MUSCLE TARGETING COMPLEXES AND USES THEREOF FOR TREATING DYSTROPHINOPATHIES

Abstract
Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular pay load. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide. e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
Description
FIELD OF THE INVENTION

The present application relates to targeting complexes for delivering molecular payloads (e.g., oligonucleotides) to cells and uses thereof, particularly uses relating to treatment of disease.


REFERENCE TO AN ELECTRONIC SEQUENCE LISTING

The contents of the electronic sequence listing (D082470064WO00-SEQ-COB.xml; Size: 1,479,992 bytes; and Date of Creation: Jul. 7, 2022) are herein incorporated by reference in their entirety.


BACKGROUND OF INVENTION

Dystrophinopathies are a group of distinct neuromuscular diseases that result from mutations in the gene encoding dystrophin. Dystrophinopathies include Duchenne muscular dystrophy, Becker muscular dystrophy, and X-linked dilated cardiomyopathy. The DMD gene (“DMD”), which encodes dystrophin, is a large gene, containing 79 exons and about 2.6 million total base pairs. Numerous mutations in DMD, including exonic frameshift, deletion, substitution, and duplicative mutations, are able to diminish the expression of functional dystrophin, leading to dystrophinopathies. Several agents that target exons of human DMD have been approved by the U.S. Food and Drug Administration (FDA), including casimersen, viltolarsen, golodirsen, and eteplirsen. Of these, casimersen targets exon 45.


SUMMARY OF INVENTION

According to some aspects, the disclosure provides complexes that target muscle cells for purposes of delivering molecular payloads to those cells, as well as molecular payloads that can be used therein. In some embodiments, complexes provided herein are particularly useful for delivering molecular payloads that increase or restore expression or activity of functional dystrophin protein. In some embodiments, complexes comprise oligonucleotide based molecular payloads that promote expression of functional dystrophin protein through an in-frame exon skipping mechanism or suppression of stop codons, such as by facilitating skipping of DMD exon 45. In some embodiments, molecular payloads provided herein are useful for facilitating exon skipping in a DMD sequence, such as skipping of DMD exon 45. Accordingly, in some embodiments, complexes provided herein comprise muscle-targeting agents (e.g., muscle targeting antibodies) that specifically bind to receptors on the surface of muscle cells for purposes of delivering molecular payloads to the muscle cells. In some embodiments, the complexes are taken up into the cells via a receptor mediated internalization, following which the molecular payload may be released to perform a function inside the cells. For example, complexes engineered to deliver oligonucleotides may release the oligonucleotides such that the oligonucleotides can promote expression of functional dystrophin protein (e.g., through an exon skipping mechanism, such as by facilitating skipping of DMD exon 45) in the muscle cells. In some embodiments, the oligonucleotides are released by endosomal cleavage of covalent linkers connecting oligonucleotides and muscle-targeting agents of the complexes. Complexes and molecular payloads provided herein can be used for treating subjects having a mutated DMD gene, such as a mutated DMD gene that is amenable to exon 45 skipping.


According to some aspects, complexes comprising an anti-transferrin receptor 1 (TfR1) antibody covalently linked to an oligonucleotide configured for inducing skipping of exon 45 in a DMD pre-mRNA are provided herein, wherein the oligonucleotide comprises a region of complementarity that is complementary with at least 8 consecutive nucleotides of any one of SEQ ID NOs: 240, 236, 280, 211, 197, 212, 208, 217, 213, 195, 160-194, 196, 198-207, 209, 210, 214-216, 218-235, 237-239, 241-279, and 281-399.


In some embodiments, the anti-TfR1 antibody comprises:

    • (i) a heavy chain complementarity determining region 1 (CDR-H1) of SEQ ID NO: 33, a heavy chain complementarity determining region 2 (CDR-H2) of SEQ ID NO: 34, a heavy chain complementarity determining region 3 (CDR-H3) of SEQ ID NO: 35, a light chain complementarity determining region 1 (CDR-L1) of SEQ ID NO: 36, a light chain complementarity determining region 2 (CDR-L2) of SEQ ID NO: 37, and a light chain complementarity determining region 3 (CDR-L3) of SEQ ID NO: 32;
    • (ii) a CDR-H1 of SEQ ID NO: 7, a CDR-H2 of SEQ ID NO: 8, a CDR-H3 of SEQ ID NO: 9, a CDR-L1 of SEQ ID NO: 10, a CDR-L2 of SEQ ID NO: 11, and a CDR-L3 of SEQ ID NO: 6;
    • (iii) a CDR-H1 of SEQ ID NO: 7, a CDR-H2 of SEQ ID NO: 20, a CDR-H3 of SEQ ID NO: 9, a CDR-L1 of SEQ ID NO: 10, a CDR-L2 of SEQ ID NO: 11, and a CDR-L3 of SEQ ID NO: 6;
    • (iv) a CDR-H1 of SEQ ID NO: 7, a CDR-H2 of SEQ ID NO: 24, a CDR-H3 of SEQ ID NO: 9, a CDR-L1 of SEQ ID NO: 10, a CDR-L2 of SEQ ID NO: 11, and a CDR-L3 of SEQ ID NO: 6;
    • (v) a CDR-H1 of SEQ ID NO: 51, a CDR-H2 of SEQ ID NO: 52, a CDR-H3 of SEQ ID NO: 53, a CDR-L1 of SEQ ID NO: 54, a CDR-L2 of SEQ ID NO: 55, and a CDR-L3 of SEQ ID NO: 50;
    • (vi) a CDR-H1 of SEQ ID NO: 64, a CDR-H2 of SEQ ID NO: 52, a CDR-H3 of SEQ ID NO: 53, a CDR-L1 of SEQ ID NO: 54, a CDR-L2 of SEQ ID NO: 55, and a CDR-L3 of SEQ ID NO: 50; or
    • (vii) a CDR-H1 of SEQ ID NO: 67, a CDR-H2 of SEQ ID NO: 52, a CDR-H3 of SEQ ID NO: 53, a CDR-L1 of SEQ ID NO: 54, a CDR-L2 of SEQ ID NO: 55, and a CDR-L3 of SEQ ID NO: 50.


In some embodiments, the anti-TfR1 antibody comprises:

    • (i) a heavy chain variable region (VH) comprising an amino acid sequence at least 85% identical to SEQ ID NO: 76; and/or a light chain variable region (VL) comprising an amino acid sequence at least 85% identical to SEQ ID NO: 75;
    • (ii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 69; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 70;
    • (iii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 71; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 70;
    • (iv) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 72; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 70;
    • (v) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 73; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 74;
    • (vi) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 73; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 75;
    • (vii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 76; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 74;
    • (viii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 77; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 78;
    • (ix) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 79; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 80; or
    • (x) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 77; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 80.


