The present invention relates generally to diffusion processes and dopant profiles for field effect transistors, as well as integrated circuits and processes for making same.
Modern integrated circuits typically include millions of transistors. Most commonly these transistors are field effect transistors (FETs). These transistors are typically not identical throughout an integrated circuit, but rather are divided into categories that are based on ranges of various physical, material, electrical, and quantum mechanical properties or characteristics. The aforementioned categories are referred to herein as transistor device types. Illustrative transistor device types that are commonly found in integrated circuits include, but are not necessarily limited to: p-channel FETs, n-channel FETs, FETs tailored for digital or analog circuit applications, high-voltage FETs, high/normal/low frequency FETs, FETs optimized to mimic older FET designs (i.e., legacy FETs), FETs optimized to work at distinct voltages or voltage ranges, and low/high power FETs.
The speed at which FETs switch between conducting (i.e., on) to non-conducting (i.e., off) states is typically related to the threshold voltage (Vt) associated with those FETs. For example, a transistor having a low Vt may switch faster than a transistor having a higher Vt. For speed critical applications, one might be tempted to consider using only transistors having a low Vt. However, one drawback of a low Vt transistor is undesirably high off-state leakage current. Therefore, circuit designers typically optimize an integrated circuit design for, among other things, off-state leakage current by specifying a plurality of transistor device types, each device type having a different threshold voltage. Some transistors may be specified with low Vt, other transistors may be specified with regular Vt, while still others may be specified with high Vt, with various refined Vt settings therebetween. In mobile applications as well as certain desktop applications, space constraints and other factors drive the desire to use semiconductor chips having multiple Vt integrated circuits thereon, and there remains an ongoing interest to reduce the size of the integrated circuit blocks. At the same time, power reduction and extending battery life drive the desire to use efficient semiconductor chip designs having reliable switching. A way to achieve the combined product and circuit design goals is to design semiconductor devices, e.g., transistors, having a greater uniformity of electrical characteristics. For example, a tighter distribution of variations in Vt allow for efficient circuit designs. In this way, switching reliability is achieved, which in turn reduces the need to design in compensation circuitry. The reduced need to design in circuit redundancies can reduce the size of the integrated circuit blocks.
However, fabricating multiple Vt devices in silicon using conventional CMOS processes remains an ongoing challenge. For instance, to set Vt for an individual transistor in a conventional CMOS process while also optimizing for other detrimental factors such as short-channel effects, junction capacitance, drain-induced barrier lowering effects and other issues, process engineers typically use oppositely-doped implanted regions that jut outward of the source and drain and extending inward into the channel a defined distance. Such implanted dopant regions are known as “pocket” or “halo” implants. Usually the halo implant is achieved using a multi-step, controlled implantation that involves driving ionized dopant species into the silicon lattice at high energy. To remedy damage to the lattice structure that results, as well as to activate the dopants, an anneal is typically done. While controllability of the anneal step(s) and the resultant doping profile is generally understood, the process of driving implanted material into silicon at various angles comes with inevitable variation and challenges as to process control. Also, whenever dopants are introduced directly into the transistor channel, the dopants can exhibit random fluctuation in dopant placement and concentration which can adversely affect carrier mobility and corresponding Vt. A further challenge is to carry on such Vt setting techniques as critical dimensions continue to shrink. At these smaller gate lengths, even small fluctuations in the resultant shape of the halo implants affects the final Vt that is set for the transistor. It is therefore difficult to reliably set Vt across a plurality of transistors. A further complication occurs when such processes are applied for multiple transistor device types, each having different Vts. There then results not only the variation from transistor-to-transistor for the same type of transistors, but further variation across different transistor device types. Because of such limitations in the semiconductor process, circuit designers develop techniques and redundancies to compensate for the Vt variation which typically results in a larger cell footprint. Such compensatory designs are not straightforward, and serve to add to the cost of producing an integrated circuit, particularly at the more advanced semiconductor processes.
What is needed are integrated circuits having multiple sets of transistor structures, each set with its own range of physical, material, electrical, and quantum mechanical properties or characteristics, and methods of integrating the manufacture thereof to result in a reduction in the variation of threshold voltage.
Embodiments of the invention are described with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements. Additionally, the left most digit(s) of a reference number identifies the drawing in which the reference number first appears.
The following Detailed Description refers to accompanying drawings to illustrate exemplary embodiments consistent with the invention. References in the Detailed Description to “one exemplary embodiment,” “an illustrative embodiment,” “an exemplary embodiment,” and so on, indicate that the exemplary embodiment described may include a particular feature, structure, or characteristic, but every exemplary or illustrative embodiment may not necessarily include that particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same exemplary embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is within the knowledge of those skilled in the relevant art(s) to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
The exemplary embodiments described herein are provided for illustrative purposes, and are not limiting. Other embodiments are possible, and modifications may be made to the exemplary embodiments within the spirit and scope of the invention. Therefore, the Detailed Description is not meant to limit the invention. Rather, the scope of the invention is defined only in accordance with the subjoined claims and their equivalents.
The following Detailed Description of the exemplary embodiments will so fully reveal the general nature of the embodiments that others can, by applying knowledge of those skilled in relevant art(s), readily modify and/or adapt for various applications such exemplary embodiments, without undue experimentation. Therefore, such adaptations and modifications are intended to be within the meaning and plurality of equivalents of the exemplary embodiments. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by those skilled in relevant art(s) in light of the teachings herein.
Epitaxial layer refers to a layer of single crystal semiconductor material. In this field, an epitaxial layer is commonly referred to “epi.”
FET, as used herein, refers to field effect transistor. An n-channel FET is referred to herein as an N-FET. A p-channel FET is referred to herein as a P-FET. Unless noted otherwise the FETs referred to herein are MOSFETs.
As used herein, “gate” refers to the gate terminal of a FET. The gate terminal of a FET is also referred to in this field as a “gate electrode.” Historically, the gate electrode was a single structure such as a layer of doped polysilicon disposed on a gate dielectric. More recent developments of the gate have included varying the materials incorporated therein, including the use of metals and metal alloys.
Source/drain (S/D) terminals refer to the terminals of a FET, between which conduction occurs under the influence of an electric field, subsequent to the inversion of the semiconductor surface under the influence of an electric field resulting from a voltage applied to the gate terminal of the FET. Generally, the source and drain terminals of a FET are fabricated such that they are geometrically symmetrical. With geometrically symmetrical source and drain terminals it is common to simply refer to these terminals as source/drain terminals, and this nomenclature is used herein. Designers often designate a particular source/drain terminal to be a “source” or a “drain” on the basis of the voltage to be applied to that terminal when the FET is operated in a circuit.
Substrate, as used herein, refers to the physical object that is the basic workpiece that is transformed by various process operations into the desired microelectronic configuration. Silicon wafers are a commonly used substrate in the manufacture of integrated circuits.
The term vertical, as used herein, means substantially perpendicular to the surface of a substrate.
The expressions “analog device”, “analog transistor”, “analog FET” and similar phrases or expressions refer to transistors that have electrical characteristics suited for use in analog circuit applications. By way of example and not limitation, FETs used in analog circuit applications are often biased so as to operate in the unsaturated mode, and tend to have higher Vt settings than FETs used in digital or logic circuit applications. When analog and digital circuits exist on the same die, it is not uncommon that the gate length of FETs used in the analog circuitry is greater than the minimum gate length achievable in a given process technology.
The expressions “digital device”, digital transistor”, digital FET”, “logic device”, logic transistor”, “logic FET” and similar phrases or expressions refer to transistors that have electrical characteristics suited for use in digital circuit applications. By way of example and not limitation, FETs used in digital, or logic, circuit applications are typically driven to be in their fully on state or fully off state. Such FETs tend to have lower Vt settings than FETs used in analog applications. When analog and digital circuits exist on the same die, it is not uncommon that the gate length of FETs used in the digital circuitry is the minimum gate length achievable in a given process technology.
Multiple transistor types are formed in a substantially undoped layer by differential out-diffusion from a doped underlayer. The substantially undoped layer is preferably epitaxially formed silicon or silicon-germanium, which may be formed as a blanket common layer across the different devices, or may be formed selectively. Differential out-diffusion from transistor-to-transistor affects the thickness of the substantially undoped layer and therefore effects a resulting threshold voltage for the transistor.
As noted above, many integrated circuit designs benefit from the availability of a variety, or range, of transistor device types that can be included in those integrated circuits. The availability of multiple transistor device types provides engineers with the resources to produce optimized circuit designs, as well as to produce circuit designs that might otherwise be unachievable if limited to a small number of transistor device types. As a practical matter, it is desirable that each integrated circuit on a wafer be able to incorporate all, or any subset of, the range of transistor device types available in an integrated circuit manufacturing process while achieving a limited variation in threshold voltage both locally and globally.
