Microsurgical tool for robotic applications

Information

  • Patent Grant
  • 11723730
  • Patent Number
    11,723,730
  • Date Filed
    Wednesday, April 22, 2020
    4 years ago
  • Date Issued
    Tuesday, August 15, 2023
    a year ago
Abstract
The disclosed technology includes improved microsurgical tools providing multiple degrees of freedom at the wrist level, including roll, pitch, and grasp DOFs, a tight articulation bending radius, low radial offset, and improved stiffness. Some implementations include an end effector platform moveable along a fixed trajectory on a fictional axle so as not to interfere with a central-axis aligned working channel; a crossed-arm mechanical linkage for articulating an end-effector platform throughout a pitch DOF with an amplified pitch angle; and a partial pulley system to articulate the arms while maximizing pulley radius to shaft diameter, and permitting a constant transmission efficiency to the arms throughout the range of articulation. In some implementations, a tool shaft outer diameter may be smaller than 3 mm; a pitch DOF range may be ±90°, a roll DOF range may be ±180°, and a grasp DOF range may be 30°.
Description
BACKGROUND

Surgeries can be long and tedious procedures requiring intense focus and high accuracy from a surgeon. To help surgeons stay at the best of their abilities, it is important to consider a surgeon's comfort and keep fatigue to a minimum during a surgical procedure. To this end, robots can help sustain a surgeon's functionality and performance over extended periods of time. Moreover, robots may provide effective tools to increase the surgeon's capability and efficiency beyond levels sustainable with manual tools.


Some advantages provided by robotics in surgery include: allowing the surgeon to operate more comfortably to lessen strain and tiredness; providing better visualization of an operating area; allowing manipulation of tools exceeding manual dexterity; providing greater steadiness and accuracy; enabling teleoperation; and facilitating shorter procedure times, thus lowering costs for providers and patients. Some of these advantages are especially important for successful minimal invasive surgery (MIS) and microsurgery, where dexterity, access, and good vision are paramount.


Conventional robots and surgical tools, however, do not effectively maximize these benefits particularly when scaled down to sizes suitable for MIS and microsurgery. For example, some conventional gear-based transmissions have machinability limits. Moreover, gears may interfere with a working channel of a tool where space is at a premium. Conventional pulley-based systems may suffer from a diminishing bending radius when scaled down, and spring-flexure-based systems often lack stiffness. Even tools relying on simple elastic properties of materials may experience exacerbated fatigue issues.


SUMMARY

Some or all of the above limitations may be addressed by many implementations of the technology disclosed herein. Example implementations include improved tools and devices suitable for MIS and microsurgery robotic applications. Some implementations provide for multiple degrees of freedom (“DOF”) at the wrist level, including roll, pitch, and grasp DOFs, while maintaining a tight articulation bending radius.


According to an example implementation, a microsurgical tool is provided. The microsurgical tool may comprise an elongated body having a centerline and outer diameter at a distal end of the elongated body. The microsurgical tool may further comprise a platform moveably coupled to the distal end of the elongated body. The microsurgical tool may yet further comprise an end effector operatively coupled to the platform and being articulable in at least three degrees of freedom, including a pitch degree of freedom up to a pitch angle of at least ±90°. The microsurgical tool may also have a ratio of the outer diameter of the elongated body, to a radial offset of the end effector to the centerline the elongated body, of at least 0.65.


In an example implementation, the ratio of the outer diameter to the radial offset may be at least 0.83. The microsurgical tool may further comprise a torque coil or flexible tube disposed within the elongated body to transmit torque for articulating the end effector in a roll degree of freedom. The end effector may be repeatedly or infinitely articulable in a roll degree of freedom. The end effector may also be at least one of a grasper, a gripper, forceps, or scissors.


In another example implementation, the microsurgical may also comprise an actuation tendon disposed within the elongated body. The actuation tendon may be tensionable to actuate the end effector in a grip degree of freedom. The microsurgical tool may also comprise a torque coil disposed within the elongated body to transmit torque for articulating the end effector in a roll degree of freedom with the actuation tendon being disposed within the torque coil.


In yet another example implementation, the end effector may also comprise a deformable grasper. The end effector may also comprise a unilateral grasper, or a grasper with at least one fixed jaw and one moving jaw. Alternatively, the end effector may comprise at least two opposing jaws articulable to open to an angle of at least about 30° relative to each other.


According to another example implementation, a microsurgical tool is provided. The microsurgical tool may comprise an elongated body having a proximal end and a distal end. The microsurgical tool may further comprise a platform operatively coupled to an end effector. The microsurgical tool may yet further comprise a first arm operatively coupled to a first proximal hinge and a first distal hinge, and a second arm operatively coupled to a second proximal hinge and a second distal hinge. The first proximal hinge and the second proximal hinge may be coupled to the distal end of the elongated body and the first distal hinge and the second distal hinge may be coupled to the platform. The first arm and the second arm may be moveable to articulate the end effector in a pitch degree of freedom.


In an example implementation, the end effector may be articulable in a pitch degree of freedom up to a pitch angle of at least about ±90°. The microsurgical tool may comprise a mechanical link for amplifying a pitch angle of the platform by a factor A relative to a pitch angle of the first arm or second arm.


In another example implementation, the first proximal hinge and the second proximal hinge may be coupled to the distal end of the elongated body and the first distal hinge and the second distal hinge may be coupled to the platform such that the first arm and the second arm are crossed. The elongated body may have a centerline and the first proximal hinge may be offset from the centerline. The microsurgical tool may further comprise a mechanical link for moving the first arm with a constant transmission efficiency between the mechanical link and first arm throughout a range of movement of the first arm.


In yet another example implementation, the microsurgical tool may further comprise a first tendon coupled to the first arm and tensionable to move the first arm. The first arm may be coupled to a first pulley. An axis of the pulley may be concentric with the first proximal hinge. The first pulley may be a partial pulley such that a radius of the pulley not in contact with the first tendon is smaller than a radius of the pulley that is in contact with the first tendon, or such that a profile of the pulley is a sector rather than a full circle. In some implementations, the first pulley may fit within a profile of the elongated body.


Other implementations, features, and aspects of the disclosed technology are described in detail herein and are considered a part of the claimed disclosed technology. Other implementations, features, and aspects may be understood with reference to the following detailed description, accompanying drawings, and claims.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the disclosed technology are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present technology will be obtained by reference to the following detailed description that sets forth illustrative implementations, in which the principles of the technology are utilized, and the accompanying drawings of which:



FIG. 1 depicts an illustration of a microsurgery tool 100, according to an example implementation.