In some embodiments, the anti-TfR1 antibody comprises:

    • (i) a VH comprising the amino acid sequence of SEQ ID NO: 76 and a VL comprising the amino acid sequence of SEQ ID NO: 75;
    • (ii) a VH comprising the amino acid sequence of SEQ ID NO: 69 and a VL comprising the amino acid sequence of SEQ ID NO: 70;
    • (iii) a VH comprising the amino acid sequence of SEQ ID NO: 71 and a VL comprising the amino acid sequence of SEQ ID NO: 70;
    • (iv) a VH comprising the amino acid sequence of SEQ ID NO: 72 and a VL comprising the amino acid sequence of SEQ ID NO: 70;
    • (v) a VH comprising the amino acid sequence of SEQ ID NO: 73 and a VL comprising the amino acid sequence of SEQ ID NO: 74;
    • (vi) a VH comprising the amino acid sequence of SEQ ID NO: 73 and a VL comprising the amino acid sequence of SEQ ID NO: 75;
    • (vii) a VH comprising the amino acid sequence of SEQ ID NO: 76 and a VL comprising the amino acid sequence of SEQ ID NO: 74;
    • (viii) a VH comprising the amino acid sequence of SEQ ID NO: 77 and a VL comprising the amino acid sequence of SEQ ID NO: 78;
    • (ix) a VH comprising the amino acid sequence of SEQ ID NO: 79 and a VL comprising the amino acid sequence of SEQ ID NO: 80; or
    • (x) a VH comprising the amino acid sequence of SEQ ID NO: 77 and a VL comprising the amino acid sequence of SEQ ID NO: 80.


In some embodiments, the anti-TfR1 antibody is a Fab fragment, a Fab′ fragment, a F(ab′)2 fragment, an scFv, an Fv, or a full-length IgG.


In some embodiments, the anti-TfR1 antibody is a Fab fragment.


In some embodiments, the anti-TfR1 antibody comprises:

    • (i) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 101; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 90;
    • (ii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 97; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 85;
    • (iii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 98; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 85;
    • (iv) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 99; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 85;
    • (v) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 100; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 89;
    • (vi) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 100; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 90;
    • (vii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 101; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 89;
    • (viii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 102; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 93;
    • (ix) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 103; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 95; or
    • (x) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 102; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 95.


In some embodiments, the anti-TfR1 antibody comprises:

    • (i) a heavy chain comprising the amino acid sequence of SEQ ID NO: 101; and a light chain comprising the amino acid sequence of SEQ ID NO: 90;
    • (ii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 97; and a light chain comprising the amino acid sequence of SEQ ID NO: 85;
    • (iii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 98; and a light chain comprising the amino acid sequence of SEQ ID NO: 85;
    • (iv) a heavy chain comprising the amino acid sequence of SEQ ID NO: 99; and a light chain comprising the amino acid sequence of SEQ ID NO: 85;
    • (v) a heavy chain comprising the amino acid sequence of SEQ ID NO: 100; and a light chain comprising the amino acid sequence of SEQ ID NO: 89;
    • (vi) a heavy chain comprising the amino acid sequence of SEQ ID NO: 100; and a light chain comprising the amino acid sequence of SEQ ID NO: 90;
    • (vii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 101; and a light chain comprising the amino acid sequence of SEQ ID NO: 89;
    • (viii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 102; and a light chain comprising the amino acid sequence of SEQ ID NO: 93;
    • (ix) a heavy chain comprising the amino acid sequence of SEQ ID NO: 103; and a light chain comprising the amino acid sequence of SEQ ID NO: 95; or
    • (x) a heavy chain comprising the amino acid sequence of SEQ ID NO: 102; and a light chain comprising the amino acid sequence of SEQ ID NO: 95.


In some embodiments, the anti-TfR1 antibody does not specifically bind to the transferrin binding site of the transferrin receptor 1 and/or the anti-TfR1 antibody does not inhibit binding of transferrin to the transferrin receptor 1.


In some embodiments, the oligonucleotide comprises a region of complementarity to at least 4 consecutive nucleotides of a splicing feature of the DMD pre-mRNA.


In some embodiments, the splicing feature is an exonic splicing enhancer (ESE) in exon 45 of the DMD pre-mRNA, optionally wherein the ESE comprises a sequence of any one of SEQ ID NOs: 885-912.


In some embodiments, the splicing feature is a branch point, a splice donor site, or a splice acceptor site, optionally wherein the splicing feature is across the junction of exon 44 and intron 44, in intron 44, across the junction of intron 44 and exon 45, across the junction of exon 45 and intron 45, in intron 45, or across the junction of intron 45 and exon 46 of the DMD pre-mRNA, and further optionally wherein the splicing feature comprises a sequence of any one of SEQ ID NOs: 880-884 and 913-916.


In some embodiments, the oligonucleotide comprises a sequence complementary to any one of SEQ ID NOs: 160-399 or comprises a sequence of any one of SEQ ID NOs: 400-879, wherein each thymine base (T) may independently and optionally be replaced with a uracil base (U), and each U may independently and optionally be replaced with a T.


In some embodiments, the oligonucleotide comprises a sequence of any one of SEQ ID NOs: 720, 712, 760, 691, 677, 692, 688, 697, 693, and 675, wherein each thymine base (T) may independently and optionally be replaced with a uracil base (U), and each U may independently and optionally be replaced with a T.


In some embodiments, the oligonucleotide comprises one or more phosphorodiamidate morpholinos, optionally wherein the oligonucleotide is a phosphorodiamidate morpholino oligomer (PMO).


In some embodiments, the anti-TfR1 antibody is covalently linked to the molecular payload via a cleavable linker, optionally wherein the cleavable linker comprises a valine-citrulline sequence.


In some embodiments, the anti-TfR1 antibody is covalently linked to the molecular payload via conjugation to a lysine residue or a cysteine residue of the antibody.


According to some aspects, oligonucleotides that target DMD are provided herein, wherein the oligonucleotide comprises a region of complementarity to any one of SEQ ID NOs: 160-399, optionally wherein the region of complementarity comprises at least 15 consecutive nucleosides complementary to any one of SEQ ID NOs: 160-399.


In some embodiments, the oligonucleotide comprises at least 15 consecutive nucleosides of any one of SEQ ID NOs: 400-879, optionally wherein the oligonucleotide comprises a sequence of any one of SEQ ID NOs: 400-879, wherein each thymine base (T) may independently and optionally be replaced with a uracil base (U), and each U may independently and optionally be replaced with a T.


According to some aspects, methods of delivering an oligonucleotide to a cell are provided herein, the method comprising contacting the cell with a complex disclosed herein or with an oligonucleotide disclosed herein.


