Descriptions are generally related to computer memory, and more particular descriptions are related to a multi-channel memory module.
The performance of computing systems is highly dependent on the performance of their system memory. Computing systems, such as desktop and server computing systems, typically include a motherboard with memory module connectors in which memory modules can be installed to increase system memory capacity. Memory bandwidth is also critical for various computing systems. Typically, memory bandwidth can be increased by adding more memory channels and increasing the memory data rate.
The following description includes discussion of figures having illustrations given by way of example of implementations of embodiments of the invention. The drawings should be understood by way of example, and not by way of limitation. As used herein, references to one or more “embodiments” or examples are to be understood as describing a particular feature, structure, and/or characteristic included in at least one implementation of the invention. Thus, phrases such as “in one embodiment” or “in an alternate embodiment” appearing herein describe various embodiments and implementations of the invention, and do not necessarily all refer to the same embodiment. However, they are also not necessarily mutually exclusive.
Descriptions of certain details and implementations follow, including a description of the figures, which may depict some or all of the embodiments described below, as well as discussing other potential embodiments or implementations of the inventive concepts presented herein.
In one example, multi-channel memory modules include multiple rows of conductive contacts to enable connecting multiple channels to the same memory module. Connecting multiple channels to the same memory module can provide advantages in terms of real estate (e.g., area) at the platform level as well as performance in terms of increased bandwidth.
The memory module 102 in
The DIMM 102 can be inserted or seated into a DIMM connector 116 on the motherboard 103. The connector includes pins 114 that make contact with gold fingers 112A, 112B on the front and back sides 110A, 110B of the DIMM 102. The gold fingers 112A, 112B are coupled with the DRAM chips 104 on the DIMM via conductive traces on or in the DIMM 102. In this way, signals can be transmitted to and from the DRAM chips 104 via the connector 116.
Existing Double Data Rate version 5 (DDR5) DIMMs use a 288-pin connector that supports one channel. For example, the DIMM 102 depicted in
In one example, such as for an enhanced load reduced DIMM (eLRDIMM) or a multiplexed rank DIMM (MRDIMM), the DIMM 122 further includes multiplexer circuitry (not shown) between the buffers and the ranks of DRAM chips 104. In one such example, the multiplexer circuitry multiplexes data transfers over a same burst time window to two different ranks of memory chips. Thus, in one such example, every 2-bit signal that the data buffer receives is sent to two different DRAMs (e.g., two of the DRAM chips 104). In one such example, the front end of the data buffers is running at double the data rate relative to the back end of the data buffers. In other words, in one example, the front side data bus (front side DQ) can operate at a higher rate (e.g., double the rate) of the back side data bus (back side DQ), where the front side DQ is between the data buffers 124 of the DIMM 122 and a processor, and the back side DQ is between the data buffers 124 and the DRAM 104. By increasing the front side DQ, the overall memory bandwidth can be increased. However, there are additional costs associated with adding the data buffers 124 and multiplexer circuitry. Additionally, the DIMM 122 is still a one-channel solution. Finally, there are signal integrity challenges to address due to running the front end DQ at a higher data rate.
In contrast, a multi-channel memory module can enable higher bandwidth without the higher costs and challenges associated with adding data buffers and operating the front side DQ at a higher frequency.
In one such example, the DIMM 202 and the DIMM connector 216 are compatible with a memory standard such as a double data rate synchronous dynamic random-access memory (DDR) standard, such as DDR3 (Double Data Rate version 3, original release by JEDEC (Joint Electronic Device Engineering Council) on Jun. 27, 2007), DDR4 (DDR version 4, originally published in September 2012 by JEDEC), DDR5 (DDR version 5, originally published in July 2020), DDR6, LPDDR3 (Low Power DDR version 3, JESD209-3B, August 2013 by JEDEC), LPDDR4 (LPDDR version 4, JESD209-4, originally published by JEDEC in August 2014), LPDDR5 (LPDDR version 5, JESD209-5A, originally published by JEDEC in January 2020), or others or combinations of memory technologies, and technologies based on derivatives or extensions of such specifications.
The memory module 202 illustrated in
Unlike the memory modules 102 and 122 of
Referring again to
The connector 216 includes pins 222A, 222B, 224A, and 224B that make contact with conductive contacts in rows 212A, 212B, 214A, and 214B, respectively, on the front and back sides 210A, 210B of the memory module 202. The conductive contacts in the rows 212A, 212B, 214A, and 214B are coupled with the DRAM chips 204 on the memory module 202 via conductive traces 215A, 215B, 216A, and 216B on or in the memory module 202. In this way, signals can be transmitted to and from the DRAM chips 204 via the connector 216.