FIG. 2 depicts an illustration of a crossed-arm linkage 200 for articulating a platform, according to an example implementation.



FIGS. 3A, 3B, and 3C depict illustrations of the platform 320 being articulated from −90° to +90° using a crossed-arm linkage, according to an example implementation.



FIG. 4 depicts an illustration of a geometrical model 400 of the articulation 460 of the crossed-arm linkage 200, according to an example implementation.



FIG. 5 depicts an illustration of an efficiency plot 500 corresponding to the articulation of the crossed-arm linkage 200, according to an example implementation.



FIGS. 6A, 6B, and 6C depict illustrations of another crossed-arm linkage 600, according to an example implementation.



FIG. 7 depicts an illustration of the platform assembly 700, according to an example implementation.



FIG. 8 depicts an illustration of a pull-wire attachment for articulating an arm, according to an example implementation.



FIG. 9 depicts an illustration of yet another cross-armed linkage 900, according to an example implementation.



FIGS. 10A and 10B depict illustrations of a platform arm being articulated by a pull wire, according to an example implementation.



FIG. 11 depicts an illustration of an efficiency plot 1100 corresponding to the articulation of the crossed-arm linkage of 600, according to an example implementation.



FIG. 12 depicts an illustration of the difference in arm to platform overlap between linkages 600 and 900.



FIG. 13A depicts an illustration of a torque coil actuation mechanism, according to an example implementation.



FIG. 13B depicts an illustration of torque coil overshoot, according to an example implementation.



FIG. 13C depicts an illustration of a torque coil with a greater bending radius than the microsurgical tool, according to an example implementation.



FIG. 14A depicts an illustration of a bilateral grasper 1410, according to an example implementation.



FIG. 14B depicts an illustration of a unilateral grasper 1411, according to an example implementation.



FIGS. 15A and 15B depict illustrations of a deformable grasper, according to an example implementation.



FIG. 16 depicts an illustration of a microsurgical tool 1600 incorporating linkage 900, according to an example implementation.



FIG. 17 depicts an illustration of a first profile of the microsurgical tool 1600, according to an example implementation.



FIG. 18 depicts an illustration of a second profile of the microsurgical tool 1600, according to an example implementation.





DETAILED DESCRIPTION

To facilitate an understanding of the principles and features of implementations of the disclosed technology, various example implementations are explained below. Although some implementations of the disclosed technology are explained in detail, other implementations are contemplated. Further, in describing example implementations, specific terminology will be resorted to for the sake of clarity. It is not intended that the disclosed technology be limited in scope to the details of construction and arrangement of components set forth in the following description or illustrated in the drawings. Rather, the disclosed technology is capable of other implementations and of being practiced or carried out in various ways.


Throughout the specification and the claims, the following terms take at least the meanings explicitly associated herein, unless the context clearly dictates otherwise. The term “coupled” means that one function, feature, structure, or characteristic is directly or indirectly joined to or in communication with another function, feature, structure, or characteristic. Relational terms such as “first” and “second,” and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The term “or” is intended to mean an inclusive “or.” Further, the terms “a,” “an,” and “the” are intended to mean one or more unless specified otherwise or clear from the context to be directed to a singular form. The term “include” and its various forms are intended to mean including but not limited to.


Although example implementations are described herein in the context of robotic applications, one of skill in the art will appreciate that the disclosed technology may be applicable to manually operated tools and surgeries. Moreover, although various crossed-arm linkages are described in detail, one of skill in the art will appreciate that other mechanical links and actuators may be used in place of or in addition to parts and components described herein.


Many implementations of the disclosed technology include improved microsurgical tools, instruments, and devices for robotic applications. Some implementations provide multiple degrees of freedom (“DOF”) at the wrist level, including roll, pitch, and grasp DOFs, a tight articulation bending radius, low radial offset, or improved stiffness. These features may afford various benefits. For example, a reduced outer diameter can promote less scarring and quicker recovery; compact articulations and a tight bending radius may aid working in confined spaces; a versatile platform can increase the capabilities of the surgical tool; multiple DOF and high ranges of articulation can improve dexterity and reachability; a stiff tool shaft and small radial offset may preserve the line of sight of operation; and torsional stiffness can reduce backlash and improve consistency.


To these ends, the present disclosure introduces a robust but versatile platform assembly for end-effector coupling, the platform being moveable along a fixed trajectory on a fictional axle so as not to interfere with a center-axis-aligned working channel; a crossed-arm mechanical linkage for articulating an end-effector platform throughout a pitch DOF with an amplified pitch angle; and a partial pulley system to articulate the linkage arms while maximizing pulley radius to tool shaft diameter, and permitting a constant transmission efficiency to the arms throughout the range of articulation.


According to many implementations, a tool shaft outer diameter may be smaller than 3 mm; and at the wrist-level, a pitch DOF range may be at least ±90°, a roll DOF range may be at least ±180°, and a grasp DOF range may be at least 30°. The platform may be operatively coupled to one or more end effectors, including but not limited to, graspers, bipolar grippers, biopsy graspers, needle drivers, irrigation and suction pipes, needles, lasers, and force sensors.


Referring now to the figures, in which like reference numerals represent like parts throughout the views, these and other features of the disclosed technology will be described in detail.



FIG. 1 depicts an illustration of a microsurgery tool 100, according to an example implementation. As shown in FIG. 1, the tool may comprise a shaft 130 or elongated body, and a platform 120 or platform assembly moveably coupled to an end of the shaft. The platform may support or be coupled to an end effector 110 such as a grasper, as shown. The platform or end effector may be articulable at a “wrist” of the tool near the end of the body. The shaft may have an outer diameter 135, and an inner diameter circumscribing a working channel 150 of the tool. The inner channel may contain tendons, actuators, or other mechanisms for articulating the platform or end effector.


MIS procedures typically rely on small punctures to access an operation area. It can be beneficial to keep these punctures as small as possible to shorten hospital stay and scarring. A related challenge is augmenting dexterity. It can be beneficial to have more DOFs at the wrist level of a tool in order to reach more areas once inside a patient's body. Increased dexterity and reduced size are often tradeoffs. Many implementations of the disclosed technology, however, seek to maximize these benefits, by reducing a tool outer diameter while providing improved capability, such as multiple DOF and increased grip strength.