According to some aspects, methods of promoting the expression or activity of a dystrophin protein in a cell are provided herein, the method comprising contacting the cell with a complex disclosed herein or with an oligonucleotide disclosed herein in an amount effective for promoting internalization of the oligonucleotide to the cell, optionally wherein the cell is a muscle cell.


In some embodiments, the cell comprises a DMD gene that is amenable to skipping of exon 45.


In some embodiments, the dystrophin protein is a truncated dystrophin protein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows data illustrating that conjugates containing anti-TfR1 Fab (3M12 VH4/VK3) conjugated to a DMD exon-skipping oligonucleotide resulted in enhanced exon skipping compared to the naked DMD exon skipping oligo in Duchenne muscular dystrophy patient myotubes.





DETAILED DESCRIPTION OF INVENTION

Aspects of the disclosure relate to a recognition that while certain molecular payloads (e.g., oligonucleotides, peptides, small molecules) can have beneficial effects in muscle cells, it has proven challenging to effectively target such cells. Accordingly, as described herein, the present disclosure provides complexes comprising muscle-targeting agents covalently linked to molecular payloads in order to overcome such challenges. In some embodiments, the complexes are particularly useful for delivering molecular payloads that modulate (e.g., promote) the expression or activity of dystrophin protein (e.g., a truncated dystrophin protein) or DMD (e.g., a mutated DMD allele). In some embodiments, complexes provided herein may comprise oligonucleotides that promote expression and activity of dystrophin protein or DMD, such as by facilitating in-frame exon skipping and/or suppression of premature stop codons. For example, complexes may comprise oligonucleotides that induce skipping of exon(s) of DMD RNA (e.g., pre-mRNA), such as oligonucleotides that induce skipping of exon 45. In some embodiments, synthetic nucleic acid payloads (e.g., DNA or RNA payloads) may be used that express one or more proteins that promote normal expression and activity of dystrophin protein or DMD.


Duchenne muscular dystrophy is an X-linked muscular disorder caused by one or more mutations in the DMD gene located on Xp21. Dystrophin protein typically forms the dystrophin-associated glycoprotein complex (DGC) at the sarcolemma, which links the muscle sarcomeric structure to the extracellular matrix and protects the sarcolemma from contraction-induced injury. In patients with Duchenne muscular dystrophy, the dystrophin protein is generally absent and muscle fibers typically become damaged due to mechanical overextension. Mutations in the DMD gene are associated with two types of muscular dystrophy, Duchenne muscular dystrophy and Becker muscular dystrophy, depending on whether the translational reading frame is lost or maintained. Becker muscular dystrophy is a clinically milder form of Duchenne muscular dystrophy, and is characterized by features similar to Duchenne muscular dystrophy. In some embodiments, exon skipping induced by oligonucleotides (e.g., delivered using complexes provided herein) can be used to restore the reading frame of a mutated DMD allele resulting in production of a truncated dystrophin protein that is sufficiently functional to improve muscle function. In some embodiments, such exon skipping could converts a Duchenne muscular dystrophy phenotype into a milder Becker muscular dystrophy phenotype.


Further aspects of the disclosure, including a description of defined terms, are provided below.


I. Definitions

Administering: As used herein, the terms “administering” or “administration” means to provide a complex to a subject in a manner that is physiologically and/or (e.g., and) pharmacologically useful (e.g., to treat a condition in the subject).


Approximately: As used herein, the term “approximately” or “about,” as applied to one or more values of interest, refers to a value that is similar to a stated reference value. In certain embodiments, the term “approximately” or “about” refers to a range of values that fall within 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value).


Antibody: As used herein, the term “antibody” refers to a polypeptide that includes at least one immunoglobulin variable domain or at least one antigenic determinant, e.g., paratope that specifically binds to an antigen. In some embodiments, an antibody is a full-length antibody. In some embodiments, an antibody is a chimeric antibody. In some embodiments, an antibody is a humanized antibody. However, in some embodiments, an antibody is a Fab fragment, a Fab′ fragment, a F(ab′)2 fragment, a Fv fragment or a scFv fragment. In some embodiments, an antibody is a nanobody derived from a camelid antibody or a nanobody derived from shark antibody. In some embodiments, an antibody is a diabody. In some embodiments, an antibody comprises a framework having a human germline sequence. In another embodiment, an antibody comprises a heavy chain constant domain selected from the group consisting of IgG, IgG1, IgG2, IgG2A, IgG2B, IgG2C, IgG3, IgG4, IgA1, IgA2, IgD, IgM, and IgE constant domains. In some embodiments, an antibody comprises a heavy (H) chain variable region (abbreviated herein as VH), and/or (e.g., and) a light (L) chain variable region (abbreviated herein as VL). In some embodiments, an antibody comprises a constant domain, e.g., an Fc region. An immunoglobulin constant domain refers to a heavy or light chain constant domain. Human IgG heavy chain and light chain constant domain amino acid sequences and their functional variations are known. With respect to the heavy chain, in some embodiments, the heavy chain of an antibody described herein can be an alpha (α), delta (Δ), epsilon (ε), gamma (γ) or mu (μ) heavy chain. In some embodiments, the heavy chain of an antibody described herein can comprise a human alpha (α), delta (Δ), epsilon (€), gamma (γ) or mu (μ) heavy chain. In a particular embodiment, an antibody described herein comprises a human gamma 1 CH1, CH2, and/or (e.g., and) CH3 domain. In some embodiments, the amino acid sequence of the VH domain comprises the amino acid sequence of a human gamma (Y) heavy chain constant region, such as any known in the art. Non-limiting examples of human constant region sequences have been described in the art, e.g., see U.S. Pat. No. 5,693,780 and Kabat E A et al., (1991) supra. In some embodiments, the VH domain comprises an amino acid sequence that is at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or at least 99% identical to any of the variable chain constant regions provided herein. In some embodiments, an antibody is modified, e.g., modified via glycosylation, phosphorylation, sumoylation, and/or (e.g., and) methylation. In some embodiments, an antibody is a glycosylated antibody, which is conjugated to one or more sugar or carbohydrate molecules. In some embodiments, the one or more sugar or carbohydrate molecule are conjugated to the antibody via N-glycosylation, O-glycosylation, C-glycosylation, glypiation (GPI anchor attachment), and/or (e.g., and) phosphoglycosylation. In some embodiments, the one or more sugar or carbohydrate molecule are monosaccharides, disaccharides, oligosaccharides, or glycans. In some embodiments, the one or more sugar or carbohydrate molecule is a branched oligosaccharide or a branched glycan. In some embodiments, the one or more sugar or carbohydrate molecule includes a mannose unit, a glucose unit, an N-acetylglucosamine unit, an N-acetylgalactosamine unit, a galactose unit, a fucose unit, or a phospholipid unit. In some embodiments, an antibody is a construct that comprises a polypeptide comprising one or more antigen binding fragments of the disclosure linked to a linker polypeptide or an immunoglobulin constant domain. Linker polypeptides comprise two or more amino acid residues joined by peptide bonds and are used to link one or more antigen binding portions. Examples of linker polypeptides have been reported (see e.g., Holliger, P., et al. (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poljak, R. J., et al. (1994) Structure 2:1121-1123). Still further, an antibody may be part of a larger immunoadhesion molecule, formed by covalent or noncovalent association of the antibody or antibody portion with one or more other proteins or peptides. Examples of such immunoadhesion molecules include use of the streptavidin core region to make a tetrameric scFv molecule (Kipriyanov, S. M., et al. (1995) Human Antibodies and Hybridomas 6:93-101) and use of a cysteine residue, a marker peptide and a C-terminal polyhistidine tag to make bivalent and biotinylated scFv molecules (Kipriyanov, S. M., et al. (1994) Mol. Immunol. 31:1047-1058).


