Disclosed aspects are directed to multi-level cell designs based on memory elements formed from high density low power hybrid giant spin Hall effect (GSHE)-spin transfer torque (STT) magnetoresistive random access memory (MRAM) structures. In some aspects, two or more memory elements with unique switching resistances and corresponding switching current characteristics can be controlled by a common access transistor, in order to provide high density solutions.
Mobile computing demands high density and high performance memory systems, and specifically, solid state storage devices.
Flash memory is known for its application in mass non-volatile storage systems. However, while Flash memory offers high density, Flash memory tends to be slow, which can cause large programming delays of the order 10 us-1 ms, thus rendering Flash memory undesirable for many high performance applications.
Dynamic random access memory (DRAM) is another example of a popular memory technology used for mass data storage, for example, in main memory structures. DRAM offers characteristics of medium density and medium speed, with programming delays of ˜10 ns. Thus, DRAM technology is also not optimally suited for high density and high performance.
Static random access memory (SRAM) is yet another popular memory technology, commonly used as scratch and in cache memory applications. SRAM technology is fast and may offer programming delays of ˜1 ns, but requires large area for each memory cell, which leads to low density. Accordingly, SRAM technology also fails to satisfy the demands for high density and high performance.
Magnetoresistive random access memory (MRAM) is a non-volatile memory technology that has response (read/write) times comparable to volatile memory. Specifically, spin transfer torque MRAM (STT-MRAM) offers state of the art solutions where an STT-MRAM bit cell uses electrons that become spin-polarized as the electrons pass through a thin film (spin filter). STT-MRAM promises high performance, but density of STT-MRAM is much lower than comparable Flash and DRAM solutions.
Hybrid giant spin Hall effect (GSHE)-spin transfer torque (STT) magnetoresistive random access memory (MRAM) has been disclosed in U.S. patent application Ser. No. 14/451,510, filed on Aug. 5, 2014, entitled, “High Density Low Power GSHE-STT MRAM,” (hereinafter, “the '510 reference”), incorporated herein by reference. As disclosed therein, the hybrid GSHE-STT MRAM element includes a GSHE strip formed between a first terminal (A) and a second terminal (B), and a magnetic tunnel junction (MTJ), with a free layer of the MTJ interfacing the GSHE strip, and a top electrode of the MTJ coupled to a third terminal (C). A magnetization of an easy axis of the free layer of the MTJ is substantially perpendicular to the magnetization direction created by electrons traversing the SHE/GSHE strip between the first terminal and the second terminal, such that the free layer of the MTJ is configured to switch based on a first charge current injected from/to the first terminal to/from the second terminal and a second charge current injected or extracted (i.e., positive/negative current directions) through the third terminal into or out of the MTJ through the top electrode.
Such hybrid GSHE-STT MRAM solutions provide high density and high performance solutions which are superior to the above described known technologies, such as, Flash, DRAM, SRAM, and also, STT-MRAM. However, while these GSHE-STT MRAM solutions offer desirable high density and high performance, limitations on density are imposed by ancillary circuit elements which are used to connect bit cells formed by GSHE-STT MRAM elements to memory arrays. For example, access transistors that are used to connect the GSHE-STT MRAM elements to memory array control lines such as, word lines, and bit lines are based on conventional silicon technology. These access transistors may only be placed or formed on a single silicon layer whereas GSHE-STTT MRAM elements can be formed across multiple layers above the single silicon layer. The access transistors may be larger than the GSHE-STT MRAM elements. Accordingly, the density of memory arrays formed by GSHE-STT MRAM technology is dependent on the footprint of these access transistors. The larger footprint of the access transistors leads to a lower density.
Exemplary aspects include systems and methods directed to multi-level cell (MLC) comprising: two or more (n) programmable elements coupled to a common access transistor, wherein each one (e.g., [i]) of the two or more programmable elements has a corresponding unique pair of two or more switching resistances (e.g., RP[i] and RAP[i]) and two or more switching currents (e.g., Ic[i]) characteristics, such that combinations of the two or more programmable elements configured in the respective two or more switching resistance correspond to multi-bit binary states controllable by passing switching currents through the common access transistor, and wherein, each one of the two or more programmable elements comprises one or more hybrid giant spin Hall effect (GSHE)-spin transfer torque (STT) magnetoresistive random access memory (MRAM) cell, the GSHE-STT MRAM cells coupled in parallel.
For example, an exemplary aspect is related to a multi-level cell (MLC) comprising: one or more programmable elements coupled to a common access transistor, wherein each one of the one or more programmable elements has a unique pair of switching resistances corresponding to two binary states respectively. The switching resistances are provided by hybrid giant spin Hall effect (GSHE)-spin transfer torque (STT) magnetoresistive random access memory (MRAM) elements.
Another exemplary aspect is related to a method of forming a multi-level cell (MLC), the method comprising: forming one or more programmable elements with a unique pair of switching resistances corresponding to two binary states respectively, wherein, the switching resistances are provided by hybrid giant spin Hall effect (GSHE)-spin transfer torque (STT) magnetoresistive random access memory (MRAM) elements. The one or more programmable elements are coupled to a common access transistor.