Accordingly, a significant design objective was to provide multiple DOF at robust ranges while minimizing or reducing the surgical tool shaft and radial offset, which correspond to the bending radius. As used herein, the radial offset may refer to how far the end effector or another tip of the tool radially extends from a shaft axis.


According to many implementations, mechanical links may be used to transmit power to the platform 120 or end effector 110. The type of links or linkage geometry may be configured to minimize or reduce backlash and to maximize or improve a stiffness of transmission. These two features are often significant in providing good control and feeling when using a microsurgical tool.



FIG. 2 depicts an illustration of a crossed-arm linkage 200 for articulating a platform, according to an example implementation. To articulate the platform in a pitch DOF, a compliant hinge or linkage was provided based on crossing arms 260a and 260b. In some implementations, the linkage may act as an amplifier between the pitch angle of the arms and the platform or end effector. For example, when the arms travel a range of Rarms degrees, the platform may move over a range of A·Rarms with A being the amplification factor. This amplification factor may be tuned by altering the geometrical properties of the linkage.



FIGS. 3A, 3B, and 3C depict illustrations of the platform 320 being articulated from −90° to +90° using a crossed-arm linkage, according to an example implementation. In FIG. 3A, the platform is at an angle of −90° and a first arm 310 is at an angle α of −58°. In FIG. 3C, the platform is at an angle of +90° and the first arm 310 is at an angle α of −33°. Thus, although the platform traverses a range of 180°, the arm may travel only from a range of 91°.



FIG. 4 depicts an illustration of a geometrical model 400 of the articulation 460 of the crossed-arm linkage 200, according to an example implementation. Even taking into account a change in pitch angle of both arms (e.g., by averaging the pitch angles of the first and second arms) the clear reduction in required arm rotation range permitted by the crossed-arm linkage may reduce the shaft and radial offset of the tool.



FIGS. 6A, 6B, and 6C depict illustrations of another crossed-arm linkage 600, according to an example implementation. To accommodate a roll DOF, a second crossed-arm linkage was provided that opens up a center channel of the tool between base walls 670 for a roll actuation mechanism. In order to free up space around the central axis, two of the four arms were removed over linkage 200 and a two-part platform assembly was provided that would allow a tip 620t of the assembly to rotate freely inside of the head 620h. As shown in FIG. 6B, a respective proximal hinge 665 of the arms may be offset from a centerline 644 of the shaft.



FIG. 7 depicts an illustration of the platform assembly 700, according to an example implementation. In some implementations, two pins may interface 722 with a grove in the tip 620b to hold it axially while allowing rotation. A washer 724 may be added to provide a smooth surface to limit friction when the parts are axially pushed together. When the parts are axially pulled apart, the pin and grove interface may be relied on to provide smooth rotation. Varying washer thickness may help achieve an improved balance between backlash and friction.


With the center axis opened up, various mechanical mechanism were evaluated for adding a roll DOF at the tip. According to many implementations, a torque coil may be used to transmit torque for articulating a tip of the platform assembly or an end effector in a roll DOF. In another implementation, a laser-cut highly flexible tube may be used.



FIG. 13A depicts an illustration of a torque coil actuation mechanism, according to an example implementation. As shown in FIG. 13A, a torque coil 1336 may be disposed within an inner diameter of the shaft 1335.



FIG. 13A depicts an illustration of a torque coil actuation mechanism, according to an example implementation. As shown in FIG. 13A, a torque coil 1336 may be disposed within an inner diameter of the shaft 1335. In some implementations, a tendon or other actuation mechanisms may be further disposed within the torque coil itself, for example, tendon 1320 for opening and closing a grasper, as shown in FIGS. 13A and 13C.


It was experimentally determined that two-layer torque coils as used in these implementations may transmit torque in an asymmetrical way, whereas three-layer torque coils may transmit torque symmetrically in both directions. Each of the tested specimens also surpassed the flexure grasper torque.



FIG. 13B depicts an illustration of torque coil overshoot, according to an example implementation. It was determined that a yield bending radius of the torque coil may be a limiting factor to the bending radius of the tool. However, as shown in FIG. 13B, open space in the back of the arm crossed arm assembly may allow for the torque coil to have an overshoot 1337. Accordingly, in some implementations, the tool may have a tighter bending radius than the torque coil, as shown in FIG. 13C.



FIG. 8 depicts an illustration of a pull-wire attachment for articulating an arm, according to an example implementation. In some implementations, actuation of the arms of the tool may control the head pitch angle. As shown in FIG. 8, a pull wire 862 may be attached to an arm 860 with a pierced pin 864 and tensioned to make the arm rotate.


In some implementations, the pierced pen 864 attachment implemented with linkage 600 may result in a device with relatively thin walls around the pierced pin. This lack of thickness could limit the scalability of the tool.


Moreover, as the angle that the pull wire makes with the arm may change throughout the range of articulation, in some implementations, there may be a non-linearity in the efficiency of the transmission between the pull wire and the arm, as shown in FIG. 5.



FIG. 5 depicts an illustration of an efficiency plot 500 corresponding to the articulation of the crossed-arm linkage 200, according to an example implementation. As shown in FIG. 5, the plot of transmission efficiency 560 may follow a parabolic curve. With a fixed point of contact between each arm and pull wire, linkage 600 may also be subject to a similar transmission curve. Accordingly, a third crossed-arm linkage 900 was provided to address these aspects.



FIG. 9 depicts an illustration of yet another cross-armed linkage 900, according to an example implementation. As shown in FIG. 9, pull wire 962 may contact and go around a semicircular feature 964 of arm 960 that acts as a partial pulley. In some implementations, an axis of the partial pulley may be concentric with a respective proximal hinge. In some implementations, the pull wire may be attached at a ball ending resting in a bore 994.



FIGS. 10A and 10B depict illustrations of a platform arm being articulated by a pull wire, according to an example implementation. As shown, the pull wire 962 may now stay parallel to the shaft of the tool or perpendicular to a base of the arms. As shown in the updated efficiency plot of FIG. 11, the second plot of transmission efficiency 1160 corresponding to linkage 900 may be constant.


