MODULATION OF GENE TRANSCRIPTION USING ANTISENSE OLIGONUCLEOTIDES TARGETING REGULATORY RNAS

Information

  • Patent Application
  • 20240336924
  • Publication Number
    20240336924
  • Date Filed
    June 24, 2024
    4 months ago
  • Date Published
    October 10, 2024
    27 days ago
Abstract
Described herein are methods of modulating gene transcription using antisense oligonucleotides (ASOs) targeting regulatory RNAs, such as promoter-associated RNAs and enhancer RNAs. These methods are useful for modulating the levels of gene products, for example, increasing expression of Carbamoyl-Phosphatase Synthetase 1 (CPS1), thereby treating diseases associated with aberrant gene expression.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted via EFS-Web and is hereby incorporated by reference in its entirety. Said XML copy, created on Dec. 21, 2022, is named CTC-028WO_140628340009.xml, and is 925,586 bytes in size.


FIELD OF THE INVENTION

The disclosure relates to methods of upregulating or downregulating gene transcription using antisense oligonucleotides (ASOs) targeting regulatory RNAs (e.g. CPS1 regulatory RNAs), such as promoter-associated RNAs and enhancer RNAs.


BACKGROUND

Transcription factors bind specific sequences in promoter and enhancer DNA elements to regulate gene transcription. It was recently reported that active promoters and enhancer elements are themselves transcribed, generating noncoding regulatory RNAs (regRNAs) such as promoter-associated RNAs (paRNAs) and enhancer RNAs (eRNAs) (see Sartorelli and Lauberth, Nat. Struct. Mol. Biol. (2020) 27, 521-28). Unlike coding RNAs, regRNAs are transcribed bi-directionally. Various models have been proposed for the functions of regRNAs, including nucleosome remodeling (see Mousavi et al., Mol. Cell (2013) 51(5):606-17), modulation of enhancer-promoter looping (see Lai et al., Nature (2013) 494(7438):497-501), and direct interaction with transcription regulators (see Sigova et al., Science (2015) 350, 978-81).


Gene expression has been generally known as an undruggable biological process. Despite on-going efforts into understanding the biology of gene transcription and regRNAs, clinically suitable methods of modulating gene expression are limited. There remains a need for new and useful methods for treating diseases associated with aberrant gene expression.


SUMMARY

In one aspect, provided herein are antisense oligonucleotides (ASO) complementary to at least 8 contiguous nucleotides of a regulatory RNA (regRNA) of Carbamoyl-Phosphate Synthetase 1 (CPS1), wherein the regRNA has a nucleotide sequence selected from the group consisting of SEQ ID NO: 49, 50, 69-79 and 89-90.


In some embodiments, the ASO is complementary to a sequence in the regRNA that is no more than 200 nucleotides from the 3′ end of the regRNA.


In some embodiments, the ASO is complementary to a sequence in the regRNA that is no more than 200 nucleotides from the 5′ end of the regRNA.


In some embodiments, the regulatory RNA has a nucleotide sequence of SEQ ID NO: 49, and the ASO comprises a nucleotide sequence of SEQ ID NO: 1.


In some embodiments, the regulatory RNA has a nucleotide sequence of SEQ ID NO: 49, and the ASO comprises a nucleotide sequence of SEQ ID NO: 2.


In some embodiments, the regulatory RNA has a nucleotide sequence of SEQ ID NO: 49, and the ASO comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1-3.


In some embodiments, the regulatory RNA has a nucleotide sequence of SEQ ID NO: 50, and the ASO comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 4-15.


In some embodiments, the regulatory RNA has a nucleotide sequence of SEQ ID NO: 89, and the ASO comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 487-574.


In some embodiments, the regulatory RNA has a nucleotide sequence of SEQ ID NO: 90, and the ASO comprises a nucleotide sequence selected from the group consisting of SEQ ID NOs: 575-662.


In some embodiments, the ASO is no more than 50, 40, 30, or 25 nucleotides in length.


In some embodiments, the ASO comprises an polynucleotide comprising one or more chemical modifications. In some embodiments, the ASO comprises an RNA polynucleotide comprising one or more chemical modifications. In some embodiments, the ASO comprises an RNA and DNA polynucleotide comprising one or more chemical modifications.


In some embodiments, at least 3, 4, or 5 nucleotides at the 5′ end and at least 3, 4, or 5 nucleotides at the 3′ end of the ASO comprise ribonucleotides with one or more chemical modifications.


In some embodiments, the one or more chemical modifications comprise a nucleotide sugar modification comprising one or more of 2′-O—C1-4alkyl such as 2′-O-methyl (2′-OMe), 2′-deoxy (2′-H), 2′-O—C1-3alkyl-O—C1-3alkyl such as 2′-methoxyethyl (“2′-MOE”), 2′-fluoro (“2′-F”), 2′-amino (“2′-NH2”), 2′-arabinosyl (“2′-arabino”) nucleotide, 2′-F-arabinosyl (“2′-F-arabino”) nucleotide, 2′-locked nucleic acid (“LNA”) nucleotide, 2′-amido bridge nucleic acid (AmNA), 2′-unlocked nucleic acid (“ULNA”) nucleotide, a sugar in L form (“L-sugar”), 4′-thioribosyl nucleotide, constrained ethyl (cET), 2′-fluoro-arabino (FANA), or thiomorpholino.


In some embodiments, the one or more chemical modifications comprise an internucleotide linkage modification comprising one or more of phosphorothioate (“PS” or (P(S))), phosphoramidate (P(NR1R2) such as dimethylaminophosphoramidate (P(N(CH3)2)), phosphonocarboxylate (P(CH2)nCOOR) such as phosphonoacetate “PACE” (P(CH2COO—)), thiophosphonocarboxylate ((S)P(CH2)nCOOR) such as thiophosphonoacetate “thioPACE” ((S)P(CH2COO—)), alkylphosphonate (P(C1-3alkyl) such as methylphosphonate —P(CH3), boranophosphonate (P(BH3)), or phosphorodithioate (P(S)2).


In some embodiments, the one or more chemical modifications comprise a nucleobase modification comprising one or more of 2-thiouracil (“2-thioU”), 2-thiocytosine (“2-thioC”), 4-thiouracil (“4-thioU”), 6-thioguanine (“6-thioG”), 2-aminoadenine (“2-aminoA”), 2-aminopurine, pseudouracil, hypoxanthine, 7-deazaguanine, 7-deaza-8-azaguanine, 7-deazaadenine, 7-deaza-8-azaadenine, 5-methylcytosine (“5-methylC”), 5-methyluracil (“5-methylU”), 5-hydroxymethylcytosine, 5-hydroxymethyluracil, 5,6-dehydrouracil, 5-propynylcytosine, 5-propynyluracil, 5-ethynylcytosine, 5-ethynyluracil, 5-allyluracil (“5-allylU”), 5-allylcytosine (“5-allylC”), 5-aminoallyluracil (“5-aminoallylU”), 5-aminoallyl-cytosine (“5-aminoallylC”), an abasic nucleotide, Z base, P base, Unstructured Nucleic Acid (“UNA”), isoguanine (“isoG”), isocytosine (“isoC”) a glycerol nucleic acid (GNA), glycerol nucleic acid (GNA), or thiophosphoramidate morpholinos (TMOs).


In some embodiments, the one or more chemical modifications comprise 2′-O-methoxyethyl, 5-methyl cytidine, locked nucleic acid (LNA), and phosphorothioate internucleotide bond.


In some embodiments, the ASO comprises 8 or more contiguous nucleotides of unmodified DNA flanked by at least 3 nucleotides of modified ribonucleotides at each of the 5′ end and the 3′ end.


In some embodiments, the ASO comprises the nucleotide sequence and/or chemical modification of any one of SEQ ID NO: 16, 22-27, 31-39, 403-412, 414-415, 417-432, 435-480, or 482-486.


In some embodiments, the ASO comprises the nucleotide sequence and/or chemical modification of SEQ ID NO: 409.


In some embodiments, the ASO further comprises at least one phosphorothioate internucleotide bond.


In some embodiments, the ASO comprises the nucleotide sequence of SEQ ID NOs: 403-406, 409-415, 417-424, 470, 473, 477, 480, or 486.


In some embodiments, the chemical modification is cET.


In some embodiments, the ASO comprises the nucleotide sequence of SEQ ID NOs: 425-432 or 435-442.


In some embodiments, the chemical modification is LNA.


In some embodiments, the ASO comprises the nucleotide sequence of SEQ ID NOs: 443-458.


In some embodiments, the chemical modification is LNA and 2′-O-methoxyethyl.


In some embodiments, the ASO comprises the nucleotide sequence of SEQ ID NOs: 400, 408, 460, 462, 464-466, 468, 469, 471, 472, 475, 476, or 479.


In some embodiments, the ASO does not comprise 8 or more contiguous nucleotides of unmodified DNA.


In some embodiments, the ASO does not comprise an unmodified ribonucleotide.


In some embodiments, the ASO does not comprise a deoxyribonucleotide.


In some embodiments, the length of the ASO is 2×n+4 nucleotides (n is an integer of 8 or greater), wherein the nucleotides at positions 2×m are ribonucleotides modified by LNA (m is an integer from 1 to n) and the remaining nucleotides are ribonucleotides modified by 2′-O-methoxyethyl.


In some embodiments, the ASO comprises the nucleotide sequence of SEQ ID NOs: 393 or 394.


In some embodiments, the length of the ASO is 3×n+2 nucleotides (n is an integer of 4 or greater), wherein the nucleotides at positions 3×m are ribonucleotides modified by LNA (m is an integer from 1 to n) and the remaining nucleotides are ribonucleotides modified by 2′-O-methoxyethyl.


In some embodiments, the ASO comprises the nucleotide sequence of SEQ ID NOs: 392 or 395.


In some embodiments, the length of the ASO is 3×n+2 nucleotides (n is an integer of 6 or greater), wherein the nucleotides at positions 3×m are ribonucleotides modified by LNA (m is an integer from 1 to n) and the five nucleotides at the 3′ and 5′ positions are ribonucleotides modified by 2′-O-methoxyethyl.


In some embodiments, the ASO comprises the nucleotide sequence of SEQ ID NO: 19 or 20.


In some embodiments, the length of the ASO is 4×n nucleotides (n is an integer of 3 or greater), wherein the nucleotides at positions 4×m are ribonucleotides modified by LNA (m is an integer from 1 to n) and the five nucleotides at the 3′ and 5′ positions are ribonucleotides modified by 2′-O-methoxyethyl.


In some embodiments, the ASO comprises the nucleotide sequence of SEQ ID NO: 21.


In some embodiments, the length of the ASO is 4×n+4 nucleotides (n is an integer of 3 or greater), wherein the nucleotides at positions 4×m are ribonucleotides modified by LNA (m is an integer from 1 to n) and the remaining nucleotides are ribonucleotides modified by 2′-O-methoxyethyl.


In some embodiments, the ASO comprises the nucleotide sequence of SEQ ID NOs: 396 or 397


In some embodiments, each ribonucleotide of the ASO is modified by 2′-O-methoxyethyl.


In some embodiments, the ASO comprises the nucleotide sequence of any one of SEQ ID NOs: 17, 28-30, and 40-48.


In some embodiments, each nucleotide of the ASO is a ribonucleotide modified by 2′-O-methoxyethyl.


In some embodiments, the ASO comprises the nucleotide sequence of any one of SEQ ID NOs: 17, 28-30, and 40-48.


In some embodiments, each cytidine in the ASO is modified by 5-methyl.


In some embodiments, the length of the ASO is 5×n+5 nucleotides (n is an integer of 3 or greater), wherein the nucleotides at positions 5×m are ribonucleotides modified by LNA (m is an integer from 1 to n) and the nucleotides at the remaining positions are ribonucleotides modified by 2′-O-methoxyethyl.


In some embodiments, the ASO comprises the nucleotide sequence of SEQ ID NOs: 398 or 399.


In some embodiments, the ASO further comprises a GalNAc moiety, optionally a GalNAc3 moiety.


In some embodiments, the ASO further comprises a biotin or cholesterol moiety.


In some embodiments, each cytidine in the ASO is modified by 5-methyl.


In some embodiments, the regRNA is an enhancer RNA (eRNA).


In another aspect, provided herein are pharmaceutical compositions comprising the ASO disclosed herein and a pharmaceutically acceptable carrier or excipient carrier.


In another aspect, provided herein are methods of increasing transcription of CPS1 in a human cell, the method comprising contacting the cell with the ASO disclosed herein or the pharmaceutical composition disclosed herein.


In some embodiments, the cell is a hepatocyte.


In some embodiments, the ASO increases the amount of the regulatory RNA in the cell as compared to a cell that has not been contacted with the ASO or the pharmaceutical composition.


In some embodiments, the ASO increases the stability of the regulatory RNA in the cell as compared to a cell that has not been contacted with the ASO or the pharmaceutical composition.


In another aspect, provided herein are methods of treating a urea cycle disorder, the method comprising administering to a subject in need thereof an effective amount of the ASO disclosed herein or the pharmaceutical composition disclosed herein.


In some embodiments, the urea cycle disorder is CPS1-deficiency.


In some embodiments, the urea cycle disorder is hyperammonemia.


In some embodiments, the ASO increases the amount of the regulatory RNA in a cell of the subject (e.g., as compared to a cell (e.g., a similar cell from the subject) that has not been contacted with the ASO or the pharmaceutical composition).


In some embodiments, the ASO increases the stability of the regulatory RNA in a cell of the subject (e.g., as compared to a cell (e.g., a similar cell from the subject) that has not been contacted with the ASO or the pharmaceutical composition).


In some embodiments, the cell is a hepatocyte.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an illustrative schematic of eRNA, paRNA, mRNA, and natural antisense transcript (NAT) of a gene on the chromosome. The eRNA, paRNA, and NAT are all non-coding RNAs. The eRNA is transcribed bidirectionally from an enhancer of the gene. The paRNA is transcribed from the promoter of the gene, same as the mRNA, but in the antisense direction. The NAT is transcribed from a downstream promoter of its own in the antisense direction, such that the transcript overlaps at least partially with the mRNA. Generally, eRNAs and paRNAs upregulate gene expression whereas NATs downregulate gene expression.



FIG. 2 shows analysis of mouse and human CPS1 ATAC-seq and H3K27Ac ChIP-SEQ for identification of regRNAs.



FIG. 3 shows relative CPS1 mRNA expression in hepatocytes treated with an ASO and non-targeting control (NTC).



FIG. 4A shows a schematic of various human CPS1 ASOs with chemical modifications. Light gray indicates a 2′-O-(2-methoxyethyl) (2′-MOE) modification. Dark gray indicates a locked nucleic acid (LNA) modification. *C indicates a 5-methyl on the cytidine. FIG. 4B shows relative CPS1 mRNA expression in hepatocytes treated with the ASOs.



FIG. 5A shows a schematic of various human CPS1 ASOs with chemical modifications. Light gray indicates a 2′-O-(2-methoxyethyl) (2′-MOE) modification. Dark gray indicates a locked nucleic acid (LNA) modification. Line brackets indicate a phosphodiester (PO) linkage. *C indicates a 5-methyl on the cytidine. Unique sequence identifiers are assigned to nucleotide sequences having the specific chemical modifications shown in this figure. FIG. 5B shows a schematic of various mouse CPS1 ASOs with chemical modifications.



FIG. 6A shows CPS1 mRNA levels in wildtype and OTC-deficient hepatocytes treated with CPS1 ASOs. Heatmaps of CPS1 and OTC mRNA levels are shown in FIG. 6B and FIG. 6C.



FIG. 7A shows OTC mRNA levels in wildtype and OTC-deficient hepatocytes treated with CPS1 ASOs. Heatmaps of CPS1 and OTC mRNA levels are shown in FIG. 7B and FIG. 7C.



FIG. 8 is a schematic depiction of the in vivo ammonia challenge for mice treated with CPS1 ASOs.



FIG. 9A shows relative CPS1 mRNA expression in the mouse liver. FIG. 9B shows plasma ammonia levels of treated mice. FIG. 9C shows relative mRNA expression of other urea cycle genes in the treated mice. FIG. 9D shows mRNA expression of genes neighboring the CPS1 locus following ASO treatment.



FIG. 10 shows ammonia levels in OTC deficient mice treated with a CPS1 ASO.



FIG. 11A shows a dose dependent effect on plasma ammonia in vivo in male OTC-D mice (Otcspf/ash) after the ASO treatment. FIG. 11B, there was a dose dependent effect on urea in vivo in male OTC-D mice (Otcspf/ash) after the ASO treatment. FIG. 11C shows that the reduction in ammonia correlated with the total ASO administered.



FIG. 12A shows that CPS1 ASO treatment increased mouse OTC and CPS1 mRNA expression in the OTC deficient mice (1.26 FC of CPS1 and 1.43 FC of OTC). FIG. 12B shows that ASO treatment increased additional urea cycle genes, such as Nags, Ass1, Asl, and Arg1. In both figures WT C57 mice mRNA is shown on the left bar, Otcspf-ash/J treated with PBS is shown in middle bar, and Otcspf-ash/J treated with ASO is shown on the right.



FIG. 13 shows that mouse Otc deficient livers showed hyperammonia 30 min after ammonia treatment. Treatment with mouse CPS1 ASO decreased ammonia to WT levels.



FIG. 14 provides shows a schematic of various human CPS1 ASOs with chemical modifications. Unique sequence identifiers are assigned to nucleotide sequences having the specific chemical modifications shown in this figure.



FIG. 15A shows that hCPS1-ASO-1x decreased in vivo plasma ammonia in the OTCdef mice with humanized liver. FIG. 15B shows that hCPS1-ASO-1x increased in vivo urea in the OTCdef mice with humanized liver. FIG. 15C shows that hCPS1-ASO-1g also increased OTC protein levels after treatment with 5 mg/kg and 20 mg/kg ASO.



FIG. 16 shows that the indicated ASOs increased CPS1 mRNA and ureagenesis in both healthy and OTCdef primary human hepatocytes



FIG. 17 shows that hCPS1-ASO-1x decreased ammonia production in NHPs by a statistically significant amount as compared to PBS only treatment by Day 27. FIG. 17 also provides the ammonia AUC both over time and per dose in the NHP experiment.



FIG. 18 shows that hCPS1-ASO-1x decreased ammonia in NHPs after a single dose of 5 mg/kg for up to 5 weeks



FIG. 19 provides the NHP study ammonia AUC quantification on Days 22, 29 and 36.



FIG. 20 shows that combination of hCPS1-ASO-1x with 13C-sodium acetate treatment enhanced ureagenesis in NHPs at day 43 as compared to hCPS1-ASO-1x alone.





DETAILED DESCRIPTION

The present disclosure provides antisense oligonucleotides (ASOs) targeting regulatory RNAs, such as promoter-associated RNAs and enhancer RNAs, and methods using these ASOs to regulate gene expression. These methods are useful for modulating the levels of gene products, for example, modulating expression levels of disease-causing genes such as Carbamoyl-Phosphate Synthetase 1 (CPS1), thereby to treat diseases associated with aberrant gene expression such as a urea cycle disorder. Urea cycle disorders are reviewed in Haberle et al., 2012, Orphanet J. Rare Dis. 7:32, hereby incorporated by reference in its entirety. Urea cycle disorders result in the accumulation of ammonia and other precursor metabolites, causing development of hyperammonia and related symptoms, such as cerebral edema and the related signs of lethargy, anorexia, hyper- or hypoventilation, hypothermia, seizures, neurologic posturing, and coma. Milder or partial urea cycle enzyme deficiencies cause ammonia accumulation and elevations of plasma ammonia concentration. CPS1 deficiency is the most severe of the urea cycle disorders. Individuals with complete CPS1 deficiency rapidly develop hyperammonemia and are at risk for additional hyperammonemia events.


I. Definitions

To facilitate an understanding of the present application, a number of terms and phrases are defined below.


The terms “a” and “an” as used herein mean “one or more” and include the plural unless the context is inappropriate.


As used herein, the term “Carbamoyl-Phosphate Synthetase 1” or “CPS1” refers to the protein of UniProt Accession No. P31327 as set forth in the applicable database as of the priority date of the instant application and related isoforms and orthologs, the gene encoding the protein (e.g., NCBI Entrez Gene: 1373), or the mRNA encoding the protein (e.g., Accession Nos. NM_001122633.3, NM_001369256.1, NM_001369257.1, and NM_001875.5).


As used herein, the terms “regulatory RNA” and “regRNA” are used interchangeably to refer to a noncoding RNA transcribed from a regulatory element of a gene (e.g., a protein-coding gene), wherein the gene is not the noncoding RNA itself. Exemplary regulatory elements include but are not limited to promoters, enhancers, and super-enhancers. A noncoding RNA transcribed from a promoter, in the antisense direction, is also called “promoter RNA” or “paRNA.” A noncoding RNA transcribed from an enhancer or super-enhancer, in either the sense direction or the anti-sense direction, is also called “enhancer RNA” or “eRNA.” It is understood that a natural antisense transcript (NAT) complementary with at least a portion of the transcript of the gene is not a regulatory RNA as used herein.


As used herein, the term “nascent RNA” refers to an RNA that is still being transcribed or has just been transcribed by RNA polymerase and remains tethered to the DNA from which it is transcribed. An RNA that has dissociated from the DNA from which it is transcribed is also called an “untethered RNA.”


As used herein, the term “antisense oligonucleotide” or “ASO” refers to a single-stranded oligonucleotide having a nucleotide sequence that hybridizes with a target nucleic acid under suitable conditions or a conjugate comprising such single-stranded oligonucleotide.


As used herein, the stability of a regRNA is reversely correlated with the degradation rate of the regRNA. Where an ASO increases the stability of a regRNA, it reduces the degradation rate of the regRNA. Where an ASO decreases the stability of a regRNA, it increases the degradation rate of the regRNA. The degradation rate of a regRNA can be measured by blocking synthesis of new regRNA and assessing the half-life of the existing regRNA.


As used herein, the terms “subject” and “patient” refer to an organism to be treated by the methods and compositions described herein. Such organisms preferably include, but are not limited to, mammals (e.g., rodents, primates, simians, equines, bovines, porcines, canines, felines, and the like), and more preferably include humans.


As used herein, the term “effective amount” refers to the amount of a compound (e.g., a compound of the present application) sufficient to effect beneficial or desired results. An effective amount can be administered in one or more administrations, applications or dosages and is not intended to be limited to a particular formulation or administration route. As used herein, the term “treating” includes any effect, e.g., lessening, reducing, modulating, ameliorating or eliminating, that results in the improvement of the condition, disease, disorder, and the like, or ameliorating a symptom thereof.


As used herein, the term “pharmaceutical composition” refers to the combination of an active agent with a carrier, inert or active, making the composition especially suitable for diagnostic or therapeutic use in vivo or ex vivo.


As used herein, the term “pharmaceutically acceptable carrier” refers to any of the standard pharmaceutical carriers, such as a phosphate buffered saline solution, water, emulsions (e.g., such as an oil/water or water/oil emulsions), and various types of wetting agents. The compositions also can include stabilizers and preservatives. For examples of carriers, stabilizers and adjuvants, see e.g., Martin, Remington's Pharmaceutical Sciences, 15th Ed., Mack Publ. Co., Easton, PA (1975).


Throughout the description, where compositions are described as having, including, or comprising specific components, or where processes and methods are described as having, including, or comprising specific steps, it is contemplated that, additionally, there are compositions described in the present application that consist essentially of, or consist of, the recited components, and that there are processes and methods according to the present application that consist essentially of, or consist of, the recited processing steps.


As a general matter, compositions specifying a percentage are by weight unless otherwise specified. Further, if a variable is not accompanied by a definition, then the previous definition of the variable controls.


II. Antisense Oligonucleotides

The antisense oligonucleotides (ASOs) disclosed herein hybridize with a regRNA transcribed from a regulatory element of a target gene. It is understood that both eRNAs and paRNAs are regRNAs facilitating or upregulating gene expression (FIG. 1). In certain embodiments, the target regRNA is an eRNA. In certain embodiments, the target regRNA is a paRNA. eRNAs can be identified using methods known in the art, such as Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq), global run-on sequencing, precision run-on sequencing, cap analysis gene expression, and histone modification analysis (see, e.g., Sartorelli & Lauberth, Nat. Struct. Mol. Biol. (2020) 27:521-28; PCT Application Publication No. WO2013/177248). paRNAs are RNAs transcribed from promoters of target genes in the antisense direction (transcripts in the sense direction are mRNAs of the target genes). They can be identified by similar methods, taking into account their specific location and orientation. In the human CPS1 gene, multiple, distinct eRNAs have been identified to transcribe from the same enhancer region. The nucleotide sequences of exemplary regRNAs are provided in Table 1 below. Any of these regRNAs are contemplated as a target regRNA of an ASO disclosed herein.









