1. Technical Field
One or more embodiments of the present invention relate to microphones, and specifically, to a microphone in which a microphone chip (acoustic sensor) is accommodated in a package.
2. Related Art
For example, U.S. Pat. No. 7,166,910 describes a MEMS (Micro Electro Mechanical Systems) microphone manufactured using the MEMS technique. In the microphone described in FIG. 1 of U.S. Pat. No. 7,166,910, a package is configured by a substrate and a cover, a microphone chip and a circuit element are arranged side by side on an upper surface of the substrate, and an acoustic perforation is opened in the cover. Furthermore, in the microphone described in FIG. 31 of U.S. Pat. No. 7,166,910, the microphone chip and the circuit element are arranged side by side on the upper surface of the substrate, and the acoustic perforation is opened in the substrate at the lower surface of the microphone chip. Moreover, in the microphone described in FIG. 32 of U.S. Pat. No. 7,166,910, the microphone chip and the circuit element are arranged side by side on the upper surface of the substrate, and the acoustic perforation is opened in the substrate at a position deviated from the microphone chip.
Miniaturization is demanded on electronic devices particularly portable devices, and to this end, components such as a microphone need to be mounted at high density on a small circuit substrate. However, in all the MEMS microphones described in U.S. Pat. No. 7,166,910, it is difficult to miniaturize the microphone and in particular, it is difficult to reduce the occupying area at the time of mounting (hereinafter referred to as the mounting area) because the microphone chip and the circuit element are arranged side by side on the upper surface of the substrate or the lower surface of the cover.
It is effective to miniaturize the microphone chip and the circuit element themselves in order to miniaturize the microphone, but the sensitivity lowers if the microphone chip is miniaturized. Therefore, it is desired to reduce the dimension while maintaining the properties and to reduce the mounting area in the microphone, but these are difficult in conventional microphones.
One or more embodiments of the present invention have been devised to miniaturize the microphone while maintaining the properties of the microphone chip, and in particular, to achieve smaller area of the mounting area.
In accordance with one aspect of one or more embodiments of the present invention, a first microphone according to one or more embodiments of the present invention includes a package including a first member and a second member, at least one of which including a recess, a circuit element installed on an inner surface of the first member, and a microphone chip arranged on a surface on an opposite side of an installing surface of the circuit element.
In the first microphone of one or more embodiments of the present invention, the microphone can be miniaturized by effectively using the vertical space in the package because the circuit element and the microphone chip are accommodated in the package with the microphone chip stacked on the circuit element. In particular, the bottom area of the package can be reduced compared to when the circuit element and the microphone chip are arranged side by side, so that the mounting area of the microphone can be reduced. Furthermore, the performance of the microphone does not lower because the microphone chip and the circuit element themselves do not need to be reduced to miniaturize the microphone.
In accordance with another aspect of one or more embodiments of the present invention, a second microphone according to one or more embodiments of the present invention includes a package including a first member and a second member, at least one of which including a recess, a microphone chip installed on an inner surface of the first member, and a circuit element arranged on a surface on an opposite side of an installing surface of the microphone chip.
In the second microphone of one or more embodiments of the present invention, the microphone can be miniaturized by effectively using the vertical space in the package because the circuit element and the microphone chip are accommodated in the package with the circuit element stacked on the microphone chip. In particular, the bottom area of the package can be reduced compared to when the circuit element and the microphone chip are arranged side by side, so that the mounting area of the microphone can be reduced. Furthermore, the performance of the microphone does not lower because the microphone chip and the circuit element themselves do not need to be reduced to miniaturize the microphone.
In the first and second microphones of one or more embodiments of the present invention, the circuit element and the microphone chip, and the circuit element and the substrate can be connected with the following structure.
For example, if the first member is the substrate and the second member is the cover, that is, if the circuit element and the microphone chip are mounted on the substrate, the microphone terminal arranged on the microphone chip and some of the plurality of input/output terminals arranged on the circuit element may be connected by a wire wiring, and the remaining input/output terminals arranged on the circuit element and the pad portion arranged on the substrate may be connected with a different wire wiring. The input/output terminal may be a terminal used for both input and output, a terminal for input, or a terminal for output (same below).
