such that a block copolymer (or blend) will self-assemble upon annealing into a single layer of n elements (e.g., cylinders, lamellae, etc.) spanning the width (wt) of the trench, with the center-to-center distance of adjacent identical elements being at or about Lo. The width of the spacer 36 between adjacent trenches can vary and is generally about Lo to about nLo. In some embodiments, the trench dimension is about 100-1,500 nm wide (wt) and about 100-25,000 nm in length (lt), with a depth (Dt) of about 10-100 nm.


To form a single layer of n lamellae from a lamellar-phase block copolymer (inherent pitch value of Lo), which spans the width registered to the sidewalls 38 for the length of the trench 34, the width (wt) of the trenches can be a multiple of the inherent pitch value (Lo) of the polymer, being equal to or about nLo (“n*Lo”) and typically ranging from about n*10 to about n*100 nm (with n being the number of features or structures). For forming a 1D array of perpendicular-oriented cylinders with a center-to-center pitch of at or about Lo (e.g., a width of about 65-75 nm for an Lo value of about 36-42 nm), the trenches 34 can be constructed with a width (wt) of about 2*Lo or less, e.g., about 1.0*Lo to about 2*Lo (e.g., about 1.75*Lo). For forming parallel lines of half-cylinders or a periodic, hexagonal close-pack or honeycomb array of perpendicular cylinders, the trenches 34, 34′ can be constructed with a width (wt) at or about an integer multiple of the Lo value or nLo where n=3, 4, 5, etc. (e.g., a width of about 120-2,000 nm for an Lo value of about 36-42 nm).


For example, a block copolymer having a 35 nm pitch (Lo value) deposited into a 75 nm wide trench having a neutral wetting floor will, upon annealing, result in a zigzag pattern of 35 nm diameter perpendicular cylinders that are offset by a half distance for the length (lb) of the trench, rather than a single line of perpendicular cylinders aligned with the sidewalls down the center of the trench. As the Lo value of the copolymer is increased, for example, by forming a ternary blend by the addition of both constituent homopolymers, there is a shift from two rows to one row of the perpendicular cylinders within the center of the trench.


A block copolymer material of about Lo is deposited to about fill the trenches 34 and, upon annealing, the block copolymer film will self-assemble into morphologies to form an array of elements that are oriented in response to the wetting properties of the trench surfaces. Entropic forces drive the wetting of a neutral wetting surface by both blocks, and enthalpic forces drive the wetting of a preferential-wetting surface by the preferred block (e.g., the minority block). The trench sidewalls 38 and ends 40 are structured to be preferential wetting by one block of the block copolymer to induce registration of elements (e.g., cylinders, half-cylinders, lamellae, etc.) as the polymer blocks self-assemble. Upon annealing, the preferred block of the block copolymer will segregate to the sidewalls and edges of the trench to assemble into a thin (e.g., ¼ pitch) interface (wetting) layer, and will self-assemble to form elements according to the wetting surface of the trench floor 42.


For example, in response to neutral wetting properties of the trench floor surface material (e.g., crosslinked neutral wetting random copolymer mat) and preferential wetting sidewalls and ends, an annealed cylinder-phase block copolymer film will self-assemble to form cylinders in a perpendicular orientation to the trench floors in the center of a polymer matrix, and a lamellar-phase block copolymer film will self-assemble into a lamellar array of alternating polymer-rich blocks (e.g., PS and PMMA) that extend across the width and for the length of the trench and are oriented perpendicular to the trench floor and parallel to the sidewalls. In a trench having a preferential wetting floor, sidewalls and ends, an annealed cylinder-phase block copolymer film will self-assemble to form lines of half-cylinders in a polymer matrix extending the length of the trench and parallel to the trench floor.


The structuring of the trench sidewalls 38 and ends 40 to be preferential wetting causes one of the blocks of the copolymer material to form a thin wetting layer on those surfaces. To provide preferential wetting surfaces, for example, in the use of a PS-b-PMMA block copolymer, the material layer 32 can be composed of silicon (with native oxide), oxide (e.g., silicon oxide, SiOx), silicon nitride, silicon oxycarbide, indium tin oxide (ITO), silicon oxynitride, and resist materials such as methacrylate-based resists, among other materials, which exhibit preferential wetting toward the PMMA block. In the use of a cylinder-phase copolymer material, the material will self-assemble to form a thin (e.g., ¼ pitch) interface layer of PMMA and PMMA cylinders or half-cylinders (e.g., ½ pitch) in a PS matrix. In the use of a lamellar-phase block copolymer material, the material will assemble into alternating PMMA and PS lamellae (e.g., ½ pitch) within each trench, with PMMA at the sidewall interface (e.g., ¼ pitch).


In other embodiments, a preferential wetting material such as a polymethylmethacrylate (PMMA) polymer modified with an —OH containing moiety (e.g., hydroxyethylmethacrylate) can be applied onto the surfaces of the trenches 34, for example, by spin coating and then heating (e.g., to about 170° C.) to allow the terminal OH groups to end-graft to oxide sidewalls 38 and ends 40 of the trenches 34. Non-grafted material can be removed by rinsing with an appropriate solvent (e.g., toluene). See, for example, Mansky et al., Science, 1997, 275, 1458-1460, and In et al., Langmuir, 2006, 22, 7855-7860.


The structuring of the trench floors 42 to be neutral wetting (equal affinity for both blocks of the copolymer) allows both blocks of the copolymer material to wet the floor of the trench. A neutral wetting material 30 can be provided by applying a neutral wetting polymer (e.g., a neutral wetting random copolymer) onto the base substrate 28, forming the material layer 32 and then etching the trenches to expose the underlying neutral wetting material, as illustrated in FIGS. 5-5B. A neutral wetting random copolymer can also be applied after forming the trenches, for example, as a blanket coat by casting or spin-coating into the trenches and thermally processing to flow the material into the bottom of the trenches by capillary action, which results in a layer (mat) composed of the crosslinked, neutral wetting random copolymer. In another embodiment, the random copolymer material within the trenches can be photo-exposed (e.g., through a mask or reticle) to crosslink the random copolymer within the trenches to form the neutral wetting material layer. Non-crosslinked random copolymer material outside the trenches (e.g., on the spacers 36) can be subsequently removed.


For example, in the use of a poly(styrene-block-methyl methacrylate) block copolymer (PS-b-PMMA), a thin film of a photo-crosslinkable random PS:PMMA copolymer (PS-r-PMMA) which exhibits non-preferential or neutral wetting toward PS and PMMA can be cast onto the base substrate 28 (e.g., by spin coating). The polymer material can be fixed in place by grafting (on an oxide substrate) or by thermally or photolytically crosslinking (any surface) to form a mat that is neutral wetting to PS and PMMA and insoluble due to the crosslinking.


In another embodiment, a neutral wetting random copolymer of polystyrene (PS), polymethacrylate (PMMA) with hydroxyl group(s) (e.g., 2-hydroxyethyl methacrylate (P(S-r-MMA-r-HEMA)) (e.g., about 58% PS) can be can be selectively grafted to a base substrate 28 (e.g., an oxide) as a layer 30 about 5-10 nm thick by heating at about 160° C. for about 48 hours. See, for example, In et al., Langmuir, 2006, 22, 7855-7860.


A surface that is neutral wetting to PS-b-PMMA can also be prepared by spin coating a blanket layer of a photo- or thermally crosslinkable random copolymer such as a benzocyclobutene- or azidomethylstyrene-functionalized random copolymer of styrene and methyl methacrylate (e.g., poly(styrene-r-benzocyclobutene-r-methyl methacrylate (PS-r-PMMA-r-BCB)). For example, such a random copolymer can comprise about 42% PMMA, about (58−x) % PS and x % (e.g., about 2-3%) of either polybenzocyclobutene or poly(para-azidomethylstyrene)). An azidomethylstyrene-functionalized random copolymer can be UV photo-crosslinked (e.g., 1-5 MW/cm{circumflex over ( )}2 exposure for about 15 seconds to about 30 minutes) or thermally crosslinked (e.g., at about 170° C. for about 4 hours) to form a crosslinked polymer mat as a neutral wetting layer 30. A benzocyclobutene-functionalized random copolymer can be thermally crosslinked (e.g., at about 200° C. for about 4 hours or at about 250° C. for about 10 minutes).


In another embodiment in which the base substrate 28 is silicon (with native oxide), another neutral wetting surface for PS-b-PMMA can be provided by hydrogen-terminated silicon. For example, the floors 42 of trenches 34 can be etched, for example, with a hydrogen plasma, to remove the oxide material and form hydrogen-terminated silicon 30, which is neutral wetting with equal affinity for both blocks of a block copolymer material such as PS-b-PMMA. H-terminated silicon can be prepared by a conventional process, for example, by a fluoride ion etch of a silicon substrate (with native oxide present, about 12-15 Å) by exposure to an aqueous solution of hydrogen fluoride (HF) and buffered HF or ammonium fluoride (NH4F), by HF vapor treatment, or by a hydrogen plasma treatment (e.g., atomic hydrogen). An H-terminated silicon substrate can be further processed by grafting a random copolymer such as PS-r-PMMA selectively onto the substrate resulting in a neutral wetting surface, for example, by an in situ free radical polymerization of styrene and methyl methacrylate using a di-olefinic linker such as divinylbenzene which links the polymer to the surface to produce an about 10-15 nm thick film.


In other embodiments, to induce formation of parallel half-cylinders in the trenches, the trenches are structured with a floor surface that is preferential wetting by one of the polymer blocks of a block copolymer. Annealing of a cylindrical-phase block copolymer material having an inherent pitch value of about Lo will result in “n” rows or lines of half-cylinders (parallel to the sidewalls and trench floor) extending the length (lt) and spanning the width (wt) of the trenches.


Preferential wetting floors 42 can be provided by a silicon material with an overlying layer 30 of native oxide, or by forming a layer 30 of oxide (e.g., silicon oxide, SiOx), silicon nitride, silicon oxycarbide, ITO, silicon oxynitride, resist material such as methacrylate-based resists, etc., over the base substrate 28.


Referring now to FIGS. 7-7B, a film of a self-assembling block copolymer material 44 having an inherent pitch at or about Lo (or a ternary blend of block copolymer and homopolymers blended to have a pitch at or about Lo) is then deposited into the trenches 34 and onto the trench floors 42, and processed such that the block copolymer material 44 will then self-assemble. The block copolymer material 44 can be deposited by spin casting or spin-coating from a dilute solution (e.g., about 0.25-2 wt % solution) of the copolymer in an organic solvent such as dichloroethane (CH2Cl2) or toluene, for example.


Capillary forces pull excess of the block copolymer material 44 (e.g., greater than a monolayer) into the trenches 34. In a trench having a depth (Dt) at or about the Lo value of the block copolymer material 44, the block copolymer is deposited to fill the trench 34 such that the film thickness (t1) of the deposited block copolymer material 44 is generally at or about Lo and the film will self-assemble to form a single layer of elements (e.g., cylinders, lamellae, etc.) across the width (wt) of the trench, the elements having a diameter/width at or about 0.5 Lo (e.g., about 20 nm). For example, a typical thickness (t1) of a lamellar-phase PS-b-PMMA block copolymer film 44 is about +20% of the Lo value of the copolymer (e.g., about 10-100 nm) to form alternating polymer-rich lamellar blocks having a width of about 0.5 Lo (e.g., 5-50 nm) within each trench. In the use of a solvent anneal, the film can be much thicker than Lo, e.g., up to about +1000% of the Lo value. The thickness of the block copolymer material 44 can be measured, for example, by ellipsometry techniques. As shown, a thin film 44a of the block copolymer material 44 can be deposited onto the spacers 36 of the material layer 32; this film will form a monolayer of elements with no apparent structure from a top-down perspective (e.g., lamellae in a parallel orientation).


The block copolymer material is fabricated such that each of the self-assembled polymer domains has a different solubility for a given ink chemical. The ink chemical is applied as an organic solution, either neat (undissolved) or combined with a solvent that will be selectively absorbed into and cause one of the polymer domains to swell and become impregnated with the ink chemical material. In some embodiments, the ink but not the solvent will be selectively absorbed into one of the polymer domains.


In some embodiments, the block copolymer can be chemically modified to include a functional group having chemical affinity for the ink material, for example, a thiol or amine group. For example, one of the blocks can inherently contain a thiol or amine functional group, for example, polyvinylpyridine.


The film morphology, including the domain sizes and periods (Lo) of the microphase-separated domains, can be controlled by chain length of a block copolymer (molecular weight, MW) and volume fraction of the AB blocks of a diblock copolymer to produce lamellar, cylindrical, or spherical morphologies, among others.


For example, for volume fractions at ratios greater than about 80:20 of the two blocks (AB) of a diblock polymer, a block copolymer film will microphase separate and self-assemble into periodic spherical domains with spheres of polymer B surrounded by a matrix of polymer A. For ratios of the two blocks generally between about 60:40 and 80:20, the diblock copolymer assembles into periodic cylindrical domains of polymer B within a matrix of polymer A. For ratios between about 50:50 and 60:40, lamellar domains or alternating stripes of the blocks are formed. Domain size typically ranges from 5-50 nm.


An example of a lamellae-forming PS-b-PMMA diblock copolymer (Lo=32 nm) to form about 16 nm wide lamellae is composed of a weight ratio of about 50:50 (PS:PMMA) and total molecular weight (Mn) of about 51 kg/mol. An example of a cylinder-forming PS-b-PMMA copolymer material (Lo=35 nm) to form about 20 nm diameter cylindrical PMMA domains in a matrix of PS is composed of about 70% PS and 30% PMMA with a total molecular weight (Mn) of 67 kg/mol.


Although PS-b-PMMA diblock copolymers are used in the illustrative embodiments, other types of block copolymers (i.e., triblock or multiblock copolymers) can be used. Examples of diblock copolymers include poly(styrene-block-methyl methacrylate) (PS-b-PMMA), polyethyleneoxide-polyisoprene, polyethyleneoxide-polybutadiene, polyethyleleoxide-polystyrene, polyetheleneoxide-polymethylmethacrylate, polystyrene-polyvinylpyridine, polystyrene-block-polyisoprene (PS-b-PI), polystyrene-polybutadiene, polybutadiene-polyvinylpyridine, polyisoprene-polymethylmethacrylate, and polystyrene-polylactide, among others. Examples of triblock copolymers include poly(styrene-block methyl methacrylate-block-ethylene oxide).


The block copolymer material can also be formulated as a binary or ternary blend comprising a SA block copolymer and one or more homopolymers of the same type of polymers as the polymer blocks in the block copolymer, to produce blends that swell the size of the polymer domains and increase the Lo value of the polymer. The volume fraction of the homopolymers can range from 0% to about 40%. An example of a ternary diblock copolymer blend is a PS-b-PMMA/PS/PMMA blend, for example, 46K/21K PS-b-PMMA containing 40% 20K polystyrene and 20K poly(methylmethacrylate). The Lo value of the polymer can also be modified by adjusting the molecular weight of the block copolymer.


The block copolymer film 44 is then annealed to cause the polymer blocks to phase separate and self-assemble according to the preferential and neutral wetting of the trench surfaces to form a self-assembled polymer film. The resulting morphology of the annealed film 46 (e.g., perpendicular orientation of lamellae) can be examined, for example, using atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM).


In some embodiments, the deposited block copolymer film 44 can be solvent annealed. In embodiments of a solvent anneal, the block copolymer film 44 can be swollen by exposure to a vapor of a “good” solvent for both blocks, and the vapor can then be removed. Vapors of a solvent such as benzene, chloroform or a chloroform/octane mixture, for example, can be exposed to the block copolymer film 44 to slowly swell both blocks (PS, PMMA) of the film 44. The solvent and solvent vapors are then allowed to slowly evaporate to dry the block copolymer film 44, resulting in self-assembled polymer domains.


The block copolymer film 44 can also be thermally annealed at the annealing temperature (e.g., about 150° C.-250° C.) in an atmosphere that is saturated or nearly saturated (but not supersaturated) with a solvent in which both blocks are soluble. The solvent-saturated vapor maintains a neutral air interface in conjunction with the surface interface with a neutral wetting floor 42. The existence of both neutral wetting air and surface interfaces induces the formation of perpendicular features throughout the block copolymer film 44.