TABLE 1







Exemplary regRNAs








regRNA
Nucleotide Sequence





Human CPS1
GCCTGATGTGTGTGCCTGCATTCATGCCTGTCACTCTGCTCAGCTGCGTGCAGACAG


RR44_v1
CTTATATGAAGGAGGACTGTGTACATGTGGTCAGAGAAGAAAAAAATGCTTATTTT


SEQ ID
TTAAAATGTTTTGAAAAATAATCTGTCCTAAAAGTGTAACATTTCCACTAAATTTTT


NO: 49
TCATGTCTGACTTTAACATTCCCTACCAACCAACTCTTATAGCCTCAACTCCTTTGA



TCTATCCTAATGTAAACTCCCTCACTAATGTGTAATATATTTTTTTCCAGTTTGGTTA



TAGATTTCAGTCTAGCCTGAACACTCAAGTATGAAACTAGCCACTATTTTATTTATT



GGCTGTTCCAACCTCCATTGTGGAATTATAATTGATGGATTTTCCAAGTCTCTAATT



CAGAATATTTAATCAAATTTTCCAAAATTTCTGCCTTCTCCTCCTTCATTCTGATGA



CTAAAGACATGGACCATAAAATATATATACATATATACATACATATGTATATGTAT



GTATATACACATATATATATGTATGTATATATACATACATATATATATGTATATATA



CACACACATATACATATGTATGTATATATACACACACACATATATATATGTATGTA



TATATATACACACACATATATATATGTATGTATATATATACACACACATATATATAT



GTATGTATATATATACACACACACACCGTAGTTTGCAAGTCTGCATCTGGGACCCT



TTACTGATAAAAATGAAAGCCCATTAAAACTCTCATGCCCACATTTCTCTCTAGACT



TTAGAGTAGGAGAATTCTATCCTAGAATTGTTGATTGTTGACATTTCTATGGAAAA



ACATGTTTAATTCATCATGCTTTGTAGTCAACTGCTATAAATGGTGATGAAGTCTTT



TCCTTGGTCAAGCTCTGGACTCCTCAGTACTTCCACTGTCATATTTGATTAAAACAT



AAGTGATGAAGGGAGGAAATATATTATAGTATTCATTGCATGGGTACCTTAGGGTA



ATGGGACTATGACTGATTTAAATTTATTTTGCATCCTAAAAAGTTTCCATTAGTGGG



TGCAGCACACCAGCATGGCACATGTATACATATGTAACTAACCTGCACAATGTGCA



CATGTACCCTAAAACTTAAAGTATAATAATAAAAGAAAAAAAAACTTAAAAAGAA



AAGTTTCCATAATGAGGATTGAGTTTATATCGTTTTCTTAATTAAGGAAAGACAAC



CCTCACTACACACACACACACACACACACACACACACATAAAAAGACAAGAGGTG



AGATCAAGGCGTAAACTAGTATTGGACTAAGCCAGTAAGTACTGCTTCTCAGTCCT



CAGTTCTCTAGGTTGGGAGTTTTCCTTTTGCTATTTTCATTCTCCTCCAATTCATTTT



TCAATGATCTTCAACACAAATTTCGCCTTTATTTCTTGTTCAAAATACTTCCATGAC



TATTATGAATACTATTTATGGATGAAGGCTGAACATTTTAAGGCATACTAAGTCTC



CCATGATATGGTACCTTTTCATTTTCCCATTCTATACCCTGCATCTAGGCTTTTAAA



AAATATACCACATGACTTCATGCCTCTAGGCTATTGCTCATGCCACGGCATCCCTTC



TGGGTTTTTTCCCCTCTTTATCTACTTGGTGAATTTGCATCCTTCAGTATAACACAGC



TCAACATAATTCTATGCTTAAACTTTACTGAAAATGCACAAGGAACTTGATCTTTCT



TTCTTATTTTCCCCATTTTATTTATTTTCCCATTGCATTTGGGCAACTTTCATGGCAC



CAGTTATTTTATTAATTATTTGTATAAACTAGTATGAGCCTATTTTGTTTAGCTTTCT



ATCACCAGGAGCCATGAAGCACTTTGAAATCAAATACTGTTTGTACTTGAATATAT



TAAGTAAGCGTGAGGACTTAAATTAAACTTTGTTCCTCTTTAAAAAAATCCTTACCC



CAACTCTAGCACTGA





Human CPS1
ATGAAAATGGAATATTTTGTAATCATTTAAAGTAATGTTTTAAAAGAACTTTGTAA


RR44_v2
TAACATCAAAATACATTTAACATAATATTGCCTCCAAAAAGCATTATGCAAGTCAA


SEQ ID
TGGCAATTTTCAAAACTATGTTCTGAGCATTGACATAAATGCTAGAAGATAATACT


NO: 50
TTAGTGTTAACAGAGATTATGTTTGTGTGGTGGGTTATTATCTATTATTCTGTATTTC



CACATTTCTTTAAATATCAAATGAAAGTGAATACAACCTAGTACTTGACATTTTAA



CATTTTCAATACCAGATATGTCAATAAGGAATTCATAAAATAAAGTGCCCTGAGGG



ATTTCACAGGCTAAATGCTTCTATTTTTTAAAATGTATTAATAGAAAAGAAGACTA



AATCTAAAAAAAAAAATTCATTTTATCAGAGAGTGACTCATAAGTTTAGAAAACCT



TTGATGACCTGGCTCACAAAGAATGTACTTCCAAGTACACAGGGTCCCCAGCCTGA



TGTGTGTGCCTGCATTCATGCCTGTCACTCTGCTCAGCTGCGTGCAGACAGCTTA





Human CPS1
TAGATAGAAAGGAGCAGCCAGAGATGTGCCTCAGGCTGAAGCCAGTGCTGCAAAT


RR7_v1
GGGACAGCGCTCTCAAGCTACATTATATGCATTTCATTATCCAACAATTTGTTCTGG


SEQ ID
GAGGACAGTTTGATTGGCCAGGCAAGAAATTCAAAATGAGAGACTTTTAAATATC


NO: 69
ACAACTCAGCTAAAAGAGCTCTTCTGTTTTCTGACCTGAGAAATTCACTTCTATCAG



TCTCAATAAAGATGCTTGTAATATTAGGTGATGCAGACTCTGAACATTTGTCCCTCT



GGACTGAGTGCACTCCCGATGATCTGAGTCTTGGGGCTATGCCTCAGGCTTCACAA



TTCCTAGTGTGAAAGCTACTTGCATATCCACCCCTCCATCCAGCTGGGTTTTGTTCT



GCTTTTCTTGTGTAACTAATGACTGTGAGTCAAAAAGATGGGAGGTCAACTACTTG



CCTTTGACCATTAAATAGGTGTTTAAACTAAGCTAACTAAGGAATAACATTGTTTTT



CCATTTCGTGATATCGTTTTCCATTTTATCCTAGATTCTTAACTAGGATGTGAAGAA



AATAATAGTAGTCAATATTATAAAGTTTAAAATAATACAAAGTAGTCGATATTATA



AACACAGACATATTTCTAGAATGGAACAATAAGATAGTAGGCTTCTATGTTTTATT



TTAAAAGGTTCCGAAATTACCCACTTACCATTTGTGTGACCTTGAACAAGTTGCTTT



AACTCCGAACCTCAGTTTCTTCATATACAAAATGGGAATACACCTACTATGGAGGT



TTGCTGATAGAATTTAAACAGAATAAGTTACGCAAAATATCTGGTGTTAGTAAAGA



ATTCTCTCAGTGACTCATAGCAAGAGTATAAATTGGTCTAGTCACTTTGTAGCATG



ATTTGTCATTATACAGTGAAATGTAAAATGTGCATACCTTACAGCAATTACATTTTT



TCAGGATGAAACTCAGAAAAATACTAAAACATGTGCACAAAATGATAGATACATA



CATAGATATATAGATATTCATTGCAGCATAAATGAACCAGTGGGAATAATATTTAA



ATGCATGAATGTTCTTTTCCCTTTTGAAATTATTTTACTGACCTTCTCCACAAACTCA



CCTATTTCTTTTGGGTGGTTTGGAATTATTACAACAGGAAGGCAAAGAGAAAGAAA



AAGTTAATATTTATCTTCTGGCAAGGCAACGGGATTTGCAGTAAGAACACAGTGCT



AACAAGTAGATTTAATCAGGGAGAGGGGAGTTCGTTAAATTCTTAAACTGCTTTAA



CTTATCATAACTCAAACTAGAGGATTCAGATTATATGAATTTTTCACATCTGGTGAA



GTGGTAGGAAGAAGAATGGAAACACAGACGTCACATCAGCGTCCTTTATTTCCACT



TCCACTTTCAACCCCTGATCCAGGACCACTCTTTAAGGCAGTAAAGGAGCAATGTA



GTAGAAATGACAGCAGCAGGCCAGCAGATACCTATTCCTGAGACAGAGCCCATGG



CATTCAGGGCCTGGAAACTGGGGACCCAAAATAACCCAAGTCTGGTTGTGACAAC



ACAGAGGTTCTGAGAGTACAGGAAGAATTAAGAAGCCTGGGGACAAGGTAGAAA



ACCACTGCAGGTAGATCATAACAGACAAGGGACAAATGACCAGACCCCCTAACGC



CCCAAAGAGCAGATGTCAACAGCACAGAGAGCAGACCAGCTCAGCTGCTCTGCAG



ATATCAAGGAGGACTCAGAGGATACATCAATCTGATTACCCTTTCCTTCTGCACCA



CTAAATCATGTAAACTAAACAACCAGATGCCCTCTTGAAGAGGAATAGGGTAAGC



AGGTCAAACTTGGAAAAGTGGAACAAATTGACCAAGCAAGGACAGGGTTACCTAA



ATGGAGTATTGGACTGCATTACTGGACTCAAGACAAAACTTACCAGATTAGACTCG



TAGATCAGATCAGTTATTTAAAAAATAAATAAAATAAGGTA





Human CPS1
GTCCATCCTGACTCCTGGCAGGGACCAGGGCCATCCAGTTATACTACGGTGTTCTTT


RR8_v1
CACCACCTCAGTGATGGCAGCTGGCTGGAGTCCAAAGCGTTTCAGTACTCCCAAGC


SEQ ID
TCTGACTACTTTTTTCTCTTCTTTTCTTCATCTTGCCCTACACATTTATCCAAAGAAA


NO: 70
ATATTTAGGATGTGAAAGAAGGGGTGTAGATAAGAAATGAATCAAAGGAGAAATG



TGTGATTATAAAACAATAAAATACGTAACTGAACCTTACTGTGGCTTAACACACAG



CCAATAGTGCCAAAGATCATATAACTTCTGTCTGCTGAAGTTTTCTCTTTATTAAAT



GGCATTGACAGAGAAAAACTATAAAGAATAATTAATTGAAATAGACTGCAAATCA



CTTAGCCAACATAAAATGATGCAATATTTTATCTGATGAAGAAACCTAAAGTTAAA



TATTGGTTAGATCAATTTTATCAATTTGTCTATATCCTATCAATCCTTCAAAGCCAT



ATGAAATCATACTCTTTTAATGAACTTTATGTATGTATATCTTGTTTGTATCATACA



ATTAATATACTGTCCACGTACTCTTATTTCACACATTAATATCTTCCTGGTTGAAAT



CATTAAATAGCTCCACACTGCTTAACTACAGTGCGAAGTTAAAAATATAATATATT



CATTTTTCTAAAGCTTTAGGCTTTTGTTTGCTTCATTCACGTTGTGTGATCTAAATTA



GTATCTTCACTGTCTCTGTTTAATATCGACAAATTAGAAAGAGTAACAACCATGAC



CTCTCATAGTCCATAAGTAATAATTAATTCTTCAATTCCTTCTATAAATACTTATTA



AAGCCCTTTTACATGCCAAGCATGGTGCTAGATCCGAGAATAAAAATAAGTCTGGA



ACACAGACTTGTCCCTCAAAAGCTCCCTCTTGAGAAGCCTTTCAGTTTTATTCTTAG



AAGTGGACAAAAATGTGTATTTTCTACTCTCAAGATTGAA





Human CPS1
AAATTAAACATATTTGAGGATCACAGAGAAGCATGTGGTGCAACATGTCTTGAAGT


RR9_v1
TACCGACTTCGTGAAGTGTAAGGGGCAGTAGTTTACACTGGAATGACGTAGAGAA


SEQ ID
CAGGTCACCTACGCACATTCCTACTCCACCCCCTTTTGTAGAAAATTTGTTATACTG


NO: 71
AACCTGATTTCTTCCATGGCCTCCTATTTTCAGCGGAATGTGATTCAGGAAGATACA



TTCCACCCTCCTGGAAATCGGAAATAGGACCCGTGCTTTCACAAACATTAAGTTCC



ATCTTCCCTAAAACTTTATTGCAATTCCCCAGGAATGGATCACAGAGCTATTTCTTC



CTCCAGGTTTGTAGATTTGTAAGTTGAGTCATAGGGCAGGAGTACCTTTTTTTATTT



TATATAGGCTAAAAATTTGTTGGAGAAGATTAGTGATCTGGAGAGGGGAAAAAAA



AGAAGAACAAGAAGGAGATGAAGAAGGGGAGGAAGAAGAGAAAGAAAGACAAA



AGGAAGCCAACCCTAATCCTTGAATTCTACAAACTACTAACAATTAGTCAAAAGTG



CCTACTTGGATTTCAATACCTGACATGCCTTTGAGTGTTGAAGAATTAAATGTTTTA



TTCTGGTATTGTTTTTTGATGTCATTTATTTTTAACCTATACTTGCCCCTATCAAGAT



CATTCTCAGTTGATAGTAAGAAAAATATGTAATGTTGTTGCTAATTTATCTTGCATT



AGGTAATTGATTATTTCAAAAGAGCATTCTTGAACATCTTGTAAACTAAAAAAGCA



AAGAACTCGGTATGAGGAAGTTAAAAACTCTGTCAAGATTTCAAAAATTTGTGTAT



AAAAATTAATTGCCATGTTAGAAGTCGAGGTCAAGCAGTAATGATAGAAATTTTGT



GAAATGATGATTAGACATAAAATGTAAGACAAATGAGAGAAACAAAGGTACACAA



TAGAAAAAGTATTATTAGTACTATATTAGTGACTCTGAATGGCATAA





Human CPS1
GTGCAGAAGGAAAGGGTAATCAGATTGATGTATCCTCTGAGTCCTCCTTGATATCT


RR21_v1
GCAGAGCAGCTGAGCTGGTCTGCTCTCTGTGCTGTTGACATCTGCTCTTTGGGGCGT


SEQ ID
TAGGGGGTCTGGTCATTTGTCCCTTGTCTGTTATGATCTACCTGCAGTGGTTTTCTA


NO: 72
CCTTGTCCCCAGGCTTCTTAATTCTTCCTGTACTCTCAGAACCTCTGTGTTGTCACA



ACCAGACTTGGGTTATTTTGGGTCCCCAGTTTCCAGGCCCTGAATGCCATGGGCTCT



GTCTCAGGAATAGGTATCTGCTGGCCTGCTGCTGTCATTTCTACTACATTGCTCCTT



TACTGCCTTAAAGAGTGGTCCTGGATCAGGGGTTGAAAGTGGAAGTGGAAATAAA



GGACGCTGATGTGACGTCTGTGTTTCCATTCTTCTTCCTACCACTTCACCAGATGTG



AAAAATTCATATAATCTGAATCCTCTAGTTTGAGTTATGATAAGTTAAAGCAGTTT



AAGAATTTAACGAACTCCCCTCTCCCTGATTAAATCTACTTGTTAGCACTGTGTTCT



TACTGCAAATCCCGTTGCCTTGCCAGAAGATAAATATTAACTTTTTCTTTCTCTTTG



CCTTCCTGTTGTAATAATTCCAAACCACCCAAAAGAAATAGGTGAGTTTGTGGAGA



AGGTCAGTAAAATAATTTCAAAAGGGAAAAGAACATTCATGCATTTAAATATTATT



CCCACTGGTTCATTTATGCTGCAATGAATATCTATATATCTATGTATGTATCTATCA



TTTTGTGCACATGTTTTAGTATTTTTCTGAGTTTCATCCTGAAAAAATGTAATTGCT



GTAAGGTATGCACATTTTACATTTCACTGTATAATGACAAATCATGCTACAAAGTG



ACTAGACCAATTTATACTCTTGCTATGAGTCACTGAGAGAATTCTTTACTAACACCA



GATATTTTGCGTAACTTATTCTGTTTAAATTCTATCAGCAAACCTCCATAGTAGGTG



TATTCCCATTTTGTATATGAAGAAACTGAGGTTCGGAGTTAAAGCAACTTGTTCAA



GGTCACACAAATGGTAAGTGGGTAATTTCGGAACCTTTTAAAATAAAACATAGAA



GCCTACTATCTTATTGTTCCATTCTAGAAATATGTCTGTGTTTATAATATCGACTAC



TTTGTATTATTTTAAACTTTATAATATTGACTACTATTATTTTCTTCACATCCTAGTT



AAGAATCTAGGATAAAATGGAAAACGATATCACGAAATGGAAAAACAATGTTATT



CCTTAGTTAGCTTAGTTTAAACACCTATTTAATGGTCAAAGGCAAGTAGTTGACCTC



CCATCTTTTTGACTCACAGTCATTAGTTACACAAGAAAAGCAGAACAAAACCCAGC



TGGATGGAGGGGTGGATATGCAAGTAGCTTTCACACTAGGAATTGTGAAGCCTGA



GGCATAGCCCCAAGACTCAGATCATCGGGAGTGCACTCAGTCCAGAGGGACAAAT



GTTCAGAGTCTGCATCACCTAATATTACAAGCATCTTTATTGAGACTGATAGAAGT



GAATTTCTCAGGTCAGAAAACAGAAGAGCTCTTTTAGCTGAGTTGTGATATTTAAA



AGTCTCTCATTTTGAATTTCTTGCCTGGCCAATCAAACTGTCCTCCCAGAACAAATT



GTTGGATAATGAAATGCATATAATGTAGCTTGAGAGCGCTGTCCCATTTGCAGCAC



TGGCTTCAGCCTGAGGCACATCTCTGGCTGCTCCTTTCTATCTATAAGTTAAAGCAA



TGGCCTCAGCAAGCAGTACACTCTGTACAGCAGCTGCAACTCGTTATCGGCTTTGT



CCAGAATAACAAACAGAACAAACACATTTTGCAAGGGCTTTTACCCCTCTTATGTA



GAGAAGGAGGAATTAAGCAATCAGTGAAATGCTGATTGATCAGTTGTGCTGACTA



AGAGAAGTCCAAGGCCACATTAGTACTATTAAGCCCTAAAAAACAAAGCAAAAAG



AAAATGTTCTTAGAACTTTATTTAAACCAGTATTTCTGTGATGTGAAGTACATTTCC



CCCAAAGGGAAAAATGGGAAAATATTTGCATTTCACTTAGTACACTTTACTCATCC



AGACTGCTTTGTAATGTAATGATGGTTAAGTATTTTTACAAAGATAATTCATGTTTT



TTGGCAGATTTTGGTTGATCATGGAGTATCAGGGTTGTGTGAACCAAAGGTGTGAT



GCAGAGCAGCTTTAGTAAACCATCCCATTCCTATGCCACCCGTTTGATTTCAGTACC



AACTGCTGTGGCCACATCTAGACCACTCTTTACCAGAAACTGTGCCACCTTCAAAA



TTCCAGCATCCTTTTCCCCTCCTCCCTTATTTTTTGATCTCATATACTCAAGTATTCT



TAGTGTAACAATTCTTTGAGCATTCTTTCTTATCTAGCTTAAAATCTAGGGTCTACC



ATTATAATCATTCCTTTCAAGATAACCTTAACTTCCACACCCCAATTTCTAACTGGC



CTGGCAAAACTCAGACCTTTGGTGCAAAATCCTCCATCTCTATGCCTGAGCCCTTGT



GTTTGAGAATGGCTGAAGAAAACCATGTGCATGGACATTCTGATGTCACTATAAAT



TCATGGTCACGGATCTCAAATGGGAGCCCAAGACTACTGGCTTTCCTGCTGTGGTT



GTCTAATGACAGCATGATCTTACTCTTCACAGATATTAGTTTAAACTCTCCAACCTT



CAATTGAAAAGTCTACATCTTACTTTATTAGAAAGTAGAAACAATCAAGGGTTATG



CTCCCATTTTCACACTACCAAGTAAACAAACCTTCAGTAAGAGAAGATATATTTCC



TATATCTCCTCCTACCCTCCTGTTAAAAGGGTGCAAACGTCCCCCCTCCTAACAAAA



ACCAATCCTTCTTCATGCTCTTTAGATGCCGTGTTGTCTCTCTTTCTCAAAGTCTTCA



TTTTTTGGTTATACTCTTTCTCTCATGCAAATTTTTCTCTCTTTTTCAAGTAGAGCAG



GCTCAGCAGCCTACAAACGTGTCTTGGGCACCTTTCATCAAAAAATAAAAAACATA



AAAACAACAAACGAAACCCTTCTTGGCTCCACATTCTCATCCAGTTTCTATTCTTTC



ACTTAGCTGCTTTTCTTCTCATGTTTTGTCTATTTTTTAACATCCTAGTCACTCTCTG



ATCTACTTCAGTTTGACTTCTACCTCCATCACTTGAGTAAATTCAATACATGGTTTC



AAGTATATTCTAGCCCTAGCCTGATCCACAGGGAAGGTTCTGGACCACAAGCAACA



TGGCAGAGTTGTTCACTCTTGAGGTAAAGGAGTTTGGCACCTCATGCCCCTATAAT



GGATTAAAGAAACACTCCTTAATCGGGGTTAGTCCCTGGGAAAGGTTTTAGGTGTG



AGCAATTAGCAACCATCACCCACAGTGGCTGGGAGAGGGGGGCACTAGCCCAATA



AAGAGGATCTAAGTAGTGCACCCAAGCAGGTCTACCACAGTTAGCTTCCTATGTGG



GCTCACGTTGCATGCAGTGCATCTCTATACAGCAATTAATCTATTTCATAATATTAA



TAAAATAATTTCACTTTCCATGTTAAAATCCTTCAATGACTTCCTATTGCACTATAA



ATGGCAAATCAATATGTTAACATGCCCTGCCAACACCTACAGGGTCTGGGGTCTGA



TTGCCTTTCAGATCTCTC








Human CPS1
GAAAGAACACCGTAGTATAACTGGATGGCCCTGGTCCCTGCCAGGAGTCAGGATG


RR22_v1
GACTTTCAGTGTTGAAGAGCCATCTTGGCCTGTTACTAGCGCTGCCCCACACCATTG


SEQ ID
TGTTTGCCTAAGAGCTGAGCCAAAGAATTTACATATGTATGAGCCAAGGTCTGAAA


NO: 73
ATAGAAGTTAAAAAAATGGTGCTAAATTGACATATTTGCTATTTTATTTTTTTGGTC



AGTTAATATGATAAACTTTTATTTAAATGTAAACATTATTTTAAAAAGCACTTTGTT



TTAAATAACTGATTTTCATTGAAATTAATTCTGGCCTCTAAGCAGAGTTAGCTACAA



AGACAATTTGTAAAAATGCAGAAAATTCAGAGTTTAACTTGGAGTTGTTTAAAGTT



TATTTTCATATTTGAGTCTGATATTTCAGTTCACTGTAATATTTCAATTTATTTAAAA



TATTATCAAGACAAATATTGGGTTACCTTCACAATATTTTTTTCATTTTTCTTACCCC



ATATATTAAAAATGAACAAAAATGAAAGAATTATATAGTCTAGTGGATGGCAATTC



TCTTGGTACAGTACTCACAGGATGTCAGAAGTGCTTTGATTTGCATGCAAATAGAA



ACTGCATTCCTAAAAGACCCTTAATTGAAGATATTAATAATTTTCATTAGGTTTTAA



GTCTTTTAACCTTATCATATGGATAGAAAAGTAAAAGATGTGTTTAATAAAATGTC



TTTTACTTATTTTTATTTGTCATTTATTTAAAGGTTTATTAGTGAATCTGTTTACCTG



GAAAATGTGCAATTCTATTTGCAAATTTGGAGCACTACATATATTTAAGAGAATCC



TTAGTTTCTGTTGGGAGTGGCAATATTTTATAACTGGGCCTTCATATTCCTATGTTA



CAGCCCTGGTCCCTGAAAGTCCTACAGCTATCTTTGTTTCAAGTGTGTATGTGTTAT



AATAAGATAAGTGTTAATTAGTTAATCAAGTACTAATTAACCTTTTTAATTTATAGA



AAAACAGACATTTATGGACAAGTAAATTTTTGGGGTCAAAGTCTTTAATAATTTGA



AGAATGCAGTTATTTTTAGCACAAATATTCTAATGTGAAAAGAATTTCTTTTTCTGA



GTTATATATTTTTATGCCATTCAGAGTCACTAATATAGTACTAATAATACTTTTTCT



ATTGTGTACCTTTGTTTCTCTCATTTGTCTTACATTTTATGTCTAATCATCATTTCAC



AAAATTTCTATCATTACTGCTTGACCTCGACTTCTAACATGGCAATTAATTTTTATA



CACAAATTTTTGAAATCTTGACAGAGTTTTTAACTTCCTCATACCGAGTTCTTTGCT



TTTTTAGTTTACAAGATGTTCAAGAATGCTCTTTTGAAATAATCAATTACCTAATGC



AAGATAAATTAGCAACAACATTACATATTTTTCTTACTATCAACTGAGAATGATCTT



GATAGGGGCAAGTATAGGTTAAAAATAAATGACATCAAAAAACAATACCAGAATA



AAACATTTAATTCTTCAACACTCAAAGGCATGTCAGGTATTGAAATCCAAGTAGGC



ACTTTTGACTAATTGTTAGTAGTTTGTAGAATTCAAGGATTAGGGTTGGCTTCCTTT



TGTCTTTCTTTCTCTTCTTCCTCCCCTTCTTCATCTCCTTCTTGTTCTTCTTTTTTTTCC



CCTCTCCAGATCACTAATCTTCTCCAACAAATTTTTAGCCTATATAAAATAAAAAA



AGGTACTCCTGCCCTATGACTCAACTTACAAATCTACAAACCTGGAGGAAGAAATA



GCTCTGTGATCCATTCCTGGGGAATTGCAATAAAGTTTTAGGGAAGATGGAACTTA



ATGTTTGTGAAAGCACGGGTCCTATTTCCGATTTCCAGGAGGGTGGAATGTATCTT



CCTGAATCACATTCCGCTG





Human CPS1
CATTCCGCTGAAAATAGGAGGCCATGGAAGAAATCAGGTTCAGTATAACAAATTTT


RR23_v1
CTACAAAAGGGGGTGGAGTAGGAATGTGCGTAGGTGACCTGTTCTCTACGTCATTC


SEQ ID
CAGTGTAAACTACTGCCCCTTACACTTCACGAAGTCGGTAACTTCAAGACATGTTG


NO: 74
CACCACATGCTTCTCTGTGATCCTCAAATATGTTTAATTTAAAGAGGGTCCAGTAGT



GTCCTGGCACATGATCTGGATTGCCATAGATAACCATCTACCTCACAGCTAGGGTT



GCTCTTTAGAATCTTGCAAAATCATTTGTTTACTCTTGACAAAAGTTAAGAAAACA



AGCCCATCAGAGTTGTTTGTTCTGTCAGCATGTTAGAAGATGGTTTTGTTGCAATGA



TAATCGTTGTGCAAAGAAGACTGATGATGATTTTTTTTTACATTTTCTTAACAGTAT



TTGCTATTTAGAATGAATGTTGTCTAATTATTTAGCCATTTTATTTTGTAAAATTTAT



GTTGTAGGCATATTTAGACCAAGTTATAAGAAAATGCTTCAGCCAAAATTAAGTGT



TGAGTTTGATTTGTGTAATTGTTAGTTTCTTTACTAGTTGTTCCATCATTTACACAAT



TATTTCTATTTGAAATGCAGTAATTGTTCAGAACTTATATTTCTATACTGATGTCTA



CTAACAGCTTTAGATCAAATATTAAATAACTCAAGAATAATGAGATGATCTTGGCT



TACTTAGATATTTGGTTTTTATATCTATAGAACAAAGGAATTAGAAAATAATTTTGA



AGATTTCATCCAGCTATGTAAAACTATCTAGGGAATACATTTACTAGGTTTTCAATT



TTCTACAAAACATCTTTCAGCAGAAAGCAATCCTGTTTCCTGATATACAATGTCTGA



TACATAGAAACTACTCAGTACATAATTCCTGAATTGATTATTCTTTTGGAAATCCTA



GATTTGATTTCTGAACAATCATAAACATTTAATGGCATGAAATTACCCAGATTCCA



TGGTTCTGGAATACATAACTTCAAGCAATAAGATGCAAGATAGAAACATATAAGA



CATTCTTTGCTATTTTAGGTAAGTCCAGCTGAATCAGTTAATCAGCTAGAAACGTG



GCTCACAGATGAATTAGTTTTATTATTAGGTGGATTACTGAAAAATTAATAGCTTTA



TTTCCGTATTACCTTATCATTTATTTAATATAAAACATAATAAACCAGAGAAGTTGT



GGTTACTTTCTTCTGTCTCATTGTTCAGTTTTTACTGAAGTTATGTTTTACTGATTTT



CACGAAATGCAAATATTTCTGAGCATCAGAAATCCAGCTTTTGCTACCTCCCACTC



ATGTATTCTTCCCATCAAATTGAATCTTAACCAGGTCACTCTTTCCTGTTCATTCCAT



GCTGTTGCCCCTGTTTTCTCCAGATATAATTGACATGCTCCAAGAGGATGAACATTG



CCTAAGACTTGATTTCTGGTCTTGGCTTTGCAACTTACTAGCTGTGTGACCTTGAAC



AAGCTACTTAATTCTCTGAGACTCATCATTATTGTTTATAAAATAGGGATAGCATTA



GCTTATTTCAAGAATTGTTTTTAAAATTAGCAAGGAAGGCATACCAATGCCTAGCT



CAGGGGATCAACAAGTGGCAAGTACCTCAACTTTCAGGCAAGATCATACTTATCAT



CAGTGGAGCCAATAGAACAGATTTATTTAAATACCCTATTTTCACTTACTGGCATA



ACAGCAAGTGGTGTACATATTTATATATCTCTCTATATAGATGCAGATAATATACT



AATATATTGTGGTTATATCTTCCAATGTTTTAGTTTCTATTGAGGG





Human CPS1
TCATATAAGCTGTCTGCACGCAGCTGAGCAGAGTGACAGGCATGAATGCAGGCAC


RR43_v1
ACACATCAGGCTGGGGACCCTGTGTACTTGGAAGTACATTCTTTGTGAGCCAGGTC


SEQ ID
ATCAAAGGTTTTCTAAACTTATGAGTCACTCTCTGATAAAATGAATTTTTTTTTTTA


NO: 75
GATTTAGTCTTCTTTTCTATTAATACATTTTAAAAAATAGAAGCATTTAGCCTGTGA



AATCCCTCAGGGCACTTTATTTTATGAATTCCTTATTGACATATCTGGTATTGAAAA



TGTTAAAATGTCAAGTACTAGGTTGTATTCACTTTCATTTGATATTTAAAGAAATGT



GGAAATACAGAATAATAGATAATAACCCACCACACAAACATAATCTCTGTTAACA



CTAAAGTATTATCTTCTAGCATTTATGTCAATGCTCAGAACATAGTTTTGAAAATTG



CCATTGACTTGCATAATGCTTTTTGGAGGCAATATTATGTTAAATGTATTTTGATGT



TATTACAAAGTTCTTTTAAAACATTACTTTAAATGATTACAAAATATTCCATTTTCA



TTGCTGCTACAATGCATGTCAATATTGCCATATTTGATTACTATTTACAAATTTCTC



TCCAAAGAGAGTGTACTCACCTACATACCAGTGCAATATATGGGTGTCCCTTTAAA



AATGTCCTCACCAACATTATGTATTATCTTTCATTTTATTTGCTCCGCTGTAGAAAA



TATTATTTTGCTTTCATTTCTATTTTAAATCACTGGTGAAGTTGAATACTTCACAGTA



TGTTTTTAATTGATACTATTCTTTTATCAACTACTGTTTACATTTTTGTTTCCATTAA



CTCATTTATATTAATCATTACGAAAATGTCTTTAAAGGAAACATAAAGAAACACTG



ACAGCCTGTGTCTATACTGATTTAAACAGTCCACTTCTCAAACAGTCCACTCTTCAT



TTAAACAGTCCACTGACATAAGCAAGGGAAGACCTGCTACAGATTGAAAAAAAAA



ATGAGAACAGGATGTCTTAGAGAATAAAGGTCTTAGGTTTTGGAATGAAGAGAAA



ATAAGGGTGTTAGTAATTCCTTTGAAGGTACAGAGACTTCCAACTGCCCTCTTGAA



ATGTTCCTAAGTAATGAATCAGAAACAACTCTAAGAAGTTGGTGCATCTATCAAAA



AGTCTCTAACATAGCAAGCATGCAAGAGATGCTTCTGGAAAAATGACTGAATGAA



TGGATTGCTGTGTGCTTAATTCCTGCCTGATCAGTGATGATTATTTAAGCAGGAACA



AATAAAATTACATCAGTTAAGCATGAGAGGAAATAAGGATGCTTAGGAGTCATGA



AAAAAAAAACCTGGCAATCAATAATTCTATAAAGTCTATTTTTGAAGAGATACATT



AAAGCAAGGAGTAAGGTATGACTGGAGAGCAAACAAATTCAGAGTAAAAGGAGG



TGCAATAACTCCCTGAAGAAAGTTCTACTGTTTTGTGTTTGACCAGAAATGTGTGA



AAATAGAATATAAAAGGTAGAAGTAATTGGGTTCAGTTCTATGATTTTTATTAGCC



TTAGTATCATAACAAGGAACACGGTCACAATTAAAGATATGGATGAAGAAGGCAT



CTCTGAGGGAAAGTGGTGTGGATTGTACCCATGTAAAAGGCACACATTTTCTCCTA



TCACAGAAACTAGGACAAGCTGGTAGGAGGATTCCTCAAAGTTTGGCCAGGAAGA



AGACTTAAAGTTGTTTGAAAACCTTCCCAATATGTCAAGGATTGAAAATGACAGAC



AGATATCATGTTGTTAGATGATGAGGGTTCAAACTAACCAGATATCCTTGGAAATC



CAATCAAGTAAAACCTATTCATTAAGATCCAATTGGCATTTTGAGGAATAGAAAGT



GAGGATCAAATTATGATGAATATGCTTATCAATCTAACATTTGATAACATAAAGTT



TGGAGTGATACAAAAGAAGGTGAAAAATGAAGCTG





Human CPS1
GCCTGATGTGTGTGCCTGCATTCATGCCTGTCACTCTGCTCAGCTGCGTGCAGACAG


RR21_v2
CTTATATGAAGGAGGACTGTGTACATGTGGTCAGAGAAGAAAAAAATGCTTATTTT


SEQ ID
TTAAAATGTTTTGAAAAATAATCTGTCCTAAAAGTGTAACATTTCCACTAAATTTTT


NO: 76
TCATGTCTGACTTTAACATTCCCTACCAACCAACTCTTATAGCCTCAACTCCTTTGA



TCTATCCTAATGTAAACTCCCTCACTAATGTGTAATATATTTTTTTCCAGTTTGGTTA



TAGATTTCAGTCTAGCCTGAACACTCAAGTATGAAACTAGCCACTATTTTATTTATT



GGCTGTTCCAACCTCCATTGTGGAATTATAATTGATGGATTTTCCAAGTCTCTAATT



CAGAATATTTAATCAAATTTTCCAAAATTTCTGCCTTCTCCTCCTTCATTCTGATGA



CTAAAGACATGGACCATAAAATATATATACATATATACATACATATGTATATGTAT



GTATATACACATATATATATGTATGTATATATACATACATATATATATGTATATATA



CACACACATATACATATGTATGTATATATACACACACACATATATATATGTATGTA



TATATATACACACACATATATATATGTATGTATATATATACACACACATATATATAT



GTATGTATATATATACACACACACACCGTAGTTTGCAAGTCTGCATCTGGGACCCT



TTACTGATAAAAATGAAAGCCCATTAAAACTCTCATGCCCACATTTCTCTCTAGACT



TTAGAGTAGGAGAATTCTATCCTAGAATTGTTGATTGTTGACATTTCTATGGAAAA



ACATGTTTAATTCATCATGCTTTGTAGTCAACTGCTATAAATGGTGATGAAGTCTTT



TCCTTGGTCAAGCTCTGGACTCCTCAGTACTTCCACTGTCATATTTGATTAAAACAT



AAGTGATGAAGGGAGGAAATATATTATAGTATTCATTGCATGGGTACCTTAGGGTA



ATGGGACTATGACTGATTTAAATTTATTTTGCATCCTAAAAAGTTTCCATTAGTGGG



TGCAGCACACCAGCATGGCACATGTATACATATGTAACTAACCTGCACAATGTGCA



CATGTACCCTAAAACTTAAAGTATAATAATAAAAGAAAAAAAAACTTAAAAAGAA



AAGTTTCCATAATGAGGATTGAGTTTATATCGTTTTCTTAATTAAGGAAAGACAAC



CCTCACTACACACACACACACACACACACACACACACATAAAAAGACAAGAGGTG



AGATCAAGGCGTAAACTAGTATTGGACTAAGCCAGTAAGTACTGCTTCTCAGTCCT



CAGTTCTCTAGGTTGGGAGTTTTCCTTTTGCTATTTTCATTCTCCTCCAATTCATTTT



TCAATGATCTTCAACACAAATTTCGCCTTTATTTCTTGTTCAAAATACTTCCATGAC



TATTATGAATACTATTTATGGATGAAGGCTGAACATTTTAAGGCATACTAAGTCTC



CCATGATATGGTACCTTTTCATTTTCCCATTCTATACCCTGCATCTAGGCTTTTAAA



AAATATACCACATGACTTCATGCCTCTAGGCTATTGCTCATGCCACGGCATCCCTTC



TGGGTTTTTTCCCCTCTTTATCTACTTGGTGAATTTGCATCCTTCAGTATAACACAGC



TCAACATAATTCTATGCTTAAACTTTACTGAAAATGCACAAGGAACTTGATCTTTCT



TTCTTATTTTCCCCATTTTATTTATTTTCCCATTGCATTTGGGCAACTTTCATGGCAC



CAGTTATTTTATTAATTATTTGTATAAACTAGTATGAGCCTATTTTGTTTAGCTTTCT



ATCACCAGGAGCCATGAAGCACTTTGAAATCAAATACTGTTTGTACTTGAATATAT



TAAGTAAGCGTGAGGACTTAAATTAAACTTTGTTCCTCTTTAAAAAAATCCTTACCC



CAACTCTAGCACTGA





Human CPS1
TCTTCCTATGGGAAAAAATAATTTCCTCTATCAGAGGAAAAATTTATTACTATTATG


RR7_v2
ATAATACCCCTTCAGACCTTTTTCTAGTCACTTACAGGTAAAAATTGTAGTACTGGT


SEQ ID
TGGTACATAGTGTATTTTATTAATGTTTTACTGCGTATATTGTTGTATAAATTGCTTT


NO: 77
CCGCACTCATTGGCATGCCTTAGAATTCTTTTTATTTAGGCTTCATGACTAATTTGT



AGTGGAACCTCAAGAAGATCACTTATGTGCTTCACTTTCCACATATGTAAAATGGG



AATAACAACAGAATCTGCCTCATAGTACTGCTGAAGGGTGACATGGGGAACACCT



GTGAGGCATTCAGAACAGAGCCTGTCATACAATAAATGCCATGTCAGTGTTTGCTC



TTATTCTCAGTATACAGAGATCTGCTTTGATCTTTTCATCTTCTGCAAAATATTCCA



CAAATTGGCATATTGTGTTTTGTAATAATCTCTATTGATTATTTTCAAGCAAGATTT



GGAATTATCCGCAGTAGTTTCAAATGTACAAAAAAGTACCTTATTTTATTTATTTTT



TAAATAACTGATCTGATCTACGAGTCTAATCTGGTAAGTTTTGTCTTGAGTCCAGTA



ATGCAGTCCAATACTCCATTTAGGTAACCCTGTCCTTGCTTGGTCAATTTGTTCCAC



TTTTCCAAGTTTGACCTGCTTACCCTATTCCTCTTCAAGAGGGCATCTGGTTGTTTA



GTTTACATGATTTAGTGGTGCAGAAGGAAAGGGTAATCAGATTGATGTATCCTCTG



AGTCCTCCTTGATATCTGCAGAGCAGCTGAGCTGGTCTGCTCTCTGTGCTGTTGACA



TCTGCTCTTTGGGGCGTTAGGGGGTCTGGTCATTTGTCCCTTGTCTGTTATGATCTA



CCTGCAGTGGTTTTCTACCTTGTCCCCAGGCTTCTTAATTCTTCCTGTACTCTCAGAA



CCTCTGTGTTGTCACAACCAGACTTGGGTTATTTTGGGTCCCCAGTTTCCAGGCCCT



GAATGCCATGGGCTCTGTCTCAGGAATAGGTATCTGCTGGCCTGCTGCTGTCATTTC



TACTACATTGCTCCTTTACTGCCTTAAAGAGTGGTCCTGGATCAGGGGTTGAAAGT



GGAAGTGGAAATAAAGGACGCTGATGTGACGTCTGTGTTTCCATTCTTCTTCCTAC



CACTTCACCAGATGTGAAAAATTCATATAATCTGAATCCTCTAGTTTGAGTTATGAT



AAGTTAAAGCAGTTTAAGAATTTAACGAACTCCCCTCTCCCTGATTAAATCTACTTG



TTAGCACTGTGTTCTTACTGCAAATCCCGTTGCCTTGCCAGAAGATAAATATTAACT



TTTTCTTTCTCTTTGCCTTCCTGTTGTAATAATTCCAAACCACCCAAAAGAAATAGG



TGAGTTTGTGGAGAAGGTCAGTAAAATAATTTCAAAAGGGAAAAGAACATTCATG



CATTTAAATATTATTCCCACTGGTTCATTTATGCTGCAATGAATATCTATATATCTA