Other advantages of linkage 900 may include reduced parts, as the pierced pin may be omitted, and shorter base walls 970, which may increase the structural stiffness of the implementation. Moreover, the different shape of the extremity of the arms 960 may provide another pressure point to add torsional stiffness to the head. FIG. 12 depicts an illustration of the difference in arm to platform overlap between linkages 600 and 900. As shown in FIG. 12, arm 860 of linkage 600 may not significantly overlap 1265 the head 820h of the platform assembly, however arm 1260 of linkage 900, does significantly overlap 1295 the head 1220h of the platform assembly.


In another implementation, the pins attaching the arms to the head of the platform assembly may be lengthened so that they protrude from the sides of the head. This may prevent the head from popping out when torque or lateral force is applied.


According to many implementations, an end effector of the surgical tool may be a grasper, as shown in FIG. 1. Various grasper configurations were evaluated with the goals of reducing a radial offset of the tool while providing at least 30° of articulation and improved grip strength and scalability.



FIGS. 15A and 15B depict illustrations of a deformable grasper, according to an example implementation. A compliant or deformable grasper relies on elastic properties of the material to deform and return back into its initial shape, in contrast to a rigid grasper, as shown in FIGS. 14A and 14B.


In some implementations, a mode of operation of the deformable grasper may involve actuating the closing of the grasper by pulling on face 1560. This may then cause the jaws to collapse onto each other, for example to grab tissue or a needle. In another implementation, the default position of the jaws may be closed and the grasper may deform to open under stress.


According to many implementations, due to energy stored in the grasper during the elastic deformation, the grasper may return to a default position without additional force from the wire. In some implementations, the actuation maybe effected by a tensionable or pushable wire, which may be disposed within a torque coil, as described herein.



FIG. 14A depicts an illustration of a bilateral grasper 1410, according to an example implementation. FIG. 14B depicts an illustration of a unilateral grasper 1411, according to an example implementation. Both the bilateral and unilateral grasper may require both push and pull actuation in order to open and close.


An advantage of bilateral grasper 1410 may lie in having symmetrical jaw behavior throughout articulation. Thus, it may be relatively easier and intuitive for an operator to grasp a targeted tissue.


A unilateral grasper 1411 may have less moving parts than a bilateral grasper, and the fixed jaw 1411a may be used in additional ways such scooping under tissue or providing a stiff terminal end to prod objects. Although, it may be more difficult for an operator to grasp a target tissue with a unilateral grasper due to the asymmetry, in some implementations, by rolling the grasper articulation range to align with the pitch DOF, software may help maintain the position of a centerline between the jaws 1411a and 1411b so as to make grasping a target tissue more intuitive.



FIG. 16 depicts an illustration of a microsurgical tool 1600 incorporating linkage 900, according to an example implementation. As shown in FIGS. 17-18, the example microsurgical tool comprises a shaft 1630 moveably coupled to a platform assembly including tip 1620t and head 1620h. The shaft has an outside diameter of 5 mm. The shaft and platform assembly are linked by hinged arms 1660 based on crossed-arm linkage 900. Each arm is coupled to the shaft at a respective proximal hinge 1665 and to the head at a respective distal hinge 1625. Each arm is operated by a respective pull wire 1662 routed over a semi-circular portion of each respective arm that acts as a partial pulley.


A unilateral grasper 1610 is mounted at the tip of the platform assembly. The radial offset of the grasper is 6 mm, giving the tool a ratio of outside diameter to radial offset of 0.83. The grasper has a fixed jaw 1610a and a moveable jaw 1610b. The grasper is operated by grasper tendon 1638 made of nitinol and allowing the jaws to open more than 30° and close. The tendon is piped through a torque coil 1636, with both the tendon and torque coil disposed within an inner diameter of the shaft. The torque coil transmits force for rotating the grasper in a roll DOF.


A 6TW hypotube was used for the shaft. Within the shaft are several other layers of hypotube including a 17.5GA hypotube 1631, 27W hypotube 1632, and 23TW hypotube 1633. Base walls 1670, base support 1671, and base core 1672 provide support for the torque coil and add stiffness to the tool.


While preferred embodiments of the present technology have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the technology. It should be understood that various alternatives to the embodiments of the technology described herein may be employed in practicing the technology. It is intended that the following claims define the scope of the technology and that methods and structures within the scope of these claims and their equivalents be covered thereby

Claims
  • 1. A medical tool, comprising: an elongated body extending between proximal and distal ends; an end effector;a linkage coupling the distal end of the elongated body to the end effector and configured to articulate the end effector in at least one degree-of-freedom (DOF), the linkage comprising:a first arm operatively coupled between the distal end of the elongated body and the end effector, the first arm comprises a semicircular portion, anda second arm operatively coupled between the distal end of the elongated body and the end effector,wherein the first and second arms are crossed with respect to one another, the first and second arms are configured to move through a range of motion and amplify the range of motion of the first and second arms into articulation of the end effector in the at least one DOF; anda pull wire configured to follow the semicircular portion of the first arm to permit the semicircular portion to function as a partial pulley attached to the first arm to cause the first arm to rotate when the pull wire is tensioned.
  • 2. The medical tool of claim 1, wherein: when the first and second arms travel a range of a first angle, the end effector travels over a range of a second angle, andthe second angle is substantially equal to the first angle multiplied by an amplification factor.
  • 3. The medical tool of claim 2, wherein the amplification factor is based on geometrical properties of the linkage.
  • 4. The medical tool of claim 1, wherein: the first arm is coupled to the elongated body via a hinge,the elongate body has a central axis, andthe hinge is offset from the central axis.
  • 5. The medical tool of claim 1, wherein the linkage has a transmission efficiency that is substantially constant.
  • 6. The medical tool of claim 1, wherein: the first arm is coupled to the elongated body via a hinge, and the semicircular portion is concentric with the hinge.
  • 7. The medical tool of claim 1, further comprising: a platform operatively coupling the end effector to the linkage, wherein: the first arm comprises a first redirect surface, andthe second arm comprises a second redirect surface.
  • 8. The medical tool of claim 7, further comprising: a first force transfer element disposed around the first redirect surface before terminating at the first arm such that pulling the first force transfer element pivots the first arm about a first proximal hinge with a first amplified range of motion; anda second force transfer element disposed around the second redirect surface before terminating at the second arm such that pulling the second force transfer element pivots the second arm about a second proximal hinge with a second amplified range of motion.
  • 9. The medical tool of claim 1, wherein the first and second amplified ranges of motion are of the same magnitude in opposite directions.
  • 10. The medical tool of claim 1, wherein the at least one DOF comprises a pitch DOF.
  • 11. The medical tool of claim 1, wherein: the end effector comprises at least one jaw, andthe medical tool further comprises a first tendon coupled to the at least one jaw and tensionable to move the at least one jaw, providing the at least one jaw with a grasping degree of freedom.
  • 12. A medical tool, comprising: an elongated body having a distal end; an end effector;an articulable wrist coupling the end effector to the distal end of the elongated body, the wrist comprising: a first arm operatively coupled between the distal end of the elongated body and the end effector, the first arm comprises a semicircular portion, anda second arm operatively coupled between the distal end of the elongated body and the end effector,wherein the first and second arms are crossed with respect to one another, the first and second arms are configured to move through a range of motion and amplify the range of motion of the first and second arms into articulation of the end effector in at least one degree-of-freedom (DOF); anda pull wire configured to follow the semicircular portion of the first arm to permit the semicircular portion to function as a partial pulley attached to the first arm to cause the first arm to rotate when the pull wire is tensioned.
  • 13. The medical tool of claim 12, wherein: when the first and second arms travel a range of a first angle, the end effector travels over a range of a second angle, andthe second angle is substantially equal to the first angle multiplied by an amplification factor.
  • 14. The medical tool of claim 13, wherein the amplification factor is based on geometrical properties of the wrist.
  • 15. The medical tool of claim 12, wherein: the first arm is coupled to the elongated body via a hinge,the elongate body has a central axis, andthe hinge is offset from the central axis.
  • 16. The medical tool of claim 12, wherein the linkage has a transmission efficiency that is substantially constant.
CROSS-REFERENCE