Disclosed herein are exemplary semiconductor structures, along with methods for making such structures, wherein a plurality of transistor device types are provided within an integrated circuit, and/or within a wafer containing a plurality of integrated circuits.
In an illustrative embodiment, there is provided a wafer in which a plurality of wells have been formed, typically by ion implantation. On at least some of the wells, there is also a heavily doped screen layer having a predetermined thickness and dopant concentration, typically formed by ion implantation. Such a screen layer is located in the uppermost portion of the well, i.e., that portion of the well closest to the surface of the wafer. The screen layer is preferably highly uniform in so as to define a reliable depletion width in the channel when a voltage is applied to the gate. As desired, to target a particular substantially undoped layer thickness, dopant migration inhibitors are used. For instance, carbon may be emplaced together with boron-doped screens. Another example is to use a material that tends to stay in place with proper thermal conditions, such as antimony. Dopants for the screen layer are selected for the desired diffusivity properties and are of opposite conductivity type from the dopants that form the source/drain. N-type dopants are selected for P-FET screen layer, and P-type dopants are selected for N-FET screen layer. It is also noted that combinations of dopant materials can be used. For at least FETs used in digital circuits, electrically active dopants forming the screen can be of the same dopant species, even if multiple dopant-introducing steps are used, though different dopant species of the same conductivity type may be used in combination, as desired to achieve the selected electrical properties to set Vt with controllable out-diffusion. A blanket epitaxial layer of a pre-selected thickness is then formed on the wafer over the screen layer, thereby extending across multiple die and transistor die blocks. The blanket epitaxial layer is preferably formed using a highly uniform process, with within-wafer and wafer-to-wafer uniformity of less than 5% thickness variation. It is further noted that, to achieve alternative devices, the epitaxial layer may be implanted or grown using in-situ doping to result in various starting-point channel dopant profiles.
In general, using a series of masking steps, selected screen layers are formed for different devices. It is noted that screen layers, though described herein as typically being doped by ion implantation, may also be formed using processes including, but not limited to, in-situ doped epitaxial growth, and diffusion.
Some devices may be specified to be formed conventionally so as to result in a “legacy” device. As used herein, legacy device refers to a transistor having a channel with the Vt set using dopants introduced directly into the channel (such as by halo doping, shallow channel implant or like process). Legacy devices may skip having a screen layer altogether, as a screen layer is not necessary. During the remainder of wafer processing, which includes subsequent feature formations such as the gate, source and drain, contacts and so on, a thermal processing cycle which can include rapid thermal processing, solid phase epitaxy or other thermal process and combinations thereof, is performed using a pre-selected recipe that results in dopant profiles by way of individual degrees of out-diffusion of the screen layer tailored to each device threshold voltage setting target. Transistors are isolated using a shallow trench isolation (STI) process. Preferably the STI process is carried out after the blanket-epitaxial layer is formed, though variants of the embodiments include processes having STI performed before selective epi. It is noted that selective epi refers to the process whereby, instead of a blanket common epitaxial layer formed across the wafer, a selective process is used (which includes a masking step) to result in one or more individual epi regions across a die, and/or across a wafer. Such epi regions, formed by the selective epi process described herein, may have different physical and/or electrical properties. By way of example, and not limitation, the different epi regions may have different thicknesses, different doping concentrations, different doping profiles, different dopant species or combinations of dopant species, and/or be composed of different materials. The different epi regions having the different physical and/or electrical characteristics, enable the formation of a plurality of transistor device types.
After wafer processing and singulation, a plurality of die having at least some with a screen layer and a substantially undoped layer are formed.
Transistors with different Vt, mobility, transconductance, or other electrical characteristics can be created using the embodiments disclosed. Various doping profiles to result in Vt targets in accordance with the present disclosure include undoped channels, deep or shallow screens, and Vt set layers. Additionally, channel materials may be selected as the need arises, for instance, SiGe as opposed to an intrinsic silicon layer.
Exemplary structure 100 illustrates a partially fabricated FET in accordance with the present disclosure. It will be understood that structure 100 represents a plurality of device types, and further variants not pictured can be used. It is further understood that, though not shown, the embodiments described herein are intended for use to fabricate a plurality of device types, which may be variants around structure 100, or may include combinations of devices generally represented by structure 100 with legacy devices (not shown). It will be appreciated that structure 100, at the stage of fabrication shown in
Structure 100 includes a gate electrode 102. Gate electrode 102 is typically formed of an electrically conductive material such as doped polysilicon, or a metal or metal stack. If metal or metal stack, gate electrode 102 may be formed using either a “gate first” process or a “gate last” process. An epitaxial layer 120 (indicated by bracket) that can support multiple degrees of doping including remaining intrinsic, is grown on a screen layer 108. A separate Vt set layer 106 is depicted, which Vt set layer may be formed by a distinct doping step from the doping for screen layer 108, or may be a result of a controlled out-diffusion from screen layer 108. Screen layer 108, which has a dopant concentration greater than that of any doped layers in epitaxially grown layer 120 is defined above an optional anti-punchthrough (APT) layer 110 or well/deep well layer 112. It is noted that some devices may be designed to be legacy devices, therefore if desired to achieve targeted electrical characteristics of legacy transistors, screen layer 108 and Vt set layer 106 may be omitted. All layers are supported on a bulk silicon wafer substrate 114. In this illustrative embodiment, relative dopant concentration between layers is indicated by adjacent graph 130, which shows the successively decreasing dopant concentration above and below screen layer 108. It is noted that not every transistor structure in an integrated circuit in accordance with the present disclosure is required to have the same relative doping profile as that shown in the
The threshold voltage of a FET formed from structure 100 can be determined, at least in part, by the thickness of epitaxial layer 120, and further determined by dopant concentration and thickness of screen layer 108 as well as Vt set layer 106. The thickness of epitaxial layer 120 is controlled by the extent of controlled diffusion of one or more dopant layers upward into epitaxial layer 120, so that there results a channel layer 104. Other process and/or structural considerations with respect to determining the magnitude of the threshold voltage include, but are not limited to, the presence or absence of lightly doped drains extending into the channel (i.e., subjacent a portion of gate electrode 102), and the material(s) used to form a metal gate electrode.
Implanted dopants can include P-type or N-type dopants in varying concentrations and with varying silicon diffusivity. Materials typically used are boron, indium, thallium, arsenic, phosphorous and antimony for electrically active species, and carbon and germanium and combinations thereof, for diffusion inhibitors. The materials are selected based upon desired electrical and diffusivity characteristics within the constraints of the thermal budget for the fabrication process. Ion implantation operations may use atoms and/or techniques selected to modify the silicon structure from crystalline to amorphous to inhibit diffusion, followed by a controlled anneal to repair damage and activate the dopant species. In some embodiments, carbon is used to suppress the out-diffusion of dopants from screen layer 108 and/or Vt set layer 106.
In some embodiments, epitaxial layer 120 is formed with a nominally constant thickness and extends across an area in which multiple transistor device types are subsequently formed. In other embodiments, epitaxial layer 120 is formed with a nominally constant thickness and extends across an area in which multiple blocks of differing transistor device types are subsequently formed. In still other embodiments, epitaxial layer 120 is formed with a nominally constant thickness and extends across an entire die. In still other embodiments, epitaxial layer 120 is formed with a nominally constant thickness and extends across the entire wafer.
A desirable level of consistency with respect to epitaxial layer thickness, i.e., process uniformity, is preferably obtained. In embodiments where epitaxial layer thickness as grown does not meet the desired uniformity, then planarization techniques involving polishing or etching may be applied to achieve the desired uniform epitaxial layer thickness. Selective epitaxial growth may also be used to result in individualized epitaxial layer thickness from transistor region to transistor region, from cell to cell, from block to block, or die to die.
With a substantially constant epitaxial layer thickness, the distance between gate electrode 102 and screen layer 108 can be varied by controlled out-diffusion. Legacy transistors can be fabricated by implanting channel layer 104, either non-specifically in terms of dopant profile, or by way of halo dopant implants. Such legacy transistors can be formed in conjunction with transistors having a substantially undoped channel 104.