TGTATGTATCTATCATTTTGTGCACATGTTTTAGTATTTTTCTGAGTTTCATCCTGAA



AAAATGTAATTGCTGTAAGGTATGCACATTTTACATTTCACTGTATAATGACAAAT



CATGCTACAAAGTGACTAGACCAATTTATACTCTTGCTATGAGTCACTGAGAGAAT



TCTTTACTAACACCAGATATTTTGCGTAACTTATTCTGTTTAAATTCTATCAGCAAA



CCTCCATAGTAGGTGTATTCCCATTTTGTATATGAAGAAACTGAGGTTCGGAGTTA



AAGCAACTTGTTCAAGGTCACACAAATGGTAAGTGGGTAATTTCGGAACCTTTTAA



AATAAAACATAGAAGCCTACTATCTTATTGTTCCATTCTAGAAATATGTCTGTGTTT



ATAATATCGACTACTTTGTATTATTTTAAACTTTATAATATTGACTACTATTATTTTC



TTCACATCCTAGTTAAGAATCTAGGATAAAATGGAAAACGATATCACGAAATGGA



AAAACAATGTTATTCCTTAGTTAGCTTAGTTTAAACACCTATTTAATGGTCAAAGGC



AAGTAGTTGACCTCCCATCTTTTTGACTCACAGTCATTAGTTACACAAGAAAAGCA



GAACAAAACCCAGCTGGATGGAGGGGTGGATATGCAAGTAGCTTTCACACTAGGA



ATTGTGAAGCCTGAGGCATAGCCCCAAGACTCAGATCATCGGGAGTGCACTCAGTC



CAGAGGGACAAATGTTCAGAGTCTGCATCACCTAATATTACAAGCATCTTTATTGA



GACTGATAGAAGTGAATTTCTCAGGTCAGAAAACAGAAGAGCTCTTTTAGCTGAGT



TGTGATATTTAAAAGTCTCTCATTTTGAATTTCTTGCCTGGCCAATCAAACTGTCCT



CCCAGAACAAATTGTTGGATAATGAAATGCATATAATGTAGCTTGAGAGCGCTGTC



CCATTTGCAGCACTGGCTTCAGCCTGAGGCACATCTCTGGCTGCTCCTTTCTATCTA



TAAGTTAAAGCAATGGCCTCAGCAAGCAGTACACTCTGTACAGCAGCTGCAACTCG



TTATCGGCTTTGTCCAGAATAACAAACAGAACAAACACATTTTGCAAGGGCTTTTA



CCCCTCTTATGTAGAGAAGGAGGAATTAAGCAATCAGTGAAATGCTGATTGATCAG



TTGTGCTGACTAAGAGAAGTCCAAGGCCACATTAGTACTATTAAGCCCTAAAAAAC



AAAGCAAAAAGAAAATGTTCTTAGAACTTTATTTAAACCAGTATTTCTGTGATGTG



AAGTACATTTCCCCCAAAGGGAAAAATGGGAAAATATTTGCATTTCACTTAGTACA



CTTTACTCATCCAGACTGCTTTGTAATGTAATGATGGTTAAGTATTTTTACAAAGAT



AATTCATGTTTTTTGGCAGATTTTGGTTGATCATGGAGTATCAGGGTTGTGTGAACC



AAAGGTGTGATGCAGAGCAGCTTTAGTAAACCATCCCATTCCTATGCCACCCGTTT



GATTTCAGTACCAACTGCTGTGGCCACATCTAGACCACTCTTTACCAGAAACTGTG



CCACCTTCAAAATTCCAGCATCCTTTTCCCCTCCTCCCTTATTTTTTGATCTCATATA



CTCAAGTATTCTTAGTGTAACAATTCTTTGAGCATTCTTTCTTATCTAGCTTAAAAT



CTAGGGTCTACCATTATAATCATTCCTTTCAAGATAACCTTAACTTCCACACCCCAA



TTTCTAACTGGCCTGGCAAAACTCAGACCTTTGGTGCAAAATCCTCCATCTCTATGC



CTGAGCCCTTGTGTTTGAGAATGGCTGAAGAAAACCATGTGCATGGACATTCTGAT



GTCACTATAAATTCATGGTCACGGATCTCAAATGGGAGCCCAAGACTACTGGCTTT



CCTGCTGTGGTTGTCTAATGACAGCATGATCTTACTCTTCACAGATATTAGTTTAAA



CTCTCCAACCTTCAATTGAAAAGTCTACATCTTACTTTATTAGAAAGTAGAAACAA



TCAAGGGTTATGCTCCCATTTTCACACTACCAAGTAAACAAACCTTCAGTAAGAGA



AGATATATTTCCTATATCTCCTCCTACCCTCCTGTTAAAAGGGTGCAAACGTCCCCC



CTCCTAACAAAAACCAATCCTTCTTCATGCTCTTTAGATGCCGTGTTGTCTCTCTTTC



TCAAAGTCTTCATTTTTTGGTTATACTCTTTCTCTCATGCAAATTTTTCTCTCTTTTTC



AAGTAGAGCAGGCTCAGCAGCCTACAAACGTGTCTTGGGCACCTTTCATCAAAAAA



TAAAAAACATAAAAA





Human CPS1
TGTTTGTTCTGTTTGTTATTCTGGACAAAGCCGATAACGAGTTGCAGCTGCTGTACA


RR23_v2
GAGTGTACTGCTTGCTGAGGCCATTGCTTTAACTTATAGATAGAAAGGAGCAGCCA


SEQ ID
GAGATGTGCCTCAGGCTGAAGCCAGTGCTGCAAATGGGACAGCGCTCTCAAGCTA


NO: 78
CATTATATGCATTTCATTATCCAACAATTTGTTCTGGGAGGACAGTTTGATTGGCCA



GGCAAGAAATTCAAAATGAGAGACTTTTAAATATCACAACTCAGCTAAAAGAGCT



CTTCTGTTTTCTGACCTGAGAAATTCACTTCTATCAGTCTCAATAAAGATGCTTGTA



ATATTAGGTGATGCAGACTCTGAACATTTGTCCCTCTGGACTGAGTGCACTCCCGA



TGATCTGAGTCTTGGGGCTATGCCTCAGGCTTCACAATTCCTAGTGTGAAAGCTACT



TGCATATCCACCCCTCCATCCAGCTGGGTTTTGTTCTGCTTTTCTTGTGTAACTAATG



ACTGTGAGTCAAAAAGATGGGAGGTCAACTACTTGCCTTTGACCATTAAATAGGTG



TTTAAACTAAGCTAACTAAGGAATAACATTGTTTTTCCATTTCGTGATATCGTTTTC



CATTTTATCCTAGATTCTTAACTAGGATGTGAAGAAAATAATAGTAGTCAATATTA



TAAAGTTTAAAATAATACAAAGTAGTCGATATTATAAACACAGACATATTTCTAGA



ATGGAACAATAAGATAGTAGGCTTCTATGTTTTATTTTAAAAGGTTCCGAAATTAC



CCACTTACCATTTGTGTGACCTTGAACAAGTTGCTTTAACTCCGAACCTCAGTTTCT



TCATATACAAAATGGGAATACACCTACTATGGAGGTTTGCTGATAGAATTTAAACA



GAATAAGTTACGCAAAATATCTGGTGTTAGTAAAGAATTCTCTCAGTGACTCATAG



CAAGAGTATAAATTGGTCTAGTCACTTTGTAGCATGATTTGTCATTATACAGTGAA



ATGTAAAATGTGCATACCTTACAGCAATTACATTTTTTCAGGATGAAACTCAGAAA



AATACTAAAACATGTGCACAAAATGATAGATACATACATAGATATATAGATATTCA



TTGCAGCATAAATGAACCAGTGGGAATAATATTTAAATGCATGAATGTTCTTTTCC



CTTTTGAAATTATTTTACTGACCTTCTCCACAAACTCACCTATTTCTTTTGGGTGGTT



TGGAATTATTACAACAGGAAGGCAAAGAGAAAGAAAAAGTTAATATTTATCTTCT



GGCAAGGCAACGGGATTTGCAGTAAGAACACAGTGCTAACAAGTAGATTTAATCA



GGGAGAGGGGAGTTCGTTAAATTCTTAAACTGCTTTAACTTATCATAACTCAAACT



AGAGGATTCAGATTATATGAATTTTTCACATCTGGTGAAGTGGTAGGAAGAAGAAT



GGAAACACAGACGTCACATCAGCGTCCTTTATTTCCACTTCCACTTTCAACCCCTGA



TCCAGGACCACTCTTTAAGGCAGTAAAGGAGCAATGTAGTAGAAATGACAGCAGC



AGGCCAGCAGATACCTATTCCTGAGACAGAGCCCATGGCATTCAGGGCCTGGAAA



CTGGGGACCCAAAATAACCCAAGTCTGGTTGTGACAACACAGAGGTTCTGAGAGT



ACAGGAAGAATTAAGAAGCCTGGGGACAAGGTAGAAAACCACTGCAGGTAGATCA



TAACAGACAAGGGACAAATGACCAGACCCCCTAACGCCCCAAAGAGCAGATGTCA



ACAGCACAGAGAGCAGACCAGCTCAGCTGCTCTGCAGATATCAAGGAGGACTCAG



AGGATACATCAATCTGATTACCCTTTCCTTCTGCACCACTAAATCATGTAAACTAAA



CAACCAGATGCCCTCTTGAAGAGGAATAGGGTAAGCAGGTCAAACTTGGAAAAGT



GGAACAAATTGACCAAGCAAGGACAGGGTTACCTAAATGGAGTATTGGACTGCAT



TACTGGACTCAAGACAAAACTTACCAGATTAGACTCGTAGATCAGATCAGTTATTT



AAAAAATAAATAAAATAAGGTACTTTTTTGTACATTTGAAACTACTGCGGATAATT



CCAAATCTTGCTTGAAAATAATCAATAGAGATTATTACAAAACACAATATGCCAAT



TTGTGGAATATTTTGCAGAAGATGAAAAGATCAAAGCAGATCTCTGTATACTGAGA



ATAAGAGCAAACACTGACATGGCATTTATTGTATGACAGGCTCTGTTCTGAATGCC



TCACAGGTGTTCCCCATGTCACCCTTCAGCAGTACTATGAGGCAGATTCTGTTGTTA



TTCCCATTTTACATATGTGGAAAGTGAAGCACATAAGTGATCTTCTTGAGGTTCCAC



TACAAATTAGTCATGAAGCCTAAATAAAAAGAATTCTAAGGCATGCCAATGAGTG



CGGAAAGCAATTTATACAACAATATACGCAGTAAAACATTAATAAAATACACTAT



GTACCAACCAGTACTACAATTTTTACCTGTAAGTGACTAGAAAAAGGTCTGAAGGG



GTATTATCATAATAGTAATAAATTTTTCCTCTGATAGAGGAAATTATTTTTTCCCAT



AGGAAGATCTTAAACTTATTTGTAATGTTTCAATTTTTTCACATGATGAACAAAGCA



ATACACTGCTCATGTTACTGAAACTCGATAAAATATATGAAGCTAAAATTGGTCAT



CTAAAAGTATGATAATATATAATATTTATTTTCTACTTTATCTCCAATATGCTTATC



ATACAGAAATTATAACAAAATGCAAGCAAATGTTTTGGATAATTTGAAAGTTAATA



AGTTGTACACTGTAGCCCTACCATCCCCACTGATGTCAAAGGGCTGATTTTTAATTA



TGCAATAGTAATTAAATAGGGATCAATGTCATTACCTGAGAAAACAC





Human CPS1
AATTCTAAGTCAGGTGGTCCAACAAGGCCTCTCATCCTATTGGTATTACAGTATGA


RR9_v2
CCTGTCTCCTGAACTTTGAAGCCATTTCTTTCCTTCAGAGGAGATAAGAAAATGTGT


SEQ ID
CTTATCTTAAGTCTGGAAGAAACACGGAGCCCAGTATCAAGGGAGTGGAGTAGTTC


NO: 79
TTTTCCCAGACGTAGCACAGGGTTTTTCAAGCCTGAAGAAAAAGATTAATCTCCTT



AAAACAAGGCTTTGTTGACTTGGGTCTGGTCATGGCAATCCTGTTTCCAGCCATCCT



GTGTATAAGCTCTAACGGTCAGAAGTTTGTTTGCTTTGATTTTGATGTGGCTCATCT



TTTCTTAGCTGCTCATATTCAAGATTTGGAAAAGAAGGAACGGTGGTGAGCTGAGC



AATTAATTGGATTCTGATAAGGAGTTCTGGAGAAATTTTATTATTCCTGAGTTTTAA



ACCCGTGTAACTTTAATATAACTTTGGTATGAGCCTTTACATTTTTTCTCTGTGTTTT



TGTAATTATATTGTGGCATTCTTATTGGGTGTGGTAGTAGCAATAAATTATAAATGT



ATGAATTTATACATTATGGATTTATAATTTCATAAGTTTTTGAGATTTTAAGACTTA



CTATTTTTTACACGATGCCTTATGTATTTATAGCATTTAATATTAATCTAAATTCATT



TTGAGATATATTTTATCATGCTTTTATCTTTTATATGTTATTAGAAAGCACTTGGTAT



TTTAAAAATATATATTAATGTGAGATTTCACAATTTATACCTTGTCTTTGTAGTCAC



ATGCGTAGAGGATATTTACAATTTTACTCAAGTTAATTTGCTCAGTGTTGATCATCA



GACCTTTTAGCCAGTATTGGCTGGGAAAAAAAGTGTAATTCTTTTTGTTCTCTTGAG



AATTTTTTGGATCTAAAGTGATTCCTAGGGTGTGGGTCAACTTCTATGATATGAAA



GATGACATGGAGGTTTTTTATTTTGTGAAGTGCATTAATAGGTGATCACATTTCATC



CTGGGAGAGCTGCTGGAGAGGAATATTGATTTAGCCTGTTATGGTTGAGTCTTTGG



GGTCTTGAGCTTCTTAGATTTTTAGTTCTTTTTGTTATTCTTTATTGTTCAATCTTGA



GAGTAGAAAATACACATTTTTGTCCACTTCTAAGAATAAAACTGAAAGGCTTCTCA



AGAGGGAGCTTTTGAGGGACAAGTCTGTGTTCCAGACTTATTTTTATTCTCGGATCT



AGCACCATGCTTGGCATGTAAAAGGGCTTTAATAAGTATTTATAGAAGGAATTGAA



GAATTAATTATTACTTATGGACTATGAGAGGTCATGGTTGTTACTCTTTCTAATTTG



TCGATATTAAACAGAGACAGTGAAGATACTAATTTAGATCACACAACGTGAATGA



AGCAAACAAAAGCCTAAAGCTTTAGAAAAATGAATATATTATATTTTTAACTTCGC



ACTGTAGTTAAGCAGTGTGGAGCTATTTAATGATTTCAACCAGGAAGATATTAATG



TGTGAAATAAGAGTACGTGGACAGTATATTAATTGTATGATACAAACAAGATATAC



ATACATAAAGTTCATTAAAAGAGTATGATTTCATATGGCTTTGAAGGATTGATAGG



ATATAGACAAATTGATAAAATTGATCTAACCAATATTTAACTTTAGGTTTCTTCATC



AGATAAAATATTGCATCATTTTATGTTGGCTAAGTGATTTGCAGTCTATTTCAATTA



ATTATTCTTTATAGTTTTTCTCTGTCAATGCCATTTAATAAAGAGAAAACTTCAGCA



GACAGAAGTTATATGATCTTTGGCACTATTGGCTGTGTGTTAAGCCACAGTAAGGT



TCAGTTACGTATTTTATTGTTTTATAATCACACATTTCTCCTTTGATTCATTTCTTAT



CTACACCCCTTCTTTCACATCCTAAATATTTTCTTTGGATAAATGTGTAGGGCAAGA



TGAAGAAAAGAAGAGAAAAAAGTAGTCAGAGCTTGGGAGTACTGAAACGCTTTGG



ACTCCAGCCAGCTGCCATCACTGAGGTGGTGAAAGAACACCGTAGTATAACTGGAT



GGCCCTGGTCCCTGCCAGGAGTCAGGATGGACTTTCAGTGTTGAAGAGCCATCTTG



GCCTGTTACTAGCGCTGCCCCACACCATTGTGTTTGCCTAAGAGCTGAGCCAAAGA



ATTTACATATGTATGAGCCAAGGTCTGAAAATAGAAGTTAAAAAAATGGTGCTAA



ATTGACATATTTGCTATTTTATTTTTTTGGTCAGTTAATATGATAAACTTTTATTTAA



ATGTAAACATTATTTTAAAAAGCACTTTGTTTTAAATAACTGATTTTCATTGAAATT



AATTCTGGCCTCTAAGCAGAGTTAGCTACAAAGACAATTTGTAAAAATGCAGAAA



ATTCAGAGTTTAACTTGGAGTTGTTTAAAGTTTATTTTCATATTTGAGTCTGATATTT



CAGTTCACTGTAATATTTCAATTTATTTAAAATATTATCAAGACAAATATTGGGTTA



CCTTCACAATATTTTTTTCATTTTTCTTACCCCATATATTAAAAATGAACAAAAATG



AAAGAATTATATAGTCTAGTGGATGGCAATTCTCTTGGTACAGTACTCACAGGATG



TCAGAAGTGCTTTGATTTGCATGCAAATAGAAACTGCATTCCTAAAAGACCCTTAA



TTGAAGATATTAATAATTTTCATTAGGTTTTAAGTCTTTTAACCTTATCATATGGAT



AGAAAAGTAAAAGATGTGTTTAATAAAATGTCTTTTACTTATTTTTATTTGTCATTT



ATTTAAAGGTTTATTAGTGAATCTGTTTACCTGGAAAATGTGCAATTCTATTTGCAA



ATTTGGAGCACTACATATATTTAAGAGAATCCTTAGTTTCTGTTGGGAGTGGCAAT



ATTTTATAACTGGGCCTTCATATTCCTATGTTACAGCCCTGGTCCCTGAAAGTCCTA



CAGCTATCTTTGTTTCAAGTGTGTATGTGTTATAATAAGATAAGTGTTAATTAGTTA



ATCAAGTACTAATTAACCTTTTTAATTTATAGAAAAACAGACATTTATGGACAAGT



AAATTTTTGGGGTCAAAGTCTTTAATAATTTGAAGAATGCAGTTATTTTTAGCACAA



ATATTCTAATGTGAAAAGAATTTCTTTTTCTGAGTTATATATTTTTATGCCATTCAG



AGTCACTAATATAGTACTAATAATACTTTTTCTATTGTGTACCTTTGTTTCTCTCATT



TGTCTTACATTTTATGTCTAATCATCATTTCACAAAATTTCTATCATTACTGCTTGAC



CTCGACTTCTAACATGGCAATTAATTTTTATACACAAATTTTTGAAATCTTGACAGA



GTTTTTAACTTCCTCATACCGAGTTCTTTGCTTTTTTAGTTTACAAGATGTTCAAGAA



TGCTCTTTTGAAATAATCAATTACCTAATGCAAGATAAATTAGCAACAACATTACA



TATTTTTCTTACTATCAACTGAGAATGATCTTGATAGGGGCAAGTATAGGTTAAAA



ATAAATGACATCAAAAAACAATACCAGAATAAAACATTTAATTCTTCAACACTCAA



AGGCATGTCAGGTATTGAAATCCAAGTAGGCACTTTTGACTAATTGTTAGTAGTTT



GTAGAATTCAAGGATTAGGGTTGGCTTCCTTTTGTCTTTCTTTCTCTTCTTCCTCCCC



TTCTTCATCTCCTTCTTGTTCTTCTTTTTTTTCCCCTCTCCAGATCACTAATCTTCTCC



AACAAATTTTTAGCCTATATAAAATAAAAAAAGGTACTCCTGCCCTATGACTCAAC



TTACAAATCTACAAACCTGGAGGAAGAAATAGCTCTGTGATCCATTCCTGGGGAAT



TGCAATAAAGTTTTAGGGAAGATGGAACTTAATGTTTGTGAAAGCACGGGTCCTAT



TTCCGATTTCCAGGAGGGTGGAATGTATCTTCCTGAATCACATTCCGCTGAAAATA



GGAGGCCATGGAAGAAATCAGGTTCAGTATAACAAATTTTCTACAAAAGGGGGTG



GAGTAGGAATGTGCGTAGGTGACCTGTTCTCTACGTCATTCCAGTGTAAACTACTG



CCCCTTACACTTCACGAAGTCGGTAACTTCAAGACATGTTGCACCACATGCTTCTCT



GTGATCCTCAAATATGTTTAATTTAAAGAGGGTCCAGTAGTGTCCTGGCACATGAT



CTGGATTGCCATAGATAACCATCTACCTCACAGCTAGGGTTGCTCTTTAGAATCTTG



CAAAATCATTTGTTTACTCTTGACAAAAGTTAAGAAAACAAGCCCATCAGAGTTGT



TTGTTCTGTCAGCATGTTAGAAGATGGTTTTGTTGCAATGATAATCGTTGTGCAAAG



AAGACTGATGATGATTTTTTTTTACATTTTCTTAACAGTATTTGCTATTTAGAATGA



ATGTTGTCTAATTATTTAGCCATTTTATTTTGTAAAATTTATGTTGTAGGCATATTTA



GACCAAGTTATAAGAAAATGCTTCAGCCAAAATTAAGTGTTGAGTTTGATTTGTGT



AATTGTTAGTTTCTTTACTAGTTGTTCCATCATTTACACAATTATTTCTATTTGAAAT



GCAGTAATTGTTCAGAACTTATATTTCTATACTGATGTCTACTAACAGCTTTAGATC



AAATATTAAATAACTCAAGAATAATGAGATGATCTTGGCTTACTTAGATATTTGGT



TTTTATATCTATAGAACAAAGGAATTAGAAAATAATTTTGAAGATTTCATCCAGCT



ATGTAAAACTATCTAGGGAATACATTTACTAGGTTTTCAATTTTCTACAAAACATCT



TTCAGCAGAAAGCAATCCTGTTTCCTGATATACAATGTCTGATACATAGAAACTAC



TCAGTACATAATTCCTGAATTGATTATTCTTTTGGAAATCCTAGATTTGATTTCTGA



ACAATCATAAACATTTAATGGCATGAAATTACCCAGATTCCATGGTTCTGGAATAC



ATAACTTCAAGCAATAAGATGCAAGATAGAAACATATAAGACATTCTTTGCTATTT



TAGGTAAGTCCAGCTGAATCAGTTAATCAGCTAGAAACGTGGCTCACAGATGAATT



AGTTTTATTATTAGGTGGATTACTGAAAAATTAATAGCTTTATTTCCGTATTACCTT



ATCATTTATTTAATATAAAACATAATAAACCAGAGAAGTIGTGGTTACTTTC





Mouse CPS1
CACTGCTGGTTCCACCTCCTTCTCTCACCATGGGGAGAAAAAGGTGACCTCTTCTG


RR52_v1
GCATTGCAAGCACAACCTGACTCACAGGGCAATGCTTTTGTATCTGAGTGTCTTTC


SEQ ID
ACAATCCATTTACTATCTGTAACTAGCTGTTCTGTTACTAACCTTTAAAAACTGCTC


NO: 80
CCATGCCCTTCAATGACAATTATGTAAATATACTCTAATGACTTTTAACTATCTTTA



AAATACTGTGCCCACATCAAAAAGAATTAATTTGGATGTGTATTTCTTAGAAAATT



GAGTTTTAAAAGAGAAGGCAAAAAAAAAATCATACATAAAGGACTATTTCAAAAT



AAGTGACTAAGAACACAGGTCCCCCTTGGACTCTGTGGGACTTTAATTCACTACCA



TGAAGCTTAAGAACTTCCATTTTTCATGCCTGGCATTCCTCCAAAGTTCTGGCCAGT



AATGACTGTATGTGAGTAATGGCTTTTGCACCTTGAAATGATGGCTTATTCCTCCTG



AAAATTTGTCATTCTTAGCTATGAACTATGGAAGACCCTTGAAACAGATCTACCAC



CATGAGCTAGAACTGCTTTCCCAGGGGTCGGTCCACATAATTAGCTCATGTTGTTGT



GTGGTAATTGCTGTGTAGAGTGCTTGCTGAGTCTAGGGATCTGATTTATAATTATTG



TGGCCTCCACTATTCATTGCTCTGTTTTTGGTATTTAACAGAGACCTGCTCATCCTT



AGCTACCCACTTCTGTGAGAATAAAGTGGTCCAGGTGACACAGTTCAGAAATATGA



CAAAGCACTTAAACTGTAGATGGTACTGTTGTCCTTACAGTTTCTTCTCTTCAAGAT



GGCATGTGATGTCTTCAAGGCATTGAAACACTTAACTAAAGCTAAACCACCATTCT



CTGTATATCAAGGTACTATGTCCTTATTGATGCTTTAGAATATCCATTCTCCTTTCTG



GCTTCCATCTTATTATCAAAATGAATCCAACATGGCTTTCTTAGGCTTTGTAATAAA



TTCTCAGGGTAGCAGGCTCAAGTTGGTATCATGTCATTGATGTAAGCATAAGTGTC



TCTCTCCCTTTCCCTCCCACTCCTCCTCCCCTTCCCCATCCTCCTCTTCCTCTCCCTAC



CCTCCATGCCACCATCCTTTCCTTCCACCCTCTTTTTCTCTCCCACCAGTCTTCTTAT



GTCTCTCTCCTGTCCCTGGAATCTATAAGAACCTATAGAAATTGCCTGTTCCCACAC



ATGCCAGAATCCAAAGCCCCTGAAATCCTGACCAAGGCATTATAAGCAAAAGAAT



CTCTTTTGGTATAGCATTGGAAATGTAAATGAGCTAAATACCTAATAAAAAATGGA



AAAAAAAAAAGAGTCAAATGTCAAAAAAAAAAAAAAAGGAATCTAAGGAGCACC





Mouse CPS1
ACTTCTTTTGCTTCATAATCATGTTACAAGAGGCCCTTGACCTGAGGTACCCTCCAC


RR34_v1
TAAATACACATTTGATTTGCACAGTGGGGTCATTGGCTCTGGCAAACAGCAGTGTC


SEQ ID
AACATTGCTAATCTGAAACAACAATCTCTCATGCCCCTCTCTGCCCCACCTTCAAAC


NO: 81
ACACCCACAGCAAGTTCTGACAAACACTTTATATGTGCCGAACTGAGCATTCTTTA



TCACTTGAGTAGACATGACAACCAGCTAACCTTGCAGGAACGTCCCTCTCTCCTGG



CTTCTTTCTAGTGAGAATGGAATCCAGCTCACCTTATCCTAAAATACTTGGTGTAGA



ACATGAAATTGTTTTGGAGTTTTCTTCATATATATTTAGATCTAGATAGAGCCCATG



CTTATCTTAAGTTAACGAAAGAGAAATTCAAATTAAAACAAAAAAAAAAACAAAC



AAACAAACAATTGCTCAATCCCTCACACTTGTTAGCTCTGGGCCTGGTCTTTAACCC



CGGTTTTCCATTTCTACTTTAGTTCTTTTCTCAGTCAGCAGGGTTTGCTAAGATTCAT



GCTTGCTTTACATTTTCTACAAAAGCCCAGAGACTGAAACCATGTGTTTTAAGTGGT



TTTAACTCAAAATGTTCTTTTTTGCTTGTTGAGAACTCATAACCCAACTTGATAGAA



TGTTCTTTCTAATTATAAAGTATTGTAATGAGGTCCCTGTATCCAAGAAGCACCATT



TAATGTCCGCTCTGATCTCTGAGGGTTTTATTTTTACATCAATCCAGTTCTGACCAC



CCAGACATGAAAGTGCCTTGGTCACTGAGCCAGCAGCACCCTCCAGTTGGCAAAA



GCAAGGTCATGAGAAATGGTGACAAATTTCAGAGCTTCTTACTCCTCATTTGGATT



CAAAGTCCCTAAAATGGAAATATAATTCTTTTACCACTTCTTGAACTACTCTATCAG



GCAGGGTTCAAAAAATAAAATCCACTTTGAGAGTTTCTTTAAATAGTAACACCCTT



AATAATATCAAAACATGATTTGCATAATTGCACTCTATTAACTAATATGAGTGTATT



TCTTGTGAATAGTTATGTTGAAAAGACGTTCTTGGAAGCATCAAAAATATTAACTA



AAATATTTAAAGAATGATTTAAGCTCCATCAAAATTTTAAAATGTTTACTCAAAAG



ATACTGTTAAGAAAGTGAAAAATAAGGCATAGACTTAAAAGCAAATATTCACAAA



TGATATTATTGGTAAAAAAAAAAAAAATTGTATCCAGGCCAGATCAAGAGCTTTTA



GAAGTAGATAGCAAGATGAATGAGCCAACTTAAAATAAGCAGAATAGGAGCTGGA



AAATGCTCAGTGGGAAAATGCTTGCTATGCAAACATGAGGATCAGATCTCAGATAC



CCAACACCCCTATAGCTCACAGCCAACAATTGGACTGAGCTCCAGGGGACCTGGAT



GGAGGAGATGGAGAAGGGATTGAAGGAGCTAGGGGTTTGCAGCCCCATGGAGGG



AGCAAGAAGTGTCAACAGGCCAGATACCCTAGAGCTTCCAGGGACTGGATCAACC



ACCAAAGAATACACATGGAGCAGCCCATGGCGCTGGCCACATATGTGGCAGAAGA



TGGCCTGGTTGAACATCAGTGAGAGGAGAGGCCCTTGGGCCTGAAGGTGTTCAATG



TCCCAGTGTAGGAGAATGCCAGGGAGGGAGAATGGGAGTGAGGGAGTCGGGGAG



CACCCTCATAGAGGCATGGGAGGGGGAATGGGATAGGG





Mouse CPS1
AGTTTTGGCACACCATTTTAATGAGACAGCAGATGCAAAAGTGCTTACAACAGCTG


RR35_v1
CCCTAAGTAGACATTTTATCATCCTCCCTCACAGCAGCCATTCTGTGCCTTCTTCTG


SEQ ID
CATGGCTATTTAGCAATTGTAAGTCTCTAGAACCATTCAATGGTATTCTGTACAGTT


NO: 82
AATGTTTTTAATTATATTCTGCTTCAGACTTTGATTCTTTTGTAAGCTTTTTCTTTAC



ATAAAATTTACCAACTGCTTCTTTTCCTTCTTGGACTTACACATGTCTATCATAACC



ACACTGACTTTATTTGGAGACAAAGTAATAAGGTAACTAAACTTTACTTACTCATT



ATAGTGTTAAGGAATCAACCTCATGTCTCACACAGACTAGGTAACTGTTCTGTCAC



TGAGCTGATTCCTAGCCTTTCTAATGTTCTATGAGTGATTATTATAATCTACGAAAG



ACTAAGGGCACAGTAAGGAACAACACAAAATTTTCTGCCTCCACTGAACTTGTATT



GTAAATGTTATAATGAAATGTAGGGACCATGAATGAATAATGGATATGGTATCTCC



AAATCTTATGCATCGTCATTTTCTAATTCCTGTATCCTGATATTTTGTGGGAAACTT



GCTACCCTGTTTGACTGATGTCTTGGTGGGACAGTCTTTGATCTTACTCCAATCTCG



TTCTCTTTGCCAACTTGTAGACACCTGATCATGCTTGTCCAATCAGACTCTCAGGAA



AACTGAATATAATTGGACTATGTTCAACTCAAAGATGGCTCTTTGACAAAGGCCAT



TGACTCCTGCCACCTAGTCCTCAGGGACTCATTTGTCCTTATTTGTTCCAAAGGCCT



CTTTCCTTGGCTACTCCTTGTATGCAAAATCTTCACTGTTTCTTGCAAGTTATTTTAA



GTGTAATTTTGTGTTGGCTGGAATCCAGTTATTCTAATACATTAAATTTGGCAAAGG



AAAGAGCATAGCATTTCTTTATTTCTCCAAGTCAACTGTCTTATCCTTTTATCCACT



GGGCTTGTAAGAAATTAAATTGAAACTTTAGTGGGGATTCCCCTCTATGATTCCGT



GGCTGAGAACCAGTAGCCAGTTTCTGAGGTGTCCACTGTGGCCGCCTTTGTTCTAT



GCCAGGGATAAGAAGATCGTTAGAGAGACTGGTTATCAGGGAGCTAAGGTTCGCT



TCTACAGGTGCAACGTGCAAAGCCTACTGTATGTAAGTCTGTATTATGCCTGGGAG



ACTTTGTACCATCGGGCTGATTACTCTGATGCAAAGCCTCCCTCAGACAGTTAACTT



ATCTTAAAGCCTCTGTTATCGTTCATGAACAGAGGGCAAACTCATGTCCATTCTGTC



TTGTTCTCCCACCTGTCTCTTAAGTTGCTCTGGATTGCTACATTAAACTCTGAGGAA



CAATGAACCCATTCTTCCATTTAGTATGAATTTAGTAAGTGTCTGATCCATTCCAAA



TTCTCTATGAGACTCTGAAAAGACAAAGGGAAACTCCATTTAGTTATTGTTCTACA



GGAGTACATTTTGGGTTGGAGAAAGGGAAGATTAAGTAAGCTAGTGGCTAAGCAA



CAGGGCAGTGATGAACTCGACAAGAACCATGACAACATAACAATAGAAAAGATCT



GAGTCTATTTGGAGAATGTCATGTCAGACATGGACTACAAAAGGAGAGAACGGCT



GGGTTGGACCTTTGGGAGGATGTGGGAATTTGCTTACTATACAGGTGACCAGTAAT



GGCACATACCAAATCATAGAGGGAGGAGGAAAGAAAGGAAGGAAAAGAGCAGGT



TATAAAGAAGGAGGAAGAAACAACATGGGAAAAAAACAGGGTCAGAGAAGAGGC



AAGAATAAGAACAAGAGAGAAGGAAGGAGGGAGAGGAAAAGGAAAAGGAAGAA



AGAAAAGAAAAAAAAAACAGAAGAAGGCTGGGGGGGGGGGGTTATGTTGTCCT



GTAACAAGTAGCACACTATAGCTGACAGGATTAGGGTGAAGTCCACTAAGAGGCT



TGGGTGAGACAGACATAGGAAACAGGTAGACAGAAAAACCCAGAAGGAACATTG



TCATCTTGCTCTCCTGTGTGAAAACGGAAGCTTTGCCTCTGTGAATCCAAGAAAGA



GACGTACCTCTGTTCTTATCTACACAAAAGAGAAGGTGGCAGAAACCTCATCTTAC



TGTCACTGAGAGGACTAAATGGACTTTTGAATCAAAAGCACTTAGCACAGTACCTA



CCACACAGCAGAAATCAAGGGCTTTTACCTGTCCTCCTTCTTCCAAACCTCACACCC



TGAAAATCCATCACAAACCCTGTGGAACCATAAAAAGATATCCACCCCT





Mouse CPS1
CCTCTATCTCCACTCTCATTAATATGGGTGTCCTATTGCTCTTATTTTCTTATTAAAA


RR36_v1
GAAAAGGGGGACACAGACACACACATAAATATATACAAACACATGCACACACACA


SEQ ID
TACATATATACACACATGTACATACACTCCAAGATGTTTTGATGAAAAAGGCAGTT


NO: 83
ATAAATTAGAATCTGGATGAGAATCAAGCCAGGCAGGTTTTATTTCTTGCTATCTG



TTGGTTTGGTTTTACTTGGGTTTGGAGACTAGGGCTGTGTTTTGAGATGGGAGACA



ATGAACAAATATCTGGATATTTACCTGGAAAGTGGAGTTGTAAATTTTTATGATAG



AAAGGGTATAACCAAGGAGTAAAGACTCAAAGAGTGGCCAAAGGGGGGATATGA



AGAAGATGGAAAGTAAGTCATTTCTGATCTGCCAGACATACTTCCACTAGTATAAC



TGGAAGGCAGAAGGACTAGACAACCTTTCCTTCCTGCAAGTTGATAAATTCAGTAG



TGTAAAGAGTAGAGCACAGCCATCTCATGACTTCCATTTTTCAGTGATGTGGGGTG



CAGTTTTTCACTGAAGGTTGCAAGGATGCAAACCCTTTAAAGGATTTGACCTGTGA



TAGGCTGCCCATGACCCAGTAGATGCCCTGTACCTATGCTCATACTGGCAGCACTA



AGTAAACTCAGTGAGTTTAAAAAACAAAACGAAATATAAAGCTTTGGGAGGGAGG



GGATGGTGGTGGGCAGGAAGGAGGAGTTGGAGAGGGGAGAATGGAAGGAGACTA



GATCAAAACATGTTATGTGCCTGAATGAATTCTCAAACAGTAACAAAAGAAAACTC



CTTAGGAGTAAACTAGATCAAAACATGTTATGTGCATTCATGAATTCCCAAACAGT



AACAAAAGAAAAGTCTCAGGAAACTAGGGCCATGTTCTCCTTACAGTAAGATCCTC



AGTAGTATCAGATTTTCACCCGCGATAGCAATGGTGAATTCATATGACATCAGAAT



GTACATGAATATGGCTTTCTCCAGCTATTTTCAAAAACAAGTGTGCAGCCTAGCAG



GTGGCATATTACTCACCGAGAGTTCAAGCATTACCTAGCAATATAGGAAGAAATGG



GGTGTGAAATATGAGACTCTAGAAAGAAATAACTACAATAGTAGACCCTAAATTCT



AAGACAAATGAAAAGATTGCTCAAAAGTGAGGAGATGTCTCAGTCAGTGGTGGCA



CATACCTTTAATCCCAGCACCCTAGAGGCAGGGGAATCTCTGAGTTCGAGGACAGA



CAAGTAAGTCTCCAGAGCAAGTTCTGGGACAGCCAAGGCTACACAGAGAATCCCT



GACACATGCATGTGCACATATGTACCTACGTGTACACACCACACACACACACACAC



ACACACACACACACACACAAAAATCACAGCTCTAAAAACTACTGAGGCAGATTCT



GAAAGATCCATACAGTAAATATATGAATTCAAAAAATAGGAAAAAAGATGAGAAA



ACTAAGACATTTGGATTTTAAAGGTGGCTCTGTTTCTGATAAAGATCATCTGGGAG



TTGGGGGGGGCATAATTAAGCTGTTACGCTGACAATCTTTTTTCATTTCACACAATT



CTACCTCTCTGTGGTCAACCAACACAGTCCAAATACTATGAATCCTGTTTATAAGG



CATAACCACCATCAATATGAGAAAATCATAATAAACAAAGCAAATTTCTTTCCTTT



CTTTAGGCAAAATTGAACATCACAGAAATATTAGTATAAATAAAGTTCTAAGAGTA



ATCTTTGTTGAGATTTTCTTTTTTCATTTTACAGGGTTAATAGCACTCATGTGGCCTT



GAACCTCTCTATGCCAGTACAATTGATCAATCAGCATTTCACCGATTGCTTCACTCC



TCCTTCTCCCCATAAGAGGAGAGAAACCCTTGCAAAACGTGTTTGTTCTGTTTGTTA



TTCTGGATAAAGCCGATAACGAGTTGCAGCTGCTGAACAGGGTGTACTGCTTGCCG



AGGCCACGGCTGTAACTTATAGATAGAACAGAGCAGCCAAAGATGTGCCTCGGGC



TGGAGCCAGCTCTGCAAATAGGCCACACTCTGGGCTATGATACATGCATTTCATTA



GCTGACAATTTACTCCTGGAGAAGCTTGATTGGCGACAGACTCAAAAAGAGAGAA



TTTGAAATATCACTCCTCAGCTCAAAGTGTTTTTCTCTGTTTCTGACCTGAAGGATT



GGCTTATGTCAGTCTCAATCAAGATGCCTTTAGTAGTACTTGAGGCTGACTTGGAA



CAATATGGGTCCCTCTGGACAGAGTGTACACCTGATGATTCGTGTCTTGGGGCAAT



GCCTGAGGCCGCACAGTCCCTAGTGCTGAAACTGAGCTCACGCCCAACTCAACTGA



GTTTTGTGCCTCTTCCCTGTGTACTTAAGGGCTGTGGGCCAAAAAGACATGCAGCC



AACAATCTGCCCTGAACCATTAAACAGCTCTCTAAACCGAGCTGATGGGGAACAG



AGTATCATTGTCCATTATTTATAATGTGATCTTCTACTTTTATCCTCAATTATTAAGA



CACAAGGAAAACAAGAACAGTCAACATTATAAGGATTGGGTCAAAATGAATACAT



GCTTTGAGCATAAACCAGAATCAAGATAACTCTTGTGCTTGCTTGAAAAAAGTTTT



CAAGCCTTCATCCTTTAGCAAGTTGCTCTGACTCCTCAGACCTCTGTTTGTTCACAG



GTAGAATGGGAATGATCCTCACAGCTGTGGAGGGTTATCCAGAGACTTCTGATAAA



GTAAGTTATATGAAATGTCTACCATTAGCAAGGAATACTCTAAAGTTGTCTAGCAG



AAATGACGAGCAGGTTCAGCCAGTCAAGGTTCCTGTCACCAAGCCTGAAGACTAA



CTTCATCCCCGGGATCCACATAATGGAAGGAGAGTGAGAACCCCACAGTTGTCCTC



TACATACACACACGCACATACACCACAAAATAAGATGTAATAAAATATGTTCTAAT



GCAATTTTTCATTATATAGTGGAATATCAATTGTGTATATCCTATAGTAATTGTACT



TTTCAATATGTAACTTAAAGAGATACAAAAATGTGTGCAAAAATTATATATGTTTT



TACAATAAGAATATATATATATACACACTGTGCCATTAATGAATCAAGCCAAATAA



CATTTTAATGTATTAGTGTTCTTTTCTGTTTTGAAAGTCATCTTACTGGCCTTGCCCG



CTTATATGTTTGAACTCCTTTTGGATTATTGTAACTGGAAAACAATGTGAGGTCTGG



GATCCAGATAAAAAGACTCCCTGAGGCAGATTACTCCACACACCTAAGTATCACAT



GGCTGAACCAGTATCCAGTACCACACTCAGTGAACAGACTGAGCAGCAAACAAGG



CGCTGAGGGCCAATACAGGGCCCCCAACAATTCATCCCTCTGCAGAAATCATGGAT



GGTCCAGAGCACACCACTGGTCCCTACCACCTTTCCCCTCTCTACCACCCAATCAAT



CACATGAGCTAAACAACTGTCTTGAATTGGAATGGCGAGCCAGTTCCCTAAATGGA



GGGCTTGGACCGCAGAGCTGCACCTAAGAAGAGAATTTAGCTCGTTAAATGAAAG



ATGTGTTTCCAGTCAATGAAATAGATCAGGTTAATTATTTAAAAATCTCCAGCTTCA



TTGCACATGTGAGTCGACTGCAGGGAATTCGAAACCTTGCTGCAAAGTAATCAATA



GAGATATTTCTAGGCAAAAAAAAAAAAAGTATGTTGGTGAGCATGGTGGCACACG