Referring to FIGS. 8-8A, upon annealing a lamellar-phase block copolymer film 44 (e.g., PS-b-PMMA of about L0) within a trench 34 with preferential wetting sidewalls 38 and a neutral wetting trench floor 42 (exhibits neutral or non-preferential wetting toward both blocks, e.g., a random graft copolymer), the polymer material will self-assemble into a film 46 composed of alternating polymer-rich blocks 48, 50 (e.g., PS and PMMA). The lamellar blocks 48, 50 are oriented perpendicular to the trench floor 42 and parallel to the sidewalls 38, extending the length of the trench 34 and spanning the width (wt) at an average pitch value at or about Lo. The constraints provided by the width (wt) of the trenches 34 and the character of the copolymer composition combined with preferential or neutral wetting surfaces within the trenches result, upon annealing, in a single layer of n lamellae 48, 50 across the width (wt) of the trench. The number “n” or pitches of lamellar blocks within a trench is according to the width (wt) of the trench and the molecular weight (MW) of the block copolymer. For example, depositing and annealing an about 50:50 PS:PMMA block copolymer film (e.g., Mn=51 kg/mol; Lo=32 nm) in an about 160 nm wide trench will subdivide the trench into about 5 lamellar pitches. The stamping surface of a stamp 26 is thus defined by a lamellar array of polymer domains that define a linear pattern of lamellar blocks, each about 14-18 nm wide and several microns in length (e.g., about 10-4000 μm), and a center-to-center pitch of about 32 nm. A smaller pitch can be dialed in by using lower molecular weight diblock copolymers.


In embodiments in which a film of a cylindrical-phase block copolymer is deposited into trenches with preferential wetting sidewalls and a neutral wetting trench floor, upon annealing, the cylinder-phase copolymer film will self-assemble into a film composed of perpendicular-oriented cylinders of one of the polymer blocks (e.g., PMMA) within a polymer matrix of the other polymer block (e.g., PS) registered to the sidewalls of the trench.



FIG. 9 illustrates an embodiment of a stamp 26′ composed of an annealed cylinder-phase copolymer film 46′ in the formation of an array of hexagonal close-packed array of perpendicular-oriented cylinders 52′ within a polymer matrix 54′. The sidewalls 38′ and angled ends 40′ of the trenches 34′ are used as constraints to induce orientation and registration of cylindrical copolymer domains to achieve the hexagonal cylindrical array registered to the trench sidewalls. The width (wt) of the trenches 34′ is at or about Lo*cos(π/6) or Lo*0.866, which defines the number of rows of cylinders, and the trench length (lt) is at or about mLo, which defines the number of cylinders per row. The ends 40′ of the trenches are angled to the sidewalls 38′, for example, at an about 60° angle, and in some embodiments can be slightly rounded. A cylindrical-phase diblock copolymer material having an inherent pitch at or about Lo (or blend with homopolymers) and a thickness (t) of about Lo will self-assemble upon annealing to form a hexagonal array of cylindrical domains 52′ of the minor (preferred) polymer block (i.e., like domains such as PMMA) that are oriented perpendicular to the neutral wetting floor 42′ of the trench 34′ within a matrix 54′ of the major polymer block (e.g., PS). The minor (preferred) polymer block (e.g., PMMA) will segregate to the preferential wetting sidewalls 38′ and ends 40′ to form a wetting layer 52a′. The hexagonal array contains n single rows of cylinders according to the width (wt) of the trench with the cylinders 52′ in each row being offset from the cylinders in the adjacent rows. Each row contains a number of cylinders, generally m cylinders, which number can vary according to the length (lt) of the trench and the shape of the trench end (e.g., rounded, angled, etc.) with some rows having greater or less than m cylinders. The cylinders 52′ are generally spaced apart at a pitch distance (p1) at or about Lo between each cylinder in the same row and an adjacent row (center-to-center distance), and at a pitch distance (p2) at or about Lo*cos(π/6) or 0.866 Lo being the distance between two parallel lines where one line bisects the cylinders in a given row and the other line bisects the cylinders in an adjacent row. The stamping surface 64′ of the stamp 26′ is thus defined by an array of polymer domains that define a hexagonal or honeycomb pattern of perpendicular-oriented cylinders 52′, each about 20-22 nm in diameter with a center-to-center pitch of about 42 nm.


In another embodiment using a cylindrical-phase copolymer material, the trench dimensions can be modified to use the trench sidewalls and ends as constraints to induce orientation and registration of cylindrical copolymer domains in a single row parallel to the trench sidewalls. The trenches are structured to have a width (wt) that is at or about 1.0-1.75*the Lo value of the block copolymer material, a neutral wetting floor, and sidewalls and ends that are preferential wetting by the minority (preferred) block (e.g., the PMMA block) of the diblock copolymer (e.g., PS-b-PMMA). A cylindrical-phase diblock copolymer (or blend with homopolymers) having an inherent pitch at or about Lo can be deposited into the trenches to a thickness (tl) of about the Lo value of the copolymer material (as in FIGS. 7 and 7A). As illustrated in FIGS. 10 and 10A, the annealed block copolymer film self-assembles to form film 46″. The constraints provided by the width (wt) of trench 34″ and the character of the block copolymer composition combined with a neutral wetting trench floor 42″ and preferential wetting sidewalls 38″ results in a one-dimensional (1D) array or single row of perpendicular-oriented cylindrical domains 52″ of the minority (preferred) polymer block (e.g., PMMA) within a matrix 54″ of the major polymer block (e.g., PS), with the preferred block segregating to the sidewalls 38″ of the trench 34″ to form a wetting layer 52a″. In some embodiments, the cylinders have a diameter at or about 0.5 Lo (e.g., about 20 nm), the number n of cylinders in the row is according to the length of the trench, and the center-to-center distance (pitch distance) (p) between each like domain (cylinder) is at or about Lo (e.g., about 40 nm). The resulting stamping surface 64″ of the stamp 26″ is defined by an array of polymer domains that define a single row of perpendicular-oriented cylinders 52″, each about 20-22 nm in diameter with a center-to-center pitch of about 42 nm.


Referring now to FIGS. 11 and 11A, in yet another embodiment using a cylindrical-phase copolymer material, the trenches 34′″ can be structured with preferential wetting surfaces 38, 40, 42 to induce formation of half-cylinder copolymer domains 56′″ in a polymer matrix 54′″ that are in a parallel orientation to the trench floors 42′″ and registered to the sidewalls 38′″. A preferentially wetting floor 42′″ can be provided, for example, by a layer 58′″ of oxide, silicon nitride, silicon oxycarbide, among others. The stamping surface 64′″ of the stamp 26″″ is defined by an array of polymer domains that define lines of half-cylinders, each about 20-22 nm wide and several microns in length (e.g., about 10-4000 μm), and a center-to-center pitch of about 42 nm.


In another embodiment of the invention, graphoepitaxy (topographic features, e.g., sidewalls, ends, etc.) is used to influence the formation of arrays in one dimension, and the trench floors provide a wetting pattern that can be used to chemically control formation of the arrays in a second dimension. For example, as illustrated in FIGS. 12 and 12A, a neutral wetting material 30″″ (e.g., random copolymer) can be formed on the base substrate 28″″ and crosslinked in select regions 60″″, such as by photo-exposure through a reticle or a patterned mask (e.g., photoresist). As shown, the non-crosslinked regions of the neutral wetting material 30″″ have been removed (e.g., by wet processing using a solvent) to expose the sections 62″″ of the underlying base substrate 28″″, resulting in a pattern of discrete regions 60″″ of the crosslinked neutral-wetting material 30″″ (random copolymer) and sections 62″″ of the exposed preferential-wetting base substrate 28″″.


As depicted in FIGS. 13-13B, the material layer 32″″ can then be formed and trenches 34″″ etched to expose the sections 60″″ of the neutral wetting material 30″″ and sections 62″″ of the exposed base substrate 10″″ on the trench floors 42″″ as a series of stripes oriented perpendicular to the trench sidewalls 38″″. The trench floors 42″″ are thus defined by alternating preferential wetting sections 62″″ (base substrate 28″″) and neutral wetting sections 60″″ (a mat of the crosslinked random copolymer 30″″). In some embodiments, each of the sections can have a width (wr1) at or about Lo, and in other embodiments, the neutral wetting sections 60″″ can have a width (wr2) at or about nLo and the preferential wetting sections 62″″ have a width at or about Lo. The trench sidewalls 38″″ and ends 40″″ (e.g., of oxide) are preferential wetting to the minority (preferred) block of the block copolymer.


A cylindrical-phase block copolymer film (e.g., pitch Lo) can then be cast or spin-coated into the trenches 34″″ to a film thickness (t) of about Lo and annealed. As illustrated in FIGS. 14-14B, the differing wetting patterns on the trench floor 42″″ imposes ordering on the cylindrical-phase block copolymer film as it is annealed, resulting in a 1D array of alternating perpendicular-oriented cylinders 52″″ and parallel-oriented half-cylinders 56″″ for the length (nLo) of each trench.


After the copolymer film is annealed and ordered, the film can then be treated to crosslink the polymer segments (e.g., the PS segments) to fix and enhance the strength of the self-assembled polymer blocks. The polymers can be structured to inherently crosslink (e.g., upon exposure to ultraviolet (UV) radiation, including deep ultraviolet (DUV) radiation), or one or both of the polymer blocks of the copolymer material can be formulated to contain a crosslinking agent.


Optionally, the unstructured thin film 44a of the block copolymer material outside the trenches (e.g., lamellae in a parallel orientation on spacer 36 in FIG. 7A) can then be removed, as illustrated in FIGS. 8 and 8A. In embodiments in which the ink chemical would be absorbed by the film 44a, the film would be removed.


For example, the trench regions can be selectively exposed through a reticle (not shown) to crosslink only the annealed and self-assembled film 46 within the trenches 34, and a wash can then be applied with an appropriate solvent (e.g., toluene) to remove the non-crosslinked portions of the block copolymer material 44a on the spacers 36, leaving the registered self-assembled film within the trench and exposing the surface of material layer 32 on the spacers 36 above/outside the trenches. In another embodiment, the annealed film 46 can be crosslinked globally, a photoresist material can be applied to pattern and expose the areas of the film 44a over the spacers 36 outside the trench regions, and the exposed portions of the copolymer film can be removed, for example, by an oxygen (O2) plasma treatment.


The resulting stamp is structured with a stamping surface 64 composed of an ordered array of polymer domains (e.g., 48, 50) in the desired pattern for stamping onto a receptor substrate. The stamp can then be inked and brought into contact with the receptor substrate to produce the pattern on the substrate.


The ink chemical material is selected such that it will be absorbed selectively into a polymer domain of the self-assembled polymer film by Van der Waals forces or other non-covalent force or bond (e.g., hydrogen bond, etc.) and will form a self-assembled monolayer (SAM) on the receptor substrate. The ink chemical can include one or more functional groups that chemically react with the receptor substrate. The chemical affinity between the ink material and the receptor substrate is greater than the chemical affinity between the ink material and the polymer domain in which it is absorbed.


In embodiments of the invention, the ink chemical can have amino, thiol, alcohol or alkyne functional groups. Examples of ink chemicals include thiols such as 2-aminoethanethiol, aminothiophenol, cysteine, homocysteine, leucinethiol, 2-butylaminoethanethiol, 2-cylcohexylaminoethanethiol, etc.; mercaptoalcohols such as mercaptoethanols (e.g., 2-mercaptoethanol (HS—CH2CH2OH)), mercaptopropanols (e.g., 2-mercaptopropanol) and mercaptobutanols (e.g., 4-mercapto-1-butanol, 2-mercaptobutanol); and acetylenics with hydrocarbon tails or other functional groups such as alcohols, thiols, amines, halides, etc., (e.g., carboxylates such as propiolic acid, 4-butynoic acid, 5-pentynoic acid), and the like.


The ink chemical material is in the form of an organic solution such that it will diffuse into and be selectively absorbed by one of the polymer domains causing the polymer domain to swell. The ink chemical material can be in the form of a neat (undiluted) solution or combined with an organic solvent that will promote diffusion of the material selectively into the selected polymer domain. Examples of solvents that can be utilized include methanol, ethanol, isopropanol, ethylene glycol, propylene glycol and acetic acid. Typically, the concentration of the ink chemical material in solution is about 1-10 k mM.


In another embodiment, the ink chemical material can be provided in a vaporous form, which can provide a higher level of control with respect to the amount of ink material that is absorbed into the stamp. The stamp would be exposed to a vapor of the ink chemical for a sufficient time period for absorption of an adequate quantity of the ink chemical by the polymer domain.



FIGS. 15-18 illustrate an embodiment of a stamping process utilizing a stamp 26 according to the invention, as depicted in FIGS. 8 and 8A.


Referring to FIG. 15, a stamping process can be conducted by applying (arrows ↓) a solution of the ink chemical material (either neat or in a solvent) 66 onto the stamping surface 64 or, in other embodiments, by exposing the stamping surface 64 to a vapor of the ink chemical. The contact of the ink chemical solution with the stamping surface 64 of the stamp is for a time effective to enable the ink material to diffuse into and be selectively absorbed by the targeted polymer domain.


Upon contact of the stamp with the ink chemical, the polymer domain 50 with affinity for the ink chemical solution (e.g., PS domain) is swelled by absorption of the ink chemical solution, as illustrated in FIG. 16. The other polymer domain 48 with substantially no affinity for the ink chemical (e.g., PMMA domain) remains unchanged. This results in the stamping surface 64 of the stamp 26 having a relatively corrugated surface that defines the lines of the swollen polymer domains 50.


As illustrated in FIG. 17, a receptor substrate 68 is then brought into contact (arrows J) with the swollen and ink-containing polymer domains 50 situated on the stamping surface 64 of the stamp 26 to effect transfer of the ink material 66 onto the receptor substrate 68, resulting in a pattern 70 on the receptor substrate, as shown in FIGS. 18 and 18A. The ink chemical material 66 is transferred from the stamp 26 by chemical bonding of one or more functional groups of the ink material with a functional group(s) on the surface of the receptor substrate 68.


Examples of the receptor substrate 68 include silicon oxide, silicon wafers, silicon-on-insulator (“SOI”) substrates, silicon-on-sapphire (“SOS”) substrates, and other semiconductor substrates such as silicon-germanium, germanium, gallium arsenide and indium phosphide, chalcogenide-class of materials, magnetic materials (e.g., Ni, Fe, Co, Cu, Ir, Mn, Pt, Tu, etc.), and other substrates used in disk drives or optical storage devices. Optionally, the receptor substrate 68 can be modified to incorporate functional groups that enhance chemical bonding and transfer of the ink material from the stamp/template (e.g., stamp 26), as indicated in Table 1 (below). Substrates modified with a glycidoxy functionality will be reactive to inks having amine or thiol functional groups. Substrates modified with an isocyanate functionality will be reactive to inks having alcohol or amino functional groups. Substrates modified with chlorosilyl groups will be reactive to inks with amino, alcohol or thiol functional groups. Alkylazido-modified substrates will be reactive to inks with alkyne functional groups. For example, a silicon oxide substrate can be modified with azide groups to facilitate binding of an acetylenic carboxylate ink.


Table 1 (below) provides examples of ink chemical materials that can be used for selective absorption by one of the polymer block domains (i.e., PMMA) of a stamp according to the invention, and embodiments of receptor substrate modifications that can be used in combination with the ink chemical material to effect transfer of the ink onto the receptor substrate to form SAMs in a stamped pattern.













Ink Material
Receptor Substrate modification







Thiols, such as:
Glycidoxy-modified substrates such as SiO2 grafted with a


2-aminoethanethiol
glycidoxypropyl(trialkoxy) silane (e.g., glycidoxypropyl


aminothiophenol
trimethoxysilane)


cysteine
Isocyanato-modified substrates such as SiO2 grafted with a


homocysteine
isocyanatopropyl(trialkoxy) silane (e.g., isocyanatopropyl


leucinethiol
triethoxysilane, isocyanatopropyl trimethoxysilane, etc.)


2-butylaminoethanethiol
Chlorosilyl-modified substrates such as chlorine-terminated


2-cylcohexylaminoethanethiol
silicon (Si—Cl) (e.g., from H-terminated silicon exposed to Cl2



gas)


Mercaptoalcohols, such as:
Isocyanato-modified substrates such as SiO2 grafted with a


mercaptoethanols
isocyanatopropyl(trialkoxy) silane (e.g., isocyanatopropyl


mercaptopropanols
triethoxysilane, isocyanatopropyl trimethoxysilane, etc.)


mercaptobutanols
Chlorosilyl-modified substrates such as chlorine-terminated



silicon (Si—Cl)


Acetylenics with hydrocarbon
Alkylazido-modified substrates such as SiO2 grafted with 6-


tails or other functional groups
azidosulfonylhexyl (triethoxy) silane, or with an 11-


such as alcohols, thiols, amines,
azidoundecyl group (e.g., formed from 11-


halides, etc., such as:
bromoundecyl(triethyoxy) silane reacted with sodium azide).


propiolic acid (or acetylene



monocarboxylic acid)



butynoic acid



pentynoic acid









An alkylazido-modified receptor substrate 68 can be prepared, for example, as a silicon dioxide (SiO2) substrate grafted with 6-azidosulfonylhexyl (triethoxy)silane or with an 11-azidoundecyl group monolayers that can be formed by grafting 11-bromoundecyl (triethyoxy)silane to a SiO2 substrate then derivatizing with sodium azide, as described, for example, by Rozkiewicz et al., Angew. Chem. Int. Ed. Eng., 2006, 45, 5292-5296. A chlorosilyl-modified receptor substrate 68 can be prepared, for example, as chlorine-terminated silicon (Si—Cl) by chlorination of hydrogen-terminated silicon surfaces by exposure to chlorine gas (Cl2) (e.g., at 80° C. or exposure to a tungsten lamp), as described, for example, by Zhu et al., Langmuir, 2006, 16, 6766-6772.