A DDC transistor can be formed from the foregoing described process operations and structures of
As noted, for a DDC transistor, while channel 104 remains substantially undoped, epitaxial layer 120 may include simple or complex layering with different dopant concentrations. This doped layering can optionally include a threshold voltage set layer 106 that has a dopant concentration less than that of screening layer 108. In various embodiments threshold voltage setting layer 106 is disposed vertically adjacent to screen layer 108. Threshold voltage set layer 106 is used to make small adjustments in the operational threshold voltage of the DDC transistor and can be formed by out-diffusion from screen layer 108, in-situ or delta doping during epitaxial growth, or with tightly controlled implants. The portion of the channel adjacent to the gate should remain substantially or completely undoped. Embodiments of various DDC transistor structures and manufacturing processes are more completely described in U.S. patent application Ser. No. 12/708,497 titled Electronic Devices and Systems, and Methods for Making and Using the Same, U.S. patent application Ser. No. 12/971,884 titled Low Power Semiconductor Transistor Structure and Method of Fabrication Thereof, U.S. patent application Ser. No. 12/971,955 titled Transistor with Threshold Voltage Set Notch and Method of Fabrication Thereof, and U.S. patent application Ser. No. 12/895,785 titled “Advanced Transistors With Threshold Voltage Set Dopant Structures”, the disclosures of which are hereby incorporated by reference in their entirety.
In some embodiments, screening layer 108 is doped to have a concentration between about 5×1018 dopant atoms per cm3 and about 1×1020 dopant atoms per cm3, significantly more than the dopant concentration of the undoped channel, and at least slightly greater than the dopant concentration of the optional voltage threshold set layer 106. It is noted that exact dopant concentrations and screening layer thicknesses can be modified, from those set forth in the illustrative embodiments disclosed herein, to improve desired operating characteristics, or to take into account available transistor manufacturing processes and process conditions. To help control leakage, an anti-punchthrough layer 110 can optionally be formed beneath screening layer 108. Typically, anti-punchthrough layer 110 is formed by direct implant into a lightly doped well 112, but it can alternatively be formed by out-diffusion from screening layer 108, in-situ growth, or other known process. Anti-punchthrough layer 110 has a dopant concentration less than that of screening layer 108, typically set between about 1×1018 dopant atoms per cm3 and about 1×1019 dopant atoms per cm3. In addition, the doping concentration of anti-punchthrough layer 110 is set higher than the overall doping concentration of well 112. It is noted that exact dopant concentrations and depths can be modified, from those set forth in the illustrative embodiments disclosed herein, to improve desired operating characteristics of the transistor, or to take into account available transistor manufacturing processes and process conditions.
As disclosed, threshold voltage set layer 106 is positioned vertically adjacent screening layer 108, and is typically formed as a thin doped layer. In some embodiments, delta doping, controlled in-situ deposition, or atomic layer deposition can be used to form a dopant plane that is substantially parallel and vertically offset with respect to screening layer 108. Alternatively, threshold voltage set layer 106 can be accomplished by way of a controlled diffusion of screen layer dopant material upward a distance into channel layer 104 to a preselected depth below gate electrode 102. Suitably varying dopant concentration, thickness, and separation from the gate dielectric and screening layer 108 allows for controlled slight adjustments of threshold voltage in the operating transistor. In some embodiments, threshold voltage set layer 106 is doped to have a concentration between about 1×1018 dopant atoms per cm3 and about 1×1019 dopant atoms per cm3. Threshold voltage set layer 106 can be formed by several different processes, including 1) in-situ epitaxial doping, 2) epitaxial growth of a thin layer of silicon followed by a tightly controlled dopant implant (e.g., delta doping), 3) epitaxial growth of a thin layer of silicon followed by dopant diffusion of atoms from screen layer 108, 4) ion implantation into screen layer 108, preferably using a different dopant material from the dopant forming the screen layer 5) controlled out-diffusion from screen layer 108 or by any combination of these processes.
As used herein, “channel” refers to a region that extends between the source and the drain, and supports movement of mobile charge carriers between the source and the drain. Channel thickness typically ranges from 5 to 50 nanometers, with thickness in a particular instance being dependent on the desired transistor electrical characteristics and technology node (i.e., a 20 nm gate length transistor will typically have a thinner channel than a 45 nm gate length transistor). In some embodiments, dopant migration resistant layers of carbon, germanium, or the like can be applied along with or above screen layer 108 to further limit dopant migration.
In still another embodiment, a slightly depleted channel (SDC) transistor can also be formed using screen layer 108 and epitaxial layer 120 of the partially fabricated semiconductor structure 100
A legacy transistor, in accordance with the present disclosure, is a field effect transistor having conventional electrical performance characteristics that is constructed by applying dopants into the channel so as to set the threshold voltage and determine transistor characteristics such as short channel effects. More specifically, threshold voltage implants, channel dopant implants, and halo implants can all be used to modify channel characteristics to achieve legacy transistor-like characteristics. In some embodiments, screen layer implants can be reduced or minimized, subjected to counter-doping, or otherwise altered to allow closer matching to conventional transistor structures. Alternatively, screen layer implants may be omitted altogether. In other embodiments, the screen layer can be heavily doped, and subsequent out-diffusion into the channel produces a doping profile needed to establish the electrical characteristics associated with desired legacy transistors. While such transistors have inferior mobility, increased noise and increased variation of threshold voltage as compared DDC or SDC transistors, integrated circuits including legacy transistors can be useful for avoiding or minimizing the extent of circuit block redesigns.
Referring to
Dopant profile 202 roughly defines layers that will result post-processing in at least three distinct layers, including a screen layer 204, an anti-punchthrough layer 205, and a well 207, all supported on substrate 216. The dopant concentration typically peaks at the bottom, middle or top portion of screen layer 204. As will be appreciated, one or more dopants having different diffusivity characteristics can be co-implanted. For those devices where dopants from screen layer 204 should not be allowed to migrate upward, a capping layer made of carbon or other diffusion inhibiting material can be incorporated in the top portion of screen layer 204.
Referring to
Alternatively the wafer can be masked to protect that portion of the substrate that will form device 210, and additional dopant species can be implanted in the portion of the substrate that forms device 220. If the newly implanted dopant species has an increased diffusivity as compared to the blanket implanted dopant species, the faster moving dopant will migrate further than dopants in the earlier masked region. Effective diffusivity differentials result in different dopant profiles and are illustrated as profiles 212 and 222, with screen layer 204 slightly increasing in thickness (as indicated respectively by the length differential between arrows 204A and 204B) for device 210 and greatly increasing in thickness for device 220 (as indicated respectively by the length differential between arrows 204C and 204D). It is noted that after formation of gate and S/D terminals to complete the transistor structures (not shown), and under the same operating conditions there will be device groupings having distinct threshold voltages, e.g., high Vt, regular Vt and low Vt. This is because of the differing distances of the screen layer from the gate, even while otherwise sharing the same epitaxially grown channel, thermal processing/anneal conditions and having similar gate lengths. Those devices that are formed to result in DDC or SDC transistors will have noticeably better threshold voltage variation compared to the legacy transistor devices. Thus, a common process platform supports the incorporation of a wide variety of transistor device types, and is well-suited for use in the manufacture of integrated circuits such as, but not limited to, SoCs.
One embodiment of a portion of a transistor manufacturing process 500 is illustrated by
As will be appreciated, forming transistor isolation structures after some or all of well dopant implants are made and the blanket epitaxial layer is formed is an effective technique for reducing unwanted dopant scattering and for more precisely controlling screen layer depth across the wafer (and die or die blocks). In contrast to conventional “isolation first” processes, where isolation structures are defined, followed by masking and well implant, an “isolation last” process such as previously described effectively eliminates or reduces well implant scattering from isolation structures. At least some of the well and/screen layer implants are made, and then trench etch and insulating layer growth can be done to electrically isolate the respective wells as required. Such isolation last structures and processes are more completely described in U.S. patent application Ser. Nos. 12/708,497; 12/971,884 and 12/971,955, all of which were previously incorporated by reference.
To better understand design selection parameters, required transistor structures, and suitable processes the following Tables and Examples are provided:
In the following Table 1, a range of suitable materials, operating parameters, and the like are described for commonly required transistor device types that can constructed according the present disclosure. In the Table 1, C1, C2, and C3 respectively refer to ranges of layer concentrations for the channel, voltage threshold set layer, and screen layer as shown in
As seen in
In accordance with the present disclosure, and as seen in
In accordance with the present disclosure, and as seen in
In accordance with the present disclosure, for an integrated circuit such as an SoC SRAM DDC transistors in the bit cell are provided. The screening layer is implanted before shallow trench isolation structures are formed, and before a substantially undoped epitaxial silicon layer is grown on a surface of the screen layer. To create a high threshold voltage DDC FET, a starting-point high dose screening layer is formed. Depending on the thermal cycle, the dopant diffusivity, and optional implanted diffusion mitigation implants such as carbon, the channel under the gate remains substantially undoped. In some embodiments, a separate Vt set layer below an undoped channel may be provided or formed. For the remaining transistors that are not SRAM, legacy transistors are formed preferably using a scheme as describe above.
