Multi-die MEMS package

Information

  • Patent Grant
  • 9095072
  • Patent Number
    9,095,072
  • Date Filed
    Friday, September 16, 2011
    13 years ago
  • Date Issued
    Tuesday, July 28, 2015
    9 years ago
Abstract
This document refers to multi-die micromechanical system (MEMS) packages. In an example, a multi-die MEMS package can include a controller integrated circuit (IC) configured to couple to a circuit board, a MEMS IC mounted to a first side of the controller IC, a through silicon via extending through the controller IC between the first side and a second side of the controller IC, the second side opposite the first side, and wherein the MEMS IC is coupled to the through silicon via.
Description
BACKGROUND

Generally, applications using multiple microelectromechanical system (MEMS) chips include a separate controller for each MEMS chip. For example, an inertial sensor can be packaged with its own application specific integrated circuit (ASIC) while a pressure sensor is packaged with a separate ASIC. Because each additional MEMS chip includes an associated controller or controller circuitry, multiple MEMS systems can multiply the amount of power consumed, silicon and silicon real estate used, engineering resources used, and costs expended to produce the system. Additionally, some MEMS chips require high voltage signals. High voltage ASICs can be manufactured, but are expensive and not fully standardized. A MEMS requiring high voltage is stuck using an expensive ASIC, increasing the cost to levels that are not able support many consumer applications.


Overview

This document refers to multi-die micromechanical system (MEMS) packages. In an example, a multi-die MEMS package can include a controller integrated circuit (IC) configured to couple to a circuit board, a MEMS IC mounted to a first side of the controller IC, a through silicon via extending through the controller IC between the first side and a second side of the controller IC, the second side opposite the first side, and wherein the MEMS IC is coupled to the through silicon via.


This overview is intended to provide an overview of subject matter of the present patent application. It is not intended to provide an exclusive or exhaustive explanation of the invention. The detailed description is included to provide further information about the present patent application.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale, like numerals may describe similar components in different views. Like numerals having different letter suffixes may represent different instances of similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.



FIGS. 1-4 illustrate generally examples of multi-die MEMS packages.





DETAILED DESCRIPTION


FIG. 1 illustrates generally an example multi-die MEMS package 100 including a MEMS device 101 and a controller integrated circuit (IC) 102, such as an application-specific IC (ASIC). In certain examples, the MEMS device 101 is coupled to contacts on one one side of the controller IC 102 and the controller IC 102 includes through silicon vias (TSVs) to couple the contacts to second contacts on the other side of the controller IC 102. The TSVs can eliminate wire bonds, and the area that accommodates the wire bonds, extending from the MEMS device 101 to the controller IC 102 or other circuitry, such as a printed circuit board (PCB) 103. In certain examples, the multi-die MEMS package 100 can reduce the package footprint of the overall device. In certain examples, the multi-die MEMS package 100 can include a high voltage chip 104 mounted on top of the controller IC 102 proximate the MEMS device 101. In such an example, the high voltage chip 104 can provide the high voltage circuitry of the multi-die MEMS package 100 and the controller IC 102 can provide the low voltage circuitry of the multi-die MEMS package 100. In an example, multiple MEMS devices 101 can be mounted on top of, and coupled to, the controller IC 102, or to other circuitry, using through silicon vias (TSVs) of the controller IC 102.



FIG. 2 illustrates an example of a multi-die MEMS package 200 including a MEMS device 201 and a controller IC 202 that includes TSVs 204.


The MEMS device can include a device layer 205 and a cap layer 206. In an example, the device layer 205 can include a proof mass 207 supported by one or more an anchors 208. In an example, the device layer can include a proof mass supported by a single anchor. In certain examples, a MEMS IC can include more than one proof mass 207 within the device layer 205. The device layer 205, including the proof mass 207, can include gaps 209 extending in both vertical and horizontal directions through the device layer 205. The gaps 209 can form multiple moveable portions of a proof mass 207 and can allow in-plane movement and out-of-plane movement of the multiple portions, with respect to a major surface of the device layer 205. In an example, the in-plane movement and the out-of-plane movement of the proof mass 207 can be used to sense acceleration and rotation of the multi-die MEMS package 200. In certain examples, the device layer 205 can be etched to provide an inertial sensor with six degrees of freedom for sensing linear and angular acceleration of the MEMS package 200. In certain examples, the cap layer 206 can provide a portion of an environmental enclosure for the proof mass 207. In an example, a cavity 210 within the cap layer 206, or the device layer 205, can provide an area within which the proof mass 207 can move in the out-of-plane direction. In an example, the cap layer 206 can restrict out-of-plane movement of the proof mass 207, such as when the the multi-die MEMS package 200 encounters a mechanical shock. In certain examples, the environmental enclosure housing the device layer 205 can maintain a vacuum about the moveable portions of the device layer 205.


In certain examples, the device layer 205 is bonded to a controller IC 202 such as an ASIC. In an example, the device layer 205, in cooperation with electrodes formed in the controller IC 202, such as electrodes formed in a passivation layer of the controller IC 202, can include differentials sensors for each axis of out-of-plane movement of the proof mass 207. In certain examples, the controller IC 202 can include one or more through silicon vias (TSVs) 204 to electrically couple signals from one side of the controller IC 202 to a different side of the controller IC 202. For example, the controller IC 202 can include a TSV 204 to couple an electrode of the MEMS device 201 located to one side of the controller IC 202 to a contact 211 located on the opposite side of the controller IC 202. In certain examples, the controller IC 202 can include a device layer 212. The device layer 212 can include integrated electronic circuitry, such as transistors, to process information related to the MEMS device 201. In an example, the device layer 212 of the controller IC 202 can provide control circuitry more than one MEMS device 201 mounted to the controller IC 202. In an example, the controller IC 202 can include a passivation layer 213 to protect the device layer 212. In certain examples, the passivation layer 213 can be used to form electrodes for the MEMS device 201.


In certain examples, a wafer bond metal 214 can couple a perimeter bond area of the device layer 205 to the controller IC 202. In an example, the wafer bond metal 214 can couple the single anchor 208 to the controller IC 202. In an example, the wafer bond metal 214 can couple the device layer 205, including the single anchor 208, directly to raw silicon of the controller IC 202. In an example, using a uniform bonding layer to bond the perimeter area of the device layer 205 and the anchor 208, and the ability to provide differential out-of-plane sensing, can result in improved rejection of thermal expansion effects and can reduce stress gradients of the bonded components. Improved rejection of thermal expansion effects and reduced stress gradients of the bonded components can both improve performance of the MEMS device 201.


In certain examples, the controller IC can include interconnects 218 to couple the multi-die MEMS package to other circuitry. In an example, the interconnects 218 can include solder bumps.



FIG. 3 illustrates generally an example multi-die MEMS package 300 including a MEMS device 301 and a controller IC 302 with through silicon vias (TSVs). The MEMS device 301 can include a device layer 305, a cap layer 306 and a via layer 315. In an example, the device layer 305 can include a MEMS structure including a proof mass 307 and a single anchor 308 configured to support the proof mass 307. In an example, the cap layer 306 and the via layer 315 can provide an environmental enclosure for the MEMS structure. In an example, the cap layer 306 and the via layer 315 can provide a stiff mechanical support for the MEMS structure such that components of the MEMS structure can be isolated from packaging stresses. In an example, the MEMS structure can be an inertial sensor structure. In an example, the MEMS structure can be a gyroscope sensor. In an example, the MEMS structure can be an accelerometer sensor. In certain examples, the MEMS structure can include one or more multi-axis, axis, inertial sensors, such as, but not limited to, a 3-axis gyroscope, 3-axis accelerometer, or an integrated, multi-axis, gyroscope and accelerometer. In certain examples, the via layer 315 can include electrically isolated regions that provide electrodes for the MEMS structure and routing circuitry to couple the MEMS device to the controller IC 302, such as an ASIC. In certain examples, solder joints 316 between the via layer 315 and the controller IC 302 can be located at or near the outer edges of the via layer 315 such as near the perimeter of the via layer 315. Locating the solder joints 316 at the perimeter of the via layer 315 can reduce the influence of stress introduced when the controller IC 302 is mounted to other circuitry such as a printed circuit board (PCB) 303.