The temperature during the stamping process generally ranges from about room temperature (20° C.) to near the boiling point of the ink chemical solution. Contact of the stamp 26 with the receptor substrate 68 is for a time effective to enable chemical bonds to form between functional groups on the receptor substrate and the ink chemical material 66, generally about 1 minute to about 4 hours, and typically about 1-15 minutes.


The receptor substrate and the ink material may react to form a urea or urethane linkage through a mercapto alcohol, a disulfide linkage through a thiol (R—SH) functional group, a bond involving acid/base groups, or an amine linkage through an amine/epoxide reaction of a triazole image through reaction between an azide and alkyne. Diffusion (or other transfer mechanism) of the ink material from the polymer domains of the stamp onto the receptor substrate (where the ink reacts) can create a concentration gradient, which then draws additional ink onto the surface of the receptor substrate from the inked polymer domains.


Upon completion of the ink transfer to the receptor substrate, the stamp is then removed leaving the ink chemical material 66 as a pattern 70 on portions of the receptor substrate 68 corresponding to the inked polymer domains 50 on the stamping surface 64 of the stamp 26 and exposed portions 72 of the substrate, as shown in FIGS. 18 and 18A. In some embodiments, the ink chemical material is processed to form a self-assembled monolayer (SAM) on the surface of the receptor substrate 68. The stamp 26 may then be re-inked, if needed, for further stamping of the same or another receptor substrate.


The ink pattern 70 on the receptor substrate 68 has identical or substantially identical resolution to the pattern of the inked polymer domains on the stamping surface 64 of the stamp 26. The patterned stamp 26 can be used to produce features (pattern 70) on the receptor substrate that are sub-lithographic, for example, a thickness of about 1-10 angstroms, and lateral width (wp) that corresponds to the dimension (width (wpd)) of the pattern of the “inked” polymer domains on the stamping surface 64 of the stamp 26 (FIG. 17).


In the embodiment illustrated in FIGS. 18 and 18A, the ink (e.g., SAM) pattern 70 formed using the stamp 26 having a stamping surface 64 composed of a lamellar array of polymer domains defines a linear pattern of fine, parallel lines of nanometer-scale to sublithographic dimensions about 5-50 nm wide and several microns in length (e.g., about 10-4000 μm), and a center-to-center pitch of about 10-100 nm. Stamp 26′″ (FIGS. 11 and 11A), for example, also provides a stamping surface having parallel lines of polymer domains. In other embodiments, the stamp can have a stamping surface composed of a cylindrical array of polymer domains as described, for example, with respect to stamps 26′ and 26″ (FIGS. 9-10A).


After applying the ink pattern on the receptor substrate, further processing may be conducted as desired.


For example, the inked pattern 70 of the stamped regions or elements 66 shown in FIG. 18A, can be used to guide the formation of etch masks to pattern portions of the underlying receptor substrate 68.


In one embodiment, the inked pattern 70 of elements 66 can be formed as a chemically differentiated surface in a pattern of hydrophobic and hydrophilic materials (or neutral and preferential-wetting materials), which can be used as a template to guide and chemically control the self-assembly of a block copolymer to match the template pattern of elements on the receptor substrate. For example, as depicted in FIGS. 18 and 18A, using a template such as stamp 26 (FIG. 16), an ink material that will form a SAM composed of a hydrophobic material such as octadecylthiol (ODT) can be transferred as a pattern 70 of elements 66 (e.g., parallel lines) onto a receptor substrate 68 that has an epoxide surface. Unstamped regions 72 of the substrate adjacent to the line elements 66 can be made hydrophilic by reacting the exposed substrate with a material such as 11-hydroxyundecylthiol. The pattern of hydrophobic material line elements 66 and the hydrophilic substrate regions 72 on the substrate can then be used as a template for guided self-assembly of a block copolymer material.


Referring to FIG. 19, a block copolymer material having domains that are selectively wetting to the template (seed layer) formed by the hydrophobic line elements 66 and the hydrophilic substrate regions 72, can be deposited as a film 74 onto the substrate. The copolymer film 74 can then be annealed to form a self-assembled polymer film 76 with lamellae 78, 80 registered to the hydrophobic and hydrophilic regions 66, 72 of the template below, as illustrated in FIG. 20. Then, as shown in FIG. 21, one of the polymer domains (e.g., lamellae 80) of the self-assembled film 76 can be selectively removed and the resulting film 82 can be used as a mask to etch (arrows ↓↓) the underlying substrate 68, for example, by a non-selective RIE etching process, to delineate a series of openings 84 (shown in phantom). Further processing can then be performed as desired, such as filling the openings 84 with a material 86 as shown in FIG. 22, for example, with a dielectric material to separate active areas, or with a conductive material such as a metal or other conductive material to form nanowire channel arrays for transistor channels, semiconductor capacitors, and other structures that can extend to an active area or element in the substrate or an underlayer. Further processing can then be performed as desired. The self-assembly of block copolymers to an underlying chemical pattern is rapid relative to other methods of “top-down” or graphoepitaxy ordering and registration.


In other embodiments, the inked pattern of elements 66 can be used as a template for selective deposition of a hydrophobic or hydrophilic material onto either the inked elements 66 or the unstamped areas 72 of the substrate.


For example, referring to FIG. 23, the inked pattern of elements 66′ can be used as an “anti-seed” guide or template for the global application and selective deposition of a material 74′ that is chemically different from the stamped regions (elements) 66′ onto adjacent exposed regions 72′ of the substrate 68′. For example, elements 66′ composed of a hydrophobic ink material (e.g., octadecyl thiol) can be stamped onto the substrate 68′, and a hydrophilic material 74′ (e.g., an oxide) can be selectively applied to the non-stamped substrate areas 72′, for example, by a vapor deposition, resulting in the structure shown in FIG. 23. The resulting film 82′ can be used as a mask to etch (arrows ↓↓) the underlying substrate 68′ to form openings 84′, as depicted in FIG. 24.


In another embodiment, as shown in FIG. 25, elements 66″ can be used as a seed material for the selective deposition of additional material 74″ to increase the thickness and/or hardness of the elements 66″ and produce a hard mask for etching the substrate 68″. For example, elements 66″ can be formed from acetylenic hydrocarbons or esters of acetylenic carboxylates with hydrocarbon conjugates (e.g., hexylpropynoate ester), with subsequent selective deposition of an inorganic material 74″ such as silicon oxide to increase the thickness and/or hardness of the elements 66″. In another example, a material 74″ such as silicon nitride can be selectively deposited onto the elements 66″ by ALD methods to form a hardmask 82″ composed, for example, of a series of lines according to the pattern of the elements 66″. In other embodiments, elements 66″ can be formed as a seed layer from an ink material having a functional group on its tail end (e.g., ink chemical with a bromine functional group) that will selectively initiate polymer growth, and an atom transfer radical polymerization (ATRP) can then be conducted to add additional polymer material 74″ to increase the thickness and/or hardness of the elements 66″ and produce a hard mask for etching openings 84″. The hardmask 82″ can be then used, for example, to mask the etch of the underlying substrate 68″ (e.g., film stack, etc.) to form openings 84″, as shown in FIG. 26.


Another embodiment of the invention illustrated in FIGS. 27-32, utilizes chemical patterning of a substrate to direct self-assembly of a block copolymer. In some embodiments, the process utilizes a stamp/template 88 that is formed with transparent sections 90, non-transparent sections 92, and a stamping surface 94. The transparent sections 90 are composed of a material that is substantially transparent to UV or DUV radiation in order to allow light to pass therethrough, for example, glass (e.g., quartz (SiO2)), calcium fluoride (CaF2), diamond, or a transparent plastic or polymeric material, and the non-transparent (opaque) sections 92 can be composed, for example, of a elastomeric polymer material such as poly(dimethylsiloxane) (PDMS).


As shown in FIG. 27, the stamping surface 94 can be coated with a thin film 96 of a polymerizable neutral wetting material that exhibits non-preferential or neutral wetting toward the blocks of a block copolymer, such as a random block copolymer (e.g., PS-r-PMMA). The template 88 can then be pressed (arrow ↓) onto a receptor substrate 68 (e.g., a preferential wetting material such as silicon (with native oxide), oxide, etc.) as shown in FIG. 28 to transfer the polymer material 96 onto the substrate 68. Then, as illustrated in FIG. 29, a radiation source (e.g., UV or DUV radiation) can then be transmitted (arrows ↓↓) through the transparent sections 90 of the stamp/template 88 to photolytically crosslink discrete sections 98 of the polymer material 96 on the substrate 68. The template 88 can then be removed from contact with the receptor substrate 68, leaving the crosslinked polymer sections 98 and non-crosslinked polymer material 100, as depicted in FIG. 30.


Further processing can then be conducted as desired. For example, as shown in FIG. 31, the non-crosslinked polymer material 100 can be removed, for example, by wet processing by a chemical dissolution process using a solvent to expose sections 102 of the receptor substrate 68, resulting in discrete neutral wetting sections 98 composed of the crosslinked polymer material (e.g., crosslinked random copolymer) and preferential wetting sections 102 composed of the exposed receptor substrate (e.g., oxide). A block copolymer material can then be cast or spin-coated onto the chemically differentiated surface and annealed to form a self-assembled block copolymer layer 104. As illustrated in FIG. 32, the annealed block copolymer film 104 will register to the differing wetting patterns (98, 102) on the receptor substrate 68, for example, to form lamellae 106, 108 as shown. The resulting film 104 can be further processed, for example, to selectively remove one of the polymer blocks to produce a hard mask for use in a dry etch to transfer the pattern into the underlying substrate material.


Patterning a substrate using conventional lithographic techniques has been hampered by difficulties such as high costs and/or incompatibility with high throughput production methods. With embodiments of the present invention, a stamp can be prepared using conventional lithography (to form the trenches) but, because the stamp can be used repeatedly to pattern multiple substrates, the production cost per stamped substrate is reduced. In addition, the use of the stamped pattern (e.g., SAM ink pattern 70) for chemically controlling the formation of a self-assembled block copolymer film, can subsequently provide an etch mask on a nanoscale level that can be prepared more inexpensively than by electron beam lithography or EUV photolithography. The feature sizes produced and accessible by this invention cannot be prepared by conventional photolithography.


In another embodiment of the invention illustrated in FIGS. 33-60A, the ordering of a self-assembling block copolymer material (e.g., film) is induced and directed by overlaying a topographically flat stamp that is chemically patterned on its surface. The chemically patterned stamp overlaid on a BCP film cast onto a substrate that has been globally modified to be equally wetting to both blocks of the BCP will direct self-assembly of the BCP film to match the pattern on the stamp. The present embodiment of the invention achieves a pattern transfer to a block copolymer (BCP) without leaving a physically formed impression in the substrate and without a transfer of material to the substrate or the BCP material.



FIG. 33 illustrates a substrate (generally 110) to be patterned. The substrate 110 can be composed of a base material 112, which can be, for example, silicon, silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbide, among other material. As shown, a non-preferential or neutral wetting material 114 (equal affinity for blocks of the copolymer) is formed over the base material.


The neutral wetting material 114 can be formed, for example, by blanket coating a random copolymer material onto the base material 112 by casting or spin-coating, and fixing the polymer material in place by grafting (on an oxide substrate) or by thermally or photolytically crosslinking (any surface). For example, a material that is neutral wetting to a PS-b-PMMA block copolymer can be formed from a thin film of a photo-crosslinkable random PS:PMMA copolymer, for example, PS-r-PMMA (60% PS) grafted to an oxide substrate.


As previously described, a neutral wetting layer can also be formed on a base material 112 such as an oxide by grafting and heating a random copolymer of polystyrene (PS) and polymethacrylate (PMMA) with a few % (e.g., less than or equal to about 5%) hydroxyl group(s) (e.g., 2-hydroxyethyl methacrylate (P(S-r-MMA-r-HEMA)) on the base material. In another embodiment, a surface that is neutral wetting to PS-b-PMMA can also be prepared by spin coating and crosslinking a benzocyclobutene- or azidomethylstyrene-functionalized random copolymer of styrene and methyl methacrylate (e.g., poly(styrene-r-benzocyclobutene-r-methyl methacrylate (PS-r-PMMA-r-BCB)) on the base material.


In yet another embodiment, a base material 112 of silicon (with native oxide) can be treated by a fluoride ion etch (e.g., with aqueous HF, buffered HF or NH4F, HF vapor treatment, etc.) or a hydrogen plasma etch as previously described, to form hydrogen-terminated silicon, which is neutral wetting to a block copolymer material such as PS-b-PMMA. An H-terminated silicon material 114 can be further processed by grafting of a random copolymer such as PS-r-PMMA onto the material 114 (e.g., in situ free radical polymerization of styrene and methyl methacrylate with a di-olefinic linker).


Referring now to FIG. 34, a lamellar- or cylindrical-phase block copolymer material 116 is then cast as a film onto the neutral wetting material 114 on the substrate 110. The block copolymer material 116 has an inherent pitch at or about Lo (or a ternary blend of block copolymer and homopolymers blended to have a pitch at or about Lo). The block copolymer material 116 can be deposited by spin casting or spin-coating from a dilute solution (e.g., about 0.25-2 wt % solution) of the copolymer in an organic solvent such as dichloroethane (CH2Cl2) or toluene, for example. The thickness (t) of the block copolymer material 116 is at or about Lo.


The block copolymer material 116 is then induced to self-assemble by contact with a stamp, which, according to the invention, is topographically flat and chemically patterned on its surface.



FIGS. 35-39B illustrate an embodiment of a process for forming a master template for forming a stamp for use in inducing self-assembly of a block copolymer material on a substrate. The master template (generally 118), which is topographically flat, is prepared by forming a pattern of chemically differentiated areas on the surface of a base substrate 120. The base substrate 120 can be composed, for example, of silicon dioxide or gold.


Referring to FIG. 35, in one embodiment, a hydrophilic material 122 on the base substrate 120 can be micropatterned to form the chemical master template 118. The hydrophilic material 122 can be, for example, silicon (with native oxide), oxide (e.g., silicon oxide, SiOx), indium tin oxide (ITO), silicon nitride, silicon oxycarbide, silicon oxynitride. In another embodiment, the hydrophilic material 122 can be composed of a metal, for example, gold, silver, copper, palladium or platinum, on the base substrate 120 and an overlying SAM of an alkane thiol such as hydroxyundecylthiol (HUT), or other hydrophilic alkane thiol. The hydrophilic material 122 can be formed on the base substrate 120 as a monolayer (SAM) of about 0.5-5 nm thick.


As shown in FIG. 36, a layer of resist material 124 can be formed on the hydrophilic material 122, and then developed in a desired pattern and removed (FIGS. 37-37B) to expose portions of the hydrophilic material 122. The resist material 124 can be patterned using a lithographic tool having an exposure system capable of patterning at the scale of at or about Lo (10-100 nm). The material for the resist 124 is selected based on the required sensitivity and compatibility with the exposure system that is used. Such exposure systems include, for example, extreme ultraviolet (EUV) lithography, electron beam (e-beam) lithography, immersion lithography, and proximity X-rays as known and used in the art. The pattern formed in the resist material 124 can be composed, for example, of a series of linear openings (stripes) 126, as shown in FIGS. 37-37B.


Referring now to FIGS. 38-38B, a hydrophobic material 128 can then be deposited onto the exposed sections of the hydrophilic material 122 using the resist 124 as a mask. The hydrophobic material 128 can be, for example, an alkyl trialkoxysilane such as methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane and n-propyltriethoxysilane; an alkylthiolate such as dodecanethiol or octadecanethiol (ODT); among others. The hydrophobic material 128 can be deposited as a monolayer (e.g., self-assembled monolayer (SAM)) of about 0.5-5 nm thick.


As illustrated in FIGS. 39-39B, the resist 124 can then be stripped to expose the previously masked portions of the hydrophilic material 122. The resulting master template 118 now bears a chemically patterned surface 130 composed of lines of the hydrophobic material 128 (e.g., alkyl trialkoxysilane) adjacent to lines of the hydrophilic material 122 (e.g., oxide). For example, a master template 118 can be prepared with a surface patterned with hydrophobic SAM 128 of octadecanethiol (ODT) adjacent to a hydrophilic SAM 122 of 11-hydroxyundecane-1-thiol (HUT), as described by van Poll et al., Angew. Chem. Int. Ed.: 46, 6634-6637 (2007).