For example, the two rows 212A, 212B and 214A, 214B on each face of the memory module 202 are to couple with two rows of corresponding pins in each side 225A, 225B of the memory module connector 216. Thus, unlike the connector 116 illustrated in
Thus, in the illustrated example, the first row 212A of conductive contacts on one face 210A of the memory module 202 are to couple with a plurality of inner pins 222A on one side 225A of the connector 216, and the first row 212B of conductive contacts on the other face 210B of the memory module 202 are to couple with the plurality of inner pins 222B on the other side 225B of the connector 216. Similarly, the second row 214A of conductive contacts on one face 210A of the memory module 202 are to couple with a plurality of outer pins 224A on one side 225A of the connector 216, and the second row 214B of conductive contacts on the other face 210B of the memory module 202 are to couple with a plurality of outer pins 224B on the other side 225B of the connector 216.
In one example, the two rows of conductive contacts on each of the first and second sides of the memory module are to couple with two memory channels. For example, the memory module 202 of
Thus, the example in
However, unlike the example in
In the illustrated example, to support this configuration, the memory module 232 includes traces 235A to couple the conductive contacts in the row 212A with DRAM chips in the group 252A, traces 236A to couple the conductive contacts in row 212B with the DRAM chips 204 in the group 254A, traces 235B to couple the row 214A of conductive contacts with the DRAM chips 204 in the group 252B, and traces 236B to couple the conductive contacts in row 214B with the DRAM chips in the group 254B. Thus, in the illustrated example in
Thus, the memory modules 202 of
Although
Turning first to
Referring to
The memory module 300 includes a plurality of memory chips (e.g., DRAM chips) 303 on the PCB 325 of the memory module 300. Although
The memory module 300 includes two rows of conductive contacts on each side 310A, 310B. For example, the memory module 300 includes a first row (or bottom row) 312A of conductive contacts and a second row (or top row) 314A of conductive contacts on side 310A. The memory module 300 includes a first row (or bottom row) 312B of conductive contacts and a second row (or top row) 314B of conductive contacts on side 310B. The rows 312A, 314A, 312B, and 314B of conductive contacts may be the same as, or similar to, the conductive contacts in rows 212A, 214A, 212B, and 214B of
In one example, the dimensions (e.g., length) of the memory module 300 and the conductive contacts of each of the rows 312A, 314A, 312B, and 314B has a number and pitch in correspondence with a standard, such as DDR5 or other memory standard.
Referring again to the RCDs 322A and 322B, although the memory module 300 is shown as having two RCDs, in other examples, a single RCD can be used for both channels of a two-channel memory module. For example,
Reference to memory devices can apply to different memory types. Memory devices often refers to volatile memory technologies. Volatile memory is memory whose state (and therefore the data stored in it) is indeterminate if power is interrupted to the device. Dynamic volatile memory requires refreshing the data stored in the device to maintain state. One example of dynamic volatile memory incudes DRAM (Dynamic Random Access Memory), or some variant such as Synchronous DRAM (SDRAM). A memory subsystem as described herein may be compatible with a number of memory technologies, such as DDR3 (Double Data Rate version 3, original release by JEDEC (Joint Electronic Device Engineering Council) on Jun. 27, 2007). DDR4 (DDR version 4, originally published in September 2012 by JEDEC), DDR5 (DDR version 5, originally published in July 2020), LPDDR3 (Low Power DDR version 3, JESD209-3B, August 2013 by JEDEC), LPDDR4 (LPDDR version 4, JESD209-4, originally published by JEDEC in August 2014), LPDDR5 (LPDDR version 5, JESD209-5A, originally published by JEDEC in January 2020), WIO2 (Wide Input/Output version 2, JESD229-2 originally published by JEDEC in August 2014), HBM (High Bandwidth Memory, JESD235, originally published by JEDEC in October 2013), HBM2 (HBM version 2, JESD235C, originally published by JEDEC in January 2020), or HBM3 (HBM version 3 currently in discussion by JEDEC), or others or combinations of memory technologies, and technologies based on derivatives or extensions of such specifications. The JEDEC standards are available at www.jedec.org.
Descriptions herein referring to a “RAM” or “RAM device” can apply to any memory device that allows random access, whether volatile or nonvolatile. Descriptions referring to a “DRAM” or a “DRAM device” can refer to a volatile random access memory device. The memory device or DRAM can refer to the die itself, to a packaged memory product that includes one or more dies, or both. In one embodiment, a system with volatile memory that needs to be refreshed can also include nonvolatile memory.