If the circuit element and the microphone chip are mounted on the substrate with the microphone chip mounted on the circuit element, the microphone terminal arranged on the microphone chip and some of the plurality of input/output terminals arranged on the circuit element may be connected by a through-wiring arranged in the microphone chip, and the remaining input/output terminals arranged on the circuit element and the pad portion arranged on the substrate may be connected by a through-wiring arranged in the circuit element.
If the circuit element and the microphone chip are mounted on the substrate with the microphone chip mounted on the circuit element, the microphone terminal arranged on the microphone chip and some of the plurality of input/output terminals arranged on the circuit element may be connected by a through-wiring arranged in the microphone chip, and the remaining input/output terminals arranged on the circuit element and the pad portion arranged on the substrate may be connected by a wire wiring.
Furthermore, if the circuit element and the microphone chip are mounted on the substrate with the microphone chip mounted on the circuit element, the microphone terminal arranged on the microphone chip and some of the plurality of input/output terminals arranged on the circuit element may be connected by a wire wiring, and the remaining input/output terminals arranged on the circuit element and the pad portion arranged on the substrate may be connected by a through-wiring arranged in the circuit element.
If the circuit element and the microphone chip are mounted on the substrate with the circuit element mounted on the microphone chip, the microphone terminal arranged on the microphone chip and some of the plurality of input/output terminals arranged on the circuit element may be connected by a through-wiring arranged in the circuit element, and the remaining input/output terminals arranged on the circuit element and the pad portion arranged on the substrate may be connected by a wire wiring.
If the first member is the cover and the second member is the substrate, that is, if the circuit element and the microphone chip are mounted on the cover, the microphone terminal arranged on the microphone chip and some of the plurality of input/output terminals arranged on the circuit element may be connected by a wire wiring, the remaining input/output terminals arranged on the circuit element and the pad portion arranged on the surface facing the substrate of the cover may be connected by a wire wiring, and the pad portion arranged on the cover and the pad portion arranged on the substrate may be joined by a conductive material.
If the circuit element and the microphone chip are mounted on the cover with the microphone chip mounted on the circuit element, the microphone terminal arranged on the microphone chip and some of the plurality of input/output terminals arranged on the circuit element may be connected by a through-wiring arranged in the microphone chip, and the remaining input/output terminals arranged on the circuit element and the pad portion arranged on a surface facing the substrate of the cover may be connected by a wire wiring, and the pad portion arranged on the cover and the pad portion arranged on the substrate may be joined by a conducive material.
If the circuit element and the microphone chip are mounted on the cover with the circuit element mounted on the microphone chip, the microphone terminal arranged on the microphone chip and some of the plurality of input/output terminals arranged on the circuit element may be connected by a through-wiring arranged in the circuit element, the remaining input/output terminals arranged on the circuit element and the pad portion arranged on the surface facing the substrate of the cover may be connected by a wire wiring, and the pad portion arranged on the cover and the pad portion arranged on the substrate may be joined by a conductive material.
According to each connection structure described above, the cover can be joined to the substrate after the wiring task by the wire wiring or the through-wiring is completed in only either the substrate or the cover. If the circuit element and the microphone chip are mounted on the cover, the circuit element and the microphone chip can be connected to the substrate by joining the pad portion of the cover and the pad portion of the substrate with the conductive material. Therefore, the assembly task of the microphone can be easily carried out. Furthermore, higher reliability and lower cost of the microphone can be achieved because the structure is simple.
The acoustic perforation for transmitting the acoustic vibration into the package may be arranged in the same member as the member in which the microphone chip and the circuit element are arranged of the first member and the second member, or may be arranged in a different member. The acoustic perforation may adopt various aspects described below.
First, the acoustic perforation may be arranged in the first member. This is when arranging the acoustic perforation in the member in which the microphone chip and the circuit element are arranged.