This application is a continuation of U.S. patent application Ser. No. 15/435,790, filed Feb. 17, 2017, issued as U.S. Pat. No. 10,639,109 on May 5, 2020, which is a continuation of U.S. patent application Ser. No. 15/089,406, filed Apr. 1, 2016, now abandoned, which claims the benefit of U.S. Provisional Application No. 62/141,817, filed Apr. 1, 2015, which applications are incorporated herein by reference.

US Referenced Citations (443)
Number Name Date Kind
3763860 Clarke Oct 1973 A
4040413 Ohshiro Aug 1977 A
4198960 Utsugi Apr 1980 A
4470407 Hussein Sep 1984 A
4532935 Wang et al. Aug 1985 A
4685458 Leckrone Aug 1987 A
4747405 Leckrone May 1988 A
4854301 Nakajima Aug 1989 A
4898574 Uchiyama et al. Feb 1990 A
4983165 Loiterman Jan 1991 A
5029574 Shimamura et al. Jul 1991 A
5078140 Kwoh Jan 1992 A
5085659 Rydell Feb 1992 A
5196023 Martin Mar 1993 A
5217465 Steppe Jun 1993 A
5308323 Sogawa et al. May 1994 A
5318589 Lichtman Jun 1994 A
5325848 Adams et al. Jul 1994 A
5342381 Tidemand Aug 1994 A
5344395 Whalen et al. Sep 1994 A
5353783 Nakao et al. Oct 1994 A
5370609 Drasler et al. Dec 1994 A
5372124 Takayama et al. Dec 1994 A
5411016 Kume May 1995 A
5431649 Mulier et al. Jul 1995 A
5441485 Peters Aug 1995 A
5449356 Walbrink Sep 1995 A
5450843 Moll et al. Sep 1995 A
5472426 Bonati et al. Dec 1995 A
5496267 Drasler Mar 1996 A
5501667 Verduin, Jr. Mar 1996 A
5520684 Imran May 1996 A
5545170 Hart Aug 1996 A
5562239 Boiarski et al. Oct 1996 A
5562648 Peterson Oct 1996 A
5562678 Booker Oct 1996 A
5572999 Funda et al. Nov 1996 A
5573535 Viklund Nov 1996 A
5613973 Jackson et al. Mar 1997 A
5645083 Essig et al. Jul 1997 A
5653374 Young et al. Aug 1997 A
5658311 Baden Aug 1997 A
5695500 Taylor et al. Dec 1997 A
5697949 Giurtino et al. Dec 1997 A
5710870 Ohm Jan 1998 A
5716325 Bonutti Feb 1998 A
5784542 Ohm Jul 1998 A
5788667 Stoller Aug 1998 A
5792165 Klieman Aug 1998 A
5797900 Madhani Aug 1998 A
5810770 Chin et al. Sep 1998 A
5893869 Barnhart Apr 1999 A
5897491 Kastenbauer et al. Apr 1999 A
5924175 Lippitt Jul 1999 A
5989230 Frassica Nov 1999 A
6071281 Burnside et al. Jun 2000 A
6093157 Chandrasekaran Jul 2000 A
6110171 Rydell Aug 2000 A
6120476 Fung et al. Sep 2000 A
6120498 Jani et al. Sep 2000 A
6156030 Neev Dec 2000 A
6174318 Bates et al. Jan 2001 B1
6206903 Ramans Mar 2001 B1
6183435 Bumbalough et al. Jun 2001 B1
6322557 Nikolaevich Nov 2001 B1
6375635 Moutafis Apr 2002 B1
6394998 Wallace et al. May 2002 B1
6405078 Moaddeb et al. Jun 2002 B1
6440061 Wenner et al. Aug 2002 B1
6508823 Gonon Jan 2003 B1
6522906 Salisbury et al. Feb 2003 B1
6577891 Jaross et al. Jun 2003 B1
6676668 Mercereau et al. Jan 2004 B2
6685698 Morley et al. Feb 2004 B2
6706050 Giannadakis Mar 2004 B1
6969385 Moreyra Nov 2005 B2
7282055 Tsuruta Oct 2007 B2
7288103 Suzuki Oct 2007 B2
7559934 Teague et al. Jul 2009 B2
7736356 Cooper et al. Jun 2010 B2
7819894 Mistuishi et al. Oct 2010 B2
7879070 Ortiz et al. Feb 2011 B2
7963911 Turliuc Jun 2011 B2
7987046 Peterman Jul 2011 B1
8002713 Heske Aug 2011 B2
8038598 Khachi Oct 2011 B2
8092397 Wallace et al. Jan 2012 B2
8187173 Miyoshi May 2012 B2
8257303 Moll et al. Sep 2012 B2
8398674 Prestel Mar 2013 B2
8480595 Speeg Jul 2013 B2
8523762 Miyamoto et al. Sep 2013 B2
8540748 Murphy et al. Sep 2013 B2
8574243 Saadat Nov 2013 B2
8603077 Cooper et al. Dec 2013 B2
8820603 Shelton et al. Sep 2014 B2
8882660 Phee et al. Nov 2014 B2
8945163 Voegele et al. Feb 2015 B2
8956280 Eversull et al. Feb 2015 B2
9220526 Conlon Dec 2015 B2
9259275 Burbank Feb 2016 B2
9345456 Tsonton et al. May 2016 B2
9460536 Hasegawa et al. Oct 2016 B2
9504604 Alvarez Nov 2016 B2
9561083 Yu et al. Feb 2017 B2
9592042 Titus Mar 2017 B2
9597152 Schaeffer Mar 2017 B2
9622827 Yu et al. Apr 2017 B2
9636184 Lee et al. May 2017 B2
9713509 Schuh et al. Jul 2017 B2
9727963 Mintz et al. Aug 2017 B2
9730757 Brudniok Aug 2017 B2
9737371 Romo et al. Aug 2017 B2
9737373 Schuh Aug 2017 B2
9744335 Jiang Aug 2017 B2
9763741 Alvarez et al. Sep 2017 B2