Branch point: As used herein, the term “branch point” or “branch site” refers to a nucleic acid sequence motif within an intron of a gene or pre-mRNA that is involved in splicing of pre-mRNA into mRNA (i.e., removing introns from the pre-mRNA), and can be referred to as a splicing feature. A branch point is typically located 18 to 40 nucleotides from the 3′ end of an intron, and contains an adenine but is otherwise relatively unrestricted in sequence. Common sequence motifs for branch points are YNYYRAY, YTRAC, and YNYTRAY, where Y is a pyrimidine, N is any nucleotide. R is any purine, and A is adenine. During splicing, the pre-mRNA is cleaved at the 5′ end of the intron, which then attaches to the branch point region downstream through transesterification bonding between guanines and adenines from the 5′ end and the branch point, respectively, to form a looped lariat structure.


CDR: As used herein, the term “CDR” refers to the complementarity determining region within antibody variable sequences. A typical antibody molecule comprises a heavy chain variable region (VH) and a light chain variable region (VL), which are usually involved in antigen binding. The VH and VL regions can be further subdivided into regions of hypervariability, also known as “complementarity determining regions” (“CDR”), interspersed with regions that are more conserved, which are known as “framework regions” (“FR”). Each VH and VL is typically composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The extent of the framework region and CDRs can be precisely identified using methodology known in the art, for example, by the Kabat definition, the IMGT definition, the Chothia definition, the AbM definition, and/or (e.g., and) the contact definition, all of which are well known in the art. Sec. e.g., Kabat. E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242; IMGT®, the international ImMunoGeneTics information System® www.imgt.org. Lefranc, M.-P. et al., Nucleic Acids Res., 27:209-212 (1999); Ruiz, M. et al., Nucleic Acids Res., 28:219-221 (2000); Lefranc, M.-P., Nucleic Acids Res., 29:207-209 (2001); Lefranc, M.-P., Nucleic Acids Res., 31:307-310 (2003); Lefranc, M.-P. et al., In Silico Biol., 5, 0006 (2004) [Epub], 5:45-60 (2005); Lefranc, M.-P. et al., Nucleic Acids Res., 33:D593-597 (2005); Lefranc, M.-P. et al., Nucleic Acids Res., 37:D1006-1012 (2009); Lefranc, M.-P. et al., Nucleic Acids Res., 43:D413-422 (2015); Chothia et al., (1989) Nature 342:877; Chothia, C. et al. (1987) J. Mol. Biol. 196:901-917. Al-lazikani et al (1997) J. Molec. Biol. 273:927-948; and Almagro, J. Mol. Recognit. 17:132-143 (2004). See also bioinf.org.uk/abs. As used herein, a CDR may refer to the CDR defined by any method known in the art. Two antibodies having the same CDR means that the two antibodies have the same amino acid sequence of that CDR as determined by the same method, for example, the IMGT definition.


There are three CDRs in each of the variable regions of the heavy chain and the light chain, which are designated CDR1, CDR2 and CDR3, for each of the variable regions. The term “CDR set” as used herein refers to a group of three CDRs that occur in a single variable region capable of binding the antigen. The exact boundaries of these CDRs have been defined differently according to different systems. The system described by Kabat (Kabat et al., Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, Md. (1987) and (1991)) not only provides an unambiguous residue numbering system applicable to any variable region of an antibody, but also provides precise residue boundaries defining the three CDRs. These CDRs may be referred to as Kabat CDRs. Sub-portions of CDRs may be designated as L1, L2 and L3 or H1, H2 and H3 where the “L” and the “H” designates the light chain and the heavy chains regions, respectively. These regions may be referred to as Chothia CDRs, which have boundaries that overlap with Kabat CDRs. Other boundaries defining CDRs overlapping with the Kabat CDRs have been described by Padlan (FASEB J. 9:133-139 (1995)) and MacCallum (J Mol Biol 262(5):732-45 (1996)). Still other CDR boundary definitions may not strictly follow one of the above systems, but will nonetheless overlap with the Kabat CDRs, although they may be shortened or lengthened in light of prediction or experimental findings that particular residues or groups of residues or even entire CDRs do not significantly impact antigen binding. The methods used herein may utilize CDRs defined according to any of these systems. Examples of CDR definition systems are provided in Table 1.









TABLE 1







CDR Definitions











IMGT1
Kabat2
Chothia3
















CDR-H1
27-38
31-35
26-32



CDR-H2
56-65
50-65
53-55



CDR-H3
   105-116/117
 95-102
 96-101



CDR-L1
27-38
24-34
26-32



CDR-L2
56-65
50-56
50-52



CDR-L3
   105-116/117
89-97
91-96








1IMGT ®, the international ImMunoGeneTics information system ®, imgt.org, Lefranc, M.-P. et al., Nucleic Acids Res., 27: 209-212 (1999)





2Kabat et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242





3Chothia et al., J. Mol. Biol. 196: 901-917 (1987))







CDR-grafted antibody: The term “CDR-grafted antibody” refers to antibodies which comprise heavy and light chain variable region sequences from one species but in which the sequences of one or more of the CDR regions of VH and/or (e.g., and) VL are replaced with CDR sequences of another species, such as antibodies having murine heavy and light chain variable regions in which one or more of the murine CDRs (e.g., CDR3) has been replaced with human CDR sequences.


Chimeric antibody: The term “chimeric antibody” refers to antibodies which comprise heavy and light chain variable region sequences from one species and constant region sequences from another species, such as antibodies having murine heavy and light chain variable regions linked to human constant regions.