In an example, the controller IC 302 can include a redistribution layer 317, including conductive materials, to couple the controller IC 302, as well as the multi-die MEMS package 300, to other circuitry, such as the printed circuit board (PCB) 303. In an example, the redistribution layer 317 can include interconnects 318, such as for soldering to the PCB 303. The interconnects 318 can be clustered near the center of the controller IC 302 to reduce packaging stress communicated to the MEMS device 301 coupled to the controller IC 302. In certain examples, such as where a controller IC 302 supports more than one MEMS device, the interconnects can be clustered about the center of each footprint defined by the MEMS devices overlying the controller IC 302. In certain examples, interconnects for coupling the controller IC 302 of a multi-die MEMS package 300 can include polymer-core copper interconnects to further reduce packaging stress. In an example, the controller IC 302 and the PCB 303 can include a low stiffness boundary layer (SBL) to reduce stress introduced when the multi-die MEMS package 300 is electrically coupled to the PCB 303.



FIG. 4 illustrates generally a portion of an example system 400 including multiple MEMS devices 401, 421. In certain examples, the system 400 includes a MEMS package 420 mounted on a PCB 403. The MEMS package 420 can include a controller IC 402 such as an ASIC. The MEMS package 420 can include multiple MEMS devices 401, 421 mounted to the controller IC 402. Mounting multiple MEMS devices 401, 421 to a single controller IC 402 can save space otherwise used by a separate controller IC for each MEMS device. In an example, the MEMS package 420 can include a high voltage controller IC 404 that can provide a higher voltage to those MEMS devices of the system 400 that use a higher voltage than the technology used for the controller IC 402. In certain examples, a high voltage IC 404, such as a high voltage ASIC, can be used to drive a proof mass of a MEMS device layer to oscillate at a resonant frequency. Such movement of a MEMS structure can assist in detecting angular acceleration of the multi-die MEMS package 420. Such a configuration saves costs and footprint area associated with fabricating the entire controller IC using high voltage technology. In certain examples, the MEMS devices 401, 421 can include inertial sensors such as gyroscope sensors, and acceleration sensors, pressure sensors, compass sensors, etc. It is understood that a system can include additional MEMS sensors, as well as other devices, mounted to the controller IC 402 where the controller IC includes sufficient space and processing capabilities.


Additional Notes and Examples

In Example 1, an apparatus can include a controller integrated circuit (IC) configured to couple to a circuit board, a microelectromechanical system (MEMS) IC mounted to a first side of the controller IC, a through silicon via extending through the controller IC between the first side and a second side of the controller IC, the second side opposite the first side, and wherein the MEMS IC is coupled to the through silicon via.


In Example 2, the apparatus of Example 1 optionally includes a plurality of solder interconnects coupled to the circuit board and the control IC.


In Example 3, the MEMS IC of any one or more of Examples 1-2 optionally includes an inertial sensor.


In Example 4, the inertial sensor of any one or more of Examples 1-3 optionally includes an inertial sensor having six degrees of freedom.


In Example 5, the MEMS IC of any one or more of Examples 1-4 optionally includes a device layer having multiple moveable portions and a single anchor, the device layer configured to allow in-plane movement and out-of-plane movement of one or more of the moveable portions, and the single anchor configured to support the multiple moveable portions, and a cap layer couple to the device layer opposite the controller IC.


In Example 6, the inertial sensor of any one or more of Examples 1-5 optionally includes a via layer coupled to the device layer at a perimeter of the device layer and at the anchor, the via layer including electrically isolated regions configured to provide out-of-plane electrodes of the inertial sensor.


In Example 7, the device layer of any one or more of Examples 1-6 is optionally coupled directly to the controller IC at a perimeter of the device layer and at the single anchor.


In Example 8, the control IC of any one or more of Examples 1-7 optionally includes an application specific IC (ASIC).


In Example 9, the apparatus of any one or more of Examples 1-8 optionally includes a high voltage control IC configured to supply voltage to drive the MEMS IC into resonance.


In Example 10, the high voltage control IC of any one or more of Examples 1-9 is optionally mounted to the control IC.


In Example 11, the control IC of any one or more of Examples 1-10 optionally includes a first application specific IC (ASIC), and the high voltage control IC of any one or more of Examples 1-10 optionally includes a second ASIC.


In Example 12, an apparatus can include a microelectromechanical system (MEMS) integrated circuit (IC) and a controller IC. The MEMS IC can include a device layer having a plurality of gaps, the plurality of gaps forming multiple moveable portions and a single anchor, the single anchor configured to support the multiple moveable portions, and a cap layer coupled to the device layer and configured to maintain a vacuum about the multiple moveable portions and to limit out-of-plane movement of the multiple moveable portions. The controller IC have a first side coupled to the MEMS IC, and the controller IC can include a through silicon via extending through the controller IC from the first side to a second side of the controller IC. The through silicon via can be configured to electrically couple contacts located the first side of the controller IC with contacts located on the second side of the controller IC.


In Example 13, the MEMS IC of any one or more of Examples 1-12 optionally includes a via wafer coupled to the device layer opposite the cap layer, the via layer configured to electrically couple the device layer and the controller IC.


In Example 14, the controller IC of any one or more of Examples 1-13 is optionally directly coupled to the device layer at a perimeter of the device layer and at the single anchor.


In Example 15, the MEMS IC of any one or more of Examples 1-14 optionally includes an inertial sensor.


In Example 16, the MEMS IC of any one or more of Examples 1-15 optionally includes a three axis gyroscope sensor and a three axis accelerometer.


In Example 17, the three axis gyroscope sensor of any one or more of Examples 1-16 and the three axis accelerometer of any one or more of Examples 1-16 are optionally mechanically integrated within the device layer.


In Example 18, the apparatus of any one or more of Examples 1-17 optionally includes a MEMS pressure sensor IC coupled to the first side of the controller IC.


In Example 19, the apparatus of any one or more of Examples 1-18 is optionally includes a high voltage controller IC coupled to the first side of the controller IC proximate the MEMS IC, the high voltage controller IC configured to operate with higher voltages than the controller IC.


In Example 20, the controller IC of any one or more of Examples 1-19 is optionally includes an application-specific IC (ASIC).


Example 21 can include, or can optionally be combined with any portion or combination of any portions of any one or more of Examples 1-20 to include, subject matter that can include means for performing any one or more of the functions of Examples 1-20, or a machine-readable medium including instructions that, when performed by a machine, cause the machine to perform any one or more of the functions of Examples 1-20.


The above detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show, by way of illustration, specific embodiments in which the invention can be practiced. These embodiments are also referred to herein as “examples.” All publications, patents, and patent documents referred to in this document are incorporated by reference herein in their entirety, as though individually incorporated by reference. In the event of inconsistent usages between this document and those documents so incorporated by reference, the usage in the incorporated reference(s) should be considered supplementary to that of this document; for irreconcilable inconsistencies, the usage in this document controls.


In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended, that is, a system, device, article, or process that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.