In another aspect, in the microphone in which the circuit element is mounted on the first member and the microphone chip is arranged on the front surface thereof, the acoustic perforation is arranged in continuation to the first member and the circuit element, so that the opening of the acoustic perforation at the outer surface side of the first member and the opening of the acoustic perforation at the inner surface side of the circuit element may at least partially overlap when viewed from the direction perpendicular to the bottom surface of the package. According to such an aspect, the acoustic vibration can be easily transmitted to the package.
In still another aspect, in the microphone in which the circuit element is mounted on the first member and the microphone chip is arranged on the front surface thereof, the acoustic perforation is arranged in continuation to the first member and the circuit element, so that the opening of the acoustic perforation at the outer surface side of the first member and the opening of the acoustic perforation at the inner surface side of the circuit element may not overlap when viewed from the direction perpendicular to the bottom surface of the package. According to such an acoustic perforation, foreign substances can be prevented from entering the package or the microphone chip from the acoustic perforation, and environmental factors such as light or moisture can be prevented from entering from the acoustic perforation so that the microphone chip and the circuit element are less likely to be affected.
In yet another aspect, in the microphone in which the circuit element is mounted on the first member, and the microphone chip is arranged on the front surface thereof, the acoustic perforation is arranged in continuation to the first member and the circuit element, so that the acoustic perforation may be bent so that the opening on the inner surface side of the circuit element is not linearly viewed from the opening on the outer surface side of the first member. According to such an acoustic perforation, foreign substances can be prevented from entering the package or the microphone chip from the acoustic perforation, and environmental factors such as light or moisture can be prevented from entering from the acoustic perforation so that the microphone chip and the circuit element are less likely to be affected.
In yet another aspect, in the microphone in which the microphone chip is mounted on the first member and the circuit element is arranged on the front surface thereof, the acoustic perforation for transmitting the acoustic vibration to the package may be arranged in the first member so that at least one part faces the diaphragm of the microphone chip when viewed from the direction perpendicular to the bottom surface of the package. According to such an aspect, the acoustic vibration can be easily transmitted to the diaphragm, so that the sensitivity of the microphone can be enhanced.
The acoustic perforation may be formed in the second member. This is a case in which the acoustic perforation is formed in a member different from the member on which the microphone chip and the circuit element are arranged.
In such an aspect, the acoustic perforation may be bent so that the opening on the inner surface side of the second member cannot be linearly viewed from the opening on the outer surface side of the second member. According to such an acoustic perforation, foreign substances can be prevented from entering the package or the microphone chip from the acoustic perforation, and environmental factors such as light or moisture can be prevented from entering from the acoustic perforation so that the microphone chip and the circuit element are less likely to be affected.
At least one of the first member or the second member is desirably configured by at least one type of material including copper laminated stacked plate, glass epoxy, ceramic, plastic, metal, or carbon nano tube.
One or more embodiments of the present invention has a characteristic of appropriately combining the configuring elements described above, and the one or more embodiments of the present invention enables a great number of variations by the combination of the configuring elements.
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. It should be noted that the present invention is not limited to the following embodiments, and that various design changes can be made within a scope not deviating from the present invention. In embodiments of the invention, numerous specific details are set forth in order to provide a more thorough understanding of the invention. However, it will be apparent to one with ordinary skill in the art that the invention may be practiced without these specific details. In other instances, well-known features have not been described in detail to avoid obscuring the invention.
An upper surface sound hole type microphone 11 according to a first embodiment of the present invention will be described with reference to
As shown in
The lower surface of the circuit element 13 such as an IC chip is adhered to the upper surface of the substrate 15 by a die attach material 21 made of an insulating or conductive adhesive, or the like. The entire periphery of the lower surface of the microphone chip 12 is adhered to the upper surface of the circuit element 13 by a die attach material 22 made of an insulating or conductive adhesive, or the like.
