1. Field of the Invention
The present invention relates to a medical robotic system.
Blockage of a coronary artery may deprive the heart of blood and oxygen required to sustain life. The blockage may be removed with medication or by an angioplasty. For severe blockage a coronary artery bypass graft (CABG) is performed to bypass the blocked area of the artery. CABG procedures are typically performed by splitting the sternum and pulling open the chest cavity to provide access to the heart. An incision is made in the artery adjacent to the blocked area. The internal mammary artery is then severed and attached to the artery at the point of incision. The internal mammary artery bypasses the blocked area of the artery to again provide a full flow of blood to the heart. Splitting the sternum and opening the chest cavity can create a tremendous trauma to the patient. Additionally, the cracked sternum prolongs the recovery period of the patient.
C
The handles and a screen are typically integrated into a console that is operated by the surgeon to control the various robotic arms and medical instruments of a ZEUS® system. Utilizing a robotic system to perform surgery requires a certain amount of training. It would be desirable to provide a system that would allow a second surgeon to assist another surgeon in controlling a robotic medical system. The second surgeon could both teach and assist a surgeon learning to perform a medical procedure with a ZEUS® system. This would greatly reduce the time required to learn the operation of a robotically assisted medical system.
U.S. Pat. No. 5,217,003 issued to Wilk discloses a surgical system which allows a surgeon to remotely operate robotically controlled medical instruments through a telecommunication link. The Wilk system only allows for one surgeon to operate the robotic arms at a given time. Wilk does not disclose or contemplate a system which allows two different surgeons to operate the same set of robotic arms.
U.S. Pat. No. 5,609,560 issued to Ichikawa et al. and assigned to Olympus Optical Co. Ltd. discloses a system that allows an operator to control a plurality of different medical devices through a single interface. The Olympus patent does not disclose a system which allows multiple input devices to control a single medical device.
A medical system that includes a single medical device that can be controlled by one of two input devices.
Referring to the drawings more particularly by reference numbers,
The first and second articulate arms 16 and 18 each have a surgical instrument 22 and 24, respectively, coupled to robotic arms 26 and 28, respectively. The third articulate arm 20 includes a robotic arm 30 that holds and moves an endoscope 32. The instruments 22 and 24, and endoscope 32 are inserted through incisions cut into the skin of the patient. The endoscope has a camera 34 that is coupled to a television monitor 36 which displays images of the internal organs of the patient.
The first 16, second 18, and third 20 articulate arms are coupled to a controller 38 which can control the movement of the arms. The controller 38 is connected to an input device 40 such as a foot pedal that can be operated by a surgeon to move the location of the endoscope 32. The controller 38 contains electrical circuits, such as a processor, to control the robotic arms 26, 28 and 30. The surgeon can view a different portion of the patient by depressing a corresponding button(s) of the pedal 40. The controller 38 receives the input signal(s) from the foot pedal 40 and moves the robotic arm 30 and endoscope 32 in accordance with the input commands of the surgeon. The robotic arm may be a device that is sold by the assignee of the present invention, C
The instruments 22 and 24 of the first 16 and second 18 articulate arms, respectively, are controlled by a pair of master handles 42 and 44 that can be manipulated by the surgeon. The handles 42 and 44, and arms 16 and 18, have a master slave relationship so that movement of the handles 42 and 44 produces a corresponding movement of the surgical instruments 22 and 24. The handles 42 and 44 may be mounted to a portable cabinet 46. The handles 42 and 44 are also coupled to the controller 38.
The controller 38 receives input signals from the handles 42 and 44, computes a corresponding movement of the surgical instruments, and provides output signals to move the robotic arms 26 and 28 and instruments 22 and 24. The entire system may be a product marketed by C
The adapter 54 is coupled to a gear assembly 58 located at the end of a robotic arm 26 or 28. The gear assembly 58 can rotate the adapter 54 and end effector 48. The actuator rod 50 and end effector 48 may be coupled to the force sensor 56 and motor 52 by a spring biased lever 60. The instrument 22 or 24 may be the same or similar to an instrument described in the '458 patent.