The above description is intended to be illustrative, and not restrictive. In other examples, the above-described examples (or one or more aspects thereof) may be used in combination with each other. Other embodiments can be used, such as by one of ordinary skill in the art upon reviewing the above description. The Abstract is provided to comply with 37 C.F.R. §1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the above Detailed Description, various features may be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter may lie in less than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims
  • 1. An apparatus comprising: a microelectromechanical system (MEMS) integrated circuit (IC), the MEMS IC including: a device layer having a plurality of gaps, the plurality of gaps forming multiple moveable portions and a single anchor, the single anchor configured to support the multiple moveable portions; anda cap layer coupled to the device layer and configured to maintain a vacuum about the multiple moveable portions and to limit out-of-plane movement of the multiple moveable portions; anda controller IC having a first side coupled to the MEMS IC, the controller IC including a through silicon via extending through the controller IC from the first side to a second side of the controller IC, the through silicon via configured to electrically couple contacts located the first side of the controller IC with contacts located on the second side of the controller IC.
  • 2. The apparatus of claim 1, wherein the MEMS IC includes a via wafer coupled to the device layer opposite the cap layer, the via layer configured to electrically couple the device layer and the controller IC.
  • 3. The apparatus of claim 1, wherein the controller IC is directly coupled to the device layer at a perimeter of the device layer and at the single anchor.
  • 4. The apparatus of claim 1, wherein the MEMS IC includes an inertial sensor.
  • 5. The apparatus of claim 1, wherein the MEMS IC includes a three-axis gyroscope sensor and a three-axis accelerometer.
  • 6. The apparatus of claim 5, wherein the three-axis gyroscope sensor and the three-axis accelerometer are mechanically integrated within the device layer.
  • 7. The apparatus of claim 1, including a MEMS pressure sensor IC coupled to the first side of the controller IC.
  • 8. The apparatus of claim 1, including a high voltage controller IC coupled to the first side of the controller IC proximate the MEMS IC, the high voltage controller IC configured to operate with higher voltages than the controller IC.
  • 9. The apparatus of claim 1, wherein the controller IC includes an application-specific IC (ASIC).
CLAIM OF PRIORITY