The hydrophilic 122 and hydrophobic 128 material elements on the surface of the master template 118 are dimensioned with a width (w1) that matches or substantially matches the inherent self-assembled structure (e.g., Lo value) of the block copolymer material (BCP) 116 that is deposited on the substrate 110 (FIG. 34) in those sections of the block copolymer material 116 where self-assembly into perpendicular-oriented structures (e.g., lamellae, cylinders) is desired. In areas of the block copolymer material 116 where a lack of formation of perpendicular-oriented elements is desired, a hydrophobic region 128a (FIG. 39) (or hydrophilic region) can be formed with dimensions (i.e., width (w2)) that are greater than the Lo value of the BCP material 116.


Referring to FIG. 40, in another embodiment of forming a chemical master template 118′, a hydrophobic material 128′ (e.g., an alkyl trialkoxysilane) can be blanket deposited onto a base substrate 120′ such as silicon or silicon oxide, for example. The hydrophobic material 128′ can then be patterned and removed using a resist 124′ as a mask as shown in FIGS. 41-41B, to expose portions of the base substrate 120′. Then, as depicted in FIGS. 42-42B, the exposed base substrate 120′ can then be selectively oxidized to form a hydrophilic monolayer (SAM) 122′, or in other embodiments, a hydrophilic material (e.g., oxide, SiN, alkane thiol, etc.) can be deposited onto the exposed base substrate 120′. Then, as illustrated in FIGS. 43-43B, the resist 124′ can be stripped, with the surface 130′ of the master template 118′ now bearing a pattern of lines of the hydrophobic material 128a′ adjacent to lines of the hydrophilic material 122′.


Using the master template 118 (e.g., FIG. 39) as a guide, a stamp (generally 132) is then formed with hydrophilic and hydrophobic elements in a mirror image of the pattern of elements on the master template surface. The chemically differentiated surface of the stamp 132 can then be used to direct self-assembly of the block copolymer material 116 on the substrate 110 (FIG. 33).


Referring to FIGS. 44-44B, in some embodiments, a soft, flexible or rubbery material 134 such as a polydimethylsiloxane (PDMS) elastomer or other elastomeric, crosslinkable polymer material (e.g., silicones, polyurethanes, etc.) is deposited onto the chemically patterned surface 130 of the master template 118 to form a stamp 132. The unmodified surface of a PDMS material is hydrophobic. To modify the surface of the stamp, the polymer material can be prepared as a mixture of the elastomeric polymer with different functional small molecules, e.g., a hydrophilic molecule 136a and a hydrophobic molecule 136b. As illustrated in FIGS. 45-45B, preferential wetting by molecules 136a, 136b over the polymer material 134 against the master template 118 (arrow ↓) directs the migration and preferential accumulation (self-assembly) of the small molecules 136a, 136b at the surface 138 of the polymer stamp 132 in response to the hydrophilic 122 and hydrophobic 128 regions or elements on the functionalized surface 130 of the master template 118. During curing, a crosslinking agent of the polymer material 134 reacts with the small molecules 136a, 136b and with functional groups of the polymer to “freeze” the pattern of small hydrophilic and hydrophobic molecules 136a, 136b into the polymer (e.g., PDMS elastomer) stamp 132 against the hydrophilic 122 and hydrophobic 128 surfaces, respectfully, of the master template 118. The resulting stamp 132 has a flat surface 138 that bears a pattern of sub-micrometer features of different chemical functionalities (hydrophilic 136a and hydrophobic 136b) that replicates the pattern of hydrophilic (122) and hydrophobic (128) elements on the master template 118.


For example, a PDMS elastomer material, such as SYLGARD® 184 (Dow Corning), can prepared as a mixture of PDMS and small functional hydrophobic and hydrophilic molecules (e.g., vinyl-terminated molecules with different head groups), as described by van Poll et al., Angew. Chem. Int. Ed.: 46, 6634-6637 (2007). Examples of small hydrophobic molecules include perfluorinated alkenes (e.g., 1H, 1H, 2H-perfluorodecene), vinyl esters (e.g., alky 2-bromo-2-methyl propionic acid ester), and hydrocarbon alkenes (e.g., 11-undecene), among others. Examples of small hydrophilic molecules include oligo(ethylene glycol) methacrylate (OEGMA), undec-11-enyl hexaethylene glycol monomethyl ether (PEG6 derivative), and vinylic (mono- or divinyl) poly(ethylene glycol), among others. The PDMS can be mixed, for example, with equimolar amounts of a small amount of the small molecules, generally less than about 5 wt % (e.g., about 2-3 wt %). During curing, the molecules will self-assemble according to the functionalized monolayer on the template surface and react with the PDMS backbone by a hydrosilylation reaction during curing.


Referring now to FIGS. 46 and 47 and 47A, the now chemically functionalized polymer stamp 132 can then be removed (arrows ↑↑) from the surface 130 of the master template 118. For example, a solvent such as water (arrows ↓↓) can be applied or the stamp/template complex soaked in the solvent, which will permeate and swell the stamp 132 body and weaken the interfacial bonds on the hydrophilic areas, and the stamp can then be peeled from the surface of the master template, as shown in FIG. 46.


As illustrated, the surface 138 of the stamp 132 is chemically differentiated according to the pattern of hydrophilic and hydrophobic elements on the master template 118. The surface of the stamp 132 is composed of hydrophilic lines 136a that are preferential wetting to one domain of the block copolymer (e.g., PMMA) and hydrophobic lines 136b that are preferential wetting to the other block of the block copolymer (e.g., PS). As on the master template, the dimensions (i.e., width (w1)) of the lines 136a, 136b match or substantially match the dimensions (i.e., w1) of the hydrophilic lines 122 and hydrophobic lines 128, respectively, on the surface 130 of the master template 118, as well as the Lo value of the block copolymer material (BCP) 116 on the substrate 110 (FIG. 34). The stamp 132 includes a hydrophobic section 136b1 that has a width (w2) that corresponds to the dimensions (w2) of the hydrophobic section 128a on the chemical master 118, which is greater than the BCP Lo value.


Referring now to FIG. 48, the chemically patterned surface 138 of the stamp 118 is now brought into contact with a surface 140 of the block copolymer material 116 situated on the neutral wetting material 114 on the substrate 110, for example, by pressing the stamp surface 138 onto the block copolymer material (FIG. 49). The rubbery or flexible body of the stamp 132 allows the stamp to conform to the topography of the block copolymer material 116. As depicted in FIG. 50, the block copolymer material 116 is then annealed (arrows ↓↓) while in contact with the chemically patterned stamp surface to form a self-assembled polymer material 142.


The chemical pattern of hydrophilic and hydrophobic lines 136a, 136b on the surface of the stamp 132 will direct the self-assembly and perpendicular ordering of the polymer domains of the block copolymer material 116 in regions in which the pitch (w1) of the elements 136a, 136b on the stamp surface is at or about the inherent pitch or Lo value of the block copolymer material 116.


For example, as depicted in FIGS. 50 and 50A, in the use of a lamellar-phase block copolymer (e.g., PS-b-PMMA), during the anneal, the PMMA block will align with and preferentially wet the hydrophilic material (lines) 136a on the surface of the stamp 132 and the PS block will align with and preferentially wet the hydrophobic material (lines) 136b to form lines of PMMA lamella 144a and PS lamella 144b. The neutral wetting material 114 on the substrate 110 ensures that the perpendicular-oriented lamellae extend completely through the self-assembled polymer material 142 from the interface with the neutral wetting material 114 to the surface 138 of the stamp 132 on those lines 136a, 136b that have a pitch (w1) that is at or about the Lo value of the block copolymer material.


In regions of the substrate 110 where subsequent patterning (using the self-assembled BCP layer as a mask) is not desired, the contact of the block copolymer material with a stamp region (e.g., 136b1) which has a width (w2) that is greater than the Lo value of the block copolymer and is preferential wetting to only one domain of the block copolymer, will result in the formation of parallel-oriented lamellae 144a1, 144b1 for a corresponding width (w2) within the self-assembly polymer material 142.


Referring now to FIGS. 51 and 52, the stamp 132 is then removed from contact (↑↑) with the surface of the self-assembled polymer layer 142. To break the adhesive forces (e.g., Van der Waals forces) and lift the stamp from the polymer surface, in some embodiments, the stamp/solvent complex can be soaked in a solvent (e.g., water, isopropyl alcohol, acetic acid, etc.) that will permeate and swell the body of the stamp 132 (e.g., PDMS) but not the polymer domains 144a, 144b of the annealed, self-assembled polymer material 142. In some embodiments, a solvent can be used that also swells one but not both of the polymer domains of the self-assembled polymer material, e.g., the polymer domain that is subsequently selectively removed (e.g., PMMA lamellae 144a). After separation and removal of the stamp 132 from the self-assembled polymer material, the stamp 132 can then be re-used for further templating on another area or substrate bearing a BCP material layer.


The self-assembled polymer material 142 can then be developed to selectively remove one of the polymer domains (e.g., PMMA lamellae 144a) to produce a mask 146 composed of the remaining polymer domain (e.g., PS lamellae 144b) with openings 148 in the desired pattern of lines exposing the substrate 112, as shown in FIGS. 53 and 53A. The underlying substrate 112 can then be etched (arrows ↓↓) using the mask 146, as shown in FIGS. 54 and 54A, to form openings 150 to an underlying active area or element 152. The residual mask 146 (i.e., PS lamellae 144b, 144b1 and PMMA lamella 144a) can then be removed and the openings 150 filled with a material, e.g., a metal or conductive alloy such as Cu, Al, W, Si, and Ti3N4, among others, as shown in FIGS. 55 and 55A to form arrays of parallel conductive lines 154 having a width over a range of about 5-50 nm, to the underlying active area, contact, or conductive line 154. Further processing can be conducted as desired.


In other embodiments, the block copolymer material 116 can be cylindrical-phase block copolymer (BCP) on a neutral wetting layer 114 (FIG. 34). Referring to FIGS. 56 and 56B, a master template 118″ can be formed with “dots” of a hydrophilic material 122″ (e.g., oxide) surrounded by a hydrophobic material 128″ (e.g., an alkyl trialkoxysilane). The dots of the hydrophilic material 122″ are formed in regions where perpendicular cylinders in the BCP material are desired, and have a diameter (d) and pitch (p) equal to the Lo value of the cylindrical-phase block copolymer (BCP) material or within about 10% or less than the Lo value. Other regions (128″) of the master template 118″ where perpendicular cylinders are not desired are chemically patterned to be hydrophobic.


As shown in FIGS. 57 and 57A, a polymer material (e.g., PDMS) composed of hydrophilic 136a″ and hydrophobic 136b″ components (e.g., molecules) is formed and cured (arrows ↓↓) on the master template 118″. Upon curing, the hydrophilic components 136a″ of the stamp material 134″ align with the hydrophilic dots 122″ and the hydrophobic components 136b″ align with the hydrophobic regions 128″ on the master template 118″. The cured stamp 132″ is then removed from the master template 118″ and applied to a cylindrical-phase block copolymer material (e.g., 116 in FIG. 34), which is annealed while in contact with the stamp (FIGS. 58 and 58A (arrow ↓).


Upon annealing, the cylindrical-phase BCP (116), will self-assemble into perpendicular-oriented cylinders 156″ composed of one polymer block (e.g., PMMA) in response to and aligned with the hydrophilic dots 136a″ on the surface 138″ of the stamp 132″, surrounded by a matrix 158″ of the other polymer block (e.g., PS) in response to the hydrophobic areas 136b″ on the stamp surface. In response to areas where the hydrophobic area 136b″ has a width (w″) that is greater than or equal to 1.5*Lo, the block copolymer material will self-assemble to form one or more lines of half-cylinders 156a″, which are oriented parallel to and in contact with the neutral wetting layer 114″. The number of lines of half-cylinders 156a″ can vary according to the width (w″), for example, a single line of a parallel half-cylinder will form from a block copolymer (Lo=50 nm) where the hydrophobic area 136b″ has a width (w″) of about 70-80 nm. The stamp 132″ is then removed (arrow ↑) from the surface of the annealed and self-assembled block copolymer material 142″.


As depicted in FIG. 59, the cylinders 156″ (e.g., PMMA block) can then be selectively removed to form a mask 146″ composed of cylindrical openings 148″ within the matrix 158″ of the other polymer block (e.g., of PS) to expose the base substrate 112″. The substrate 112″ can then be etched using the mask 146″ to form cylindrical openings 150″ (shown in phantom) to active areas 152″ in the substrate 112″. The etched openings 150″ can be filled with an appropriate material 154″ to form contacts to the underlying active areas 152″ (e.g., conductive lines), as depicted in FIGS. 60 and 60A. The substrate can then be additionally processed as needed.


The present embodiment of the invention of overlying a chemically patterned stamp to direct self-assembly of a BCP film eliminates the need for forming a substrate template pattern, which requires the use of a patterning technique such as EUV lithography or other sub-lithographic patterning techniques to physically or chemically pattern the surface of a substrate, e.g., with chemical stripes (chemical templating), each stripe being preferentially wetted by the alternate blocks of a block copolymer to cause polymer domains to orient themselves above the preferred stripes and perpendicular to the surface. The present embodiment of a chemically patterned stamp provides a low cost and re-usable method to provide registered self-assembled block copolymers with long-range order without the need for patterning a substrate.


The use of a chemically patterned stamp to direct ordering of a self-assembling block copolymer material does not require patterning of the substrate to form a topographically varied surface as required by graphoepitaxial self-assembly, which significantly reduces costs. Also, only an original master template requires patterning using sub-lithographic tools (e.g., EUV, e-beam, etc.), and at least two levels of amplification result including the fabrication of multiple stamps from a single master template, and the ability to use each stamp multiple times to direct ordering of BCP materials. As a result, the cost of preparing the master template is significantly amortized. In addition, since the stamp is topographically flat, problems of lift-off from a self-assembled polymer film are minimized in conjunction with the surface areas in contact, which provides a significant advantage over nanoimprint lithography. Long-range order and defectivity of a self-assembled block copolymer film is also improved as the stamp templates and directs the proper order in each region of the film. By comparison, graphoepitaxy requires force fields generated from topographic features to impose order from a distance.


As depicted in FIG. 61, the present stamp embodiments can be used to form a variety of geometries for integrated circuit layouts 155, including periodic conductive lines 157 and contacts 159, lines with bends 160, isolated lines and contacts, etc., as needed for the circuit design. Dies comprising the conductive lines and contacts can be incorporated into a circuit module, device or electronic system, including processor systems.


Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement that is calculated to achieve the same purpose may be substituted for the specific embodiments shown. This application is intended to cover any adaptations or variations that operate according to the principles of the invention as described. Therefore, it is intended that this invention be limited only by the claims and the equivalents thereof. The disclosures of patents, references and publications cited in the application are incorporated by reference herein.

Claims
  • 1. A method of forming a self-assembled block copolymer material, comprising: contacting a block copolymer material with a stamp comprising hydrophilic regions and hydrophobic regions, each of the hydrophilic regions and each of the hydrophobic regions having a width equal to an inherent pitch value (Lo) of the block copolymer material; andannealing the block copolymer material to self-assemble the block copolymer material into perpendicular-oriented polymer domains, a first of the perpendicular-oriented polymer domains preferentially wetting the hydrophilic regions of the stamp and a second of the perpendicular-oriented polymer domains preferentially wetting the hydrophilic regions of the stamp.
  • 2. The method of claim 1, further comprising: removing the stamp from contact with the perpendicular-oriented polymer domains; andcontacting another block copolymer material with the stamp.
  • 3. The method of claim 1, further comprising: removing one of the perpendicular-oriented polymer domains relative to another of the perpendicular-oriented polymer domains to form a mask exhibiting openings extending to and exposing portions of an underlying structure; andetching the exposed portions of the underlying structure through the openings in the mask.
  • 4. The method of claim 1, further comprising: forming a template comprising additional hydrophilic regions and additional hydrophobic regions;forming an elastomeric polymer material on a surface of the template, the elastomeric polymer material comprising hydrophilic molecules and hydrophobic molecules;curing the elastomeric polymer material to form the stamp, the hydrophilic regions of the stamp registered to the additional hydrophilic regions of the template and the hydrophobic regions of the stamp registered to the additional hydrophobic regions of the template; andremoving the stamp from the template.
  • 5. The method of claim 4, further comprising selecting the elastomeric polymer material from the group consisting of a poly(dimethylsiloxane), a silicone, and a polyurethane.
  • 6. The method of claim 4, further comprising selecting the hydrophobic molecules from the group consisting of perfluorinated alkenes, vinyl esters, and hydrocarbon alkenes.
  • 7. The method of claim 4, further comprising selecting the hydrophilic molecules from the group consisting of oligo(ethylene glycol) methacrylate, undec-11-enyl hexaethylene glycol monomethyl ether, and vinylic poly(ethylene glycol).
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 14/669,612, filed Mar. 26, 2015, now U.S. Pat. No. 10,005,308, issued Jun. 26, 2018, which is a continuation of U.S. patent application Ser. No. 12/026,214, filed Feb. 5, 2008, now U.S. Pat. No. 8,999,492, issued Apr. 7, 2015, the disclosure of each of which is hereby incorporated herein in its entirety by this reference.