The consoles 102 and 104 are coupled to a network port 106 by a pair of interconnect devices 108 and 110. The network port 106 may be a computer that contains the necessary hardware and software to transmit and receive information through a communication link 112 in a communication network 114.
Consoles 102 and 104 provided by Computer Motion under the ZEUS® mark provide output signals that may be incompatible with a computer. The interconnect devices 108 and 110 may provide an interface that conditions the signals for transmitting and receiving signals between the consoles 102 and 104 and the network computer 106.
It is to be understood that the computer and/or consoles 102 and 104 may be constructed so that the system does not require the interconnect devices 108 and 110. Additionally, the consoles 102 and 104 may be constructed so that the system does not require a separate networking computer 106. For example, the consoles 102 and 104 may be constructed and/or configured to directly transmit information through the communication network 114.
The system 100 may include a second network port 116 that is coupled to a device controller(s) 118 and the communication network 114. The device controller 118 controls the robotic arms 26, 28 and 30 and instruments 22 and 24. The second network port 116 may be a computer that is coupled to the controller 118 by an interconnect device 120. Although an interconnect device 120 and network computer 116 are shown and described, it is to be understood that the controller 118 can be constructed and configured to eliminate the device 120 and/or computer 116.
The communication network 114 may be any type of communication system including but not limited to, the internet and other types of wide area networks (WANs), intranets, local area networks (LANs), public switched telephone networks (PSTN), integrated services digital networks (ISDN). It is preferable to establish a communication link through a fiber optic network to reduce latency in the system. Depending upon the type of communication link selected, by way of example, the information can be transmitted in accordance with the user datagram protocol/internet protocol (UDP/IP) or asynchronous transfer mode/ATM Adaption Layer (ATM/AAL1) network protocols. The computers 112 and 116 may operate in accordance with an operating system sold under the designation VxWORKS by Wind River. By way of example, the computers 112 and 116 may be constructed and configured to operate with 100 base T Ethernet and/or 155 Mbps fiber ATM systems.
The endoscope computer 124 may allow the surgeon to control the movement of the robotic arm 30 and the endoscope 32 shown in
A ZEUS® console will transmit and receive information that is communicated as analog, digital or quadrature signals. The network computer 112 may have analog input/output (I/O) 126, digital I/O 128 and quadrature 130 interfaces that allow communication between the console 102 or 104 and the network 114. By way of example, the analog interface 126 may transceive data relating to handle position, tilt position, in/out position and foot pedal information (if used). The quadrature signals may relate to roll and pan position data. The digital I/O interface 128 may relate to cable wire sensing data, handle buttons, illuminators (LEDs) and audio feedback (buzzers). The position data is preferably absolute position information. By using absolute position information the robotic arms can still be moved even when some information is not successfully transmitted across the network 114. If incremental position information is provided, an error in the transmission would create a gap in the data and possibly inaccurate arm movement. The network computer 112 may further have a screen 132 that allows for a user to operate the computer 112.
Controllers 134 and 136 may be coupled to the network computer 116 by digital I/O 140 and analog I/O 142 interfaces. The computer 116 may be coupled to the controller 138 by an RS232 interface. Additionally, the computer 116 may be coupled to corresponding RS232 ports of the controllers 134 and 136. The RS232 ports of the controllers 134 and 136 may receive data such as movement scaling and end effector actuation.
The robotic arms and instruments contain sensors, encoders, etc. that provide feedback information. Some or all of this feedback information may be transmitted over the network 114 to the surgeon side of the system. By way of example, the analog feedback information may include handle feedback, tilt feedback, in/out feedback and foot pedal feedback. Digital feedback may include cable sensing, buttons, illumination and audatory feedback. The computer 116 may be coupled to a screen 142.
The computers 106 and 116 may packetize the information for transmission through the communication network 114. Each packet will contain two types of data, robotic data and RS232 data. Robotic data may include position information of the robots, including input commands to move the robots and position feedback from the robots. RS232 data may include functioning data such as instrument scaling and actuation.