CCTTTAATCCCAGCAGTCAGGAGGCAAGTGGAGCCATGAGTGCGAGGCCAGCCTG



ATCTACAGAGTGAGTTCTGGGACAGCCAGGACTACACAGAGACACCATCTCAAAA



AATAATAATAATAACAACAATAATAATAAAAGTATTTGGACCACAGGCTGCACGT



CTCTCTCACAAGATCAGAGTGACCTGGCACAGTGTCACTGCATAACAGCTCTGGTC



TGAGGGTTTCAAAGACATTAACTGGTATCATGCATAATGCAAGATAGATGCTGTTG



TTCTTTCCATTACACATATAAGGGAACTGAAGCAGAGACTCCCTTAAGTTGTCTTCT



CAAGGTTTCCCTATTTATTTATGATGGGGCTTAAATTGAAAAAGTCCTAAGGCACA



CAGATGTGTCTTTTTTTTAAGCAATTATACAGAGCAATGCATCTCTTCAAACGTTAG



TAATGCAGACACATGCCGGCATTTCATAGTTTCATTAGCAAATGACTAGGACAAAA



TCTAAAGAAATATTGTAAAGTTCATCATGATGCTTCCCTCTGCACTTAAAAATATTA



TCACTTCATAGGGAGGTTTGTTTTTAAGTTTATCTCTGATAATTTAATTATCTCACTT



TGGAAATATGGCAATGTACTGCTCATTTGACTAAAATTGGATAAAATAAATGAAGC



TAAGAAGGATGGTATGGTAATATTAGCAATAGTTTGTACTTTATTTGAAATACGTTT



GTATTATAGAAATAAAAGTAAACATGGGGAAGTATGTTAGATGCTGTTGAAAAAC



AGTGCCACATTGTTTCCCTAACATTCCCAGTGATTGTCAAAGAGCTGCTTTCTAATT



ATAGAATAGTATTTAAATAGGGACCAATGACATTCTAAAGAACACTAATAGAAAG



TAGTTATTATTCTCCTGTATTTCTTTAATAATAATAGCTACTTTCTATTAGTGTTCTT



TAGAATAGAACCTTGGTTGAGTGGTTACTCTGGTCAGTCTACCCTTGATTTTCTGTC



TTGGATGAGTTTGCGTTGTGTGTCTACAAAAAAATCTCACAAACAGCAGCATATGA



GGAATCACATTAAAACTTCTTTGAAAAAAGAAAGTATTTATTATAAGCAACATAAT



TTCCATTGAAAAGTAAAAGAATGGAAAGTCAATTTCTAAAATTAAATACATAAGG



ATAACTCACTTCAATAAATTGAGTAAGTTTTGCAATTATAGAATTATATTTTCCTAA



ATTCTCATGAAGAAGTAAACATCTGTAATTCCAGAACTTGGGAAGCTAAACCAAGA



AAATCATGAGTTTGGAGCTAACCTGAACTTCATAGTCACCCTGACTCAAAACAAAA



GTTCTGATTCCTGATAAAGAGCAATTTGATACTCATTCTATATGGGTTCTATTATGC



AATCTTTAATATACAAAACAGAATACTTTAAAATGACATTATTATTGTGAATTGAT



GGAAAAAATAGACAAAGCTTTATTATAAAATTAAATATAAGTTTGTATGAAATTCA



TAATGTCCTTTAAAATGTGAATGACATATTAGAAAAAAAGTCACCTTATCAACTGT



GAATCTAATTTTATATATAGTTACATTATCTTTATAACTGTTTTAAGTCCTGTCAGA



AAAAAATGTATAATTAATGAAAGATGATGACTGACAGCACCATCTCTCAGATCAG



GAAAACCAGCTCAGATGAAATGAGAAAAGAATACAATGTTCACTACCAAAAAATC



TATATCAGGTAGTTTATTTATTTAGATTTTTAACATTGTTCCTGGTCTATATATCAAG



GTGATGCAGATAGATAGATAGATAGATAGATA





Mouse CPS1
TTTAAATAATTAACCTGATCTATTTCATTGACTGGAAACACATCTTTCATTTAACGA


RR37_v1
GCTAAATTCTCTTCTTAGGTGCAGCTCTGCGGTCCAAGCCCTCCATTTAGGGAACTG


SEQ ID
GCTCGCCATTCCAATTCAAGACAGTTGTTTAGCTCATGTGATTGATTGGGTGGTAG


NO: 84
AGAGGGGAAAGGTGGTAGGGACCAGTGGTGTGCTCTGGACCATCCATGATTTCTGC



AGAGGGATGAATTGTTGGGGGCCCTGTATTGGCCCTCAGCGCCTTGTTTGCTGCTC



AGTCTGTTCACTGAGTGTGGTACTGGATACTGGTTCAGCCATGTGATACTTAGGTGT



GTGGAGTAATCTGCCTCAGGGAGTCTTTTTATCTGGATCCCAGACCTCACATTGTTT



TCCAGTTACAATAATCCAAAAGGAGTTCAAACATATAAGCGGGCAAGGCCAGTAA



GATGACTTTCAAAACAGAAAAGAACACTAATACATTAAAATGTTATTTGGCTTGAT



TCATTAATGGCACAGTGTGTATATATATATATTCTTATTGTAAAAACATATATAATT



TTTGCACACATTTTTGTATCTCTTTAAGTTACATATTGAAAAGTACAATTACTATAG



GATATACACAATTGATATTCCACTATATAATGAAAAATTGCATTAGAACATATTTT



ATTACATCTTATTTTGTGGTGTATGTGCGTGTGTGTATGTAGAGGACAACTGTGGGG



TTCTCACTCTCCTTCCATTATGTGGATCCCGGGGATGAAGTTAGTCTTCAGGCTTGG



TGACAGGAACCTTGACTGGCTGAACCTGCTCGTCATTTCTGCTAGACAACTTTAGA



GTATTCCTTGCTAATGGTAGACATTTCATATAACTTACTTTATCAGAAGTCTCTGGA



TAACCCTCCACAGCTGTGAGGATCATTCCCATTCTACCTGTGAACAAACAGAGGTC



TGAGGAGTCAGAGCAACTTGCTAAAGGATGAAGGCTTGAAAACTTTTTTCAAGCAA



GCACAAGAGTTATCTTGATTCTGGTTTATGCTCAAAGCATGTATTCATTTTGACCCA



ATCCTTATAATGTTGACTGTTCTTGTTTTCCTTGTGTCTTAATAATTGAGGATAAAA



GTAGAAGATCACATTATAAATAATGGACAATGATACTCTGTTCCCCATCAGCTCGG



TTTAGAGAGCTGTTTAATGGTTCAGGGCAGATTGTTGGCTGCATGTCTTTTTGGCCC



ACAGCCCTTAAGTACACAGGGAAGAGGCACAAAACTCAGTTGAGTTGGGCGTGAG



CTCAGTTTCAGCACTAGGGACTGTGCGGCCTCAGGCATTGCCCCAAGACACGAATC



ATCAGGTGTACACTCTGTCCAGAGGGACCCATATTGTTCCAAGTCAGCCTCAAGTA



CTACTAAAGGCATCTTGATTGAGACTGACATAAGCCAATCCTTCAGGTCAGAAACA



GAGAAAAACACTTTGAGCTGAGGAGTGATATTTCAAATTCTCTCTTTTTGAGTCTGT



CGCCAATCAAGCTTCTCCAGGAGTAAATTGTCAGCTAATGAAATGCATGTATCATA



GCCCAGAGTGTGGCCTATTTGCAGAGCTGGCTCCAGCCCGAGGCACATCTTTGGCT



GCTCTGTTCTATCTATAAGTTACAGCCGTGGCCTCGGCAAGCAGTACACCCTGTTCA



GCAGCTGCAACTCGTTATCGGCTTTATCCAGAATAACAAACAGAACAAACACGTTT



TGCAAGGGTTTCTCTCCTCTTATGGGGAGAAGGAGGAGTGAAGCAATCGGTGAAAT



GCTGATTGATCAATTGTACTGGCATAGAGAGGTTCAAGGCCACATGAGTGCTATTA



ACCCTGTAAAATGAAAAAAGAAAATCTCAACAAAGATTACTCTTAGAACTTTATTT



ATACTAATATTTCTGTGATGTTCAATTTTGCCTAAAGAAAGGAAAGAAATTTGCTTT



GTTTATTATGATTTTCTCATATTGATGGTGGTTATGCCTTATAAACAGGATTCATAG



TATTTGGACTGT





Mouse CPS1
AGAAAGTTCAGTGTTATTCAGCGGCAGATTTCCTCACAGGGCAAAGCATTGCATTA


RR38_v1
ATTTATGTTGGCTGAGTGAGTCACAGTCTGCTCTATTTATTTTTCCCCTGTCAACTTC


SEQ ID
ATTTTGTACAGAGAAAACTTTAGTAAACACAAGGCGGATGGTTTTTGACACAGGGA


NO: 85
GTGTCAAGCCACTGTAAAGAATCAGTTATGTATTTTAGCTGTATTATTTTACAATCA



TGTGGTCCCCCTCCCCCCCCGGGATTTTTTTTTTTCTTCTTCTTTGCCCCCCACTCTA



TCATGTCCTTAGTAATTTTTTCTGGTGAAATTTGTATTGCTAGAGGAGAAAAGTATC



ATGTGGGATTGTGAGTACTAGAACAGGCTGGAGTCCAGCCAGCCGTCCTAGTGAA



GAATTCACAGAACTGGATCTTCCTCTCCCTAGTCTCTGCCAGAAATCTCTGTTCACA



GTAATGCTCAAAAGCCATTTTGGCCTATCACCGTCCCTGTCACACCTAGAATATGA



TCTCAAAATTCTACTTTCAAACTTTAAGGGCGGAAAAAGGACCATGTAAATGAAGC



AATGATGCTAAATTAATATATTTTCTACTTTTGTCTTATAGAAGCATTTACTTCAAT



GTAAATCTTATTTAAGAAAGTGCTTCCTCGTTAAAACATAGACTTTCATGGTACTTC



TCCTGATGTCGACGTGAAGTGAAGTAGCTACAAAGGCAGTTTGTATGTGCAGACAA



CTCAGAACTTAGTTTTGAGATATTAAAACTTCTTATTACCATAGTTGCATTCCTACT



CCTCAGGTCACTATAACATTTTAATTTTCTATAATCAAGACAAGTTGGACTATATCT



TCACAATAAGTACATTTATTTCTCTTACCTTGTCTACCAAAAAGAAAATTAAAATG



GAAGTTTTTTCTTTTTTCGCCATCCTAATGGACAACAAATCTTTTGTGCTGTGTTCA



AAGAACAACCAAGGTGTTTT





Mouse CPS1
GAGCAGTTTGTTCTGTTCAGCACATTATAAGAGGGGGAGGGTTTTGGCAATAATAA


RR39_v1
TCACTGTGCAAAGAAGGGCTGCTGATGAATTTGCTGTTTTCAAAAAACATTTTCGT


SEQ ID
AGAAATAATTTACTAGTTAGAATGAGCACATATCTAATGATTTAGTCATCACACTC


NO: 86
TATGAAATTTACACTGTAAGCATGTTTTGGTCAAGTTTTAAGAAACTTCTTTGACCA



GGATTAGCTAAACTGACACAGTTAGCATCTTTCTAATTGTTTTAATATTCATCAAGT



TATTTTTTTAAAGGTATCAATTATGTGGAACTCAGGTCTAGATTGACCCTTTTTTCC



TTTTTAAAGAAAAGCTAAACTAAAAACTTTTACTAAAGGCTATTTAGTACTGAATA



ACTCATAAATAACGAGATGACTCTATATTTATCCAGATGCCAGATTTTTATATATAC



AAAACAAAAGAACCAGAAAACTATTTTAAAGGTTTATTTTTTAATCTATCTAAAAC



TATCTATATAATTTATACTATTTGCCTTCTAAAAATGTAGGTAAGGCACTTAGATGT



TGTGAATTTTCTTGAAATCATTTTTAGTTAAAGCCAATACTGTTTCCTGATATATAT



TGATTGATATCCTAGCATTTCTTAGTAAGCATTTCCTGAATTCTTTTAGTTACTCTAC



ATCTTATTTCCAAACAAATATAAGAATTCAGTGAGACTAAAGTACTCAGATCCTGT



GGCTTTGGAATGAAAAATTATAAACAATAAGGTATAAGATAGAAAACAGTGAGAA



CATGATTTGCTATTGTAGTTAAGTCTGGTCAAGTCTCAATCCAATTTACCTGATCTG



AATTACAAAAACAAGATAGCCAGTATAATTCCCTGCTATTTGAATATTGTTGTTATT



TTTAAATTTAAATGTAATACCAAAAGTAAAGTCAGAATTACTTTCATCCCTCATTTT



TTGACATTTACTTAAGTTGTATCATCTTAACTTTACGTGATGGCATAAACCCTTCTG



AGCTCTGAAATCTGTTCTTTGCACCTCCACTCTCGGGTGTGCTTTCTGTCTTGCTGG



ATCTTGCCCAGCCCACTCTCTCCACCTCATTCTACACCGTCACACCCGCTTTTCCAA



GTATGACCAATACACAGGAAGAGGATGGACATTGGCTAAGAGCTGAATTCTGATT



CTGGCCTCGACTCTTTCAGTGTGGTGCTAGACAAGCTAGTTACAAAGCTAAGACAC



ACTATCAGCTATACAACAGGAACAGCAATCGATAACCAGGAGTTGTTTCTAAACTT



AATGGAGAAGGCAAGCAGGTGCCTAACGATGAGAATAAATGGCAAATTACTTAAC



ATTATTCATGACTAGAACAATTAAAACAAGTTTATTTAAATATGTATTTATGCACAC



ATAGACATACCTTTTATTATAAATATGCAATGTGCTAAAATTGTAATCATACACTA



GTGTCTTAGCTTCTTATGTAAGATTTTTAAATTTATTATTGAATAATTTCCATTTTTC



ATCATTAAAGATTAAGTTTGATTAATTAACTCTACATGACATGTTTTTAAATTTTAA



TTGTCACCAAAGTAGTACTTTTTACATCTTTATTCAATATTTAACTTTACAAGTAAT



TTTCAGTTTATTTTCTTAATTTCTATTCTAGATTCTGTTATCTAAATATACTTTATGC



AAGCATAGTCAGCTATGACTAACTTAGGACCTCTTGCTATTCAATATTAGCACTAC



ATATGCCTGTCTTCCAAAAAACAATCTATCCACCACAGTTTTCTTTTTTGGCAGACA



TTTTTCCTCCATCTTTTGGACTGACTTACATCTGACCTTCCCACTTGGATTTTGCTCT



GCTCTGTTTCTGTTTAACTGTGCCTTCAATTTTTCCAAGGTCACTTGAATTCTGAATC



AACTTTCGAAGGAGTTGTCTATTTTCTTTTCATTTCACTTGCCCTCAACATACTTGGC



T





Mouse CPS1
TCCCTTTAGCAGGATATTTGATATAATAAATCTGACACCTTCTGGGCCCTCCTGTTT


RR40_v1
CCAAGGGAATTTGATCTAGGAAGATGTGTTTCAGATTCTCGGAAACTGGAATAATG


SEQ ID
CTTTCACAAACTTTAAGTTTCATTATCCTAAAATGTTATCGCAGCTCGCCAGGAAAG


NO: 87
GAACGCACAATTATTTCTCCCTCCAATGTCGAAGGTTGAGAATGGCATTATTATAA



GGCATGAGTATTGTTGTTGTTGTTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGTT



CTTGTTCTTGTTGACGTGGTTATGGTAGTGAGATGGAGTTGGTGGTGGTGTTGTTTA



TAAAGACTTTTTATTTTAGAAAATCAATGCTATGAAAGGAAAATGAGAATAAGCTA



GAAAGGAAGGACAATAAAAGGAGAAAGAAAGAGAAGGCGGCAGACTGATCTCTG



AACTCTACTAACTGCTAACAATTAGTCAAAGAACCTCCTTGGATATCAAATTTCTG



ATATAGCTTTGAGTATTGGAGAATTGGTTGGTTTCTTTTTTCTGGTATTGTTCACTTG



ATGTCATTCATCCTTAACCTGCTCTTGCCTTCACTAAGATCATTCACAGCTCAGAAG



AATTAAATATATATTCCCATCAATTGATTCTGGGTTGGAAAATAAAAAGTGTTCTT



AAAAACTTCAGGAAATTCAAAAGCAAAGCAAGGATCATTTTTTAAAAAGTTAAAG



ACTGTGAAAAGATTTCAAAATGTTGTATTTAAAAGTTACCTGACTAACTGGGCATT



TGGCGGGTGGGCCTGTAAAATCTCAACACTTGAGAGATGGGAAGGCCTGAAGTTC



AAGGCCAGTCTTTAGCTGCTACATAGTAAGTTTAAGACTAAACTGTGCTATGTTAG



ACCTTGTCTCAAAAATGAAAAGCAAATGTTATTGTGGTGAGAAGCTGAGGCTGAA



GTAGTGTTCTAGGAGTCTGACAAAAAGAATGATTACACATGTTTAAAGAGCAGGG



GAAATGACATAATCAAAGTACTGTGTTAGTATAAATCGTACATTAACGTGTTGCTT



GGAAAAGGGCTTTTCAAATGTGAATAATAATTATGTTAACAATGGTAAATGCATTC



TTTAAATTATTAAATATTCTGACTCAGTCACTTGCCCATGTCTGGTTTCTACAATTG



TCTTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT



CTCTCTCTCAGAGCTGAGGACTAAACCCAAGATCTTGCACTTACTAGGCAAGCGCT



CTACCACTGAGCTAAATCCCCAACCCCTTCTACTGTTGTCTAATCAATTTATTTGTG



TTTGATTGACTCAGCAACACTTATCTTATTACAATCCATCTATCTTTTAAATCAAAG



ATAAATGAAGGGCTCTTAGGGAACAGGCTTATAACATAAAAGTGCAAAGGCCCCA



GTATAAAATGTTACTACTCTCATAGGAACTGAGGACTCTCTAAGAAGTGGAACCAA



CTCATCTCTAAATCTCAAACACATACAACTGAAGATCATATAGATAGATTGGTTCA



CAGACAAACCTTTAAATAAAGGACAAAAATACTTTAAATAAAGACTTTTATTGCCT



GTGGTTGAATTAGGGAAAGACTGGAAGAAGCTGAGGAGGAGGGCGACCCTGTAGG



AGGACCAGCAGTCTCAATTAACCTGGTCCTCCGAGATCTCTCAAACACTGGACCAT



CATGCACCAACTGATATGAGGCCCCCAACACATACACAGCAGAGGACTTCAGGAT



TTGGTTTCAGCCAGAGAAGATGTACCTAACCCTCAAGAGACTGGAGGCCCCAAAG



AGTTTAGAGTTCTGGTTGGGTGTGGGGTGGGTGATAGGGACATACTCGTGGAGACA



GGGGGGCGGGGAGGAGGTATGGGATGTGGAAAATTAGGAGGGTGGACCAGGTAG



GGAATAAATCTGCAGTGTAAATTAATTAATTAATTTAAAAAAACTTTTGTTGGCAC



TTTATTTTTTTTTCTTTTCCTCTCCAGAGGCTGAGGCTGGACCACCTGACCATAACA



AAAGCTCCATGCCTTCGTCCAGACACTTTTCAGGACGGTAATTTTTATTCACACGTG



AATCAAAACACCTTGGTTGTTCTTTGAACACAGCACAAAAGATTTGTTGTCCATTA



GGATGGCGAAAAAAGAAAAAACTTCCATTTTAATTTTCTTTTTGGTAGACAAGGTA



AGAGAAATAAATGTACTTATTGTGAAGATATAGTCCAACTTGTCTTGATTATAGAA



AATTAAAATGTTATAGTGACCTGAGGAGTAGGAATGCAACTATGGTAATAAGAAG



TTTTAATATCTCAAAACTAAGTTCTGAGTTGTCTGCACATACAAACTGCCTTTGTAG



CTACTTCACTTCACGTCGACATCAGGAGAAGTACCATGAAAGTCTATGTTTTAACG



AGGAAGCACTTTCTTAAATAAGATTTACATTGAAGTAAATGCTTCTATAAGACAAA



AGTAGAAAATATATTAATTTAGCATCATTGCTTCATTTACATGGTCCTTTTTCCGCC



CTTAAAGTTTGAAAGTAGAATTTTGAGATCATATTCTAGGTGTGACAGGGACGGTG



ATAGGCCAAAATGGCTTTTGAGCATTACTGTGAACAGAGATTTCTGGCAGAGACTA



GGGAGAGGAAGATCCAGTTCTGTGAATTCTTCACTAGGACGGCTGGCTGGACTCCA



GCCTGTTCTAGTACTCACAATCCCACATGATACTTTTCTCCTCTAGCAATACAAATT



TCACCAGAAAAAATTACTAAGGACATGATAGAGTGGGGGGCAAAGAAGAAGAAA



AAAAAAAATCCCGGGGGGGGAGGGGGACCACATGATTGTAAAATAATACAGCTAA



AATACATAACTGATTCTTTACAGTGGCTTGACACTCCCTGTGTCAAAAACCATCCG



CCTTGTGTTTACTAAAGTTTTCTCTGTACAAAATGAAGTTGACAGGGGAAAAATAA



ATAGAGCAGACTGTGACTCACTCAGCCAACATAAATTAATGCAATGCTTTGCCCTG



TGAGGAAATCTGCCGCTGAATAACACTGAACTTTCTCTGTTTGCCTGTATTCGATGA



AATCTTTGAATTCCTACAGAATGCTGTTCTTTTTTTTTTTTTTTCTGACATGAGACAA



ATTCTTTATAAACATCTTGTTTGGATCAGCCACCACATTGTAACATTGTTTCTTACA



CTAAGGCTACTATTCTATAAAACTGTTACATATCTCCACTCTAACTACAGTGCAAA



GCTAAAAAAAAATTAAAAAAAATAAAAAAATAAAAAAAAGCAACACCTTCAGTTT



TCTAAGACTTTACTCTCATTGCTTCCACATTTTGGATGTATAATCCTAAATTAATCT



CTTCCTTGCCTCTTTTTAGCATCAACAAATAGGATATTTCCTAATGTAGCAAGCATT



AGTTCTATGAGCCATGAGGGGTAGTTTTTAACCCCTCCTTCATTCAATGTTAACTAA



AAGTCTTTTACATGCCAAGAGGGCTACAGTCAAGCCACTGTAAAGAATCAGTTATG



TATTTTAGCTGTATTATTTTATTTATTTTATTACTTTATTTATTATTTATTTTCAAAAG



TTCTGAAAATAAAAATGAGCTCAGAAACTCTCTCTGCAAACTCACTCTCAAAGAGC



CTTTACAGTTTATTCTTAGAAAGAGCCATGTCGTATCTAGTCTCAAGACTAAACAAT



AAAGAAAGACAAAGGGAACTGTAAACCTACAAATCTCAAGACCCCAAGACCCAAG



AACAACAGACCAAATCAATATTCCTCTCCAGCAGCCACACGACGATGAAGTGTGA



GCATGTGTCTGTACACTTCACAAAATACAAAGCCCCCTGCATCAGCTTTCATATCCC



AAAGGAGTTGACCCACACTTCTAGGAAGCCCTTCACATCCTACAACTTCTCAGAAA



ACAAGAAGAATCAGATTTTTTTGAGCAGACAATTGTGGCTGGAAGTTGAGTTATTA



TTACTGAGCAAATTGACTAAACTTTTAACATATGCAGGACTAAAAGATAAAGTATA



AAATGAAAACTCATATATATGAGTAACTTTTTAAAACAAATGTTTTCTAAAAATAT



ATGAAAGATAAGTCCAAGATCAAATGTGTTTCATGGACTTAGATTAATAGTCAATG



GTAGAAACATGAGTCAAAACATTTTTTCATAAAATAACAAATCTTAAATTAAAACC



CCAAATACTCATGAAACAACAAATCTTTAGCTCTTATCCCACCTAACAAATATACC



ACAATATAATTACTACTTGACAGAGAGAAAAGTAAAGGTTCATACCAGATTATGTT



AAAGTTATAGGGATTTGTAATCAATTTTCTCAAGATCTCCTCATCAGAATCCAATG



AGTCACTCAGCTCACCACTGTTTCTTCTTTTCCAAATCTTGACTGTGAGCAGCTAAG



AAAAGATGAGCCACATCAGAATCAAGGCAAGCAAAGTTTTGACTGTTCAAGCTTA



GACTCAGGATGGCTGGAAACAAGACTTCCATGTCCAAGCCCAAGTCAGGACAGTC



CTTTTTTAAAGCAGATTAATCTTTTTCTTCAGACTTGAAAACTCTGTGCTATGTCTA



GGAAAGTAACTACTCCGCTACCTTGATACTGAACTCTGTGTTTCTCCCAGACCTAA



GATAAGACACCTTTCTTTATCTCCTCTGGGGAAAGAAAATGGCTTCAAAGTCCAGT



CCAGGAGACAAGCCATACGGCAATGCCAATAGTATCAGAGGCCTTGTTGGATCAC



CTGACTTAGAATTACTATAGGAGGCAATGTAACAAACACTTCAATTTTTAAAAATC



CAAAATTAGCATATTTCCTTAGTAAAAATGGTCACGAATGTCTTACAGAATGTCAC



TATTAAGTGACAACTATTGGTTTGCACATTAACTAATGCTTCTGGATGATTTAACCA



ACAGAAATGTGCTACAACTTACAACTTTAATCTC





Mouse CPS1
TTGGTCATACTTGGAAAAGCGGGTGTGACGGTGTAGAATGAGGTGGAGAGAGTGG


RR41_v1
GCTGGGCAAGATCCAGCAAGACAGAAAGCACACCCGAGAGTGGAGGTGCAAAGA


SEQ ID
ACAGATTTCAGAGCTCAGAAGGGTTTATGCCATCACGTAAAGTTAAGATGATACAA


NO: 88
CTTAAGTAAATGTCAAAAAATGAGGGATGAAAGTAATTCTGACTTTACTTTTGGTA



TTACATTTAAATTTAAAAATAACAACAATATTCAAATAGCAGGGAATTATACTGGC



TATCTTGTTTTTGTAATTCAGATCAGGTAAATTGGATTGAGACTTGACCAGACTTAA



CTACAATAGCAAATCATGTTCTCACTGTTTTCTATCTTATACCTTATTGTTTATAATT



TTTCATTCCAAAGCCACAGGATCTGAGTACTTTAGTCTCACTGAATTCTTATATTTG



TTTGGAAATAAGATGTAGAGTAACTAAAAGAATTCAGGAAATGCTTACTAAGAAA



TGCTAGGATATCAATCAATATATATCAGGAAACAGTATTGGCTTTAACTAAAAATG



ATTTCAAGAAAATTCACAACATCTAAGTGCCTTACCTACATTTTTAGAAGGCAAAT



AGTATAAATTATATAGATAGTTTTAGATAGATTAAAAAATAAACCTTTAAAATAGT



TTTCTGGTTCTTTTGTTTTGTATATATAAAAATCTGGCATCTGGATAAATATAGAGT



CATCTCGTTATTTATGAGTTATTCAGTACTAAATAGCCTTTAGTAAAAGTTTTTAGT



TTAGCTTTTCTTTAAAAAGGAAAAAAGGGTCAATCTAGACCTGAGTTCCACATAAT



T





Human CPS1
TTCTTATCAAATACCTTGTCATTGCAACAACTTGTAGTCCATAAAAAACATAAGGA


RR89_v1
CTCTTTGATCTAACCCTCTACTAAGTCCTTCTACTAAAATGTATAGAATGGAATTTT


SEQ ID NO:
TTTTTAAATATCCAGTTTTTGCTTTAAAATGTTCAGTTTAATGGTTTAAATTTAAAA


89
CTTTAAAGATTTTTGAGAATTGTTCATGTGTGACAATCACATAATTTGTCAAGTAAA



TCAGTCATCATTTGCACTATACAGATGACAAAACTTAGGTTCAGAGAATATGTGAC



TTGTCCAAGAACAGGGCATTAGGAAATGCATAACAGGGGTTAGATTCCAGATCTTT



TTGTGCCCAATCCAGAGTATATCCCACTATTACACTGTTACAGCCTGCTGAATGTAA



TAATGAGTGCTGAACATTTTCAGTACTAATGGAAAAAGATTATGGTATCTAAAACT



TTTTAGTATTTAGTATTTTATGGTTGTTGATCATTTATACCCTTGATATCAACTTTCT



TTAAAATATAGAGCACCTTGAAATTCTTTCCTCTTTCCTGTAAGTAAAATACAACTG



TGCCGATTGGCAAAGCACTCTATAAATATTAGCCGCTGACAAATACCCAGGGAAG



GGCCACATAAAATTATAAGTGCGTCATTGCTGTCGTCAAACCCACCGTCTCTGTCA



TCAAAGAGAGAGGAAAAGCAAACCTCTAAATATGTCGAAAAAGCAACCCAATTTA



CAGGGCAATGATTATAGATGTGACTACAGGGTGTCTTTCCCAATCCATTTACCATCT



ATAACTGGACATAATGCTACTAACCTTTAAAGTGACTGTTCTCAGTGCCCTTCACTG



ACCATTATGTAACTACATCCTAATGATTTTAACTATCTTTAAAATATGATGTCCATC



TAAAAATAGTAAATTTGGATATATTTTTCTAAGACAGTTGAGTTTTTAAAGTGAAG



GCAGGAAGAAAAGTAGATAGAGGACTATTTCACAATAACTGAATAATAACACAAG



TCCCCTTGGGCTGTTCTATGGAATTTTAATTCACTATTGTGAAGTTCAAGAACTTCT



ATTTTTTGTGCTTGGCATTCCTCCAAAACTCTGGCCAGTAATGATTGAGTGTGAGTA



ATGGCTTTTACACCATGAAATGATGGCTTAGTGCTCCTACAAATTTGTCATTCTTAG



CTGTGCACTGTGACAGACCCTTGAAACAGATCTGTCACCATGAGCTAGAACTGCTT



TCACAGTAATCCATCCACATAATTAGACCATTTTGTCGTGGTTGTGATTGTGGTGGT



GGTTGTATGGAGCACTTATTGTGATCTTGGAGAATTGGATTCTAATTTCAATCATAT



CTGTGCCATTTTAAGTAAGTACTCAATTTCGCGGTTTCTGGGGTCTGATGAAGATGC



ACCTATCCTTACCTACATACCTACCTTCTCACAGAGTGAGAAGAAGATATTCCAAG



TCACCCAACTTTGAAGTATTAGATGGCACATATAATCATAGGGGATAACTTTCATT



ACTATTGATTTTCTCTGAACTGATACATGAGTACCTTGAGGTATTACTAACAATAAA



TTCTCATAGTTTACATCTAGTTACAATGTCTTTGATGTTAGTTTAGAATATTCTCCTT



TCCCATTCTTTTGCTATAATTAAGCTAAATTCAAGAAAATATATATAACTAGACATA



ATGCCACTAACCTTTAGTGACTGCTCCCAGTGCCCTTTATGGCCATTATGTAACTAC



ATCCTAATGATTTTAACTATCTTTAAAACATGATGTCCATTTA





Human CPS1
TTATGGTATTGCTGTTGAATCATTTATCTACGTAAACTATTTGCACTTCAGAAAAAG


RR90_v1
TAGAGGCCCCACATGTTTTTTTTCCATTTTCACCAAGGCCTAAGGCTATATAACATA


SEQ ID NO:
CGTGCTTTCTGGCTTACCTGATGTTTCTAAGCTATTAGTTCGCCTCAGTACTCATCCT


90
CTTAAAAAATAAATCTGAACTAAGCACTGAAAAGTAGAAAGCCTAAAGCCAGAAT



TTATTTCAGGTAATTATTGTGTAGATAATATGGTAAAAAGTTAAAATCAAGTAAAT



GAAATCTTATTCTTTTATTCTTGGAATTACACTATTAAGATATGGATTTTTGAAATT



TAGAATTTCAGCACAATTTGTCTTTGAAATATTTCATGAGACTTCTCTGCAGTTACA



AGGCCTAACACTTCAAAATTCTGAAGCACTGTAACAGCAGTAATCAATTAGGCCTT



ACCACATTCTCAGTTAATAATCTTACAACATTCCAAGTTAATATTAAGTCATCGGTC



TTTGGTTAAACATAAGCCAATGTTAAGGGGACAAAATCAAAAGGTTAATTTACTTA



AGTACTTTTATGTTTGAACATTTATAAACAAAAGATTAAGATTTATGAATCATTTTT



ATTCTAATAAGGTTTCTCATTGTAAATAAAATACAGCATTTATAAAAATTTCATTAC



AAAGTATGTTCATAAAGTGTAGGTTTATTAATATGCCTTACTGAGCATCTGCTATGT



GGCAAGTTGTTCAGAATCCTGGAGGAACCTACATATCATAAGCTAATTTTTACTGT



ATGGTGGTGATAAATTAAAATGGTCTTATATTTCAGTCTGCATTATAGAAGAAACT



TAGTAAAATTCTTTCATAATGTAGCAACCCTATTGATTCATTTATGAGAACTTCAAA



TTAGTCAGTTACCTCCCTATGAAATTTAAAAGATCAATGTATAGCATTTAACAAGTT



GAAAAAAATAAAAAGCAAACAGAGTAGCCTTGAAAATATTTTTATAAGTTCAACT



CATTTAGATCACATGAAGAAAATCAAATGGAAGCTAAAGATCCCTAGGGCTAAGG



AGCCTAACACAAACTTTGACCTTGGCCCGCGCAGCTTTTTTCGGGCCTCCGTCATTG



CAAATGCCCCAGGAAATACAAATCCCATCAAGGGCAGTCAGCGTAGCATACCAAA



CTCCTCCTGAAGGCTTGAAGTGAATTCTAGCATGCCCATTGCCTAAGAGATACTGA



AAACTTTCTACAGCACCCCTCAATTTTTGGAACAGGTTGGAAATATGAAGAAAGTC



TAATACAGATGTAAAGGCAGAGGAATAGTCTCCATTTCCATAGCAATAAGACCTAA



TGTCACCTCTAGATCGTCAGAAAGTCTGGCTAGACATGAGCAAATTGGAATGAGGG



AGAGGAAAGCACAGGTCAAGATTAGTACTAGTCCCTTGGGCAGTTCTACAGCCAG



AATGCTTAGCTTCTGACCCAAAGCTGGGACTAGGGTACTGAGTGATGTGCTTAGGG



CCTAACTCTCAAAGAGATACACCATGACACTAACAGTGACAGCCTCCTTAAATTTT



GCATCTCAGGTACCTCACTCACTTAACCTAGTCTAGGACATTTAAACTATAGTTTTT



TCAAGAGTTTTATGTCAAGAAGCTCATAATGTCAAGGCGTTGTTGGTGACTAATAA



ATGAATCTATATTTTAGAAAATTGGGGATATAAAAAATGGAAAAAATTAAAATGTT



CAAAAGAAAGGCCATCTCCCAATTAGAGAAGTATTGCATGCCAAAAGTATGTAAA



GTTGTCCATCAGGCAAACTAATTCTGCAACAGCTCATTTGGGACTGAACACAATTA



ATATTTCAAAAATGTAGTTTGCCATAGATGAAATCCGTCCTAAAATGTGTCTATAT



GTAGTAAAAGTCCAATAAAATAGTTATTCTTAAAAGTGTGTGATAACCCCATCCCC



ACTCTTACATCTAACGTGTACAGAGGCTCCAATATGATAATGAGTTATATTTCCTGT



GACTATCTTTAAAGCTACTACAATGTAAGTAAATTATTCTAATTGTAGGAGTTTTTA



TAGTTGCCAATTTCTAATCAAATGACAATAGCTCCTCAAGACGGAACTAAATAGAT



ACTTCTATGTGAAAATCAGAATATAAAATCTTAAAAATGAATGCCTTTCAAAAGAA



ATAATGACTACCAGTGCTCATTCGTAGCTGAAGTATCAGAGAGGACACTTGGATTG



TTAGGTTCCTAGCTTAATTATAACACAGGTCACCATTGTTAAAAAATGAGTGGATT



AATGTTAGAAGGAGTACTTATTGAACACTTTTCTATTCATAGGGAACTTAAGCTTTA



CAATTTAATACTTTTGATTTCCAAATTCAT









The present disclosure describes ASOs that increase the amount or stability of the target regRNA, thereby to increase expression of the target gene. This is different from the ASOs previously described that were designed to inhibit eRNAs (see, e.g., PCT Application Publication No. WO2013/177248 and PCT Application Publication No. WO2017/075406). Without wishing to be bound by theory, it is hypothesized that the ASOs' ability to upregulate regRNAs is attributable to the selection of a target sequence in the regRNA and/or the chemical modifications of the ASOs.


Sequences of ASOs

As disclosed herein, ASOs that bind a sequence closer to the 5′ or 3′ end of the target CPS1 regRNA are more likely to upregulate the regRNA. Without wishing to be bound by theory, it is hypothesized that such ASO hybridizes to a terminal portion of the target CPS1 regRNA and prevents or slows 5′→3′ and/or 3′→5′ RNA degradation without blocking the functional region of the regRNA. In certain embodiments, the ASO disclosed herein is complementary to a sequence in the target regRNA that is no more than 300, 250, 200, 150, 100, 50, 40, 30, 20, or 10 nucleotides from the 5′ or 3′ end of the target regRNA. In certain embodiments, the ASO disclosed herein is complementary to a sequence in the target regRNA that is no more than 300, 250, 200, 150, 100, 50, 40, 30, 20, or 10 nucleotides from the 5′ end of the target regRNA (i.e., the 5′ most nucleotide of the regRNA sequence forming a duplex with the ASO is no more than 300, 250, 200, 150, 100, 50, 40, 30, 20, or 10 nucleotides from the 5′ end of the target regRNA). In certain embodiments, the ASO disclosed herein is complementary to a sequence in the target regRNA that is no more than 300, 250, 200, 150, 100, 50, 40, 30, 20, or 10 nucleotides from the 3′ end of the target regRNA (i.e., the 3′ most nucleotide of the regRNA sequence forming a duplex with the ASO is no more than 300, 250, 200, 150, 100, 50, 40, 30, 20, or 10 nucleotides from the 3′ end of the target regRNA).


In certain embodiments, the ASO is no more than 25, 30, 40, 50, 60, 70, 80, 90, or 100 nucleotides in length. In certain embodiments, the ASO is no more than 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 nucleotides in length. In certain embodiments, the ASO is at least 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 nucleotides in length. In certain embodiments, the ASO is at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length.


In certain embodiments, the ASO is designed to lack a stable secondary structure formed within itself or between other identical ASO molecules, thereby increasing the amount of the ASO in a single-stranded form available to hybridize with the target regRNA. Methods to predict secondary structures are known in the art (see, e.g., Seetin and Mathews, Methods Mol. Biol. (2012) 905:99-122; Zhao et al., PLoS Comput. Biol. (2021) 17(8):e1009291) and web-based programs (e.g., RNAfold) are available to public users.


For example, ASOs have been designed to target a human CPS1 eRNA. The nucleotide sequences of these ASOs are provided in Table 2 below.