US Referenced Citations (402)
Number Name Date Kind
4623674 Bailey, Jr. Nov 1986 A
4797357 Mura et al. Jan 1989 A
4818713 Feygenson Apr 1989 A
4877647 Klabunde Oct 1989 A
5328810 Lowrey et al. Jul 1994 A
5374367 Edamura et al. Dec 1994 A
5382373 Carlson et al. Jan 1995 A
5482656 Hiraoka et al. Jan 1996 A
5512131 Kumar et al. Apr 1996 A
5538655 Fauteux et al. Jul 1996 A
5580700 Rahman Dec 1996 A
5620850 Bamdad et al. Apr 1997 A
5622668 Thomas Apr 1997 A
5772905 Chou Jun 1998 A
5834583 Hancock et al. Nov 1998 A
5849810 Müeller Dec 1998 A
5866297 Barjesteh et al. Feb 1999 A
5879582 Havelka et al. Mar 1999 A
5879853 Azuma Mar 1999 A
5891356 Inoue et al. Apr 1999 A
5904824 Oh May 1999 A
5925259 Biebuyck et al. Jul 1999 A
5948470 Harrison et al. Sep 1999 A
5958704 Starzl et al. Sep 1999 A
6051869 Pan et al. Apr 2000 A
6111323 Carter et al. Aug 2000 A
6143647 Pan et al. Nov 2000 A
6153495 Kub et al. Nov 2000 A
6207787 Fahey et al. Mar 2001 B1
6251791 Tsai et al. Jun 2001 B1
6270946 Miller Aug 2001 B1
6309580 Chou Oct 2001 B1
6310138 Yonezawa et al. Oct 2001 B1
6312971 Amundson et al. Nov 2001 B1
6368871 Christel et al. Apr 2002 B1
6403382 Zhu et al. Jun 2002 B1
6414164 Afzali-Ardakani et al. Jul 2002 B1
6423465 Hawker et al. Jul 2002 B1
6423474 Holscher Jul 2002 B1
6503841 Criscuolo Jan 2003 B1
6506660 Holmes et al. Jan 2003 B2
6517933 Soane et al. Feb 2003 B1
6518194 Winningham et al. Feb 2003 B2
6537920 Krivokapic Mar 2003 B1
6548830 Noguchi et al. Apr 2003 B1
6565763 Asakawa May 2003 B1
6565764 Hiraoka et al. May 2003 B2
6566248 Wang et al. May 2003 B1
6569528 Nam et al. May 2003 B2
6573030 Fairbairn et al. Jun 2003 B1
6592764 Stucky et al. Jul 2003 B1
6630520 Bruza et al. Oct 2003 B1
6635912 Ohkubo Oct 2003 B2
6656308 Hougham et al. Dec 2003 B2
6679996 Yao Jan 2004 B1
6682660 Sucholeiki et al. Jan 2004 B2
6689473 Guire et al. Feb 2004 B2
6699797 Morris et al. Mar 2004 B1
6713238 Chou et al. Mar 2004 B1
6746825 Nealey et al. Jun 2004 B2
6767693 Okoroanyanwu Jul 2004 B1
6780492 Hawker et al. Aug 2004 B2
6781166 Lieber et al. Aug 2004 B2
6797202 Endo et al. Sep 2004 B2
6809210 Chandross et al. Oct 2004 B2
6812132 Ramachandrarao et al. Nov 2004 B2
6825358 Afzali-Ardakani et al. Nov 2004 B2
6884842 Soane et al. Apr 2005 B2
6887332 Kagan et al. May 2005 B1
6890624 Kambe et al. May 2005 B1
6890703 Hawker et al. May 2005 B2
6908861 Sreenivasan et al. Jun 2005 B2
6911400 Colburn et al. Jun 2005 B2
6913697 Lopez et al. Jul 2005 B2
6924341 Mays Aug 2005 B2
6926953 Nealey et al. Aug 2005 B2
6940485 Noolandi Sep 2005 B2
6946332 Loo et al. Sep 2005 B2
6949456 Kumar Sep 2005 B2
6952436 Wirnsberger et al. Oct 2005 B2
6957608 Hubert et al. Oct 2005 B1
6962823 Empedocles et al. Nov 2005 B2
6989426 Hu et al. Jan 2006 B2
6992115 Hawker et al. Jan 2006 B2
6995439 Hill et al. Feb 2006 B1
6998152 Uhlenbrock Feb 2006 B2
7001795 Jiang et al. Feb 2006 B2
7009227 Patrick et al. Mar 2006 B2
7030495 Colburn et al. Apr 2006 B2
7037738 Sugiyama et al. May 2006 B2
7037744 Colburn et al. May 2006 B2
7045851 Black et al. May 2006 B2
7056455 Matyjaszewski et al. Jun 2006 B2
7056849 Wan et al. Jun 2006 B2
7060774 Sparrowe et al. Jun 2006 B2
7066801 Balijepalli et al. Jun 2006 B2
7077992 Sreenivasan et al. Jul 2006 B2
7087267 Breen et al. Aug 2006 B2
7090784 Asakawa et al. Aug 2006 B2
7112617 Kim et al. Sep 2006 B2
7115305 Bronikowski et al. Oct 2006 B2
7115525 Abatchev et al. Oct 2006 B2
7115995 Wong Oct 2006 B2
7118784 Xie Oct 2006 B1
7119321 Quinlan Oct 2006 B2
7132370 Paraschiv Nov 2006 B2
7135144 Christel et al. Nov 2006 B2
7135241 Ferraris et al. Nov 2006 B2
7135388 Ryu et al. Nov 2006 B2
7135523 Ho et al. Nov 2006 B2
7151209 Empedocles et al. Dec 2006 B2
7163712 Chilkoti et al. Jan 2007 B2
7166304 Harris et al. Jan 2007 B2
7172953 Lieber et al. Feb 2007 B2
7186613 Kirner et al. Mar 2007 B2
7189430 Ajayan et al. Mar 2007 B2
7189435 Tuominen et al. Mar 2007 B2
7190049 Tuominen et al. Mar 2007 B2
7195733 Rogers et al. Mar 2007 B2
7202308 Boussand et al. Apr 2007 B2
7208836 Manning Apr 2007 B2
7252791 Wasserscheid et al. Aug 2007 B2
7259101 Zurcher et al. Aug 2007 B2
7279396 Derderian et al. Oct 2007 B2
7282240 Jackman et al. Oct 2007 B1
7291284 Mirkin et al. Nov 2007 B2
7311943 Jacobson et al. Dec 2007 B2
7326514 Dai et al. Feb 2008 B2
7332370 Chang et al. Feb 2008 B2
7332627 Chandross et al. Feb 2008 B2
7338275 Choi et al. Mar 2008 B2
7347953 Black et al. Mar 2008 B2
7368314 Ufert May 2008 B2
7407887 Guo Aug 2008 B2
7408186 Merkulov et al. Aug 2008 B2
7419772 Watkins et al. Sep 2008 B2
7470954 Lee et al. Dec 2008 B2
7514339 Yang et al. Apr 2009 B2
7521090 Cheng et al. Apr 2009 B1
7553760 Yang et al. Jun 2009 B2
7569855 Lai Aug 2009 B2
7585741 Manning Sep 2009 B2
7592247 Yang et al. Sep 2009 B2
7605081 Yang et al. Oct 2009 B2
7632544 Ho et al. Dec 2009 B2
7655383 Mela et al. Feb 2010 B2
7658773 Pinnow Feb 2010 B2
7700157 Bronikowski et al. Apr 2010 B2
7723009 Sandhu et al. May 2010 B2
7767099 Li et al. Aug 2010 B2
7799416 Chan et al. Sep 2010 B1
7888228 Blanchard Feb 2011 B2
7959975 Millward Jun 2011 B2
7964107 Millward Jun 2011 B2
8039196 Kim et al. Oct 2011 B2
8080615 Millward Dec 2011 B2
8083953 Millward et al. Dec 2011 B2
8083958 Li et al. Dec 2011 B2
8097175 Millward et al. Jan 2012 B2
8101261 Millward et al. Jan 2012 B2
8114300 Millward Feb 2012 B2
8114301 Millward et al. Feb 2012 B2
8114306 Cheng et al. Feb 2012 B2
8206601 Bosworth Jun 2012 B2
8287749 Hasegawa et al. Oct 2012 B2
8294139 Marsh et al. Oct 2012 B2
8372295 Millward Feb 2013 B2
8394483 Millward Mar 2013 B2
8404124 Millward et al. Mar 2013 B2
8409449 Millward et al. Apr 2013 B2
8425982 Regner Apr 2013 B2
8426313 Millward et al. Apr 2013 B2
8445592 Millward et al. May 2013 B2
8455082 Millward Jun 2013 B2
8512846 Millward Aug 2013 B2
8513359 Millward Aug 2013 B2
8518275 Millward et al. Aug 2013 B2
8551808 Marsh et al. Oct 2013 B2
8557128 Millward Oct 2013 B2
8609221 Millward et al. Dec 2013 B2
8633112 Millward et al. Jan 2014 B2
8641914 Regner Feb 2014 B2
8642157 Millward et al. Feb 2014 B2
8669645 Millward et al. Mar 2014 B2
8753738 Millward et al. Jun 2014 B2
8784974 Millward Jul 2014 B2
8785559 Millward Jul 2014 B2
8801894 Millward Aug 2014 B2
8808557 Seino et al. Aug 2014 B1
8900963 Sills et al. Dec 2014 B2
8956713 Millward Feb 2015 B2
20010024768 Matsuo et al. Sep 2001 A1
20010049195 Chooi et al. Dec 2001 A1
20020055239 Tuominen et al. May 2002 A1
20020084429 Craighead et al. Jul 2002 A1
20020158342 Tuominen et al. Oct 2002 A1
20020167117 Chou Nov 2002 A1
20030010241 Fujihira et al. Jan 2003 A1
20030034329 Chou Feb 2003 A1
20030068639 Haneder et al. Apr 2003 A1
20030077452 Guire et al. Apr 2003 A1
20030080471 Chou May 2003 A1
20030080472 Chou May 2003 A1
20030091752 Nealey et al. May 2003 A1
20030100822 Lew et al. May 2003 A1
20030108879 Klaemer et al. Jun 2003 A1
20030143375 Noguchi et al. Jul 2003 A1
20030157248 Watkins et al. Aug 2003 A1
20030178707 Abbott Sep 2003 A1
20030180522 DeSimone et al. Sep 2003 A1
20030180966 Abbott et al. Sep 2003 A1
20030185741 Matyjaszewski Oct 2003 A1
20030196748 Hougham et al. Oct 2003 A1
20030218644 Huguchi et al. Nov 2003 A1
20030222048 Asakawa et al. Dec 2003 A1
20030235930 Bao et al. Dec 2003 A1
20040023287 Harnack et al. Feb 2004 A1
20040028875 Van Rijn et al. Feb 2004 A1
20040058059 Linford et al. Mar 2004 A1
20040076757 Jacobsen et al. Apr 2004 A1
20040084298 Yao et al. May 2004 A1
20040109263 Suda et al. Jun 2004 A1
20040124092 Black et al. Jul 2004 A1
20040125266 Miyauchi et al. Jul 2004 A1
20040127001 Colburn Jul 2004 A1
20040142578 Wiesner et al. Jul 2004 A1
20040159633 Whitesides et al. Aug 2004 A1
20040163758 Kagan et al. Aug 2004 A1
20040175628 Nealey Sep 2004 A1
20040192013 Ryu et al. Sep 2004 A1
20040222415 Chou Nov 2004 A1
20040242688 Chandross et al. Dec 2004 A1
20040254317 Hu Dec 2004 A1
20040256615 Sirringhaus et al. Dec 2004 A1
20040256662 Black et al. Dec 2004 A1
20040265548 Ho et al. Dec 2004 A1
20050008828 Libera et al. Jan 2005 A1
20050062165 Saenger et al. Mar 2005 A1
20050074706 Bristol Apr 2005 A1
20050079486 Abbott et al. Apr 2005 A1
20050100830 Xu et al. May 2005 A1
20050120902 Adams et al. Jun 2005 A1
20050124135 Ayazi et al. Jun 2005 A1
20050133697 Potyrailo et al. Jun 2005 A1
20050147841 Tavkhelidze et al. Jul 2005 A1
20050159293 Wan et al. Jul 2005 A1
20050167651 Merkulov et al. Aug 2005 A1
20050176256 Kudelka Aug 2005 A1
20050208752 Colburn et al. Sep 2005 A1
20050238889 Iwamoto Oct 2005 A1
20050238967 Rogers et al. Oct 2005 A1
20050250053 Marsh et al. Nov 2005 A1
20050271805 Kambe et al. Dec 2005 A1
20050272341 Colburn et al. Dec 2005 A1
20060013956 Angelescu et al. Jan 2006 A1
20060014001 Zhang et al. Jan 2006 A1
20060014083 Carlson Jan 2006 A1
20060024590 Sandhu Feb 2006 A1
20060030495 Gregg, Jr. Feb 2006 A1
20060035387 Wagner et al. Feb 2006 A1
20060038182 Rogers et al. Feb 2006 A1
20060046079 Lee Mar 2006 A1
20060046480 Guo Mar 2006 A1
20060046484 Abatchev et al. Mar 2006 A1
20060060863 Lu et al. Mar 2006 A1
20060062867 Choi Mar 2006 A1
20060078681 Hieda et al. Apr 2006 A1
20060097134 Rhodes May 2006 A1
20060105562 Yi May 2006 A1
20060124467 Ho et al. Jun 2006 A1
20060128165 Theiss et al. Jun 2006 A1
20060134556 Nealey et al. Jun 2006 A1
20060137554 Kron et al. Jun 2006 A1
20060141222 Fischer et al. Jun 2006 A1
20060141245 Stellacci et al. Jun 2006 A1
20060154466 Lee et al. Jul 2006 A1
20060163646 Black Jul 2006 A1
20060192283 Benson Aug 2006 A1
20060205875 Cha et al. Sep 2006 A1
20060211871 Dai et al. Sep 2006 A1
20060217285 Destarac Sep 2006 A1
20060228635 Suleski Oct 2006 A1
20060231525 Asakawa et al. Oct 2006 A1
20060249784 Black et al. Nov 2006 A1
20060249796 Tavkhelidze et al. Nov 2006 A1
20060254440 Choi et al. Nov 2006 A1
20060255505 Sandhu et al. Nov 2006 A1
20060257633 Inoue et al. Nov 2006 A1
20060258159 Colburn et al. Nov 2006 A1
20060278158 Tolbert et al. Dec 2006 A1
20060281266 Wells Dec 2006 A1
20060286305 Thies et al. Dec 2006 A1
20060286490 Sandhu et al. Dec 2006 A1
20060292777 Dunbar Dec 2006 A1
20070020749 Nealey et al. Jan 2007 A1
20070023247 Ulicny et al. Feb 2007 A1
20070023805 Wells Feb 2007 A1
20070045562 Parekh Mar 2007 A1
20070045642 Li Mar 2007 A1
20070071881 Chua et al. Mar 2007 A1
20070072403 Sakata Mar 2007 A1
20070122749 Fu et al. May 2007 A1
20070122932 Kodas et al. May 2007 A1
20070138131 Burdinski Jun 2007 A1
20070161237 Lieber et al. Jul 2007 A1
20070175859 Black et al. Aug 2007 A1
20070181870 Libertino et al. Aug 2007 A1
20070183035 Asakawa et al. Aug 2007 A1
20070194403 Cannon et al. Aug 2007 A1
20070200477 Tuominen et al. Aug 2007 A1
20070208159 McCloskey et al. Sep 2007 A1
20070218202 Ajayan et al. Sep 2007 A1
20070222995 Lu Sep 2007 A1
20070224819 Sandhu Sep 2007 A1
20070224823 Sandhu Sep 2007 A1
20070227383 Decre et al. Oct 2007 A1
20070249117 Kang et al. Oct 2007 A1
20070272951 Lieber et al. Nov 2007 A1
20070281220 Sandhu et al. Dec 2007 A1
20070289943 Lu et al. Dec 2007 A1
20070293041 Yang et al. Dec 2007 A1
20080032238 Lu et al. Feb 2008 A1
20080038467 Jagannathan et al. Feb 2008 A1
20080038923 Edelstein et al. Feb 2008 A1
20080041818 Kihara et al. Feb 2008 A1
20080047930 Blanchet et al. Feb 2008 A1
20080064217 Horii Mar 2008 A1
20080073743 Alizadeh et al. Mar 2008 A1
20080078982 Min Apr 2008 A1
20080078999 Lai Apr 2008 A1
20080083991 Yang et al. Apr 2008 A1
20080085601 Park et al. Apr 2008 A1
20080093743 Yang et al. Apr 2008 A1
20080102252 Black et al. May 2008 A1
20080103256 Kim et al. May 2008 A1
20080113169 Cha et al. May 2008 A1
20080164558 Yang et al. Jul 2008 A1
20080174726 Kim Jul 2008 A1
20080176767 Millward Jul 2008 A1
20080191200 Frisbie et al. Aug 2008 A1
20080193658 Millward Aug 2008 A1
20080217292 Millward et al. Sep 2008 A1
20080233297 de Jong et al. Sep 2008 A1
20080233323 Cheng et al. Sep 2008 A1
20080241218 McMorrow Oct 2008 A1
20080257187 Millward Oct 2008 A1
20080260941 Jin Oct 2008 A1
20080274413 Millward Nov 2008 A1
20080286659 Millward Nov 2008 A1
20080311347 Millward et al. Dec 2008 A1
20080315270 Marsh Dec 2008 A1
20080318005 Millward Dec 2008 A1
20090020924 Lin Jan 2009 A1
20090062470 Millward et al. Mar 2009 A1
20090087664 Nealey et al. Apr 2009 A1
20090148795 Li et al. Jun 2009 A1
20090155579 Greco et al. Jun 2009 A1
20090173920 Kang et al. Jul 2009 A1
20090196488 Nealey Aug 2009 A1
20090200646 Millward et al. Aug 2009 A1
20090206489 Li et al. Aug 2009 A1
20090212016 Cheng et al. Aug 2009 A1
20090218567 Mathew et al. Sep 2009 A1
20090236309 Millward Sep 2009 A1
20090240001 Regner Sep 2009 A1
20090263628 Millward Oct 2009 A1
20090267058 Namdas et al. Oct 2009 A1
20090274887 Millward et al. Nov 2009 A1
20090317540 Sandhu et al. Dec 2009 A1
20100092873 Sills et al. Apr 2010 A1
20100102415 Millward et al. Apr 2010 A1
20100124826 Millward et al. May 2010 A1
20100137496 Millward et al. Jun 2010 A1
20100150510 Sato et al. Jun 2010 A1
20100163180 Millward Jul 2010 A1
20100204402 Millward et al. Aug 2010 A1
20100279062 Millward Nov 2010 A1
20100316849 Millward et al. Dec 2010 A1
20100323096 Sills et al. Dec 2010 A1
20110232515 Millward Sep 2011 A1
20120028471 Oyama et al. Feb 2012 A1
20120122292 Sandhu et al. May 2012 A1