In a process in accordance with the present disclosure, a wafer including a plurality of die is manufactured so that dopants are implanted before shallow trench isolation. In such a process, a heavily doped screen layer is implanted before shallow trench isolation structures are formed, and before a low or undoped epitaxial silicon layer is grown on a surface of the screen layer. An out-diffusion step moves dopants from the screen layer into the epitaxial layer. These out-diffused dopants can provide the majority of a threshold voltage setting dose for FETs that will be formed in that region of the epitaxial layer. In this example, transistors used in the SRAM bit cells and logic circuits are intended to have different electrical characteristics than the transistors used in circuits that were designed to work with transistors having legacy characteristics. Thus these two types of transistors will be formed in a common epitaxial layer and may both have dopants out-diffused from the screen layer, but will have different electrical characteristics once fully fabricated. More particularly, some or all of the legacy FETs formed on the same epitaxial layer are separately doped with halo implants into the epitaxial layer to create transistors compatible with legacy operation.
In some embodiments, the SRAM bit cell includes two cross-coupled CMOS inverters wherein the N-FETs and P-FETs of the two inverters have the same gate length and gate width. The majority of threshold voltage setting dose is out-diffused from the screen layer into epitaxial layer and acts to set the threshold voltage of one of the two device types, for instance, P-FET only with N-FETs being DDC transistors.
Transistor device types in accordance with teachings of the present disclosure can be formed on a die, alone or in combination with other transistor types, and have a reduced mismatch arising from scattered or random dopant variations as compared to conventional FETs. This is particularly important for transistor circuits that rely on closely matched transistors for optimal operation, including differential matching circuits, analog amplifying circuits, and many digital circuits in widespread use such SRAM cells. Variation can be even further reduced by adoption of structures such as a screen layer, an undoped channel, or a Vt set layer as described herein to further effectively increase the headroom which the FETs have to operate. These electrical characteristics allow, among other things, high-bandwidth electronic circuits having improved sensitivity and performance.
In one illustrative embodiment, in accordance with the present disclosure, a method of forming a plurality of transistor device types on an integrated circuit, includes doping selected portions of a wafer to form a first plurality of wells of a first conductivity type; doping selected portions of the first plurality of wells to form a screen layer of the first conductivity type, the screen layer being disposed closer to a surface of the wafer than the wells; growing an epitaxial layer over the surface of the wafer; differentially out-diffusing dopants from the screen layer into the epitaxial layer; and subsequent to formation of the epitaxial layer, forming shallow trench isolation structures. Some embodiments further include doping one or more regions of the screen layer with a diffusion affecting species.
In another illustrative embodiment, in accordance with the present disclosure, a method of making a System on Chip integrated circuit, includes forming a plurality of transistor device types on a die; and interconnecting predetermined ones of the plurality of transistor device types to form a plurality of circuit blocks; wherein forming the plurality of transistor device types includes forming transistor channel regions having different electrical characteristics by differentially out-diffusing dopants into a common epitaxial layer from an underlying screen layer, the screen layer having a plurality of compositionally different regions. Interconnection of transistors on integrated circuits by way of various contacts, vias, and electrically conductive interconnect lines is well known in this field and is not further described herein.
In another illustrative embodiment, in accordance with the present disclosure, an integrated circuit, includes a plurality of n-channel field effect transistors (NFETs) and a plurality of p-channel field effect transistors (PFETs) all disposed in a commonly formed epitaxial layer; a screen layer underlying the epitaxial layer, the screen layer having a plurality of regions with different doping profiles; a first portion of the plurality of NFETs having a first set of electrical characteristics and a second portion of the plurality of NFETs having a second set of electrical characteristics that are different from the first set of electrical characteristics; and a first portion of the plurality of PFETs having a third set of electrical characteristics and a second portion of the plurality of PFETs having a fourth set of electrical characteristics that are different from the third set of electrical characteristics; wherein the difference between the first and second sets of electrical characteristics are related to the different doping profiles of the respective underlying regions of the screen layer, and the difference between the third and fourth sets of electrical characteristics are related to the different doping profiles of the respective underlying regions of the screen layer.
It is to be appreciated that the Detailed Description section, and not the Abstract of the Disclosure, is intended to be used to interpret the claims. The Abstract of the Disclosure may set forth one or more, but not all, exemplary embodiments of the invention, and thus, is not intended to limit the invention and the subjoined Claims in any way.
It will be apparent to those skilled in the relevant art(s) that various changes in form and detail can be made therein without departing from the spirit and scope of the invention. Thus the invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the subjoined Claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
3958266 | Athanas | May 1976 | A |
4000504 | Berger | Dec 1976 | A |
4021835 | Etoh et al. | May 1977 | A |
4242691 | Kotani et al. | Dec 1980 | A |
4276095 | Beilstein, Jr. et al. | Jun 1981 | A |
4315781 | Henderson | Feb 1982 | A |
4518926 | Swanson | May 1985 | A |
4559091 | Allen et al. | Dec 1985 | A |
4578128 | Mundt et al. | Mar 1986 | A |
4617066 | Vasudev | Oct 1986 | A |
4662061 | Malhi | May 1987 | A |