Memory controller 520 represents one or more memory controller circuits or devices for system 500. Memory controller 520 represents control logic that generates memory access commands in response to the execution of operations by processor 510. Memory controller 520 accesses one or more memory devices 540. Memory devices 540 can be DRAM devices in accordance with any referred to above. In one embodiment, memory devices 540 are organized and managed as different channels, where each channel couples to buses and signal lines that couple to multiple memory devices in parallel. Each channel is independently operable. Thus, each channel is independently accessed and controlled, and the timing, data transfer, command and address exchanges, and other operations are separate for each channel. Coupling can refer to an electrical coupling, communicative coupling, physical coupling, or a combination of these. Physical coupling can include direct contact. Electrical coupling includes an interface or interconnection that allows electrical flow between components, or allows signaling between components, or both. Communicative coupling includes connections, including wired or wireless, that enable components to exchange data.
In one embodiment, settings for each channel are controlled by separate mode registers or other register settings. In one embodiment, each memory controller 520 manages a separate memory channel, although system 500 can be configured to have multiple channels managed by a single controller, or to have multiple controllers on a single channel. In one embodiment, memory controller 520 is part of host processor 510, such as logic implemented on the same die or implemented in the same package space as the processor.
Memory controller 520 includes I/O interface logic 522 to couple to a memory bus, such as a memory channel as referred to above. I/O interface logic 522 (as well as I/O interface logic 542 of memory device 540) can include pins, pads, connectors, signal lines, traces, or wires, or other hardware to connect the devices, or a combination of these. I/O interface logic 522 can include a hardware interface. As illustrated, I/O interface logic 522 includes at least drivers/transceivers for signal lines. Commonly, wires within an integrated circuit interface couple with a pad, pin, or connector to interface signal lines or traces or other wires between devices. I/O interface logic 522 can include drivers, receivers, transceivers, or termination, or other circuitry or combinations of circuitry to exchange signals on the signal lines between the devices. The exchange of signals includes at least one of transmit or receive. While shown as coupling I/O 522 from memory controller 520 to I/O 542 of memory device 540, it will be understood that in an implementation of system 500 where groups of memory devices 540 are accessed in parallel, multiple memory devices can include I/O interfaces to the same interface of memory controller 520. In an implementation of system 500 including one or more memory modules 570, I/O 542 can include interface hardware of the memory module in addition to interface hardware on the memory device itself. Other memory controllers 520 will include separate interfaces to other memory devices 540.
The bus between memory controller 520 and memory devices 540 can be implemented as multiple signal lines coupling memory controller 520 to memory devices 540. The bus may typically include at least clock (CLK) 532, command/address (CMD) 534, and write data (DQ) and read data (DQ) 536, and zero or more other signal lines 538. In one embodiment, a bus or connection between memory controller 520 and memory can be referred to as a memory bus. The signal lines for CMD can be referred to as a “C/A bus” (or ADD/CMD bus, or some other designation indicating the transfer of commands (C or CMD) and address (A or ADD) information) and the signal lines for write and read DQ can be referred to as a “data bus.” In one embodiment, independent channels have different clock signals, C/A buses, data buses, and other signal lines. Thus, system 500 can be considered to have multiple “buses,” in the sense that an independent interface path can be considered a separate bus. It will be understood that in addition to the lines explicitly shown, a bus can include at least one of strobe signaling lines, alert lines, auxiliary lines, or other signal lines, or a combination. It will also be understood that serial bus technologies can be used for the connection between memory controller 520 and memory devices 540. An example of a serial bus technology is 8B10B encoding and transmission of high-speed data with embedded clock over a single differential pair of signals in each direction. In one embodiment, CMD 534 represents signal lines shared in parallel with multiple memory devices. In one embodiment, multiple memory devices share encoding command signal lines of CMD 534, and each has a separate chip select (CS_n) signal line to select individual memory devices.