20120133017 Millward et al. May 2012 A1
20120135146 Cheng et al. May 2012 A1
20120135159 Xiao et al. May 2012 A1
20120138570 Millward et al. Jun 2012 A1
20120164389 Yang et al. Jun 2012 A1
20120202017 Nealey et al. Aug 2012 A1
20120211871 Russell et al. Aug 2012 A1
20120223053 Millward et al. Sep 2012 A1
20120225243 Millward Sep 2012 A1
20130105755 Sills et al. May 2013 A1
20130285214 Millward et al. Oct 2013 A1
20130295323 Millward Nov 2013 A1
20130330668 Hedrick et al. Dec 2013 A1
20140060736 Millward et al. Mar 2014 A1
20140097520 Millward Apr 2014 A1
20140127626 Senzaki et al. May 2014 A1
20140272723 Somervell et al. Sep 2014 A1
20150021293 Morris et al. Jan 2015 A1
20150091137 Hendricks et al. Apr 2015 A1
20150191034 Millward et al. Jul 2015 A1
Foreign Referenced Citations (65)
Number Date Country
1562730 Jan 2005 CN
1799131 Jul 2006 CN
101013662 Aug 2007 CN
784543 Apr 2000 EP
1416303 May 2004 EP
1906237 Feb 2008 EP
1593164 Jun 2010 EP
11080414 Mar 1999 JP
2003155365 May 2003 JP
2004335962 Nov 2004 JP
2005029779 Mar 2005 JP
2005008882 Jul 2005 JP
2006036923 Feb 2006 JP
2006055982 Mar 2006 JP
2006110434 Apr 2006 JP
2007194175 Aug 2007 JP
2008036491 Feb 2008 JP
2008043873 Feb 2008 JP
1020060128378 Dec 2006 KR
1020070029762 Mar 2007 KR
100771886 Nov 2007 KR
200400990 Mar 1992 TW
200633925 Oct 1994 TW
200740602 Jan 1996 TW
200802421 Feb 1996 TW
584670 Apr 2004 TW
200419017 Oct 2004 TW
200511364 Mar 2005 TW
I256110 Jun 2006 TW
I253456 Nov 2007 TW
90007575 Jul 1990 WO
9706013 Feb 1997 WO
9839645 Sep 1998 WO
9947570 Sep 1999 WO
0002090 Jan 2000 WO
0031183 Jun 2000 WO
0218080 Mar 2002 WO
02081372 Oct 2002 WO
03045840 Jun 2003 WO
2005122285 Dec 2005 WO
2006003592 Jan 2006 WO
2006003594 Jan 2006 WO
2006076016 Jul 2006 WO
2006078952 Jul 2006 WO
2006112887 Oct 2006 WO
2007001294 Jan 2007 WO
2007013889 Feb 2007 WO
2007019439 Feb 2007 WO
2007024241 Mar 2007 WO
2007024323 Mar 2007 WO
2007055041 May 2007 WO
2008055137 May 2008 WO
2008091741 Jul 2008 WO
2008096335 Aug 2008 WO
2008097736 Aug 2008 WO
2008118635 Oct 2008 WO
2008124219 Oct 2008 WO
2008130847 Oct 2008 WO
2008145268 Dec 2008 WO
2008156977 Dec 2008 WO
2009099924 Aug 2009 WO
2009102551 Aug 2009 WO
2009117238 Sep 2009 WO
2009117243 Sep 2009 WO
2009134635 Nov 2009 WO
Non-Patent Literature Citations (227)
Entry
Alger, Mark S. M., Polymer Science Dictionary, describing the Flory-Huggins interaction parameter (Chi value, c value) and the Flory-Huggins theory (1989), pp. 201-202.
Ali et al., Properties of Self-Assembled ZnO Nanostructures, Solid-State Electronics, vol. 46, (2002), pp. 1639-1642,.
Anonymous, Aluminium oxide, <http://en.wikipedia.org/wiki/Aluminium_oxide>, (visited Feb. 12, 2015), 9 pages.
Anonymous, Electronegativity, <http://www.princeton.edu/˜achaney/tmve/wiki100k/docs/Electronegativity.html>, (visited Aug. 28, 2013), 1 page.
Anonymous, Polydimethylsiloxane, <http://en.wikipedia.org/wiki/Polydimethylsiloxane>, (visited Feb. 12, 2015), 9 pages.
Arshady et al., The Introduction of Chloromethyl Groups into Styrene-Based Polymers, 1, Makromol. Chem., vol. 177, (1976), pp. 2911-2918.
Asakawa et al., Fabrication of Subwavelength Structure for Improvement in Light-Extraction Efficiency of Light-Emitting Devices Using a Self-Assembled Pattern of Block Copolymer, Applied Optics, vol. 44, No. 34, (Dec. 1, 2005), pp. 7475-7482.
Bae et al., Surface Modification Using Photo-Crosslinkable Random Copolymers, Abstract submitted for the Mar. 2006 meeting of The American Physical Society, (submitted Nov. 30, 2005) (accessed online Apr. 5, 2010) <http://absimage.aps.org/image/MWS_MAR06-2005-003641.pdf>.
Balsara et al., Synthesis and Application of Nanostructured Materials, CPIMA, IRG Technical Programs, Leland Stanford Junior Univ., (2006), <http://www.stanford.edu/group/cpima/irg/irg_1.htm>, 9 pages.
Bang et al., The Effect of Humidity on the Ordering of Tri-block Copolymer Thin Films, Abstract submitted for the Mar. 2007 meeting of the American Physical Society, (submitted Nov. 20, 2006), 1 page.
Bass et al., Microcontact Printing with Octadecanethiol, Applied Surface Science, vol. 226, No. 4, (Apr. 2004), pp. 335-340.
Bearinger et al., Chemisorbed Poly(propylene sulphide)-Based Copolymers Resist Biomolecular Interactions, Nature Materials, vol. 2, (2003), pp. 259-264.
Berry et al., Effects of Zone Annealing on Thin Films of Block Copolymers, National Institute of Standards and Technology, Polymers Division, Maryland, USA, (2007), 2 pages.
Berry et al., Orientational Order in Block Copolymer Films Zone Annealed Below the Order-Disorder Transition Temperature, Nano Letters, vol. 7, No. 9, (Aug. 2007), pp. 2789-2794.
Black et al., High-Capacity, Self-Assembled Metal-Oxide-Semiconductor Decoupling Capacitors, IEEE Electron Device Letters, vol. 25, No. 9, (Sep. 2004), pp. 622-624.
Black, Integration of Self Assembly for Semiconductor Microelectronics, IEEE 2005 Custom Integrated Circuits Conference, (2005), pp. 87-91.
Black et al., Integration of Self-Assembled Diblock Copolymers for Semiconductor Capacitor Fabrication, Applied Physics Letters, vol. 79, No. 3, (2001), pp. 409-411.
Black et al., Nanometer-Scale Pattern Registration and Alignment by Directed Diblock Copolymer Self-Assembly, IEEE Transactions on Nanotechnology, vol. 3, No. 3, (Sep. 2004), pp. 412-415.
Black et al., Polymer Self Assembly in Semiconductor Microelectronics, IBM J. Res. & Dev., vol. 51, No. 5, (Sep. 2007), pp. 605-633.
Black et al., Self Assembly in Semiconductor Microelectronics: Self-Aligned Sub-Lithographic Patterning Using Diblock Copolymer Thin Films, Proc. of SPIE, vol. 6153, (2006), pp. 615302-1-615302-11.
Black, C. T., Polymer Self-Assembly as a Novel Extension to Optical Lithography, American Chemical Society, ACSNano, vol. 1, No. 3, (2007), pp. 147-150.
Black, C. T., Self-Aligned Self-Assembly of Multi-Nanowire Silicon Field Effect Transistors, Appl. Phys. Lett., vol. 87, (2005), pp. 163116-1-163116-3.
Botelho do Rego et al., Diblock Copolymer Ultrathin Films Studied by High Resolution Electron Energy Loss Spectroscopy, Surface Science, 482-485, (2001), pp. 1228-1234.
Brydson et al. (chapter authors), Generic Methodologies for Nanotechnology: Classification and Fabrication, Nanoscale Science and Technology, John Wiley & Sons, Ltd., (Dec. 20, 2005), pp. 1-55.
Bulpitt et al., New Strategy for Chemical Modification of Hyaluronic Acid: Preparation of Functionalized Derivatives and Their Use in the Formation of Novel Biocompatible Hydrogels, Journal of Biomedical Materials Research, vol. 47, Issue 2, (Aug. 1999), pp. 152-169, (Abstract only).
Canaria et al., Formation and Removal of Alkylthiolate Self-Assembled Monolayers on Gold in Aqueous Solutions, Royal Society of Chemistry, Lab Chip, vol. 6, (2006), pp. 289-295, (Abstract only).
Candau et al., Synthesis and Characterization of Polystyrene-poly(ethylene oxide) Graft Copolymers, Polymer, vol. 18, (1977), pp. 1253-1257.
Cavicchi et al., Solvent Annealed Thin Films of Asymmetric Polyisoprene—Polylactide Diblock Copolymers, Macromolecules, vol. 40, (2007), pp. 1181-1186.
Cha et al., Biomimetic Approaches for Fabricating High-Density Nanopatterned Arrays, Chem. Mater., vol. 19, (2007), pp. 839-843.
Chai et al., Assembly of Aligned Linear Metallic Patterns on Silicon, Nature Nanotechnology, vol. 2, (Aug. 2007), pp. 500-506.
Chai et al., Using Cylindrical Domains of Block Copolymers to Self-Assemble and Align Metallic Nanowires, American Chemical Society, www.acsnano.org, (2008), pp. A-M.
Chandekar et al., Template-Directed Adsorption of Block Copolymers on Alkanethiol-Patterned Gold Surfaces, (2006), http://www.nano.neu.edu/industry/industry_showcase/industry_day/documents/Chandekar.pdf) (Powerpoint template for scientific posters (Swarthmore College)), 1 page.
Chang et al., Diblock Copolymer Directed Self-Assembly for CMOS Device Fabrication, Proc. of SPIE, vol. 6156, (2006), pp. 615611-1-615611-6.
Chang, et al., Experimental Demonstration of Aperiodic Patterns of Directed Self-Assembly by Block Copolymer Lithography for Random Logic Circuit Layout, IEEE International Electron Devices Meeting (IEDM), paper 33.2, (Dec. 6-8, 2010), pp. 33.2.1-33.2.4.
Chen et al., Highly Ordered Arrays of Mesoporous Silica Nanorods with Tunable Aspect Ratios from Block Copolymer Thin Films, Advanced Materials, vol. 20, (2008), pp. 763-767.
Cheng et al., Rapid Directed Self Assembly of Lamellar Microdomains from a Block Copolymer Containing Hybrid, Applied Physics Letters, vol. 91, (2007), pp. 143106-1-143106-3.
Cheng et al., Self-Assembled One-Dimensional Nanostructure Arrays, Nano Letters, vol. 6, No. 9, (2006), pp. 2099-2103.
Cheng et al., Templated Self-Assembly of Block Copolymers: Effect of Substrate Topography, Adv. Mater., vol. 15, No. 19, (2003), pp. 159+ 1602.
Cheng et al., “Templated Self-Assembly of Block Copolymers: Top-Down Helps Bottom-Up,” Adv. Mater. (2006), vol. 18, pp. 2505-2521.
Cho et al., Nanoporous Block Copolymer Micelle/Micelle Multilayer Films with Dual Optical Properties, J. Am. Chem. Soc., vol. 128, No. 30, (2006), pp. 9935-9942.
Choi et al., Magnetorheology of Synthesized Cor* Shell Structured Nanoparticle, IEEE Transactions on Magnetics, vol. 41, No. 10, (Oct. 2005), pp. 3448-3450.
Clark et al., Selective Deposition in Multilayer Assembly: SAMs as Molecular Templates, Supramolecular Science, vol. 4, (1997), pp. 141-146.
Chinese Office Action for Chinese Application No. 200980104066.2 dated Apr. 5, 2012, 10 pages, with translation.
Chinese Second Office Action for Chinese Application No. 200980104066.2 dated Oct. 15, 2012, 19 pages with translation.
Chinese Third Office Action for Chinese Application No. 200980104066.2 dated May 10, 2013, 10 pages, with translation.
Chinese Fourth Office Action for Chinese Application No. 200980104066.2 dated Aug. 27, 2013, 8 pages, with translation.
Chinese Fifth Office Action for Chinese Application No. 200980104066.2 dated Jan. 21, 2014, 8 pages, with ranslation.
Daoulas et al., Fabrication of Complex Three-Dimensional Nanostructures from Self-Assembling Block Copolymer Materials on Two-Dimensional Chemically Patterned Templates with Mismatched Symmetry, Physical Review Letters, vol. 96, (Jan. 24, 2006), pp. 036104-1-036104-4.
Darling, Directing the Self-Assembly of Block Copolymers, Progress in Polymer Science, vol. 32, No. 10, (Jun. 2, 2007), pp. 115-1204.
Desai et al., Engineered Silicon Surfaces for Biomimetic Interfaces, Business Briefing: Medical Device Manufacturing & Technology, (2002), pp. 1-4.
Kim et al., Hybrid Nanofabrication Processes Utilizing Diblock Copolymer Nanotemplate Prepared by Self-Assembled Monolayer Based Surface Neutralization, J. Vac. Sci. Technol. B, vol. 26, No. 1, (Jan./Feb. 2008), pp. 189-194.
Kim et al., In Vitro Release Behavior of Dextran-methacrylate Hydrogels Using Doxorubicin and Other Model Compounds, J. Biomater. Appl., vol. 15, No. 1, (Jul. 2000), pp. 23-46, (Abstract only).
Kim et al., Novel Complex Nanostructure from Directed Assembly of Block Copolymers on Incommensurate Surface Patterns, Adv. Mater., vol. 19, (2007), pp. 3271-3275.
Kim et al., Salt Complexation in Block Copolymer Thin Films, Macromolecules, vol. 39, No. 24, (2006), pp. 8473-8479.
Kim et al., Self-Assembled Hydrogel Nanoparticles Composed of Dextran and Poly(ethylene glycol) Macromer, Int. J. Pharm., vol. 205, No. 2, (Sep. 15, 2000), pp. 109-116, (Abstract only).
Kim et al., Solvent-Induced Ordering in Thin Film Diblock Copolymer/Homopolymer Mixtures, Advanced Mater., vol. 16, No. 2✓ 24, (Dec. 17, 2004), pp. 2119-2123.
Kim et al., Synthesis and Characterization of Dextran-methacrylate Hydrogels and Structural Study by SEM, J. Biomater. Res., vol. 49, No. 4, (Mar. 15, 2000), pp. 517-527, (only).
Knoll et al., Phase Behavior in Thin Films of Cylinder-Forming Block Copolymers, Physical Review Letters, vol. 89, No. 3, (Jul. 15, 2002), pp. 035501-1-035501-4.
Korean Office Action for Korean Application No. 10-2010-7019788 dated May 30, 2012, 7 pages, with translation.
Korean Second Office Action for Korean Application No. 10-2010-7019788 dated Dec. 31, 2012, 11 pages, with translation.
Korean Written Opinion for Korean Application No. 10-2010-7019788 dated Mar. 29, 2013, 9 pages with translation.
Korean Third Office Action for Korean Application No. 10-2010-7019788 dated Dec. 4, 2013, 10 pages, with translation.
Korean Written Opinion for Korean Application No. 10-2010-7019788 dated Mar. 4, 2014, 4 pages, with translation.
Korean Final Office Action for Korean Application No. 10-2010-7019788 dated Aug. 26, 2013, 5 pages, with translation.
Krishnamoorthy et al., Block Copolymer Micelles as Switchable Templates for Nanofabrication, Langmuir, vol. 22, No. 8, (2006), pp. 3450-3452.
Krishnamoorthy et al., Nanopattemed Self-Assembled Monolayers by Using Diblock Copolymer Micelles as Nanometer-Scale Adsorption and Etch Masks, Advanced Materials, (2008), pp. 1-4.
Krishnamoorthy et al., Nanoscale Patterning with Block Copolymers, Materials Today, vol. 9, No. 9, (Sep. 2006), pp. 40-47.
Korean Written Opinion for Korean Application No. 10-2010-7019788 dated Jul. 30, 2012, 6 pages, with translation.