TABLE 2







Exemplary ASO sequences targeting regRNAs











SEQ


Name
Sequence
ID NO












hCPS1-ASO-1
TGCAGGCACACACATCAGGC
1





hCPS1-ASO-2
ATGCAGGCACACACATCAGGCT
2





hCPS1-ASO-3
AATGCAGGCACACACATCAGGCTG
3





hCPS1-ASO-4
GCACACACATCAGGCTGGGG
4





hCPS1-ASO-5
AATGCAGGCACACACATCAG
5





hCPS1-ASO-6
TGAATGCAGGCACACACATC
6





hCPS1-ASO-7
GGGACCCTGTGTACTTGGAA
7





hCPS1-ASO-8
GCAGAGTGACAGGCATGAAT
8





hCPS1-ASO-9
TGCCATTGACTTGCATAATG
9





hCPS1-ASO-10
GTCAATGCTCAGAACATAGT
10





hCPS1-ASO-11
TAGATAATAACCCACCACAC
11





hCPS1-ASO-12
GTCAAGTACTAGGTTGTATT
12





hCPS1-ASO-13
TTAGCCTGTGAAATCCCTCA
13





hCPS1-ASO-14
CTTATGAGTCACTCTCTGAT
14





hCPS1-ASO-15
TCTTTGTGAGCCAGGTCATC
15





hCPS1-ASO-16
CGCAGCTGAGCAGAGTGACA
91





hCPS1-ASO-17
CAGTCCTCCTTCATATAAGC
92





hCPS1-ASO-18
TGACCACATGTACACAGTCC
93





hCPS1-ASO-19
GTTACACTTTTAGGACAGAT
94





hCPS1-ASO-20
GGTAGGGAATGTTAAAGTCA
95





hCPS1-ASO-21
TATAAGAGTTGGTTGGTAGG
96





hCPS1-ASO-22
CAAAGGAGTTGAGGCTATAA
97





hCPS1-ASO-23
GGGAGTTTACATTAGGATAG
98





hCPS1-ASO-24
GGCTAGACTGAAATCTATAA
99





hCPS1-ASO-25
GCTAGTTTCATACTTGAGTG
100





hCPS1-ASO-26
CACAATGGAGGTTGGAACAG
101





hCPS1-ASO-27
TCCATCAATTATAATTCCAC
102





hCPS1-ASO-28
ATTAGAGACTTGGAAAATCC
103





hCPS1-ASO-29
GGTCCATGTCTTTAGTCATC
104





hCPS1-ASO-30
AGACTTGCAAACTACGGTGT
105





hCPS1-ASO-31
TTTTATCAGTAAAGGGTCCC
106





hCPS1-ASO-32
AGTCTAGAGAGAAATGTGGG
107





hCPS1-ASO-33
GGATAGAATTCTCCTACTCT
108





hCPS1-ASO-34
CAACAATCAACAATTCTAGG
109





hCPS1-ASO-35
TTCCATAGAAATGTCAACAA
110





hCPS1-ASO-36
GACTACAAAGCATGATGAAT
111





hCPS1-ASO-37
CATTTATAGCAGTTGACTAC
112





hCPS1-ASO-38
GCTTGACCAAGGAAAAGACT
113





hCPS1-ASO-39
GTGGAAGTACTGAGGAGTCC
114





hCPS1-ASO-40
TAATCAAATATGACAGTGGA
115





hCPS1-ASO-41
CCTCCCTTCATCACTTATGT
116





hCPS1-ASO-42
ACTATAATATATTTCCTCCC
117





hCPS1-ASO-43
CCCTAAGGTACCCATGCAAT
118





hCPS1-ASO-44
GTCATAGTCCCATTACCCTA
119





hCPS1-ASO-45
GGAAACTTTTTAGGATGCAA
120





hCPS1-ASO-46
CCTCATTATGGAAACTTTTC
121





hCPS1-ASO-47
CGATATAAACTCAATCCTCA
122





hCPS1-ASO-48
GTAGTGAGGGTTGTCTTTCC
123





hCPS1-ASO-49
CTCTTGTCTTTTTATGTGTG
124





hCPS1-ASO-50
CGCCTTGATCTCACCTCTTG
125





hCPS1-ASO-51
GTCCAATACTAGTTTACGCC
126





hCPS1-ASO-52
AGTACTTACTGGCTTAGTCC
127





hCPS1-ASO-53
CTAGAGAACTGAGGACTGAG
128





hCPS1-ASO-54
GGAAAACTCCCAACCTAGAG
129





hCPS1-ASO-55
AAATGAATTGGAGGAGAATG
130





hCPS1-ASO-56
GGCGAAATTTGTGTTGAAGA
131





hCPS1-ASO-57
TTGAACAAGAAATAAAGGCG
132





hCPS1-ASO-58
GTATTCATAATAGTCATGGA
133





hCPS1-ASO-59
TCAGCCTTCATCCATAAATA
134





hCPS1-ASO-60
TATGCCTTAAAATGTTCAGC
135





hCPS1-ASO-61
CATGGGAGACTTAGTATGCC
136





hCPS1-ASO-62
TGAAAAGGTACCATATCATG
137





hCPS1-ASO-63
GTATAGAATGGGAAAATGAA
138





hCPS1-ASO-64
AGCCTAGATGCAGGGTATAG
139





hCPS1-ASO-65
ATGAAGTCATGTGGTATATT
140





hCPS1-ASO-66
GCCGTGGCATGAGCAATAGC
141





hCPS1-ASO-67
TGCAAATTCACCAAGTAGAT
142





hCPS1-ASO-68
TGTGTTATACTGAAGGATGC
143





hCPS1-ASO-69
GCATAGAATTATGTTGAGCT
144





hCPS1-ASO-70
AGATCAAGTTCCTTGTGCAT
145





hCPS1-ASO-71
CTGGTGCCATGAAAGTTGCC
146





hCPS1-ASO-72
GGCTCATACTAGTTTATACA
147





hCPS1-ASO-73
AAGCTAAACAAAATAGGCTC
148





hCPS1-ASO-74
CATGGCTCCTGGTGATAGAA
149





hCPS1-ASO-75
GATTTCAAAGTGCTTCATGG
150





hCPS1-ASO-76
AGTCCTCACGCTTACTTAAT
151





hCPS1-ASO-77
CAGGCACACACATCAGGCTG
152





hCPS1-ASO-78
GCAGGCACACACATCAGGCT
153





hCPS1-ASO-79
ATGCAGGCACACACATCAGG
154





hCPS1-ASO-80
GAATGCAGGCACACACATCA
155





hCPS1-ASO-81
TGCAGGCACACACATCAGGC
156





hCPS1-ASO-82
TGCAGGCACACACATCAGGCTG
157





hCPS1-ASO-83
CAGGCACACACATCAGGCTG
158





hCPS1-ASO-84
GCAGGCACACACATCAGGCT
159





hCPS1-ASO-85
ATGCAGGCACACACATCAGG
160





hCPS1-ASO-86
TGCAGGCACACACATCAGGC
161





hCPS1-ASO-87
TGCAGGCACACACATCAGG
162





hCPS1-ASO-88
TGCAGGCACACACATCAG
163





hCPS1-ASO-89
TGCAGGCACACACAT
164





hCPS1-ASO-91
TGCAGGCACACACATCAGGC
166





hCPS1-ASO-92
CAGGCATGAATGCAGGCACA
167





hCPS1-ASO-93
ACAGGCATGAATGCAGGCAC
168





hCPS1-ASO-94
GTGACAGGCATGAATGCAGG
169





hCPS1-ASO-95
AGTGACAGGCATGAATGCAG
170





hCPS1-ASO-96
GAGTGACAGGCATGAATGCA
171





hCPS1-ASO-97
AATGCAGGCACACACA
172





hCPS1-ASO-98
TGAATGCAGGCACACA
173





hCPS1-ASO-99
CATGAATGCAGGCACA
174





hCPS1-ASO-100
TGCAGGCACACACATC
175





hCPS1-ASO-101
CAGGCACACACATCAG
176





hCPS1-ASO-102
GGCACACACATCAGGC
177





hCPS1-ASO-103
CACACACATCAGGCTG
178





hCPS1-ASO-104
CACACATCAGGCTGGG
179





hCPS1-ASO-105
TGCAGGCACACACATCAGGCTTTTTT
180



TTTT






hCPS1-ASO-106
TTTTTTTTTTTGCAGGCACACACATC
181



AGGC






hCPS1-ASO-107
ACATTACTTTAAATGATTAC
182





hCPS1-ASO-108
GATGTTATTACAAAGTTCTT
183





hCPS1-ASO-109
GGAGGCAATATTATGTTAAA
184





hCPS1-ASO-110
GCATAATGCTTTTTGGAGGC
185





hCPS1-ASO-111
CTTGCATAATGCTTTTTGGA
186





hCPS1-ASO-112
ACTTGCATAATGCTTTTTGG
187





hCPS1-ASO-113
GACTTGCATAATGCTTTTTG
188





hCPS1-ASO-114
CCATTGACTTGCATAATGCT
189





hCPS1-ASO-115
GCCATTGACTTGCATAATGC
190





hCPS1-ASO-116
TCTAGCATTTATGTCAATGC
191





hCPS1-ASO-117
CTCTGTTAACACTAAAGTAT
192





hCPS1-ASO-118
TCTCTGTTAACACTAAAGTA
193





hCPS1-ASO-119
ATCTCTGTTAACACTAAAGT
194





hCPS1-ASO-120
GATAATAACCCACCACACAA
195





hCPS1-ASO-121
GAAATGTGGAAATACAGAAT
196





hCPS1-ASO-122
ATGTCAAGTACTAGGTTGTA
197





hCPS1-ASO-123
CCTTATTGACATATCTGGTA
198





hCPS1-ASO-124
TCAGGGCACTTTATTTTATG
199





hCPS1-ASO-125
GAAATCCCTCAGGGCACTTT
200





hCPS1-ASO-126
TGAAATCCCTCAGGGCACTT
201





hCPS1-ASO-127
GTGAAATCCCTCAGGGCACT
202





hCPS1-ASO-128
TGTGAAATCCCTCAGGGCAC
203





hCPS1-ASO-129
CTGTGAAATCCCTCAGGGCA
204





hCPS1-ASO-130
GCATTTAGCCTGTGAAATCC
205





hCPS1-ASO-131
TAGAAGCATTTAGCCTGTGA
206





hCPS1-ASO-132
GTCTTCTTTTCTATTAATAC
207





hCPS1-ASO-133
AGTCACTCTCTGATAAAATG
208





hCPS1-ASO-134
GTGAGCCAGGTCATCAAAGG
209





hCPS1-ASO-135
TTTGTGAGCCAGGTCATCAA
210





hCPS1-ASO-136
CATTCTTTGTGAGCCAGGTC
211





hCPS1-ASO-137
GGAAGTACATTCTTTGTGAG
212





hCPS1-ASO-138
ACTTGGAAGTACATTCTTTG
213





hCPS1-ASO-139
GTGTACTTGGAAGTACATTC
214





hCPS1-ASO-140
GACCCTGTGTACTTGGAAGT
215





hCPS1-ASO-141
TGGGGACCCTGTGTACTTGG
216





hCPS1-ASO-142
ATCAGGCTGGGGACCCTGTG
217





hCPS1-ASO-143
ACACATCAGGCTGGGGACCC
218





hCPS1-ASO-144
GGCACACACATCAGGCTGGG
219





hCPS1-ASO-145
ATGAATGCAGGCACACACAT
220





hCPS1-ASO-146
AGGCATGAATGCAGGCACAC
221





hCPS1-ASO-147
TGACAGGCATGAATGCAGGC
222





hCPS1-ASO-148
AGAGTGACAGGCATGAATGC
223





hCPS1-ASO-149
GAGCAGAGTGACAGGCATGA
224





hCPS1-ASO-150
CAGCTGAGCAGAGTGACAGG
225





hCPS1-ASO-151
TGCACGCAGCTGAGCAGAGT
226





hCPS1-ASO-152
TGTCTGCACGCAGCTGAGCA
227





hCPS1-ASO-153
AAGCTGTCTGCACGCAGCTG
228





hCPS1-ASO-154
ATATAAGCTGTCTGCACGCA
229





hCPS1-ASO-155
CCTTCATATAAGCTGTCTGC
230





hCPS1-ASO-156
GTCCTCCTTCATATAAGCTG
231





hCPS1-ASO-157
TTCTTCTCTGACCACATGTA
232





hCPS1-ASO-158
ACATTTTAAAAAATAAGCAT
233





hCPS1-ASO-159
ACACTTTTAGGACAGATTAT
234





hCPS1-ASO-160
TGTTACACTTTTAGGACAGA
235





hCPS1-ASO-161
GGAAATGTTACACTTTTAGG
236





hCPS1-ASO-162
GACATGAAAAAATTTAGTGG
237





hCPS1-ASO-163
GGTTGGTAGGGAATGTTAAA
238





hCPS1-ASO-164
TGGTTGGTAGGGAATGTTAA
239





hCPS1-ASO-165
TTGGTTGGTAGGGAATGTTA
240





hCPS1-ASO-166
GTTGGTTGGTAGGGAATGTT
241





hCPS1-ASO-167
AGTTGGTTGGTAGGGAATGT
242





hCPS1-ASO-168
GAGTTGGTTGGTAGGGAATG
243





hCPS1-ASO-169
AGAGTTGGTTGGTAGGGAAT
244





hCPS1-ASO-170
AAGAGTTGGTTGGTAGGGAA
245





hCPS1-ASO-171
TAAGAGTTGGTTGGTAGGGA
246





hCPS1-ASO-172
ATAAGAGTTGGTTGGTAGGG
247





hCPS1-ASO-173
CTATAAGAGTTGGTTGGTAG
248





hCPS1-ASO-174
GAGGGAGTTTACATTAGGAT
249





hCPS1-ASO-175
TGGAAAAAAATATATTACAC
250





hCPS1-ASO-176
GCTAGACTGAAATCTATAAC
251





hCPS1-ASO-177
GTGTTCAGGCTAGACTGAAA
252





hCPS1-ASO-178
AGTGTTCAGGCTAGACTGAA
253





hCPS1-ASO-179
GAGTGTTCAGGCTAGACTGA
254





hCPS1-ASO-180
TGAGTGTTCAGGCTAGACTG
255





hCPS1-ASO-181
TTGAGTGTTCAGGCTAGACT
256





hCPS1-ASO-182
CTTGAGTGTTCAGGCTAGAC
257





hCPS1-ASO-183
ACTTGAGTGTTCAGGCTAGA
258





hCPS1-ASO-184
TACTTGAGTGTTCAGGCTAG
259





hCPS1-ASO-185
ATACTTGAGTGTTCAGGCTA
260





hCPS1-ASO-186
CATACTTGAGTGTTCAGGCT
261





hCPS1-ASO-187
TCATACTTGAGTGTTCAGGC
262





hCPS1-ASO-188
TTCATACTTGAGTGTTCAGG
263





hCPS1-ASO-189
GTTTCATACTTGAGTGTTCA
264





hCPS1-ASO-190
GGCTAGTTTCATACTTGAGT
265





hCPS1-ASO-191
GTGGCTAGTTTCATACTTGA
266





hCPS1-ASO-192
AGTGGCTAGTTTCATACTTG
267





hCPS1-ASO-193
GGAGGTTGGAACAGCCAATA
268





hCPS1-ASO-194
CAATGGAGGTTGGAACAGCC
269





hCPS1-ASO-195
ACAATGGAGGTTGGAACAGC
270





hCPS1-ASO-196
CCACAATGGAGGTTGGAACA
271





hCPS1-ASO-197
TCCACAATGGAGGTTGGAAC
272





hCPS1-ASO-198
TTCCACAATGGAGGTTGGAA
273





hCPS1-ASO-199
ATTCCACAATGGAGGTTGGA
274





hCPS1-ASO-200
AATTCCACAATGGAGGTTGG
275





hCPS1-ASO-201
TAATTCCACAATGGAGGTTG
276





hCPS1-ASO-202
ATCCATCAATTATAATTCCA
277





hCPS1-ASO-203
AATCCATCAATTATAATTCC
278





hCPS1-ASO-204
AAATCCATCAATTATAATTC
279





hCPS1-ASO-205
AAAATCCATCAATTATAATT
280





hCPS1-ASO-206
GAAAATCCATCAATTATAAT
281





hCPS1-ASO-207
GGAAAATCCATCAATTATAA
282





hCPS1-ASO-208
TGGAAAATCCATCAATTATA
283





hCPS1-ASO-209
TTGGAAAATCCATCAATTAT
284





hCPS1-ASO-210
CTTGGAAAATCCATCAATTA
285





hCPS1-ASO-211
ACTTGGAAAATCCATCAATT
286





hCPS1-ASO-212
GACTTGGAAAATCCATCAAT
287





hCPS1-ASO-213
AGACTTGGAAAATCCATCAA
288





hCPS1-ASO-214
GAGACTTGGAAAATCCATCA
289





hCPS1-ASO-215
AGAGACTTGGAAAATCCATC
290





hCPS1-ASO-216
GAATTAGAGACTTGGAAAAT
291





hCPS1-ASO-217
TGAATTAGAGACTTGGAAAA
292





hCPS1-ASO-218
CTGAATTAGAGACTTGGAAA
293





hCPS1-ASO-219
TCTGAATTAGAGACTTGGAA
294





hCPS1-ASO-220
TTCTGAATTAGAGACTTGGA
295





hCPS1-ASO-221
ATTCTGAATTAGAGACTTGG
296





hCPS1-ASO-222
TATTCTGAATTAGAGACTTG
297





hCPS1-ASO-223
GGAGAAGGCAGAAATTTTGG
298





hCPS1-ASO-224
GTCCATGTCTTTAGTCATCA
299





hCPS1-ASO-225
ACGGTGTGTGTGTGTATATA
300





hCPS1-ASO-226
AACTACGGTGTGTGTGTGTA
301





hCPS1-ASO-227
TGCAAACTACGGTGTGTGTG
302





hCPS1-ASO-228
GACTTGCAAACTACGGTGTG
303





hCPS1-ASO-229
ATGCAGACTTGCAAACTACG
304





hCPS1-ASO-230
CCAGATGCAGACTTGCAAAC
305





hCPS1-ASO-231
GGTCCCAGATGCAGACTTGC
306





hCPS1-ASO-232
AAAGGGTCCCAGATGCAGAC
307





hCPS1-ASO-233
CAGTAAAGGGTCCCAGATGC
308





hCPS1-ASO-234
TATCAGTAAAGGGTCCCAGA
309





hCPS1-ASO-235
GGCATGAGAGTTTTAATGGG
310





hCPS1-ASO-236
GATAGAATTCTCCTACTCTA
311





hCPS1-ASO-237
CCATAGAAATGTCAACAATC
312





hCPS1-ASO-238
GCATGATGAATTAAACATGT
313





hCPS1-ASO-239
CCATTTATAGCAGTTGACTA
314





hCPS1-ASO-240
TTGACCAAGGAAAAGACTTC
315





hCPS1-ASO-241
AGCTTGACCAAGGAAAAGAC
316





hCPS1-ASO-242
AGTCCAGAGCTTGACCAAGG
317





hCPS1-ASO-243
GAGGAGTCCAGAGCTTGACC
318





hCPS1-ASO-244
AGTACTGAGGAGTCCAGAGC
319





hCPS1-ASO-245
AGTGGAAGTACTGAGGAGTC
320





hCPS1-ASO-246
TGACAGTGGAAGTACTGAGG
321





hCPS1-ASO-247
TATGACAGTGGAAGTACTGA
322





hCPS1-ASO-248
TCCTCCCTTCATCACTTATG
323





hCPS1-ASO-249
ACCCATGCAATGAATACTAT
324





hCPS1-ASO-250
TACCCATGCAATGAATACTA
325





hCPS1-ASO-251
GTACCCATGCAATGAATACT
326





hCPS1-ASO-252
GGTACCCATGCAATGAATAC
327





hCPS1-ASO-253
AGGTACCCATGCAATGAATA
328





hCPS1-ASO-254
AAGGTACCCATGCAATGAAT
329





hCPS1-ASO-255
TAAGGTACCCATGCAATGAA
330





hCPS1-ASO-256
CCTAAGGTACCCATGCAATG
331





hCPS1-ASO-257
TTTAAATCAGTCATAGTCCC
332





hCPS1-ASO-258
GCTGCACCCACTAATGGAAA
333





hCPS1-ASO-259
GTGCTGCACCCACTAATGGA
334





hCPS1-ASO-260
GGAAACTTTTCTTTTTAAGT
335





hCPS1-ASO-261
ACGATATAAACTCAATCCTC
336





hCPS1-ASO-262
TAGTGAGGGTTGTCTTTCCT
337





hCPS1-ASO-263
TGTAGTGAGGGTTGTCTTTC
338





hCPS1-ASO-264
GTGTAGTGAGGGTTGTCTTT
339





hCPS1-ASO-265
GTGTGTAGTGAGGGTTGTCT
340





hCPS1-ASO-266
TCTTGTCTTTTTATGTGTGT
341





hCPS1-ASO-267
TACTAGTTTACGCCTTGATC
342





hCPS1-ASO-268
GCAGTACTTACTGGCTTAGT
343





hCPS1-ASO-269
GAAAACTCCCAACCTAGAGA
344





hCPS1-ASO-270
TTGGAGGAGAATGAAAATAG
345





hCPS1-ASO-271
CGAAATTTGTGTTGAAGATC
346





hCPS1-ASO-272
CATAATAGTCATGGAAGTAT
347





hCPS1-ASO-273
AATGTTCAGCCTTCATCCAT
348





hCPS1-ASO-274
TCATGGGAGACTTAGTATGC
349





hCPS1-ASO-275
CTAGATGCAGGGTATAGAAT
350





hCPS1-ASO-276
CATGAAGTCATGTGGTATAT
351





hCPS1-ASO-277
CCGTGGCATGAGCAATAGCC
352





hCPS1-ASO-278
AAGTAGATAAAGAGGGGAAA
353





hCPS1-ASO-279
GGCATGAATGCAGGCA
354





hCPS1-ASO-280
CAGGCATGAATGCAGG
355





hCPS1-ASO-281
GACAGGCATGAATGCA
356





hCPS1-ASO-282
GTGACAGGCATGAATG
357





hCPS1-ASO-283
CACATCAGGCTGGGGA
358





hCPS1-ASO-284
CATCAGGCTGGGGACC
359





hCPS1-ASO-285
TCAGGCTGGGGACCCT
360





hCPS1-ASO-286
AGGCTGGGGACCCTGT
361





hCPS1-ASO-287
CATGAATGCAGGCACA
362





hCPS1-ASO-288
TGAATGCAGGCACACA
363





hCPS1-ASO-289
AATGCAGGCACACACA
364





hCPS1-ASO-290
TGCAGGCACACACATC
365





hCPS1-ASO-291
CAGGCACACACATCAG
366





hCPS1-ASO-292
GGCACACACATCAGGC
367





hCPS1-ASO-293
CACACACATCAGGCTG
368





hCPS1-ASO-294
CACACATCAGGCTGGG
369





hCPS1-ASO-295
GGCATGAATGCAGGCA
370





hCPS1-ASO-296
CAGGCATGAATGCAGG
371





hCPS1-ASO-297
GACAGGCATGAATGCA
372





hCPS1-ASO-298
GTGACAGGCATGAATG
373





hCPS1-ASO-299
CACATCAGGCTGGGGA
374





hCPS1-ASO-300
CATCAGGCTGGGGACC
375





hCPS1-ASO-301
TCAGGCTGGGGACCCT
376





hCPS1-ASO-302
AGGCTGGGGACCCTGT
377





hCPS1-ASO-303
GCATGAATGCAGGCACAC
378





hCPS1-ASO-304
GCACACACATCAGGCTGG
379





hCPS1-ASO-305
ACACACATCAGGCTGGGG
380





hCPS1-ASO-306
CACACACATCAGGCTGGG
381





hCPS1-ASO-307
GGCATGAATGCAGGCACACA
382





hCPS1-ASO-308
GGCATGAATGCAGGCACACA
383





hCPS1-ASO-309
GGCACACACATCAGGCTGGG
384





hCPS1-ASO-310
CACACACATCAGGCTGGGGA
385





hCPS1-ASO-311
GCACACACATCAGGCTGGGG
386





hCPS1-ASO-312
TGCAGGCACACACATCAGGC
387





hCPS1-ASO-313
ATCAGGCTGGGGACCCTGTG
388





hCPS1-ASO-314
GGCACACACATCAGGCTGGG
389





hCPS1-ASO-315
ATGAATGCAGGCACACACAT
390





hCPS1-ASO-316
TGCAGGCACACACATCAGGC
391





hCPS1-ASO-317
GCAATGACAAGGTATTTGAT
487





hCPS1-ASO-318
GGACTACAAGTTGTTGCAAT
488





hCPS1-ASO-319
GTTAGATCAAAGAGTCCTTA
489





hCPS1-ASO-320
TTAGTAGAGGGTTAGATCAA
490





hCPS1-ASO-321
GTAGAAGGACTTAGTAGAGG
491





hCPS1-ASO-322
GTCACACATGAACAATTCTC
492





hCPS1-ASO-323
GATGACTGATTTACTTGACA
493





hCPS1-ASO-324
TGTATAGTGCAAATGATGAC
494





hCPS1-ASO-325
TTTTGTCATCTGTATAGTGC
495





hCPS1-ASO-326
TCACATATTCTCTGAACCTA
496





hCPS1-ASO-327
TTCTTGGACAAGTCACATAT
497





hCPS1-ASO-328
TAATGCCCTGTTCTTGGACA
498





hCPS1-ASO-329
CTGTTATGCATTTCCTAATG
499





hCPS1-ASO-330
GAATCTAACCCCTGTTATGC
500





hCPS1-ASO-331
GGCACAAAAAGATCTGGAAT
501





hCPS1-ASO-332
GTAATAGTGGGATATACTCT
502





hCPS1-ASO-333
AGGCTGTAACAGTGTAATAG
503





hCPS1-ASO-334
TTATTACATTCAGCAGGCTG
504





hCPS1-ASO-335
GAAAATGTTCAGCACTCATT
505





hCPS1-ASO-336
GGTATAAATGATCAACAACC
506





hCPS1-ASO-337
GAAAGTTGATATCAAGGGTA
507





hCPS1-ASO-338
AGAATTTCAAGGTGCTCTAT
508





hCPS1-ASO-339
TTTTACTTACAGGAAAGAGG
509





hCPS1-ASO-340
CCAATCGGCACAGTTGTATT
510





hCPS1-ASO-341
TAGAGTGCTTTGCCAATCGG
511





hCPS1-ASO-342
GCGGCTAATATTTATAGAGT
512





hCPS1-ASO-343
GGTATTTGTCAGCGGCTAAT
513





hCPS1-ASO-344
TAATTTTATGTGGCCCTTCC
514





hCPS1-ASO-345
GCAATGACGCACTTATAATT
515





hCPS1-ASO-346
GTTTGACGACAGCAATGACG
516





hCPS1-ASO-347
GAGACGGTGGGTTTGACGAC
517





hCPS1-ASO-348
TTTGATGACAGAGACGGTGG
518





hCPS1-ASO-349
TTCCTCTCTCTTTGATGACA
519





hCPS1-ASO-350
AGGTTTGCTTTTCCTCTCTC
520





hCPS1-ASO-351
CGACATATTTAGAGGTTTGC
521





hCPS1-ASO-352
GGGTTGCTTTTTCGACATAT
522





hCPS1-ASO-353
CCTGTAAATTGGGTTGCTTT
523





hCPS1-ASO-354
CATCTATAATCATTGCCCTG
524





hCPS1-ASO-355
AGACACCCTGTAGTCACATC
525





hCPS1-ASO-356
TAGATGGTAAATGGATTGGG
526





hCPS1-ASO-357
TATGTCCAGTTATAGATGGT
527





hCPS1-ASO-358
AAGGTTAGTAGCATTATGTC
528





hCPS1-ASO-359
CAGTCACTTTAAAGGTTAGT
529





hCPS1-ASO-360
GTAGTTACATAATGGTCAGT
530





hCPS1-ASO-361
ATCATTAGGATGTAGTTACA
531





hCPS1-ASO-362
GCCTTCACTTTAAAAACTCA
532





hCPS1-ASO-363
ACTTTTCTTCCTGCCTTCAC
533





hCPS1-ASO-364
TAGTCCTCTATCTACTTTTC
534





hCPS1-ASO-365
GTTATTGTGAAATAGTCCTC
535





hCPS1-ASO-366
GGACTTGTGTTATTATTCAG
536





hCPS1-ASO-367
ATTCCATAGAACAGCCCAAG
537





hCPS1-ASO-368
GGAGGAATGCCAAGCACAAA
538





hCPS1-ASO-369
CCAGAGTTTTGGAGGAATGC
539





hCPS1-ASO-370
CAATCATTACTGGCCAGAGT
540





hCPS1-ASO-371
GCCATTACTCACACTCAATC
541





hCPS1-ASO-372
TCATTTCATGGTGTAAAAGC
542





hCPS1-ASO-373
CACTAAGCCATCATTTCATG
543





hCPS1-ASO-374
GACAAATTTGTAGGAGCACT
544





hCPS1-ASO-375
ACAGTGCACAGCTAAGAATG
545





hCPS1-ASO-376
AAGGGTCTGTCACAGTGCAC
546





hCPS1-ASO-377
ACAGATCTGTTTCAAGGGTC
547





hCPS1-ASO-378
CAGTTCTAGCTCATGGTGAC
548





hCPS1-ASO-379
GGATGGATTACTGTGAAAGC
549





hCPS1-ASO-380
TGGTCTAATTATGTGGATGG
550





hCPS1-ASO-381
CCACGACAAAATGGTCTAAT
551





hCPS1-ASO-382
TCCATACAACCACCACCACA
552





hCPS1-ASO-383
CAATAAGTGCTCCATACAAC
553





hCPS1-ASO-384
GAATCCAATTCTCCAAGATC
554





hCPS1-ASO-385
GGCACAGATATGATTGAAAT
555





hCPS1-ASO-386
GAGTACTTACTTAAAATGGC
556





hCPS1-ASO-387
ACCGCGAAATTGAGTACTTA
557





hCPS1-ASO-388
AGACCCCAGAAACCGCGAAA
558





hCPS1-ASO-389
GGTGCATCTTCATCAGACCC
559





hCPS1-ASO-390
GTAGGTAAGGATAGGTGCAT
560





hCPS1-ASO-391
CACTCTGTGAGAAGGTAGGT
561





hCPS1-ASO-392
GAATATCTTCTTCTCACTCT
562





hCPS1-ASO-393
GGGTGACTTGGAATATCTTC
563





hCPS1-ASO-394
TAATACTTCAAAGTTGGGTG
564





hCPS1-ASO-395
TATGTGCCATCTAATACTTC
565





hCPS1-ASO-396
CCCTATGATTATATGTGCCA
566





hCPS1-ASO-397
GTAATGAAAGTTATCCCCTA
567





hCPS1-ASO-398
GTACTCATGTATCAGTTCAG
568





hCPS1-ASO-399
TTGTTAGTAATACCTCAAGG
569





hCPS1-ASO-400
ACTAGATGTAAACTATGAGA
570





hCPS1-ASO-401
AGACATTGTAACTAGATGTA
571





hCPS1-ASO-402
TAGCAAAAGAATGGGAAAGG
572





hCPS1-ASO-403
AAGGTTAGTGGCATTATGTC
573





hCPS1-ASO-404
GGAGCAGTCACTAAAGGTTA
574





hCPS1-ASO-405
GCACGTATGTTATATAGCCT
575





hCPS1-ASO-406
GTAAGCCAGAAAGCACGTAT
576





hCPS1-ASO-407
CTTAGAAACATCAGGTAAGC
577





hCPS1-ASO-408
AGGCGAACTAATAGCTTAGA
578





hCPS1-ASO-409
GGATGAGTACTGAGGCGAAC
579





hCPS1-ASO-410
TTCAGTGCTTAGTTCAGATT
580





hCPS1-ASO-411
GGCTTTCTACTTTTCAGTGC
581





hCPS1-ASO-412
TCTGGCTTTAGGCTTTCTAC
582





hCPS1-ASO-413
GACAAATTGTGCTGAAATTC
583





hCPS1-ASO-414
CCTTGTAACTGCAGAGAAGT
584





hCPS1-ASO-415
GAAGTGTTAGGCCTTGTAAC
585





hCPS1-ASO-416
GCTGTTACAGTGCTTCAGAA
586





hCPS1-ASO-417
ATTGATTACTGCTGTTACAG
587





hCPS1-ASO-418
GTGGTAAGGCCTAATTGATT
588





hCPS1-ASO-419
AACTGAGAATGTGGTAAGGC
589





hCPS1-ASO-420
TAACCAAAGACCGATGACTT
590





hCPS1-ASO-421
GGCTTATGTTTAACCAAAGA
591





hCPS1-ASO-422
CCCCTTAACATTGGCTTATG
592





hCPS1-ASO-423
TAACCTTTTGATTTTGTCCC
593





hCPS1-ASO-424
CCTACACTTTATGAACATAC
594





hCPS1-ASO-425
GCTCAGTAAGGCATATTAAT
595





hCPS1-ASO-426
CTGAACAACTTGCCACATAG
596





hCPS1-ASO-427
CTCCAGGATTCTGAACAACT
597





hCPS1-ASO-428
TTATGATATGTAGGTTCCTC
598





hCPS1-ASO-429
ATTTATCACCACCATACAGT
599





hCPS1-ASO-430
GCAGACTGAAATATAAGACC
600





hCPS1-ASO-431
CTTCTATAATGCAGACTGAA
601





hCPS1-ASO-432
GGTTGCTACATTATGAAAGA
602





hCPS1-ASO-433
TGAATCAATAGGGTTGCTAC
603





hCPS1-ASO-434
GGTAACTGACTAATTTGAAG
604





hCPS1-ASO-435
AAATTTCATAGGGAGGTAAC
605





hCPS1-ASO-436
TTCAAGGCTACTCTGTTTGC
606





hCPS1-ASO-437
GTGATCTAAATGAGTTGAAC
607





hCPS1-ASO-438
GCTTCCATTTGATTTTCTTC
608





hCPS1-ASO-439
CCCTAGGGATCTTTAGCTTC
609





hCPS1-ASO-440
GGTCAAAGTTTGTGTTAGGC
610





hCPS1-ASO-441
GAGGCCCGAAAAAAGCTGCG
611





hCPS1-ASO-442
ATTTGCAATGACGGAGGCCC
612





hCPS1-ASO-443
CTTGATGGGATTTGTATTTC
613





hCPS1-ASO-444
TACGCTGACTGCCCTTGATG
614





hCPS1-ASO-445
GAGGAGTTTGGTATGCTACG
615





hCPS1-ASO-446
TCACTTCAAGCCTTCAGGAG
616





hCPS1-ASO-447
GGCATGCTAGAATTCACTTC
617





hCPS1-ASO-448
TCAGTATCTCTTAGGCAATG
618





hCPS1-ASO-449
GGGTGCTGTAGAAAGTTTTC
619





hCPS1-ASO-450
CATATTTCCAACCTGTTCCA
620





hCPS1-ASO-451
GCCTTTACATCTGTATTAGA
621





hCPS1-ASO-452
GACTATTCCTCTGCCTTTAC
622





hCPS1-ASO-453
TGCTATGGAAATGGAGACTA
623





hCPS1-ASO-454
TAGGTCTTATTGCTATGGAA
624





hCPS1-ASO-455
CGATCTAGAGGTGACATTAG
625





hCPS1-ASO-456
GACTTTCTGACGATCTAGAG
626





hCPS1-ASO-457
ATTTGCTCATGTCTAGCCAG
627





hCPS1-ASO-458
CCCTCATTCCAATTTGCTCA
628





hCPS1-ASO-459
GTGCTTTCCTCTCCCTCATT
629





hCPS1-ASO-460
TAATCTTGACCTGTGCTTTC
630





hCPS1-ASO-461
GGACTAGTACTAATCTTGAC
631





hCPS1-ASO-462
ACTGCCCAAGGGACTAGTAC
632





hCPS1-ASO-463
AGCATTCTGGCTGTAGAACT
633





hCPS1-ASO-464
TTGGGTCAGAAGCTAAGCAT
634





hCPS1-ASO-465
CAGTACCCTAGTCCCAGCTT
635





hCPS1-ASO-466
GCACATCACTCAGTACCCTA
636





hCPS1-ASO-467
CTTTGAGAGTTAGGCCCTAA
637





hCPS1-ASO-468
TAGTGTCATGGTGTATCTCT
638





hCPS1-ASO-469
AGGAGGCTGTCACTGTTAGT
639





hCPS1-ASO-470
GAGTGAGGTACCTGAGATGC
640





hCPS1-ASO-471
CTAGGTTAAGTGAGTGAGGT
641





hCPS1-ASO-472
GTTTAAATGTCCTAGACTAG
642





hCPS1-ASO-473
GAGCTTCTTGACATAAAACT
643





hCPS1-ASO-474
CAACGCCTTGACATTATGAG
644





hCPS1-ASO-475
TAGTCACCAACAACGCCTTG
645





hCPS1-ASO-476
AGATGGCCTTTCTTTTGAAC
646





hCPS1-ASO-477
TCTAATTGGGAGATGGCCTT
647





hCPS1-ASO-478
GCAATACTTCTCTAATTGGG
648





hCPS1-ASO-479
TACTTTTGGCATGCAATACT
649





hCPS1-ASO-480
GATGGACAACTTTACATACT
650





hCPS1-ASO-481
AATTAGTTTGCCTGATGGAC
651





hCPS1-ASO-482
GAGCTGTTGCAGAATTAGTT
652





hCPS1-ASO-483
AGTCCCAAATGAGCTGTTGC
653





hCPS1-ASO-484
TTAATTGTGTTCAGTCCCAA
654





hCPS1-ASO-485
CATCTATGGCAAACTACATT
655





hCPS1-ASO-486
GGACGGATTTCATCTATGGC
656





hCPS1-ASO-487
TATAGACACATTTTAGGACG
657





hCPS1-ASO-488
GGTTATCACACACTTTTAAG
658





hCPS1-ASO-489
GTACACGTTAGATGTAAGAG
659





hCPS1-ASO-490
TATTGGAGCCTCTGTACACG
660





hCPS1-ASO-491
CTCATTATCATATTGGAGCC
661





hCPS1-ASO-492
GTCACAGGAAATATAACTCA
662
















TABLE 3







Additional Chemical Modifications of selected hCPS1-ASOs


Key: MOE (M); DNA (d); LNA (L); PS (=); PO(-); 5-MethylCytosine (5C); GalNAc (ag); Teg-GalNAc


(TEG); cET (c); AlaGal-GalNAc (AlGal); cholesterol (CholTEG)









SEQ




ID




NO
Name
Sequence





16
hCPS1-
MT=.MG=.M5C=.MA=.MG=.dG=.dC=.dA=.dC=.dA=.dC=.dA=.dC=.dA=.dT=.M5C=.MA=.



ASO-
MG=.MG=.M5C



1a






17
hCPS1-
MT=.MG=.M5C=.MA=.MG=.MG=.M5C=.MA=.M5C=.MA=.M5C=.MA=.M5C=.MA=.MT=.



ASO-
M5C=.MA=.MG=.MG=.M5C



1b






18
hCPS1-
MT=.MG=.M5C=.MA=.MG=.dG=.dC=.dA=.M5C=.dA=.dC=.MA=.dC=.dA=.dT=.M5C=.MA



ASO-
=.MG=.MG=.M5C



1c






19
ASO-
MT=.MG=.M5C=.MA=.MG=.LG=.dC=.dA=.L5C=.dA=.dC=.LA=.dC=.dA=.LT=.M5C=.MA=



1d
MG=.MG=.M5C





20
hCPS1-
MT=.MG=.M5C=.LA=.MG=.dG=.dC=.LA=.dC=.dA=.dC=.LA=.dC=.dA=.dT=.L5C=.MA=.M



ASO-
G=.MG=.M5C



1e






21
hCPS1-
MT=.MG=.M5C=.MA=.LG=.dG=.dC=.dA=.L5C=.dA=.dC=.dA=.L5C=.dA=.dT=.M5C=.LA=.



ASO-
MG=.MG=.M5C



1f






22
hCPS1-
MT=.MG=.M5C-.MA-.MG=.dG=.dC=.dA=.dC=.dA=.dC=.dA=.dC=.dA=.dT=.M5C-.MA-



ASO-
MG=.MG=.M5C



1g






23
hCPS1-
MA=.MT=.MG=.M5C=.MA=.MG=.dG=.dC=.dA=.dC=.dA=.dC=.dA=.dC=.dA=.dT=.M5C=.



ASO-2
MA=.MG=.MG=.M5C=.MT





24
hCPS1-
MA=.MA=.MT=.MG=.M5C=.MA=.MG=.dG=.dC=.dA=.dC=.dA=.dC=.dA=.dC=.dA=.dT=.M



ASO-3
5C=.MA=.MG=.MG=.M5C=.MT=.MG





392
hCPS1-
MT=.MG=.M5C=.MA=.MG=.LG=.M5C=.MA=.L5C=.MA=.M5C=.LA=.M5C=.MA=.LT=.M



ASO-
5C=.MA=.MG=.MG=.M5C



81a






393
hCPS1-
MT=.MG=.M5C=.LA=.MG=.LG=.M5C=.LA=.M5C=.LA=.M5C=.LA=.M5C=.LA=.MT=.L5C



ASO-
=.MA=.LG=.MG=.M5C



81b






394
hCPS1-
MT=.MG=.L5C=.MA=.LG=.MG=.L5C=.MA=.L5C=.MA=.L5C=.MA=.L5C=.MA=.LT=.M5C



ASO-
=.LA=.MG=.MG=.M5C



81c






395
hCPS1-
MT=.MG=.L5C=.MA=.MG=.LG=.M5C=.MA=.L5C=.MA=.M5C=.LA=.M5C=.MA=.LT=.M5



ASO-
C=.MA=.LG=.MG=.M5C



81d






396
hCPS1-
MT=.MG=.M5C=.MA=.LG=.MG=.M5C=.MA=.L5C=.MA=.M5C=.MA=.L5C=.MA=.MT=.M



ASO-
5C=.LA=.MG=.MG=.M5C



81e






397
hCPS1-
MT=.MG=.M5C=.LA=.MG=.MG=.M5C=.LA=.M5C=.MA=.M5C=.LA=.M5C=.MA=.MT=.L



ASO-
5C=.MA=.MG=.MG=.M5C



81f






398
hCPS1-
MT=.MG=.M5C=.MA=.MG=.LG=.M5C=.MA=.M5C=.MA=.L5C=.MA=.M5C=.MA=.MT=.L



ASO-
5C=.MA=.MG=.MG=.M5C



81g






399
hCPS1-
MT=.MG=.M5C=.MA=.LG=.MG=.M5C=.MA=.M5C=.LA=.M5C=.MA=.M5C=.MA=.LT=.M



ASO-
5C=.MA=.MG=.MG=.M5C



81h






400
hCPS1-
LT=.MG=.L5C=.MA=.LG=.dG=.dC=.dA=.dC=.dA=.dC=.dA=.dC=.dA=.dT=.L5C=.MA=.LG



ASO-
=.MG=.L5C



81i






401
hCPS1-
LT=.MG=.L5C=.MA=.LG=.MG=.M5C=.MA=.M5C=.MA=.M5C=.MA=.M5C=.MA=.MT=.L



ASO-
5C=.MA=.LG=.MG=.L5C



81j






402
hCPS1-
MT=.MG=.M5C=.MA=.MG=.MG=.dC=.dA=.M5C=.dA=.dC=.MA=.dC=.dA=.MT=.M5C=.M



ASO-
A=.MG=.MG=.M5C



81k






403
hCPS1-
MT=.MG=.M5C=.MA-.MG=.dG=.d5C=.dA=.d5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.M5C-



ASO-
MA=.MG=.MG=.M5C



81l






404
hCPS1-
MT=.MG=.M5C-.MA-.MG=.dG=.d5C=.dA=.d5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.M5C-



ASO-
.MA-.MG=.MG=.M5C



81m






405
hCPS1-
MT=.MG-.M5C-.MA-.MG=.dG=.d5C=.dA=.d5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.M5C-.MA-



ASO-
.MG-.MG=.M5C



81n






406
hCPS1-
MT-.MG-.M5C-.MA-.MG=.dG=.d5C=.dA=.d5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.M5C-.MA-



ASO-
.MG-.MG-.M5C



81o






407
hCPS1-
MT=.MG=.M5C=.MA=.MG=.MG=.dC=.dA=.dC=.dA=.dC=.dA=.dC=.dA=.dT=.dC=.MA=.M



ASO-
G=.MG=.M5C=.MT=.MG



82a






408
hCPS1-
MT=.MG=.L5C=.MA=.LG=.dG=.dC=.dA=.dC=.dA=.dC=.dA=.dC=.dA=.dT=.L5C=.MA=.LG



ASO-
=.MG=.M5C



86a






409
hCPS1-
MT=.MG=.M5C-.MA-.MG=.dG=.d5C=.dA=.d5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.M5C-



ASO-
.MA-.MG=.MG=.M5C-.[TEG]



86b






410
hCPS1-
MT=.MG=.M5C-.MA-.MG=.dG=.dC=.dA=.dC=.dA=.dC=.dA=.dC=.dA=.dT=.M5C-.MA-



ASO-
.MG=.MG



87a






411
hCPS1-
MT=.MG=.M5C-.MA-.MG=.dG=.dC=.dA=.dC=.dA=.dC=.dA=.dC=.dA=.dT=.M5C-.MA-.MG



ASO-




88a






412
hCPS1-
MT=.MG=.M5C-.MA-.MG=.dG=.dC=.dA=.dC=.dA=.dC=.dA=.dC=.dA=.dT



ASO-




89a






414
hCPS1-
MT=.MG=.M5C-.MA-.MG=.dG=.d5C=.dA=.d5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.M5C-



ASO-
.MA-.MG=.MG=.M5C-.[AlGal]



91a






415
hCPS1-
MT=.MG=.M5C-.MA-.MG-.dG-.d5C-.dA-.d5C-.dA-.d5C-.dA-.d5C-.dA-.dT-.M5C-.MA-



ASO-
MG=.MG=.M5C-.[TEG]



91b






416
hCPS1-
dT=.dG=.d5C=.dA=.dG=.dG=.d5C=.dA=.d5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.d5C=.dA=.dG



ASO-
=.dG=.d5C-.[TEG]



91c






417
hCPS1-
CholTEG-



ASO-
.MT=.MG=.M5C=.MA=.MG=.dG=.d5C=.dA=.d5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.M5C=.M



91d
A=.MG=.MG=.M5C





418
hCPS1-
CholTEG-.MT=.MG=.M5C=.MA-



ASO-
.MG=.dG=.d5C=.dA=.d5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.M5C-.MA=.MG=.MG=.M5C



91e






419
hCPS1-
CholTEG-.MT=.MG=.M5C-.MA-



ASO-
.MG=.dG=.d5C=.dA=.d5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.M5C-.MA-.MG=.MG=.M5C



91f






420
hCPS1-
CholTEG-.MT-.MG-.M5C-.MA-



ASO-
.MG=.dG=.d5C=.dA=.d5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.M5C-.MA-.MG-.MG-.M5C



91g






421
hCPS1-
CholTEG=.MT=.MG=.M5C=.MA=.MG=.dG=.d5C=.dA=.d5C=.dA=.d5C=.dA=.d5C=.dA=.dT



ASO-
=.M5C=.MA=.MG=.MG=.M5C



91h






422
hCPS1-
CholTEG=.MT=.MG=.M5C=.MA-



ASO-
.MG=.dG=.d5C=.dA=.d5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.M5C-.MA=.MG=.MG=.M5C



91i






423
hCPS1-
CholTEG=.MT=.MG=.M5C-.MA-



ASO-
.MG=.dG=.d5C=.dA=.d5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.M5C-.MA-.MG=.MG=.M5C



91j






424
hCPS1-
CholTEG=.MT-.MG-.M5C-.MA-



ASO-
MG=.dG=.d5C=.dA=.d5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.M5C-.MA-.MG-.MG-.M5C



91k






425
hCPS1-
cA=.cA=.cT=.dG=.d5C=.dA=.dG=.dG=.d5C=.dA=.d5C=.dA=.d5C=.cA=.c5C=.cA



ASO-




97a






426
hCPS1-
cT=.cG=.cA=.dA=.dT=.dG=.d5C=.dA=.dG=.dG=.d5C=.dA=.d5C=.cA=.c5C=.cA



ASO-




98a






427
hCPS1-
c5C=.cA=.cT=.dG=.dA=.dA=.dT=.dG=.d5C=.dA=.dG=.dG=.d5C=.cA=.c5C=.cA



ASO-




99a






428
hCPS1-
cT=.cG=.c5C=.dA=.dG=.dG=.d5C=.dA=.d5C=.dA=.d5C=.dA=.d5C=.cA=.cT=.c5C



ASO-




100a






429
hCPS1-
c5C=.cA=.cG=.dG=.d5C=.dA=.d5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.c5C=.cA=.cG



ASO-




101a






430
hCPS1-
cG=.cG=.c5C=.dA=.d5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.d5C=.dA=.cG=.cG=.c5C



ASO-




102a






431
hCPS1-
c5C=.cA=.c5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.d5C=.dA=.dG=.dG=.c5C=.cT=.cG



ASO-




103a






432
hCPS1-
c5C=.cA=.c5C=.dA=.d5C=.dA=.dT=.d5C=.dA=.dG=.dG=.d5C=.dT=.cG=.cG=.cG



ASO-




104a






433
hCPS1-
MT-.MG-.M5C-.MA-.MG-.dG-.d5C-.dA-.d5C-.dA-.d5C-.dA-.d5C-.dA-.dT-.M5C-.MA-.MG-



ASO-
MG-.M5C-.dT-.dT-.dT-.dT-.dT-dT-dT-dT-dT-dT-[BioTEG]



105a






434
hCPS1-
[BioTEG]P.dT-.dT-.dT-.dT-.dT-.dT-.dT-dT-dT-dT-MT-MG-.M5C-.MA-MG-.dG-.d5C-



ASO-
.dA-.d5C-.dA-.d5C-.dA-.d5C-.dA-.dT-.M5C-.MA-.MG-.MG-.M5C



106a






435
hCPS1-
cG=.cG=.c5C=.dA=.dT=.dG=.dA=.dA=.dT=.dG=.d5C=.dA=.dG=.cG=.c5C=.cA



ASO-




279a






436
hCPS1-
c5C=.cA=.cG=.dG=.d5C=.dA=.dT=.dG=.dA=.dA=.dT=.dG=.d5C=.cA=.cG=.cG



ASO-




280a






437
hCPS1-
cG=.cA=.c5C=.dA=.dG=.dG=.d5C=.dA=.dT=.dG=.dA=.dA=.dT=.cG=.c5C=.cA



ASO-




281a






438
hCPS1-
cG=.cT=.cG=.dA=.d5C=.dA=.dG=.dG=.d5C=.dA=.dT=.dG=.dA=.cA=.cT=.cG



ASO-




282a






439
hCPS1-
c5C=.cA=.c5C=.dA=.dT=.d5C=.dA=.dG=.dG=.d5C=.dT=.dG=.dG=.cG=.cG=.cA



ASO-




283a






440
hCPS1-
c5C=.cA=.cT=.d5C=.dA=.dG=.dG=.d5C=.dT=.dG=.dG=.dG=.dG=.cA=.c5C=.c5C



ASO-




284a






441
hCPS1-
cT=.c5C=.cA=.dG=.dG=.d5C=.dT=.dG=.dG=.dG=.dG=.dA=.d5C=.c5C=.c5C=.cT



ASO-




285a






442
hCPS1-
cA=.cG=.cG=.d5C=.dT=.dG=.dG=.dG=.dG=.dA=.d5C=.d5C=.d5C=.cT=.cG=.cT



ASO-




286a






443
hCPS1-
L5C=.LA=.LT=.dG=.dA=.dA=.dT=.dG=.d5C=.dA=.dG=.dG=.d5C=.LA=.L5C=.LA



ASO-




287a






444
hCPS1-
LT=.LG=.LA=.dA=.dT=.dG=.d5C=.dA=.dG=.dG=.d5C=.dA=.d5C=.LA=.L5C=.LA



ASO-




288a






445
hCPS1-
LA=.LA=.LT=.dG=.d5C=.dA=.dG=.dG=.d5C=.dA=.d5C=.dA=.d5C=.LA=.L5C=.LA



ASO-




289a






446
hCPS1-
LT=.LG=.L5C=.dA=.dG=.dG=.d5C=.dA=.d5C=.dA=.d5C=.dA=.d5C=.LA=.LT=.L5C



ASO-




290a






447
hCPS1-
L5C=.LA=.LG=.dG=.d5C=.dA=.d5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.L5C=.LA=.LG



ASO-




291a






448
hCPS1-
LG=.LG=.L5C=.dA=.d5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.d5C=.dA=.LG=.LG=.L5C



ASO-




292a






449
hCPS1-
L5C=.LA=.L5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.d5C=.dA=.dG=.dG=.L5C=.LT=.LG



ASO-




293a






450
hCPS1-
L5C=.LA=.L5C=.dA=.d5C=.dA=.dT=.d5C=.dA=.dG=.dG=.d5C=.dT=.LG=.LG=.LG



ASO-




294a






451
hCPS1-
LG=.LG=.L5C=.dA=.dT=.dG=.dA=.dA=.dT=.dG=.d5C=.dA=.dG=.LG=.L5C=.LA



ASO-




295a






452
hCPS1-
L5C=.LA=.LG=.dG=.d5C=.dA=.dT=.dG=.dA=.dA=.dT=.dG=.d5C=.LA=.LG=.LG



ASO-




296a






453
hCPS1-
LG=.LA=.L5C=.dA=.dG=.dG=.d5C=.dA=.dT=.dG=.dA=.dA=.dT=.LG=.L5C=.LA



ASO-




297a






454
hCPS1-
LG=.LT=.LG=.dA=.d5C=.dA=.dG=.dG=.d5C=.dA=.dT=.dG=.dA=.LA=.LT=.LG



ASO-




298a






455
hCPS1-
L5C=.LA=.L5C=.dA=.dT=.d5C=.dA=.dG=.dG=.d5C=.dT=.dG=.dG=.LG=.LG=.LA



ASO-




299a






456
hCPS1-
L5C=.LA=.LT=.d5C=.dA=.dG=.dG=.d5C=.dT=.dG=.dG=.dG=.dG=.LA=.L5C=.L5C



ASO-




300a






457
hCPS1-
LT=.L5C=.LA=.dG=.dG=.d5C=.dT=.dG=.dG=.dG=.dG=.dA=.d5C=.L5C=.L5C=.LT



ASO-




301a






458
hCPS1-
LA=.LG=.LG=.d5C=.dT=.dG=.dG=.dG=.dG=.dA=.d5C=.d5C=.d5C=.LT=.LG=.LT



ASO-




302a






459
hCPS1-
MG=.M5C=.MA=.MT=.dG=.dA=.dA=.dT=.dG=.d5C=.dA=.dG=.dG=.d5C=.MA=.M5C=.MA



ASO-
=.M5C



303a






460
hCPS1-
LG=.M5C=.LA=.MT=.dG=.dA=.dA=.dT=.dG=.d5C=.dA=.dG=.dG=.d5C=.MA=.L5C=.MA=.



ASO-
L5C



303b






461
hCPS1-
MG=.M5C=.MA=.M5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.d5C=.dA=.dG=.dG=.M5C=.MT=.M



ASO-
G=.MG



304a






462
hCPS1-
LG=.M5C=.LA=.M5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.d5C=.dA=.dG=.dG=.M5C=.LT=.MG



ASO-
=.LG



304b






463
hCPS1-
MA=.M5C=.MA=.M5C=.dA=.d5C=.dA=.dT=.d5C=.dA=.dG=.dG=.d5C=.dT=.MG=.MG=.MG



ASO-
=.MG



305a






464
hCPS1-
LA=.M5C=.LA=.M5C=.dA=.d5C=.dA=.dT=.d5C=.dA=.dG=.dG=.d5C=.dT=.MG=.LG=.MG=.



ASO-
LG



305b






465
hCPS1-
L5C=.MA=.M5C=.MA=.d5C=.dA=.d5C=.dA=.dT=.d5C=.dA=.dG=.dG=.d5C=.MT=.MG=.M



ASO-
G=.LG



306a






466
hCPS1-
L5C=.MA=.L5C=.MA=.d5C=.dA=.d5C=.dA=.dT=.d5C=.dA=.dG=.dG=.d5C=.MT=.LG=.MG



ASO-
=.LG



306b






467
hCPS1-
MG=.MG=.M5C=.MA=.MT=.dG=.dA=.dA=.dT=.dG=.d5C=.dA=.dG=.dG=.d5C=.MA=.M5C



ASO-
=.MA=.M5C=.MA



307a






468
hCPS1-
LG=.MG=.L5C=.MA=.MT=.dG=.dA=.dA=.dT=.dG=.d5C=.dA=.dG=.dG=.d5C=.MA=.M5C=.



ASO-
LA=.M5C=.LA



307b






469
hCPS1-
LG=.MG=.L5C=.MA=.MT=.dG=.dA=.dA=.LT=.dG=.d5C=.LA=.dG=.dG=.d5C=.MA=.M5C=



ASO-
.LA=.M5C=.LA



308a






470
hCPS1-
MG=.MG=.M5C=.MA-.MT-.dG=.dA=.dA=.dT=.dG=.d5C=.dA=.dG=.dG=.d5C=.MA-.M5C-



ASO-
.MA=.M5C=.MA



308b






471
hCPS1-
LG=.MG=.L5C=.MA=.M5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.d5C=.dA=.dG=.dG=.M5C=.MT



ASO-
=.LG=.MG=.LG



309a






472
hCPS1-
LG=.MG=.L5C=.MA=.M5C=.dA=.d5C=.dA=.L5C=.dA=.dT=.L5C=.dA=.dG=.dG=.M5C=.M



ASO-
T=.LG=.MG=.LG



309b






473
hCPS1-
MG=.MG=.M5C=.MA-.M5C-.dA=.d5C=.dA=.d5C=.dA=.dT=.d5C=.dA=.dG=.dG=.M5C-



ASO-
.MT-.MG=.MG=.MG



309c






474
hCPS1-
M5C=.MA=.M5C=.MA=.M5C=.dA=.d5C=.dA=.dT=.d5C=.dA=.dG=.dG=.d5C=.dT=.MG=.M



ASO-
G=.MG=.MG=.MA



310a






475
hCPS1-
L5C=.MA=.L5C=.MA=.M5C=.dA=.d5C=.dA=.dT=.d5C=.dA=.dG=.dG=.d5C=.dT=.MG=.MG



ASO-
=.LG=.MG=.LA



310b






476
hCPS1-
L5C=.MA=.L5C=.MA=.M5C=.dA=.d5C=.dA=.LT=.d5C=.dA=.LG=.dG=.d5C=.dT=.MG=.M



ASO-
G=.LG=.MG=.LA



310c






477
hCPS1-
M5C=.MA=.M5C=.MA-.M5C-.dA=.d5C=.dA=.dT=.d5C=.dA=.dG=.dG=.d5C=.dT=.MG-



ASO-
MG-.MG=.MG=.MA



310d






478
hCPS1-
MG=.M5C=.MA=.M5C=.MA=.d5C=.dA=.d5C=.dA=.dT=.d5C=.dA=.dG=.dG=.d5C=.MT=.M



ASO-
G=.MG=.MG=.MG



311a






479
hCPS1-
LG=.M5C=.LA=.M5C=.MA=.d5C=.dA=.d5C=.dA=.dT=.d5C=.dA=.dG=.dG=.d5C=.MT=.MG



ASO-
=.LG=.MG=.LG



311b






480
hCPS1-
MG=.M5C=.MA=.M5C-.MA-.d5C=.dA=.d5C=.dA=.dT=.d5C=.dA=.dG=.dG=.d5C=.MT-



ASO-
MG-.MG=.MG=.MG



311c






481
hCPS1-
dT=.dG=.d5C=.dA=.dG=.dG=.d5C=.dA=.d5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.d5C=.dA=.dG



ASO-
=.dG=.d5C



312a






482
hCPS1-
MA=.MT=.M5C=.MA=.MG=.dG=.d5C=.dT=.dG=.dG=.dG=.dG=.dA=.d5C=.d5C=.M5C=.MT



ASO-
=.MG=.MT=.MG-.[TEG]



313a






483
hCPS1-
MG=.MG=.M5C=.MA=.M5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.d5C=.dA=.dG=.dG=.M5C=.M



ASO-
T=.MG=.MG=.MG-.[TEG]



314a






484
hCPS1-
MA=.MT=.MG=.MA=.MA=.dT=.dG=.d5C=.dA=.dG=.dG=.d5C=.dA=.d5C=.dA=.M5C=.MA



ASO-
=.M5C=.MA=.MT-.[TEG]



315a






485
hCPS1-
MT=.MG=.M5C=.MA=.MG=.dG=.d5C=.dA=.d5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.M5C=.M



ASO-
A=.MG=.MG=.M5C-.[TEG]



316a






486
hCPS1-
MT=.MG=.M5C-.MA-.MG=.dG=.mC=.dA=.d5C=.dA=.d5C=.dA=.d5C=.dA=.dT=.M5C-.MA-



ASO-
MG=.MG=.M5C-.[TEG]



316b









In some embodiments, hCPS1-ASO-317-492 (SEQ ID NOs: 487-662) comprise pS bonds, 5-MethylCytosines and fully MOE nucleotides.


Hybridization and ΔG

The term “hybridizing” or “hybridizes” as used herein is to be understood as two nucleic acid strands (e.g., an oligonucleotide and a target nucleic acid) forming hydrogen bonds between base pairs on opposite strands thereby forming a duplex. The affinity of the binding between two nucleic acid strands is the strength of the hybridization. It is often described in terms of the melting temperature (Tm) defined as the temperature at which half of the oligonucleotides are duplexed with the target nucleic acid. At physiological conditions Tm is not strictly proportional to the affinity (Mergny and Lacroix, 2003, Oligonucleotides 13:515-537). The standard state Gibbs free energy ΔG° is a more accurate representation of binding affinity and is related to the dissociation constant (Kd) of the reaction by ΔG°=−RTIn(Kd), where R is the gas constant and T is the absolute temperature. Therefore, a very low ΔG° of the reaction between an oligonucleotide and the target nucleic acid reflects a strong hybridization between the oligonucleotide and target nucleic acid. ΔG° is the free energy associated with a reaction where aqueous concentrations are 1M, the pH is 7, and the temperature is 37° C. The hybridization of oligonucleotides to a target nucleic acid is a spontaneous reaction and for spontaneous reactions ΔG° is less than zero. ΔG° can be measured experimentally, for example, by use of the isothermal titration calorimetry (ITC) method as described in Hansen et al., 1965, Chem, Comm. 36-38 and Holdgate et al., 2005, Drug Discov Today. The skilled person will know that commercial equipment is available for ΔG° measurements. ΔG° can also be estimated numerically by using the nearest neighbor model as described by SantaLucia, 1998, Proc Natl Acad Sci USA. 95: 1460-1465 using appropriately derived thermodynamic parameters described by Sugimoto et al., 1995, Biochemistry 34:11211-11216 and McTigue et al., 2004, Biochemistry 43:5388-5405. In order to have the possibility of modulating its intended nucleic acid target by hybridization, oligonucleotides of the present disclosure hybridize to a target nucleic acid with estimated ΔG° values below −10 kcal/mol for oligonucleotides that are 10-30 nucleotides in length. In some embodiments the degree or strength of hybridization is measured by the standard state Gibbs free energy ΔG°. The oligonucleotides may hybridize to a target nucleic acid with estimated ΔG° values below the range of −10 kcal/mol, such as below −15 kcal/mol, such as below −20 kcal/mol and such as below −25 kcal/mol for oligonucleotides that are 8-30 nucleotides in length. In some embodiments the oligonucleotides hybridize to a target nucleic acid with an estimated ΔG° value of −10 to −60 kcal/mol, such as −12 to −40 kcal/mol, −15 to −30 kcal/mol, −16 to −27 kcal/mol, or −18 to −25 kcal/mol.


Duplex Region

The phrase “duplex region” refers to the region in two complementary or substantially complementary polynucleotides that form base pairs with one another, either by Watson-Crick base pairing or any other manner that allows for a stabilized duplex between polynucleotide strands that are complementary or substantially complementary. For example, a polynucleotide strand having 21 nucleotide units can base pair with another polynucleotide of 21 nucleotide units, yet only 19 bases on each strand are complementary or substantially complementary, such that the “duplex region” has 19 base pairs. The remaining bases may, for example, exist as 5′ and 3′ overhangs. Further, within the duplex region, 100% complementarity is not required; substantial complementarity is allowable within a duplex region. Substantial complementarity refers to 70% or greater complementarity. For example, a mismatch in a duplex region consisting of 19 base pairs results in 94.7% complementarity, rendering the duplex region substantially complementary. Duplex regions can be formed by two separate oligonucleotide strands, as well as by single oligonucleotide strands that can form hairpin structures comprising a duplex region.


A dsRNA includes two RNA strands that are complementary and hybridize to form a duplex structure under conditions in which the dsRNA will be used. One strand of a dsRNA (the antisense strand) includes a region of complementarity that is substantially complementary, and generally fully complementary, to a target sequence. The target sequence can be derived from the sequence of a CPS1 regRNA, such as an eRNA or paRNA. The other strand (the sense strand) includes a region that is complementary to the antisense strand, such that the two strands hybridize and form a duplex structure when combined under suitable conditions. As described elsewhere herein and as known in the art, the complementary sequences of a dsRNA can also be contained as self-complementary regions of a single nucleic acid molecule, as opposed to being on separate oligonucleotides. Generally, the duplex structure is between 15 and 50 base pairs in length, e.g., between, 15-50, 15-49, 15-48, 15-47, 15-46, 15-45, 15-44, 15-43, 15-42, 15-41, 15-40, 15-39, 15-38, 15-37, 15-36, 15-35, 15-34, 15-33, 15-32, 15-31, 15-30, 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-50, 18-49, 18-48, 18-47, 18-46, 18-45, 18-44, 18-43, 18-42, 18-41, 18-40, 18-39, 18-38, 18-37, 18-36, 18-35, 18-34, 18-33, 18-32, 18-31, 18-30, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-50, 19-49, 19-48, 19-47, 19-46, 19-45, 19-44, 19-43, 19-42, 19-41, 19-40, 19-39, 19-38, 19-37, 19-36, 19-35, 19-34, 19-33, 19-32, 19-31, 19-30, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-50, 20-49, 20-48, 20-47, 20-46, 20-45, 20-44, 20-43, 20-42, 20-41, 20-40, 20-39, 20-38, 20-37, 20-36, 20-35, 20-34, 20-33, 20-32, 20-31, 20-30, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24, 20-23, 20-22, 20-21, 21-50, 21-49, 21-48, 21-47, 21-46, 21-45, 21-44, 21-43, 21-42, 21-41, 21-40, 21-39, 21-38, 21-37, 21-36, 21-35, 21-34, 21-33, 21-32, 21-31, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, 21-22, 22-50, 22-49, 22-48, 22-47, 22-46, 22-45, 22-44, 22-43, 22-42, 22-41, 22-40, 22-39, 22-38, 22-37, 22-36, 22-35, 22-34, 22-33, 22-32, 22-31, 22-30, 22-29, 22-28, 22-27, 22-26, 22-25, 22-24, 22-23, 23-50, 23-49, 23-48, 23-47, 23-46, 23-45, 23-44, 23-43, 23-42, 23-41, 23-40, 23-39, 23-38, 23-37, 23-36, 23-35, 23-34, 23-33, 23-32, 23-31, 23-30, 23-29, 23-28, 23-27, 23-26, 23-25, or 23-24 base pairs in length. Ranges and lengths intermediate to the above recited ranges and lengths are also contemplated to be part of the disclosure.


Similarly, the region of complementarity to the target sequence can be between 15 and 50 nucleotides in length, e.g., between 15-50, 15-49, 15-48, 15-47, 15-46, 15-45, 15-44, 15-43, 15-42, 15-41, 15-40, 15-39, 15-38, 15-37, 15-36, 15-35, 15-34, 15-33, 15-32, 15-31, 15-30, 15-29, 15-28, 15-27, 15-26, 15-25, 15-24, 15-23, 15-22, 15-21, 15-20, 15-19, 15-18, 15-17, 18-50, 18-49, 18-48, 18-47, 18-46, 18-45, 18-44, 18-43, 18-42, 18-41, 18-40, 18-39, 18-38, 18-37, 18-36, 18-35, 18-34, 18-33, 18-32, 18-31, 18-30, 18-30, 18-29, 18-28, 18-27, 18-26, 18-25, 18-24, 18-23, 18-22, 18-21, 18-20, 19-50, 19-49, 19-48, 19-47, 19-46, 19-45, 19-44, 19-43, 19-42, 19-41, 19-40, 19-39, 19-38, 19-37, 19-36, 19-35, 19-34, 19-33, 19-32, 19-31, 19-30, 19-30, 19-29, 19-28, 19-27, 19-26, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-50, 20-49, 20-48, 20-47, 20-46, 20-45, 20-44, 20-43, 20-42, 20-41, 20-40, 20-39, 20-38, 20-37, 20-36, 20-35, 20-34, 20-33, 20-32, 20-31, 20-30, 20-30, 20-29, 20-28, 20-27, 20-26, 20-25, 20-24, 20-23, 20-22, 20-21, 21-50, 21-49, 21-48, 21-47, 21-46, 21-45, 21-44, 21-43, 21-42, 21-41, 21-40, 21-39, 21-38, 21-37, 21-36, 21-35, 21-34, 21-33, 21-32, 21-31, 21-30, 21-29, 21-28, 21-27, 21-26, 21-25, 21-24, 21-23, 21-22, 22-50, 22-49, 22-48, 22-47, 22-46, 22-45, 22-44, 22-43, 22-42, 22-41, 22-40, 22-39, 22-38, 22-37, 22-36, 22-35, 22-34, 22-33, 22-32, 22-31, 22-30, 22-29, 22-28, 22-27, 22-26, 22-25, 22-24, 22-23, 23-50, 23-49, 23-48, 23-47, 23-46, 23-45, 23-44, 23-43, 23-42, 23-41, 23-40, 23-39, 23-38, 23-37, 23-36, 23-35, 23-34, 23-33, 23-32, 23-31, 23-30, 23-29, 23-28, 23-27, 23-26, 23-25, or 23-24 nucleotides in length. Ranges and lengths intermediate to the above recited ranges and lengths are also contemplated to be part of the disclosure.


Chemical Modifications of ASOs

In certain embodiments, the ASO does not consist of only DNA. In certain embodiments, the ASO comprises at least one chemical modification relative to a natural nucleotide (e.g., ribonucleotide). Various chemical modifications can be included in the ASOs of the present disclosure. The modifications can include one or more modifications in a ribose group, one or more modifications in a phosphate group, one or more modifications in a nucleobase, one or more terminal modifications, or a combination thereof. In some embodiments, an exemplary ASO sequence targeting a regRNA as shown in Table 2 is chemically modified. For example, hCPS1-ASO-1 may be chemically modified to comprise the modifications of any one of hCPS1-ASO1-1a to hCPS1-ASO1-1g as shown in FIG. 5A. Such modifications can be, but are not limited to, 2′-O-(2-methoxyethyl) (2′-MOE, MOE), locked nucleic acid (LNA), 5-methyl on the cytidine, cET, phosphorothioate (PS) linkage, and/or a phosphodiester (PO) linkage, or any combination thereof. Chemical modifications of RNA are known in the art and described in, for example, PCT Application Publication No. WO2013/177248. In certain embodiments, each cytidine in the ASO is modified by 5-methyl. Exemplary ASOs comprising chemical modifications are shown in FIGS. 5A and 14.


Various chemical modifications for use with ASOs of the present disclosure include, but are not limited to: 3′-terminal deoxy-thymine (dT) nucleotides, 2′-O-methyl modified nucleotides, 2′-fluoro modified nucleotides, 2′-deoxy-modified nucleotides, locked nucleotides, unlocked nucleotides, conformationally restricted nucleotides, constrained ethyl nucleotides, abasic nucleotides, 2′-amino-modified nucleotides, 2′-O-allyl-modified nucleotides, 2′-C-alkyl-modified nucleotides, 2′-hydroxyl-modified nucleotides, 2′-methoxyethyl modified nucleotides, 2′-O-alkyl-modified nucleotides, morpholino nucleotides, phosphoramidates, non-natural base comprising nucleotides, tetrahydropyran modified nucleotides, 1,5-anhydrohexitol modified nucleotides, cyclohexenyl modified nucleotides, nucleotides comprising a phosphorothioate group, nucleotides comprising a methylphosphonate group, nucleotides comprising a 5′-phosphate, and nucleotides comprising a 5′-phosphate mimic.