Complementary: As used herein, the term “complementary” refers to the capacity for precise pairing between two nucleosides or two sets of nucleosides. In particular, complementary is a term that characterizes an extent of hydrogen bond pairing that brings about binding between two nucleosides or two sets of nucleosides. For example, if a base at one position of an oligonucleotide is capable of hydrogen bonding with a base at the corresponding position of a target nucleic acid (e.g., an mRNA), then the bases are considered to be complementary to each other at that position. Base pairings may include both canonical Watson-Crick base pairing and non-Watson-Crick base pairing (e.g., Wobble base pairing and Hoogsteen base pairing). For example, in some embodiments, for complementary base pairings, adenosine-type bases (A) are complementary to thymidine-type bases (T) or uracil-type bases (U), that cytosine-type bases (C) are complementary to guanosine-type bases (G), and that universal bases such as 3-nitropyrrole or 5-nitroindole can hybridize to and are considered complementary to any A. C. U. or T. Inosine (I) has also been considered in the art to be a universal base and is considered complementary to any A. C. U or T.


Conservative amino acid substitution: As used herein, a “conservative amino acid substitution” refers to an amino acid substitution that does not alter the relative charge or size characteristics of the protein in which the amino acid substitution is made. Variants can be prepared according to methods for altering polypeptide sequence known to one of ordinary skill in the art such as are found in references which compile such methods, e.g. Molecular Cloning: A Laboratory Manual, J. Sambrook, et al., eds., Fourth Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2012, or Current Protocols in Molecular Biology, F. M. Ausubel, et al., eds., John Wiley & Sons, Inc., New York. Conservative substitutions of amino acids include substitutions made amongst amino acids within the following groups: (a) M, I, L, V; (b) F, Y, W; (c) K, R, H; (d) A, G; (c) S, T; (f) Q, N; and (g) E, D.


Covalently linked: As used herein, the term “covalently linked” refers to a characteristic of two or more molecules being linked together via at least one covalent bond. In some embodiments, two molecules can be covalently linked together by a single bond, e.g., a disulfide bond or disulfide bridge, that serves as a linker between the molecules. However, in some embodiments, two or more molecules can be covalently linked together via a molecule that serves as a linker that joins the two or more molecules together through multiple covalent bonds. In some embodiments, a linker may be a cleavable linker. However, in some embodiments, a linker may be a non-cleavable linker.


Cross-reactive: As used herein and in the context of a targeting agent (e.g., antibody), the term “cross-reactive,” refers to a property of the agent being capable of specifically binding to more than one antigen of a similar type or class (e.g., antigens of multiple homologs, paralogs, or orthologs) with similar affinity or avidity. For example, in some embodiments, an antibody that is cross-reactive against human and non-human primate antigens of a similar type or class (e.g., a human transferrin receptor and non-human primate transferrin receptor) is capable of binding to the human antigen and non-human primate antigens with a similar affinity or avidity. In some embodiments, an antibody is cross-reactive against a human antigen and a rodent antigen of a similar type or class. In some embodiments, an antibody is cross-reactive against a rodent antigen and a non-human primate antigen of a similar type or class. In some embodiments, an antibody is cross-reactive against a human antigen, a non-human primate antigen, and a rodent antigen of a similar type or class.


DMD: As used herein, the term “DMD” refers to a gene that encodes dystrophin protein, a key component of the dystrophin-glycoprotein complex, which bridges the inner cytoskeleton and the extracellular matrix in muscle cells, particularly muscle fibers. Deletions, duplications, and point mutations in DMD may cause dystrophinopathies, such as Duchenne muscular dystrophy, Becker muscular dystrophy, or cardiomyopathy. Alternative promoter usage and alternative splicing result in numerous distinct transcript variants and protein isoforms for this gene. In some embodiments, a dystrophin gene (DMD or DMD gene) may be a human (Gene ID: 1756), non-human primate (e.g., Gene ID: 465559), or rodent gene (e.g., Gene ID: 13405; Gene ID: 24907). In addition, multiple human transcript variants (e.g., as annotated under GenBank RefSeq Accession Numbers: NM_000109.3, NM_004006.2, NM_004009.3, NM_004010.3 and NM_004011.3) have been characterized that encode different protein isoforms.


DMD allele: As used herein, the term “DMD allele” refers to any one of alternative forms (e.g., wild-type or mutant forms) of a DMD gene. In some embodiments, a DMD allele may encode for dystrophin that retains its normal and typical functions. In some embodiments, a DMD allele may comprise one or more mutations that results in muscular dystrophy. Common mutations that lead to Duchenne muscular dystrophy involve frameshift, deletion, substitution, and duplicative mutations of one or more of 79 exons present in a dystrophin allele, e.g., exon 8, exon 23, exon 41, exon 44, exon 45, exon 50, exon 51, exon 52, exon 53, or exon 55. Further examples of DMD mutations are disclosed, for example, in Flanigan K M, et al., Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. Hum Mutat. 2009 December; 30 (12):1657-66, the contents of which are incorporated herein by reference in its entirety.


Dystrophinopathy: As used herein, the term “dystrophinopathy” refers to a muscle disease results from one or more mutated DMD alleles. Dystrophinopathies include a spectrum of conditions (ranging from mild to severe) that includes Duchenne muscular dystrophy, Becker muscular dystrophy, and DMD-associated dilated cardiomyopathy (DCM). In some embodiments, at one end of the spectrum, dystrophinopathy is phenotypically associated with an asymptomatic increase in serum concentration of creatine phosphokinase (CK) and/or (e.g., and) muscle cramps with myoglobinuria. In some embodiments, at the other end of the spectrum, dystrophinopathy is phenotypically associated with progressive muscle diseases that are generally classified as Duchenne or Becker muscular dystrophy when skeletal muscle is primarily affected and as DMD-associated dilated cardiomyopathy (DCM) when the heart is primarily affected. Symptoms of Duchenne muscular dystrophy include muscle loss or degeneration, diminished muscle function, pseudohypertrophy of the tongue and calf muscles, higher risk of neurological abnormalities, and a shortened lifespan. Duchenne muscular dystrophy is associated with Online Mendelian Inheritance in Man (OMIM) Entry #310200. Becker muscular dystrophy is associated with OMIM Entry #300376. Dilated cardiomyopathy is associated with OMIM Entry X #302045.


Exonic splicing enhancer (ESE): As used herein, the term “exonic splicing enhancer” or “ESE” refers to a nucleic acid sequence motif within an exon of a gene, pre-mRNA, or mRNA that directs or enhances splicing of pre-mRNA into mRNA, e.g., as described in Blencowe et al., Trends Biochem Sci 25, 106-10. (2000), incorporated herein by reference. ESEs can be referred to as splicing features. ESEs may direct or enhance splicing, for example, to remove one or more introns and/or one or more exons from a gene transcript. ESE motifs are typically 6-8 nucleobases in length. SR proteins (e.g., proteins encoded by the gene SRSF1, SRSF2, SRSF3, SRSF4, SRSF5, SRSF6, SRSF7, SRSF8, SRSF9, SRSF10, SRSF11, SRSF12, TRA2A or TRA2B) bind to ESEs through their RNA recognition motif region to facilitate splicing. ESE motifs can be identified through a number of methods, including those described in Cartegni et al., Nucleic Acids Research, 2003, Vol. 31, No. 13, 3568-3571, incorporated herein by reference.