Kuhnline et al., Detecting Thiols in a Microchip Device Using Micromolded Carbon Ink Electrodes Modified with Cobalt Phthalocyanine, Analyst, vol. 131, (2006), pp. 202-207.
La et al., Directed Assembly of Cylinder-Forming Block Copolymers into Patterned Structures to Fabricate Arrays of Spherical Domains and Nanoparticles, Chem. Mater., vol. 19, No. 18, (2007), pp. 4538-4544.
La et al., Pixelated Chemically Amplified Resists: Investigation of Material Structure on the Spatial Distribution of Photoacids and Line Edge Roughness, J. Vac. Sci. Technol. B, vol. 25, No. 6, (Nov./Dec. 2007), pp. 2508-2513.
Lacour et al., Stretchable Gold Conductors on Elastomeric Substrates, Applied Physics Letters, vol. 82, No. 15, (Apr. 14, 2003), pp. 2404-2406.
Laracuente et al., Step Structure and Surface Morphology of Hydrogen-Terminated Silicon: (001) to (114), Surface Science, vol. 545, (2003), pp. 70-84.
Lentz et al., Whole Wafer Imprint Patterning Using Step and Flash Imprint Lithography: A Manufacturing Solution for Sub 100 nm Patterning, SPIE Emerging Lithographic Technologies, vol. 6517, (Mar. 16, 2007), 10 pages.
Li et al., A Method for Patterning Multiple Types of Cells by Using Electrochemical Desorption of Self-Assembled Monolayers within Microfluidic Channels, Angew. Chem. Int. Ed., vol. 46, (2007), pp. 1094-1096.
Li et al., Block Copolymer Patterns and Templates, Materials Today, vol. 9, No. 9, (Sep. 2006), pp. 30-39.
Li et al., Creation of Sub-20-nm Contact Using Diblock Copolymer on a 300 mm Wafer for Complementary Metal Oxide Semiconductor Applications, J. Vac. Sci. Technol. B, vol. 25, No. 6, (Nov./Dec. 2007), pp. 1982-1984.
Li et al., Morphology Change of Asymmetric Diblock Copolymer Micellar Films During Solvent Annealing, Polymer, vol. 48, (2007), pp. 2434-2443.
Li et al., Ordered Block-Copolymer Assembly Using Nanoimprint Lithography, Nano Lett. (2004), vol. 4, No. 9, pp. 1633-1636.
Lin et al., A Rapid Route to Arrays of Nanostructures in Thin Films, Adv. Mater., vol. 14, No. 19, (Oct. 2, 2002), pp. 1373-1376.
Lin-Gibson et al., Structure-Property Relationships of Photopolymerizable Poly(ethylene glycol) Dimethacrylate Hydrogels, Macromolecules, vol. 38, (2005), pp. 2897-2902.
Liu et al., Pattern Transfer Using Poly(styrene-block-methyl methacrylate) Copolymer Films and Reactive Ion Etching, J. Vac. Sci. Technol. B, vol. 25, No. 6, (Nov./Dec. 2007), pp. 1963-1968.
Loo et al., Additive, Nanoscale Patterning of Metal Films with a Stamp and a Surface Chemistry Mediated Transfer Process: Applications in Plastic Electronics, Applied Physics Letters, vol. 81, No. 3, (Jul. 15, 2002), pp. 562-564.
Lopes et al., Hierarchical Self-Assembly of Metal Nanostructures on Diblock Copolymer Scaffolds, Nature, vol. 414, (Dec. 13, 2001), pp. 735-738.
Lutolf et al., Cell-Responsive Synthetic Hydrogels, Adv. Mater., vol. 15, No. 11, (Jun. 2003), pp. 888-892.
Lutolf et al., Synthetic Biomaterials as Instructive Extracellular Microenvironments for Morphogenesis in Tissue Engineering, Nature Biotechnology, vol. 23, (2005), pp. 47-55, (Abstract only).
Lutz, 1,3-Dipolar Cycloadditions of Azides and Alkynes: A Universal Ligation Tool in Polymer and Materials Science, Angew. Chem. Int. Ed., vol. 46, (2007), pp. 1018-1025.
Malenfant et al., Self-Assembly of an Organic-Inorganic Block Copolymer for Nano-Ordered Ceramics, Nature Nanotechnology, vol. 2, (Jan. 2007), pp. 43-46.
Malkoch et al., Synthesis of Well-Defined Hydrogel Networks Using Click Chemistry, Chem. Commun., (2006), pp. 2774-2776.
Mansky et al., Controlling Polymer-Surface Interactions with Random Copolymer Brushes, Science, vol. 275, (Mar. 7, 1997), pp. 1458-1460.
Martens et al., Characterization of Hydrogels Formed from Acrylate Modified Poly(vinyl alcohol) Macromers, Polymer, vol. 41, No. 21, (Oct. 2000), pp. 7715-7722, (Abstract only).
Matsuda et al., Photoinduced Prevention of Tissue Adhesion, ASAIO J, vol. 38, No. 3, (Jul.-Sep. 1992), pp. M154-7, (Abstract only).
Maye et al., Chemical Analysis Using Force Microscopy, Journal of Chemical Education, vol. 79, No. 2, (Feb. 2002), pp. 207-210.
Melde et al., Silica Nanostructures Templated by Oriented Block Copolymer Thin Films Using Pore-Filling and Selective-Mineralization Routes, Chem. Mater., vol. 17, No. 18, (Aug. 13, 2005), pp. 4743-4749.
Metters et al., Network Formation and Degradation Behavior of Hydrogels Formed by Michael-Type Addition Reactions, Biomacromolecules, vol. 6, (2005), pp. 290-301.
Meyer et al., Controlled Dewetting Processes on Microstructured Surfaces—a New Procedure for Thin Film Microstructuring, Macromollecular Mater Eng., vol. 276/277, (2000), pp. 44-50.
Mezzenga et al., On the Role of Block Copolymers in Self-Assembly of Dense Colloidal Polymeric Systems, Langmuir, vol. 19, No. 20, (2003), pp. 8144-8147.
Mindel et al., A Study of Bredig Platinum Sols, The Chemical Laboratories of New York University, vol. 65, (Jun. 10, 1943), p. 2112.
Naito et al., 2.5-Inch Disk Patterned Media Prepared by an Artificially Assisted Self-Assembling Method, IEEE Transactions on Magnetics, vol. 38, No. 5, (Sep. 2002), pp. 1949-1951.
Nealey et al., Self-Assembling Resists for Nanolithography, 2005 Electron Devices Meeting, IEDM Technical Digest, (2005), 2 pages.
Edwards et al., Mechanism and Kinetics of Ordering in Diblock Copolymer Thin Films on Chemically Nanopatterned Substrates, Journal of Polymer Science: Part B: Polymer Physics, vol. 43, (2005), pp. 344✓ 3459.
Edwards et al., Precise Control over Molecular Dimensions of Block-Copolymer Domains Using the Interfacial Energy of Chemically Nanopatterned Substrates, Advanced Mater., vol. 16, No. 15, (Aug. 4, 2004), pp. 131X 1319.
Elisseeff et al., Photoencapsulation of Chondrocytes in Poly(ethylene oxide)-Based Semi-interpenetrating Networks, Journal of Biomedical Materials Research, vol. 51, No. 2, (Aug. 2000), pp. 16✓ 171, (Abstract only).
European Office Action for European Application No. 09707891.9 dated Apr. 5, 2013, 4 pages.
Erlandsson et al., Metallic Zinc Reduction of Disulfide Bonds Between Cysteine Residues in Peptides and Proteins, Int'l J. Peptide Res. & Therapeutics, vol. 11, No. 4, (Dec. 2005), pp. 26/ 265.
Fasolka et al., Block Copolymer Thin Films: Physics and Applications, Annual Review of Materials Res., vol. 31, (Aug. 2001), pp. 32✓ 355.
Fasolka et al., Morphology of Ultrathin Supported Diblock Copolymer Films: Theory and Experiment, Macromolecules, vol. 33, No. 15, (2000), pp. 5702-5712.
Fujita et al., Thin Silica Film with a Network Structure as Prepared by Surface Sol-Gel Transcription on the Poly (styrene-b-4-vinylpyridine) Polymer Film, Chemistry Letters, vol. 32, No. 4, (Mar. 13, 2003), pp. 35, 353.
Fukunaga et al., Self-Assembly of Block Copolymer Thin Films Having a Half-Domain-Spacing Thickness: Nonequilibrium Pathways to Achieve Equilibrium Brush Layers Parallel to Substrate, Macromolecules, vol. 39, (Aug. 2006), pp. 617/ 6179.
Gates et al., Unconventional Nanofabrication, Annu. Rev. Mater. Res., vol. 34, (2004), pp. 33+ 372.
Gates, Nanofabrication with Molds & Stamps, Materials Today, (Feb. 2005), pp. 4✓ 49.
Ge et al., Thermal Conductance of Hydrophilic and Hydrophobic Interfaces, Physical Review Letters, vol. 96, (May 8, 2006), pp. 186101-186101-4.
Gelest, Inc., Silane Coupling Agents: Connecting Across Boundaries, v2.0, ( 2006), pp. 56.
Genua et al., Functional Patterns Obtained by Nanoimprinting Lithography and Subsequent Growth of Polymer Brushes, Nanotechnology, vol. 18, (2007), pp. 7.
Gillmor et al., Hydrophilic/Hydrophobic Patterned Surfaces as Templates for DNA Arrays, Langmuir, vol. 16, No. 18, (2000), pp. 7221 7228.
Grubbs, Hybrid Metal-Polymer Composites from Functional Block Copolymers, J. of Polymer Sci.: Part A: Polymer Chemistry, vol. 43, Issue 19, (Oct. 1, 2005), pp. 432✓ 4336.
Guarini et al., Nanoscale Patterning Using Self-Assembled Polymers for Semiconductor Applications, J. Vac. Sci. Technol. B 19(6), (Nov./Dec. 2001), pp. 278✓ 2788.
Gudipati et al., Hyperbranched Fluoropolymer and Linear Poly(ethylene glycol) Based Amphiphilic Crosslinked Networks as Efficient Antifouling Coatings: An Insight into the Surface Compositions, Topographies, and Morphologies, Journal of Polymer Science: Part A: Polymer Chemistry, vol. 42, (2004), pp. 619✓ 6208.
Guo et al, Synthesis and Characterization of Novel Biodegradable Unsaturated Poly(ester amide)/Poly(ethylene glycol) Diacrylate Hydrogels, Journal of Polymer Science Part A: Polymer Chemistry, vol. 43, Issue 17, (2005), pp. 393/ 3944 (Abstract only).
Hadziioannou, Semiconducting Block Copolymers for Self-Assembled Photovoltaic Devices, MRS Bulletin, (Jun. 2002), pp. 45X 460.
Hamers, Passivation and Activation: How Do Monovalent Atoms Modify the Reactivity of Silicon Surfaces? A Perspective on the Article, “The Mechanism of Amine Formation on Si(100) Activated with Chlorine Atoms”, by C.C. Finstad, A.D. Thorsness, and A.J. Muscat, Surface Sci., vol. 600, (2006), pp. 336/ 3362.
Hamley, I. W., Introduction to Block Copolymers, Developments in Block Copolymers Science and Technology, John Wiley & Sons, Ltd., (2004), pp. 29.
Hammond et al., Temperature Dependence of Order, Disorder, and Defects in Laterally Confined Diblock Copolymer Cylinder Monolayers, Macromolecules, vol. 38, (Jul. 2005), pp. 657X 6585.
Harrison et al., Layer by Layer Imaging of Diblock Copolymer Films with a Scanning Electron Microscope, Polymer, vol. 39, No. 13, (1998), pp. 273✓ 2744.
Hawker et al., Facile Synthesis of Block Copolymers for Nanolithographic Applications, Polymer Preprints, American Chemical Society, vol. 46, No. 2, (2005), pp. 23+ 240.
Hawker et al., Improving the Manufacturability and Structural Control of Block Copolymer Lithography, Abstracts of Papers, 232nd ACS National Meeting, San Francisco, CA, (Sep. 10-14, 2006), 1 page, (Abstract only).
Hayward et al., Crosslinked Poly(styrene)-block-Poly(2-vinylpyridine) Thin Films as Swellable Templates for Mesostructured Silica and Titania, Advanced Materials, vol. 17, (2005), pp. 259/ 2595.
He et al., Self-Assembly of Block Copolymer Micelles in an Ionic Liquid, J. Am. Chem. Soc., vol. 128, (2006), pp. 274X 2750.
Helmbold et al., Optical Absorption of Amorphous Hydrogenated Carbon Thin Films, Thin Solid Films, vol. 283, (1996), pp. 19X 203.
Helmuth et al., High-Speed Microcontact Printing, J. Am. Chem. Soc., vol. 128, No. 29, (2006), pp. 929X 9297.
Hermans et al., Application of Solvent-Directed Assembly of Block Copolymers to the Synthesis of Nanostructured Materials with Low Dielectric Constants, Angewandte Chem. Int'l. Ed., vol. 45, Issue 40, (Oct. 13, 2006), pp. 664X 6652.
Horiuchi et al., Three-Dimensional Nanoscale Alignment of Metal Nanoparticles Using Block Copolymer Films as Nanoreactors, Langmuir, vol. 19, (2003), pp. 296✓ 2973.
Huang et al., Using Surface Active Random Copolymers to Control the Domain Orientation in Diblock Copolymer Thin Films, Macromolecules, vol. 31, (1998), pp. 764/ 7650.
Hur et al., Nanotransfer Printing by Use of Noncovalent Surface Forces: Applications to Thin-Film Transistors That Use Single-Walled Carbon Nanotube Networks and Semiconducting Polymers, Applied Physics Letters, vol. 85, No. 23, (Dec. 6, 2004), pp. 573, 5732.
Hutchison et al., Polymerizable Living Free Radical Initiators as a Platform to Synthesize Functional Networks, Chem. Mater., vol. 17, No. 19, (2005), pp. 478+ 4797.
Ikeda et al., Control of Orientation of Thin Films of Organic Semiconductors by Graphoepitaxy, Nanotech Japan Bulletin NIMS International Center for Nanotechnology Network., vol. 3, No. 3, (Dec. 17, 2010), 23 pages.
In et al., Side-Chain-Grafted Random Copolymer Brushes as Neutral Surfaces for Controlling the Orientation of Block Copolymer Microdomains in Thin Films, Langmuir, vol. 22, No. 18, (2006), pp. 785X 7860.
International Search Report for International Application No. PCT/US2009/032564 dated Oct. 7, 2009, 6 pages.
International Written Opinion for International Application No. PCT/US2009/032564 dated Oct. 7, 2009, 11 pages.
Ji et al., Generalization of the Use of Random Copolymers to Control the Wetting Behaviors of Block Copolymer Films, Macromolecules, vol. 41, No. 23, (2008), pp. 909X 9103.
Ji et al., Molecular Transfer Printing Using Block Copolymers, ACS Nano, vol. 4, No. 2, (2010), pp. 59+ 609.
Ji et al., Preparation of Neutral Wetting Brushes for Block Copolymer Films from Homopolymer Blends, submitted to Advanced Materials, vol. 20, No. 16, (Jul. 7, 2008), pp. 305✓ 3060.
Jiang et al., Electrochemical Desorption of Self-Assembled Monolayers Noninvasively Releases Patterned Cells from Geometrical Confinements, J. Am. Chem. Soc., vol. 125, No. 9, (2003), pp. 236X 2367.
Johnson et al., Probing the Stability of the Disulfide Radical Intermediate of Thioredoxin Using Direct Electrochemistry, Letters in Peptide Sci., vol. 10, (2003), pp. 49X 500.
Jun et al., Microcontact Printing Directly on the Silicon Surface, Langmuir, vol. 18, No. 9, (2002), pp. 341X 3417, (Abstract only).
Jun et al., Patterning Protein Molecules on Poly(ethylene glycol) Coated Si(111), Biomaterials, vol. 25, (2004), pp. 350✓ 3509.