9788910 Schuh Oct 2017 B2
9844412 Bogusky et al. Dec 2017 B2
9867635 Alvarez et al. Jan 2018 B2
9918681 Wallace et al. Mar 2018 B2
9931025 Graetzel et al. Apr 2018 B1
9949749 Noonan et al. Apr 2018 B2
9955986 Shah May 2018 B2
9962228 Schuh et al. May 2018 B2
9980785 Schuh May 2018 B2
9993313 Schuh et al. Jun 2018 B2
10016900 Meyer et al. Jul 2018 B1
10022192 Ummalaneni Jul 2018 B1
10080576 Romo et al. Sep 2018 B2
10136959 Mintz et al. Nov 2018 B2
10145747 Lin et al. Dec 2018 B1
10149720 Romo Dec 2018 B2
10159532 Ummalaneni et al. Dec 2018 B1
10159533 Moll et al. Dec 2018 B2
10169875 Mintz et al. Jan 2019 B2
10219874 Yu et al. Mar 2019 B2
10231793 Romo Mar 2019 B2
10231867 Alvarez et al. Mar 2019 B2
10244926 Noonan et al. Apr 2019 B2
10285574 Landey May 2019 B2
10299870 Connolly et al. May 2019 B2
10314463 Agrawal et al. Jun 2019 B2
10350390 Moll et al. Jul 2019 B2
10383765 Alvarez et al. Aug 2019 B2
10398518 Yu et al. Sep 2019 B2
10405939 Romo et al. Sep 2019 B2
10405940 Romo Sep 2019 B2
10426559 Graetzel et al. Oct 2019 B2
10426661 Kintz Oct 2019 B2
10434660 Meyer Oct 2019 B2
10464209 Ho et al. Nov 2019 B2
10470830 Hill Nov 2019 B2
10482599 Mintz et al. Nov 2019 B2
10493241 Jiang Dec 2019 B2
10500001 Yu et al. Dec 2019 B2
10517692 Eyre et al. Dec 2019 B2
10524866 Srinivasan Jan 2020 B2
10539478 Lin Jan 2020 B2
10543048 Noonan et al. Jan 2020 B2
10555778 Ummalaneni et al. Feb 2020 B2
10631949 Schuh et al. Apr 2020 B2
10639108 Romo et al. May 2020 B2
10639109 Bovay et al. May 2020 B2
10639114 Schuh May 2020 B2
10667871 Romo et al. Jun 2020 B2
10667875 DeFonzo Jun 2020 B2
20020019644 Hastings Feb 2002 A1
20020087048 Brock Jul 2002 A1
20020095175 Brock Jul 2002 A1
20020111608 Baerveldt Aug 2002 A1
20020111621 Wallace et al. Aug 2002 A1
20020128661 Brock Sep 2002 A1
20030004455 Kadziauskas Jan 2003 A1
20030036748 Cooper Feb 2003 A1
20030040681 Ng et al. Feb 2003 A1
20030065358 Frecker Apr 2003 A1
20030109877 Morley Jun 2003 A1
20030109889 Mercereau Jun 2003 A1
20030158545 Hovda et al. Aug 2003 A1
20030208189 Payman Nov 2003 A1
20040143253 Vanney Jul 2004 A1
20040153093 Donovan Aug 2004 A1
20040158261 Vu Aug 2004 A1
20040186349 Ewers Sep 2004 A1
20040193146 Lee et al. Sep 2004 A1
20040199147 Nishizawa Oct 2004 A1
20040210116 Nakao Oct 2004 A1
20040225323 Nagase Nov 2004 A1
20040253079 Sanchez Dec 2004 A1
20050006432 Racenet Jan 2005 A1
20050033270 Ramans et al. Feb 2005 A1
20050033357 Braun Feb 2005 A1
20050054900 Mawn Mar 2005 A1
20050159645 Bertolero Jul 2005 A1
20050240178 Morley et al. Oct 2005 A1
20050261705 Gist Nov 2005 A1
20060015133 Grayzel Jan 2006 A1
20060016853 Racenet Jan 2006 A1
20060058813 Teague Mar 2006 A1
20060116693 Weisenburgh Jun 2006 A1
20060135963 Kick Jun 2006 A1
20060156875 McRury et al. Jul 2006 A1
20060189891 Waxman et al. Aug 2006 A1
20060199999 Ikeda Sep 2006 A1
20070016164 Dudney et al. Jan 2007 A1
20070023477 Whitman Feb 2007 A1
20070027443 Rose Feb 2007 A1
20070027534 Bergheim Feb 2007 A1
20070032906 Sutherland et al. Feb 2007 A1
20070106304 Hammack May 2007 A1
20070135803 Belson Jun 2007 A1
20070208375 Nishizawa Sep 2007 A1
20070213668 Spitz Sep 2007 A1
20070239178 Weitzner et al. Oct 2007 A1
20070250111 Lu Oct 2007 A1
20070299427 Yeung et al. Dec 2007 A1
20080015566 Livneh Jan 2008 A1
20080021440 Solomon Jan 2008 A1
20080033467 Miyamoto et al. Feb 2008 A1
20080046122 Manzo et al. Feb 2008 A1
20080065111 Blumenkranz Mar 2008 A1
20080125698 Greg et al. May 2008 A1
20080187101 Gertner Aug 2008 A1
20080196533 Bergamasco Aug 2008 A1
20080228104 Uber et al. Sep 2008 A1
20090012507 Culbertson et al. Jan 2009 A1
20090030446 Measamer Jan 2009 A1
20090036900 Moll Feb 2009 A1
20090043305 Brodbeck Feb 2009 A1
20090082634 Kathrani et al. Mar 2009 A1
20090088774 Swarup et al. Apr 2009 A1
20090105723 Dillinger Apr 2009 A1
20090131885 Akahoshi May 2009 A1
20090161827 Gertner et al. Jun 2009 A1
20090227998 Aljuri Sep 2009 A1
20090248041 Williams et al. Oct 2009 A1