Framework: As used herein, the term “framework” or “framework sequence” refers to the remaining sequences of a variable region minus the CDRs. Because the exact definition of a CDR sequence can be determined by different systems, the meaning of a framework sequence is subject to correspondingly different interpretations. The six CDRs (CDR-L1, CDR-L2, and CDR-L3 of light chain and CDR-H1, CDR-H2, and CDR-H3 of heavy chain) also divide the framework regions on the light chain and the heavy chain into four sub-regions (FR1, FR2, FR3 and FR4) on each chain, in which CDR1 is positioned between FR1 and FR2, CDR2 between FR2 and FR3, and CDR3 between FR3 and FR4. Without specifying the particular sub-regions as FR1, FR2, FR3 or FR4, a framework region, as referred by others, represents the combined FRs within the variable region of a single, naturally occurring immunoglobulin chain. As used herein, a FR represents one of the four sub-regions, and FRs represents two or more of the four sub-regions constituting a framework region. Human heavy chain and light chain acceptor sequences are known in the art. In one embodiment, the acceptor sequences known in the art may be used in the antibodies disclosed herein.


Human antibody: The term “human antibody”, as used herein, is intended to include antibodies having variable and constant regions derived from human germline immunoglobulin sequences. The human antibodies of the disclosure may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs and in particular CDR3. However, the term “human antibody”, as used herein, is not intended to include antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.


Humanized antibody: The term “humanized antibody” refers to antibodies which comprise heavy and light chain variable region sequences from a non-human species (e.g., a mouse) but in which at least a portion of the VH and/or (e.g., and) VL sequence has been altered to be more “human-like”, i.e., more similar to human germline variable sequences. One type of humanized antibody is a CDR-grafted antibody, in which human CDR sequences are introduced into non-human VH and VL sequences to replace the corresponding non-human CDR sequences. In one embodiment, humanized anti-TfR1 antibodies and antigen binding portions are provided. Such antibodies may be generated by obtaining murine anti-TfR1 monoclonal antibodies using traditional hybridoma technology followed by humanization using in vitro genetic engineering, such as those disclosed in Kasaian et al PCT publication No. WO 2005/123126 A2.


Internalizing cell surface receptor: As used herein, the term, “internalizing cell surface receptor” refers to a cell surface receptor that is internalized by cells, e.g., upon external stimulation, e.g., ligand binding to the receptor. In some embodiments, an internalizing cell surface receptor is internalized by endocytosis. In some embodiments, an internalizing cell surface receptor is internalized by clathrin-mediated endocytosis. However, in some embodiments, an internalizing cell surface receptor is internalized by a clathrin-independent pathway, such as, for example, phagocytosis, macropinocytosis, caveolae- and raft-mediated uptake or constitutive clathrin-independent endocytosis. In some embodiments, the internalizing cell surface receptor comprises an intracellular domain, a transmembrane domain, and/or (e.g., and) an extracellular domain, which may optionally further comprise a ligand-binding domain. In some embodiments, a cell surface receptor becomes internalized by a cell after ligand binding. In some embodiments, a ligand may be a muscle-targeting agent or a muscle-targeting antibody. In some embodiments, an internalizing cell surface receptor is a transferrin receptor.


Isolated antibody: An “isolated antibody”, as used herein, is intended to refer to an antibody that is substantially free of other antibodies having different antigenic specificities (e.g., an isolated antibody that specifically binds transferrin receptor is substantially free of antibodies that specifically bind antigens other than transferrin receptor). An isolated antibody that specifically binds transferrin receptor complex may, however, have cross-reactivity to other antigens, such as transferrin receptor molecules from other species. Moreover, an isolated antibody may be substantially free of other cellular material and/or (e.g., and) chemicals.


Kabat numbering: The terms “Kabat numbering”, “Kabat definitions and “Kabat labeling” are used interchangeably herein. These terms, which are recognized in the art, refer to a system of numbering amino acid residues which are more variable (i.e. hypervariable) than other amino acid residues in the heavy and light chain variable regions of an antibody, or an antigen binding portion thereof (Kabat et al. (1971) Ann. NY Acad. Sci. 190:382-391 and, Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242). For the heavy chain variable region, the hypervariable region ranges from amino acid positions 31 to 35 for CDR1, amino acid positions 50 to 65 for CDR2, and amino acid positions 95 to 102 for CDR3. For the light chain variable region, the hypervariable region ranges from amino acid positions 24 to 34 for CDR1, amino acid positions 50 to 56 for CDR2, and amino acid positions 89 to 97 for CDR3.


Molecular payload: As used herein, the term “molecular payload” refers to a molecule or species that functions to modulate a biological outcome. In some embodiments, a molecular payload is linked to, or otherwise associated with a muscle-targeting agent. In some embodiments, the molecular payload is a small molecule, a protein, a peptide, a nucleic acid, or an oligonucleotide. In some embodiments, the molecular payload functions to modulate the transcription of a DNA sequence, to modulate the expression of a protein, or to modulate the activity of a protein. In some embodiments, the molecular payload is an oligonucleotide that comprises a strand having a region of complementarity to a target gene.


Muscle-targeting agent: As used herein, the term, “muscle-targeting agent,” refers to a molecule that specifically binds to an antigen expressed on muscle cells. The antigen in or on muscle cells may be a membrane protein, for example an integral membrane protein or a peripheral membrane protein. Typically, a muscle-targeting agent specifically binds to an antigen on muscle cells that facilitates internalization of the muscle-targeting agent (and any associated molecular payload) into the muscle cells. In some embodiments, a muscle-targeting agent specifically binds to an internalizing, cell surface receptor on muscles and is capable of being internalized into muscle cells through receptor mediated internalization. In some embodiments, the muscle-targeting agent is a small molecule, a protein, a peptide, a nucleic acid (e.g., an aptamer), or an antibody. In some embodiments, the muscle-targeting agent is linked to a molecular payload.


Muscle-targeting antibody: As used herein, the term, “muscle-targeting antibody.” refers to a muscle-targeting agent that is an antibody that specifically binds to an antigen found in or on muscle cells. In some embodiments, a muscle-targeting antibody specifically binds to an antigen on muscle cells that facilitates internalization of the muscle-targeting antibody (and any associated molecular payment) into the muscle cells. In some embodiments, the muscle-targeting antibody specifically binds to an internalizing, cell surface receptor present on muscle cells. In some embodiments, the muscle-targeting antibody is an antibody that specifically binds to a transferrin receptor.