It will be understood that in the example of system 500, the bus between memory controller 520 and memory devices 540 includes a subsidiary command bus CMD 534 and a subsidiary bus to carry the write and read data, DQ 536. In one embodiment, the data bus can include bidirectional lines for read data and for write/command data. In another embodiment, the subsidiary bus DQ 536 can include unidirectional write signal lines for write and data from the host to memory and can include unidirectional lines for read data from the memory to the host. In accordance with the chosen memory technology and system design, other signals 538 may accompany a bus or sub bus, such as strobe lines DQS. Based on design of system 500, or implementation if a design supports multiple implementations, the data bus can have more or less bandwidth per memory device 540. For example, the data bus can support memory devices that have either a ×32 interface, a ×16 interface, a ×8 interface, or other interface. The convention “×W,” where W is an integer that refers to an interface size or width of the interface of memory device 540, which represents a number of signal lines to exchange data with memory controller 520. The interface size of the memory devices is a controlling factor on how many memory devices can be used concurrently per channel in system 500 or coupled in parallel to the same signal lines. In one embodiment, high bandwidth memory devices, wide interface devices, or stacked memory configurations, or combinations, can enable wider interfaces, such as a ×128 interface, a ×256 interface, a ×512 interface, a ×1024 interface, or other data bus interface width.
In one embodiment, memory devices 540 and memory controller 520 exchange data over the data bus in a burst, or a sequence of consecutive data transfers. The burst corresponds to a number of transfer cycles, which is related to a bus frequency. In one embodiment, the transfer cycle can be a whole clock cycle for transfers occurring on a same clock or strobe signal edge (e.g., on the rising edge). In one embodiment, every clock cycle, referring to a cycle of the system clock, is separated into multiple unit intervals (UIs), where each UI is a transfer cycle. For example, double data rate transfers trigger on both edges of the clock signal (e.g., rising and falling). A burst can last for a configured number of UIs, which can be a configuration stored in a register, or triggered on the fly. For example, a sequence of eight consecutive transfer periods can be considered a burst length 8 (BL8), and each memory device 540 can transfer data on each UI. Thus, a ×8 memory device operating on BL8 can transfer 64 bits of data (8 data signal lines times 8 data bits transferred per line over the burst). It will be understood that this simple example is merely an illustration and is not limiting.
Memory devices 540 represent memory resources for system 500. In one embodiment, each memory device 540 is a separate memory die. In one embodiment, each memory device 540 can interface with multiple (e.g., 2) channels per device or die. Each memory device 540 includes I/O interface logic 542, which has a bandwidth determined by the implementation of the device (e.g., ×16 or ×8 or some other interface bandwidth). I/O interface logic 542 enables the memory devices to interface with memory controller 520. I/O interface logic 542 can include a hardware interface and can be in accordance with I/O 522 of memory controller, but at the memory device end. In one embodiment, multiple memory devices 540 are connected in parallel to the same command and data buses. In another embodiment, multiple memory devices 540 are connected in parallel to the same command bus and are connected to different data buses. For example, system 500 can be configured with multiple memory devices 540 coupled in parallel, with each memory device responding to a command, and accessing memory resources 560 internal to each. For a Write operation, an individual memory device 540 can write a portion of the overall data word, and for a Read operation, an individual memory device 540 can fetch a portion of the overall data word. As non-limiting examples, a specific memory device can provide or receive, respectively, 8 bits of a 128-bit data word for a Read or Write transaction, or 8 bits or 16 bits (depending for a ×8 or a ×16 device) of a 256-bit data word. The remaining bits of the word will be provided or received by other memory devices in parallel.
In one embodiment, memory devices 540 are disposed directly on a motherboard or host system platform (e.g., a PCB (printed circuit board) on which processor 510 is disposed) of a computing device. In one embodiment, memory devices 540 can be organized into memory modules 570. In one embodiment, memory modules 570 represent dual inline memory modules (DIMMs). In one embodiment, memory modules 570 represent other organization of multiple memory devices to share at least a portion of access or control circuitry, which can be a separate circuit, a separate device, or a separate board from the host system platform. Memory modules 570 can include multiple memory devices 540, and the memory modules can include support for multiple separate channels to the included memory devices disposed on them. In another embodiment, memory devices 540 may be incorporated into the same package as memory controller 520, such as by techniques such as multi-chip-module (MCM), package-on-package, through-silicon via (TSV), or other techniques or combinations. Similarly, in one embodiment, multiple memory devices 540 may be incorporated into memory modules 570, which themselves may be incorporated into the same package as memory controller 520. It will be appreciated that for these and other embodiments, memory controller 520 may be part of host processor 510.