Karim et al., Control of Ordering Kinetics and Morphology Using Zone Annealing of Thin Block Copolymer Films, Abstract submitted for the Mar. 2007 Meeting of The American Physical Society, (Nov. 20, 2006), 2 pages.
Kavakli et al., Single and Double-Layer Antireflection Coatings on Silicon, Turk J. Phys., vol. 26, (2002), pp. 34+ 354.
Kim et al., Epitaxial Self-Assembly of Block Copolymers on Lithographically Defined Nanopatterned Substrates, Nature, vol. 424, (Jul. 24, 2003), pp. 41/ 414.
Kim et al., Highly Oriented and Ordered Arrays from Block Copolymers via Solvent Evaporation, Adv. Mater., vol. 16, No. 3, (Feb. 3, 2004), pp. 22X 231.
Winesett et al., Tuning Substrate Surface Energies for Blends of Polystyrene and Poly(methyl methacrylate), Langmuir 2003, vol. 19, (2003), pp. 8526-8535.
WIPF, Handbook of Reagents for Organic Synthesis, John Wiley & Sons Ltd., (2005), p. 320.
Wu et al., Self-Assembled Two-Dimensional Block Copolymers on Pre-patterned Templates with Laser Interference Lithography, IEEE, (2007), pp. 153-154.
Xia et al., An Approach to Lithographically Defined Self-Assembled Nanoparticle Films, Advanced Materials, vol. 18, (2006), pp. 930-933.
Xia et al., Soft Lithography, Annu. Rev. Mater. Sci., vol. 28, (1998), pp. 153-184.
Xiao et al., Graphoepitaxy of Cylinder-forming Block Copolymers for Use as Templates to Pattern Magnetic Metal Dot Arrays, Nanotechnology 16, IPO Publishing Ltd, UK (2005), pp. S324-S329.
Xu et al., Electric Field Alignment of Symmetric Diblock Copolymer Thin Films, Macromolecules, (2003), 5 pgs.
Xu et al., Interfacial Interaction Dependence of Microdomain Orientation in Diblock Copolymer Thin Films, Macromolecules, vol. 38, (2005), pp. 2802-2805.
Xu et al., Surface-Initiated Atom Transfer Radical Polymerization from Halogen-Terminated Si(111) (S※ X, X = Cl, Br) Surfaces for the Preparation of Well-Defined Polyme□ Si Hybrids, Langmuir, vol. 21, No. 8, (2005), pp. 3221-3225.
Xu et al., The Influence of Molecular Weight on Nanoporous Polymer Films, Polymer 42, Elsevier Science Ltd., (2001), pp. 9091-9095.
Yamaguchi et al., Resist-Pattern Guided Self-Assembly of Symmetric Diblock Copolymer, Journal of Photopolymer Science and Technology, vol. 19, No. 3, (2006), pp. 385-388.
Yamaguchi et al., Two-dimensional Arrangement of Vertically Oriented Cylindrical Domains of Diblock Copolymers Using Graphoepitaxy with Artificial Guiding Pattern Layout, Microprocesses and Nanotechnology, 2007, Conference date Nov. 5-8, 2007, pp. 434-435.
Yan et al., Preparation and Phase Segregation of Block Copolymer Nanotube Multiblocks, J. Am. Chem. Soc., vol. 126, No. 32, (2004), pp. 10059-10066.
Yang et al., Covalently Attached Graft Polymer Monolayer on Organic Polymeric Substrate via Confined Surface Inhibition Reaction, J. Polymer Sci.-A—Polymer Chemistry Ed., vol. 45, Issue 5, (2007), pp. 745-755.
Yang et al., Guided Self-Assembly of Symmetric Diblock Copolymer Films on Chemically Nanopatterned Substrates, Macromolecules 2000, vol. 33, No. 26, (2000), pp. 9575-9582.
Yang et al., Nanoscopic Templates Using Self-assembled Cylindrical Diblock Copolymers for Patterned Media, J. Vac. Sci. Technol. B 22(6), (Nov./Dec. 2004), pp. 3331-3334.
Yu et al., Contact Printing Beyond Surface Roughness: Liquid Supramolecular Nanostamping, Advanced Materials, vol. 19, (2007), pp. 4338-4342.
Yurt et al., Scission of Diblock Copolymers into Their Constituent Blocks, Macromolecules 2006, vol. 39, No. 5, (2006), pp. 1670-1672.
Zaumseil et al., Three-Dimensional and Multilayer Nanostructures Formed by Nanotransfer Printing, Nano Letters, vol. 3, No. 9,(2003), pp. 1223-1227.
Zehner et al., Selective Decoration of a Phase-Separated Diblock Copolymer with Thiol-Passivated Gold Nanocrystals, Langmuir, vol. 14, No. 2, (Jan. 20, 1998), pp. 241-244.
Zhang et al., Highly Ordered Nanoporous Thin Films from Cleavable Polystyrene-block-poly(ethylene oxide),Adv. Mater., vol. 19, (2007), pp. 1571-1576.
Zhang et al., Phase Change Nanodot Arrays Fabricated Using a Self-Assembly Diblock Copolymer Approach, Applied Physics Letter, vol. 91, (2007), pp. 013104-013104-3.
Zhang et al., Self-Assembled Monolayers of Terminal Alkynes on Gold, J. Am. Chem. Soc., vol. 129, No. 16, (2007), pp. 4876-4877.
Zhao et al., Colloidal Subwavelength Nanostructures for Antireflection Optical Coatings, Optics Letters, vol. 30, No. 14, (Jul. 15, 2005), pp. 1885-1887.
Zhou et al., Nanoscale Metal/Self-Assembled Monolayer/Metal Heterostructures, Appl. Phys. Lett., vol. 71, No. 5, (Aug. 4, 1997), pp. 611-613.
Zhu et al., Grafting of High-Density Poly(Ethylene Glycol) Monolayers on Si(111), Langmuir, vol. 17, (2001), pp. 7798-7803.
Zhu et al., Molecular Assemblies on Silicon Surfaces via Si—O Linkages, Langmuir, vol. 16, (2000), pp. 6766-6772.
Nguyen et al., Photopolymerizable Hydrogels for Tissue Engineering Applications, Biomaterials, vol. 23, (2002), pp. 430x 4314.
Nishikubo, T., Chemical Modification of Polymers via a Phase-Transfer Catalyst or Organic Strong Base, American Chemical Society Symposium Series, (1997), pp. 214-230.
Niu et al., Selective Assembly of Nanoparticles on Block Copolymer by Surface Modification, Nanotechnology, vol. 18, (2007), pp. 1-4.
Niu et al., Stability of Order in Solvent-Annealed Block Copolymer Thin Films, Macromolecules, vol. 36, No. 7, (2003), pp. 2428-2440, (Abstract and Figures only).
Olayo-Valles et al. Large Area Nanolithographic Templates by Selective Etching of Chemically Stained Block Copolymer Thin Films, J. Mater. Chem., vol. 14, (2004), pp. 2729-2731.
Parejo et al., Highly Efficient UV-Absorbing Thin-Film Coatings for Protection of Organic Materials Against Photodegradation, J. Mater. Chem., vol. 16, (2006), pp. 2165-2169.
Park et al., Block Copolymer Lithography: Periodic Arrays of ˜1011 Holes in 1 Square Centimeter, Science, vol. 276, No. 5317, (May 30, 1997), pp. 1401-1404.
Park et al., Block Copolymer Multiple Patterning Integrated with Conventional ArF Lithography, Soft Matter, vol. 6, (2010), pp. 120-125.
Park et al., Controlled Ordering of Block Copolymer Thin Films by the Addition of Hydrophilic Nanoparticles, Macromolecules 2007, vol. 40, No. 22, (2007), pp. 8119-8124.
Park et al., Directed Assembly of Lamellae-Forming Block Copolymers by Using Chemically and Topographically Patterned Substrates, Advanced Materials, vol. 19, No. 4, (Feb. 2007), pp. 607-611.
Park et al., Enabling Nanotechnology with Self Assembled Block Copolymer Patterns, Polymer, vol. 44, No. 22, (2003), pp. 6725-6760.
Park et al., Fabrication of Highly Ordered Silicon Oxide Dots and Stripes from Block Copolymer Thin Films, Advanced Materials, vol. 20, (2008), pp. 681-685.
Park et al., High-Aspect-Ratio Cylindrical Nanopore Arrays and Their Use for Templating Titania Nanoposts, Advanced Materials, vol. 20, (2008), pp. 738-742.
Park et al., The Fabrication of Thin Films with Nanopores and Nanogrooves from Block Copolymer Thin Films on the Neutral Surface of Self-Assembled Monolayers, Nanotechnology, vol. 18, (2007), pp. 1-7.
Peng et al., Development of Nanodomain and Fractal Morphologies in Solvent Annealed Block Copolymer Thin Films, Macromol. Rapid Commun., vol. 28, (2007), pp. 1422-1428.
Peters et al., Combining Advanced Lithographic Techniques and Self-Assembly of Thin Films of Diblock Copolymers to Produce Templates for Nanofabrication, J. Vac. Sci. Technol. B, vol. 18, No. 6, (Nov./Dec. 2000), pp. 3530-3532.
Peters et al., Morphology of Thin Films of Diblock Copolymers on Surfaces Micropatterned with Regions of Different Interfacial Energy, Macromolecules, vol. 35, No. 5, (2002), pp. 1822-1834.
Potemkin et al., Effect of the Molecular Weight of AB Diblock Copolymers on the Lamellar Orientation in Thin Films: Theory and Experiment, Macromol. Rapid Commun., vol. 28, (2007), pp. 579-584.
Reed et al., Molecular Random Access Memory Cell, Appl. Phys. Lett., vol. 78, No. 23, (Jun. 4, 2001), pp. 3735-3737.
Resnick et al., Initial Study of the Fabrication of Step and Flash Imprint Lithography Templates for the Printing of Contact Holes, J. Micro/Nanolithography, MEMS, and MOEMS, vol. 3, No. 2, (Apr. 2004), pp. 316-321.
Rogers, J. A., Slice and Dice, Peel and Stick: Emerging Methods for Nanostructure Fabrication, ACS Nano, vol. 1, No. 3, (2007), pp. 15-153.
Rozkiewicz et al., “Click” Chemistry by Microcontact Printing, Angew. Chem. Int. Ed., vol. 45, No. 32, (Jul. 12, 2006), pp. 5292-5296.
Ruiz et al., Density Multiplication and Improved Lithography by Directed Block Copolymer Assembly, Science, vol. 321, (Aug. 15, 2008), pp. 936-939.
Ruiz et al., Induced Orientational Order in Symmetric Diblock Copolymer Thin-Films, Advanced Materials, vol. 19, No. 4, (2007), pp. 587-591.
Ryu et al., Surface Modification with Cross-Linked Random Copolymers: Minimum Effective Thickness, Macromolecules, vol. 40, No. 12, (2007), pp. 4296-4300.
Saraf et al., Spontaneous Planarization of Nanoscale Phase Separated Thin Film, Applied Physics Letters, vol. 80, No. 23, (Jun. 10, 2002), pp. 4425-4427.
Sato et al., Novel Antireflective Layer Using Polysilane for Deep Ultraviolet Lithography, J. Vac. Sci. Technol. B, vol. 17, No. 6, (Nov./Dec. 1999), pp. 3398-3401.
Sawhney et al., Bioerodible Hydrogels Based on Photopolymerized Poly(ethylene glycol)-co-poly(a-hydroxy acid) Diacrylate Macromers, Macromolecules 1993, vol. 26, (1993), pp. 581-587, abstract only.
Segalman, R. A., Patterning with Block Copolymer Thin Films, Materials Science and Engineering R 48, (2005), pp. 191-226.
Shahrjerdi et al., Fabrication of Ni Nanocrystal Flash Memories Using a Polymeric Self-Assembly Approach, IEEE Electron Device Letters, vol. 28, No. 9, (Sep. 2007), pp. 793-796.
Sharma et al., Ultrathin Poly(ethylene glycol) Films for Silicon-based Microdevices, Applied Surface Science, vol. 206, (2003), pp. 218-229.
Sigma-Aldrich, 312-315 Tutorial regarding Materials for Lithography/Nanopatterning, http://www.sigmaaldrich.com/Area_of_Interest/Chemistry/Materials_Science/Micro_and_Nanoelectronic website, (retrieved Aug. 27, 2007), 8 pages.
Sivaniah et al., Observation of Perpendicular Orientation in Symmetric Diblock Copolymer Thin Films on Rough Substrates, Macromolecules 2003, vol. 36, (2003), pp. 5894-5896.
Sivaniah et al., Symmetric Diblock Copolymer Thin Films on Rough Substrates, Kinetics and Structure Formation in Pure Block Copolymer Thin Films, Macromolecules 2005, vol. 38, (2005), pp. 1837-1849.
Sohn et al., Fabrication of the Multilayered Nanostructure of Alternating Polymers and Gold Nanoparticles with Thin Films of Self-Assembling Diblock Copolymers, Chem. Mater., vol. 13, (2001), pp. 1752-1757.
Solak, H. H., Nanolithography with Coherent Extreme Ultraviolet Light, Journal of Physics D: Applied Physics, vol. 39, (2006), pp. R171-188.
Srinvivasan et al., Scanning Electron Microscopy of Nanoscale Chemical Patterns, ACS Nano, vol. 1, No. 3, (2007), pp. 191-201.
Stoykovich et al., Directed Assembly of Block Copolymer Blends into Nonregular Device-Oriented Structures, Science, vol. 308, (Jun. 3, 2005), pp. 1442-1446.
Stoykovich, M. P., et al., Directed Self-Assembly of Block Copolymers for Nanolithography: Fabrication of Isolated Features and Essential Integrated Circuit Geometries, ACS Nano, vol. 1, No. 3, (2007), pp. 168-175.
Sundrani et al., Guiding Polymers to Perfection: Macroscopic Alignment of Nanoscale Domains, Nano Lett., vol. 4, No. 2, (2004), pp. 273-276.
Sundrani et al., Hierarchical Assembly and Compliance of Aligned Nanoscale Polymer Cylinders in Confinement, Langmuir 2004, vol. 20, No. 12, (2004), pp. 5091-5099.
Tadd et al., Spatial Distribution of Cobalt Nanoclusters in Block Copolymers, Langmuir, vol. 18, (2002), pp. 2378-2384.
Tang et al., Evolution of Block Copolymer Lithography to Highly Ordered Square Arrays, Science, vol. 322, No. 5900, (Sep. 25, 2008), pp. 429-432.
Trimbach et al., Block Copolymer Thermoplastic Elastomers for Microcontact Printing, Langmuir, vol. 19, (2003), pp. 10957-10961.
Truskett et al., Trends in Imprint Lithography for Biological Applications, Trends in Biotechnology, vol. 24, No. 7, (Jul. 2006), pp. 312-315.
Tseng et al., Enhanced Block Copolymer Lithography Using Sequential Infiltration Synthesis, J. of Physical Chemistry, (Jul. 11, 2011), 16 pgs.
Search Report of the Taiwanese Application No. 098103713, dated Aug. 9, 2012, 2 pages.
Van Poll et al., Self-Assembly Approach to Chemical Micropatterning of Poly(dimethylsiloxane), Angew. Chem. Int. Ed. 2007, vol. 46, (2007), pp. 6634-6637.
Wang et al., One Step Fabrication and characterization of Platinum Nanopore Electrode Ensembles formed via Amphiphilic Block Copolymer Self-assembly, Electrochimica Acta 52, (2006), pp. 704-709.
Wathier et al., Dendritic Macromers as in Situ Polymerizing Biomaterials for Securing Cataract Incisions, J. Am. Chem. Soc., vol. 126, No. 40, (2004), pp. 12744-12745, abstract only.
Related Publications (1)
Number Date Country
20180281499 A1 Oct 2018 US
Divisions (2)
Number Date Country
Parent 14669612 Mar 2015 US
Child 16004063 US
Parent 12026214 Feb 2008 US
Child 14669612 US