Oligonucleotide: As used herein, the term “oligonucleotide” refers to an oligomeric nucleic acid compound of up to 200 nucleotides in length. Examples of oligonucleotides include, but are not limited to, RNAi oligonucleotides (e.g., siRNAs, shRNAs), microRNAs, gapmers, mixmers, phosphorodiamidate morpholinos, peptide nucleic acids, aptamers, guide nucleic acids (e.g., Cas9 guide RNAs), etc. Oligonucleotides may be single-stranded or double-stranded. In some embodiments, an oligonucleotide may comprise one or more modified nucleosides (e.g., 2′-O-methyl sugar modifications, purine or pyrimidine modifications). In some embodiments, an oligonucleotide may comprise one or more modified internucleoside linkages. In some embodiments, an oligonucleotide may comprise one or more phosphorothioate linkages, which may be in the Rp or Sp stereochemical conformation.


Recombinant antibody: The term “recombinant human antibody”, as used herein, is intended to include all human antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies expressed using a recombinant expression vector transfected into a host cell (described in more details in this disclosure), antibodies isolated from a recombinant, combinatorial human antibody library (Hoogenboom H. R., (1997) TIB Tech. 15:62-70; Azzazy H., and Highsmith W. E., (2002) Clin. Biochem. 35:425-445; Gavilondo J. V., and Larrick J. W. (2002) BioTechniques 29:128-145; Hoogenboom H., and Chames P. (2000) Immunology Today 21:371-378), antibodies isolated from an animal (e.g., a mouse) that is transgenic for human immunoglobulin genes (see e.g., Taylor, L. D., et al. (1992) Nucl. Acids Res. 20:6287-6295; Kellermann S-A., and Green L. L. (2002) Current Opinion in Biotechnology 13:593-597; Little M. et al (2000) Immunology Today 21:364-370) or antibodies prepared, expressed, created or isolated by any other means that involves splicing of human immunoglobulin gene sequences to other DNA sequences. Such recombinant human antibodies have variable and constant regions derived from human germline immunoglobulin sequences. In certain embodiments, however, such recombinant human antibodies are subjected to in vitro mutagenesis (or, when an animal transgenic for human Ig sequences is used, in vivo somatic mutagenesis) and thus the amino acid sequences of the VH and VL regions of the recombinant antibodies are sequences that, while derived from and related to human germline VH and VL sequences, may not naturally exist within the human antibody germline repertoire in vivo. One embodiment of the disclosure provides fully human antibodies capable of binding human transferrin receptor which can be generated using techniques well known in the art, such as, but not limited to, using human Ig phage libraries such as those disclosed in Jermutus et al., PCT publication No. WO 2005/007699 A2.


Region of complementarity: As used herein, the term “region of complementarity” refers to a nucleotide sequence, e.g., of an oligonucleotide, that is sufficiently complementary to a cognate nucleotide sequence, e.g., of a target nucleic acid, such that the two nucleotide sequences are capable of annealing to one another under physiological conditions (e.g., in a cell). In some embodiments, a region of complementarity is fully complementary to a cognate nucleotide sequence of target nucleic acid. However, in some embodiments, a region of complementarity is partially complementary to a cognate nucleotide sequence of target nucleic acid (e.g., at least 80%, 90%, 95% or 99% complementarity). In some embodiments, a region of complementarity contains 1, 2, 3, or 4 mismatches compared with a cognate nucleotide sequence of a target nucleic acid.


Specifically binds: As used herein, the term “specifically binds” refers to the ability of a molecule to bind to a binding partner with a degree of affinity or avidity that enables the molecule to be used to distinguish the binding partner from an appropriate control in a binding assay or other binding context. With respect to an antibody, the term, “specifically binds”, refers to the ability of the antibody to bind to a specific antigen with a degree of affinity or avidity, compared with an appropriate reference antigen or antigens, that enables the antibody to be used to distinguish the specific antigen from others, e.g., to an extent that permits preferential targeting to certain cells, e.g., muscle cells, through binding to the antigen, as described herein. In some embodiments, an antibody specifically binds to a target if the antibody has a KD for binding the target of at least about 10−4 M, 10−5 M, 10−6 M, 10−7 M. 10−8 M, 10−9 M. 10−10 M, 10−11 M, 10−12 M. 10−13 M, or less. In some embodiments, an antibody specifically binds to the transferrin receptor, e.g., an epitope of the apical domain of transferrin receptor.


Splice acceptor site: As used herein, the term “splice acceptor site” or “splice acceptor” refers to a nucleic acid sequence motif at the 3′ end of an intron or across an intron/exon junction of a gene or pre-mRNA that is involved in splicing of pre-mRNA into mRNA (i.e., removing introns from the pre-mRNA), and can be referred to as a splicing feature. A splice acceptor site includes a terminal AG sequence at the 3′ end of an intron, which is typically preceded (5′-ward) by a region high in pyrimidines (C/U). Upstream from the splice acceptor site is the branch point. Formation of a lariat loop intermediate structure by a transesterification reaction between the branch point and the splice donor site releases a 3′-OH of the 5′ exon, which subsequently reacts with the first nucleotide of the 3′ exon, thereby joining the exons and releasing the intron lariat. The AG sequence at the 3′ end of the intron in the splice acceptor site is known to be critical for proper splicing, as changing one of these nucleotides results in inhibition of splicing. Rarely, alternative splice acceptor sites have an AC at the 3′ end of the intron, instead of the more common AG. A common splice acceptor site motif has a sequence of or similar to [Y-rich region]-NCAGG or YxNYAGG, in which Y represents a pyrimidine, N represents any nucleotide, and x is a number from 4 to 20. The cut site follows the AG, which represent the 3′-terminal nucleotides of the excised intron.


Splice donor site: As used herein, the term “splice donor site” or “splice donor” refers to a nucleic acid sequence motif at the 5′ end of an intron or across an exon/intron junction of a gene or pre-mRNA that is involved in splicing of pre-mRNA into mRNA (i.e., removing introns from the pre-mRNA), and can be referred to as a splicing feature. A splice donor site includes a terminal GU sequence at the 5′ end of the intron, within a larger and fairly unconstrained sequence. During splicing, the 2′-OH of a nucleotide within the branch point initiates a transesterification reaction via a nucleophilic attack on the 5′ G of the intron within the splice donor site. The G is thereby cleaved from the pre-mRNA and bonds instead to the branch point nucleotide, forming a loop lariat structure. The 3′ nucleotide of the upstream exon subsequently binds the splice acceptor site, joining the exons and excising the intron. A typical splice donor site has a sequence of or similar to GGGURAGU or AGGURNG, in which R represents a purine and N represents any nucleotide. The cut site precedes the first GU (i.e., GG/GURAGU or AG/GURNG), which represent the 5′-terminal nucleotides of the excised intron.