Memory devices 540 each include memory resources 560. Memory resources 560 represent individual arrays of memory locations or storage locations for data. Typically, memory resources 560 are managed as rows of data, accessed via wordline (rows) and bitline (individual bits within a row) control. Memory resources 560 can be organized as separate channels, ranks, and banks of memory. Channels may refer to independent control paths to storage locations within memory devices 540. A rank refers to memory devices coupled with the same chip select. Ranks may refer to common locations across multiple memory devices (e.g., same row addresses within different devices). Banks may refer to arrays of memory locations within a memory device 540. In one embodiment, banks of memory are divided into sub-banks with at least a portion of shared circuitry (e.g., drivers, signal lines, control logic) for the sub-banks, allowing separate addressing and access. It will be understood that channels, ranks, banks, sub-banks, bank groups, or other organizations of the memory locations, and combinations of the organizations, can overlap in their application to physical resources. For example, the same physical memory locations can be accessed over a specific channel as a specific bank, which can also belong to a rank. Thus, the organization of memory resources will be understood in an inclusive, rather than exclusive, manner.
In one embodiment, memory devices 540 include one or more registers 544. Register 544 represents one or more storage devices or storage locations that provide configuration or settings for the operation of the memory device. In one embodiment, register 544 can provide a storage location for memory device 540 to store data for access by memory controller 520 as part of a control or management operation. In one embodiment, register 544 includes one or more Mode Registers. In one embodiment, register 544 includes one or more multipurpose registers. The configuration of locations within register 544 can configure memory device 540 to operate in different “modes,” where command information can trigger different operations within memory device 540 based on the mode. Additionally, or in the alternative, different modes can also trigger different operation from address information or other signal lines depending on the mode. Settings of register 544 can indicate configuration for I/O settings (e.g., timing, termination or ODT (on-die termination), driver configuration, or other I/O settings).
Memory device 540 includes controller 550, which represents control logic within the memory device to control internal operations within the memory device. For example, controller 550 decodes commands sent by memory controller 520 and generates internal operations to execute or satisfy the commands. Controller 550 can be referred to as an internal controller and is separate from memory controller 520 of the host. Controller 550 can determine what mode is selected based on register 544 and configure the internal execution of operations for access to memory resources 560 or other operations based on the selected mode. Controller 550 generates control signals to control the routing of bits within memory device 540 to provide a proper interface for the selected mode and direct a command to the proper memory locations or addresses. Controller 550 includes command logic 552, which can decode command encoding received on command and address signal lines. Thus, command logic 552 can be or include a command decoder. With command logic 552, memory device can identify commands and generate internal operations to execute requested commands.
Referring again to memory controller 520, memory controller 520 includes command (CMD) logic 524, which represents logic or circuitry to generate commands to send to memory devices 540. The generation of the commands can refer to the command prior to scheduling, or the preparation of queued commands ready to be sent. Generally, the signaling in memory subsystems includes address information within or accompanying the command to indicate or select one or more memory locations where the memory devices should execute the command. In response to scheduling of transactions for memory device 540, memory controller 520 can issue commands via I/O 522 to cause memory device 540 to execute the commands. In one embodiment, controller 550 of memory device 540 receives and decodes command and address information received via I/O 542 from memory controller 520. Based on the received command and address information, controller 550 can control the timing of operations of the logic and circuitry within memory device 540 to execute the commands. Controller 550 is responsible for compliance with standards or specifications within memory device 540, such as timing and signaling requirements. Memory controller 520 can implement compliance with standards or specifications by access scheduling and control.
Memory controller 520 includes scheduler 530, which represents logic or circuitry to generate and order transactions to send to memory device 540. From one perspective, the primary function of memory controller 520 could be said to schedule memory access and other transactions to memory device 540. Such scheduling can include generating the transactions themselves to implement the requests for data by processor 510 and to maintain integrity of the data (e.g., such as with commands related to refresh). Transactions can include one or more commands, and result in the transfer of commands or data or both over one or multiple timing cycles such as clock cycles or unit intervals. Transactions can be for access such as read or write or related commands or a combination, and other transactions can include memory management commands for configuration, settings, data integrity, or other commands or a combination.
Memory controller 520 typically includes logic such as scheduler 530 to allow selection and ordering of transactions to improve performance of system 500. Thus, memory controller 520 can select which of the outstanding transactions should be sent to memory device 540 in which order, which is typically achieved with logic much more complex that a simple first-in first-out algorithm. Memory controller 520 manages the transmission of the transactions to memory device 540, and manages the timing associated with the transaction. In one embodiment, transactions have deterministic timing, which can be managed by memory controller 520 and used in determining how to schedule the transactions with scheduler 530.