This application is a U.S. National Stage Filing under 35 U.S.C. 371 from International Patent Application Serial No. PCT/US2011/051994 filed on Sep. 16, 2011, and published on Mar. 22, 2012 as WO 2012/037492 A2 and republished on Jun. 7, 2012 as WO 2012/037492 A3, which claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 61/384,241, entitled “Multi-Die Packaging of MEMS with Through Silicon Vias”, filed Sep. 18, 2010, and also to U.S. Provisional Patent Application Ser. No. 61/384,321, entitled, “Integrated Inertial Sensor”, filed Sep. 20, 2010, which each are hereby incorporated by reference herein in their entirety.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2011/051994 9/16/2011 WO 00 5/20/2013
Publishing Document Publishing Date Country Kind
WO2012/037492 3/22/2012 WO A
US Referenced Citations (186)
Number Name Date Kind
4896156 Garverick Jan 1990 A
5487305 Ristic et al. Jan 1996 A
5491604 Nguyen et al. Feb 1996 A
5600064 Ward Feb 1997 A
5723790 Andersson Mar 1998 A
5751154 Tsugai May 1998 A
5760465 Alcoe et al. Jun 1998 A
5765046 Watanabe et al. Jun 1998 A
6131457 Sato Oct 2000 A
6214644 Glenn Apr 2001 B1
6301965 Chu et al. Oct 2001 B1
6351996 Nasiri et al. Mar 2002 B1
6366468 Pan Apr 2002 B1
6390905 Korovin et al. May 2002 B1
6501282 Dummermuth et al. Dec 2002 B1
6504385 Hartwell Jan 2003 B2
6553835 Hobbs et al. Apr 2003 B1
6722206 Takada Apr 2004 B2
6725719 Cardarelli Apr 2004 B2
6737742 Sweterlitsch May 2004 B2
6781231 Minervini Aug 2004 B2
6848304 Geen Feb 2005 B2
7051590 Lemkin et al. May 2006 B1
7054778 Geiger et al. May 2006 B2
7093487 Mochida Aug 2006 B2
7166910 Minervini Jan 2007 B2
7202552 Zhe et al. Apr 2007 B2
7210351 Lo et al. May 2007 B2
7221767 Mullenborn et al. May 2007 B2
7240552 Acar et al. Jul 2007 B2
7258011 Nasiri et al. Aug 2007 B2
7258012 Xie et al. Aug 2007 B2
7266349 Kappes Sep 2007 B2
7293460 Zarabadi et al. Nov 2007 B2
7301212 Mian et al. Nov 2007 B1
7305880 Caminada et al. Dec 2007 B2
7358151 Araki et al. Apr 2008 B2
7436054 Zhe Oct 2008 B2
7449355 Lutz et al. Nov 2008 B2
7451647 Matsuhisa et al. Nov 2008 B2
7454967 Skurnik Nov 2008 B2
7518493 Bryzek et al. Apr 2009 B2
7539003 Ray May 2009 B2
7544531 Grosjean Jun 2009 B1
7595648 Ungaretti et al. Sep 2009 B2
7600428 Robert et al. Oct 2009 B2
7616078 Prandi et al. Nov 2009 B2
7622782 Chu et al. Nov 2009 B2
7706149 Yang et al. Apr 2010 B2
7781249 Laming et al. Aug 2010 B2
7795078 Ramakrishna et al. Sep 2010 B2
7851925 Theuss et al. Dec 2010 B2
7859352 Sutton Dec 2010 B2
7950281 Hammerschmidt May 2011 B2
8004354 Pu et al. Aug 2011 B1
8006557 Yin et al. Aug 2011 B2
8037755 Nagata et al. Oct 2011 B2
8113050 Acar et al. Feb 2012 B2
8171792 Sameshima May 2012 B2
8201449 Ohuchi et al. Jun 2012 B2
8250921 Nasiri et al. Aug 2012 B2
8375789 Prandi et al. Feb 2013 B2
8421168 Allen et al. Apr 2013 B2
8476970 Mokhtar et al. Jul 2013 B2
8508290 Elsayed et al. Aug 2013 B2
8710599 Marx et al. Apr 2014 B2
8739626 Acar Jun 2014 B2
8742964 Kleks et al. Jun 2014 B2
8754694 Opris et al. Jun 2014 B2
8813564 Acar Aug 2014 B2
20020021059 Knowles et al. Feb 2002 A1
20020117728 Brosnihhan et al. Aug 2002 A1
20020178831 Takada Dec 2002 A1
20020189352 Reeds, III et al. Dec 2002 A1
20020196445 McClary et al. Dec 2002 A1
20030038415 Anderson et al. Feb 2003 A1
20030061878 Pinson Apr 2003 A1
20030200807 Hulsing, II Oct 2003 A1
20030222337 Stewart Dec 2003 A1
20040085784 Salama et al. May 2004 A1
20040119137 Leonardi et al. Jun 2004 A1
20040177689 Cho et al. Sep 2004 A1
20040211258 Geen Oct 2004 A1
20040219340 McNeil et al. Nov 2004 A1
20040231420 Xie et al. Nov 2004 A1
20040251793 Matsuhisa Dec 2004 A1
20050005698 McNeil et al. Jan 2005 A1
20050097957 McNeil et al. May 2005 A1
20050139005 Geen Jun 2005 A1
20050189635 Humpston et al. Sep 2005 A1
20050274181 Kutsuna et al. Dec 2005 A1
20060032308 Acar et al. Feb 2006 A1
20060034472 Bazarjani et al. Feb 2006 A1
20060043608 Bernier et al. Mar 2006 A1
20060097331 Hattori May 2006 A1
20060137457 Zdeblick Jun 2006 A1
20060207328 Zarabadi et al. Sep 2006 A1
20060213265 Weber et al. Sep 2006 A1
20060213266 French et al. Sep 2006 A1
20060213268 Asami et al. Sep 2006 A1
20060246631 Lutz et al. Nov 2006 A1
20070013052 Zhe et al. Jan 2007 A1
20070034005 Acar et al. Feb 2007 A1
20070040231 Harney et al. Feb 2007 A1
20070042606 Wang et al. Feb 2007 A1
20070047744 Karney et al. Mar 2007 A1
20070071268 Harney et al. Mar 2007 A1
20070085544 Viswanathan Apr 2007 A1
20070099327 Hartzell et al. May 2007 A1
20070114643 DCamp et al. May 2007 A1
20070165888 Weigold Jul 2007 A1
20070205492 Wang Sep 2007 A1
20070220973 Acar Sep 2007 A1
20070222021 Yao Sep 2007 A1
20070284682 Laming et al. Dec 2007 A1
20080049230 Chin et al. Feb 2008 A1
20080081398 Lee et al. Apr 2008 A1
20080083958 Wei et al. Apr 2008 A1
20080083960 Chen et al. Apr 2008 A1
20080092652 Acar Apr 2008 A1
20080122439 Burdick et al. May 2008 A1
20080157238 Hsiao Jul 2008 A1
20080157301 Ramakrishna et al. Jul 2008 A1
20080169811 Viswanathan Jul 2008 A1
20080202237 Hammerschmidt Aug 2008 A1
20080245148 Fukumoto Oct 2008 A1
20080247585 Leidl et al. Oct 2008 A1
20080251866 Belt et al. Oct 2008 A1
20080290756 Huang Nov 2008 A1
20080302559 Leedy Dec 2008 A1
20080314147 Nasiri et al. Dec 2008 A1
20090064780 Coronato et al. Mar 2009 A1
20090072663 Ayazi et al. Mar 2009 A1
20090140606 Huang Jun 2009 A1
20090166827 Foster et al. Jul 2009 A1
20090175477 Suzuki et al. Jul 2009 A1
20090183570 Acar et al. Jul 2009 A1
20090194829 Chung et al. Aug 2009 A1
20090263937 Ramakrishna et al. Oct 2009 A1
20090266163 Ohuchi et al. Oct 2009 A1
20100019393 Hsieh et al. Jan 2010 A1
20100024548 Cardarelli Feb 2010 A1
20100038733 Minervini Feb 2010 A1
20100044853 Dekker et al. Feb 2010 A1
20100052082 Lee Mar 2010 A1
20100058864 Hsu et al. Mar 2010 A1
20100072626 Theuss et al. Mar 2010 A1
20100089154 Ballas et al. Apr 2010 A1
20100122579 Hsu et al. May 2010 A1
20100155863 Weekamp Jun 2010 A1
20100206074 Yoshida et al. Aug 2010 A1
20100212425 Hsu et al. Aug 2010 A1
20100224004 Suminto et al. Sep 2010 A1
20100236327 Mao et al. Sep 2010 A1
20110030473 Acar Feb 2011 A1
20110030474 Kuang et al. Feb 2011 A1
20110031565 Marx et al. Feb 2011 A1
20110094302 Schofield et al. Apr 2011 A1
20110120221 Yoda May 2011 A1
20110121413 Allen et al. May 2011 A1
20110146403 Rizzo Piazza Roncoroni et al. Jun 2011 A1
20110265564 Acar et al. Nov 2011 A1
20110285445 Huang et al. Nov 2011 A1
20130139591 Acar Jun 2013 A1
20130139592 Acar Jun 2013 A1
20130192364 Acar Aug 2013 A1
20130192369 Acar et al. Aug 2013 A1
20130247666 Acar Sep 2013 A1
20130247668 Bryzek Sep 2013 A1
20130257487 Opris et al. Oct 2013 A1
20130263641 Opris et al. Oct 2013 A1
20130263665 Opris et al. Oct 2013 A1
20130265070 Kleks et al. Oct 2013 A1
20130265183 Kleks et al. Oct 2013 A1
20130268227 Opris et al. Oct 2013 A1
20130268228 Opris et al. Oct 2013 A1
20130269413 Tao et al. Oct 2013 A1
20130270657 Acar et al. Oct 2013 A1
20130270660 Bryzek et al. Oct 2013 A1
20130271228 Tao et al. Oct 2013 A1
20130277772 Bryzek et al. Oct 2013 A1
20130277773 Bryzek et al. Oct 2013 A1
20130298671 Acar et al. Nov 2013 A1
20130328139 Acar Dec 2013 A1
20130341737 Bryzek et al. Dec 2013 A1
20140070339 Marx Mar 2014 A1
Foreign Referenced Citations (118)
Number Date Country
1389704 Jan 2003 CN
1617334 May 2005 CN