Because the system transmits absolute position data the packets of robotic data can be received out of sequence. This may occur when using a UDP/IP protocol which uses a best efforts methodology. The computers 106 and 116 are constructed and configured to disregard any “late” arriving packets with robotic data. For example, the computer 106 may transmits packets 1, 2 and 3. The computer 116 may receive the packets in the order of 1, 3 and 2. The computer 116 will disregard the second packet 2. Disregarding the packet instead of requesting a retransmission of the data reduces the latency of the system. It is desirable to minimize latency to create a “real time” operation of the system.
It is preferable to have the RS232 information received in strict sequential order. Therefore the receiving computer will request a re transmission of RS232 data from the transmitting computer if the data is not errorlessly received. RS232 data such as motion scaling and instrument actuation must be accurately transmitted and processed to insure that there is not an inadvertent command.
The computers 106 and 116 can multiplex the RS232 data from the various input sources. The computers 106 and 116 may have first in first out queues (FIFO) for transmitting information. Data transmitted between the computer 106 and the various components within the surgeon side of the system may be communicated through a protocol provided by Computer Motion under the name of H
In addition to the robotic and RS232 data, the patient side of the system will transmit video data from the endoscope camera 34. To reduce latency in the system, the computer 116 can multiplex the video data with the robotic/RS232 data onto the communication network. The video data may be compressed using conventional JPEG, etc. compression techniques for transmission to the surgeon side of the system.
Each packet 150 may have the fields shown in
The TX Rate field is the average rate at which packets are being transmitted. The RX Rate field is the average rate that packets are being received. The RS232 ACK field includes an acknowledgement count for RS232 data. RS232 data is typically maintained within the queue of a computer until an acknowledgement is received from the receiving computer that the data has been received.
The RS232 POS field is a counter relating to transmitted RS232 data. The RS232 ID field is an identification for RS232 data. The RS232 MESS SZ field contains the size of the packet. The RS232 BUFFER field contains the content length of the packet. The DATA field contains data being transmitted and may contain separate subfields for robotic and RS232 data. CS is a checksum field used to detect errors in the transmission of the packet.
Either computer 106 or 116 can be used as an arbitrator between the input devices and the medical devices. For example, the computer 116 may receive data from both consoles 102 and 104. The packets of information from each console 102 and 104 may include priority data in the PRIORITY fields. The computer 116 will route the data to the relevant device (eg. robot, instrument, etc.) in accordance with the priority data. For example, console 104 may, have a higher priority than console 102. The computer 116 will route data to control a robot from console 104 to the exclusion of data from console 102 so that the surgeon at 104 has control of the arm.
As an alternate embodiment, the computer 116 may be constructed and configured to provide priority according to the data in the SOURCE ID field. For example, the computer 116 may be programmed to always provide priority for data that has the source ID from console 104. The computer 116 may have a hierarchical tree that assigns priority for a number of different input devices.
Alternatively, the computer 106 may function as the arbitrator, screening the data before transmission across the network 114. The computer 106 may have a priority scheme that always awards priority to one of the consoles 102 or 104. Additionally, or alternatively, one or more of the consoles 102 and 104 may have a mechanical and/or software switch that can be actuated to give the console priority. The switch may function as an override feature to allow a surgeon to assume control of a procedure.
In operation, the system initial performs a start up routine. The ZEUS system is typically configured to startup with data from the consoles. The consoles may not be in communication during the start up routine of the robotic arms, instruments, etc. during the startup routine so that the system does not have the console data required for system boot. The computer 116 may automatically drive the missing console input data to default values. The default values allow the patient side of the system to complete the startup routine. Likewise, the computer 106 may also drive missing incoming signals from the patient side of the system to default values to allow the consoles 102 and/or 104 to boot up. Driving missing signals to a default value may be part of a network local mode. The local mode allows one or more consoles to “hot plug” into the system without shutting the system down.