The microphone chip 12 is mainly configured by an Si substrate 41, through which a chamber 42 (back chamber) passes in the up and down direction, a diaphragm 43 including a polysilicon thin film, and a back plate 44. The diaphragm 43 is arranged to cover the chamber 42 while slightly floating from the upper surface of the Si substrate 41, and sympathizes to acoustic vibration to film vibrate. The back plate 44 is configured by a fixed portion including SiN and a fixed electrode including a polysilicon thin film, where a great number of acoustic holes 45 for passing the acoustic vibration are opened in the back plate 44. In such a microphone chip 12, the diaphragm 43 and the fixed electrode of the back plate 44 configure a capacitor, where when the diaphragm 43 vibrates by the acoustic vibration, an electrostatic capacity between the diaphragm 43 and the fixed electrode of the back plate 44 changes according to the acoustic vibration. At least a pair of microphone terminals 23 is provided on the front surface of the microphone chip 12, and a detection signal corresponding to the change in the electrostatic capacity between the diaphragm 43 and the fixed electrode is output from the microphone terminals 23.
At least a pair of MEMS input/output terminals 24, and a plurality of external connection input/output terminals 25a and ground terminals 25b are provided on the upper surface of the circuit element 13. The microphone terminal 23 of the microphone chip 12 and the input/output terminal 24 of the circuit element 13 are connected by a bonding wire 27 (wire wiring). The input/output terminal 25a of the circuit element 13 is connected to the pad portion 26a of the substrate 15 by a bonding wire 28 (wire wiring), and the ground terminal 25b of the circuit element 13 is connected to the pad portion 26b of the substrate 15 by the bonding wire 28. Thus, the detection signal output from the microphone chip 12 is input into the circuit element 13 from the input/output terminal 24, and output from the input/output terminal 25a to the external connection terminal 29 after a predetermined signal processing is performed. The region where the input/output terminals 24, 25a and the ground terminal 25b are arranged in the upper surface of the circuit element 13 may be covered with a protective material 34 made of insulating resin, or the like.
Other than the multi-layer wiring substrate, the substrate 15 may be formed by a copper laminated stacked plate, a glass epoxy substrate, a ceramic substrate, a plastic substrate, a metal substrate, a carbon nano tube substrate, or a compound substrate thereof. For example, the substrate 15 manufactured by performing plating on a front surface of a plate of a plastic molded article may be used. A recess for accommodating the circuit element 13 may be formed at the upper surface of the substrate 15.
As shown in
The cover 14 is overlapped on the upper surface of the substrate 15 with the recess 31 facing the lower side, and the cover side joining portion 33 and the substrate side joining portion 20 are joined by the conductive material 17. The package is configured by the cover 14 and the substrate 15 integrated in such a manner, and the microphone chip 12 and the circuit element 13 are accommodated in the package. One of a conductive adhesive or solder, a conductive both-sided adhesive tape, or a wax material for welding may be used or a plurality of materials of the same may be simultaneously used for the conductive material 17. A non-conductive resin or a non-conductive tape may be simultaneously used to laminate the cover 14 and the substrate 15.
As a result of joining the cover side joining portion 33 and the substrate side joining portion 20 with the conductive material 17, the conductive layer 32 of the cover 14 and the conductive layer 18 of the substrate 15 are conducted, so that the conductive layers 32 and 18 are held at ground potential by connecting the conductive layer 18 to an earth line such as a circuit substrate, and the microphone 11 is shielded from the external electromagnetic noise.
An acoustic perforation 16 that enters the acoustic vibration into the package is opened in the upper surface of the cover 14, where the acoustic vibration that entered the package from the acoustic perforation 16 reaches the diaphragm 43 through the acoustic hole 45 and vibrates the diaphragm 43.
In the microphone 11 of the first embodiment of the present invention, that in which the microphone chip 12 is stacked on the circuit element 13 is mounted on the upper surface of the substrate 15, and hence the vertical space of the package can be used and the microphone 11 can be miniaturized. In particular, the mounting area of the microphone 11 can be reduced compared to the microphone in which the circuit element and the microphone chip are arranged side by side, and thus it is suited for high density mounting. Furthermore, the properties of the microphone chip 12 do not lower because the microphone chip 12 itself does not need to be miniaturized to miniaturize the microphone 11.