Referring again to the memory module 570, in one example, an RCD 521 is included on the module 570 to buffer signals between the memory controller and the memory devices and control the timing and signaling to the DRAMs. In some examples, a buffer device is referred to as a register or a registered or registering clock driver (RCD). The term RCD is used throughout the Specification and Figures; however, the examples may apply to other buffer devices (e.g., a CXL buffer or other buffering device). For example, the examples described herein can be extended to CXL buffer-based high bandwidth DIMMs where the data buffer logic is integrated into the buffer device. The RCD 521 receives command and clock signals from the memory controller 520 and forwards them to the memory devices in accordance with relevant protocols and standard specifications. For example, the RCD 521 may be in compliance with the DDR4 Registering Clock Driver Specification (DDR4RCD02 JESD82-31A), the DDR5 Registering Clock Driver Specification (DDR5RCD02 currently in discussion by JEDEC), or other RCD standards.
In one example, the memory modules 570 can be multi-channel memory modules in accordance with examples described herein.
System 600 includes processor 610, which provides processing, operation management, and execution of instructions for system 600. Processor 610 can include any type of microprocessor, central processing unit (CPU), graphics processing unit (GPU), processing core, or other processing hardware to provide processing for system 600, or a combination of processors. Processor 610 controls the overall operation of system 600, and can be or include, one or more programmable general-purpose or special-purpose microprocessors, digital signal processors (DSPs), programmable controllers, application specific integrated circuits (ASICs), programmable logic devices (PLDs), or the like, or a combination of such devices.
In one embodiment, system 600 includes interface 612 coupled to processor 610, which can represent a higher speed interface or a high throughput interface for system components that needs higher bandwidth connections, such as memory subsystem 620 or graphics interface components 640. Interface 612 represents an interface circuit, which can be a standalone component or integrated onto a processor die. Where present, graphics interface 640 interfaces to graphics components for providing a visual display to a user of system 600. In one embodiment, graphics interface 640 can drive a high definition (HD) display that provides an output to a user. High definition can refer to a display having a pixel density of approximately 100 PPI (pixels per inch) or greater and can include formats such as full HD (e.g., 1080p), retina displays, 4K (ultra-high definition or UHD), or others. In one embodiment, the display can include a touchscreen display. In one embodiment, graphics interface 640 generates a display based on data stored in memory 630 or based on operations executed by processor 610 or both. In one embodiment, graphics interface 640 generates a display based on data stored in memory 630 or based on operations executed by processor 610 or both.
Memory subsystem 620 represents the main memory of system 600 and provides storage for code to be executed by processor 610, or data values to be used in executing a routine. Memory subsystem 620 can include one or more memory devices 630 such as read-only memory (ROM), flash memory, one or more varieties of random-access memory (RAM) such as DRAM, or other memory devices, or a combination of such devices. Memory 630 stores and hosts, among other things, operating system (OS) 632 to provide a software platform for execution of instructions in system 600. Additionally, applications 634 can execute on the software platform of OS 632 from memory 630. Applications 634 represent programs that have their own operational logic to perform execution of one or more functions. Processes 636 represent agents or routines that provide auxiliary functions to OS 632 or one or more applications 634 or a combination. OS 632, applications 634, and processes 636 provide software logic to provide functions for system 600. In one embodiment, memory subsystem 620 includes memory controller 622, which is a memory controller to generate and issue commands to memory 630. It will be understood that memory controller 622 could be a physical part of processor 610 or a physical part of interface 612. For example, memory controller 622 can be an integrated memory controller, integrated onto a circuit with processor 610.
While not specifically illustrated, it will be understood that system 600 can include one or more buses or bus systems between devices, such as a memory bus, a graphics bus, interface buses, or others. Buses or other signal lines can communicatively or electrically couple components together, or both communicatively and electrically couple the components. Buses can include physical communication lines, point-to-point connections, bridges, adapters, controllers, or other circuitry or a combination. Buses can include, for example, one or more of a system bus, a Peripheral Component Interconnect (PCI) bus, a HyperTransport or industry standard architecture (ISA) bus, a small computer system interface (SCSI) bus, a universal serial bus (USB), or an Institute of Electrical and Electronics Engineers (IEEE) standard 1394 bus.
In one embodiment, system 600 includes interface 614, which can be coupled to interface 612. Interface 614 can be a lower speed interface than interface 612. In one embodiment, interface 614 represents an interface circuit, which can include standalone components and integrated circuitry. In one embodiment, multiple user interface components or peripheral components, or both, couple to interface 614. Network interface 650 provides system 600 the ability to communicate with remote devices (e.g., servers or other computing devices) over one or more networks. Network interface 650 can include an Ethernet adapter, wireless interconnection components, cellular network interconnection components, USB (universal serial bus), or other wired or wireless standards-based or proprietary interfaces. Network interface 650 can exchange data with a remote device, which can include sending data stored in memory or receiving data to be stored in memory.
