Integrated circuits are often manufactured by means of a manufacturing process in which layers are formed on top of each other on a substrate by means of several process steps. One of the process steps is photolithography which may use electromagnetic radiation in the deep ultraviolet (DUV) spectral range or in the extreme ultraviolet (EUV) spectral range. The substrate is often a Silicon wafer. The smallest dimensions of the manufactured structures are in the nanometer range.
During the manufacturing process there is a need to inspect the manufactured structures and/or to measure characteristics of the manufactured structures. Suitable inspection and metrology apparatuses are known in the art. One of the known metrology apparatuses is a scatterometer and, for example, a dark field scatterometer.
Patent application publication US2016/0161864A1, patent application publication US2010/0328655A1 and patent application publication US2006/0066855A1 discus embodiments of a photolithographic apparatus and embodiments of a scatterometer. The cited documents are herein incorporated by reference in their entirety.
In a particular type of integrated circuit, such as a 3D-NAND memory device, a staircase profile is created. This staircase is needed to make contacts to the individual memory planes in the 3D-NAND device. This staircase is created by repeatedly removing a thin layer of resist followed by an etch step into a new bi-layer. This is repeated N times where N is the number of bi-layers. For many bi-layers the initial resist pattern needs to be very thick to about 10 μm. Moreover the lithography process for making this resist pattern is designed to create a sidewall angle of about 70 to 80 degrees, since this creates the best staircase profile.
Such device is depicted in
During the manufacturing of a 3D-NAND device, it is important that the relative alignment between the opening 100 in layer 102 and structures in layer 106, wherein layer 106 is a base layer, is precisely known. Such measure is known as overlay between opening 100 and structures in layer 106, for example structures such as lines 105. Overlay is known to be accurately measured with a metrology tool, as described in previously cited US patent applications. Overlay may be measured with an Image Based Overlay (IBO) tool or with a Diffraction Based Overlay (DBO) tool, the way these tools operate being well known and amply described in the state of the art.
A problem in measuring overlay with an IBO tool, due to the large distance between the two layers of interest (20 microns for example), is defocused images, i.e. if layer 102 is well in focus of the impinging illuminating radiation, structures in layer 106 are out of focus of the impinging illuminating radiation, which leads to an image of poor quality, and therefore to imprecision in calculating overlay. A solution is to measure the device twice, each time with the beam of radiation being focused first on the top layer, and then on the bottom layer. Such approach helps in improving measured overlay, but it leads, however, to increased time for metrology measurements, leading to decreased throughput in the overall metrology and manufacturing process.
It is an object of the present invention to provide a method to measure a parameter of a lithographic process, such as overlay, comprising a single image acquisition. The measured image is not limited to the image plane, which is a known element of metrology apparatus, well described in the state of the art, but the measured image may be formed also if an imaging sensor is placed in the pupil plane of a metrology apparatus, which is also known and well described in the state of the art. With a single image acquisition, which is suitable to allow accurate overlay measurements, the throughput of metrology is improved at least twofold.
According to the invention, a method to measure a parameter of a manufacturing process is disclosed, the method comprising illuminating a target with radiation, detecting the scattered radiation from the target, determining the parameter of interest from an asymmetry of the detected radiation. Further, according to the method, the asymmetry is calculated as the integral of the measured signal.
Further according to the invention, a method to measure a parameter of a manufacturing process is disclosed, the method comprising illuminating a target with radiation from a radiation source of an optical instrument, wherein the target is fabricated with the manufacturing process, wherein the radiation has a symmetry with regard to an axis, for example the optical axis of the optical instrument.
Further according to the invention, a target suitable for metrology is disclosed, the target comprising a first structure in a first layer, a second structure in a second layer, wherein the second structure comprises at least two lithographically formed gratings, and wherein the first structure comprises at least a first lithographically formed opening. Further, according to the target, the opening of the first structure is a V-groove. Further, according to the target, the gratings of the second structure are 2 longitudinal bars or gratings. Further according to the invention, a target for metrology is disclosed, the target comprising a V-groove structure.
a) illustrates a structure which does not comprise structures in layer 106. The scattered radiation, as detected on an image sensor is depicted in
In an embodiment, the largest width of the opening 100, close to the surface of layer 102, is 5 microns. In an embodiment, the distance between the two elements 105 (element 104 in
In an embodiment, the overlay is proportional with the asymmetry measured, as depicted for example in
In an embodiment, the asymmetry of the measured signal may be determined by measuring the total area between the curve and the horizontal axis. In an embodiment, the asymmetry may be determined by measuring the integral of the measured signal with respect to the horizontal axis. In an embodiment, the asymmetry may be measured by first determining the position of each satellite peaks, and using as measured asymmetry the difference in values between the signals measured at those locations, i.e. at the locations where the peaks of the satellites are identified.
In an embodiment, the illuminating radiation is symmetrical, for example the averaged angle of incidence is 0. If non-symmetrical illumination may be used, one measured twice the same target from two directions with symmetrical angles (from opposite sides). In such non-symmetrical (oblique) illumination, the measured signal is asymmetric, even if there is no overlay. The asymmetry due to the oblique illumination may be removed by adding the two measured signals.
In an embodiment, a method is further expanded by measuring two targets: first target comprising no elements 105, therefore the signal is caused mainly the opening in layer 102, and second target comprising the target as depicted in
It is to be noted that the embodiments of
This application claims priority of U.S. application 62/733,490 which was filed on Sep. 19, 2019 and which is incorporated herein in its entirety by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/075143 | 9/19/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62733490 | Sep 2018 | US |