Yet another exemplary aspect is related to a multi-level cell (MLC) comprising: means for providing a unique pair of switching resistances corresponding to two binary states respectively to each of one or more programmable elements, wherein, the switching resistances are based on switching resistances of hybrid giant spin Hall effect (GSHE)-spin transfer torque (STT) magnetoresistive random access memory (MRAM) elements, and a common means for accessing the one or more programmable elements.
The accompanying drawings are presented to aid in the description of aspects of the invention and are provided solely for illustration of the aspects and not limitation thereof.
Aspects of the invention are disclosed in the following description and related drawings directed to specific embodiments of the invention. Alternate embodiments may be devised without departing from the scope of the invention. Additionally, well-known elements of the invention will not be described in detail or will be omitted so as not to obscure the relevant details of the invention.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. Likewise, the term “embodiments of the invention” does not require that all embodiments of the invention include the discussed feature, advantage or mode of operation.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of embodiments of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises”, “comprising,”, “includes” and/or “including”, when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Further, many embodiments are described in terms of sequences of actions to be performed by, for example, elements of a computing device. It will be recognized that various actions described herein can be performed by specific circuits (e.g., application specific integrated circuits (ASICs)), by program instructions being executed by one or more processors, or by a combination of both. Additionally, these sequence of actions described herein can be considered to be embodied entirely within any form of computer readable storage medium having stored therein a corresponding set of computer instructions that upon execution would cause an associated processor to perform the functionality described herein. Thus, the various aspects of the invention may be embodied in a number of different forms, all of which have been contemplated to be within the scope of the claimed subject matter. In addition, for each of the embodiments described herein, the corresponding form of any such embodiments may be described herein as, for example, “logic configured to” perform the described action.
Exemplary aspects include high density memory structures comprising hybrid GSHE-STT MRAM elements such as the hybrid GSHE-STT MRAM elements described in the '510 reference. Since the size of the access transistor coupling GSHE-STT MRAM bit cells to a memory array has been recognized in the foregoing sections as a limiting factor in increasing density of GSHE-STT MRAM based memory, aspects include solutions for sharing an access transistor across two or more GSHE-STT MRAM bit cells. In this manner, the density is improved. Exemplary multi-level cells with two or more hybrid GSHE-STT MRAM elements coupled in parallel provide unique sets of two or more switching resistances and corresponding switching current characteristics, where the shared or common access transistor can be used to program these multi-level cells into multiple binary states.
Initially, the structure of the GSHE-STT MRAM element, as described in the '510 reference, will be explained. With reference to
Referring to the top view of memory element 100 depicted in
Thus, in general, an aspect of this disclosure can include a hybrid GSHE-STT MRAM element comprising a GSHE strip formed between a first terminal A and a second terminal B, and a MTJ, with a free layer of the MTJ interfacing the GSHE strip, and a top electrode of the MTJ coupled to a third terminal C. The orientation of the easy axis of the free layer is perpendicular to the magnetization created by electrons traversing the GSHE strip between the first terminal and the second terminal, such that the free layer of the MTJ is configured to switch based on a first charge current injected from/to the first terminal to/from the second terminal and a second charge current injected or extracted through the third terminal into or out of the MTJ through the top electrode.
With reference to
Exemplary aspects of this disclosure are directed to memory arrays comprising GSHE-STT MTJs or hybrid GSHE-STT MRAM technology.
Accordingly, exemplary aspects will now be described with relation to multi-level cells, which can provide higher density in memory arrays, in comparison to single-level cells.
With reference to
Due to the parallel connection of the two GSHE-STT MRAM elements within composite GSHE-STT MRAM elements 311, 313, 315, and 317, the resistance of the composite GSHE-STT MRAM elements 311, 313, 315, and 317 is different from the resistance of corresponding GSHE-STT MRAM elements 301, 303, 305, and 307 within the bit cells. In other words, each bit cell now comprises two different resistance elements coupled to a common access transistor. For example, focusing on a first MLC bit cell coupled to pass transistor 309, the first bit cell comprises GSHE-STT MRAM element 301 of a first resistance in the low resistance state or logic “0” state of its MTJ (e.g., RP[1]) and a second resistance in the high resistance or logic “1” state of its MTJ (RAP[1]); and similarly, composite GSHE-STT MRAM element 311 has a third resistance corresponding to its logic “0” state (e.g., RP[2]) and a fourth resistance corresponding to its logic “1” state (e.g., RAP[2]). The current required to switch each of these four resistances is different, and therefore, the first MLC bit cell can be programmed to four binary states corresponding to “00” (RP[1], RP[2]), “01” (RP[1], RAP[2]), “10” (RAP[1], RP[2]), and “11” (RAP[1], RAP[2]).
