This disclosure relates to the area of mass spectroscopic analysis, multi-reflecting time-of-flight mass spectrometers and electrostatic traps and to the related apparatus, including electrostatic ion mirrors.
Multi-reflecting mass spectrometers, either time-of-flight (MR-TOF MS), open traps, or electrostatic traps (E-trap), comprise gridless ion mirrors to arrange isochronous motion of ion packets, essentially independent of ion energy and spatial spreads.
An important class of ion mirrors for multi-reflecting mass spectrometers is represented by mirrors which are substantially elongated in one transverse direction Z to form a two-dimensional electrostatic field. This field can have either planar or hollow cylindrical symmetry. SU1725289, incorporated herein by reference, introduces an MR TOF MS with ion mirrors of planar symmetry. Except Z-edges, the electrostatic field is two-dimensional E(X, Y), i.e. essentially independent of the Cartesian coordinate Z Ions move along zigzag trajectories, being injected at small angle to X-axis, periodically reflected from the mirrors in the X-direction, spatially focused in the Y-direction, and slowly drifting in the Z-direction. U.S. Pat. No. 7,196,324, GB2476964, GB2477007, WO2011086430, and co-pending application 223322-313911, incorporated herein by reference, disclose multi-reflecting analyzers with hollow cylindrical mirrors formed by two sets of coaxial ring electrodes. Contrary to planar mirrors, cylindrical mirrors eliminate Z-edges, thus forming electrostatic field completely independent on the azimuthal Z-direction. The analyzer provides a compact folding of ion path per instrument size. However, when arranging zigzag ion trajectories, the ion path deviates from a cylindrical surface, which demands for ion mirrors being highly isochronous relative to radial Y-displacements.
Electrostatic multi-reflecting analyzers with two-dimensional ion mirrors of both—planar and hollow cylindrical geometry are disclosed for use as time-of-flight analyzers (SU1725289, U.S. Pat. No. 7,385,187), open traps (GB2478300, WO2011107836), and electrostatic traps (GB2476964, GB2477007, WO2011086430). While in time-of-flight (TOF) analyzers ion packets travel towards a fast response detector along a fixed path, in electrostatic traps, the ion packets are trapped indefinitely. They keep reflecting while being detected by image current detector. Open electrostatic traps could be considered as a hybrid between TOF and traps. Ions reach a detector after a loosely defined number of reflections within some span in the number of reflections.
Multi-reflecting time-of-flight mass spectrometers can be combined with a set of periodic lenses to confine ions in the Z-direction, as disclosed in GB2403063 and U.S. Pat. No. 7,385,187, incorporated herein by references. US2011186729, incorporated herein by reference, discloses quasi-planar ion mirrors, in which the electrostatic field of planar symmetry is superimposed with a weak field spatially periodic in the Z-direction to provide ion confinement in this direction. Such periodic field, by itself or in combination with periodic lenses, allows significant reducing of flight time distortions due to the spatial Z-spread in ion bunches. GB2476964, GB2477007, WO2011086430, incorporated by reference, disclose periodic lens in the tangential direction within cylindrical hollow analyzers.
The general trend in design of multi-reflecting mass spectrometers is to minimize the effect of ion packet broadening during periodic ion motion between the mirrors in order to increase the mass resolving power of the spectrometer at given energy tolerance and phase space acceptance, i.e. acceptance of initial spatial, angular, and energy spreads of ion packets. In order to improve the energy tolerance of the mass analyzer, U.S. Pat. No. 4,731,532, incorporated herein by reference, discloses a gridless ion mirror with a purely retarding field which provides for second-order focusing of the flight time T with respect to kinetic energy K, i.e. dT/dK=d2T/dK2=0. Since present invention is primarily concerned with analyzer isochronicity we will be referring time-per-energy focusing as “energy focusing”. In the paper by A. Verenchikov et al., Technical Physics, v. 50, N1, 2005, p. 73-81, incorporated herein by references, planar ion mirrors are described with an accelerating potential at one of the mirror electrodes, which provide for third-order energy focusing, i.e. for dT/dK=d2T/dK2=d3T/dK3=0. Co-pending application 223322-318705, incorporated herein by reference, discloses gridless ion mirrors of either planar or hollow cylindrical geometry, possessing fourth (d4T/dK4=0) and fifth (d5T/dK5=0) order energy focusing. Achieving high order of energy focusing allows increasing the energy tolerance of the mass analyzer to >10% at mass resolving power above 100,000.