In the manufacturing process of the microphone 11, the microphone chip 12 and the circuit element 13 can be connected with the bonding wire 27 and the circuit element 13 and the substrate 15 can be connected with the bonding wire 28 with the circuit element 13 installed on the upper surface of the substrate 15 and the microphone chip 12 installed thereon. Accordingly, the cover 14 can be joined onto the substrate 15 after all the wiring tasks are completed, and the assembly task can be easily carried out. The cost is also inexpensive because the microphone 11 has a simple structure.
The microphone 51 of the second embodiment differs from the microphone 11 of the first embodiment in that the acoustic perforation 16 is arranged not in the cover 14 but at a position deviated from the circuit element 13 in the substrate 15. In particular, the acoustic perforation 16 is opened at a position adjacent to the circuit element 13 to miniaturize the microphone 51. The structure substantially similar to the microphone 11 of the first embodiment is adopted for other aspects, and thus the same reference numerals are denoted for the same configuring portions in the drawings and the description will be omitted. Functions and effects similar to the first embodiment are also obtained in such a microphone 51.
A microphone 52 according to a third embodiment of the present invention will now be described.
In the microphone 52 of the third embodiment, the circuit element 13 and the microphone chip 12 are installed on the lower surface of the cover 14 while being turned upside down. In other words, the circuit element 13 is installed on the top surface in the recess 31 of the cover 14 by the die attach material 21 while being turned upside down. The microphone chip 12 is fixed to the lower surface of the circuit element 13 by the die attach material 22 while being turned upside down. A plurality of pad portions 26c is arranged on the lower surface of the cover 14 while being electrically insulated with the cover side joining portion 33 (conductive layer 32).
The microphone terminal 23 arranged on the lower surface of the microphone chip 12 and the input/output terminal 24 arranged on the lower surface of the circuit element 13 are connected by the bonding wire 27. The input/output terminal 25a arranged at the lower surface of the circuit element 13 is connected to the pad portion 26c at the lower surface of the cover 14 by the bonding wire 28, and the ground terminal 25b is connected to the cover side joining portion 33 by the bonding wire 28.
The cover 14 on which the microphone chip 12 and the circuit element 13 are mounted is overlapped on the substrate 15, and the cover side joining portion 33 and the substrate side joining portion 20 are joined by the conductive material 17. The pad portion 26a is arranged at a position facing the pad portion 26c when the cover 14 is overlapped at the upper surface of the substrate 15, and the pad portion 26a is conducted with the external connection terminal 29 arranged at the back surface of the substrate 15. When overlapping the cover 14 on the substrate 15, the pad portion 26c of the cover 14 is connected to the pad portion 26a of the substrate 15 by the conductive material 17.
Therefore, the conductive layer 32 of the cover 14 is conducted with the conductive layer 18 of the substrate 15 through the cover side joining portion 33, the conductive material 17, and the substrate side joining portion 20, and maintained at ground potential. The output signal from the input/output terminal 25a of the circuit element 13 is output from the external connection terminal 29 through the pad portion 26c, the conductive material 17, and the pad portion 26a.
The acoustic perforation 16 for introducing the acoustic vibration into the package is arranged in the cover 14 at the position adjacent to the circuit element 13.
In the microphone 52 of the third embodiment as well, the microphone chip 12 and the circuit element 13 are mounted in the cover 14 so as to be stacked, and hence the microphone 52 can be miniaturized and in particular, the mounting area of the microphone 52 can be reduced. Furthermore, the assembly task is facilitated because the cover 14 is overlapped and joined to the upper surface of the substrate 15 after the wiring of the microphone chip 12 and the circuit element 13 is carried out by the bonding wire 27 and the wiring of the circuit element 13 and the pad portion 26c by the bonding wire 28 is completed.
The microphone 53 of the fourth embodiment differs from the microphone 52 of the third embodiment in that the acoustic perforation 16 is arranged not in the cover 14 but in the substrate 15.
In the microphone 54 of the fifth embodiment, the circuit element 13 mounted with the microphone chip 12 is mounted on the upper surface of the substrate 15. The acoustic perforations 16, 16a are opened in the substrate 15 and the circuit element 13 at the lower surface of the chamber 42 of the microphone chip 12. Therefore, in the microphone 54, the chamber 42 is a front chamber because the acoustic vibration enters from the lower surface side of the chamber 42. The back chamber of the microphone chip 12 becomes wider because the space in the package becomes the back chamber, whereby the sensitivity of the microphone chip 12 improves.