1659810 Aug 2005 CN
1816747 Aug 2006 CN
1886669 Dec 2006 CN
1905167 Jan 2007 CN
1948906 Apr 2007 CN
101038299 Sep 2007 CN
101067555 Nov 2007 CN
101171665 Apr 2008 CN
101180516 May 2008 CN
101239697 Aug 2008 CN
101270988 Sep 2008 CN
101316462 Dec 2008 CN
101426718 May 2009 CN
101459866 Jun 2009 CN
101519183 Sep 2009 CN
101638211 Feb 2010 CN
101813480 Aug 2010 CN
101858928 Oct 2010 CN
102597699 Jul 2012 CN
103209922 Jul 2013 CN
103210278 Jul 2013 CN
103221331 Jul 2013 CN
103221332 Jul 2013 CN
103221333 Jul 2013 CN
103221778 Jul 2013 CN
103221779 Jul 2013 CN
103221795 Jul 2013 CN
103238075 Aug 2013 CN
103363969 Oct 2013 CN
103363983 Oct 2013 CN
103364590 Oct 2013 CN
103364593 Oct 2013 CN
103368503 Oct 2013 CN
103368562 Oct 2013 CN
103368577 Oct 2013 CN
103376099 Oct 2013 CN
103376102 Oct 2013 CN
103403495 Nov 2013 CN
203275441 Nov 2013 CN
203275442 Nov 2013 CN
103663344 Mar 2014 CN
203719664 Jul 2014 CN
104094084 Oct 2014 CN
104105945 Oct 2014 CN
104220840 Dec 2014 CN
112011103124 Dec 2013 DE
102013014881 Mar 2014 DE
1460380 Sep 2004 EP
1521086 Apr 2005 EP
1688705 Aug 2006 EP
1832841 Sep 2007 EP
1860402 Nov 2007 EP
2053413 Apr 2009 EP
2259019 Dec 2010 EP
09089927 Apr 1997 JP
10239347 Sep 1998 JP
2005024310 Jan 2005 JP
2005114394 Apr 2005 JP
2005294462 Oct 2005 JP
2007024864 Feb 2007 JP
2008294455 Dec 2008 JP
2009075097 Apr 2009 JP
2009186213 Aug 2009 JP
2010025898 Feb 2010 JP
2010506182 Feb 2010 JP
1020110055449 May 2011 KR
1020130052652 May 2013 KR
1020130052653 May 2013 KR
1020130054441 May 2013 KR
1020130055693 May 2013 KR
1020130057485 May 2013 KR
1020130060338 Jun 2013 KR
1020130061181 Jun 2013 KR
101311966 Sep 2013 KR
1020130097209 Sep 2013 KR
101318810 Oct 2013 KR
1020130037462 Oct 2013 KR
1020130112789 Oct 2013 KR
1020130112792 Oct 2013 KR
1020130112804 Oct 2013 KR
1020130113385 Oct 2013 KR
1020130113386 Oct 2013 KR
1020130113391 Oct 2013 KR
1020130116189 Oct 2013 KR
1020130116212 Oct 2013 KR
101332701 Nov 2013 KR
1020130139914 Dec 2013 KR
1020130142116 Dec 2013 KR
101352827 Jan 2014 KR
1020140034713 Mar 2014 KR
I255341 May 2006 TW
WO-0175455 Oct 2001 WO
WO-2008059757 May 2008 WO
WO-2008087578 Jul 2008 WO
WO-2009050578 Apr 2009 WO
WO-2009156485 Dec 2009 WO
WO-2011016859 Feb 2011 WO
WO-2011016859 Feb 2011 WO
WO-2012037492 Mar 2012 WO
WO-2012037492 Mar 2012 WO
WO-2012037501 Mar 2012 WO
WO-2012037501 Mar 2012 WO
WO-2012037536 Mar 2012 WO
WO-2012037537 Mar 2012 WO
WO-2012037538 Mar 2012 WO
WO-2012037539 Mar 2012 WO
WO-2012037539 Mar 2012 WO
WO-2012037540 Mar 2012 WO
WO-2012040194 Mar 2012 WO
WO-2012040211 Mar 2012 WO
WO-2012040245 Mar 2012 WO
WO-2012040245 Mar 2012 WO
WO-2013115967 Aug 2013 WO
WO-2013116356 Aug 2013 WO
WO-2013116514 Aug 2013 WO
WO-2013116522 Aug 2013 WO
Non-Patent Literature Citations (233)
Entry
“U.S. Appl. No. 12/849,742, Notice of Allowance mailed Nov. 29, 2013”, 7 pgs.
“U.S. Appl. No. 12/849,787, Notice of Allowance mailed Dec. 11, 2013”, 9 pgs.
“U.S. Appl. No. 13/362,955, Response filed Feb. 17, 2014 to Restriction Requirement mailed Dec. 17, 2013”, 9 pgs.
“U.S. Appl. No. 13/362,955, Restriction Requirement mailed Dec. 17, 2013”, 6 pgs.
“U.S. Appl. No. 13/363,537, Non Final Office Action mailed Feb. 6, 2014”, 10 pgs.
“U.S. Appl. No. 13/742,942, Notice of Allowance mailed Jan. 28, 2104”, 9 pgs.
“U.S. Appl. No. 13/746,016, Notice of Allowance mailed Jan. 17, 2014”, 10 pgs.
“U.S. Appl. No. 13/755,841, Restriction Requirement mailed Feb. 21, 2014”, 6 pgs.
“Chinese Application Serial No. 201180053926.1, Office Action mailed Jan. 13, 2014”, 7 pgs.
“Chinese Application Serial No. 201180054796.3, Office Action mailed Jan. 16, 2014”, 8 pgs.
“Chinese Application Serial No. 201180055029.4, Office Action mailed Jan. 13, 2014”, 7 pgs.
“Chinese Application Serial No. 201320172366.8, Office Action mailed Jan. 30, 2014”, 3 pgs.
“Chinese Application Serial No. 201320172366.8, Office Action mailed Oct. 25, 2013”, 8 pgs.
“Chinese Application Serial No. 201320172366.8, Response filed Dec. 24, 2013 to Office Action mailed Oct. 25, 2013”, 11 pgs.
“Chinese Application Serial No. 201320565239.4, Office Action mailed Jan. 16, 2014”, w/English Translation, 3 pgs.
“European Application Serial No. 10806751.3, Extended European Search Report mailed Jan. 7, 2014”, 7 pgs.
“Korean Application Serial No. 10-2013-0109990, Amendment filed Dec. 10, 2013”, 4 pgs.
“Korean Application Serial No. 10-2013-7009775, Office Action mailed Dec. 27, 2013”, 8 pgs.
“Korean Application Serial No. 10-2013-7009775, Response filed Oct. 29, 2013 to Office Action mailed Sep. 17, 2013”, w/English Claims, 23 pgs.
“Korean Application Serial No. 10-2013-7009777, Office Action mailed Jan. 27, 2014”, 5 pgs.
“Korean Application Serial No. 10-2013-7009777, Response filed Nov. 5, 2013 to Office Action mailed Sep. 17, 2013”, 11 pgs.
“Korean Application Serial No. 10-2013-7009788, Office Action mailed Dec. 27, 2013”, w/English Translation, 10 pgs.
“Korean Application Serial No. 10-2013-7009788, Response filed Oct. 29, 2013 to Office Action mailed Aug. 29, 2013”, w/English Claims, 22 pgs.
“U.S. Appl. No. 13/362,955, Final Office Action mailed Nov. 19, 2014”, 5 pgs.
“U.S. Appl. No. 13/362,955, Response filed Aug. 15, 2014 to Non Final Office Action mailed May 15, 2014”, 13 pgs.
“U.S. Appl. No. 13/363,537, Examiner Interview Summary mailed Sep. 29, 2014”, 3 pgs.
“U.S. Appl. No. 13/363,537, Notice of Allowance mailed Nov. 7, 2014”, 5 pgs.
“U.S. Appl. No. 13/363,537, Response filed Sep. 29, 2014 to Final Office Action mailed Jun. 27, 2014”, 9 pgs.
“U.S. Appl. No. 13/821,586, Response filed Nov. 24, 2014 to Restriction Requirement mailed Sep. 22, 2014”, 6 pgs.
“U.S. Appl. No. 13/821,586, Restriction Requirement mailed Sep. 22, 2014”, 4 pgs.
“U.S. Appl. No. 13/821,589, Response filed Nov. 10, 2014 to Non Final Office Action mailed Jul. 9, 2014”, 15 pgs.
“U.S. Appl. No. 13/821,598, Non Final Office Action mailed Nov. 20, 2014”, 9 pgs.
“U.S. Appl. No. 13/821,598, Response filed Oct. 15, 2014 to Restriction Requirement mailed Aug. 15, 2014”, 8 pgs.
“U.S. Appl. No. 13/821,612, Response filed Oct. 23, 2014 to Non Final Office Action mailed Jul. 23, 2014”, 6 pgs.
“Chinese Application Serial No. 201180054796.3, Office Action mailed Sep. 4, 2014”, w/English Claims, 11 pgs.
“Chinese Application Serial No. 201180055029.4, Response filed Nov. 14, 2014 to Office Action mailed Jul. 2, 2014”, w/English Claims, 23 pgs.
“Chinese Application Serial No. 201310118845.6, Office Action mailed Sep. 9, 2014”, 8 pgs.
“Chinese Application Serial No. 201310119472.4, Office Action mailed Sep. 9, 2014”, w/English Translation, 11 pgs.
“European Application Serial No. 11826043.9, Office Action mailed May 6, 2013”, 2 pgs.
“European Application Serial No. 11826043.9, Response filed Nov. 4, 2013 to Office Action mailed May 6, 2013”, 6 pgs.
“European Application Serial No. 11826067.8, Extended European Search Report mailed Oct. 6, 2014”, 10 pgs.
“European Application Serial No. 11826070.2, Response filed Sep. 19, 2014 to Office Action mailed Mar. 12, 2014”, 11 pgs.
“European Application Serial No. 11826071.0, Response filed Sep. 19, 2014 to Office Action mailed Mar. 12, 2014”, 20 pgs.
“European Application Serial No. 11827347.3, Office Action mailed May 2, 2013”, 6 pgs.
“European Application Serial No. 11827347.3, Response filed Oct. 30, 2013 to Office Action mailed May 2, 2013”, 9 pgs.
