As semiconductor technology advances for higher processor performance, advances in packaging architectures may include coreless package structures, such as bumpless build-up Layer (BBUL-C) package architectures and other such assemblies. Current process flows for coreless packages involve building the substrate up on a temporary core/carrier capped with copper foil, which is then etched off after the package is separated from the core.
While the specification concludes with claims particularly pointing out and distinctly claiming certain embodiments, the advantages of these embodiments can be more readily ascertained from the following description of the invention when read in conjunction with the accompanying drawings in which:
a-1r represent cross-sectional views of structures accord to embodiments.
In the following detailed description, reference is made to the accompanying drawings that show, by way of illustration, specific embodiments in which the methods and structures may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the embodiments. It is to be understood that the various embodiments, although different, are not necessarily mutually exclusive. For example, a particular feature, structure, or characteristic described herein, in connection with one embodiment, may be implemented within other embodiments without departing from the spirit and scope of the embodiments. In addition, it is to be understood that the location or arrangement of individual elements within each disclosed embodiment may be modified without departing from the spirit and scope of the embodiments. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the embodiments is defined only by the appended claims, appropriately interpreted, along with the full range of equivalents to which the claims are entitled. In the drawings, like numerals may refer to the same or similar functionality throughout the several views.
Methods and associated structures of forming and utilizing microelectronic structures, such as package structures/substrates comprising dual sided solder resist with back side land side capacitors, are described. Those methods/structures may include forming a nickel coating on a first and second side of a core, forming a conductive plating on the nickel coating, forming building up layers on the conductive plating to form a first and second panel disposed on the first and second sides of the core, de-paneling the panels from the core, forming a laminate on the first and second sides of the panels, and forming a land side capacitor (LSC) on a backside of the panels. The coreless package structures of he embodiments herein enable dual sided processing of coreless architectures, wherein the coreless substrates comprise dual sided solder resist on the outer surface with backside LSC capability.
a-1r depict cross-sectional views of embodiments of forming coreless panel substrate structures. In
The prepreg material 102, the thin and thick foils 102, 104 (which may comprise copper foils in an embodiment), and the conductive coating 108, may be pressed together utilizing a suitable pressing techniques 109 with which to form a prepreg core 107 comprising the conductive coating 108 on (
In an embodiment, a conductive plating 112 may be formed on the conductive coating 108 disposed on the first side 111 and the second side 113 of the prepreg core 107 (
In an embodiment, the mask resist 110 may be removed using a suitable removal process 117 (
Openings 116 may be formed in the dielectric material 14 (
A dry film resist 124 may be laminated on the first and second panels 126, 126′ (
The dry film resist 124 provides protection for the top conductive layers of the build up layers 122. The dry film resist 124 may be removed 130 from both the panels 126, 126′ (
A surface finish may be performed, wherein pads 136 may be formed in the openings 134 in the laminate 134 that is disposed on both sides 133, 135 of the coreless substrates 127, 127′ (
A land side capacitor 140 may be attached to the land side capacitor conductive bumps 139 disposed on the second side 135 of the coreless substrates 127, 127′ (
The various embodiments of the package structures herein enable the fabrication of low cost, dual sided, coreless substrates comprising dual sided solder resist. Land side capacitors are enabled on the backside of a package structure according to embodiments included herein. LSC on the backside of packages enables ball grid array (BGA) package backside LSC, as well as other types of packages that may utilize LSC incorporation.
In an embodiment, the package substrates of the embodiments herein (such as the package structures depicted in
In an embodiment, the package structures of the embodiments herein may comprise any type of package substrate capable of providing electrical communications between a microelectronic device, such as a die and a next-level component to which the package structures may be coupled (e.g., a circuit board). In another embodiment, the package substrates herein may comprise any suitable type of package structures capable of providing electrical communication between a die and an upper integrated circuit (IC) package coupled with the device layer.
In some embodiments the package substrate/structure may further comprise a plurality of dies, which may be stacked upon one another, depending upon the particular embodiment. In some cases the die(s) may be located/attached/embedded on either the front side, back side or on/in some combination of the front and back sides of a package structure. In an embodiment, the die(s) may be partially or fully embedded in a package structure of the embodiments. The package structure may comprise a multi-chip 3D package or a portion of a system on a chip structure, for example, that may include a central processing unit (CPU) in combination with other devices, in an embodiment.
Turning now to
System 300 may comprise any type of computing system, such as, for example, a hand-held or mobile computing device (e.g., a cell phone, a smart phone, a mobile internet device, a music player, a tablet computer, a laptop computer, a nettop computer, etc.). However, the disclosed embodiments are not limited to hand-held and other mobile computing devices and these embodiments may find application in other types of computing systems, such as desk-top computers and servers.