20090248043 Tierney et al. Oct 2009 A1
20090264878 Carmel et al. Oct 2009 A1
20090270760 Leimbach et al. Oct 2009 A1
20090287188 Golden et al. Nov 2009 A1
20090299352 Zerfas Dec 2009 A1
20090312773 Cabrera et al. Dec 2009 A1
20100004642 Lumpkin Jan 2010 A1
20100010504 Simaan et al. Jan 2010 A1
20100011900 Burbank Jan 2010 A1
20100011901 Burbank Jan 2010 A1
20100016852 Manzo et al. Jan 2010 A1
20100082017 Zickler Apr 2010 A1
20100179632 Bruszewski et al. Jul 2010 A1
20100204605 Blakley Aug 2010 A1
20100204646 Plicchi et al. Aug 2010 A1
20100217235 Thorstenson Aug 2010 A1
20100225209 Goldberg Sep 2010 A1
20100228249 Mohr Sep 2010 A1
20100268211 Manwaring et al. Oct 2010 A1
20100312141 Keast et al. Dec 2010 A1
20100331858 Simaan et al. Dec 2010 A1
20110015483 Barbagli Jan 2011 A1
20110071541 Prisco et al. Mar 2011 A1
20110071543 Prisco et al. Mar 2011 A1
20110106146 Jeong May 2011 A1
20110125165 Simaan et al. May 2011 A1
20110152880 Alvarez et al. Jun 2011 A1
20110160713 Neuberger Jun 2011 A1
20110167611 Williams Jul 2011 A1
20110213362 Cunningham Sep 2011 A1
20110224660 Neuberger et al. Sep 2011 A1
20110238064 Williams et al. Sep 2011 A1
20110257641 Hastings et al. Oct 2011 A1
20110276085 Krzyzanowski Nov 2011 A1
20110313343 Milutinovic et al. Dec 2011 A1
20120069167 Liu et al. Mar 2012 A1
20120253277 Tah et al. Apr 2012 A1
20120138586 Webster et al. Jun 2012 A1
20120138660 Shelton, IV et al. Jun 2012 A1
20120209315 Amat Aug 2012 A1
20120232342 Reydel Sep 2012 A1
20120253332 Moll Oct 2012 A1
20120259320 Loesel et al. Oct 2012 A1
20120296318 Wellhofer et al. Nov 2012 A1
20130006144 Clancy Jan 2013 A1
20130035537 Wallace et al. Feb 2013 A1
20130053877 BenMaamer Feb 2013 A1
20130066136 Palese et al. Mar 2013 A1
20130085442 Shtul et al. Apr 2013 A1
20130085486 Boutoussov et al. Apr 2013 A1
20130096422 Boctor Apr 2013 A1
20130096574 Kang et al. Apr 2013 A1
20130110042 Humphreys May 2013 A1
20130110107 Smith et al. May 2013 A1
20130116716 Bahls et al. May 2013 A1
20130144274 Stefanchik et al. Jun 2013 A1
20130144395 Stefanchik Jun 2013 A1
20130190796 Tilson et al. Jul 2013 A1
20130225997 Dillard et al. Aug 2013 A1
20130226161 Hickenbotham Aug 2013 A1
20130233908 Knodel Sep 2013 A1
20130253267 Collins Sep 2013 A1
20130303876 Gelfand et al. Nov 2013 A1
20130310819 Neuberger et al. Nov 2013 A1
20130334281 Williams Dec 2013 A1
20130345686 Brown Dec 2013 A1
20140005681 Gee et al. Jan 2014 A1
20140039681 Bowling Feb 2014 A1
20140046308 Bischoff Feb 2014 A1
20140051985 Fan et al. Feb 2014 A1
20140058365 Bille Feb 2014 A1
20140058404 Hammack Feb 2014 A1
20140058428 Christopher Feb 2014 A1
20140100445 Stenzel Apr 2014 A1
20140142591 Alvarez et al. May 2014 A1
20140163318 Strom Jun 2014 A1
20140194859 Ianchulev Jul 2014 A1
20140194905 Kappel Jul 2014 A1
20140243849 Saglam Aug 2014 A1
20140246473 Auld Sep 2014 A1
20140275956 Fan Sep 2014 A1
20140276723 Parihar Sep 2014 A1
20140276956 Crainich Sep 2014 A1
20140309655 Gal et al. Oct 2014 A1
20140316203 Carroux et al. Oct 2014 A1
20140357984 Wallace et al. Dec 2014 A1
20140364870 Alvarez et al. Dec 2014 A1
20150080879 Trees Mar 2015 A1
20150127045 Prestel May 2015 A1
20150133960 Lohmeier May 2015 A1
20150150635 Kilroy Jun 2015 A1
20150164522 Budiman Jun 2015 A1
20150201917 Snow Jul 2015 A1
20150202085 Lemonis Jul 2015 A1
20150209965 Low et al. Jul 2015 A1
20150314110 Park Nov 2015 A1
20160001038 Romo et al. Jan 2016 A1
20160022289 Wan Jan 2016 A1
20160022466 Pedtke Jan 2016 A1
20160030073 Lsakov Feb 2016 A1
20160045208 Ciulla Feb 2016 A1
20160051318 Manzo et al. Feb 2016 A1
20160066935 Nguyen et al. Mar 2016 A1
20160158490 Leeflang Jun 2016 A1
20160183841 Duindam et al. Jun 2016 A1
20160199984 Lohmeier et al. Jul 2016 A1
20160235495 Wallace et al. Aug 2016 A1
20160249932 Rogers et al. Sep 2016 A1
20160270865 Landey et al. Sep 2016 A1
20160287279 Bovay et al. Oct 2016 A1
20160303743 Rockrohr Oct 2016 A1
20160310146 Levy et al. Oct 2016 A1
20160331358 Gordon Nov 2016 A1