4761384 | Neppl et al. | Aug 1988 | A |
4780748 | Cunningham et al. | Oct 1988 | A |
4819043 | Yazawa et al. | Apr 1989 | A |
4885477 | Bird et al. | Dec 1989 | A |
4908681 | Nishida et al. | Mar 1990 | A |
4945254 | Robbins | Jul 1990 | A |
4956311 | Liou et al. | Sep 1990 | A |
5034337 | Mosher et al. | Jul 1991 | A |
5091324 | Hsu et al. | Feb 1992 | A |
5144378 | Hikosaka | Sep 1992 | A |
5156989 | Williams et al. | Oct 1992 | A |
5156990 | Mitchell | Oct 1992 | A |
5166765 | Lee et al. | Nov 1992 | A |
5208473 | Komori et al. | May 1993 | A |
5294821 | Iwamatsu | Mar 1994 | A |
5298763 | Shen et al. | Mar 1994 | A |
5369288 | Usuki | Nov 1994 | A |
5373186 | Schubert et al. | Dec 1994 | A |
5384476 | Nishizawa et al. | Jan 1995 | A |
5426328 | Yilmaz et al. | Jun 1995 | A |
5444008 | Han et al. | Aug 1995 | A |
5552332 | Tseng et al. | Sep 1996 | A |
5559368 | Hu et al. | Sep 1996 | A |
5608253 | Liu et al. | Mar 1997 | A |
5622880 | Burr et al. | Apr 1997 | A |
5624863 | Helm et al. | Apr 1997 | A |
5625568 | Edwards et al. | Apr 1997 | A |
5641980 | Yamaguchi et al. | Jun 1997 | A |
5663583 | Matloubian et al. | Sep 1997 | A |
5712501 | Davies et al. | Jan 1998 | A |
5719422 | Burr et al. | Feb 1998 | A |
5726488 | Watanabe et al. | Mar 1998 | A |
5726562 | Mizuno | Mar 1998 | A |
5731626 | Eaglesham et al. | Mar 1998 | A |
5736419 | Naem | Apr 1998 | A |
5753555 | Hada | May 1998 | A |
5754826 | Gamal et al. | May 1998 | A |
5756365 | Kakumu | May 1998 | A |
5763921 | Okumura et al. | Jun 1998 | A |
5780899 | Hu et al. | Jul 1998 | A |
5847419 | Imai et al. | Dec 1998 | A |
5856003 | Chiu | Jan 1999 | A |
5861334 | Rho | Jan 1999 | A |
5877049 | Liu et al. | Mar 1999 | A |
5885876 | Dennen | Mar 1999 | A |
5889315 | Farrenkopf et al. | Mar 1999 | A |
5895954 | Yasumura et al. | Apr 1999 | A |
5899714 | Farrenkopf et al. | May 1999 | A |
5918129 | Fulford, Jr. et al. | Jun 1999 | A |
5923067 | Voldman | Jul 1999 | A |
5923987 | Burr | Jul 1999 | A |
5936868 | Hall | Aug 1999 | A |
5946214 | Heavlin et al. | Aug 1999 | A |
5985705 | Seliskar | Nov 1999 | A |
5989963 | Luning et al. | Nov 1999 | A |
6001695 | Wu | Dec 1999 | A |
6020227 | Bulucea | Feb 2000 | A |
6030862 | Kepler | Feb 2000 | A |
6043139 | Eaglesham et al. | Mar 2000 | A |
6060345 | Hause et al. | May 2000 | A |
6060364 | Maszara et al. | May 2000 | A |
6066533 | Yu | May 2000 | A |
6072217 | Burr | Jun 2000 | A |
6078082 | Bulucea | Jun 2000 | A |
6087210 | Sohn | Jul 2000 | A |
6087691 | Hamamoto | Jul 2000 | A |
6088518 | Hsu | Jul 2000 | A |
6091286 | Blauschild | Jul 2000 | A |
6096611 | Wu | Aug 2000 | A |
6103562 | Son et al. | Aug 2000 | A |
6121153 | Kikkawa | Sep 2000 | A |
6147383 | Kuroda | Nov 2000 | A |
6153920 | Gossmann et al. | Nov 2000 | A |
6157073 | Lehongres | Dec 2000 | A |
6175582 | Naito et al. | Jan 2001 | B1 |
6184112 | Maszara et al. | Feb 2001 | B1 |
6190979 | Radens et al. | Feb 2001 | B1 |
6194259 | Nayak et al. | Feb 2001 | B1 |
6198157 | Ishida et al. | Mar 2001 | B1 |
6218892 | Soumyanath et al. | Apr 2001 | B1 |
6218895 | De et al. | Apr 2001 | B1 |
6221724 | Yu et al. | Apr 2001 | B1 |
6229188 | Aoki et al. | May 2001 | B1 |
6232164 | Tsai et al. | May 2001 | B1 |
6235597 | Miles | May 2001 | B1 |
6238982 | Krivokapic et al. | May 2001 | B1 |
6245618 | An et al. | Jun 2001 | B1 |
6255174 | Yu | Jul 2001 | B1 |
6268640 | Park et al. | Jul 2001 | B1 |
6271070 | Kotani et al. | Aug 2001 | B2 |
6271551 | Schmitz et al. | Aug 2001 | B1 |
6288429 | Iwata et al. | Sep 2001 | B1 |
6297082 | Lin et al. | Oct 2001 | B1 |
6297132 | Zhang et al. | Oct 2001 | B1 |
6300177 | Sundaresan et al. | Oct 2001 | B1 |
6313489 | Letavic et al. | Nov 2001 | B1 |
6319799 | Ouyang et al. | Nov 2001 | B1 |
6320222 | Forbes et al. | Nov 2001 | B1 |
6323525 | Noguchi et al. | Nov 2001 | B1 |
6326666 | Bernstein et al. | Dec 2001 | B1 |
6335233 | Cho et al. | Jan 2002 | B1 |
6358806 | Puchner | Mar 2002 | B1 |
6380019 | Yu et al. | Apr 2002 | B1 |
6391752 | Colinge et al. | May 2002 | B1 |
6426260 | Hshieh | Jul 2002 | B1 |
6426279 | Huster et al. | Jul 2002 | B1 |
6432754 | Assaderaghi et al. | Aug 2002 | B1 |
6444550 | Hao et al. | Sep 2002 | B1 |
6444551 | Ku et al. | Sep 2002 | B1 |
6449749 | Stine | Sep 2002 | B1 |
6455903 | Yu | Sep 2002 | B1 |
6461920 | Shirahata | Oct 2002 | B1 |
6461928 | Rodder | Oct 2002 | B2 |
6472278 | Marshall et al. | Oct 2002 | B1 |
6482714 | Hieda et al. | Nov 2002 | B1 |
6489224 | Burr | Dec 2002 | B1 |
6492232 | Tang et al. | Dec 2002 | B1 |
6500739 | Wang et al. | Dec 2002 | B1 |
6503801 | Rouse et al. | Jan 2003 | B1 |
6503805 | Wang et al. | Jan 2003 | B2 |
6506640 | Ishida et al. | Jan 2003 | B1 |
6518623 | Oda et al. | Feb 2003 | B1 |
6521470 | Lin et al. | Feb 2003 | B1 |
6534373 | Yu | Mar 2003 | B1 |
6541328 | Whang et al. | Apr 2003 | B2 |
6541829 | Nishinohara et al. | Apr 2003 | B2 |
6548842 | Bulucea et al. | Apr 2003 | B1 |
6551885 | Yu | Apr 2003 | B1 |
6552377 | Yu | Apr 2003 | B1 |
6573129 | Hoke et al. | Jun 2003 | B2 |
6576535 | Drobny et al. | Jun 2003 | B2 |
6600200 | Lustig et al. | Jul 2003 | B1 |
6620671 | Wang et al. | Sep 2003 | B1 |
6624488 | Kim | Sep 2003 | B1 |
6627473 | Oikawa et al. | Sep 2003 | B1 |
6630385 | Yu | Oct 2003 | B1 |
6630710 | Augusto | Oct 2003 | B1 |
6660605 | Liu | Dec 2003 | B1 |
6662350 | Fried et al. | Dec 2003 | B2 |
6667200 | Sohn et al. | Dec 2003 | B2 |
6670260 | Yu et al. | Dec 2003 | B1 |
6693333 | Yu | Feb 2004 | B1 |
6730568 | Sohn | May 2004 | B2 |
6737724 | Hieda et al. | May 2004 | B2 |
6743291 | Ang et al. | Jun 2004 | B2 |
6743684 | Liu | Jun 2004 | B2 |
6751519 | Satya et al. | Jun 2004 | B1 |
6753230 | Sohn et al. | Jun 2004 | B2 |
6760900 | Rategh et al. | Jul 2004 | B2 |
6770944 | Nishinohara et al. | Aug 2004 | B2 |
6787424 | Yu | Sep 2004 | B1 |
6797553 | Adkisson et al. | Sep 2004 | B2 |
6797602 | Kluth et al. | Sep 2004 | B1 |
6797994 | Hoke et al. | Sep 2004 | B1 |
6808004 | Kamm et al. | Oct 2004 | B2 |
6808994 | Wang | Oct 2004 | B1 |
6813750 | Usami et al. | Nov 2004 | B2 |
6821825 | Todd et al. | Nov 2004 | B2 |
6821852 | Rhodes | Nov 2004 | B2 |
6822297 | Nandakumar et al. | Nov 2004 | B2 |
6831292 | Currie et al. | Dec 2004 | B2 |
6835639 | Rotondaro et al. | Dec 2004 | B2 |
6852602 | Kanzawa et al. | Feb 2005 | B2 |
6852603 | Chakravarthi et al. | Feb 2005 | B2 |
6881641 | Wieczorek et al. | Apr 2005 | B2 |
6881987 | Sohn | Apr 2005 | B2 |
6891439 | Jachne et al. | May 2005 | B2 |
6893947 | Martinez et al. | May 2005 | B2 |
6900519 | Cantell et al. | May 2005 | B2 |
6901564 | Stine et al. | May 2005 | B2 |