In certain embodiments, the ASO comprises an RNA polynucleotide chemically modified to be resistant to one or more nuclear RNases (e.g., the exosome complex). In some embodiments, all nucleotide bases are modified in the ASO. In certain embodiments, the chemical modifications comprises β-D-ribonucleosides, 2′-modified nucleosides (e.g., 2′-O-(2-methoxyethyl) (2′-MOE), 2′-O—CH3, or 2′-fluoro-arabino (FANA)), bicyclic sugar modified nucleosides (e.g., having a constrained ethyl or locked nucleic acid (LNA)), and/or one or more modified internucleotide bonds (e.g., phosphorothioate internucleotide linkage). In certain embodiments, the chemical modification comprises 2′-MOE and a phosphorothioate internucleotide bond. In certain embodiments, at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more consecutive nucleotides of the ASO are modified by 2′-MOE. In certain embodiments, each nucleotide of the ASO is modified by 2′-MOE. In certain embodiments, at least 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more consecutive internucleotide bonds of the ASO are phosphorothioate internucleotide bonds. In certain embodiments, each internucleotide bond of the ASO is a phosphorothioate internucleotide bond.


Internucleotide linkage modifications that can be used with the ASOs of the present disclosure include, but are not limited to, phosphorothioate “PS” (P(S)), phosphoramidate (P(NR1R2) such as dimethylaminophosphoramidate(P(N(CH3)2)), phosphonocarboxylate (P(CH2)nCOOR) such as phosphonoacetate “PACE” (P(CH2COO—)), thiophosphonocarboxylate ((S)P(CH2)nCOOR) such as thiophosphonoacetate “thioPACE” ((S)P(CH2COO—)), alkylphosphonate (P(C1-3alkyl) such as methylphosphonate —P(CH3), boranophosphonate (P(BH3)), and phosphorodithioate (P(S)2).


The chemical structures can also be described in writing. In such cases, ‘M’ indicates MOE; ‘d’ indicates DNA, ‘L’ indicates LNA, ‘=’ indicates a phosphorothioate (PS) linkage, ‘—’ indicates a phosphodiester (PO) linkage; ‘5C’ indicates 5-MethylCytosine, ‘ag’ indicates GalNAc, ‘tg’ or “TEG” indicates Teg-GalNAc, ‘ag’ or ‘AlGal’ indicates GalNAc, ‘BioTEG’ indicated biotin, ‘CholTEG’ indicates cholesterol, ‘c’ indicates cET, and ‘{circumflex over ( )}’ indicates FANA.


To avoid ambiguity, this LNA has the formula:




embedded image


wherein B is the particular designated base.


Exemplary written descriptions of selected ASOs are provided in Table 3, with corresponding FIGS. 5A and 14 providing visual representation of the modifications.


In some embodiments, the ASO comprises a sequence selected from the group consisting of SEQ ID NOs: 1-15, 91-391, or 487-662. In some embodiments, the ASO comprises a sequence and chemical modification selected from the group consisting of SEQ ID NOs: 16-48, 392-480, or 482-486. In some embodiments, the ASO comprises a sequence and/or chemical modification selected from the group consisting of SEQ ID NOs: 1-48 or 91-662.


In some embodiments, the regulatory RNA comprises a sequence selected from the group consisting of SEQ ID NOs: 80-88. In some embodiments, the ASO comprises a sequence selected from the group consisting of SEQ ID NOs: 51-68.


In some embodiments, the ASO comprises a sequence set forth in Table 2. In some embodiments, the ASO comprises a sequence and/or the chemical modification set forth in Table 3, and FIGS. 4A, 5A, 5B, and 14.


In certain embodiments, the ASO comprises one or more chemical modifications at the 5′ end, the 3′ end, or both. Without wishing to be bound by theory, chemical modifications at one or both termini of a polynucleotide (e.g., polyribonucleotide) may stabilize the polynucleotide. In certain embodiments, the ASO comprises one or more chemical modifications in at least 1, 2, 3, 4, or 5 nucleotides at the 5′ end of the ASO. In certain embodiments, the ASO comprises one or more chemical modifications in at least 1, 2, 3, 4, or 5 nucleotides at the 3′ end of the ASO. In certain embodiments, the ASO comprises one or more chemical modifications in at least 1, 2, 3, 4, or 5 nucleotides at the 5′ end of the ASO and one or more chemical modifications in at least 1, 2, 3, 4, or 5 nucleotides at the 3′ end of the ASO.


High Affinity Modified Nucleosides

A high affinity modified nucleoside is a modified nucleoside which, when incorporated into the oligonucleotide enhances the affinity of the oligonucleotide for its complementary target, for example as measured by the melting temperature (Tm). A high affinity modified nucleoside of the present disclosure preferably result in an increase in melting temperature between +0.5 to +12° C., such as between +1.5 to +10° C. or +3 to +8° C. per modified nucleoside. Numerous high affinity modified nucleosides are known in the art and include for example, many 2′ substituted nucleosides as well as locked nucleic acids (LNA) (see e.g. Freier & Altmann, Nucl. Acid Res., 1997, 25, 4429-4443 and Uhlmann, Curr. Opinion in Drug Development, 2000, 3(2), 293-213), each of which is hereby incorporated by reference.


Sugar Modifications

The ASOs described herein may comprise one or more nucleosides which have a modified sugar moiety, i.e. a modification of the sugar moiety when compared to the ribose sugar moiety found in DNA and RNA. Numerous nucleosides with modification of the ribose sugar moiety have been made, primarily with the aim of improving certain properties of oligonucleotides, such as affinity and/or nuclease resistance. Such modifications include those where the ribose ring structure is modified, e.g. by replacement with a hexose ring (HNA), or a bicyclic ring, which typically have a biradical bridge between the C2 and C4 carbons on the ribose ring (LNA), or an unlinked ribose ring which typically lacks a bond between the C2 and C3 carbons (e.g. UNA). Other sugar modified nucleosides include, for example, bicyclohexose nucleic acids (see e.g., PCT Application Publication No. WO2011/017521) or tricyclic nucleic acids (see e.g., PCT Application Publication No. WO2013/154798), both of which are hereby incorporated by reference. Modified nucleosides also include nucleosides where the sugar moiety is replaced with a non-sugar moiety, for example in the case of peptide nucleic acids (PNA), or morpholino nucleic acids.


Sugar modifications also include modifications made via altering the substituent groups on the ribose ring to groups other than hydrogen, or the 2′-OH group naturally found in DNA and RNA nucleosides. Substituents may, for example be introduced at the 2′, 3′, 4′ or 5′ positions.


In some embodiments, oligonucleotides comprise modified sugar moieties, such as any one of a 2′-O-methyl (2′OMe) moiety, a 2′-O-methoxyethyl moiety, a bicyclic sugar moiety, PNA (e.g., an oligonucleotide comprising one or more N-(2-aminoethyl)-glycine units linked by amide bonds or carbonyl methylene linkage as repeating units in place of a sugar-phosphate backbone), locked nucleoside (LNA) (e.g., an oligonucleotide comprising one or more locked ribose, and can be a mixture of 2′-deoxy nucleotides or 2′OMe nucleotides), c-ET (e.g., an oligonucleotide comprising one or more cET sugar), cMOE (e.g., an oligonucleotide comprising one or more cMOE sugar), morpholino oligomer (e.g., an oligonucleotide comprising a backbone comprising one or more phosphorodiamidate morpholiono oligomers), 2′-deoxy-2′-fluoro nucleoside (e.g., an oligonucleotide comprising one or more 2′-fluoro-β-D-arabinonucleoside), tcDNA (e.g., an oligonucleotide comprising one or more tcDNA modified sugar), constrained ethyl 2′-4′-bridged nucleic acid (cEt), S-cEt, ethylene bridged nucleic acid (ENA) (e.g., an oligonucleotide comprising one or more ENA modified sugar), hexitol nucleic acids (HNA) (e.g., an oligonucleotide comprising one or more HNA modified sugar), or tricyclic analog (tcDNA) (e.g., an oligonucleotide comprising one or more tcDNA modified sugar).


In some embodiments, oligonucleotides comprise nucleobase modifications selected from the group consisting of 2-thiouracil (“2-thioU”), 2-thiocytosine (“2-thioC”). 4-thiouracil (“4-thioU”), 6-thioguanine (“6-thioG”), 2-aminoadenine (“2-aminoA”), 2-aminopurine, pseudouracil, hypoxanthine, 7-deazaguanine, 7-deaza-8-azaguanine, 7-deazaadenine, 7-deaza-8-azaadenine, 5-methylcytosine (“5-methylC”), 5-methyluracil (“5-methylU”) 5-hydroxymethylcytosine, 5-hydroxymethyluracil, 5,6-dehydrouracil, 5-propynylcytosine, 5-propynyluracil, 5-ethynylcytosine, 5-ethynyluracil, 5-allyluracil (“5-allyl U”), 5-allylcytosine (“5-allylC”), 5-aminoallyluracil (“5-aminoallylU”), 5-aminoallyl-cytosine (“5-aminoallylC”), an abasic nucleotide, Z base, P base, Unstructured Nucleic Acid (“UNA”), isoguanine (“isoG”), and isocytosine (“isoC”), glycerol nucleic acid (GNA), thiomorpholino (C4H9NS) or thiophosphoramidate morpholinos (TMOs). Synthesis of glycerol nucleic acid (GNA) (also known as glycol nucleic acids) is described in Zhang et al, Current Protocols in Nucleic Acid Chemistry 4.40.1-4.40.18, September 2010, hereby incorporated by reference. Synthesis of thiophosphoramidate morpholino oligonucleotides is described in Langer et al, J. Am. Chem. Soc. 2020, 142, 38, 16240-16253


2′ Sugar Modified Nucleosides

A 2′ sugar modified nucleoside is a nucleoside which has a substituent other than H or —OH at the 2′ position (2′ substituted nucleoside) or comprises a 2′ linked biradical capable of forming a bridge between the 2′ carbon and a second carbon in the ribose ring, such as LNA (2′-4′ biradical bridged) nucleosides.


Without wishing to be bound by theory, the 2′ modified sugar may provide enhanced binding affinity and/or increased nuclease resistance to the oligonucleotide. Examples of 2′ substituted modified nucleosides are 2′-O-alkyl-RNA, 2′-O-methyl-RNA, 2′-alkoxy-RNA, 2′-O-methoxyethyl-RNA (MOE), 2′-amino-DNA, 2′-Fluoro-RNA, and 2′-F-ANA nucleoside. For further examples, please see e.g. Freier & Altmann; Nucl. Acid Res., 1997, 25, 4429-4443 and Uhlmann; Curr. Opinion in Drug Development, 2000, 3(2), 293-213, and Deleavey and Damha, Chemistry and Biology 2012, 19, 937, each of which are hereby incorporated by reference.


Locked Nucleic Acid Nucleosides (LNA Nucleoside)

A “LNA nucleoside” is a 2′-sugar modified nucleoside which comprises a biradical linking the C2′ and C4′ of the ribose sugar ring of said nucleoside (also referred to as a “2′-4′ bridge”), which restricts or locks the conformation of the ribose ring. In other words, a locked nucleoside is a nucleoside comprising a bicyclic sugar moiety comprising a 4′-CH2—O-2′ bridge. This structure effectively “locks” the ribose in the 3′-endo structural conformation. The addition of locked nucleosides to oligonucleotides has been shown to increase oligonucleotide stability in serum, and to reduce off-target effects (Grunweller, A. et al., (2003) Nucleic Acids Research 31(12):3185-3193). These nucleosides are also sometimes termed bridged nucleic acid or bicyclic nucleic acid (BNA). The locking of the conformation of the ribose is associated with an enhanced affinity of hybridization (duplex stabilization) when the LNA is incorporated into an oligonucleotide for a complementary RNA or DNA molecule. This can be routinely determined by measuring the melting temperature of the oligonucleotide/complement duplex. Exemplary LNA nucleosides include beta-D-oxy-LNA, 6′-methyl-beta-D-oxy LNA such as (S)-6′-methyl-beta-D-oxy-LNA (ScET) and ENA.


Examples of bicyclic nucleosides for use in the polynucleotides of the invention include without limitation nucleosides comprising a bridge between the 4′ and the 2′ ribosyl ring atoms. In certain embodiments, the polynucleotide agents of the invention include one or more bicyclic nucleosides comprising a 4′ to 2′ bridge. Examples of such 4′ to 2′ bridged bicyclic nucleosides, include but are not limited to 4′-(CH2)—O-2′ (LNA); 4′-(CH2)2—S-2′; 4′-(CH2)2-O-2′ (ENA); 4′-CH(CH3)—O-2′ (also referred to as “constrained ethyl” or “cEt”) and 4′-CH(CH2OCH3)—O-2′ (and analogs thereof; see, e.g., U.S. Pat. No. 7,399,845); 4′-C(CH3)(CH3)—O-2′ (and analogs thereof; see e.g., U.S. Pat. No. 8,278,283); 4′-CH2—N(OCH3)2-2′ (and analogs thereof; see e.g., U.S. Pat. No. 8,278,425); 4′-CH2—O—N(CH3)2-2′ (see, e.g., U.S. Patent Publication No. 2004/0171570); 4′-CH2—N(R)—O-2′, wherein R is H, C1-C12 alkyl, or a protecting group (see, e.g., U.S. Pat. No. 7,427,672); 4′-CH2—C(H)(CH3)-2′ (see, e.g., Chattopadhyaya et al., J. Org. Chem., 2009, 74, 118-134); and 4′-CH2—C(═CH2)-2′ (and analogs thereof; see, e.g., U.S. Pat. No. 8,278,426). The entire contents of each of the foregoing are hereby incorporated herein by reference.


Additional representative U.S. patents and US patent Publications that teach the preparation of locked nucleic acid nucleotides include, but are not limited to, the following: U.S. Pat. Nos. 6,268,490; 6,525,191; 6,670,461; 6,770,748; 6,794,499; 6,998,484; 7,053,207; 7,034,133; 7,084,125; 7,399,845; 7,427,672; 7,569,686; 7,741,457; 8,022,193; 8,030,467; 8,278,425; 8,278,426; 8,278,283; US 2008/0039618; and US 2009/0012281, the entire contents of each of which are hereby incorporated herein by reference.


Any of the foregoing bicyclic nucleosides can be prepared having one or more stereochemical sugar configurations including for example α-L-ribofuranose and β-D-ribofuranose (see PCT Publication No. WO 99/14226, contents of which are incorporated by reference herein).


An oligonucleotide of the invention can also be modified to include one or more constrained ethyl nucleosides. As used herein, a “constrained ethyl nucleoside” or “cEt” is a locked nucleoside comprising a bicyclic sugar moiety comprising a 4′-CH(CH3)—O-2′ bridge. In some embodiments, a constrained ethyl nucleoside is in the S conformation referred to herein as “S-cEt.”


An oligonucleotide of the invention may also include one or more “conformationally restricted nucleosides” (“CRN”). CRN are nucleoside analogs with a linker connecting the C2′ and C4′ carbons of ribose or the -C3 and -C5′ carbons of ribose. CRN lock the ribose ring into a stable conformation and increase the hybridization affinity to mRNA. The linker is of sufficient length to place the oxygen in an optimal position for stability and affinity resulting in less ribose ring puckering.


Representative publications that teach the preparation of certain of the above noted CRN include, but are not limited to, US Patent Publication No. 2013/0190383; and PCT Publication No. WO 2013/036868, the entire contents of each of which are hereby incorporated herein by reference.


In some embodiments, an oligonucleotide of the invention comprises one or more monomers that are UNA (unlocked nucleoside) nucleosides. UNA is unlocked acyclic nucleoside, wherein any of the bonds of the sugar has been removed, forming an unlocked “sugar” residue. In one example, UNA also encompasses monomer with bonds between C1′-C4′ have been removed (i.e., the covalent carbon-oxygen-carbon bond between the C1′ and C4′ carbons). In another example, the C2′-C3′ bond (i.e., the covalent carbon-carbon bond between the C2′ and C3′ carbons) of the sugar has been removed (see Nuc. Acids Symp. Series, 52, 133-134 (2008) and Fluiter et al., Mol. Biosyst., 2009, 10, 1039 hereby incorporated by reference).


Representative U.S. publications that teach the preparation of UNA include, but are not limited to, U.S. Pat. No. 8,314,227; and US Patent Publication Nos. 2013/0096289; 2013/0011922; and 2011/0313020, the entire contents of each of which are hereby incorporated herein by reference.


The ribose molecule may also be modified with a cyclopropane ring to produce a tricyclodeoxynucleic acid (tricyclo DNA). The ribose moiety may be substituted for another sugar such as 1,5,-anhydrohexitol, threose to produce a threose nucleoside (TNA), or arabinose to produce an arabino nucleoside. The ribose molecule can also be replaced with non-sugars such as cyclohexene to produce cyclohexene nucleoside or glycol to produce glycol nucleosides.


Potentially stabilizing modifications to the ends of nucleoside molecules can include N-(acetylaminocaproyl)-4-hydroxyprolinol (Hyp-C6-NHAc), N-(caproyl-4-hydroxyprolinol (Hyp-C6), N-(acetyl-4-hydroxyprolinol (Hyp-NHAc), thymidine-2′-O-deoxythymidine (ether), N-(aminocaproyl)-4-hydroxyprolinol (Hyp-C6-amino), 2-docosanoyl-uridine-3″-phosphate, inverted base dT(idT) and others. Disclosure of this modification can be found in PCT Publication No. WO 2011/005861.


Other alternatives chemistries of an oligonucleotide of the invention include a 5′ phosphate or 5′ phosphate mimic, e.g., a 5′-terminal phosphate or phosphate mimic of an oligonucleotide. Suitable phosphate mimics are disclosed in, for example US Patent Publication No. 2012/0157511, the entire contents of which are incorporated herein by reference.


Additional non-limiting, exemplary LNA nucleosides are disclosed in PCT Publication Nos. WO 99/014226, WO 00/66604, WO 98/039352, WO 2004/046160, WO 00/047599, WO 2007/134181, WO 2010/077578, WO 2010/036698, WO 2007/090071, WO 2009/006478, WO 2011/156202, WO 2008/154401, WO 2009/067647, WO 2008/150729, Morita et al., Bioorganic & Med. Chem. Lett. 12, 73-76, Seth et al. J. Org. Chem. 2010, Vol 75(5) pp. 1569-81, Mitsuoka et al., Nucleic Acids Research 2009, 37(4), 1225-1238, and Wan and Seth, J. Medical Chemistry 2016, 59, 9645-9667, each of which are hereby incorporated by reference.


In some embodiments, the length of the ASO is 5×n+5 nucleotides (n is an integer of 3 or greater), wherein the nucleotides at positions 5×m are ribonucleotides modified by LNA (m is an integer from 1 to n) and the nucleotides at the remaining positions are ribonucleotides modified by 2′-O-methoxyethyl.


In some embodiments, the nucleotide sugar modification is 2′-O—C1-4alkyl such as 2′-O-methyl (2′-OMe), 2′-deoxy (2′-H), 2-O—C1-3alkyl-O—C1-3alkyl such as 2′-methoxyethyl (“2′-MOE”), 2′-fluoro (“2′-F”), 2′-amino (“2-NH2”), 2′-arabinosyl (“2′-arabino”) nucleotide, 2′-F-arabinosyl (“2′-F-arabino”) nucleotide, 2′-locked nucleic acid (“LNA”) nucleotide, 2′-amido bridge nucleic acid (AmNA), 2′-unlocked nucleic acid (“ULNA”) nucleotide, a sugar in L form (“L-sugar”), or 4′-thioribosyl nucleotide.


Mixmers and Gapmers

The ASO can have a mixmer and/or gapmer structure, for example, in a pattern disclosed by the ASOs in FIG. 5A, FIG. 5B, or FIG. 14.


In certain embodiments, the ASO is a mixmer. As used herein, the term “mixmer” refers to an oligonucleotide comprising an alternating composition of DNA monomers and nucleoside analogue monomers across at least a portion of the oligonucleotide sequence. In certain embodiments, the ASO is a mixmer based on the gapmer structure, comprising a mixture of DNA nucleotides and 2′-MOE nucleotides in the gap, flanked by RNA sequences in the wings. Mixmers may be designed to comprise a mixture of affinity enhancing nucleotide analogues, such as in non-limiting example 2′-O-alkyl-RNA monomers, 2′-amino-DNA monomers, 2′-fluoro-DNA monomers, LNA monomers, arabino nucleic acid (ANA) monomers, 2′-fluoro-ANA monomers, HNA monomers, INA monomers, 2′-MOE-RNA (2′-O-methoxyethyl-RNA), 2′Fluoro-DNA, and LNA. In some embodiments, the mixmer is incapable of recruiting RNase H. In some embodiments, the mixmer comprises one type of affinity enhancing nucleotide analogue together with DNA and/or RNA.


Multiple different modifications can be interspaced in a mixmer. For example, the ASO can comprise LNA modification in a plurality of nucleotides and a different modification in some or all of the rest of the nucleotides. In some embodiments, any two adjacent LNA-modified nucleotides are separated by at least 1, 2, 3, 4, or 5 nucleotides. Throughout the ASO, the distance between adjacent LNA-modified nucleotides can either be constant (e.g., any two adjacent LNA-modified nucleotides are separated by 1, 2, 3, 4, or 5 nucleotides) or variable. In some embodiments, the length of the ASO is 3×n, 3×n−1, or 3×n−2 nucleotides (n is an integer of 6 or greater), wherein (a) (i) the nucleotides at positions 3×m−2 (m is an integer from 1 to n) are ribonucleotides comprising a first modification (e.g., LNA), (ii) the nucleotides at positions 3×m−1 (m is an integer from 1 to n) are ribonucleotides comprising a first modification (e.g., LNA), or (iii) the nucleotides at positions 3×m (m is an integer from 1 to n) are ribonucleotides comprising a first modification (e.g., LNA); and (b) the nucleotides at the remaining positions comprise a second, different modification (e.g., 2′-O-methoxyethyl). The ASO called hCPS1-ASO-1d herein has such a structure. In some embodiments, the length of the ASO is 2×n or 2×n−1 nucleotides (n is an integer of 9 or greater), wherein (a) (i) the nucleotides at positions 2×m−1 (m is an integer from 1 to n) are ribonucleotides comprising a first modification (e.g., LNA), or (ii) the nucleotides at positions 2×m (m is an integer from 1 to n) are ribonucleotides comprising a first modification (e.g., LNA); and (b) the nucleotides at the remaining positions comprise a second, different modification (e.g., 2′-O-methoxyethyl). The ASO called hCPS1-ASO-1e herein has such a structure. Similar modification patterns, for example, where the first modification is repeated every 4, 5, or more nucleotides, are also contemplated herein.


In some embodiments, the ASO further comprises a GalNAc or Teg-GalNAc moiety at the 5′ or 3′ end of the ASO. In some embodiments, the ASO further comprises a cholesterol or biotin moiety at the 5′ or 3′ end of the ASO.


In certain embodiments, the ASO comprises a DNA sequence (e.g., having at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 contiguous nucleotides of unmodified DNA) flanked by RNA sequences. Such structure is known as “gapmer,” in which the internal DNA region is referred to as the “gap” and the external RNA regions is referred to as the “wings” (see, e.g., PCT Application Publication No. WO2013/177248). Gapmers were known to facilitate degradation of the target RNA by recruiting nuclear RNAses (e.g., RNase H). Surprisingly, in the present disclosure, it has been discovered that a gapmer binding a regRNA (e.g., hCPS1-ASO-1a), like regRNAs having the same sequence but having different chemical modifications (e.g., hCPS1-ASO-1g), can also increase target gene expression.


In certain embodiments, the gapmer is about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more nucleotides in length. In certain embodiments, the gap is about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or more nucleotides in length. In certain embodiments, one or both wings are about 2, 3, 4, 5, 6, 7, 8, 9, 10, or more nucleotides in length. In certain embodiments, one or both wings comprises RNA modifications, for example, β-D-ribonucleosides, 2′-modified nucleosides (e.g., 2′-O-(2-methoxyethyl) (2′-MOE), 2′-O—CH3, or 2′-fluoro-arabino (FANA)), and bicyclic sugar modified nucleosides (e.g., having a constrained ethyl or locked nucleic acid (LNA)). In certain embodiments, each ribonucleotide in the gapmer is modified by 2′-MOE. In certain embodiments, the gapmer comprises one or more modified internucleotide bonds, e.g., phosphorothioate (PS) internucleotide linkage. In certain embodiments, each two adjacent nucleotides in the gapmer are linked by a phosphorothioate internucleotide bond.


In certain embodiments, the ASO does not comprise 7 or more, 8 or more, 9 or more, 10 or more, 10 or more, 11 or more, 12 or more, 13 or more, 14 or more, or 15 or more contiguous nucleotides of unmodified DNA. In some embodiments, such a DNA sequence is disrupted by modified (e.g., 2′-MOE modified) ribonucleotides every 2, 3, 4, 5, or more nucleotides. In some embodiments, the ASO comprises only ribonucleotides and no deoxyribonucleotides.


The structural features of mixmer and gapmer can be combined. In certain embodiments, the ASO has a structure similar to that of a mixmer disclosed herein (e.g., one having interspaced modifications), except that the second modification in the gap is changed to a third modification (e.g., deoxyribonucleotide). In certain embodiments, the ASO has a structure similar to that of a gapmer disclosed herein, except that in the gap the nucleotides are modified in a mixmer pattern.


In certain embodiments, the ASO further comprises a ligand moiety, e.g., a ligand moiety that specifically targets a tissue or organ in a subject. For example, N-acetylgalactosamine (GalNAc) specifically targets liver. In certain embodiments, the ligand moiety comprises GalNAc. In certain embodiments, the ligand moiety comprises a three-cluster GalNAc moiety, commonly denoted GAlNAc3. Other types of GalNAc moieties are one-cluster, two cluster or four cluster GAlNAc, denoted as GAlNAc1, GAlNAc2, or GAlNAc4. In certain embodiments, the ligand moiety comprises GalNAc1, GALNAc2, GAlNAc3, or GalNAc4.


III. Pharmaceutical Compositions

In certain embodiments, the ASOs disclosed herein can be present in pharmaceutical compositions. The pharmaceutical composition can be formulated for use in a variety of drug delivery systems. One or more pharmaceutically acceptable excipients or carriers can also be included in the composition for proper formulation. Suitable formulations for use in the present disclosure are found in Remington's Pharmaceutical Sciences, Mack Publishing Company, Philadelphia, Pa., 17th ed., 1985. For a brief review of methods for drug delivery, see, e.g., Langer, Science 249:1527-1533, 1990, hereby incorporated by reference in its entirety.


Exemplary carriers and pharmaceutical formulations suitable for delivering nucleic acids are described in Durymanov and Reineke (2018) Front. Pharmacol. 9:971; Barba et al. (2019) Pharmaceutics 11(8): 360; Ni et al. (2019) Life (Basel) 9(3): 59. It is understood that the presence of a ligand moiety conjugated to the ASO may circumvent the need for a carrier for delivery to a tissue or organ targeted by the ligand moiety.


The delivery of an oligonucleotide of the disclosure to a cell e.g., a cell within a subject, such as a human subject e.g., a subject in need thereof, such as a subject having a CPS1 related disorder or other urea cycle disorders can be achieved in a number of different ways. For example, delivery may be performed by contacting a cell with an oligonucleotide of the disclosure either in vitro or in vivo. In vivo delivery may also be performed directly by administering a composition comprising an oligonucleotide to a subject. These alternatives are discussed further below.


In general, any method of delivering a nucleic acid molecule (in vitro or in vivo) can be adapted for use with an oligonucleotide of the disclosure (see e.g., Akhtar S. and Julian R L., (1992) Trends Cell. Biol. 2(5):139-144 and PCT Publication No. WO 94/02595, which are incorporated herein by reference in their entireties). For in vivo delivery, factors to consider in order to deliver an oligonucleotide molecule include, for example, biological stability of the delivered molecule, prevention of non-specific effects, and accumulation of the delivered molecule in the target tissue. The non-specific effects of an oligonucleotide can be minimized by local administration, for example, by direct injection or implantation into a tissue or topically administering the preparation. Local administration to a treatment site maximizes local concentration of the agent, limits the exposure of the agent to systemic tissues that can otherwise be harmed by the agent or that can degrade the agent, and permits a lower total dose of the oligonucleotide molecule to be administered.


For administering an oligonucleotide systemically for the treatment of a disease, the oligonucleotide can include alternative nucleobases, alternative sugar moieties, and/or alternative internucleoside linkages, or alternatively delivered using a drug delivery system; both methods act to prevent the rapid degradation of the oligonucleotide by endo- and exo-nucleases in vivo. Modification of the oligonucleotide or the pharmaceutical carrier can also permit targeting of the oligonucleotide composition to the target tissue and avoid undesirable off-target effects. Oligonucleotide molecules can be modified by chemical conjugation to lipophilic groups such as cholesterol to enhance cellular uptake and prevent degradation. In an alternative embodiment, the oligonucleotide can be delivered using drug delivery systems such as a nanoparticle, a lipid nanoparticle, a polyplex nanoparticle, a lipoplex nanoparticle, a dendrimer, a polymer, liposomes, or a cationic delivery system. Positively charged cationic delivery systems facilitate binding of an oligonucleotide molecule (negatively charged) and also enhance interactions at the negatively charged cell membrane to permit efficient uptake of an oligonucleotide by the cell. Cationic lipids, dendrimers, or polymers can either be bound to an oligonucleotide, or induced to form a vesicle or micelle that encases an oligonucleotide. The formation of vesicles or micelles further prevents degradation of the oligonucleotide when administered systemically. In general, any methods of delivery of nucleic acids known in the art may be adaptable to the delivery of the oligonucleotides of the disclosure. Methods for making and administering cationic oligonucleotide complexes are well within the abilities of one skilled in the art (see e.g., Sorensen, D R., et al. (2003) J. Mol. Biol 327:761-766; Verma, U N. et al., (2003) Clin. Cancer Res. 9:1291-1300; Arnold, A S et al., (2007) J. Hypertens. 25:197-205, which are incorporated herein by reference in their entirety). Some non-limiting examples of drug delivery systems useful for systemic delivery of oligonucleotides include DOTAP (Sorensen, D R., et al (2003), supra; Verma, U N. et al., (2003), supra), Oligofectamine™, “solid nucleic acid lipid particles” (Zimmermann, T S. et al., (2006) Nature 441:111-114), cardiolipin (Chien, P Y. et al., (2005) Cancer Gene Ther. 12:321-328; Pal, A. et al., (2005) Int J. Oncol. 26:1087-1091), polyethyleneimine (Bonnet M E. et al., (2008) Pharm. Res. August 16 Epub ahead of print; Aigner, A. (2006) J. Biomed. Biotechnol. 71659), Arg-Gly-Asp (RGD) peptides (Liu, S. (2006) Mol. Pharm. 3:472-487), and polyamidoamines (Tomalia, D A. et al., (2007) Biochem. Soc. Trans. 35:61-67; Yoo, H. et al., (1999) Pharm. Res. 16:1799-1804). In some embodiments, an oligonucleotide forms a complex with cyclodextrin for systemic administration. Methods for administration and pharmaceutical compositions of oligonucleotides and cyclodextrins can be found in U.S. Pat. No. 7,427,605, which is herein incorporated by reference in its entirety. In some embodiments the oligonucleotides of the disclosure are delivered by polyplex or lipoplex nanoparticles. Methods for administration and pharmaceutical compositions of oligonucleotides and polyplex nanoparticles and lipoplex nanoparticles can be found in U.S. Patent Publication Nos. 2017/0121454; 2016/0369269; 2016/0279256; 2016/0251478; 2016/0230189; 2015/0335764; 2015/0307554; 2015/0174549; 2014/0342003; 2014/0135376; and 2013/0317086, which are herein incorporated by reference in their entirety.


In some embodiments, the compounds described herein may be administered in combination with additional therapeutics. Examples of additional therapeutics include standard of care urea cycle disorder treatments such as low protein diet or nitrogen scavengers including, but not limited to, glycerol phenylbutyrate, sodium benzoate, phenylbutyrate, or phenylacetate.


Membranous Molecular Assembly Delivery Methods

Oligonucleotides of the disclosure can also be delivered using a variety of membranous molecular assembly delivery methods including liquid nanoparticles (LNPs), polymeric, biodegradable microparticles, or microcapsule delivery devices known in the art. For example, a colloidal dispersion system may be used for targeted delivery of an oligonucleotide agent described herein. Colloidal dispersion systems include macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. Liposomes are artificial membrane vesicles that are useful as delivery vehicles in vitro and in vivo. It has been shown that large unilamellar vesicles (LUVs), which range in diameter from 0.2-4.0 μm can encapsulate a substantial percentage of an aqueous buffer containing large macromolecules. Liposomes are useful for the transfer and delivery of active ingredients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomal bilayer fuses with bilayer of the cellular membranes. As the merging of the liposome and cell progresses, the internal aqueous contents that include the oligonucleotide are delivered into the cell where the oligonucleotide can specifically bind to a target RNA. In some cases, the liposomes are also specifically targeted, e.g., to direct the oligonucleotide to particular cell types. The composition of the liposome is usually a combination of phospholipids, usually in combination with steroids, especially cholesterol. Other phospholipids or other lipids may also be used. The physical characteristics of liposomes depend on pH, ionic strength, and the presence of divalent cations.


A liposome containing an oligonucleotide can be prepared by a variety of methods. In one example, the lipid component of a liposome is dissolved in a detergent so that micelles are formed with the lipid component. For example, the lipid component can be an amphipathic cationic lipid or lipid conjugate. The detergent can have a high critical micelle concentration and may be nonionic. Exemplary detergents include cholate, CHAPS, octylglucoside, deoxycholate, and lauroyl sarcosine. The oligonucleotide preparation is then added to the micelles that include the lipid component. The cationic groups on the lipid interact with the oligonucleotide and condense around the oligonucleotide to form a liposome. After condensation, the detergent is removed, e.g., by dialysis, to yield a liposomal preparation of oligonucleotide.


If necessary, a carrier compound that assists in condensation can be added during the condensation reaction, e.g., by controlled addition. For example, the carrier compound can be a polymer other than a nucleic acid (e.g., spermine or spermidine). The pH can also be adjusted to favor condensation.


Methods for producing stable polynucleotide delivery vehicles, which incorporate a polynucleotide/cationic lipid complex as a structural component of the delivery vehicle, are further described in, e.g., WO 96/37194, the entire contents of which are incorporated herein by reference. Liposome formation can also include one or more aspects of exemplary methods described in Feigner, P. L. et al., (1987) Proc. Natl. Acad. Sci. USA 8:7413-7417; U.S. Pat. Nos. 4,897,355; 5,171,678; Bangham et al., (1965) M. Mol. Biol. 23:238; Olson et al., (1979) Biochim. Biophys. Acta 557:9; Szoka et al., (1978) Proc. Natl. Acad. Sci. 75: 4194; Mayhew et al., (1984) Biochim. Biophys. Acta 775:169; Kim et al., (1983) Biochim. Biophys. Acta 728:339; and Fukunaga et al., (1984) Endocrinol. 115:757. Commonly used techniques for preparing lipid aggregates of appropriate size for use as delivery vehicles include sonication and freeze-thaw plus extrusion (see, e.g., Mayer et al., (1986) Biochim. Biophys. Acta 858:161. Microfluidization can be used when consistently small (50 to 200 nm) and relatively uniform aggregates are desired (Mayhew et al., (1984) Biochim. Biophys. Acta 775:169). These methods are readily adapted to packaging oligonucleotide preparations into liposomes.


Liposomes fall into two broad classes. Cationic liposomes are positively charged liposomes which interact with the negatively charged nucleic acid molecules to form a stable complex. The positively charged nucleic acid/liposome complex binds to the negatively charged cell surface and is internalized in an endosome. Due to the acidic pH within the endosome, the liposomes are ruptured, releasing their contents into the cell cytoplasm (Wang et al. (1987) Biochem. Biophys. Res. Commun., 147:980-985).


Liposomes, which are pH-sensitive or negatively charged, entrap nucleic acids rather than complex with them. Since both the nucleic acid and the lipid are similarly charged, repulsion rather than complex formation occurs. Nevertheless, some nucleic acid is entrapped within the aqueous interior of these liposomes. pH sensitive liposomes have been used to deliver nucleic acids encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou et al. (1992) Journal of Controlled Release, 19:269-274).


One major type of liposomal composition includes phospholipids other than naturally derived phosphatidylcholine. Neutral liposome compositions, for example, can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC). Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are formed primarily from dioleoyl phosphatidylethanolamine (DOPE). Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, soybean PC, and egg PC. Another type is formed from mixtures of phospholipid and/or phosphatidylcholine and/or cholesterol.


Examples of other methods to introduce liposomes into cells in vitro and in vivo include U.S. Pat. Nos. 5,283,185; 5,171,678; WO 94/00569; WO 93/24640; WO 91/16024; Feigner, (1994) J. Biol. Chem. 269:2550; Nabel, (1993) Proc. Natl. Acad. Sci. 90:11307; Nabel, (1992) Human Gene Ther. 3:649; Gershon, (1993) Biochem. 32:7143; and Strauss, (1992) EMBO J. 11:417.


Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising NOVASOME™ I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and NOVASOME™ II (glyceryl distearate/cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver cyclosporin-A into the dermis of mouse skin. Results indicated that such non-ionic liposomal systems were effective in facilitating the deposition of cyclosporine A into different layers of the skin (Hu et al., (1994) S.T.P.Pharma. Sci., 4(6):466).


Liposomes may also be sterically stabilized liposomes, comprising one or more specialized lipids that result in enhanced circulation lifetimes relative to liposomes lacking such specialized lipids. Examples of sterically stabilized liposomes are those in which part of the vesicle-forming lipid portion of the liposome (A) comprises one or more glycolipids, such as monosialoganglioside GM1, or (B) is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety. While not wishing to be bound by any particular theory, it is thought in the art that, at least for sterically stabilized liposomes containing gangliosides, sphingomyelin, or PEG-derivatized lipids, the enhanced circulation half-life of these sterically stabilized liposomes derives from a reduced uptake into cells of the reticuloendothelial system (RES) (Allen et al., (1987) FEBS Letters, 223:42; Wu et al., (1993) Cancer Research, 53:3765).


Various liposomes comprising one or more glycolipids are known in the art. Papahadjopoulos et al. (Ann. N.Y. Acad. Sci., (1987), 507:64) reported the ability of monosialoganglio side GM1, galactocerebroside sulfate, and phosphatidylinositol to improve blood half-lives of liposomes. These findings were expounded upon by Gabizon et al. (Proc. Natl. Acad. Sci. U.S.A., (1988), 85:6949). U.S. Pat. No. 4,837,028 and WO 88/04924, both to Allen et al., disclose liposomes comprising (1) sphingomyelin and (2) the ganglioside GM1 or a galactocerebroside sulfate ester. U.S. Pat. No. 5,543,152 (Webb et al.) discloses liposomes comprising sphingomyelin. Liposomes comprising 1,2-sn-dimyristoylphosphatidylcholine are disclosed in WO 97/13499 (Lim et al).


In one embodiment, cationic liposomes are used. Cationic liposomes possess the advantage of being able to fuse to the cell membrane. Non-cationic liposomes, although not able to fuse as efficiently with the plasma membrane, are taken up by macrophages in vivo and can be used to deliver oligonucleotides to macrophages.


Further advantages of liposomes include: liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect encapsulated oligonucleotides in their internal compartments from metabolism and degradation (Rosoff, in “Pharmaceutical Dosage Forms,” Lieberman, Rieger and Banker (Eds.), 1988, volume 1, p. 245). Important considerations in the preparation of liposome formulations are the lipid surface charge, vesicle size and the aqueous volume of the liposomes.


A positively charged synthetic cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) can be used to form small liposomes that interact spontaneously with nucleic acid to form lipid-nucleic acid complexes which are capable of fusing with the negatively charged lipids of the cell membranes of tissue culture cells, resulting in delivery of oligonucleotide (see, e.g., Feigner, P. L. et al., (1987) Proc. Natl. Acad. Sci. USA 8:7413-7417, and U.S. Pat. No. 4,897,355 for a description of DOTMA and its use with DNA).


A DOTMA analogue, 1,2-bis(oleoyloxy)-3-(trimethylammonia)propane (DOTAP) can be used in combination with a phospholipid to form DNA-complexing vesicles. LIPOFECTIN™ Bethesda Research Laboratories, Gaithersburg, Md.) is an effective agent for the delivery of highly anionic nucleic acids into living tissue culture cells that comprise positively charged DOTMA liposomes which interact spontaneously with negatively charged polynucleotides to form complexes. When enough positively charged liposomes are used, the net charge on the resulting complexes is also positive. Positively charged complexes prepared in this way spontaneously attach to negatively charged cell surfaces, fuse with the plasma membrane, and efficiently deliver functional nucleic acids into, for example, tissue culture cells. Another commercially available cationic lipid, 1,2-bis(oleoyloxy)-3,3-(trimethylammonia)propane (“DOTAP”) (Boehringer Mannheim, Indianapolis, Ind.) differs from DOTMA in that the oleoyl moieties are linked by ester, rather than ether linkages.


Other reported cationic lipid compounds include those that have been conjugated to a variety of moieties including, for example, carboxyspermine which has been conjugated to one of two types of lipids and includes compounds such as 5-carboxyspermylglycine dioctaoleoylamide (“DOGS”) (TRANSFECTAM™, Promega, Madison, Wis.) and dipalmitoylphosphatidylethanolamine 5-carboxyspermyl-amide (“DPPES”) (see, e.g., U.S. Pat. No. 5,171,678).


Another cationic lipid conjugate includes derivatization of the lipid with cholesterol (“DC-Chol”) which has been formulated into liposomes in combination with DOPE (See, Gao, X. and Huang, L., (1991) Biochim. Biophys. Res. Commun. 179:280). Lipopolylysine, made by conjugating polylysine to DOPE, has been reported to be effective for transfection in the presence of serum (Zhou, X. et al., (1991) Biochim. Biophys. Acta 1065:8). For certain cell lines, these liposomes containing conjugated cationic lipids, are said to exhibit lower toxicity and provide more efficient transfection than the DOTMA-containing compositions. Other commercially available cationic lipid products include DMRIE and DMRIE-HP (Vical, La Jolla, Calif.) and Lipofectamine (DOSPA) (Life Technology, Inc., Gaithersburg, Md.). Other cationic lipids suitable for the delivery of oligonucleotides are described in WO 98/39359 and WO 96/37194.


Liposomal formulations are particularly suited for topical administration, liposomes present several advantages over other formulations. Such advantages include reduced side effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer oligonucleotide into the skin. In some implementations, liposomes are used for delivering oligonucleotide to epidermal cells and also to enhance the penetration of oligonucleotide into dermal tissues, e.g., into skin. For example, the liposomes can be applied topically. Topical delivery of drugs formulated as liposomes to the skin has been documented (see, e.g., Weiner et al., (1992) Journal of Drug Targeting, vol. 2, 405-410 and du Plessis et al., (1992) Antiviral Research, 18:259-265; Mannino, R. J. and Fould-Fogerite, S., (1998) Biotechniques 6:682-690; Itani, T. et al., (1987) Gene 56:267-276; Nicolau, C. et al. (1987) Meth. Enzymol. 149:157-176; Straubinger, R. M. and Papahadjopoulos, D. (1983) Meth. Enzymol. 101:512-527; Wang, C. Y. and Huang, L., (1987) Proc. Natl. Acad. Sci. USA 84:7851-7855).


Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising NOVASOME I (glyceryl dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and NOVASOME II (glyceryl distearate/cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver a drug into the dermis of mouse skin. Such formulations with oligonucleotides are useful for treating a dermatological disorder.


The targeting of liposomes is also possible based on, for example, organ-specificity, cell-specificity, and organelle-specificity and is known in the art. In the case of a liposomal targeted delivery system, lipid groups can be incorporated into the lipid bilayer of the liposome in order to maintain the targeting ligand in stable association with the liposomal bilayer. Various linking groups can be used for joining the lipid chains to the targeting ligand. Additional methods are known in the art and are described, for example in U.S. Patent Application Publication No. 20060058255, the linking groups of which are herein incorporated by reference.


Liposomes that include oligonucleotides can be made highly deformable. Such deformability can enable the liposomes to penetrate through pore that are smaller than the average radius of the liposome. For example, transfersomes are yet another type of liposomes, and are highly deformable lipid aggregates which are attractive candidates for drug delivery vehicles. Transfersomes can be described as lipid droplets which are so highly deformable that they are easily able to penetrate through pores which are smaller than the droplet. Transfersomes can be made by adding surface edge activators, usually surfactants, to a standard liposomal composition. Transfersomes that include oligonucleotides can be delivered, for example, subcutaneously by infection in order to deliver oligonucleotides to keratinocytes in the skin. In order to cross intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. In addition, due to the lipid properties, these transfersomes can be self-optimizing (adaptive to the shape of pores, e.g., in the skin), self-repairing, and can frequently reach their targets without fragmenting, and often self-loading. Transfersomes have been used to deliver serum albumin to the skin. The transfersome-mediated delivery of serum albumin has been shown to be as effective as subcutaneous injection of a solution containing serum albumin.