Since in gridless ion mirrors due to an inhomogeneous field structure ion flight time in general depends not only on ion energy but also on ion initial coordinate and direction of motion, it is important to design ion mirrors such to provide for periodic focusing of the flight time with respect to the spatial spread of ion packets. In general, for two dimensional and Z-independent fields with X-direction for ion reflections, the flight time T through the analyzer depends on ion kinetic energy K, initial spatial coordinate Y0 and angular coordinate b0 (b=dY/dX). At small deviations of initial ion parameters the time-of-flight deviations can be represented by the Taylor expansion:
where t=(T−T0)/T0 is the relative flight time deviation, T0 is the flight time corresponding to an ion with zero initial coordinates Y0=B0=0 and with the mean kinetic energy value K0, δ=(K−K0)/K0 is the relative energy deviation, and y=Y/H is the coordinate normalized to the window height H of the ion mirror. The expansion (aberration) coefficients ( . . . | . . . ) are normalized derivatives: (t|δ)=dt/dδ, (t|δδ)=(½)d2t/dδ2 etc. N-th order energy focusing means that all coefficients at the pure powers of δ up to N-th power inclusively are zeroes. The second order spatial focusing (i.e. time-of-flight focusing with respect to spatial and energy spreads) means that (t|yy)=(t|yb)=(t|bb)=0, because the mixed second order terms (t|yδ) and (t|bδ) vanish due to the system symmetry with respect to the plane Y=0.
The paper by M. Yavor et al., Physics Procedia, v. 1 N1, 2008, p. 391-400, incorporated herein by reference, provides details of geometry and potentials for planar ion mirrors which simultaneously provide the third order energy focusing, second order spatial focusing and geometrical focusing in Y-direction. In such analyzers, the broadening of ion packets in the mirror fields is dominated by so-called “mixed” third order aberrations due to both spatial and energy spreads, i.e. terms (t|yyδ)y02δ, (t|ybδ)y0b0δ and (t|bbδ)b02δ, because the rest third order aberrations vanish due to the system symmetry with respect to the plane Y=0. These terms are responsible for deterioration of the resolving power of multi-reflection mass spectrometers at both FWHM level and even more severely at the 10% peak height level. This deterioration is especially noticeable in hollow cylindrical analyzers in which ions are periodically shifted in radial Y-direction from the “ideal” cylindrical surface of ion motion, as well as in planar mass analyzers with periodic lenses, in which ions are injected with a large enough Y-spread through a “double orthogonal” accelerator described in US2007176090, incorporated herein by reference.
As described in the co-pending application 223322-318705, incorporated herein by reference, the order of energy focusing can be increased by optimizing the electrostatic potential distribution in the region of ion reflection. The improvement is reached by increasing the number of mirror electrodes with different electrode potentials and choosing sufficiently thin electrodes in the region of ion reflection. This strategy of design, however, fails in case one wants to achieve high order energy focusing simultaneously with high order spatial focusing. Up to fifth-order energy focusing may be achieved in combination with the second-order spatial focusing. To obtain third-order energy focusing in combination with the third-order spatial focusing one has to increase the width of the mirror electrode with accelerating potential, though such geometry modification causes a negative consequence of reducing the spatial acceptance of the ion mirror. However, our own thorough numerical simulations of gridless ion mirrors show that no straightforward steps like increasing the number of mirror electrodes, splitting them into parts with introducing more independent electrode voltages, varying their widths and shapes and other similar means do not lead to elimination of the mixed (energy-spatial) third order aberrations in ion mirrors with the fourth and higher order of energy focusing. Using the above mentioned optimization procedures one can reach high-order energy isochronicity, however, at a cost of increasing mixed third order aberrations. In other words, increasing the energy acceptance leads to reduction of the spatial acceptance.
Thus, prior art ion mirrors possess either high energy acceptance or high spatial acceptance but not both at the same time. Therefore, there is a need for improving the spatial phase space acceptance of ion mirrors possessing high energy tolerance, i.e. flight time focusing with respect to energy of fourth and higher orders.