6916698 | Mocuta et al. | Jul 2005 | B2 |
6917237 | Tschanz et al. | Jul 2005 | B1 |
6927463 | Iwata et al. | Aug 2005 | B2 |
6928128 | Sidiropoulos | Aug 2005 | B1 |
6930007 | Bu et al. | Aug 2005 | B2 |
6930360 | Yamauchi et al. | Aug 2005 | B2 |
6957163 | Ando | Oct 2005 | B2 |
6963090 | Passlack et al. | Nov 2005 | B2 |
6995397 | Yamashita et al. | Feb 2006 | B2 |
7002214 | Boyd et al. | Feb 2006 | B1 |
7008836 | Algotsson et al. | Mar 2006 | B2 |
7013359 | Li | Mar 2006 | B1 |
7015546 | Herr et al. | Mar 2006 | B2 |
7015741 | Tschanz et al. | Mar 2006 | B2 |
7022559 | Barnak et al. | Apr 2006 | B2 |
7036098 | Eleyan et al. | Apr 2006 | B2 |
7038258 | Liu et al. | May 2006 | B2 |
7039881 | Regan | May 2006 | B2 |
7045456 | Murto et al. | May 2006 | B2 |
7057216 | Ouyang et al. | Jun 2006 | B2 |
7061058 | Chakravarthi et al. | Jun 2006 | B2 |
7064039 | Liu | Jun 2006 | B2 |
7064399 | Babcock et al. | Jun 2006 | B2 |
7071103 | Chan et al. | Jul 2006 | B2 |
7078325 | Curello et al. | Jul 2006 | B2 |
7078776 | Nishinohara et al. | Jul 2006 | B2 |
7089513 | Bard et al. | Aug 2006 | B2 |
7089515 | Hanafi et al. | Aug 2006 | B2 |
7091093 | Noda et al. | Aug 2006 | B1 |
7105399 | Dakshina-Murthy et al. | Sep 2006 | B1 |
7109099 | Tan et al. | Sep 2006 | B2 |
7119381 | Passlack | Oct 2006 | B2 |
7122411 | Mouli | Oct 2006 | B2 |
7127687 | Signore | Oct 2006 | B1 |
7132323 | Haensch et al. | Nov 2006 | B2 |
7169675 | Tan et al. | Jan 2007 | B2 |
7170120 | Datta et al. | Jan 2007 | B2 |
7176137 | Perng et al. | Feb 2007 | B2 |
7186598 | Yamauchi et al. | Mar 2007 | B2 |
7189627 | Wu et al. | Mar 2007 | B2 |
7199430 | Babcock et al. | Apr 2007 | B2 |
7202517 | Dixit et al. | Apr 2007 | B2 |
7208354 | Bauer | Apr 2007 | B2 |
7211871 | Cho | May 2007 | B2 |
7221021 | Wu et al. | May 2007 | B2 |
7223646 | Miyashita et al. | May 2007 | B2 |
7226833 | White et al. | Jun 2007 | B2 |
7226843 | Weber et al. | Jun 2007 | B2 |
7230680 | Fujisawa et al. | Jun 2007 | B2 |
7235822 | Li | Jun 2007 | B2 |
7256639 | Koniaris et al. | Aug 2007 | B1 |
7259428 | Inaba | Aug 2007 | B2 |
7260562 | Czajkowski et al. | Aug 2007 | B2 |
7294877 | Rueckes et al. | Nov 2007 | B2 |
7297994 | Wieczorek et al. | Nov 2007 | B2 |
7301208 | Handa et al. | Nov 2007 | B2 |
7304350 | Misaki | Dec 2007 | B2 |
7307471 | Gammie et al. | Dec 2007 | B2 |
7312500 | Miyashita et al. | Dec 2007 | B2 |
7323754 | Ema et al. | Jan 2008 | B2 |
7332439 | Lindert et al. | Feb 2008 | B2 |
7348629 | Chu et al. | Mar 2008 | B2 |
7354833 | Liaw | Apr 2008 | B2 |
7361562 | Kim | Apr 2008 | B2 |
7380225 | Joshi et al. | May 2008 | B2 |
7398497 | Sato et al. | Jul 2008 | B2 |
7402207 | Besser et al. | Jul 2008 | B1 |
7402872 | Murthy et al. | Jul 2008 | B2 |
7416605 | Zollner et al. | Aug 2008 | B2 |
7427788 | Li et al. | Sep 2008 | B2 |
7442971 | Wirbeleit et al. | Oct 2008 | B2 |
7449733 | Inaba et al. | Nov 2008 | B2 |
7462908 | Bol et al. | Dec 2008 | B2 |
7469164 | Du-Nour | Dec 2008 | B2 |
7470593 | Rouh et al. | Dec 2008 | B2 |
7485536 | Jin et al. | Feb 2009 | B2 |
7487474 | Ciplickas et al. | Feb 2009 | B2 |
7491988 | Tolchinsky et al. | Feb 2009 | B2 |
7494861 | Chu et al. | Feb 2009 | B2 |
7496862 | Chang et al. | Feb 2009 | B2 |
7496867 | Turner et al. | Feb 2009 | B2 |
7498637 | Yamaoka et al. | Mar 2009 | B2 |
7501324 | Babcock et al. | Mar 2009 | B2 |
7503020 | Allen et al. | Mar 2009 | B2 |
7507999 | Kusumoto et al. | Mar 2009 | B2 |
7514766 | Yoshida | Apr 2009 | B2 |
7521323 | Surdeanu et al. | Apr 2009 | B2 |
7531393 | Doyle et al. | May 2009 | B2 |
7531836 | Liu et al. | May 2009 | B2 |
7538364 | Twynam | May 2009 | B2 |
7538412 | Schulze et al. | May 2009 | B2 |
7562233 | Sheng et al. | Jul 2009 | B1 |
7564105 | Chi et al. | Jul 2009 | B2 |
7566600 | Mouli | Jul 2009 | B2 |
7569456 | Ko et al. | Aug 2009 | B2 |
7586322 | Xu et al. | Sep 2009 | B1 |
7592241 | Takao | Sep 2009 | B2 |
7595243 | Bulucea et al. | Sep 2009 | B1 |
7598142 | Ranade et al. | Oct 2009 | B2 |
7605041 | Ema et al. | Oct 2009 | B2 |
7605060 | Meunier-Beillard et al. | Oct 2009 | B2 |
7605429 | Bernstein et al. | Oct 2009 | B2 |
7608496 | Chu | Oct 2009 | B2 |
7615802 | Elpelt et al. | Nov 2009 | B2 |
7622341 | Chudzik et al. | Nov 2009 | B2 |
7638380 | Pearce | Dec 2009 | B2 |
7642140 | Bae et al. | Jan 2010 | B2 |
7644377 | Saxe et al. | Jan 2010 | B1 |
7645665 | Kubo et al. | Jan 2010 | B2 |
7651920 | Siprak | Jan 2010 | B2 |
7655523 | Babcock et al. | Feb 2010 | B2 |
7673273 | Madurawe et al. | Mar 2010 | B2 |
7675126 | Cho | Mar 2010 | B2 |
7675317 | Perisetty | Mar 2010 | B2 |
7678638 | Chu et al. | Mar 2010 | B2 |
7681628 | Joshi et al. | Mar 2010 | B2 |
7682887 | Dokumaci et al. | Mar 2010 | B2 |
7683442 | Burr et al. | Mar 2010 | B1 |
7696000 | Liu et al. | Apr 2010 | B2 |
7704822 | Jeong | Apr 2010 | B2 |
7704844 | Zhu et al. | Apr 2010 | B2 |
7709828 | Braithwaite et al. | May 2010 | B2 |
7723750 | Zhu et al. | May 2010 | B2 |
7732286 | Hanafi et al. | Jun 2010 | B2 |
7737472 | Kondo et al. | Jun 2010 | B2 |
7741138 | Cho | Jun 2010 | B2 |
7741200 | Cho et al. | Jun 2010 | B2 |
7745270 | Shah et al. | Jun 2010 | B2 |
7750374 | Capasso et al. | Jul 2010 | B2 |
7750381 | Hokazono et al. | Jul 2010 | B2 |
7750405 | Nowak | Jul 2010 | B2 |
7750682 | Bernstein et al. | Jul 2010 | B2 |
7755144 | Li et al. | Jul 2010 | B2 |
7755146 | Helm et al. | Jul 2010 | B2 |
7759206 | Luo et al. | Jul 2010 | B2 |
7759714 | Itoh et al. | Jul 2010 | B2 |
7761820 | Berger et al. | Jul 2010 | B2 |
7795677 | Bangsaruntip et al. | Sep 2010 | B2 |
7808045 | Kawahara et al. | Oct 2010 | B2 |
7808410 | Kim et al. | Oct 2010 | B2 |
7811873 | Mochizuki | Oct 2010 | B2 |
7811881 | Cheng et al. | Oct 2010 | B2 |
7818702 | Mandelman et al. | Oct 2010 | B2 |
7821066 | Lebby et al. | Oct 2010 | B2 |
7829402 | Matocha et al. | Nov 2010 | B2 |
7829957 | Kato et al. | Nov 2010 | B2 |
7831873 | Trimberger et al. | Nov 2010 | B1 |
7846822 | Seebauer et al. | Dec 2010 | B2 |
7855118 | Hoentschel et al. | Dec 2010 | B2 |
7859013 | Chen et al. | Dec 2010 | B2 |
7863163 | Bauer | Jan 2011 | B2 |
7867835 | Lee et al. | Jan 2011 | B2 |
7883977 | Babcock et al. | Feb 2011 | B2 |
7888205 | Herner et al. | Feb 2011 | B2 |
7888747 | Hokazono | Feb 2011 | B2 |
7895546 | Lahner et al. | Feb 2011 | B2 |
7897495 | Ye et al. | Mar 2011 | B2 |
7906413 | Cardone et al. | Mar 2011 | B2 |
7906813 | Kato | Mar 2011 | B2 |
7910419 | Fenouillet-Beranger et al. | Mar 2011 | B2 |
7919791 | Flynn et al. | Apr 2011 | B2 |
7926018 | Moroz et al. | Apr 2011 | B2 |
7935984 | Nakano | May 2011 | B2 |