“European Application Serial No. 11827384.6, Extended European Search Report mailed Nov. 12, 2014”, 6 pgs.
“European Application Serial No. 13001695.9, European Search Report mailed Oct. 5, 2014”, 6 pgs.
Dunn, C, et al., “Efficient linearisation of sigma-delta modulators using single-bit dither”, Electronics Letters 31(12), (Jun. 1995), 941-942.
Kulah, Haluk, et al., “Noise Analysis and Characterization of a Sigma-Delta Capacitive Silicon Microaccelerometer”, 12th International Conference on Solid State Sensors, Actuators and Microsystems, (2003), 95-98.
Sherry, Adrian, et al., “AN-609 Application Note: Chopping on Sigma-Delta ADCs”, Analog Devices, [Online]. Retrieved from the Internet: <URL: http://www.analog.com/static/imported-files/application—notes/AN-609.pdf>, (2003), 4 pgs.
“U.S. Appl. No. 12/849,742, Non Final Office Action mailed Mar. 28, 2013”, 9 pgs.
“U.S. Appl. No. 12/849,742, Non Final Office Action mailed Aug. 23, 2012”, 9 pgs.
“U.S. Appl. No. 12/849,742, Response filed Jan. 23, 2012 to Non Final Office Action mailed Aug. 23, 2012”, 10 pgs.
“U.S. Appl. No. 12/849,787, Response filed Feb. 4, 2013 to Restriction Requirement mailed Oct. 4, 2012”, 7 pgs.
“U.S. Appl. No. 12/849,787, Restriction Requirement mailed Oct. 4, 2012”, 5 pgs.
“U.S. Appl. No. 13/821,793, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. PCT/US2011/051994, International Republished Application mailed Jun. 7, 2012”, 1 pg.
“U.S. Appl. No. PCT/US2011/052006, International Republished Application mailed Jun. 7, 2012”, 1 pg.
“U.S. Appl. No. PCT/US2011/052417, International Republished Application mailed Jun. 7, 2012”, 1 pg.
“International Application Serial No. PCT/US2010/002166, International Preliminary Report on Patentability mailed Feb. 16, 2012”, 6 pgs.
“International Application Serial No. PCT/US2010/002166, International Search Report mailed Feb. 28, 2011”, 3 pgs.
“International Application Serial No. PCT/US2010/002166, Written Opinion mailed Feb. 28, 2011”, 4 pgs.
“International Application Serial No. PCT/US2011/051994, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 8 pgs.
“International Application Serial No. PCT/US2011/051994, International Search Report mailed Apr. 16, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/051994, Written Opinion mailed Apr. 16, 2012”, 6 pgs.
“International Application Serial No. PCT/US2011/052006, Search Report mailed Apr. 16, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052006, Written Opinion mailed Apr. 16, 2012”, 5 pgs.
“International Application Serial No. PCT/US2011/052059, International Preliminary Report on Patentability mailed Jan. 22, 2013”, 14 pgs.
“International Application Serial No. PCT/US2011/052059, Search Report mailed Apr. 20, 2012”, 4 pgs.
“International Application Serial No. PCT/US2011/052059, Written Opinion mailed Apr. 20, 2012”, 7 pgs.
“International Application Serial No. PCT/US2011/052060, International Preliminary Report on Patentability mailed Jan. 22, 2013”, 12 pgs.
“International Application Serial No. PCT/US2011/052060, International Search Report Apr. 20, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052060, Written Opinion mailed Apr. 20, 2012”, 7 pgs.
“International Application Serial No. PCT/US2011/052061, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 6 pgs.
“International Application Serial No. PCT/US2011/052061, International Search Report mailed Apr. 10, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052061, Written Opinion mailed Apr. 10, 2012”, 4 pgs.
“International Application Serial No. PCT/US2011/052064, Search Report mailed Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052064, Written Opinion mailed Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052065, International Search Report mailed Apr. 10, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052065, Written Opinion mailed Apr. 10, 2012”, 5 pgs.
“International Application Serial No. PCT/US2011/052369, International Search Report mailed Apr. 24, 2012”, 6 pgs.
“International Application Serial No. PCT/US2011/052369, Written Opinion mailed Apr. 24, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052417, International Search Report mailed Apr. 23, 2012”, 5 pgs.
“International Application Serial No. PCT/US2011/052417, Written Opinion mailed Apr. 23, 2012”, 4 pgs.
Beyne, E, et al., “Through-silicon via and die stacking technologies for microsystems-integration”, IEEE International Electron Devices Meeting, 2008. IEDM 2008., (Dec. 2008), 1-4.
Cabruja, Enric, et al., “Piezoresistive Accelerometers for MCM-Package-Part II”, The Packaging Journal of Microelectromechanical Systems. vol. 14, No. 4, (Aug. 2005), 806-811.
Ezekwe, Chinwuba David, “Readout Techniques for High-Q Micromachined Vibratory Rate Gyroscopes”, Electrical Engineering and Computer Sciences University of California at Berkeley, Technical Report No. UCB/EECS-2007-176, http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-176.html, (Dec. 21, 2007), 94 pgs.
Rimskog, Magnus, “Through Wafer Via Technology for MEMS and 3D Integration”, 32nd IEEE/CPMT International Electronic Manufacturing Technology Symposium, 2007. IEMT '07., (2007), 286-289.
“U.S. Appl. No. 12/849,742, Supplemental Notice of Allowability mailed Mar. 17, 2014”, 3 pgs.
“U.S. Appl. No. 12/849,742, Supplemental Notice of Allowability mailed May 5, 2014”, 2 pgs.
“U.S. Appl. No. 12/849,787, Supplemental Notice of Allowability mailed Mar. 21, 2014”, 3 pgs.
“U.S. Appl. No. 13/362,955, Non Final Office Action mailed Apr. 15, 2014”, 9 pgs.
“U.S. Appl. No. 13/363,537, Response filed Jun. 6, 2014 to Non Final Office Action mailed Feb. 6, 2014”, 11 pgs.
“U.S. Appl. No. 13/742,942, Supplemental Notice of Allowability mailed Apr. 10, 2014”, 2 pgs.
“U.S. Appl. No. 13/755,841, Notice of Allowance mailed May 7, 2014”, 8 pgs.
“U.S. Appl. No. 13/755,841, Preliminary Amendment filed Oct. 10, 2013”, 10 pgs.
“U.S. Appl. No. 13/755,841, Response filed Apr. 21, 2014 to Restriction Requirement mailed Feb. 21, 2014”, 7 pgs.
“U.S. Appl. No. 13/821,589, Restriction Requirement mailed Apr. 11, 2014”, 10 pgs.
“Chinese Application Serial No. 2010800423190, Office Action mailed Mar. 26, 2014”, 10 pgs.
“Chinese Application Serial No. 201180053926.1, Response filed Apr. 29, 2014 to Office Action mailed Jan. 13, 2014”, w/English Claims, 10 pgs.
“Chinese Application Serial No. 201180055029.4, Response filed May 27, 2014 to Office Action mailed Jan. 13, 2014”, w/English Claims, 29 pgs.
“Chinese Application Serial No. 201180055309.5, Office Action mailed Mar. 31, 2014”, w/English Claims, 7 pgs.
“Chinese Application Serial No. 201320172366.8, Response filed Mar. 18, 2014 to Office Action mailed Jan. 30, 2014”, w/English Claims, 20 pgs.
“Chinese Application Serial No. 201320565239.4, Response filed Mar. 31, 2014 to Office Action mailed Jan. 16, 2014”, w/English Claims, 38 pgs.
“European Application Serial No. 118260070.2, Office Action mailed Mar. 12, 2014”, 1 pg.
“European Application Serial No. 11826070.2, Extended European Search Report mailed Feb. 21, 2014”, 5 pgs.
“European Application Serial No. 11826071.0, Extended European Search Report mailed Feb. 20, 2014”, 6 pgs.
“European Application Serial No. 11826071.0, Office Action mailed Mar. 12, 2014”, 1 pg.