The inventors have realized that the spatial acceptance of planar time-of-flight mass analyzers can be increased while maintaining high order time per energy focusing by adding a planar lens between prior art ion mirrors, which may include the following:
Therefore, in the invented configuration there are in general two lens regions formed in each mirror-lens combination: the pre-focusing lens and the “internal” lens formed by the accelerating electrode of ion mirror. So, on the way to the ion mirror ions are accelerated twice: first, by the pre-focusing lens and then by the field of the mirror accelerating electrode. After passing the latter field ions are reflected by the retarding field of the mirror.
The reduction of the flight time aberrations due to spatial ion spreads in Y-direction by providing means of shrinking Y-widths of ion bunches inside the mirror reflecting field could be expected by those experienced in the art. It is important to emphasize, however, that the pre-focusing lens itself introduces additional aberrations, and numerous calculations show that the positive effect of focusing is modest and expectations are not met if using just an arbitrary pre-focusing lens. The principal and unobvious point of the invention is that an efficient reduction of mixed third order aberrations in the mirror-lens combinations occurs only in case when the pre-focusing lens is immersion (accelerating ions on the way to the mirror). Though inventors do not know a strict mathematical proof, thorough numerical simulation of various mirror-lens combinations confirm this conclusion.
In an embodiment, there is provided isochronous time-of-flight or electrostatic trap analyzer comprising:
(a) Two parallel and aligned grid-free ion mirrors separated by a filed free region, said mirrors being arranged to reflect ions in a first X-direction, said mirrors being substantially elongated in the transverse drift Z-direction to form a two-dimensional electrostatic field either of planar symmetry or of a hollow cylindrical symmetry;
(b) Said mirrors having at least one electrode with an accelerating potential compared to the field-free space potential, arranged to geometrically focus ions in the Y-direction; and
(c) At least one planar electrostatic lens, arranged to geometrically focus ions in the Y-direction, said lens being elongated in said transverse Z-direction and placed between said ion mirrors.
Preferably, said lenses are immersion. In an implementation, said mirrors are preferably symmetric with respect to the median plane X=0 of the analyzer. In an implementation, there are preferably two said planar lenses, identical and located symmetric with respect to the median plane of the analyzer, one at each side of said median plane. In this case, three field-free regions are formed: one between said pre-focusing lenses and two between said lens and said mirror. In an implementation, said two field free regions between lens and ion mirror have higher accelerating potential as compared to the field free region between said lenses.
In an implementation, a single pre-focusing lens field can be superimposed with the fields of periodic lenses placed between ion mirrors and arranged for confining ions in the drift Z-direction. In this case, instead of planar lenses, the array of periodic lenses is composed of lenses with 3D field, focusing ions in both transversal directions Y and Z.
In an implementation, electrostatic field of one or both mirrors of planar or hollow cylindrical symmetry can be superimposed with a weak field being periodic in the direction Z of elongation of the mirrors to provide ion confinement in the Z-direction. Preferably, said spatially modulated electrostatic field by itself or in combination with a periodic lens is such that it eliminates time per spatial aberrations in the Z-direction.
Various embodiments of the present invention together with arrangement given illustrative purposes only will now be described, by way of example only, and with reference to the accompanying drawings in which:
As disclosed in GB2403063 and U.S. Pat. No. 7,385,187, incorporated herein by references, a multi-reflecting time-of-flight analyzer of prior art comprises two ion mirrors, elongated in a drift Z-direction, turned face-to-face and separated by a drift space. The ion packets move along zigzag trajectories, being periodically reflected in the X-direction between the mirrors. Zigzag trajectories are arranged by injecting ions at small angle to the X-axis and by spatial ion confinement in a periodic lens.
Referring to
Again referring to
Referring to
Based on aberration coefficient values one can calculate magnitudes of time spread induced by aberrations for given values of energy and coordinate spreads. For example, let the total flight time be T0=1 ms and consider an ion bunch of
Referring to
By electrically connecting adjacent electrodes, the number of independently adjusted voltages can be reduced, and the mirror MPA-2 can be tuned such that the order of energy focusing can be decreased to the fourth one (t|δ)=(t|δδ)=(t|δδδ)=(t|δδδδ)=0 (mode MPA-2-4) or to the third one (t|δ)=(t|δδ)=(t|δδδ)=0 (mode MPA-2-3). The corresponding modes of electric tuning are shown in Table 3 and the potential distributions U(X, Y=0) are shown in
Referring to Table 4, in our own simulations we found that sacrificing the energy focusing allows simultaneous reduction of the mixed third order aberrations. As an example, the geometry and potentials of mirror MPA-2 are optimized such that in the third order energy focusing mode MPA-2-3 there are reached: second order spatial focusing (t|y)=(t|b)=(t|yy)=(t|yb)=(t|bb)=0; and mixed third order aberrations are eliminated: (t|yyδ)=(t|yδ)=(t|bbδ)=0. This means the full third order focusing of the flight time, because all the remaining third order aberration coefficients in the analyzer vanish automatically because of the system symmetry with respect to the Y=0 plane. The dominating non-vanishing aberration in this case remains the fourth order aberration (t|bδδδδ)δ4.