20160367324 Sato et al. Dec 2016 A1
20170007337 Dan Jan 2017 A1
20170049471 Gaffney et al. Feb 2017 A1
20170055995 Weier Mar 2017 A1
20170065227 Marrs Mar 2017 A1
20170095234 Prisco et al. Apr 2017 A1
20170095295 Overmyer Apr 2017 A1
20170135706 Frey May 2017 A1
20170151416 Kutikov Jun 2017 A1
20170172553 Chaplin Jun 2017 A1
20170202627 Sramek et al. Jul 2017 A1
20170209073 Sramek et al. Jul 2017 A1
20170252096 Felder Sep 2017 A1
20170265923 Privitera Sep 2017 A1
20170265954 Burbank Sep 2017 A1
20170290631 Lee et al. Oct 2017 A1
20170319289 Neff et al. Nov 2017 A1
20180000563 Shanjani et al. Jan 2018 A1
20180025666 Ho et al. Jan 2018 A1
20180049824 Harris Feb 2018 A1
20180193049 Heck et al. Jul 2018 A1
20180214011 Graetzel et al. Aug 2018 A1
20180221038 Noonan et al. Aug 2018 A1
20180221039 Shah Aug 2018 A1
20180250083 Schuh et al. Sep 2018 A1
20180271616 Schuh et al. Sep 2018 A1
20180279852 Rafii-Tari et al. Oct 2018 A1
20180280660 Landey et al. Oct 2018 A1
20180289431 Draper et al. Oct 2018 A1
20180296285 Simi et al. Oct 2018 A1
20180325499 Landey et al. Nov 2018 A1
20180333044 Jenkins Nov 2018 A1
20180360435 Romo Dec 2018 A1
20190000559 Berman et al. Jan 2019 A1
20190000560 Berman et al. Jan 2019 A1
20190000576 Mintz et al. Jan 2019 A1
20190083183 Moll et al. Mar 2019 A1
20190099231 Bruehwiler Apr 2019 A1
20190110839 Rafii-Tari et al. Apr 2019 A1
20190151148 Alvarez et al. Apr 2019 A1
20190167366 Ummalaneni Jun 2019 A1
20190175009 Mintz Jun 2019 A1
20190175062 Rafii-Tari et al. Jun 2019 A1
20190175799 Hsu Jun 2019 A1
20190183585 Rafii-Tari et al. Jun 2019 A1
20190183587 Rafii-Tari et al. Jun 2019 A1
20190216548 Ummalaneni Jul 2019 A1
20190216576 Eyre Jul 2019 A1
20190223974 Romo Jul 2019 A1
20190228525 Mintz et al. Jul 2019 A1
20190239890 Stokes Aug 2019 A1
20190246882 Graetzel et al. Aug 2019 A1
20190262086 Connolly et al. Aug 2019 A1
20190269468 Hsu et al. Sep 2019 A1
20190274764 Romo Sep 2019 A1
20190290109 Agrawal et al. Sep 2019 A1
20190298160 Ummalaneni et al. Oct 2019 A1
20190298460 Al-Jadda Oct 2019 A1
20190298465 Chin Oct 2019 A1
20190314616 Moll et al. Oct 2019 A1
20190328213 Landey et al. Oct 2019 A1
20190336238 Yu Nov 2019 A1
20190365209 Ye et al. Dec 2019 A1
20190365479 Rafii-Tari Dec 2019 A1
20190365486 Srinivasan et al. Dec 2019 A1
20190374297 Wallace et al. Dec 2019 A1
20190375383 Alvarez Dec 2019 A1
20190380787 Ye Dec 2019 A1
20190380797 Yu Dec 2019 A1
20200000533 Schuh Jan 2020 A1
20200022767 Hill Jan 2020 A1
20200039086 Meyer Feb 2020 A1
20200046434 Graetzel Feb 2020 A1
20200054408 Schuh et al. Feb 2020 A1
20200060516 Baez Feb 2020 A1
20200093549 Chin Mar 2020 A1
20200093554 Schuh Mar 2020 A1
20200100845 Julian Apr 2020 A1
20200100853 Ho Apr 2020 A1
20200100855 Leparmentier Apr 2020 A1
20200101264 Jiang Apr 2020 A1
20200107894 Wallace Apr 2020 A1
20200121502 Kintz Apr 2020 A1
20200146769 Eyre May 2020 A1
20200163726 Tanner May 2020 A1
20200188043 Yu Jun 2020 A1
20200197112 Chin Jun 2020 A1
20200206472 Ma Jul 2020 A1
20200217733 Lin Jul 2020 A1
20200222134 Schuh Jul 2020 A1
20200237458 DeFonzo Jul 2020 A1
20200261172 Romo Aug 2020 A1
20200268459 Noonan et al. Aug 2020 A1
20200268460 Tse Aug 2020 A1
Foreign Referenced Citations (13)
Number Date Country
101443069 May 2009 CN
100515347 Jul 2009 CN
103298414 Sep 2013 CN
205729413 Nov 2016 CN
1 321 106 Jun 2003 EP
1 849 423 Oct 2007 EP
2005-270464 Oct 2005 JP
WO 11161218 Dec 2011 WO
WO 13107468 Jul 2013 WO
WO 13130895 Sep 2013 WO
WO 17114855 Jul 2017 WO
WO 18069679 Apr 2018 WO
WO 18189722 Oct 2018 WO
Non-Patent Literature Citations (2)
Entry
Office action dated Jun. 30, 2016 for U.S. Appl. No. 15/089,406.
Office action dated Nov. 22, 2016 for U.S. Appl. No. 15/089,406.
Related Publications (1)
Number Date Country
20200315717 A1 Oct 2020 US
Provisional Applications (1)
Number Date Country
62141817 Apr 2015 US
Continuations (2)
Number Date Country
Parent 15435790 Feb 2017 US
Child 16855786 US
Parent 15089406 Apr 2016 US
Child 15435790 US