In the microphone 55 of the sixth embodiment, the circuit element 13 mounted with the microphone chip 12 is mounted on the lower surface of the cover 14. The acoustic perforations 16, 16a are opened in the cover 14 and the circuit element 13 at the upper surface of the chamber 42 of the microphone chip 12. Therefore, the space in the package becomes the back chamber and the sensitivity of the microphone chip 12 improves in the microphone 55 as well.
In the microphone 56 of the seventh embodiment, the acoustic perforations 16, 16a opened in the substrate 15 and the circuit element 13 at the lower side of the chamber 42 are bent. In
In the microphone 56, the acoustic perforations 16, 16a are bent and the opening on the outer surface side of the package of the acoustic perforation 16 and the opening on the inner surface side of the package of the acoustic perforation 16a are not overlapped when viewed from the direction perpendicular to the bottom surface of the package, and hence foreign substances such as dust are less likely to enter the chamber 42 from the acoustic perforations 16, 16a, so that the lowering of the performance of the microphone chip 12 when the foreign substance that entered clogs up, for example, the gap between the diaphragm 43 and the Si substrate 41 can be prevented. Furthermore, the acoustic perforations 16, 16a are bent such that the opening on the inner surface side of the package is not linearly seen from the opening on the outer surface side of the package, and hence light rays, moisture (humidity), and the like are less likely to enter from the acoustic perforations 16, 16a and the microphone chip 12 is less likely to degrade by such environmental factors.
Note that, a case in which the microphone chip 12 and the circuit element 13 are mounted on the substrate 15 has been described, but the acoustic perforations 16, 16a may be bent for a case in which the microphone chip 12 and the circuit element 13 are mounted on the cover 14.
In the microphone 57, the circuit element 13 is mounted on the upper surface of the substrate 15, the microphone chip 12 is fixed on the circuit element 13, the acoustic perforation 16 is opened in the substrate 15 at immediately below the microphone chip 12, and the acoustic perforation 16a is opened in the circuit element 13. The acoustic perforation 16 and the acoustic perforation 16a are communicated to each other, where the opening on the outer surface side of the package of the acoustic perforation 16 and the opening on the inner surface side of the package (chamber 42 side) of the acoustic perforation 16a may be substantially overlapped (may be completely overlapped or partially overlapped) when viewed from the direction perpendicular to the bottom surface of the package. The acoustic perforations 16, 16a are bent such that the opening on the inner surface side of the package is not linearly seen from the opening on the outer surface side of the package. To this end, the acoustic perforations 16, 16a are refracted twice, as shown in
Therefore, in the microphone 57 as well, foreign substances such as dust are less likely to enter the chamber 42 from the acoustic perforations 16, 16a because the acoustic perforations 16, 16a are bent such that the opening on the inner surface side of the package cannot be linearly seen from the opening on the outer surface side of the package. Furthermore, light rays, moisture (humidity), and the like are also less likely to enter from the acoustic perforations 16, 16a, so that the microphone chip 12 is not likely to degrade by such environmental factors.
The shape or structure of the acoustic perforations in the seventh embodiment and the eighth embodiment can be applied to the acoustic perforations formed in the cover or the acoustic perforations formed in a member different from the member on which the circuit element and the microphone chip are mounted.
One opening may be seen from the other opening when the opening on the outer surface side of the package of the acoustic perforation 16 and the opening on the inner surface side of the package of the acoustic perforation 16a are overlapped at least partially or not overlapped when viewed from the direction perpendicular to the bottom surface of the package. In this case, the effect of preventing foreign substances, light rays, moisture, and the like from entering lowers but the acoustic vibration can be easily transmitted to the microphone chip 12.
In the microphone 58, the microphone chip 12 is fixed to the upper surface of the substrate 15 by the die attach material 22, and the circuit element 13 is fixed to the upper surface of the microphone chip 12 by the die attach material 21. The microphone chip 12 has a larger area than the diaphragm 43 and the back plate 44 in plan view, and the circuit element 13 is arranged in a region where the diaphragm 43, the back plate 44, and the microphone terminal 23 are not arranged in the upper surface of the microphone chip 12.