In more detail, transition between the four binary states for the first MLC bit cell can be controlled through the common access transistor 302. For example, starting from state “00” (RP[1], RP[2]), which may be assumed to be the initialized state, a low switching current, which is sufficient to switch composite GSHE-STT MRAM element 311, but not GSHE-STT MRAM element 301, can be applied through access transistor 302 in a first direction. This will leads to state “10” (RAP[1], RP[2]) in the first MLC bit cell. If a higher current is injected which will switch both 311 and 301, then state transition to “11” (RAP[1], RAP[2]) can be achieved. From thereon, if current is applied in a reverse direction, sufficient to flip GSHE-STT MRAM element 301 but not GSHE-STT MRAM element 311, then the state can transition to “10” (RAP[1], RP[2]). In this manner, all four binary states can be programmed in the first MLC bit cell. Similarly, all cells within the row can be programmed.
The above notion of programming MLC bit cells can be extended to any number of levels. For example, a MLC bit cell can have n elements with unique resistance values for RP and RAP, with each of the n elements flipping between these two resistance states based on correspondingly unique switching currents Ic. Each of these n unique elements within a MLC bit cell can be a single GSHE-STT MRAM or a composite GSHE-STT MRAM element having a unique number of two or more GSHE-STT MRAM elements coupled in parallel. A GSHE-STT MRAM element and one or more unique composite elements comprising a unique number of two or more GSHE-STT MRAM elements coupled in parallel can be coupled to an access transistor.
With reference now to
With regard to reading or sensing the binary values or detecting the resistance states of the MLC bit cells 401-404, a same voltage, e.g., Vdd/2 may be applied as VAMLC and VBMLC to the MLC write terminals AMLC and BMLC shown in
Once again, with regard to programming a MLC bit cell, a corresponding write current, Iwrite, may be applied across MLC write terminals AMLC and BMLC. A different voltage VCMLC may be applied on terminal CMLC with small delta (e.g., ˜0.1V), above VAMLC and VBMLC for a positive value “+” of Iwrite (i.e., current traversing in a first direction). The voltage VCMLC may be applied on terminal CMLC with small delta (e.g., ˜0.1V), below VAMLC and VBMLC for a negative value “−” of Iwrite (i.e., current traversing in a reverse or second direction) for a predetermined duration. An exemplary sequence of positive or negative Iwrite currents are representatively illustrated for n=3, or for a 3 bit MLC bit cell or in other words, an MLC bit cell with three programmable elements or bits “1,” “2,” and “3.”
With reference to
Specifically, in
With regard to state transitions based on the above write current values for bits “1,” “2,” and “3,” MLC state “000” can always be reached with Iwrite<−4, regardless of the initial state of the MLC bit cell. This is because a low enough write current flips all 3 programmable elements to their logic “0” states. MLC state “111” can always be reached with Iwrite>+4, regardless of the initial state of the MLC bit cell, because a high enough current flips all 3 programmable elements to their logic “1” states. Thus, the binary minimum value for 3 bits, i.e., “000” can be reached with passing a write current which is low enough to flip all three programmable elements to their logic “0” states, wherein this write current may be referred to as a minimum switching current. Similarly, the binary maximum value for 3 bits, i.e., “111” can be reached with passing a write current which is low enough to flip all three programmable elements to their logic “1” states, wherein this write current may also be referred to as a maximum switching current.
In addition to the state transition paths shown with the numerical identifier “(a)” and the above-mentioned transition paths to states “000” and “111,”
Accordingly, an efficient manner of programming an n bit MLC bit cell includes reading the MLC bit cell in order to detect the current or initial state of the MLC bit cell, and then choosing the optimal path(s) among the various illustrated transition paths (a), as well as, from the additional paths (b). In this manner, programming delay and power can be optimized. As previously noted, the common access transistor for programming all n bits or programming elements within a single MLC bit cell contributes to significant savings in terms of area, and thus, can achieve high density memory configurations using the GSHE-STT MRAM technology.
With reference now to
Referring to
Accordingly, a description of exemplary aspects related to MLC cells formed from memory elements comprising hybrid GSHE-STT MRAM memory cells, the MLC cells connected to a shared access transistor for improving density, have been presented. It will be appreciated that aspects include various methods for performing the processes, functions and/or algorithms disclosed herein. For example, as illustrated in
Those of skill in the art will appreciate that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Further, those of skill in the art will appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the aspects disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.
The methods, sequences and/or algorithms described in connection with the aspects disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
Accordingly, an exemplary aspect can include a computer readable media embodying a method for forming exemplary hybrid GSHE-STT MRAM cells and related circuit topologies and memory arrays. Accordingly, the invention is not limited to illustrated examples and any means for performing the functionality described herein are included in aspects of the invention.
While the foregoing disclosure shows illustrative aspects of the invention, it should be noted that various changes and modifications could be made herein without departing from the scope of the invention as defined by the appended claims. The functions, steps and/or actions of the method claims in accordance with the aspects of the invention described herein need not be performed in any particular order. Furthermore, although elements of the invention may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated.
The present Application for Patent claims the benefit of Provisional Patent Application No. 61/932,768 entitled “MULTI-LEVEL CELL DESIGNS FOR HIGH DENSITY LOW POWER GSHE-STT MRAM” filed Jan. 28, 2014, pending, and assigned to the assignee hereof and hereby expressly incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61932768 | Jan 2014 | US |