7939898 | Smayling et al. | May 2011 | B2 |
7941776 | Majumder et al. | May 2011 | B2 |
7943468 | Curello et al. | May 2011 | B2 |
7945800 | Gomm et al. | May 2011 | B2 |
7948008 | Liu et al. | May 2011 | B2 |
7952147 | Ueno et al. | May 2011 | B2 |
7960232 | King et al. | Jun 2011 | B2 |
7960238 | Kohli et al. | Jun 2011 | B2 |
7968400 | Cai | Jun 2011 | B2 |
7968411 | Williford | Jun 2011 | B2 |
7968440 | Seebauer | Jun 2011 | B2 |
7968459 | Bedell et al. | Jun 2011 | B2 |
7989900 | Haensch et al. | Aug 2011 | B2 |
7994573 | Pan | Aug 2011 | B2 |
8004024 | Furukawa et al. | Aug 2011 | B2 |
8008158 | Chang et al. | Aug 2011 | B2 |
8012827 | Yu et al. | Sep 2011 | B2 |
8029620 | Kim et al. | Oct 2011 | B2 |
8039332 | Bernard et al. | Oct 2011 | B2 |
8046598 | Lee | Oct 2011 | B2 |
8048791 | Hargrove et al. | Nov 2011 | B2 |
8048810 | Tsai et al. | Nov 2011 | B2 |
8051340 | Cranford, Jr. et al. | Nov 2011 | B2 |
8053321 | Helm et al. | Nov 2011 | B2 |
8053340 | Colombeau et al. | Nov 2011 | B2 |
8063466 | Kurita | Nov 2011 | B2 |
8067279 | Sadra et al. | Nov 2011 | B2 |
8067280 | Wang et al. | Nov 2011 | B2 |
8067302 | Li | Nov 2011 | B2 |
8076719 | Zeng et al. | Dec 2011 | B2 |
8097529 | Krull et al. | Jan 2012 | B2 |
8103983 | Agarwal et al. | Jan 2012 | B2 |
8105891 | Yeh et al. | Jan 2012 | B2 |
8106424 | Schruefer | Jan 2012 | B2 |
8106481 | Rao | Jan 2012 | B2 |
8110487 | Griebenow et al. | Feb 2012 | B2 |
8114761 | Mandrekar et al. | Feb 2012 | B2 |
8119482 | Bhalla et al. | Feb 2012 | B2 |
8120069 | Hynecek | Feb 2012 | B2 |
8129246 | Babcock et al. | Mar 2012 | B2 |
8129797 | Chen et al. | Mar 2012 | B2 |
8134159 | Hokazono | Mar 2012 | B2 |
8143120 | Kerr et al. | Mar 2012 | B2 |
8143124 | Challa et al. | Mar 2012 | B2 |
8143678 | Kim et al. | Mar 2012 | B2 |
8148774 | Mori et al. | Apr 2012 | B2 |
8163619 | Yang et al. | Apr 2012 | B2 |
8169002 | Chang et al. | May 2012 | B2 |
8170857 | Joshi et al. | May 2012 | B2 |
8173499 | Chung et al. | May 2012 | B2 |
8173502 | Yan et al. | May 2012 | B2 |
8176461 | Trimberger | May 2012 | B1 |
8178430 | Kim et al. | May 2012 | B2 |
8179530 | Levy et al. | May 2012 | B2 |
8183096 | Wirbeleit | May 2012 | B2 |
8183107 | Mathur et al. | May 2012 | B2 |
8185865 | Gupta et al. | May 2012 | B2 |
8187959 | Pawlak et al. | May 2012 | B2 |
8188542 | Yoo et al. | May 2012 | B2 |
8196545 | Kurosawa | Jun 2012 | B2 |
8201122 | Dewey, III et al. | Jun 2012 | B2 |
8214190 | Joshi et al. | Jul 2012 | B2 |
8217423 | Liu et al. | Jul 2012 | B2 |
8225255 | Ouyang et al. | Jul 2012 | B2 |
8227307 | Chen et al. | Jul 2012 | B2 |
8236661 | Dennard et al. | Aug 2012 | B2 |
8239803 | Kobayashi | Aug 2012 | B2 |
8247300 | Babcock et al. | Aug 2012 | B2 |
8255843 | Chen et al. | Aug 2012 | B2 |
8258026 | Bulucea | Sep 2012 | B2 |
8266567 | El Yahyaoui et al. | Sep 2012 | B2 |
8273629 | Wang et al. | Sep 2012 | B2 |
8286180 | Foo | Oct 2012 | B2 |
8288798 | Passlack | Oct 2012 | B2 |
8298895 | Alptekin | Oct 2012 | B1 |
8299562 | Li et al. | Oct 2012 | B2 |
8324059 | Guo et al. | Dec 2012 | B2 |
8350327 | Chung et al. | Jan 2013 | B2 |
8354321 | Colombeau et al. | Jan 2013 | B2 |
20010014495 | Yu | Aug 2001 | A1 |
20020042184 | Nandakumar et al. | Apr 2002 | A1 |
20030006415 | Yokogawa et al. | Jan 2003 | A1 |
20030047763 | Hieda et al. | Mar 2003 | A1 |
20030122203 | Nishinohara et al. | Jul 2003 | A1 |
20030173626 | Burr | Sep 2003 | A1 |
20030183856 | Wieczorek et al. | Oct 2003 | A1 |
20030215992 | Sohn et al. | Nov 2003 | A1 |
20040075118 | Heinemann et al. | Apr 2004 | A1 |
20040075143 | Bae et al. | Apr 2004 | A1 |
20040084731 | Matsuda et al. | May 2004 | A1 |
20040087090 | Grudowski et al. | May 2004 | A1 |
20040126947 | Sohn | Jul 2004 | A1 |
20040175893 | Vat et al. | Sep 2004 | A1 |
20040180488 | Lee | Sep 2004 | A1 |
20040185629 | Mansoori et al. | Sep 2004 | A1 |
20050106824 | Alberto et al. | May 2005 | A1 |
20050116282 | Pattanayak et al. | Jun 2005 | A1 |
20050250289 | Babcock et al. | Nov 2005 | A1 |
20050280075 | Ema et al. | Dec 2005 | A1 |
20060022270 | Boyd et al. | Feb 2006 | A1 |
20060049464 | Rao | Mar 2006 | A1 |
20060068555 | Zhu et al. | Mar 2006 | A1 |
20060068586 | Pain | Mar 2006 | A1 |
20060071278 | Takao | Apr 2006 | A1 |
20060154428 | Dokumaci | Jul 2006 | A1 |
20060197158 | Babcock et al. | Sep 2006 | A1 |
20060203581 | Joshi et al. | Sep 2006 | A1 |
20060220114 | Miyashita et al. | Oct 2006 | A1 |
20060223248 | Venugopal et al. | Oct 2006 | A1 |
20070040222 | Van Camp et al. | Feb 2007 | A1 |
20070117326 | Tan et al. | May 2007 | A1 |
20070158790 | Rao | Jul 2007 | A1 |
20070212861 | Chidambarrao et al. | Sep 2007 | A1 |
20070238253 | Tucker | Oct 2007 | A1 |
20080067589 | Ito et al. | Mar 2008 | A1 |
20080108208 | Arevalo et al. | May 2008 | A1 |
20080169493 | Lee et al. | Jul 2008 | A1 |
20080169516 | Chung | Jul 2008 | A1 |
20080197439 | Goerlach et al. | Aug 2008 | A1 |
20080227250 | Ranade et al. | Sep 2008 | A1 |
20080237661 | Ranade et al. | Oct 2008 | A1 |
20080258198 | Bojarczuk et al. | Oct 2008 | A1 |
20080272409 | Sonkale et al. | Nov 2008 | A1 |
20090057746 | Sugll et al. | Mar 2009 | A1 |
20090108350 | Cai et al. | Apr 2009 | A1 |
20090134468 | Tsuchiya et al. | May 2009 | A1 |
20090224319 | Kohli | Sep 2009 | A1 |
20090302388 | Cai et al. | Dec 2009 | A1 |
20090309140 | Khamankar et al. | Dec 2009 | A1 |
20090311837 | Kapoor | Dec 2009 | A1 |
20090321849 | Miyamura et al. | Dec 2009 | A1 |
20100012988 | Yang et al. | Jan 2010 | A1 |
20100038724 | Anderson et al. | Feb 2010 | A1 |
20100100856 | Mittal | Apr 2010 | A1 |
20100148153 | Hudait et al. | Jun 2010 | A1 |
20100149854 | Vora | Jun 2010 | A1 |
20100187641 | Zhu et al. | Jul 2010 | A1 |
20100207182 | Paschal | Aug 2010 | A1 |
20100270600 | Inukai et al. | Oct 2010 | A1 |
20110059588 | Kang | Mar 2011 | A1 |
20110073961 | Dennard et al. | Mar 2011 | A1 |
20110074498 | Thompson et al. | Mar 2011 | A1 |
20110079860 | Verhulst | Apr 2011 | A1 |
20110079861 | Shifren et al. | Apr 2011 | A1 |
20110095811 | Chi et al. | Apr 2011 | A1 |
20110147828 | Murthy et al. | Jun 2011 | A1 |
20110169082 | Zhu et al. | Jul 2011 | A1 |
20110175170 | Wang et al. | Jul 2011 | A1 |
20110180880 | Chudzik et al. | Jul 2011 | A1 |
20110193164 | Zhu | Aug 2011 | A1 |
20110212590 | Wu et al. | Sep 2011 | A1 |
20110230039 | Mowry et al. | Sep 2011 | A1 |
20110242921 | Tran et al. | Oct 2011 | A1 |
20110248352 | Shifren | Oct 2011 | A1 |
20110294278 | Eguchi et al. | Dec 2011 | A1 |
20110309447 | Arghavani et al. | Dec 2011 | A1 |
20120021594 | Gurtej et al. | Jan 2012 | A1 |
20120034745 | Colombeau et al. | Feb 2012 | A1 |