Additionally, if communication between the surgeon and patient sides of the system are interrupted during operation the computer 106 will again force the missing data to default values. The default values may be quiescent signal values to prevent unsafe operation of the system. The components on the patient side will be left at the last known value so that the instruments and arms do not move.
Once the start up routines have been completed and the communication link has been established the surgeons can operate the consoles. The system is quite useful for medical procedures wherein one of the surgeons is a teacher and the other surgeon is a pupil. The arbitration function of the system allows the teacher to take control of robot movement and instrument actuation at anytime during the procedure. This allows the teacher to instruct the pupil on the procedure and/or the use of a medical robotic system.
Additionally, the system may allow one surgeon to control one medical device and another surgeon to control the other device. For example, one surgeon may move the instruments 22 and 24 while the other surgeon moves the endoscope 32, or one surgeon may move one instrument 22 or 24 while the other surgeon moves the other instrument 24 or 22.
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art.
This application is a continuation of U.S. patent application Ser. No. 10/423,429 filed on Apr. 24, 2003, now U.S. Pat. No. 6,871,117, which is a divisional of U.S. patent application Ser. No. 09/949,050 filed on Sep. 7, 2001, now U.S. Pat. No. 6,728,599, the full disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
977825 | Murphy | Dec 1910 | A |
3171549 | Orloff | Mar 1965 | A |
3280991 | Melton et al. | Oct 1966 | A |
4058001 | Waxman | Nov 1977 | A |
4128880 | Cray, Jr. | Dec 1978 | A |
4221997 | Flemming | Sep 1980 | A |
4367998 | Causer | Jan 1983 | A |
4401852 | Noso et al. | Aug 1983 | A |
4456961 | Price et al. | Jun 1984 | A |
4460302 | Moreau et al. | Jul 1984 | A |
4474174 | Petruzzi | Oct 1984 | A |
4491135 | Klein | Jan 1985 | A |
4503854 | Jako | Mar 1985 | A |
4517963 | Michel | May 1985 | A |
4523884 | Clement et al. | Jun 1985 | A |
4586398 | Yindra | May 1986 | A |
4604016 | Joyce | Aug 1986 | A |
4616637 | Caspari et al. | Oct 1986 | A |
4624011 | Watanabe et al. | Nov 1986 | A |
4633389 | Tanaka et al. | Dec 1986 | A |
4635292 | Mori et al. | Jan 1987 | A |
4635479 | Salisbury, Jr. et al. | Jan 1987 | A |
4641292 | Tunnell et al. | Feb 1987 | A |
4655257 | Iwashita | Apr 1987 | A |
4672963 | Barken | Jun 1987 | A |
4676243 | Clayman | Jun 1987 | A |
4728974 | Nio et al. | Mar 1988 | A |
4762455 | Coughlan et al. | Aug 1988 | A |
4791934 | Brunnett | Dec 1988 | A |
4791940 | Hirschfeld et al. | Dec 1988 | A |
4794912 | Lia | Jan 1989 | A |
4815006 | Andersson et al. | Mar 1989 | A |
4815450 | Patel | Mar 1989 | A |
4837734 | Ichikawa et al. | Jun 1989 | A |