Other formulations amenable to the present disclosure are described in PCT Publication Nos. WO 2009/088891, WO 2009/132131, and WO 2008/042973, which are hereby incorporated by reference in their entirety.


Surfactants find wide application in formulations such as emulsions (including microemulsions) and liposomes. The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophile/lipophile balance (HLB). The nature of the hydrophilic group (also known as the “head”) provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, N.Y., 1988, p. 285).


If the surfactant molecule is not ionized, it is classified as a nonionic surfactant. Nonionic surfactants find wide application in pharmaceutical and cosmetic products and are usable over a wide range of pH values. In general, their HLB values range from 2 to about 18 depending on their structure. Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters. Nonionic alkanolamides and ethers such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.


If the surfactant molecule carries a negative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates. The most important members of the anionic surfactant class are the alkyl sulfates and the soaps.


If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant is classified as cationic. Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class.


If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric. Amphoteric surfactants include acrylic acid derivatives, substituted alkylamides, N-alkylbetaines, and phosphatides.


The use of surfactants in drug products, formulations and in emulsions has been reviewed (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, N.Y., 1988, p. 285).


The oligonucleotides for use in the methods of the disclosure can also be provided as micellar formulations. Micelles are a particular type of molecular assembly in which amphipathic molecules are arranged in a spherical structure such that all the hydrophobic portions of the molecules are directed inward, leaving the hydrophilic portions in contact with the surrounding aqueous phase. The converse arrangement exists if the environment is hydrophobic.


Lipid Nanoparticle-Based Delivery Methods

Oligonucleotides of in the disclosure may be fully encapsulated in a lipid formulation, e.g., a lipid nanoparticle (LNP), or other nucleic acid-lipid particle. LNPs are useful for systemic applications, as they exhibit extended circulation lifetimes following intravenous (i.v.) injection and accumulate at distal sites (e.g., sites physically separated from the administration site). LNPs include “pSPLP,” which include an encapsulated condensing agent-nucleic acid complex as set forth in PCT Publication No. WO 00/03683. The particles of the present disclosure typically have a mean diameter of about 50 nm to about 150 nm, more typically about 60 nm to about 130 nm, more typically about 70 nm to about 110 nm, most typically about 70 nm to about 90 nm, and are substantially nontoxic. In addition, the nucleic acids when present in the nucleic acid-lipid particles of the present disclosure are resistant in aqueous solution to degradation with a nuclease. Nucleic acid-lipid particles and their method of preparation are disclosed in, e.g., U.S. Pat. Nos. 5,976,567; 5,981,501; 6,534,484; 6,586,410; 6,815,432; U.S. Publication No. 2010/0324120 and PCT Publication No. WO 96/40964.


Non-limiting examples of cationic lipids include N,N-dioleyl-N,N-dimethylammonium chloride (DODAC), N,N-distearyl-N,N-dimethylammonium bromide (DDAB), N—(I-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTAP), N—(I-(2,3-dioleyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTMA), N,N-dimethyl-2,3-dioleyloxy)propylamine (DODMA), 1,2-DiLinoleyloxy-N,N-dimethylaminopropane (DLinDMA), 1,2-Dilinolenyloxy-N,N-dimethylaminopropane (DLenDMA), 1,2-Dilinoleylcarbamoyloxy-3-dimethylaminopropane (DLin-C-DAP), 1,2-Dilinoleyoxy-3-(dimethylamino)acetoxypropane (DLin-DAC), 1,2-Dilinoleyoxy-3-morpholinopropane (DLin-MA), 1,2-Dilinoleoyl-3-dimethylaminopropane (DLinDAP), 1,2-Dilinoleylthio-3-dimethylaminopropane (DLin-S-DMA), 1-Linoleoyl-2-linoleyloxy-3-dimethylaminopropane (DLin-2-DMAP), 1,2-Dilinoleyloxy-3-trimethylaminopropane chloride salt (DLin-TMA.Cl), 1,2-Dilinoleoyl-3-trimethylaminopropane chloride salt (DLin-TAP.Cl), 1,2-Dilinoleyloxy-3-(N-methylpiperazino)propane (DLin-MPZ), or 3-(N,N-Dilinoleylamino)-1,2-propanediol (DLinAP), 3-(N,N-Dioleylamino)-1,2-propanedio (DOAP), 1,2-Dilinoleyloxo-3-(2-N,N-dimethylamino)ethoxypropane (DLin-EG-DMA), 1,2-Dilinolenyloxy-N,N-dimethylaminopropane (DLinDMA), 2,2-Dilinoleyl-4-dimethylaminomethyl-[1,3]-dioxolane (DLin-K-DMA) or analogs thereof, (3aR,5s,6aS)—N,N-dimethyl-2,2-di((9Z,12Z)-octadeca-9,12-dienyetetrahydro-3aH-cyclopenta[d][1,3]dioxol-5-amine (ALN100), (6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl4-(dimethylamino)bu-tanoate (MC3), 1,1′-(2-(4-(2-((2-(bis(2-hydroxydodecyl)amino)ethyl)(2-hydroxydodecyl)ami-no)ethyl)piperazin-1-yeethylazanediyedidodecan-2-ol (Tech G1), or a mixture thereof. The cationic lipid can comprise, for example, from about 20 mol % to about 50 mol % or about 40 mol % of the total lipid present in the particle.


The ionizable/non-cationic lipid can be an anionic lipid or a neutral lipid including, but not limited to, distearoylphosphatidylcholine (DSPC), dioleoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylglycerol (DOPG), dipalmitoylphosphatidylglycerol (DPPG), dioleoyl-phosphatidylethanolamine (DOPE), palmitoyloleoylphosphatidylcholine (POPC), palmitoyloleoylphosphatidylethanolamine (POPE), dioleoyl-phosphatidylethanolamine 4-(N-maleimidomethyl)-cyclohexane-1-carboxylate (DOPE-mal), dipalmitoyl phosphatidyl ethanolamine (DPPE), dimyristoylphosphoethanolamine (DMPE), distearoyl-phosphatidyl-ethanolamine (DSPE), 16-O-monomethyl PE, 16-O-dimethyl PE, 18-1-trans PE, 1-stearoyl-2-oleoyl-phosphatidyethanolamine (SOPE), cholesterol, or a mixture thereof. The non-cationic lipid can be, for example, from about 5 mol % to about 90 mol %, about 10 mol %, or about 60 mol % if cholesterol is included, of the total lipid present in the particle.


The conjugated lipid that inhibits aggregation of particles can be, for example, a polyethyleneglycol (PEG)-lipid including, without limitation, a PEG-diacylglycerol (DAG), a PEG-dialkyloxypropyl (DAA), a PEG-phospholipid, a PEG-ceramide (Cer), or a mixture thereof. The PEG-DAA conjugate can be, for example, a PEG-dilauryloxypropyl (C12), a PEG-dimyristyloxypropyl (C14), a PEG-dipalmityloxypropyl (C16), or a PEG-distearyloxypropyl (C18). The conjugated lipid that prevents aggregation of particles can be, for example, from 0 mol % to about 20 mol % or about 2 mol % of the total lipid present in the particle.


In some embodiments, the nucleic acid-lipid particle further includes cholesterol at, e.g., about 10 mol % to about 60 mol % or about 50 mol % of the total lipid present in the particle.


The ASO may also be delivered in a lipidoid. The synthesis of lipidoids has been extensively described and formulations containing these compounds are particularly suited for delivery of modified nucleic acid molecules or ASOs (see Mahon et al, Bioconjug Chem. 2010 21: 1448-1454; Schroeder et al, J Intern Med. 2010 267:9-21; Akinc et al, Nat Biotechnol. 2008 26:561-569; Love et al, Proc Natl Acad Sci USA. 2010 107: 1864-1869; Siegwart et al, Proc Natl Acad Sci USA. 2011 108: 12996-3001; all of which are incorporated herein in their entireties).


Lipid compositions for RNA delivery are disclosed in PCT Publication Nos. WO2012/170930A1, WO2013/149141A1, and WO2014/152211A1, each of which is hereby incorporated by reference.


IV. Therapeutic Applications

The present disclosure provides methods for treating diseases and disorders associated with decreased gene expression (e.g., decreased CPS1 gene expression). The method employs an ASO that hybridizes with a regulatory RNA transcribed from a regulatory element of the target gene (e.g., CPS1) or a pharmaceutical composition comprising the ASO. The oligonucleotide compositions described herein are useful in the methods of the disclosure and, while not bound by theory, are believed to exert their desirable effects through their ability to modulate the level, status, and/or activity of CPS1, e.g., by increasing the level of the CPS1 protein in a cell in a subject (e.g., a mammal, a primate, or a human).


Also provided herein are methods of treating or preventing hyperammonemia in a subject, including administering an ASO described herein to the subject. The disclosure further provides methods of treating or preventing hyperammonemia in a subject that has or is at risk of developing hyperammonemia, including administering an ASO described herein to the subject. In some embodiments, the subject having or at risk of developing hyperammonemia has one or more of the following: a urea cycle disorder, hepatic encephalopathy, acute liver failure, liver cirrhosis, non-alcoholic fatty liver disease, renal dysfunction and/or failure, propionic acidemia, methylmalonic acidemia, isovaleric acidemia, a urinary tract infection, intestinal bacterial overgrowth, a fatty acid oxidation disorder, and a systemic infection. In some embodiments, the subject has or is at risk of developing hyperammonemia associated with the intake of a drug (e.g., valproic acid, carbamazepine, fluorouracil, sulfadiazine, ribavirin, salicylates, and glycine). In some embodiments, the methods include administering an ASO described herein to the subject. In certain embodiments, treatment with an ASO described herein results in decreased ammonia levels (e.g., blood ammonia levels, plasma ammonia levels, systemic ammonia levels, or cerebrospinal fluid ammonia levels) in a subject as compared to a subject (e.g., the same subject prior to the treatment) that has not been treated with the ASO. In some embodiments, the reduction in ammonia levels (e.g., blood ammonia levels, systemic ammonia levels, or cerebrospinal fluid ammonia levels) is a reduction of at least about 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100%, relative to the ammonia levels (e.g., blood ammonia levels, systemic ammonia levels, or cerebrospinal fluid ammonia levels) in the subject (e.g., as compared to the same subject prior to administration of the ASO).


Methods of measuring ammonia levels (e.g., in a plasma sample) are known in the art and include enzymatic kinetic assays in which ammonia reacts with α-ketoglutarate and reduced nicotinamide adenine dinucleotide phosphate (NADPH) in the presence of L-glutamate dehydrogenase resulting in glutamate and NADP+. The amount of oxidized NADPH is then measured (e.g., photometrically) and is equivalent to the amount of ammonia.


An aspect of the present disclosure relates to methods of treating disorders (e.g., a urea cycle disorder) in a subject (e.g., a human subject) in need thereof. In some embodiments, provided herein are methods of treating a urea cycle disorder in a subject (e.g., a human subject) in need thereof, including administering an ASO provided herein to the subject. In some embodiments, the urea cycle disorder is carbamoyl-phosphate synthetase 1 (CPS1) deficiency, ornithine transcarbamylase (OTC) deficiency, citrullinemia type I (argininosuccinate synthetase (ASS) deficiency), argininosuccinate lyase (ASL) deficiency, N-acetyl glutamate synthetase (NAGS) deficiency, arginase deficiency (hyperargininemia, ARG1 deficiency), ornithine translocase deficiency (ORNT1 deficiency, hyperornithinemia-hyperammonemia-homocitrullinuria syndrome (HHH)), or citrin deficiency. In some embodiments, the urea cycle disorder is not N-acetyl glutamate synthetase (NAGS) deficiency. In some embodiments, administration of an ASO provided herein to a subject having a urea cycle disorder reduces the risk, frequency and/or severity of a hyperammonemic crisis in the subject (e.g., as compared to a subject that is not administered the ASO (e.g., the same subject prior to administration of the ASO)).


In some embodiments, the urea cycle disorder is Carbamoylphosphate synthetase I deficiency (CPS1 deficiency). In some embodiments, the urea cycle disorder is hyperammonemia. In some embodiments, the urea cycle disorder is Ornithine transcarbamylase deficiency (OTC deficiency). In some embodiments, the urea cycle disorder is Citrullinemia type I (ASS1 deficiency). In some embodiments, the urea cycle disorder is Argininosuccinic aciduria (ASL deficiencydeficiency). In some embodiments, the urea cycle disorder is Arginase deficiency (hyperargininemia, ARG1 deficiency). In some embodiments, the urea cycle disorder is Ornithine translocase deficiency (ORNT1 deficiency, hyperornithinemia-hyperammonemia-homocitrullinuria syndrome). In some embodiments, the urea cycle disorder is Citrin deficiency.


Another aspect of the disclosure includes methods of increasing the level of CPS1 in a cell of a subject identified as having a CPS1 related disorder (e.g., CPS1 deficiency) or other urea cycle disorder. Still another aspect includes a method of increasing expression of CPS1 in a cell in a subject. The methods may include contacting a cell with an ASO described herein, in an amount effective to increase expression of CPS1 in the cell, thereby increasing expression of CPS1 in the cell. In certain embodiments, the methods include contacting a cell with an ASO described herein, in an amount effective to increase expression of CPS1 in the cell, thereby increasing expression of OTC in the cell. In certain embodiments, the methods include contacting a cell with an ASO described herein, in an amount effective to increase expression of CPS1 in the cell, thereby increasing expression of other urea cycle genes in the cell, such as OTC, ASS1, ASL, ARG1, or ORNT1.


Based on the above methods, further aspects of the present disclosure include an ASO or oligonucleotide of the disclosure, or a composition comprising such an ASO or oligonucleotide, for use in therapy, or for use as a medicament, or for use in treating a CPS1 related disorder (e.g., CPS1 deficiency) or other urea cycle disorder in a subject in need thereof, or for use in increasing the level of CPS1 in a cell of a subject identified as having a CPS1 related disorder or other urea cycle disorder, or for use in increasing expression of CPS1 in a cell in a subject. The uses include the contacting of a cell with the ASO or oligonucleotide, in an amount effective to increase expression of CPS1 in the cell, thereby increasing expression of CPS1 in the cell. Embodiments described below in relation to the methods of the present disclosure are also applicable to these further aspects.


Contacting of a cell with an ASO or oligonucleotide may be done in vitro, ex vivo, or in vivo. Contacting a cell in vivo with the oligonucleotide includes contacting a cell or group of cells within a subject, e.g., a human subject, with the ASO or oligonucleotide. Combinations of in vitro and in vivo methods of contacting a cell are also possible. Contacting a cell may be direct or indirect, as discussed above. Furthermore, contacting a cell may be accomplished via a targeting ligand, including any ligand described herein or known in the art. In some embodiments, the targeting ligand is a carbohydrate moiety, e.g., a GalNAc3 ligand, or any other ligand that directs the oligonucleotide to a site of interest. The cell can be a liver cell (e.g., a hepatocyte).


Administration of the ASO or oligonucleotide or pharmaceutical composition disclosed herein could be intravenous, intraarterial, intraperitoneal, intramuscular, subcutaneous, intrapleural, intrathecal, intracavitary, by perfusion through a catheter or by direct intralesional injection. In certain embodiments, the ASO or oligonucleotide or pharmaceutical composition is administered systemically. In certain embodiments, the ASO or oligonucleotide or pharmaceutical composition is administered by a parenteral route. For example, in certain embodiments, the ASO or oligonucleotide or pharmaceutical composition is administered by intravenously (e.g., by intravenous infusion), for example, with a prefilled bag, a prefilled pen, or a prefilled syringe. In other embodiments, the ASO or oligonucleotide or pharmaceutical composition is administered locally to an organ or tissue in which an increase in the target gene expression is desirable (e.g., liver).


In some embodiments, the ASO or oligonucleotide is administered to a subject such that the ASO or oligonucleotide is delivered to a specific site within the subject. Such targeted delivery can be achieved by either systemic administration or local administration. The increase of expression of CPS1 may be assessed using measurements of the level or change in the level of CPS1 mRNA or CPS1 protein in a sample derived from a specific site within the subject. In some embodiments, the methods include measuring the levels of ammonia in a sample (e.g., blood, urine, plasma or cerebrospinal fluid) derived from the subject. Methods of measuring ammonia levels are well known in the art and described above. In certain embodiments, the methods include a clinically relevant increase of expression of CPS1, e.g., as demonstrated by a clinically relevant outcome after treatment of a subject with an agent to increase the expression of CPS1.


In other embodiments, the oligonucleotide is administered in an amount and for a time effective to result in reduction (e.g., by 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100%) of one or more symptoms of a CPS1 related disorder or a urea cycle disorder, such as high ammonia level in the blood.


Increase of CPS1 Expression Level

The therapeutic methods disclosed herein, using an ASO that targets CPS1, are designed to increase CPS1 expression level in a subject as compared to an untreated subject (e.g., the same subject prior to administration of the ASO or the pharmaceutical composition). Increasing expression of a CPS1 gene includes any level of increasing of a CPS1 gene, e.g., at least partial increase of the expression of a CPS1 gene. Increase may be assessed by an increase in an absolute or relative level of one or more of these variables compared with a control level. The control level may be any type of control level that is utilized in the art, e.g., a pre-dose baseline level, or a level determined from a similar subject, cell, or sample that is untreated or treated with a control (such as, e.g., buffer only control or inactive agent control). In certain embodiments, the method causes a clinically relevant increase of expression of CPS1, e.g. as demonstrated by a clinically relevant outcome after treatment of a subject with an agent to increase the expression of CPS1.


In certain embodiments, the methods disclosed herein increases CPS1 gene expression by at least about 1%, at least about 2%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99%, relative to the pre-dose baseline level. In certain embodiments, the methods disclosed herein increases CPS1 gene expression by at least 2 fold, at least 3 fold, at least 4 fold, at least 5 fold, at least 6 fold, at least 7 fold, at least 8 fold, at least 9 fold, or at least 10 fold relative to the pre-dose baseline level. In certain embodiments, the subject has a deficiency in CPS1 expression, and the method disclosed herein restores the CPS1 expression level or activity to at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 100% of the average CPS1 expression level or activity in subjects of the species of like age and gender.


The expression of a CPS1 gene may be assessed based on the level of any variable associated with CPS1 gene expression, e.g., CPS1 mRNA level or CPS1 protein level. It is understood that CPS1 is a chromosome-2 gene in certain mammals (e.g., human and mouse). In certain embodiments, the expression level or activity of CPS1 herein refers to the average expression level or activity in the liver.


In certain embodiments, surrogate markers can be used to detect an increase of CPS1 expression level. For example, effective treatment of a CPS1 related disorder, as demonstrated by acceptable diagnostic and monitoring criteria with an agent to increase CPS1 expression can be understood to demonstrate a clinically relevant increase in CPS1.


Increase of the expression of a CPS1 gene may be manifested by an increase of the amount of mRNA expressed by a first cell or group of cells (such cells may be present, for example, in a sample derived from a subject) in which a CPS1 gene is transcribed and which has or have been treated (e.g., by contacting the cell or cells with an oligonucleotide of the disclosure, or by administering an oligonucleotide of the disclosure to a subject in which the cells are or were present) such that the expression of a CPS1 gene is increased, as compared to a second cell or group of cells substantially identical to the first cell or group of cells but which has not or have not been so treated (control cell(s) not treated with an oligonucleotide or not treated with an oligonucleotide targeted to the gene of interest).


In other embodiments, increase of the expression of a CPS1 gene may be assessed in terms of an increase of a parameter that is functionally linked to CPS1 gene expression, e.g., CPS1 protein expression or CPS1 activity. CPS1 increase may be determined in any cell expressing CPS1, either endogenous or heterologous from an expression construct, and by any assay known in the art.


An increase of CPS1 expression may be manifested by an increase in the level of the CPS1 protein that is expressed by a cell or group of cells (e.g., the level of protein expressed in a sample derived from a subject), relative to a control cell or a control group of cells. An increase of CPS1 expression may also be manifested by an increase in the level of the CPS1 mRNA level in a treated cell or group of cells, relative to a control cell or a control group of cells.


A control cell or group of cells that may be used to assess the increase of the expression of a CPS1 gene includes a cell or group of cells that has not yet been contacted with an oligonucleotide of the disclosure. For example, the control cell or group of cells may be derived from an individual subject (e.g., a human or animal subject) prior to treatment of the subject with an oligonucleotide.


The level of CPS1 mRNA that is expressed by a cell or group of cells may be determined using any method known in the art for assessing mRNA expression. In one embodiment, the level of expression of CPS1 in a sample is determined by detecting a transcribed polynucleotide, or portion thereof, e.g., mRNA of the CPS1 gene. RNA may be extracted from cells using RNA extraction techniques including, for example, using acid phenol/guanidine isothiocyanate extraction (RNAzol B; Biogenesis), RNEASY™ RNA preparation kits (Qiagen) or PAXgene (PreAnalytix, Switzerland). Typical assay formats utilizing ribonucleic acid hybridization include nuclear run-on assays, RT-PCR, RNase protection assays, northern blotting, in situ hybridization, and microarray analysis. Circulating CPS1 mRNA may be detected using methods described in PCT Publication No. WO 2012/177906, the entire contents of which are hereby incorporated herein by reference. In some embodiments, the level of expression of CPS1 is determined using a nucleic acid probe. The term “probe,” as used herein, refers to any molecule that is capable of selectively binding to a specific CPS1 sequence, e.g. to an mRNA or polypeptide. Probes can be synthesized by one of skill in the art, or derived from appropriate biological preparations. Probes may be specifically designed to be labeled. Examples of molecules that can be utilized as probes include, but are not limited to, RNA, DNA, proteins, antibodies, and organic molecules.


Isolated mRNA can be used in hybridization or amplification assays that include, but are not limited to, Southern or northern analyses, polymerase chain reaction (PCR) analyses, and probe arrays. One method for the determination of mRNA levels involves contacting the isolated mRNA with a nucleic acid molecule (probe) that can hybridize to CPS1 mRNA. In one embodiment, the mRNA is immobilized on a solid surface and contacted with a probe, for example by running the isolated mRNA on an agarose gel and transferring the mRNA from the gel to a membrane, such as nitrocellulose. In an alternative embodiment, the probe(s) are immobilized on a solid surface and the mRNA is contacted with the probe(s), for example, in an AFFYMETRIX gene chip array. A skilled artisan can readily adapt known mRNA detection methods for use in determining the level of CPS1 mRNA.


An alternative method for determining the level of expression of CPS1 in a sample involves the process of nucleic acid amplification and/or reverse transcriptase (to prepare cDNA) of for example mRNA in the sample, e.g., by RT-PCR (the experimental embodiment set forth in Mullis, 1987, U.S. Pat. No. 4,683,202), ligase chain reaction (Barany (1991) Proc. Natl. Acad. Sci. USA 88:189-193), self-sustained sequence replication (Guatelli et al. (1990) Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh et al. (1989) Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi et al. (1988) Bio/Technology 6:1197), rolling circle replication (Lizardi et al., U.S. Pat. No. 5,854,033) or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers. In particular aspects of the invention, the level of expression of CPS1 is determined by quantitative fluorogenic RT-PCR (i.e., the TAQMAN™ System) or the DUAL-GLO® Luciferase assay.


The expression levels of CPS1 mRNA may be monitored using a membrane blot (such as used in hybridization analysis such as northern, Southern, dot, and the like), or microwells, sample tubes, gels, beads or fibers (or any solid support comprising bound nucleic acids). See U.S. Pat. Nos. 5,770,722; 5,874,219; 5,744,305; 5,677,195; and 5,445,934, which are incorporated herein by reference. The determination of CPS1 expression level may also comprise using nucleic acid probes in solution.


In some embodiments, the level of mRNA expression is assessed using branched DNA (bDNA) assays or real time RT PCR or qPCR. Such methods can also be used for the detection of CPS1 nucleic acids.


The level of CPS1 protein expression may be determined using any method known in the art for the measurement of protein levels. Such methods include, for example, electrophoresis, capillary electrophoresis, high performance liquid chromatography (HPLC), thin layer chromatography (TLC), hyperdiffusion chromatography, fluid or gel precipitin reactions, absorption spectroscopy, a colorimetric assays, spectrophotometric assays, flow cytometry, immunodiffusion (single or double), immunoelectrophoresis, western blotting, radioimmunoassay (RIA), enzyme-linked immunosorbent assays (ELISAs), immunofluorescent assays, electrochemiluminescence assays, and the like. Such assays can also be used for the detection of proteins indicative of the presence or replication of CPS1 proteins.


V. Additional Embodiments

Embodiment 1 An ASO complementary to at least 8 contiguous nucleotides of a regulatory RNA (regRNA) of Carbamoyl-Phosphate Synthetase 1 (CPS1), wherein the ASO is complementary to a sequence in the regRNA that is no more than 200 nucleotides from a terminus of the regRNA.


Embodiment 2 The ASO of embodiment 1, wherein the ASO is complementary to a sequence in the regRNA that is no more than 200 nucleotides from the 3′ end of the regRNA.


Embodiment 3 The ASO of embodiment 1, wherein the ASO is complementary to a sequence in the regRNA that is no more than 200 nucleotides from the 5′ end of the regRNA.


Embodiment 4 The ASO of embodiments 1 or 2, wherein the ASO comprises a RNA polynucleotide comprising one or more chemical modifications.


Embodiment 5 The ASO of embodiment 1, wherein at least 3, 4, or 5 nucleotides at the 5′ end and at least 3, 4, or 5 nucleotides at the 3′ end of the ASO comprise ribonucleotides with one or more chemical modifications.


Embodiment 6 The ASO of embodiments 1 or 2, wherein the one or more chemical modifications comprise 2′-O-methoxyethyl, 5-methyl cytidine, locked nucleic acid (LNA), and phosphorothioate internucleotide bond.


Embodiment 7 The ASO of embodiments 1-3, wherein the ASO does not comprise 8 or more contiguous nucleotides of unmodified DNA.


Embodiment 8 An ASO complementary to at least 8 contiguous nucleotides of a regulatory RNA of a CPS1 gene, wherein the ASO does not comprise 8 or more contiguous nucleotides of unmodified DNA.


Embodiment 9 The ASO of embodiments 1-8, wherein the ASO does not comprise a deoxyribonucleotide.


Embodiment 10 The ASO of embodiments 1-9, wherein the ASO does not comprise an unmodified ribonucleotide.


Embodiment 11 The ASO of embodiments 1-10, wherein the length of the ASO is 3×n+2 nucleotides (n is an integer of 6 or greater), wherein the nucleotides at positions 3×m are ribonucleotides modified by LNA (m is an integer from 1 to n) and the nucleotides at the remaining positions are ribonucleotides modified by 2′-O-methoxyethyl.


Embodiment 12 The ASO of embodiments 1-11, wherein each nucleotide of the ASO is a ribonucleotide modified by 2′-O-methoxyethyl.


Embodiment 13 The ASO of embodiments 1-12, wherein each cytidine in the ASO is modified by 5-methyl.


Embodiment 14 The ASO of embodiments 1-13, wherein the ASO is no more than 50, 40, 30, or 25 nucleotides in length.


Embodiment 15 The ASO of embodiments 1-14, wherein the regRNA is an eRNA.


Embodiment 16 A pharmaceutical composition comprising the ASO of any one of embodiments 1-15 and a pharmaceutically acceptable carrier or excipient carrier.


Embodiment 17 A method of increasing the amount and/or stability of a regulatory RNA in a cell, the method comprising contacting the cell with the ASO of any one of embodiments 1-15 that hybridizes with the regulatory RNA.


Embodiment 18 A method of increasing transcription of a target gene in a cell, the method comprising contacting the cell with the ASO of any one of embodiments 1-15 that hybridizes with a regulatory RNA of the target gene.


Embodiment 19 The method of embodiments 17 or 18, wherein the cell is a mammalian cell.


Embodiment 20 The method of embodiment 19, wherein the cell is a human cell.


Embodiment 21 The method of embodiments 17-20, wherein the target gene is CPS1.


EXAMPLES
Example 1: Modulation of CPS1 Expression Using regRNA-Targeting ASOs

This example was designed to assess modulation of CPS1 expression in human hepatocytes using ASOs targeting eRNAs transcribed from an enhancer of human CPS1.


Regulatory RNAs (regRNAS) within enhancers of CPS1 were identified bioinformatically using ATAC-seq and H3K27Ac ChIP-SEQ data from human and mouse data. Two regRNAs were identified (RR44_v1 and RR44_v2) as conserved between human and mouse, as shown in FIG. 2.


330 unique antisense oligonucleotides (ASOs) targeting CPS1 were designed, 94 of which target the CPS1 regRNA described above (RR44).


Donor-derived hepatocytes were cultured in vitro. Cells were plated in growth media and treated 4-6 hours after plating with final concentrations of 1.25 μM, 2.5 μM, or 5 μM, or hCPS1-ASO-1a or control (see FIG. 5A for human CPS1 sequences and chemical modifications of selected ASOs). Cells were collected 48 hr post treatment and processed for RNA isolation, cDNA synthesis and QPCR analysis. A Tagman probe at 60× was used for CPS1 expression. CPS1 levels were normalized to B2M expression. FIG. 3 shows CPS1 mRNA after treatment with hCPS1-ASO-1a, demonstrating the ASO targeting regRNA RR44 increased human CPS1 mRNA in a dose-dependent matter.


Using hCPS1-ASO-1a as a starting point, additional ASOs were designed by base-walking. These ASOs are shown in FIG. 4A. Using the methods described above, these additional ASOs were assessed for effect on CPS1 mRNA, and results are shown in FIG. 4B. Additional ASOs are shown in FIG. 5A.


The majority of regRNAs do not have large sequence areas that are conserved between human and mouse genomes. For in vivo proof of concept, regRNAs around the mouse CPS1 region were identified and ASOs targeting those mouse regRNA (promoter and enhancer) were designed and screened in both wildtype (B6EiC3SnF1/J, [WT]) primary mouse hepatocytes and CPS1 deficient donor (B6EiC3Sn alA-CPS1spf-ash/J, [CPS1D]) primary mouse hepatocytes.


Primary hepatocytes were isolated from mice of mouse strains B6EiC3SnF1/J (control WT) and OTC deficient donor (B6EiC3Sn alA-OTC1spf-ash/J, catalog: 001811) from JAX lab. The spfash mouse has a variant c.386G>A, p.Arg129His in the OTC gene that impacts splicing, resulting in decreased OTC mRNA levels (5˜12% of wt control) in spf/ash livers. Thus, male spfash mice have a mild biochemical phenotype with low OTC activity (5%-10% of wild-type).


Primary hepatocytes were seeded at 20,000 cells per well on day 0. Cells were treated with ASO on day 2 at concentrations of 1.25 μM, 2.5 μM, and 5 μM. Cells were incubated for 2 days and lysate was collected on Day 2 post treatment for mRNA analysis. A Taqman probe was used for determining mouse CPS1 and OTC expression. Ppia and Hprt were used as housekeeper genes for gene expression normalization. Statistics were performed using one-way ANOVA in Prism (GraphPad)


CPS1 mRNA levels in treated wildtype and OTC-deficient hepatocytes in vitro, are shown in FIG. 6A, heatmaps are shown in FIG. 6B and FIG. 6C. As shown, a subset of the identified ASOs upregulate CPS1 mRNA by 2-fold in treated hepatocytes. Additionally, it was observed that ASOs that upregulate CPS1 may also increases expression of OTC (OTC mRNA levels shown in FIG. 7A and heatmaps are shown in FIG. 7B and FIG. 7C). Thus, ASO targeting regRNA can be used to increase CPS1 expression in diseased mice liver cells. ASO mediated CPS1 upregulation in OTC deficient mouse cells allow these to be tested in a disease model, and have an in vivo phenotypic readout.


In Vivo Modulation of CPS1

Male B6EiC3Sn a/A-Otcspf-ash/J Mice (homozygous), 4-5 mice/group, were fasted, then challenged with 0.75M NH4Cl injected intraperitoneally. Two hours later, a dose of 200 mg/kg/wk subcutaneous injection of GalNAc-conjugated ASO was administered. Mice were again dosed with GalNAc-conjugated ASO about 48 hours later. About 24 hours later, mice were challenged with 0.75M NH4Cl injected intraperitoneally, and about 24 hours subsequently were again dosed with GalNAc-conjugated ASO. After 72 hours, mice were injected with 0.75M NH4Cl intraperitoneally and dosed with GalNAc-conjugated ASO. 48 hours later, mice were injected with 0.75M NH4Cl intraperitoneally, and 2 hours later, were sacrificed. The timeline is depicted in FIG. 8. Serum was collected 30-60 minutes post-NH4Cl injection, and terminal plasma samples were analyzed by IDEXX for ammonia levels. Liver, serum, and urine were collected following sacrifice.


As shown in FIG. 9A, ASO treatment increased CPS1 mRNA in the mouse liver by about 1.4-fold. Additionally, plasma ammonia levels were decreased following treatment, indicated increased ureagenesis (FIG. 9B). ASOs targeting CPS1 regRNA additionally increased a number of other urea cycle genes, including ASS1, ASL, and ARG1 in OTC-deficient mice (FIG. 9C). Importantly, ASOs targeting CPS1 regRNA did not influence expression levels neighboring genes (FIG. 9D).


In an additional experiment, Male B6EiC3Sn a/A-Otcspf-ash/J Mice (homozygous), 4-5 mice/group, were fasted, then challenged with 0.75M NH4Cl injected intraperitoneally and subcutaneously injected with GalNAc-conjugated ASO. Terminal plasma samples collected 60 min after NH4Cl injection was analyzed by IDEXX for ammonia levels, with an upper detection limit of 1020 μg/dL. As shown in FIG. 10, CPS1 regRNA targeting mCPS1-ASO-2 decreased ammonia back to wildtype levels in the OTC deficient mice.


As shown in FIGS. 11A and 11B, there was a dose dependent impact on plasma ammonia (FIG. 11A) and urea (FIG. 11B) in vivo in male OTCD mice (Otcspf/ash) after the ASO treatment. The ammonia challenge was given after overnight fasting of the mice Briefly, mice received a 0.75 M solution of ammonium chloride via IP injection. Interim plasma was collected at 30 minutes post each ammonium challenge (±5%). Ammonia levels were measured in fresh plasma samples by Beckman Coulter AU® chemistry analyzers. In addition, the reduction in ammonia correlated with the total ASO administered (FIG. 11C). Without wishing to be bound by theory this data suggests dose accumulation of the ASO and thus supports a long duration of action of the ASO. In addition, the data suggests that ASO efficacy can be achieved by splitting the dose over time, allowing for a greater safety margin during dosing. For example, at least a 1 month dosing interval may be used.


A second in vivo experiment was performed to assess the ASO duration of action. Male B6EiC3Sn a/A-Otcspf-ash/J Mice (homozygous) or wild type (C57BL/6) mice, 5 mice/group, were fasted, then challenged with 0.75M NH4Cl injected intraperitoneally. Two hours later, a dose of 100 mg/kg/wk subcutaneous injection of GalNAc-conjugated ASO was administered (day 1). WT and one group of OTC-deficient mice were administered PBS as control groups. Mice were again dosed with GalNAc-conjugated ASO on days 3 and 5. Ammonia was administered intraperitoneally to mice on days 8, 11, 15, 19, 22, and 26. Circulating ammonia was measured post-IP ammonia challenge. Mice were sacrificed on day 26 and livers were collected and processed for mRNA and protein expression. mRNA geomean was quantified by Gusb, Gapdh, Actb, Ppia, and Hprt genes. Statistics were done by two way ANOVA. Two way ANOVA, *: P<0.05, **: P<0.01, ***: P<0.001, ****: P<0.0001


As shown in FIG. 12A, Cps1 ASO treatment increased mouse Otc and Cps1 mRNA expression in the OTC deficient mice (1.26 FC of Cps1 and 1.43 FC of Otc). WT C57 mice mRNA is shown on the left bar, Otcspf-ash/J treated with PBS is shown in middle bar, and Otcspf-ash/J treated with ASO is shown on the right. In addition, ASO treatment increased additional urea cycle genes, such as Nags, Ass1, Asl, and Arg1 (FIG. 12B). WT C57 mice mRNA is shown on the left bar, Otcspf-ash/J treated with PBS is shown in middle bar, and Otcspf-ash/J treated with ASO is shown on the right.


In the PBS control group, mouse Otc deficient livers showed hyperammonia 30 min after ammonia treatment (FIG. 13, see black triangle at 1.0). Ammonia levels were consistent through the study. Treatment with mouse Cps1 ASO (upside down triangles) decreased ammonia to WT levels (squares) and maintained the wild type (WT) levels throughout the study (FIG. 13). ASO was administered on days 1, 3, and 5 but the duration of action was approximately 4 weeks.


The in vivo assay was repeated with hCPS1-ASO-1x in Yecuris mice (Fah−/−;Rag2−/−;Il2rg−/− (FRG) mice with OTC deficient humanized liver). Male humanized Yecuris mice were repopulated with human ornithine transcarbamylase deficient hepatocytes (OTCD) or with healthy wild-type hepatocytes (WT), 5 mice/group. After fasting overnight, 0.75M 15NH4Cl was injected intraperitoneally. Two hours later, multiple doses of GalNAc-conjugated hCPS1-ASO-1x were subcutaneously injected on days 1, 8, and 15. In some groups, a single injection of 5, 20, and 50 mg/kg/week doses were performed. WT and one group of OTCD Yecuris FRG mice were administered with PBS as control groups. Ammonia challenge and ureagenesis assay in humanized Yecuris mice were performed in a fasted state, i.e. food withdrawal overnight, prior to the ammonia challenge. After fasting overnight on days 1, 8, 15, and 22 (terminal harvest) the animals were challenged with 15NH4Cl by intraperitoneal injection. After 30 minutes, urines and plasmas were collected.


As shown in FIGS. 15A and 15B, hCPS1-ASO-1× decreased in vivo plasma ammonia and increased in vivo urea in the OTCdef mice with humanized liver. hCPS1-ASO-1g also increased OTC protein levels after treatment at 5 mg/kg and 20 mg/kg (FIG. 15C).


In Vitro Modulation of Ureagenesis in Primary Human Hepatocytes

ASOs were also tested for their ability to agonize ureagenesis in human cells in vitro. Healthy donor primary human hepatocytes and OTCdef primary human hepatocytes were plated and 1.25 uM of hCPS1-ASO-1a or hCPS1-ASO-1g were incubated with the cells for two days. On the second day 2 M NH4C1 was added to the cell mixture. Cells and cell media were collected on Day 3 for mRNA and urea quantification. As shown in FIG. 16, both ASOs increased CPS1 mRNA and ureagenesis in both healthy and OTCdef primary human hepatocytes.


Synthesis and Characterization of Additional ASOs

Additional ASOs were synthesized and characterized. Hepatocytes were treated with 5 uM ASO as described above and CPS1 mRNA fold change was determined.


Table 4 proves the mRNA FC and standard deviation in CPS1 mRNA.

