In one embodiment, system 600 includes one or more input/output (I/O) interface(s) 660. I/O interface 660 can include one or more interface components through which a user interacts with system 600 (e.g., audio, alphanumeric, tactile/touch, or other interfacing). Peripheral interface 670 can include any hardware interface not specifically mentioned above. Peripherals refer generally to devices that connect dependently to system 600. A dependent connection is one where system 600 provides the software platform or hardware platform or both on which operation executes, and with which a user interacts.
In one embodiment, system 600 includes storage subsystem 680 to store data in a nonvolatile manner. In one embodiment, in certain system implementations, at least certain components of storage 680 can overlap with components of memory subsystem 620. Storage subsystem 680 includes storage device(s) 684, which can be or include any conventional medium for storing large amounts of data in a nonvolatile manner, such as one or more magnetic, solid state, or optical based disks, or a combination. Storage 684 holds code or instructions and data 686 in a persistent state (i.e., the value is retained despite interruption of power to system 600). Storage 684 can be generically considered to be a “memory,” although memory 630 is typically the executing or operating memory to provide instructions to processor 610. Whereas storage 684 is nonvolatile, memory 630 can include volatile memory (i.e., the value or state of the data is indeterminate if power is interrupted to system 600). In one embodiment, storage subsystem 680 includes controller 682 to interface with storage 684. In one embodiment controller 682 is a physical part of interface 614 or processor 610 or can include circuits or logic in both processor 610 and interface 614.
Power source 602 provides power to the components of system 600. More specifically, power source 602 typically interfaces to one or multiple power supplies 604 in system 600 to provide power to the components of system 600. In one embodiment, power supply 604 includes an AC to DC (alternating current to direct current) adapter to plug into a wall outlet. Such AC power can be renewable energy (e.g., solar power) power source 602. In one embodiment, power source 602 includes a DC power source, such as an external AC to DC converter. In one embodiment, power source 602 or power supply 604 includes wireless charging hardware to charge via proximity to a charging field. In one embodiment, power source 602 can include an internal battery or fuel cell source.
Thus, multi-channel memory modules including multiple rows of conductive contacts can enable coupling a single memory module with multiple memory channels. Coupling multiple channels to a single memory module can enable operating the channels in parallel, increasing memory bandwidth.
Examples of a multi-channel memory module follow:
Example 1: a memory module including: a printed circuit board (PCB) having a first face, a second face, and a first edge to be received by a connector, a plurality of memory chips on at least one of the first and second faces of the PCB, and two rows of conductive contacts on each of the first and second faces of the PCB. The two rows including a first row of conductive contacts proximate to the first edge of the PCB to be received by the connector, and a second row of conductive contacts between the first row and a second edge of the PCB opposite to the first edge.
Example 2: the memory module of example 1, wherein the second row of conductive contacts is between the first row and the plurality of memory chips.
Example 3: the memory module of examples 1 or 2, wherein the first row of conductive contacts is to couple with a plurality of inner pins of the connector, and the second row of conductive contacts is to couple with a plurality of outer pins of the connector.
Example 4: the memory module of any of examples 1-3, wherein the two rows of conductive contacts on each of the first and second faces of the PCB are to couple with two memory channels.
Example 5: The memory module of example 4, wherein the first and second rows of conductive contacts on the first face of the PCB are to couple with a first memory channel, and the first and second rows of conductive contacts on the second face of the PCB are to couple with a second memory channel.
Example 6: the memory module of example 4, further including a single registering clock driver (RCD) on the PCB, the single RCD to receive command and address signals for both of the two memory channels.
Example 7: the memory module of example 4, further including a first registering clock driver (RCD) on the PCB to receive command and address signals for a first of the two memory channels, and a second RCD on the PCB to receive command and address signals for a second of the two memory channels.
Example 8: the memory module of example 7, wherein the first RCD is on a first face of the PCB, and the second RCD is on a second face of the PCB.
Example 9: the memory module of example 7, wherein the first RCD and the second RCD are on the same face of the PCB.
Example 10: the memory module of any of examples 1-9, further including a third row of conductive contacts between the first row and the second row of conductive contacts.
Example 11: the memory module of example 10, wherein the first row of conductive contacts is to couple with a plurality of inner pins of the connector, the second row of conductive contacts is to couple with a plurality of outer pins of the connector, and the third row of conductive contacts is to couple with a plurality of pins between the plurality of inner pins and the plurality of outer pins.