Referring to
Referring to
Referring to
Referring to
Therefore, in “typical” prior art ion mirrors consisting of two regions with reflecting and accelerating fields, improvement of time per energy focusing has limited effect on the resolving power and on the energy tolerance because of the inevitable and dominating third order mixed aberrations.
Mirror-Lens Combinations of Present Invention
Referring to
The mirror-lens combination ML-1 is designed such that the fourth order energy focusing (t|δ)=(t|δδ)=(t|δδδ)=(t|δδδδ)=0 is achieved together with negligibly small third order mixed aberrations, thus reaching the object of the invention.
Referring to
Referring to
Referring to
Referring to
Referring to
Thus, the novel mirror-immersion lens combination allows reaching a super-high level of the mass resolving power in multi-reflecting time-of-flight analyzer both at FWHM and at low peak height levels, which has not been possible using prior art designs of gridless ion mirrors, which demonstrates reaching the goal of the invention.
Alternative and Supplementary Designs
Referring to
Again referring to
In yet another embodiment (not shown), electrostatic field of one or both mirrors can be superimposed with a weak field being periodic in the Z-direction (direction of mirror elongation). Such spatial (not time) modulation of the ion mirror field in the Z-direction provides for ion confinement in the Z-direction as disclosed in US2011186729 by the authors, incorporated herein by reference. In another embodiment, such spatial periodic modulation of the ion mirror field is combined with the above described focusing by a periodic lens or by a spatially Z-modulated immersion lens, such that a combined Z-focusing allows mutual cancellation of major time-of-flight aberrations related to ion packet width in the Z-direction. The improved isochronicity of spatial focusing in the Z-direction is expected based on the analogy with the presently described spatial and time-of-flight focusing in the Y-direction.
The novel mirror-immersion lens combination substantially reduces analyzer aberrations. The above described isochronous geometrical focusing in the Z-direction is expected to further decrease the analyzer aberrations. Then the initial turn-around time is expected to define peak width. This makes practical the further extension of the flight path. In another embodiment, a mirror-lens combination may be implemented in a hollow cylindrical mass analyzer which provides an efficient trajectory folding relative to the analyzer size, as disclosed in co-pending applications U.S. Pat. No. 7,196,324, GB2476964, GB2477007, WO2011086430, and co-pending application 223322-313911 by the authors, incorporated herein by references. In this case, electrodes of the mirror-lens combination have a small (compared to the mirror window height) curvature in the drift direction Z. Combining hollow cylindrical symmetry with the novel mirror-immersion lens combination provides an additional effect, since the novel ion mirror has much higher tolerance to radial ion displacement, thus opening the way for high (half million to million range) of resolving power in cylindrical time-of-flight and electrostatic trap analyzers.
In yet another embodiment, electrostatic field of one or both mirrors of hollow cylindrical symmetry can be periodically (spatially and not in time) modulated in the tangential Z-direction in combination with either tangentially periodic lens in the field free space or with the tangentially periodically modulated immersion lens.
To further improve resolving power R with a target of R˜1,000,000 one may reduce the turn round time by improved ion confinement within small (d=2-3 mm) bore gaseous ion guides, and by using higher acceleration energy in the analyzer, accompanied with the proportional increase in the acceleration field strength.