20120056275 | Cai et al. | Mar 2012 | A1 |
20120065920 | Nagumo et al. | Mar 2012 | A1 |
20120108050 | Chen et al. | May 2012 | A1 |
20120132998 | Kwon et al. | May 2012 | A1 |
20120138953 | Cai et al. | Jun 2012 | A1 |
20120146155 | Hoentschel et al. | Jun 2012 | A1 |
20120167025 | Gillespie et al. | Jun 2012 | A1 |
20120187491 | Zhu et al. | Jul 2012 | A1 |
20120190177 | Kim et al. | Jul 2012 | A1 |
20120223363 | Kronholz et al. | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
0274278 | Jul 1988 | EP |
0312237 | Apr 1989 | EP |
0531621 | Mar 1993 | EP |
0683515 | Nov 1995 | EP |
0889502 | Jan 1999 | EP |
1450394 | Aug 2004 | EP |
59193066 | Nov 1984 | JP |
4186774 | Jul 1992 | JP |
8153873 | Jun 1996 | JP |
8288508 | Nov 1996 | JP |
2004087671 | Mar 2004 | JP |
794094 | Jan 2008 | KR |
WO2011062788 | May 2011 | WO |
Entry |
---|
Abiko, H et al., “A Channel Engineering Combined with Channel Epitaxy Optimization and TED Suppression for 0.15μm n-n Gate CMOS Technology”, 1995 Symposium on VLSI Technology Digest on Technical Papers, pp. 23-24 (1995). |
Chau, R et al., “A 50nm Deplated-Substrate CMOS Transistor (DST)”, Electron Device Meeting 2001, IEDM Technical Digest, IEEE International, pp. 29.1.1-29.1.4 (2001). |
Ducroquet, F et al. “Fully Depleted Silicon-On-Insulator nMOSFETs with Tensile Strained High Carbon Content Sil-yCy Channel”, ECS 210th Meeting, Abstract 1033 (2006). |
Ernst, T et al., “Nanoselected MOSFET Transistors on Strained Si, SiGe, Ge Layers: Some Integration and Electrical Properties Features”, ECS Trans. 2006, vol. 3, issure 7, pp. 947-961 (2006). |
Goesele, U et al., Diffusion Engineering by Carbon in Silicon, Mat. Res. Soc. Symp. vol. 610 (2000). |
Hokazona, A et al., “Steep Channel & Halo Profiles Utilizing Boron-Diffusion-Barrier Layers (Si:C) for 32 nm Node and Beyond”, 2008 Symposium on VLSI Technology Digest of Technical Papers, pp. 112-113 (2008). |
Hokazono, A et al., “Steep Channel Profiled in n/pMOS Controlled by Boron-Doped Si:C Layers for Continual Bulk-CMOS Scaling”, IEDM09-676 Symposium, pp. 29.1.1-29.1.4 (2009). |
Holland, OW and Thomas, DK “A Method to Improve Activiation of Implanted Dopants in SiC”, Oak Ridge National Laboratory, Oak Ridge, TN (2001). |
Kotaki, H., et al., “Novel Bulk Dynamic Threshold Voltage MOSFET (B-DTMOS) with Advanced Isolation (SITOS) and Gate to Shallow-Well Contact (SSS-C) Processes for Ultra Low Power Dual Gate CMOS”, IEDM 96, pp. 459-462 (1996). |
Lavéant, P. “Incorporatio, Diffusion and Agglomeration of Cabon in Silicon”, Solid State Phenomena, vols. 82-84, pp. 189-194 (2002). |
Noda, K et al., “A 0.1-μm Delta-Doped MOSFET Fabricated with Post-Low-Energy Implanting Selective Epitaxy” IEEE Transactions on Electron Devices, vol. 45, No. 4, pp. 809-814 (Apr. 1998). |
Ohguro, T et al., “An 0.18-μm CMOS for Mixed Digital and Analog Applications with with Zero-Volt-Vth Epitaxial-Channel MOSFETS's”, IEEE Transactions on Electon Devices, vol. 46, No. 7, pp. 1378-1383 (Jul. 1999). |
Pinacho, R et al., “Carbon in Silicon: Modeling of Diffusion and Clustering Mechanisms”, Journal of Applied Physics, vol. 92, No. 3, pp. 1582-1588 (Aug. 2002). |
Robertson, LS et al., “The Effect of Impurities on Diffusion and Activation of Ion Implanted Boron in Silicon”, Mat. Res. Soc. Symp. vol. 610 (2000). |
Scholz, R et al., “Carbon-Induced Undersaturation of Silicon Self-Interstitials”, Appl. Phys. Lett. 72(2), pp. 200-202 (Jan. 1998). |
Scholz, Ret al., “The Contribution of Vacancies to Carbon Out-Diffusion on Silicon”, Appl. Phys. Lett., vol. 74, No. 3, pp. 392-394 (Jan. 1999). |
Stolk, PA et al., “Physical Mechanisms of Transient Enhanced Dopant Diffusion in Ion-Implanted Silicon”, J. Appl. Phys. 81(9), pp. 6031-6050 (May 1997). |
Thompson, S et al., “MOS Scaling: Transistor Challenges for the 21st Century”, Intel Technology Journal Q3' 1998, pp. 1-19 (1998). |
Wann, C. et al., “Channel Profile Optimization and Device Design for Low-Power High-Performance Dynamic-Threshold MOSFET”, IEDM 96, pp. 113-116 (1996). |
Werner, P et al., “Carbon Diffusion in Silicon”, Applied Physics Letters, vol. 73, No. 17, pp. 2465-2467 (Oct. 1998). |
Yan, Ran-Hong et al., “Scaling the Si MOSFET: From Bulk to SOI to Bulk”, IEEE Transactions on Electron Devices, vol. 39, No. 7 (Jul. 1992). |
Komaragiri, R. et al., “Depletion-Free Poly Gate Electrode Architecture for Sub 100 Nanometer CMOS Devices with High-K Gate Dielectrics”, IEEE IEDM Tech Dig., San Francisco CA, 833-836 (Dec. 13-15, 2004). |
Samsudin, K et al., “Integrating Intrinsic Parameter Fluctuation Description into BSIMSOI to Forecast sub-15nm UTB SOI based 6T SRAM Operation”, Solid-State Electronics (50), pp. 86-93 (2006). |
Wong, H et al., “Nanoscale CMOS”, Proceedings of the IEEE, Vo. 87, No. 4, pp. 537-570 (Apr. 1999). |
Banerjee, et al. “Compensating Non-Optical Effects using Electrically-Driven Optical Proximity Correction”, Proc. of SPIE vol. 7275 7275OE (2009). |
Cheng, et al. “Extremely Thin SOI (ETSOI) CMOS with Record Low Variability for Low Power System-on-Chip Applications”, Electron Devices Meeting (IEDM) (Dec. 2009). |
Cheng, et al. “Fully Depleted Extremely Thin SOI Technology Fabricated by a Novel Integration Scheme Feturing Implant-Free, Zero-Silicon-Loss, and Faceted Raised Source/Drain”, Symposium on VLSI Technology Digest of Technical Papers, pp. 212-213 (2009). |
Drennan, et al., “Implications of Proximity Effects for Analog Design”, Custom Integrated Circuits Conference, pp. 169-176 (Sep. 2006). |
Hook, et al. “Lateral Ion Implant Straggle and Mask Proximity Effect”, IEEE Transactions on Electron Devices, vol. 50, No. 9, pp. 1946-1951 (Sep. 2003). |
Hori, et al., “A 0.1μm CMOS with a Step Channel Profile Formed by Ultra High Vacuum CVD and In-Situ Doped Ions”, Proceedings of the International Electron Devices Meeting, New York, IEEE, US, pp. 909-911 (Dec. 5, 1993). |
Matshuashi, et al. “High-Performance Double-Layer Epitaxial-Channel PMOSFET Compatible with a Single Gate CMOSFET”, Symposium on VLSI Technology Digest of Technical Papers, pp. 36-37 (1996). |
Shao, et al., “Boron Diffusion in Silicon: The Anomalies and Control by Point Defect Engineering”, Materials Science and Engineering R: Reports, vol. 42, No. 3-4, pp. 65-114 (Nov. 2003). |
Sheu, et al. “Modeling the Well-Edge Proximity Effect in Highly Scaled MOSFETs”, IEEE Transactions on Electron Devices, vol. 53, No. 11, pp. 2792-2798 (Nov. 2006). |
Number | Date | Country | |
---|---|---|---|
61511923 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13459971 | Apr 2012 | US |
Child | 13624449 | US |