“European Application Serial No. 13001692.6, Response filed Apr. 1, 2014 to Extended European Search Report mailed Jul. 24, 2013”, 19 pgs.
“European Application Serial No. 13001721.3, Response filed Apr. 7, 2014 to Extended European Search Report mailed Jul. 18, 2013”, 25 pgs.
“Korean Application Serial No. 10-2013-7009777, Response filed Apr. 28, 2014”, w/English Claims, 19 pgs.
“U.S. Appl. No. 13/362,955, Notice of Allowance mailed Feb. 25, 2015”, 8 pgs.
“U.S. Appl. No. 13/362,955, Response filed Jan. 16, 2015 to Final Office Action mailed Nov. 19, 2014”, 9 pgs.
“U.S. Appl. No. 13/363,537, Corrected Notice of Allowance mailed Jan. 28, 2015”, 2 pgs.
“U.S. Appl. No. 13/821,586, Non Final Office Action mailed Jan. 15, 2015”, 8 pgs.
“U.S. Appl. No. 13/821,598, Response filed Feb. 20, 2015 to Non Final Office Action mailed Nov. 20, 2014”, 12 pgs.
“U.S. Appl. No. 13/821,612, Notice of Allowance mailed Dec. 10, 2014”, 8 pgs.
“U.S. Appl. No. 13/821,853, Non Final Office Action mailed Feb. 18, 2015”, 15 pgs.
“U.S. Appl. No. 13/821,853, Response filed Dec. 1, 2014 to Non Final Office Action mailed Jul. 30, 2014”, 10 pgs.
“U.S. Appl. No. 13/860,761, Final Office Action mailed Jan. 15, 2015”, 14 pgs.
“U.S. Appl. No. 13/860,761, Response filed Dec. 19, 2014 to Non Final Office Action mailed Aug. 19, 2014”, 12 pgs.
“Chinese Application Serial No. 2010800423190, Office Action mailed Dec. 3, 2014”, 3 pgs.
“Chinese Application Serial No. 2010800423190, Response filed Feb. 15, 2015”, 3 pgs.
“Chinese Application Serial No. 201180054796.3, Office Action mailed Jan. 30, 2015”, with English translation of claims, 5 pgs.
“Chinese Application Serial No. 201180054796.3, Response filed Nov. 19, 2014 to Office Action mailed Sep. 4, 2014”, with English translation of claims, 7 pgs.
“Chinese Application Serial No. 201180055309.5, Office Action mailed Jan. 8, 2015”, with English translation of claims, 5 pgs.
“Chinese Application Serial No. 201180055309.5, Response filed Jan. 14, 2015 to Office Action mailed Jan. 8, 2015”, 8 pgs.
“Chinese Application Serial No. 201180055630.3, Office Action mailed Dec. 22, 2014”, with English translation of claims, 10 pgs.
“Chinese Application Serial No. 201180055792.7, Office Action mailed Dec. 22, 2014”, with English translation of claims, 10 pgs.
“Chinese Application Serial No. 201180055794.6, Office Action mailed Dec. 17, 2014”, with English translation of claims, 9 pgs.
“Chinese Application Serial No. 2013101188456, Response filed Jan. 21, 2015”, with English translation of claims, 16 pgs.
“Chinese Application Serial No. 201310119472.4, Response filed Jan. 21, 2015”, with English translation of claims, 16 pgs.
“Chinese Application Serial No. 201380007588.7, Response filed Oct. 24, 2014”, with English translation, 3 pgs.
“Chinese Application Serial No. 201380007615.0, Response filed Oct. 24, 2014”, with English translation, 3 pgs.
“European Application Serial No. 11826068.6, Response filed Feb. 9, 2015”, 30 pgs.
“European Application Serial No. 11826071.0, Examination Notification Art. 94(3) mailed Dec. 11, 2014”, 4 pgs.
“European Application Serial No. 13001695.9, Extended European Search Report mailed Jan. 22, 2015”, 8 pgs.
“European Application Serial No. 13001719.7, Response filed Jan. 21, 2015”, 29 pgs.
“U.S. Appl. No. 12/849,787, Non Final Office Action mailed May 28, 2013”, 18 pgs.
“U.S. Appl. No. 12/947,543, Notice of Allowance mailed Dec. 17, 2012”, 11 pgs.
“U.S. Appl. No. 13/813,443, Preliminary Amendment mailed Jan. 31, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,586, Preliminary Amendment mailed Mar. 8, 2013”, 6 pgs.
“U.S. Appl. No. 13/821,589, Preliminary Amendment mailed Mar. 8, 2013”, 6 pgs.
“U.S. Appl. No. 13/821,598, Preliminary Amendment mailed Mar. 8, 2013”, 7 pgs.
“U.S. Appl. No. 13/821,612, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,619, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,842, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,853, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“DigiSiMic™ Digital Silicon Microphone Pulse Part Number: TC100E”, TC100E Datasheet version 4.2 DigiSiMic™ Digital Silicon Microphone. (Jan. 2009), 6 pgs.
“EPCOS MEMS Microphone With TSV”, 1 pg.
“International Application Serial No. PCT/US2011/052006, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 7 pgs.
“International Application Serial No. PCT/US2011/052064, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 5 pgs.
“International Application Serial No. PCT/US2011/052065, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 7 pgs.
“International Application Serial No. PCT/US2011/052340, International Preliminary Report on Patentability mailed Apr. 4, 2013”, 5 pgs.
“International Application Serial No. PCT/US2011/052340, Search Report mailed Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052340, Written Opinion mailed Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052369, International Preliminary Report on Patentability mailed Apr. 4, 2013”, 5 pgs.
“International Application Serial No. PCT/US2011/052417, International Preliminary Report on Patentability mailed Apr. 4, 2013”, 6 pgs.
“International Application Serial No. PCT/US2013/021411, International Search Report mailed Apr. 30, 2013”, 5 pgs.
“International Application Serial No. PCT/US2013/021411, Written Opinion mailed Apr. 30, 2013”, 5 pgs.
“International Application Serial No. PCT/US2013/023877, International Search Report mailed May 14, 2013”, 3 pgs.
“International Application Serial No. PCT/US2013/023877, Written Opinion mailed May 14, 2013”, 5 pgs.
“International Application Serial No. PCT/US2013/024149, Written Opinion mailed”, 4 pages.
“International Application Serial No. PCT/US2013/024149, International Search Report mailed”, 7 pages.
“T4020 & T4030 MEMS Microphones for Consumer Electronics”, Product Brief 2010, Edition Feb. 2010, (2010), 2 pgs.
Acar, Cenk, et al., “Chapter 4: Mechanical Design of MEMS Gyroscopes”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 73-110.
Acar, Cenk, et al., “Chapter 6: Linear Multi DOF Architecture—Sections 6.4 and 6.5”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 158-178.
Acar, Cenk, et al., “Chapter 7: Torsional Multi-DOF Architecture”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (209), 187-206.
Acar, Cenk, et al., “Chapter 8: Distributed-Mass Architecture”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 207-224.
Acar, Cenk, et al., “Chapter 9: Conclusions and Future Trends”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 225-245.
Krishnamurthy, Rajesh, et al., “Drilling and Filling, but not in your Dentist's Chair A look at some recent history of multi-chip and through silicon via (TSV) technology”, Chip Design Magazine, (Oct./Nov. 2008), 7 pgs.
“U.S. Appl. No. 12/849,742, Response filed Sep. 30, 2013 to Non-Final Office Action mailed Mar. 28, 2013”, 12 pgs.
“U.S. Appl. No. 12/849,787, Response filed Oct. 28, 2013 to Non Final Office Action mailed May 28, 2013”, 12 pgs.
“Chinese Application Serial No. 201180053926.1, Amendment filed Aug. 21, 2013”, w/English Translation, 13 pgs.
“Chinese Application Serial No. 201180055309.5, Voluntary Amendment filed Aug. 23, 2013”, w/English Translation, 13 pgs.