Let us make numerical estimates for a particular hollow cylindrical MR-TOF analyzer with ion mirrors of
Let us estimate resolution limit which is set by the turn around time in the proposed cylindrical analyzer. At preferred acceleration energy of 8 kV, the maximal voltage (on fifth electrode) is about 18.5 kV, i.e. sufficiently small (<20 kV) to avoid electrical breakdown. Typical flight time of m/z=1000 amu ions is then calculated as T0=2.5 ms. Accounting ΔK/K0˜7% limit onto relative energy spread, set by the analyzer aberrations at R˜1,000,000, the field strength in the orthogonal accelerator can be brought to E=400 V/mm at ΔX=1.5 mm continuous ion beam size. If using small bore quadrupole ion guides, the output beam diameter can be brought to approximately 0.3 mm for 1000 amu ions. The beam diameter past the ion guide can be estimated as d√{square root over (4kT/qVRF)} for thermal energy kT=0.026 eV, VRF=1000 V and parameter q=0.01 at 1000 amu which allows low mass cut off in quadrupole at 50 amu. At proper telescopic refocusing of continuous ion beam in front of the accelerator, and accounting conservation of phase space ΔX*ΔVx in electrostatic lens (between quadrupole and accelerator), the transverse velocity spread ΔVx of 1000 amu ions in the orthogonal accelerator can be reduced about 5 fold (1.5 mm/0.3 mm) relative to thermal velocity and (accounting velocity in opposite directions) can be brought down to 24 m/s. Then the turnaround time in 400 V/mm pulsed field corresponding to A=4E+10 m2/s acceleration would induce turn around time ΔTi=ΔVx/A=0.6 ns. Accounting 2.5 ms flight time for 1000 amu ions in L=100 m MR-TOF, such turn around time is expected to limit the resolving power at about 2E+6 level. In other words, extension of flight path and increasing acceleration voltage in the cylindrical hollow analyzer does soften turn around time limitation and opens the opportunity of R>1E+6 in MR-TOF analyzers.
However, due to prolonged flight times in cylindrical MR-TOF, the expected duty cycle of the orthogonal accelerator becomes very low—between 0.1 and 0.2%, even with the method of double orthogonal extraction, disclosed in US2007176090, incorporated herein by reference. To remove the limiting link between the resolving power and the sensitivity of MR-TOF analyzers, preferably, the orthogonal accelerator should employ a method of frequent encoded pulsing disclosed in WO2011135477, incorporated herein by reference. Alternatively, in case of using the MR-TOF analyzer as a second stage of MS-MS tandem, the orthogonal accelerator may be preferably replaced by a linear ion trap with a pulsed radial ejection. The replacement becomes possible because of small intensity of parent ion beam which avoids space charge saturation in the pulsed trap and in the MR-TOF analyzer. Such trap should be oriented along the Z-axis, tilted by angle α/2 and followed by a deflector for ion steering at angle α/2, where the ion trajectory inclination angle in the analyzer is α˜p/2X0, equal to 1/100 in the numerical example. Preferably, to avoid interference with ion trajectories and to reduce gas load onto the MR-TOF, the trap is followed by an isochronous curved inlet formed by electrostatic sectors as described in U.S. Pat. No. 7,326,925 by authors, incorporated herein by reference.
Coaxial Ion Mirrors
The improved ion mirrors scheme is applicable to coaxial multi-reflecting analyzers with a time-of-flight or image current detectors, disclosed in GB2080021, U.S. Pat. No. 5,017,780, U.S. Pat. No. 6,013,913A, U.S. Pat. No. 5,880,466, and U.S. Pat. No. 6,744,042, incorporated herein by reference. The cylindrical two-dimensional electrostatic field is known to provide very similar properties as planar two-dimensional field. Based on the above described ion optical studies it becomes obvious that at least a single focusing lens, and preferably an immersion lens is expected to improve spatial and energy acceptance of coaxial multi-reflecting analyzers. Such time-of-flight, or electrostatic trap analyzer should comprise: (a) two parallel and aligned grid-free coaxial ion mirrors separated by a filed free region, said mirrors being arranged to reflect ions in the coaxial direction; (b) said mirrors having at least one electrode with an accelerating potential compared to the field-free space potential; and (c) at least one electrostatic lens, arranged to focus ions in the radial direction and placed between said ion mirrors. Preferably, said at least one lens is immersion. Preferably, the mirror-immersion lens arrangement is symmetric.
Although the present invention has been describing with reference to preferred embodiments, it will be apparent to those skilled in the art that various modifications in form and detail may be made without departing from the scope of the present invention as set forth in the accompanying claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/031506 | 3/14/2013 | WO | 00 |