4852083 | Niehaus et al. | Jul 1989 | A |
4853874 | Iwamoto et al. | Aug 1989 | A |
4854301 | Nakajima | Aug 1989 | A |
4860215 | Seraji | Aug 1989 | A |
4863133 | Bonnell | Sep 1989 | A |
4883400 | Kuban et al. | Nov 1989 | A |
4930494 | Takehana et al. | Jun 1990 | A |
4945479 | Rusterholz et al. | Jul 1990 | A |
4949717 | Shaw | Aug 1990 | A |
4954952 | Ubhayakar et al. | Sep 1990 | A |
4965417 | Massie | Oct 1990 | A |
4969709 | Sogawa et al. | Nov 1990 | A |
4969890 | Sugita et al. | Nov 1990 | A |
4979933 | Runge | Dec 1990 | A |
4979949 | Matsen, III et al. | Dec 1990 | A |
4980626 | Hess et al. | Dec 1990 | A |
4989253 | Liang et al. | Jan 1991 | A |
4996975 | Nakamura | Mar 1991 | A |
5019968 | Wang et al. | May 1991 | A |
5020001 | Yamamoto et al. | May 1991 | A |
5046375 | Salisbury, Jr. et al. | Sep 1991 | A |
5065741 | Uchiyama et al. | Nov 1991 | A |
5078140 | Kwoh | Jan 1992 | A |
5086401 | Glassman et al. | Feb 1992 | A |
5091656 | Gahn | Feb 1992 | A |
5097829 | Quisenberry | Mar 1992 | A |
5097839 | Allen | Mar 1992 | A |
5098426 | Sklar et al. | Mar 1992 | A |
5105367 | Tsuchihashi et al. | Apr 1992 | A |
5109499 | Inagami et al. | Apr 1992 | A |
5123095 | Papadopoulos et al. | Jun 1992 | A |
5131105 | Harrawood et al. | Jul 1992 | A |
5142930 | Allen et al. | Sep 1992 | A |
5145227 | Monford, Jr. | Sep 1992 | A |
5166513 | Keenan et al. | Nov 1992 | A |
5175694 | Amato | Dec 1992 | A |
5182641 | Diner et al. | Jan 1993 | A |
5184601 | Putman | Feb 1993 | A |
5187574 | Kosemura et al. | Feb 1993 | A |
5196688 | Hesse et al. | Mar 1993 | A |
5201325 | McEwen et al. | Apr 1993 | A |
5201743 | Haber et al. | Apr 1993 | A |
5217003 | Wilk | Jun 1993 | A |
5221283 | Chang | Jun 1993 | A |
5228429 | Hatano | Jul 1993 | A |
5230623 | Guthrie et al. | Jul 1993 | A |
5236432 | Matsen, III et al. | Aug 1993 | A |
5251127 | Raab | Oct 1993 | A |
5257999 | Slanetz, Jr. | Nov 1993 | A |
5271384 | McEwen et al. | Dec 1993 | A |
5279309 | Taylor et al. | Jan 1994 | A |
5282806 | Haber | Feb 1994 | A |
5289273 | Lang | Feb 1994 | A |
5289365 | Caldwell et al. | Feb 1994 | A |
5299288 | Glassman et al. | Mar 1994 | A |
5300926 | Stoeckl | Apr 1994 | A |
5303148 | Mattson et al. | Apr 1994 | A |
5304185 | Taylor | Apr 1994 | A |
5305203 | Raab | Apr 1994 | A |
5305427 | Nagata | Apr 1994 | A |
5309717 | Minch | May 1994 | A |
5311516 | Kuznicki et al. | May 1994 | A |
5313306 | Kuban et al. | May 1994 | A |
5320630 | Ahmed | Jun 1994 | A |
5337732 | Grundfest et al. | Aug 1994 | A |
5339799 | Kami et al. | Aug 1994 | A |
5343385 | Joskowicz et al. | Aug 1994 | A |
5343391 | Mushabac | Aug 1994 | A |
5345538 | Narayannan et al. | Sep 1994 | A |
5357962 | Green | Oct 1994 | A |
5368015 | Wilk | Nov 1994 | A |
5368428 | Hussey et al. | Nov 1994 | A |
5371536 | Yamaguchi | Dec 1994 | A |
5382885 | Salcudean et al. | Jan 1995 | A |