Mainboard 310 may comprise any suitable type of circuit board or other substrate capable of providing electrical communication between one or more of the various components disposed on the board. In one embodiment, for example, the mainboard 310 comprises a printed circuit board (PCB) comprising multiple metal layers separated from one another by a layer of dielectric material and interconnected by electrically conductive vias. Any one or more of the metal layers may be formed in a desired circuit pattern to route—perhaps in conjunction with other metal layers—electrical signals between the components coupled with the board 310. However, it should be understood that the disclosed embodiments are not limited to the above-described PCB and, further, that mainboard 310 may comprise any other suitable substrate.
In addition to the package structure 340, one or more additional components may be disposed on either one or both sides 312, 314 of the mainboard 310. By way of example, as shown in the figures, components 301a may be disposed on the first side 312 of the mainboard 310, and components 301b may be disposed on the mainboard's opposing side 314. Additional components that may be disposed on the mainboard 310 include other IC devices (e.g. processing devices, memory devices, signal processing devices, wireless communication devices, graphics controllers and/or drivers, audio processors and/or controllers, etc.), power delivery components (e.g., a voltage regulator and/or other power management devices, a power supply such as a battery, and/or passive devices such as a capacitor), and one or more user interface devices (e.g., an audio input device, an audio output device, a keypad or other data entry device such as a touch screen display, and/or a graphics display, etc.), as well as any combination of these and/or other devices.
In one embodiment, the computing system 300 includes a radiation shield. In a further embodiment, the computing system 300 includes a cooling solution. In yet another embodiment, the computing system 300 includes an antenna. In yet a further embodiment, the assembly 300 may be disposed within a housing or case. Where the mainboard 4310 is disposed within a housing, some of the components of computer system 300—e.g., a user interface device, such as a display or keypad, and/or a power supply, such as a battery—may be electrically coupled with the mainboard 310 (and/or a component disposed on this board) but may be mechanically coupled with the housing.
In an embodiment, the electronic system 400 is a computer system that includes a system bus 420 to electrically couple the various components of the electronic system 400 The system bus 420 is a single bus or any combination of busses according to various embodiments. The electronic system 400 includes a voltage source 430 that provides power to the integrated circuit 410. In some embodiments, the voltage source 430 supplies current to the integrated circuit 410 through the system bus 420.
The integrated circuit 410 is electrically, communicatively coupled to the system bus 420 and includes any circuit, or combination of circuits according to an embodiment, including the package/device of the various embodiments included herein. In an embodiment, the integrated circuit 410 includes a processor 412 that can include any type of packaging structures according to the embodiments herein. As used herein, the processor 412 may mean any type of circuit such as, but not limited to, a microprocessor, a microcontroller, a graphics processor, a digital signal processor, or another processor. In an embodiment, the processor 412 includes any of the embodiments of the package structures disclosed herein, in an embodiment, SRAM embodiments are found in memory caches of the processor.
Other types of circuits that can be included in the integrated circuit 410 are a custom it or an application-specific integrated circuit (ASIC), such as a communications circuit 414 for use in wireless devices such as cellular telephones, smart phones, pagers, portable computers, two-way radios, and similar electronic systems. In an embodiment, the processor 412 includes on-die memory 416 such as static random-access memory (SRAM). In an embodiment, the processor 412 includes embedded on-die memory 416 such as embedded dynamic random-access memory (eDRAM).
In an embodiment, the integrated circuit 410 is complemented with a subsequent integrated circuit 411. In an embodiment, the dual integrated circuit 411 includes embedded on-die memory 417 such as eDRAM. The dual integrated circuit 411 includes an RFIC dual processor 413 and a dual communications circuit 415 and dual on-die memory 417 such as SRAM. The dual communications circuit 415 may be configured for RF processing.
At least one passive device 480 is coupled to the subsequent integrated circuit 411. In an embodiment, the electronic system 400 also includes an external memory 440 that in turn may include one or more memory elements suitable to the particular application, such as a main memory 442 in the form of RAM, one or more hard drives 444, and/or one or more drives that handle removable media 446, such as diskettes, compact disks (CDs), digital variable disks (DVDs), flash memory drives, and other removable media known in the art. The external memory 440 may also be embedded memory 448. In an embodiment, the electronic system 400 also includes a display device 450, and an audio output 460.
In an embodiment, the electronic system 400 includes an input device such as a controller 470 that may be a keyboard, mouse, touch pad, keypad, trackball game controller, microphone, voice-recognition device, or any other input device that inputs information into the electronic system 400. In an embodiment, an input device 470 includes a camera. In an embodiment, an input device 470 includes a digital sound recorder. In an embodiment, an input device 470 includes a camera and a digital sound recorder.
Although the foregoing description has specified certain steps and materials that may be used in the methods of the embodiments, those skilled in the art will appreciate that many modifications and substitutions may be made. Accordingly, it is intended that all such modifications, alterations, substitutions and additions be considered to fall within the spirit and scope of the embodiments as defined by the appended claims. In addition, the Figures provided herein illustrate only portions of exemplary microelectronic devices and associated package structures that pertain to the practice of the embodiments. Thus the embodiments are not limited to the structures described herein.