“Chinese Application Serial No. 201320165465.3, Office Action mailed Jul. 22, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320165465.3, Response filed Aug. 7, 2013 to Office Action mailed Jul. 22, 2013”, w/English Translation, 39 pgs.
“Chinese Application U.S. Appl. No. 201320171504.0, Office Action mailed Jul. 22, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320171504.0, Response filed Jul. 25, 2013 to Office Action mailed Jul. 22, 2013”, w/English Translation, 33 pgs.
“Chinese Application Serial No. 201320171616.6, Office Action mailed Jul. 10, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320171757.8, Office Action mailed Jul. 11, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320171757.8, Response filed Jul. 25, 2013 to Office Action mailed Jul. 11, 2013”, w/English Translation, 21 pgs.
“Chinese Application Serial No. 201320171757.8, Response filed Jul. 26, 2013 to Office Action mailed Jul. 10, 2013”, w/English Translation, 40 pgs.
“Chinese Application Serial No. 201320172128.7, Office Action mailed Jul. 12, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320172128.7, Response filed Aug. 7, 2013 to Office Action mailed Jul. 12, 2013”, w/English Translation, 39 pgs.
“Chinese Application Serial No. 201320172366.8, Office Action mailed Jul. 9, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320172366.8, Response filed Sep. 16, 2013 to Office Action mailed Jul. 9, 2013”, w/English Translation, 24 pgs.
“Chinese Application Serial No. 201320172367.2, Office Action mailed Jul. 9, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320172367.2, Response filed Sep. 16, 2013 to Office Action mailed Jul. 9, 2013”, w/English Translation, 24 pgs.
“Chinese Application Serial No. 201320185461.1, Office Action mailed Jul. 23, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320185461.1, Response filed Sep. 10, 2013 to Office Action mailed Jul. 23, 2013”, w/English Translation, 25 pgs.
“Chinese Application Serial No. 201320186292.3, Office Action mailed Jul. 19, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320186292.3, Response filed Sep. 10, 2013 to Office Action mailed Jul. 19, 2013”, w/English Translation, 23 pgs.
“European Application Serial No. 13001692.6, European Search Report mailed Jul. 24, 2013”, 5 pgs.
“European Application Serial No. 13001696.7, Extended European Search Report mailed Aug. 6, 2013”, 4 pgs.
“European Application Serial No. 13001721.3, European Search Report mailed Jul. 18, 2013”, 9 pgs.
“International Application Serial No. PCT/US2013/024138, International Search Report mailed May 24, 2013”, 3 pgs.
“International Application U.S. Appl. No. PCT/US2013/024138, Written Opinion mailed May 24, 2013”, 4 pgs.
“Korean Application Serial No. 10-2013-7009775, Office Action mailed Sep. 17, 2013”, w/English Translation, 6 pgs.
“Korean Application Serial No. 10-2013-7009777, Office Action mailed Sep. 17, 2013”, w/English Translation, 8 pgs.
“Korean Application Serial No. 10-2013-7009788, Office Action mailed Aug. 29, 2013”, w/English Translation, 6 pgs.
“Korean Application Serial No. 10-2013-7009790, Office Action mailed Jun. 26, 2013”, W/English Translation, 7 pgs.
“Korean Application Serial No. 10-2013-7009790, Response filed Aug. 26, 2013 to Office Action mailed Jun. 26, 2013”, w/English Claims, 11 pgs.
“Korean Application Serial No. 10-2013-7010143, Office Action mailed May 28, 2013”, w/English Translation, 5 pgs.
“Korean Application Serial No. 10-2013-7010143, Response filed Jul. 24, 2013 to Office Action mailed May 28, 2013”, w/English Claims, 14 pgs.
Ferreira, Antoine, et al., “A Survey of Modeling and Control Techniques for Micro- and Nanoelectromechanical Systems”, IEEE Transactions on Systems, Man and Cybernetics—Part C: Applications and Reviews vol. 41, No. 3., (May 2011), 350-364.
Fleischer, Paul E, “Sensitivity Minimization in a Single Amplifier Biquad Circuit”, IEEE Transactions on Circuits and Systems. vol. Cas-23, No. 1, (1976), 45-55.
Reljin, Branimir D, “Properties of SAB filters with the two-pole single-zero compensated operational amplifier”, Circuit Theory and Applications: Letters to the Editor. vol. 10, (1982), 277-297.
Sedra, Adel, et al., “Chapter 8.9: Effect of Feedback on the Amplifier Poles”, Microelectronic Circuits, 5th edition, (2004), 836-864.
Song-Hee, Cindy Paik, “A MEMS-Based Precision Operational Amplifier”, Submitted to the Department of Electrical Engineering and Computer Sciences MIT, [Online]. Retrieved from the Internet: <URL:http://dspace.mit.edu/bitstream/handle/1721.1/16682/57138272.pdf? . . . >, (Jan. 1, 2004), 123 pgs.
“U.S. Appl. No. 13/363,537, Final Office Action mailed Jun. 27, 2014”, 8 pgs.
“U.S. Appl. No. 13/742,942, Notice of Allowance mailed Jan. 28, 2014”, 8 pgs.
“U.S. Appl. No. 13/755,841, Supplemental Notice of Allowability Jun. 27, 2014”, 2 pgs.
“U.S. Appl. No. 13/821,589, Non Final Office Action mailed Jul. 9, 2014”, 10 pgs.
“U.S. Appl. No. 13/821,589, Response to Restriction Requirement mailed Apr. 11, 2014”, 6 pgs.
“U.S. Appl. No. 13/821,598, Restriction Requirement mailed Aug. 15, 2014”, 11 pgs.
“U.S. Appl. No. 13/821,612, Non Final Office Action mailed Jul. 23, 2014”, 8 pgs.
“U.S. Appl. No. 13/821,853, Non Final Office Action mailed Jul. 30, 2014”, 10 pgs.
“U.S. Appl. No. 13/860,761, Non Final Office Action mailed Aug. 19, 2014”, 13 pgs.
“Chinese Application Serial No. 2010800423190, Response filed Aug. 11, 2014 to Office Action mailed Mar. 16, 2014”, w/English Claims, 11 pgs.
“Chinese Application Serial No. 201180054796.3, Response filed Jun. 30, 2014 to Office Action mailed Jan. 16, 2014”, w/English Claims, 3 pgs.
“Chinese Application Serial No. 201180055029.4, Office Action mailed Jul. 2, 2014”, w/English Translation, 5 pgs.
“Chinese Application Serial No. 201180055309.5, Response filed Aug. 13, 2014 to Office Action mailed Mar. 31, 2014”, w/English Claims, 27 pgs.
“Chinese Application Serial No. 201380007588.7, Notification to Make Rectification mailed Aug. 18, 2014”, 2 pgs.
“Chinese Application Serial No. 201380007615.0, Notification to Make Rectification mailed Aug. 18, 2014”, 2 pgs.
“European Application Serial No. 10806751.3, Response filed Jul. 24, 2014 to Office Action mailed Jan. 24, 2014”, 26 pgs.
“European Application Serial No. 11826068.6, Extended European Search Report mailed Jul. 16, 2014”, 10 pgs.
“European Application Serial No. 13001719.7, Extended European Search Report mailed Jun. 24, 2014”, 10 pgs.
“International Application Serial No. PCT/US2013/021411, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 7 pgs.
“International Application Serial No. PCT/US2013/023877, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 7 pgs.
“International Application Serial No. PCT/US2013/024138, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 6 pgs.
“International Application Serial No. PCT/US2013/024149, International Preliminary Report on Patentability mailed Aug. 14 2014”, 6 pgs.
Xia, Guo-Ming, et al., “Phase correction in digital self-oscillation drive circuit for improve silicon MEMS gyroscope bias stability”, Solid-State and Integrated Circuit Technology (ICSICT), 2010 10th IEEE International Conference on, IEEE, (Nov. 1, 2010), 1416-1418.
Related Publications (1)
Number Date Country
20130250532 A1 Sep 2013 US
Provisional Applications (2)
Number Date Country
61384241 Sep 2010 US
61384321 Sep 2010 US