5388987 | Badoz et al. | Feb 1995 | A |
5395369 | McBrayer et al. | Mar 1995 | A |
5397323 | Taylor et al. | Mar 1995 | A |
5402801 | Taylor | Apr 1995 | A |
5403319 | Matsen, III et al. | Apr 1995 | A |
5408409 | Glassman et al. | Apr 1995 | A |
5410638 | Colgate et al. | Apr 1995 | A |
5417210 | Funda et al. | May 1995 | A |
5417701 | Holmes | May 1995 | A |
5422521 | Neer et al. | Jun 1995 | A |
5431645 | Smith et al. | Jul 1995 | A |
5434457 | Josephs et al. | Jul 1995 | A |
5442728 | Kaufman et al. | Aug 1995 | A |
5443484 | Kirsch et al. | Aug 1995 | A |
5445166 | Taylor | Aug 1995 | A |
5451924 | Massimino et al. | Sep 1995 | A |
5455766 | Scheller et al. | Oct 1995 | A |
5458547 | Teraoka et al. | Oct 1995 | A |
5458574 | Machold et al. | Oct 1995 | A |
5476010 | Fleming et al. | Dec 1995 | A |
5490117 | Oda et al. | Feb 1996 | A |
5490843 | Hildwein et al. | Feb 1996 | A |
5506912 | Nagasaki et al. | Apr 1996 | A |
5512919 | Araki | Apr 1996 | A |
5515478 | Wang | May 1996 | A |
5544654 | Murphy et al. | Aug 1996 | A |
5553198 | Wang et al. | Sep 1996 | A |
5562503 | Ellman et al. | Oct 1996 | A |
5571110 | Matsen, III et al. | Nov 1996 | A |
5572999 | Funda et al. | Nov 1996 | A |
5598269 | Kitaevich et al. | Jan 1997 | A |
5609560 | Ichikawa et al. | Mar 1997 | A |
5626595 | Sklar et al. | May 1997 | A |
5629594 | Jacobus et al. | May 1997 | A |
5630431 | Taylor | May 1997 | A |
5631973 | Green | May 1997 | A |
5636259 | Khutoryansky et al. | Jun 1997 | A |
5649956 | Jensen et al. | Jul 1997 | A |
5657429 | Wang et al. | Aug 1997 | A |
5658250 | Blomquist et al. | Aug 1997 | A |
5676673 | Ferre et al. | Oct 1997 | A |
5695500 | Taylor et al. | Dec 1997 | A |
5696574 | Schwaegerle | Dec 1997 | A |
5696837 | Green | Dec 1997 | A |
5718038 | Takiar et al. | Feb 1998 | A |
5727569 | Benetti et al. | Mar 1998 | A |
5735290 | Sterman et al. | Apr 1998 | A |
5737711 | Abe | Apr 1998 | A |
5749362 | Funda et al. | May 1998 | A |
5754741 | Wang et al. | May 1998 | A |
5762458 | Wang et al. | Jun 1998 | A |
5766126 | Anderson | Jun 1998 | A |
5776126 | Wilk et al. | Jul 1998 | A |
5779623 | Bonnell | Jul 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5792178 | Welch et al. | Aug 1998 | A |
5797900 | Madhani et al. | Aug 1998 | A |
5800423 | Jensen | Sep 1998 | A |
5807284 | Foxlin | Sep 1998 | A |
5807377 | Madhani et al. | Sep 1998 | A |
5807378 | Jensen et al. | Sep 1998 | A |
5808665 | Green | Sep 1998 | A |
5810880 | Jensen et al. | Sep 1998 | A |
5813813 | Daum et al. | Sep 1998 | A |
5814038 | Jensen et al. | Sep 1998 | A |
5817084 | Jensen | Oct 1998 | A |
5825982 | Wright et al. | Oct 1998 | A |
5827319 | Carlson et al. | Oct 1998 | A |
5836869 | Kudo et al. | Nov 1998 | A |
5844824 | Newman et al. | Dec 1998 | A |
5855583 | Wang et al. | Jan 1999 | A |
5859934 | Green | Jan 1999 | A |
5860995 | Berkelaar | Jan 1999 | A |
5871017 | Mayer | Feb 1999 | A |