TABLE 4





Name
FC
SD
Name
FC
SD
Name
FC
SD























hCPS1-
5.5803
0.9290
hCPS1-
2.4815
0.2779
hCPS1-
1.0451
0.2891


ASO-1a


ASO-85b


ASO-204




hCPS1-
1.6607
0.2690
hCPS1-
2.5546
0.1486
hCPS1-
1.0432
0.1968


ASO-16


ASO-86


ASO-205




hCPS1-
1.1878
0.2382
hCPS1-
1.2337
0.1193
hCPS1-
0.9000
0.1529


ASO-17


ASO-1ab


ASO-206




hCPS1-
1.3738
0.1466
hCPS1-
1.3452
0.4155
hCPS1-
1.0064
0.2810


ASO-18


ASO-1ac


ASO-207




hCPS1-
1.3322
0.2929
hCPS1-
1.7071
0.3347
hCPS1-
0.8499
0.1017


ASO-19


ASO-1ad


ASO-208




hCPS1-
1.4049
0.2328
hCPS1-
1.4598
0.2254
hCPS1-
0.8872
0.2187


ASO-20


ASO-1ae


ASO-209




hCPS1-
3.6049
0.0613
hCPS1-
1.1069
0.2738
hCPS1-
1.0426
0.2646


ASO-21


ASO-1af


ASO-210




hCPS1-
1.2367
0.1154
hCPS1-
1.2439
0.3771
hCPS1-
0.8667
0.1797


ASO-22


ASO-1ag


ASO-211




hCPS1-
1.0846
0.1572
hCPS1-
1.9014
0.3037
hCPS1-
1.1604
0.2568


ASO-23


ASO-1ah


ASO-212




hCPS1-
1.0683
0.1120
hCPS1-
3.0003
0.6407
hCPS1-
1.0240
0.2239


ASO-24


ASO-1ai


ASO-213




hCPS1-
0.9967
0.1307
hCPS1-
1.4093
0.0630
hCPS1-
0.9408
0.2219


ASO-25


ASO-92


ASO-214




hCPS1-
1.1141
0.2129
hCPS1-
1.3278
0.1805
hCPS1-
1.2719
0.3355


ASO-26


ASO-93


ASO-215




hCPS1-
1.2348
0.2667
hCPS1-
1.1871
0.0806
hCPS1-
0.9536
0.2038


ASO-27


ASO-94


ASO-216




hCPS1-
3.7994
0.7319
hCPS1-
1.0937
0.1027
hCPS1-
0.9589
0.2111


ASO-28


ASO-95


ASO-217




hCPS1-
1.2569
0.2946
hCPS1-
1.0708
0.1544
hCPS1-
0.9624
0.1812


ASO-29


ASO-96


ASO-218




hCPS1-
0.9996
0.1342
hCPS1-
1.8697
0.2390
hCPS1-
1.0837
0.3110


ASO-30


ASO-97


ASO-219




hCPS1-
1.0879
0.2887
hCPS1-
2.2671
0.0950
hCPS1-
1.0236
0.1605


ASO-31


ASO-98


ASO-220




hCPS1-
1.0803
0.0754
hCPS1-
3.2286
0.3834
hCPS1-
1.0461
0.2903


ASO-32


ASO-99


ASO-221




hCPS1-
1.0982
0.2301
hCPS1-
1.6813
0.1274
hCPS1-
1.0435
0.2238


ASO-33


ASO-100


ASO-222




hCPS1-
0.9376
0.0691
hCPS1-
2.8205
0.0827
hCPS1-
1.1306
0.4103


ASO-34


ASO-101


ASO-223




hCPS1-
4.5563
0.0988
hCPS1-
3.1424
0.1637
hCPS1-
1.0954
0.1792


ASO-35


ASO-102


ASO-224




hCPS1-
1.1589
0.1449
hCPS1-
3.7109
0.4564
hCPS1-
0.8416
0.2138


ASO-36


ASO-103


ASO-225




hCPS1-
1.0707
0.1475
hCPS1-
5.0641
0.2305
hCPS1-
1.0220
0.2833


ASO-37


ASO-104


ASO-226




hCPS1-
1.0941
0.1276
hCPS1-
1.4662
0.1834
hCPS1-
0.8141
0.1635


ASO-38


ASO-107


ASO-227




hCPS1-
1.1150
0.1947
hCPS1-
1.3163
0.1848
hCPS1-
0.7884
0.1280


ASO-39


ASO-108


ASO-228




hCPS1-
1.1812
0.0713
hCPS1-
1.1404
0.1269
hCPS1-
0.8821
0.1602


ASO-40


ASO-109


ASO-229




hCPS1-
1.1376
0.1669
hCPS1-
1.4157
0.2399
hCPS1-
1.0366
0.2360


ASO-41


ASO-110


ASO-230




hCPS1-
3.9849
0.9906
hCPS1-
1.3974
0.0526
hCPS1-
1.0731
0.3336


ASO-42


ASO-111


ASO-231




hCPS1-
1.1340
0.1748
hCPS1-
1.3309
0.2948
hCPS1-
1.0336
0.2169


ASO-43


ASO-112


ASO-232




hCPS1-
0.9795
0.1452
hCPS1-
1.1250
0.0133
hCPS1-
1.0184
0.2427


ASO-44


ASO-113


ASO-233




hCPS1-
1.0825
0.3286
hCPS1-
1.4471
0.3902
hCPS1-
1.0379
0.2667


ASO-45


ASO-114


ASO-234




hCPS1-
1.3008
0.2339
hCPS1-
1.3250
0.2205
hCPS1-
0.7109
0.1642


ASO-46


ASO-115


ASO-235




hCPS1-
1.2834
0.2346
hCPS1-
1.4592
0.2191
hCPS1-
0.9437
0.2016


ASO-47


ASO-116


ASO-236




hCPS1-
1.0953
0.2896
hCPS1-
1.5146
0.1541
hCPS1-
1.1237
0.2948


ASO-48


ASO-117


ASO-237




hCPS1-
1.4947
0.3320
hCPS1-
1.4798
0.3053
hCPS1-
0.8325
0.1677


ASO-49


ASO-118


ASO-238




hCPS1-
1.2992
0.2852
hCPS1-
1.4687
0.3357
hCPS1-
1.2847
0.3268


ASO-50


ASO-119


ASO-239




hCPS1-
1.0101
0.2333
hCPS1-
1.4309
0.2206
hCPS1-
1.0368
0.1643


ASO-51


ASO-120


ASO-240




hCPS1-
1.2026
0.2065
hCPS1-
1.5330
0.4945
hCPS1-
1.0348
0.2319


ASO-52


ASO-121


ASO-241




hCPS1-
1.3176
0.2462
hCPS1-
2.1728
1.0205
hCPS1-
1.2009
0.3035


ASO-53


ASO-122


ASO-242




hCPS1-
1.2888
0.1512
hCPS1-
1.3792
0.2117
hCPS1-
0.8364
0.1646


ASO-54


ASO-123


ASO-243




hCPS1-
0.9070
0.0979
hCPS1-
1.6351
0.2666
hCPS1-
0.9177
0.1890


ASO-55


ASO-124


ASO-244




hCPS1-
2.2957
0.4780
hCPS1-
1.9894
0.2327
hCPS1-
0.9563
0.2149


ASO-56


ASO-125


ASO-245




hCPS1-
1.3780
0.1587
hCPS1-
1.8741
0.1928
hCPS1-
1.0945
0.1746


ASO-57


ASO-126


ASO-246




hCPS1-
1.1027
0.1230
hCPS1-
1.9805
0.5252
hCPS1-
1.1518
0.1876


ASO-58


ASO-127


ASO-247




hCPS1-
1.2449
0.2215
hCPS1-
1.7071
0.2968
hCPS1-
1.1365
0.2040


ASO-59


ASO-128


ASO-248




hCPS1-
1.4067
0.1655
hCPS1-
1.8255
0.4447
hCPS1-
0.9208
0.2208


ASO-60


ASO-129


ASO-249




hCPS1-
1.2124
0.0876
hCPS1-
1.9578
0.6166
hCPS1-
1.1458
0.2996


ASO-61


ASO-130


ASO-250




hCPS1-
0.9895
0.1303
hCPS1-
1.3484
0.2757
hCPS1-
0.8471
0.1852


ASO-62


ASO-131


ASO-251




hCPS1-
2.3654
0.4539
hCPS1-
1.4400
0.3570
hCPS1-
0.7147
0.0925


ASO-63


ASO-132


ASO-252




hCPS1-
1.1365
0.1718
hCPS1-
1.4004
0.1358
hCPS1-
0.6961
0.1808


ASO-64


ASO-133


ASO-253




hCPS1-
0.8489
0.1813
hCPS1-
1.5631
0.1290
hCPS1-
0.8060
0.1913


ASO-65


ASO-134


ASO-254




hCPS1-
1.2409
0.1946
hCPS1-
1.6723
0.4246
hCPS1-
0.8039
0.1878


ASO-66


ASO-135


ASO-255




hCPS1-
0.9222
0.1245
hCPS1-
1.6023
0.3159
hCPS1-
0.7368
0.0548


ASO-67


ASO-136


ASO-256




hCPS1-
1.3275
0.1510
hCPS1-
1.5022
0.2462
hCPS1-
0.9517
0.2562


ASO-68


ASO-137


ASO-257




hCPS1-
1.0944
0.2374
hCPS1-
1.9038
0.5748
hCPS1-
1.0658
0.3429


ASO-69


ASO-138


ASO-258




hCPS1-
1.5761
0.1388
hCPS1-
1.6131
0.1660
hCPS1-
0.8157
0.2459


ASO-70


ASO-139


ASO-259




hCPS1-
1.3363
0.1613
hCPS1-
1.6504
0.2242
hCPS1-
1.1626
0.2553


ASO-71


ASO-140


ASO-260




hCPS1-
1.0412
0.1404
hCPS1-
1.8803
0.2397
hCPS1-
0.9754
0.1961


ASO-72


ASO-141


ASO-261




hCPS1-
1.3314
0.2056
hCPS1-
3.0769
0.3542
hCPS1-
1.3364
0.3546


ASO-73


ASO-142


ASO-262




hCPS1-
1.2915
0.1170
hCPS1-
1.9543
0.5131
hCPS1-
1.0346
0.1123


ASO-74


ASO-143


ASO-263




hCPS1-
1.2395
0.0952
hCPS1-
3.5634
0.5168
hCPS1-
0.6237
0.0401


ASO-75


ASO-144


ASO-264




hCPS1-
1.0942
0.2650
hCPS1-
2.8153
0.5824
hCPS1-
0.7730
0.1091


ASO-76


ASO-145


ASO-265




hCPS1-
1.1870
0.1452
hCPS1-
1.5756
0.0004
hCPS1-
0.8882
0.1967


ASO-1b


ASO-146


ASO-266




hCPS1-
1.4590
0.2142
hCPS1-
1.8075
0.1998
hCPS1-
0.7796
0.2146


ASO-1c


ASO-147


ASO-267




hCPS1-
1.0277
0.1069
hCPS1-
1.6902
0.0950
hCPS1-
0.9467
0.1832


ASO-1d


ASO-148


ASO-268




hCPS1-
1.0992
0.1400
hCPS1-
1.5828
0.0817
hCPS1-
0.9570
0.1712


ASO-le


ASO-149


ASO-269




hCPS1-
1.6978
0.4026
hCPS1-
1.6598
0.1305
hCPS1-
0.8511
0.1498


ASO-1f


ASO-150


ASO-270




hCPS1-
4.4990
0.6087
hCPS1-
1.7341
0.2274
hCPS1-
0.9859
0.1688


ASO-1g


ASO-151


ASO-271




hCPS1-
4.3014
0.9287
hCPS1-
1.7582
0.2844
hCPS1-
0.7428
0.0842


ASO-2


ASO-152


ASO-272




hCPS1-
2.2218
0.1531
hCPS1-
1.8459
0.3518
hCPS1-
0.8121
0.1444


ASO-3


ASO-153


ASO-273




hCPS1-
1.0275
0.1642
hCPS1-
1.5900
0.4826
hCPS1-
0.7497
0.1493


ASO-9a


ASO-154


ASO-274




hCPS1-
1.1384
0.2750
hCPS1-
1.3183
0.0726
hCPS1-
0.7799
0.1717


ASO-10a


ASO-155


ASO-275




hCPS1-
1.1334
0.1617
hCPS1-
0.9952
0.1123
hCPS1-
0.8826
0.1542


ASO-11a


ASO-156


ASO-276




hCPS1-
0.8162
0.0866
hCPS1-
1.2972
0.1294
hCPS1-
0.8896
0.2650


ASO-12a


ASO-157


ASO-277




hCPS1-
1.5297
0.1882
hCPS1-
1.7248
0.2074
hCPS1-
0.4696
0.0748


ASO-13a


ASO-158


ASO-278




hCPS1-
0.9744
0.0844
hCPS1-
1.7892
0.3807
hCPS1-
1.3629
0.1492


ASO-14a


ASO-159


ASO-279




hCPS1-
0.9225
0.1756
hCPS1-
1.6078
0.2263
hCPS1-
1.9970
0.4340


ASO-15a


ASO-160


ASO-280




hCPS1-
0.6872
0.0821
hCPS1-
1.0960
0.6012
hCPS1-
1.9249
0.2595


ASO-7a


ASO-161


ASO-281




hCPS1-
1.5925
0.1816
hCPS1-
1.5522
0.6413
hCPS1-
1.4252
0.4261


ASO-4a


ASO-162


ASO-282




hCPS1-
2.1196
0.3491
hCPS1-
1.1633
0.0408
hCPS1-
4.4672
1.1138


ASO-5a


ASO-163


ASO-283




hCPS1-
1.8529
0.9210
hCPS1-
1.3349
0.1053
hCPS1-
5.0837
1.5527


ASO-6a


ASO-164


ASO-284




hCPS1-
1.5270
0.8361
hCPS1-
1.6669
0.2143
hCPS1-
4.7339
0.3981


ASO-8a


ASO-165


ASO-285




hCPS1-
0.8992
0.0590
hCPS1-
1.3915
0.2569
hCPS1-
1.5091
0.3739


ASO-9b


ASO-166


ASO-286




hCPS1-
0.9770
0.0428
hCPS1-
1.7175
0.2493
hCPS1-
1.3469
0.3479


ASO-10b


ASO-167


ASO-287




hCPS1-
1.6000
0.2631
hCPS1-
1.1979
0.1337
hCPS1-
1.6093
0.2169


ASO-11b


ASO-168


ASO-288




hCPS1-
0.9917
0.1514
hCPS1-
1.3335
0.2080
hCPS1-
0.9802
0.3187


ASO-12b


ASO-169


ASO-289




hCPS1-
1.1117
0.1612
hCPS1-
1.0882
0.3444
hCPS1-
1.6650
0.1183


ASO-13b


ASO-170


ASO-290




hCPS1-
0.8017
0.0536
hCPS1-
1.2852
0.1472
hCPS1-
1.7705
0.4831


ASO-14b


ASO-171


ASO-291




hCPS1-
0.8779
0.0632
hCPS1-
1.3309
0.1877
hCPS1-
1.8768
0.3481


ASO-15b


ASO-172


ASO-292




hCPS1-
0.9488
0.0891
hCPS1-
1.3430
0.2467
hCPS1-
1.8295
0.3331


ASO-7b


ASO-173


ASO-293




hCPS1-
0.9687
0.1444
hCPS1-
1.2633
0.2020
hCPS1-
4.2131
0.7748


ASO-4b


ASO-174


ASO-294




hCPS1-
0.9448
0.1081
hCPS1-
1.6397
0.3383
hCPS1-
0.8242
0.1736


ASO-5b


ASO-175


ASO-295




hCPS1-
0.8277
0.0428
hCPS1-
1.3926
0.5390
hCPS1-
1.7239
0.4255


ASO-6b


ASO-176


ASO-296




hCPS1-
0.9161
0.1199
hCPS1-
1.4242
0.2749
hCPS1-
2.0747
0.4485


ASO-8b


ASO-177


ASO-297




hCPS1-
4.1549
0.9198
hCPS1-
1.4453
0.2574
hCPS1-
1.1081
0.1802


ASO-77


ASO-178


ASO-298




hCPS1-
2.2972
0.1418
hCPS1-
1.2086
0.0863
hCPS1-
5.1515
0.9679


ASO-78


ASO-179


ASO-299




hCPS1-
2.4319
0.2248
hCPS1-
1.2183
0.1814
hCPS1-
4.8213
0.9887


ASO-79


ASO-180


ASO-300




hCPS1-
2.7917
0.6061
hCPS1-
1.3878
0.1419
hCPS1-
3.3943
0.6421


ASO-80


ASO-181


ASO-301




hCPS1-
1.1727
0.1382
hCPS1-
1.3813
0.1038
hCPS1-
1.8365
0.4610


ASO-1h


ASO-182


ASO-302




hCPS1-
1.4355
0.1558
hCPS1-
1.2326
0.1733
hCPS1-
1.3137
0.2222


ASO-1i


ASO-183


ASO-303a




hCPS1-
1.2027
0.0988
hCPS1-
1.3169
0.3607
hCPS1-
1.7427
0.3256


ASO-1j


ASO-184


ASO-303b




hCPS1-
1.1188
0.0499
hCPS1-
1.4697
0.2622
hCPS1-
2.2107
0.3595


ASO-1k


ASO-185


ASO-304a




hCPS1-
1.3171
0.1662
hCPS1-
1.2855
0.3984
hCPS1-
2.0165
0.7982


ASO-1l


ASO-186


ASO-304b




hCPS1-
1.1873
0.1099
hCPS1-
1.3655
0.2214
hCPS1-
1.8751
0.3138


ASO-1m


ASO-187


ASO-305a




hCPS1-
1.1683
0.1096
hCPS1-
1.3777
0.1068
hCPS1-
2.9614
0.4636


ASO-1n


ASO-188


ASO-305b




hCPS1-
1.3191
0.1220
hCPS1-
1.2786
0.1922
hCPS1-
2.9192
0.8811


ASO-1o


ASO-189


ASO-306a




hCPS1-
1.9562
0.0841
hCPS1-
1.0252
0.0880
hCPS1-
3.4468
1.3494


ASO-1p


ASO-190


ASO-306b




hCPS1-
1.2673
0.1820
hCPS1-
1.2291
0.1588
hCPS1-
1.3314
0.3165


ASO-1q


ASO-191


ASO-307a




hCPS1-
1.5857
0.1339
hCPS1-
1.4614
0.2198
hCPS1-
1.2205
0.1267


ASO-1r


ASO-192


ASO-307




hCPS1-
2.5762
0.3147
hCPS1-
1.4984
0.4280
hCPS1-
1.2918
0.2042


ASO-1s


ASO-193


ASO-308a




hCPS1-
2.4333
0.2508
hCPS1-
0.9625
0.3146
hCPS1-
1.1019
0.1488


ASO-1t


ASO-194


ASO-308




hCPS1-
2.9405
0.2842
hCPS1-
1.4616
0.2171
hCPS1-
1.9776
0.5046


ASO-1u


ASO-195


ASO-309a




hCPS1-
1.9457
0.2076
hCPS1-
1.3635
0.0990
hCPS1-
1.4482
0.2178


ASO-1v


ASO-196


ASO-309b




hCPS1-
2.5019
0.3142
hCPS1-
1.5088
0.2155
hCPS1-
1.8643
0.3592


ASO-82a


ASO-197


ASO-309c




hCPS1-
1.6054
0.1333
hCPS1-
1.5691
0.1943
hCPS1-
2.1756
0.8122


ASO-83a


ASO-198


ASO-310a




hCPS1-
1.3049
0.1062
hCPS1-
0.8877
0.2414
hCPS1-
2.1692
0.3493


ASO-83b


ASO-199


ASO-310b




hCPS1-
1.6594
0.1400
hCPS1-
0.9393
0.1766
hCPS1-
1.5170
0.2149


ASO-84a


ASO-200


ASO-310c




hCPS1-
1.6155
0.2525
hCPS1-
0.8805
0.1631
hCPS1-
1.7083
0.2543


ASO-84b


ASO-201


ASO-310d




hCPS1-
3.1551
0.2265
hCPS1-
0.9079
0.1671
hCPS1-
3.7975
0.7950


ASO-85a


ASO-202


ASO-311a




hCPS1-
1.2847
0.4866
hCPS1-
0.8525
0.1637
hCPS1-
2.2173
0.2349


ASO-1


ASO-203


ASO-311b










hCPS1-
3.8806
0.8311








ASO-311c











hCPS1-ASO-1a and hCPS1-ASO1g were tested in hepatocytes at increasing concentrations. 0.156 to 5 uM ASO was incubated with hepatocytes as described above. As shown in Table 5, both hCPS1-ASO-1a and hCPS1-ASO1g induced a dose dependent increase in CPS1 mRNA.














TABLE 5







Name
FC
SD
Dose (uM)





















hCPS1-ASO-1a
1.6220
0.0932
0.156



hCPS1-ASO-1a
1.9973
0.2021
0.313



hCPS1-ASO-1a
2.4574
0.1968
0.625



hCPS1-ASO-1a
3.7565
0.4598
1.25



hCPS1-ASO-1a
4.9565
0.7826
2.5



hCPS1-ASO-1a
4.9868
0.4258
5



hCPS1-ASO-1g
1.5646
0.0907
0.156



hCPS1-ASO-1g
1.7147
0.1318
0.313



hCPS1-ASO-1g
1.9748
0.3676
0.625



hCPS1-ASO-1g
3.3634
0.7101
2.5



hCPS1-ASO-1g
3.7516
0.7574
5










Additional chemical modifications were made to selected ASOs. The chemical modifications are provided in FIG. 14. Hepatocytes were incubated with 1.25 to 5 uM of the selected ASO as described above. The highest CSP1 mRNA fold change (FC) and standard deviation (SD) is provided in Table 6.














TABLE 6







Name
FC
DS
Dose (uM)





















hCPS1-ASO-1a
5.5803
0.9290
5 uM



hCPS1-ASO-1b
1.1870
0.1452
5 uM



hCPS1-ASO-1c
1.4590
0.2142
5 uM



hCPS1-ASO-1d
1.0277
0.1069
5 uM



hCPS1-ASO-1e
1.0992
0.1400
5 uM



hCPS1-ASO-1f
1.6978
0.4026
5 uM



hCPS1-ASO-1g
4.4990
0.6087
5 uM



hCPS1-ASO-2
4.3014
0.9287
5 uM



hCPS1-ASO-3
2.2218
0.1531
5 uM



hCPS1-ASO-1h
1.1727
0.1382
1



hCPS1-ASO-1i
1.4355
0.1558
5 uM



hCPS1-ASO-1j
1.2027
0.0988
5 uM



hCPS1-ASO-1k
1.1188
0.0499
0.2



hCPS1-ASO-1l
1.3171
0.1662
5 uM



hCPS1-ASO-1m
1.1873
0.1099
5 uM



hCPS1-ASO-1n
1.1683
0.1096
1



hCPS1-ASO-1o
1.3191
0.1220
5 uM



hCPS1-ASO-1p
1.9562
0.0841
5 uM



hCPS1-ASO-1q
1.2673
0.1820
0.2



hCPS1-ASO-1r
1.5857
0.1339
5



hCPS1-ASO-1s
2.5762
0.3147
5



hCPS1-ASO-1t
2.4333
0.2508
5



hCPS1-ASO-1u
2.9405
0.2842
5



hCPS1-ASO-1v
1.9457
0.2076
5



hCPS1-ASO-82a
2.5019
0.3142
5



hCPS1-ASO-82a
2.5546
0.1486
5



hCPS1-ASO-86a
1.2337
0.1193
1.25



hCPS1-ASO-86b
1.3452
0.4155
2.5



hCPS1-ASO-87a
1.7071
0.3347
5



hCPS1-ASO-88a
1.4598
0.2254
5



hCPS1-ASO-89a
1.1069
0.2738
5



hCPS1-ASO-91a
1.9014
0.3037
5



hCPS1-ASO-91b
3.0003
0.6407
2.5



hCPS1-ASO-91c
1.8697
0.2390
2.5



hCPS1-ASO-91d
2.2671
0.0950
2.5



hCPS1-ASO-91e
3.2286
0.3834
2.5



hCPS1-ASO-91f
1.6813
0.1274
1.25



hCPS1-ASO-91g
2.8205
0.0827
2.5



hCPS1-ASO-91h
3.1424
0.1637
2.5



hCPS1-ASO-91i
3.7109
0.4564
1.25



hCPS1-ASO-91j
5.0641
0.2305
5 uM



hCPS1-ASO-279a
1.3629
0.1492
5 uM



hCPS1-ASO-280a
1.9970
0.4340
5 uM



hCPS1-ASO-281a
1.9249
0.2595
5 uM



hCPS1-ASO-282a
1.4252
0.4261
5 uM



hCPS1-ASO-283a
4.4672
1.1138
5 uM



hCPS1-ASO-284a
5.0837
1.5527
5 uM



hCPS1-ASO-285a
4.7339
0.3981
5 uM



hCPS1-ASO-286a
1.5091
0.3739
5 uM



hCPS1-ASO-287a
1.3469
0.3479
5 uM



hCPS1-ASO-288a
1.6093
0.2169
5 uM



hCPS1-ASO-289a
0.9802
0.3187
5 uM



hCPS1-ASO-290a
1.6650
0.1183
5 uM



hCPS1-ASO-291a
1.7705
0.4831
5 uM



hCPS1-ASO-292a
1.8768
0.3481
5 uM



hCPS1-ASO-293a
1.8295
0.3331
5 uM



hCPS1-ASO-294a
4.2131
0.7748
5 uM



hCPS1-ASO-295a
0.8242
0.1736
5 uM



hCPS1-ASO-296a
1.7239
0.4255
5 uM



hCPS1-ASO-297a
2.0747
0.4485
5 uM



hCPS1-ASO-298a
1.1081
0.1802
5 uM



hCPS1-ASO-299a
5.1515
0.9679
5 uM



hCPS1-ASO-300a
4.8213
0.9887
5 uM



hCPS1-ASO-301a
3.3943
0.6421
5 uM



hCPS1-ASO-302a
1.8365
0.4610
5 uM



hCPS1-ASO-303a
1.3137
0.2222
5 uM



hCPS1-ASO-303b
1.7427
0.3256
5 uM



hCPS1-ASO-304a
2.2107
0.3595
5 uM



hCPS1-ASO-304b
2.0165
0.7982
5 uM



hCPS1-ASO-305a
1.8751
0.3138
5 uM



hCPS1-ASO-305b
2.9614
0.4636
5 uM



hCPS1-ASO-306a
2.9192
0.8811
5 uM



hCPS1-ASO-306b
3.4468
1.3494
5 uM



hCPS1-ASO-307a
1.3314
0.3165
5 uM



hCPS1-ASO-307b
1.2205
0.1267
5 uM



hCPS1-ASO-308a
1.2918
0.2042
5 uM



hCPS1-ASO-308b
1.1019
0.1488
5 uM



hCPS1-ASO-309a
1.9776
0.5046
5 uM



hCPS1-ASO-309b
1.4482
0.2178
5 uM



hCPS1-ASO-309c
1.8643
0.3592
5 uM



hCPS1-ASO-310a
2.1756
0.8122
5 uM



hCPS1-ASO-310b
2.1692
0.3493
5 uM



hCPS1-ASO-310c
1.5170
0.2149
5 uM



hCPS1-ASO-310d
1.7083
0.2543
5 uM



hCPS1-ASO-311a
3.7975
0.7950
5 uM



hCPS1-ASO-311b
2.2173
0.2349
5 uM



hCPS1-ASO-311c
3.880599933
0.8311
5 uM



hCPS1-ASO-312a
1.284688861
0.4866
5 uM










In sum, 109 initial ASOs targeting CPS1 RR44 were made, of which 76 ASOs comprising 69 gapmers and 7 steric ASOs passed the first pass screen. These 76 ASOs were selected for tiling, and 9 ASOs, comprising 4 gapmers and 5 sterics were selected from this screen. A further 24 ASOs comprising 12 gapmers and 12 mixmers with additional chemistries were made via fine tuning. hCPS1-ASO-1g (SEQ ID NO: 22) was selected for further characterization. PO bonds, a GalNAc moiety and additional 5meC moieties were added for in vivo studies, resulting in hCPS1-ASO-1x (SEQ ID NO: 409).


Example 2: Synthesis and Characterization of Additional CPS1 regRNA-Targeting ASOs

Two additional regRNAs, RR89 and RR90, were identified. ASOs targeting the new regRNA were synthesized and tested at 5 uM in hepatocytes as described above. The CPS1 mRNA fold increase after treatment with these ASOs is provided in Table 7 below.
















TABLE 7





RR
Name
FC
SD
RR
Name
FC
SD







RR89
hCPS1-ASO-317
1.5775
0.8135
RR90
hCPS1-ASO-405
1.2012
0.2487


RR89
hCPS1-ASO-318
1.5826
0.7218
RR90
hCPS1-ASO-406
1.2865
0.2028


RR89
hCPS1-ASO-319
1.5962
0.4788
RR90
hCPS1-ASO-407
1.1295
0.2439


RR89
hCPS1-ASO-320
1.4931
0.7690
RR90
hCPS1-ASO-408
1.0533
0.2725


RR89
hCPS1-ASO-321
1.6746
0.6312
RR90
hCPS1-ASO-409
0.8087
0.1096


RR89
hCPS1-ASO-322
2.0095
0.7188
RR90
hCPS1-ASO-410
1.3942
0.5000


RR89
hCPS1-ASO-323
2.0440
1.0473
RR90
hCPS1-ASO-411
1.3583
0.3396


RR89
hCPS1-ASO-324
2.3892
0.8168
RR90
hCPS1-ASO-412
1.6266
0.7518


RR89
hCPS1-ASO-325
1.5915
0.7186
RR90
hCPS1-ASO-413
1.2538
0.4311


RR89
hCPS1-ASO-326
2.1136
1.1464
RR90
hCPS1-ASO-414
1.1461
0.3094


RR89
hCPS1-ASO-327
1.9483
0.9495
RR90
hCPS1-ASO-415
0.9143
0.0766


RR89
hCPS1-ASO-328
1.6812
0.5726
RR90
hCPS1-ASO-416
1.1560
0.1866


RR89
hCPS1-ASO-329
1.8316
0.9072
RR90
hCPS1-ASO-417
1.0591
0.2657


RR89
hCPS1-ASO-330
2.0059
0.8976
RR90
hCPS1-ASO-418
1.3887
0.3178


RR89
hCPS1-ASO-331
1.8741
0.7026
RR90
hCPS1-ASO-419
1.3402
0.4910


RR89
hCPS1-ASO-332
2.1500
0.7416
RR90
hCPS1-ASO-420
1.5140
0.3829


RR89
hCPS1-ASO-333
1.5499
0.5157
RR90
hCPS1-ASO-421
1.0943
0.2253


RR89
hCPS1-ASO-334
1.5552
0.4804
RR90
hCPS1-ASO-422
1.1711
0.1122


RR89
hCPS1-ASO-335
1.9576
0.5176
RR90
hCPS1-ASO-423
0.9694
0.1022


RR89
hCPS1-ASO-336
1.8716
0.6998
RR90
hCPS1-ASO-424
1.2236
0.1582


RR89
hCPS1-ASO-337
1.8125
0.8488
RR90
hCPS1-ASO-425
1.2610
0.1906


RR89
hCPS1-ASO-338
2.0401
0.7645
RR90
hCPS1-ASO-426
1.3614
0.2645


RR89
hCPS1-ASO-339
2.2799
1.3896
RR90
hCPS1-ASO-427
1.0732
0.1397


RR89
hCPS1-ASO-340
2.4647
1.1151
RR90
hCPS1-ASO-428
1.0589
0.2379


RR89
hCPS1-ASO-341
1.6513
0.6047
RR90
hCPS1-ASO-429
0.8780
0.1622


RR89
hCPS1-ASO-342
3.0261
1.3769
RR90
hCPS1-ASO-430
1.1569
0.1560


RR89
hCPS1-ASO-343
1.6381
0.7347
RR90
hCPS1-ASO-431
1.1585
0.1097


RR89
hCPS1-ASO-344
1.5409
0.4495
RR90
hCPS1-ASO-432
1.2950
0.2285


RR89
hCPS1-ASO-345
2.0952
1.0805
RR90
hCPS1-ASO-433
1.0298
0.2219


RR89
hCPS1-ASO-346
2.3178
1.3366
RR90
hCPS1-ASO-434
1.3012
0.0903


RR89
hCPS1-ASO-347
1.4951
0.6377
RR90
hCPS1-ASO-435
1.0841
0.1667


RR89
hCPS1-ASO-348
1.6709
0.5697
RR90
hCPS1-ASO-436
1.1873
0.2434


RR89
hCPS1-ASO-349
1.1956
0.5132
RR90
hCPS1-ASO-437
0.8902
0.4503


RR89
hCPS1-ASO-350
1.3203
0.7134
RR90
hCPS1-ASO-438
1.1951
0.1350


RR89
hCPS1-ASO-351
1.7942
1.1274
RR90
hCPS1-ASO-439
0.8887
0.0839


RR89
hCPS1-ASO-352
1.5520
0.9718
RR90
hCPS1-ASO-440
1.0615
0.1012


RR89
hCPS1-ASO-353
1.7568
1.2231
RR90
hCPS1-ASO-441
0.8649
0.0311


RR89
hCPS1-ASO-354
1.8507
1.1719
RR90
hCPS1-ASO-442
0.9772
0.1905


RR89
hCPS1-ASO-355
1.5305
0.8114
RR90
hCPS1-ASO-443
0.8815
0.2444


RR89
hCPS1-ASO-356
1.7731
0.9631
RR90
hCPS1-ASO-444
1.3442
0.1924


RR89
hCPS1-ASO-357
1.2436
0.7147
RR90
hCPS1-ASO-445
0.8889
0.0616


RR89
hCPS1-ASO-358
1.6246
1.3366
RR90
hCPS1-ASO-446
1.3171
0.2598


RR89
hCPS1-ASO-359
1.5335
1.0744
RR90
hCPS1-ASO-447
1.0407
0.0687


RR89
hCPS1-ASO-360
1.9214
1.5074
RR90
hCPS1-ASO-448
1.1217
0.1056


RR89
hCPS1-ASO-361
1.4754
0.9292
RR90
hCPS1-ASO-449
1.1537
0.3244


RR89
hCPS1-ASO-362
1.6906
1.0116
RR90
hCPS1-ASO-450
1.3109
0.2590


RR89
hCPS1-ASO-363
1.3134
0.7014
RR90
hCPS1-ASO-451
1.5129
0.6513


RR89
hCPS1-ASO-364
1.7029
0.7542
RR90
hCPS1-ASO-452
1.2111
0.1128


RR89
hCPS1-ASO-365
1.6591
0.7996
RR90
hCPS1-ASO-453
1.0163
0.1088


RR89
hCPS1-ASO-366
1.6470
1.0509
RR90
hCPS1-ASO-454
1.3094
0.3247


RR89
hCPS1-ASO-367
1.8307
1.2695
RR90
hCPS1-ASO-455
1.1397
0.2210


RR89
hCPS1-ASO-368
1.6084
0.9115
RR90
hCPS1-ASO-456
1.0946
0.1733


RR89
hCPS1-ASO-369
1.3892
0.8035
RR90
hCPS1-ASO-457
1.0506
0.1601


RR89
hCPS1-ASO-370
1.5032
0.7262
RR90
hCPS1-ASO-458
1.2491
0.2422


RR89
hCPS1-ASO-371
1.4850
0.5957
RR90
hCPS1-ASO-459
1.3670
0.2012


RR89
hCPS1-ASO-372
1.5812
0.5242
RR90
hCPS1-ASO-460
1.3623
0.1823


RR89
hCPS1-ASO-373
1.6841
0.7860
RR90
hCPS1-ASO-461
1.0625
0.2351


RR89
hCPS1-ASO-374
1.4621
0.9788
RR90
hCPS1-ASO-462
1.2013
0.4743


RR89
hCPS1-ASO-375
1.6176
1.1216
RR90
hCPS1-ASO-463
1.0886
0.1494


RR89
hCPS1-ASO-376
1.3686
0.7403
RR90
hCPS1-ASO-464
1.1047
0.2209


RR89
hCPS1-ASO-377
1.2268
0.8146
RR90
hCPS1-ASO-465
1.1645
0.1735


RR89
hCPS1-ASO-378
1.6610
1.1474
RR90
hCPS1-ASO-466
1.4413
0.3431


RR89
hCPS1-ASO-379
1.4860
0.8718
RR90
hCPS1-ASO-467
1.2275
0.0838


RR89
hCPS1-ASO-380
1.5339
0.5719
RR90
hCPS1-ASO-468
1.3235
0.1612


RR89
hCPS1-ASO-381
1.3295
0.5757
RR90
hCPS1-ASO-469
0.8282
0.2019


RR89
hCPS1-ASO-382
1.9644
0.7430
RR90
hCPS1-ASO-470
0.9232
0.2007


RR89
hCPS1-ASO-383
1.8440
1.1617
RR90
hCPS1-ASO-471
1.3966
0.5929


RR89
hCPS1-ASO-384
1.5065
0.9131
RR90
hCPS1-ASO-472
1.0118
0.3935


RR89
hCPS1-ASO-385
1.5340
0.7326
RR90
hCPS1-ASO-473
0.9936
0.0465


RR89
hCPS1-ASO-386
1.6840
0.7312
RR90
hCPS1-ASO-474
1.3558
0.1254


RR89
hCPS1-ASO-387
1.3766
0.5754
RR90
hCPS1-ASO-475
1.2423
0.2156


RR89
hCPS1-ASO-388
1.4547
0.5771
RR90
hCPS1-ASO-476
1.9336
1.7330


RR89
hCPS1-ASO-389
1.3246
0.8197
RR90
hCPS1-ASO-477
0.9444
0.2228


RR89
hCPS1-ASO-390
2.5864
1.2608
RR90
hCPS1-ASO-478
1.3043
0.4730


RR89
hCPS1-ASO-391
1.5723
0.9236
RR90
hCPS1-ASO-479
1.0763
0.2153


RR89
hCPS1-ASO-392
1.4165
1.0256
RR90
hCPS1-ASO-480
1.0685
0.0883


RR89
hCPS1-ASO-393
1.6100
0.9882
RR90
hCPS1-ASO-481
1.0366
0.2728


RR89
hCPS1-ASO-394
1.2672
0.8009
RR90
hCPS1-ASO-482
1.3154
0.2555


RR89
hCPS1-ASO-395
1.6338
0.5694
RR90
hCPS1-ASO-483
1.2040
0.0888


RR89
hCPS1-ASO-396
1.5087
0.7520
RR90
hCPS1-ASO-484
1.4609
0.3332


RR89
hCPS1-ASO-397
1.7948
0.8470
RR90
hCPS1-ASO-485
1.4426
0.3264


RR89
hCPS1-ASO-398
1.6142
0.8862
RR90
hCPS1-ASO-486
1.1654
0.3570


RR89
hCPS1-ASO-399
1.6498
0.8071
RR90
hCPS1-ASO-487
1.2836
0.1139


RR89
hCPS1-ASO-400
1.3005
0.7143
RR90
hCPS1-ASO-488
1.1598
0.5098


RR89
hCPS1-ASO-401
1.2663
0.6460
RR90
hCPS1-ASO-489
1.1434
0.1147


RR89
hCPS1-ASO-402
1.3756
0.5260
RR90
hCPS1-ASO-490
1.1133
0.1801


RR89
hCPS1-ASO-403
0.9677
0.3162
RR90
hCPS1-ASO-491
1.1545
0.0996


RR89
hCPS1-ASO-404
1.3644
0.4530
RR90
hCPS1-ASO-492
1.8287
0.8381









Example 3: In Vivo Characterization of Selected ASOs in Non-Human Primates

Male cynomolgus monkeys (NHP), 2-4 years old, were subcutaneously injected with either 20 mg/kg or 50 mg/kg of hCPS1-ASO-1x on Day 0, and repeated doses were given to some groups on Day 21. Three NHPs were randomly assigned as one group. PBS was administered to one group as a negative control. Ammonia challenge and ureagenesis assay in NHPs were performed in an overnight fasted state prior to the ammonia challenge. 200 mg/kg of 15NH4Cl solution was subcutaneously injected into NHPs and multiple blood draws were performed over 0-120 min and immediately plasmas were obtained by centrifugation.


hCPS1-ASO-1x decreased ammonia production in NHPs by a statistically significant amount as compared to PBS only treatment by Day 27. FIG. 17 provides the ammonia AUC both over time and per dose.


A second in vivo NHP study was performed to assess the efficacy with a lower dose of hCPS1-ASO-1x. Female cynomolgus monkeys (NHP), 2-4 years old, were subcutaneously injected with either 5 mg/kg or 15 mg/kg of hCPS1-ASO-1x on Day 1, and repeated doses were given on Day 36. Each group was consisted with three NHPs. One group was administered with PBS as a negative control. Ammonia challenge and ureagenesis assay in NHPs were performed in an overnight fasted state prior to the ammonia challenge. 200 mg/kg of 15NH4Cl solution was subcutaneously injected into NHPs and several blood draws were performed over 0-120 min and immediately plasmas were obtained by centrifugation. 13C-ureagenesis assay was performed in an overnight fated state prior to sodium acetate delivery. 55 mg/kg of 13C-sodium acetate was provided by oral gavage and multiple blood draws were performed over 0-240 min and plasmas were immediately obtained by centrifugation. FIG. 18 shows that hCPS1-ASO-1x decreased ammonia in NHPs after a single dose of 5 mg/kg for up to 5 weeks (shown are ammonia levels on day 22 and Day 36). In addition, urea levels increased in the ASOs treated NHPs up to 29 days post dose. FIG. 19 provides the ammonia AUC quantification on Days 22, 29 and 36.


Combination of hCPS1-ASO-1x with 13C-sodium acetate treatment enhanced ureagenesis in NHPs at day 43 as compared to hCPS1-ASO-1x alone (FIG. 20).


In sum, upregulation of CPS1 increased the output of the urea cycle in mouse, NHP, and human hepatocytes, both in vitro and in vivo. Increasing CPS1 mRNA in the mouse OTCdef model via ASO treatment also increased the metabolism of ammonia to urea and the NHP data and humanized mouse liver data support this finding.


INCORPORATION BY REFERENCE

Unless stated to the contrary, the entire disclosure of each of the patent documents and scientific articles referred to herein is incorporated by reference for all purposes.


EQUIVALENTS

The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes that come within the meaning and range of equivalency of the claims are intended to be embraced therein.

Claims
  • 1. An antisense oligonucleotide (ASO) targeting a regulatory RNA (regRNA) of carbamoyl phosphate synthase 1 (CPS1) comprising a nucleotide sequence complementary to at least 8 contiguous nucleotides of any one of SEQ ID NOs: 49, 50, 69-90.
  • 2. The ASO of claim 1, wherein the ASO comprises a nucleotide sequence and optionally a chemical modification of any one of SEQ ID NOs: 1-48, 51-68, or 91-662.
  • 3. An antisense oligonucleotide (ASO) comprising a nucleotide sequence of TGCAGGCACACACATCAGGC (SEQ ID NO: 1).
  • 4. The ASO of claim 3, wherein the 3′ end of the ASO is conjugated to a ligand moiety.
  • 5. The ASO of claim 4, wherein the ligand moiety comprises N-acetylgalactosamine (GalNAc).
  • 6. The ASO of claim 5, wherein the ligand moiety comprises a three-cluster GalNAc moiety (GalNAc3).
  • 7. The ASO of claim 3, wherein one or more of the nucleotides of the ASO are chemically modified.
  • 8. The ASO of claim 3, wherein the ASO comprises MT=MG=M5C-MA-MG=dG=d5C=dA=d5C=dA=d5C=dA=d5C=dA=dT=M5C-MA-MG=MG=M5C (SEQ ID NO: 404), wherein MT, MG, MA, and M5C are 2′-O-methoxyethyl thymidine, 2′-O-methoxyethyl guanosine, 2′-O-methoxyethyl adenosine, and 2′-O-methoxyethyl 5-methyl cytidine ribonucleosides, respectively; dA, dG, dT, and d5C are 2′-deoxy adenosine, 2′-deoxy guanosine, 2′-deoxy thymidine and 2′-deoxy 5-methyl cytidine ribonucleosides, respectively, “=” is a phosphorothioate linkage, and “-” is a phosphodiester linkage.
  • 9. The ASO of claim 8, wherein the 3′ end of the ASO is conjugated to a ligand moiety.
  • 10. The ASO of claim 9, wherein the ligand moiety comprises N-acetylgalactosamine (GalNAc).
  • 11. The ASO of claim 10, wherein the ligand moiety comprises a three-cluster GalNAc moiety (GalNAc3).
  • 12. The ASO of claim 3, wherein the ASO comprises MT=MG=M5C-MA-MG=dG=d5C=dA=d5C=dA=d5C=dA=d5C=dA=dT=M5C-MA-MG=MG=M5C-[TEG] (SEQ ID NO: 409), wherein MT, MG, MA, and M5C are 2′-O-methoxyethyl thymidine, 2′-O-methoxyethyl guanosine, 2′-O-methoxyethyl adenosine, and 2′-O-methoxyethyl 5-methyl cytidine ribonucleosides; dA, dG, dT, and d5C are 2′-deoxy adenosine, 2′-deoxy guanosine, 2′-deoxy thymidine and 2′-deoxy 5-methyl cytidine ribonucleosides, “=” is a phosphorothioate linkage, “-” is a phosphodiester linkage, and [TEG] is a ligand moiety comprising a triethyleneglycol linked to N-acetylgalactosamine (GalNAc).
  • 13. The ASO of claim 12, wherein the ligand moiety comprises a three-cluster GalNAc (GalNAc3).
  • 14. An antisense oligonucleotide (ASO) comprising MT=MG=M5C-MA-MG=dG=d5C=dA=d5C=dA=d5C=dA=d5C=dA=dT=M5C-MA-MG=MG=M5C-[TEG] (SEQ ID NO: 409), wherein MT, MG, MA, and M5C are 2′-O-methoxyethyl thymidine, 2′-O-methoxyethyl guanosine, 2′-O-methoxyethyl adenosine, and 2′-O-methoxyethyl 5-methyl cytidine ribonucleosides; dA, dG, dT, and d5C are 2′-deoxy adenosine, 2′-deoxy guanosine, 2′-deoxy thymidine and 2′-deoxy 5-methyl cytidine ribonucleosides, “=” is a phosphorothioate linkage, “-” is a phosphodiester linkage, and [TEG] is a ligand moiety comprising a triethyleneglycol linked to N-acetylgalactosamine (GalNAc).
  • 15. The ASO of claim 14, wherein the ligand moiety comprises a three-cluster GalNAc moiety (GalNAc3).
  • 16. An antisense oligonucleotide (ASO) comprising MT=MG=M5C-MA-MG=dG=d5C=dA=d5C=dA=d5C=dA=d5C=dA=dT=M5C-MA-MG=MG=M5C (SEQ ID NO: 404), wherein MT, MG, MA, and M5C are 2′-O-methoxyethyl thymidine, 2′-O-methoxyethyl guanosine, 2′-O-methoxyethyl adenosine, and 2′-O-methoxyethyl 5-methyl cytidine ribonucleosides; dA, dG, dT, and d5C are 2′-deoxy adenosine, 2′-deoxy guanosine, 2′-deoxy thymidine and 2′-deoxy 5-methyl cytidine ribonucleosides, “=” is a phosphorothioate linkage, “-” is a phosphodiester linkage.
  • 17. A pharmaceutical composition comprising the ASO of claim 1.
  • 18. A pharmaceutical composition comprising the ASO of claim 3.
  • 19. A pharmaceutical composition comprising the ASO of claim 14.
  • 20. A pharmaceutical composition comprising the ASO of claim 16.
  • 21. A method of modulating expression of CPS1 in a cell, comprising contacting the cell with the ASO of claim 1.
  • 22. A method of increasing expression of CPS1 in a human cell, comprising contacting the cell with the ASO of claim 3.
  • 23. A method of treating a urea cycle disorder comprising administering to a subject in need thereof an effective amount of the ASO of claim 1.
  • 24. The method of claim 23, wherein the urea cycle disorder comprises carbamoylphosphate synthetase 1 (CPS1) deficiency, ornithine transcarbamylase deficiency (OTC) deficiency, argininosuccinate synthetase 1 (ASS1) deficiency, argininosuccinate lyase (ASL) deficiency, arginase 1 deficiency, ornithine translocase (ORNT1) deficiency, hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome, or citrin deficiency.
  • 25. A method of treating a urea cycle disorder comprising administering to a subject in need thereof an effective amount of the ASO of claim 3.
  • 26. A method of treating or preventing hyperammonemia in a subject comprising administering to a subject in need thereof an effective amount of the ASO of claim 1.
  • 27. The method of claim 26, wherein the subject comprises one or more of: a urea cycle disorder, hepatic encephalopathy, acute liver failure, liver cirrhosis, non-alcoholic fatty liver disease, renal dysfunction or failure, propionic acidemia, methylmalonic acidemia, isovaleric acidemia, a urinary tract infection, intestinal bacterial overgrowth, a fatty acid oxidation disorder, and a systemic infection, or wherein the subject has or is at risk of developing hyperammonemia associated with the intake of a drug.
  • 28. The method of claim 27, wherein the drug is valproic acid, carbamazepine, fluorouracil, sulfadiazine, ribavirin, salicylates, or glycine.
  • 29. A method of treating or preventing hyperammonemia in a subject comprising administering to a subject in need thereof an effective amount of the ASO of claim 3.
  • 30. A method of increasing the level of CPS1 in a cell comprising contacting the cell with an ASO of claim 1.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of International Application No. PCT/US2022/082295, filed Dec. 22, 2022, which claims the benefit of U.S. Provisional Application No. 63/292,920, filed Dec. 22, 2021, and U.S. Provisional Application No. 63/308,373, filed Feb. 9, 2022, each of which are hereby incorporated in their entirety by reference.

Provisional Applications (2)
Number Date Country
63308373 Feb 2022 US
63292920 Dec 2021 US
Continuations (1)
Number Date Country
Parent PCT/US2022/082295 Dec 2022 WO
Child 18752290 US