In this case as well, the microphone terminal 23 of the microphone chip 12 and the input/output terminal 24 of the circuit element 13 are connected with the bonding wire 27, the input/output terminal 25a of the circuit element 13 and the pad portion 26a of the substrate 15 are connected with the bonding wire 28, and the ground terminal 25b of the circuit element 13 and the pad portion 26b of the substrate 15 are connected with the bonding wire 28.
Therefore, the circuit element 13 can be stacked on the microphone chip 12, so that the microphone 58 can be miniaturized and in particular, the mounting area can be reduced in this mode as well. In the microphone 58, the chamber 42 becomes the back chamber of the microphone chip 12 and the capacity of the back chamber can be increased, so that the sensitivity of the microphone chip 12 can be enhanced.
The microphone 59 has a structure substantially similar to the microphone 58 of the ninth embodiment, but differs in that the acoustic perforation 16 is opened in the substrate 15 so as to communicate to the chamber 42 of the microphone chip 12 at the position facing the diaphragm 43.
The microphone 60 has the microphone chip 12, on the upper surface of which the circuit element 13 is arranged, turned upside down and installed at the lower surface of the cover 14, and the acoustic perforation 16 opened in the substrate 15.
The microphone 61 has the microphone chip 12, on the upper surface of which the circuit element 13 is arranged, turned upside down and installed at the lower surface of the cover 14, and the acoustic perforation 16 opened in the cover 14 so as to communicate to the chamber 42 of the microphone chip 12 at the position facing the diaphragm 43.
In the microphone 62, a connection terminal 36 is provided at the lower surface of the microphone chip 12 in correspondence with the microphone terminal 23 provided at the upper surface of the microphone chip 12, and the microphone terminal 23 at the upper surface and the connection terminal 36 at the lower surface are conducted by a through-electrode 35 passing through the microphone chip 12 in the up and down direction. Furthermore, a connection terminal 39 is provided at the lower surface of the circuit element 13 in correspondence with the input/output terminal 25a provided at the upper surface of the circuit element 13, and the input/output terminal 25a at the upper surface and the connection terminal 39 at the lower surface are conducted by a through-electrode 38 passing through the circuit element 13 in the up and down direction.
The microphone chip 12 connects the microphone terminal 23 at the upper surface to the input/output terminal 24 of the circuit element 13 by connecting the connection terminal 36 at the lower surface to the input/output terminal 24 at the upper surface of the circuit element 13 by a solder 37. Furthermore, the circuit element 13 connects the input/output terminal 25a at the upper surface to the pad portion 26a of the substrate by connecting the connection terminal 39 at the lower surface to the pad portion 26a of the substrate 15 by a solder 40.
Similar to the input/output terminal 25a, the ground terminal 25b at the upper surface of the circuit element 13 is also connected to the pad portion 26b of the substrate 15 using a through-electrode, but this is not shown in the drawing.
If the microphone chip 12 and the circuit element 13, and the circuit element 13 and the substrate 15 are connected using the through-electrode in the above manner, the possibility of bending like the bonding wire and making contact with other circuit elements is eliminated, and the short circuit accidents of the microphone 62 can be prevented.
In the microphone 63, the connection terminal 36 provided at the lower surface of the microphone chip 12 is connected to the input/output terminal 24 at the upper surface of the circuit element 13 by the solder, so that the microphone terminal 23 at the upper surface of the microphone chip 12 is connected to the input/output terminal 24 of the circuit element 13. Furthermore, the input/output terminal 25a and the ground terminal 25b provided at the upper surface of the circuit element 13 are connected to the pad portions 26a, 26b of the substrate 15 by the bonding wire 28.
In each embodiment described above, the bonding wire can be appropriately replaced with the through-electrode. For example, in the microphone 11 of
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having the benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.
Number | Date | Country | Kind |
---|---|---|---|
2010-126351 | Jun 2010 | JP | national |