5876325 | Mizuno et al. | Mar 1999 | A |
5878193 | Wang et al. | Mar 1999 | A |
5882206 | Gillio | Mar 1999 | A |
5887121 | Funda et al. | Mar 1999 | A |
5898599 | Massie et al. | Apr 1999 | A |
5904702 | Ek et al. | May 1999 | A |
5906630 | Anderhub et al. | May 1999 | A |
5911036 | Wright et al. | Jun 1999 | A |
5920395 | Schultz | Jul 1999 | A |
5931832 | Jensen | Aug 1999 | A |
5950629 | Taylor et al. | Sep 1999 | A |
5951475 | Gueziec et al. | Sep 1999 | A |
5951587 | Qureshi et al. | Sep 1999 | A |
5954731 | Yoon | Sep 1999 | A |
5957902 | Teves | Sep 1999 | A |
5967980 | Ferre et al. | Oct 1999 | A |
5971976 | Wang et al. | Oct 1999 | A |
5980782 | Hershkowitz et al. | Nov 1999 | A |
5984932 | Yoon | Nov 1999 | A |
6006127 | Van Der Brug et al. | Dec 1999 | A |
6024695 | Taylor et al. | Feb 2000 | A |
6080181 | Jensen et al. | Jun 2000 | A |
6106511 | Jensen | Aug 2000 | A |
6120433 | Mizuno et al. | Sep 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6201984 | Funda et al. | Mar 2001 | B1 |
6206903 | Ramans | Mar 2001 | B1 |
6223100 | Green | Apr 2001 | B1 |
6226566 | Funda et al. | May 2001 | B1 |
6231526 | Taylor et al. | May 2001 | B1 |
6246200 | Blumenkranz et al. | Jun 2001 | B1 |
6259806 | Green | Jul 2001 | B1 |
6309397 | Julian et al. | Oct 2001 | B1 |
6312435 | Wallace et al. | Nov 2001 | B1 |
6331181 | Tierney et al. | Dec 2001 | B1 |
6346072 | Cooper | Feb 2002 | B1 |
6364888 | Nieneyer et al. | Apr 2002 | B1 |
6368332 | Salcudean et al. | Apr 2002 | B1 |
6371952 | Madhani et al. | Apr 2002 | B1 |
6459926 | Nowlin et al. | Oct 2002 | B1 |
6468265 | Evans | Oct 2002 | B1 |
6490490 | Uchikubo et al. | Dec 2002 | B1 |
6659939 | Moll et al. | Dec 2003 | B2 |
6684129 | Salisbury et al. | Jan 2004 | B2 |
6810281 | Brock et al. | Oct 2004 | B2 |
6837883 | Moll et al. | Jan 2005 | B2 |
6999852 | Green | Feb 2006 | B2 |
20030050733 | Wang et al. | Mar 2003 | A1 |
20030135203 | Wang et al. | Jul 2003 | A1 |
20030144649 | Ghodoussi et al. | Jul 2003 | A1 |
20030187426 | Wang et al. | Oct 2003 | A1 |
20030195660 | Wang et al. | Oct 2003 | A1 |
20030195662 | Wang et al. | Oct 2003 | A1 |
20030195663 | Wang et al. | Oct 2003 | A1 |
Number | Date | Country |
---|---|---|
U 9204118.3 | Jul 1992 | DE |
4310842 | Jan 1995 | DE |
0239409 | Sep 1987 | EP |
0424687 | May 1991 | EP |
0776738 | Jun 1997 | EP |
WO 9104711 | Apr 1991 | WO |
WO 9220295 | Nov 1992 | WO |
WO 9313916 | Jul 1993 | WO |
WO 9418881 | Sep 1994 | WO |
WO 9426167 | Nov 1994 | WO |
WO 9501757 | Jan 1995 | WO |
WO 9715240 | May 1997 | WO |
WO 9825666 | Jun 1998 | WO |
WO 9909892 | Mar 1999 | WO |
WO 9950721 | Oct 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20050154493 A1 | Jul 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09949050 | Sep 2001 | US |
Child | 10423429 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10423429 | Apr 2003 | US |
Child | 11031198 | US |