Example 12: a dual-inline memory module (DIMM) including: a printed circuit board (PCB) having a first face, a second face, and an edge to be received by a DIMM connector, a plurality of DRAM chips on each of the first and second faces of the PCB, a bottom row of conductive contacts on each of the first and second faces of the PCB at the edge of the PCB to be received by the DIMM connector, and a top row of conductive contacts on each of the first and second faces of the PCB, wherein the top row is aligned over and parallel to the bottom row of conductive contacts.
Example 13: the DIMM of example 12, wherein the top row of conductive contacts is between the bottom row and the plurality of DRAM chips.
Example 14: the DIMM of examples 12 or 13, wherein the bottom row of conductive contacts is to couple with a plurality of inner pins of the DIMM connector, and the top row of conductive contacts is to couple with a plurality of outer pins of the DIMM connector.
Example 15: the DIMM of any of examples 12-14, wherein the bottom rows and the top rows of conductive contacts on each of the first and second faces of the PCB are to couple with two memory channels.
Example 16: the DIMM of example 14, wherein the bottom rows and the top rows of conductive contacts on the first face of the PCB are to couple with a first memory channel, and the bottom rows and the top rows of conductive contacts on the second face of the PCB are to couple with a second memory channel.
Example 17: a system including: a processor, and a memory module coupled with the processor. The memory module includes a printed circuit board (PCB) having a first face, a second face, and a first edge to be received by a connector, a plurality of memory chips on at least one of the first and second faces of the PCB, and two rows of conductive contacts on each of the first and second faces of the PCB, the two rows including a first row of conductive contacts proximate to the first edge of the PCB to be received by the connector, and a second row of conductive contacts between the first row and a second edge of the PCB opposite to the first edge.
Example 18: the system of example 17, wherein the memory module is in accordance with any of examples 1-16.
Example 19: the system of examples 17 or 18, further including a motherboard including the connector.
Example 20: the system of any of examples 17-19, further including one or more of: a display, a battery, and a power supply.
Flow diagrams as illustrated herein provide examples of sequences of various process actions. The flow diagrams can indicate operations to be executed by a software or firmware routine, as well as physical operations. In one embodiment, a flow diagram can illustrate the state of a finite state machine (FSM), which can be implemented in hardware and/or software. Although shown in a particular sequence or order, unless otherwise specified, the order of the actions can be modified. Thus, the illustrated embodiments should be understood only as an example, and the process can be performed in a different order, and some actions can be performed in parallel. Additionally, one or more actions can be omitted in various embodiments; thus, not all actions are required in every embodiment. Other process flows are possible.
To the extent various operations or functions are described herein, they can be described or defined as software code, instructions, configuration, and/or data. The content can be directly executable (“object” or “executable” form), source code, or difference code (“delta” or “patch” code). The software content of the embodiments described herein can be provided via an article of manufacture with the content stored thereon, or via a method of operating a communication interface to send data via the communication interface. A machine readable storage medium can cause a machine to perform the functions or operations described and includes any mechanism that stores information in a form accessible by a machine (e.g., computing device, electronic system, etc.), such as recordable/non-recordable media (e.g., read only memory (ROM), random access memory (RAM), magnetic disk storage media, optical storage media, flash memory devices, etc.). A communication interface includes any mechanism that interfaces to any of a hardwired, wireless, optical, etc., medium to communicate to another device, such as a memory bus interface, a processor bus interface, an Internet connection, a disk controller, etc. The communication interface can be configured by providing configuration parameters and/or sending signals to prepare the communication interface to provide a data signal describing the software content. The communication interface can be accessed via one or more commands or signals sent to the communication interface.
Various components described herein can be a means for performing the operations or functions described. Each component described herein includes software, hardware, or a combination of these. The components can be implemented as software modules, hardware modules, special-purpose hardware (e.g., application specific hardware, application specific integrated circuits (ASICs), digital signal processors (DSPs), etc.), embedded controllers, hardwired circuitry, etc.
The hardware design embodiments discussed above may be embodied within a semiconductor chip and/or as a description of a circuit design for eventual targeting toward a semiconductor manufacturing process. In the case of the later, such circuit descriptions may take of the form of a (e.g., VHDL or Verilog) register transfer level (RTL) circuit description, a gate level circuit description, a transistor level circuit description or mask description or various combinations thereof. Circuit descriptions are typically embodied on a computer readable storage medium (such as a CD-ROM or other type of storage technology).
Besides what is described herein, various modifications can be made to the disclosed embodiments and implementations of the invention without departing from their scope. Therefore, the illustrations and examples herein should be construed in an illustrative, and not a restrictive sense. The scope of the invention should be measured solely by reference to the claims that follow.