Subject: As used herein, the term “subject” refers to a mammal. In some embodiments, a subject is non-human primate, or rodent. In some embodiments, a subject is a human. In some embodiments, a subject is a patient, e.g., a human patient that has or is suspected of having a disease. In some embodiments, the subject is a human patient who has or is suspected of having a disease resulting from a mutated DMD gene sequence, e.g., a mutation in an exon of a DMD gene sequence. In some embodiments, a subject has a dystrophinopathy, e.g., Duchenne muscular dystrophy. In some embodiments, a subject is a patient that has a mutation of the DMD gene that is amenable to exon 45 skipping.


Transferrin receptor: As used herein, the term, “transferrin receptor” (also known as TFRC, CD71, p90, or TFR1) refers to an internalizing cell surface receptor that binds transferrin to facilitate iron uptake by endocytosis. In some embodiments, a transferrin receptor may be of human (NCBI Gene ID 7037), non-human primate (e.g., NCBI Gene ID 711568 or NCBI Gene ID 102136007), or rodent (e.g., NCBI Gene ID 22042) origin. In addition, multiple human transcript variants have been characterized that encoded different isoforms of the receptor (e.g., as annotated under GenBank RefSeq Accession Numbers: NP_001121620.1, NP_003225.2, NP_001300894.1, and NP_001300895.1).


2′-modified nucleoside: As used herein, the terms “2′-modified nucleoside” and “2′-modified ribonucleoside” are used interchangeably and refer to a nucleoside having a sugar moiety modified at the 2′ position. In some embodiments, the 2′-modified nucleoside is a 2′-4′ bicyclic nucleoside, where the 2′ and 4′ positions of the sugar are bridged (e.g., via a methylene, an ethylene, or a (S)-constrained ethyl bridge). In some embodiments, the 2′-modified nucleoside is a non-bicyclic 2′-modified nucleoside, e.g., where the 2′ position of the sugar moiety is substituted. Non-limiting examples of 2′-modified nucleosides include: 2′-deoxy, 2′-fluoro (2′-F), 2′-O-methyl (2′-O-Me), 2′-O-methoxyethyl (2′-MOE), 2′-O-aminopropyl (2′-O-AP), 2′-O-dimethylaminoethyl (2′-O-DMAOE), 2′-O-dimethylaminopropyl (2′-O-DMAP), 2′-O-dimethylaminoethyloxyethyl (2′-O-DMAEOE), 2′-O—N-methylacetamido (2′-O-NMA), locked nucleic acid (LNA, methylene-bridged nucleic acid), ethylene-bridged nucleic acid (ENA), and (S)-constrained ethyl-bridged nucleic acid (cEt). In some embodiments, the 2′-modified nucleosides described herein are high-affinity modified nucleosides and oligonucleotides comprising the 2′-modified nucleosides have increased affinity to a target sequences, relative to an unmodified oligonucleotide. Examples of structures of 2′-modified nucleosides are provided below:




embedded image


These examples are shown with phosphate groups, but any internucleoside linkages are contemplated between 2′-modified nucleosides.


II. Complexes

Provided herein are complexes that comprise a targeting agent, e.g. an antibody, covalently linked to a molecular payload. In some embodiments, a complex comprises a muscle-targeting antibody covalently linked to an oligonucleotide. A complex may comprise an antibody that specifically binds a single antigenic site or that binds to at least two antigenic sites that may exist on the same or different antigens.


A complex may be used to modulate the activity or function of at least one gene, protein, and/or (e.g., and) nucleic acid. In some embodiments, the molecular payload present within a complex is responsible for the modulation of a gene, protein, and/or (e.g., and) nucleic acids. A molecular payload may be a small molecule, protein, nucleic acid, oligonucleotide, or any molecular entity capable of modulating the activity or function of a gene, protein, and/or (e.g., and) nucleic acid in a cell.


In some embodiments, a complex comprises a muscle-targeting agent, e.g., an anti-transferrin receptor antibody, covalently linked to a molecular payload, e.g., an antisense oligonucleotide that targets DMD to promote exon skipping, e.g., in a transcript encoded from a mutated DMD allele. In some embodiments, the complex targets a DMD pre-mRNA to promote skipping of exon 45 in the DMD pre-mRNA.


A. Muscle-Targeting Agents

Some aspects of the disclosure provide muscle-targeting agents, e.g., for delivering a molecular payload to a muscle cell. In some embodiments, such muscle-targeting agents are capable of binding to a muscle cell, e.g., via specifically binding to an antigen on the muscle cell, and delivering an associated molecular payload to the muscle cell. In some embodiments, the molecular payload is bound (e.g., covalently bound) to the muscle targeting agent and is internalized into the muscle cell upon binding of the muscle targeting agent to an antigen on the muscle cell, e.g., via endocytosis. It should be appreciated that various types of muscle-targeting agents may be used in accordance with the disclosure, and that any muscle targets (e.g., muscle surface proteins) can be targeted by any type of muscle-targeting agent described herein. For example, the muscle-targeting agent may comprise, or consist of, a small molecule, a nucleic acid (e.g., DNA or RNA), a peptide (e.g., an antibody), a lipid (e.g., a microvesicle), or a sugar moiety (e.g., a polysaccharide). Exemplary muscle-targeting agents are described in further detail herein, however, it should be appreciated that the exemplary muscle-targeting agents provided herein are not meant to be limiting.


Some aspects of the disclosure provide muscle-targeting agents that specifically bind to an antigen on muscle, such as skeletal muscle, smooth muscle, or cardiac muscle. In some embodiments, any of the muscle-targeting agents provided herein bind to (e.g., specifically bind to) an antigen on a skeletal muscle cell, a smooth muscle cell, and/or (e.g., and) a cardiac muscle cell.


By interacting with muscle-specific cell surface recognition elements (e.g., cell membrane proteins), both tissue localization and selective uptake into muscle cells can be achieved. In some embodiments, molecules that are substrates for muscle uptake transporters are useful for delivering a molecular payload into muscle tissue. Binding to muscle surface recognition elements followed by endocytosis can allow even large molecules such as antibodies to enter muscle cells. As another example molecular payloads conjugated to transferrin or anti-TfR1 antibodies can be taken up by muscle cells via binding to transferrin receptor, which may then be endocytosed, e.g., via clathrin-mediated endocytosis.


The use of muscle-targeting agents may be useful for concentrating a molecular payload (e.g., oligonucleotide) in muscle while reducing toxicity associated with effects in other tissues. In some embodiments, the muscle-targeting agent concentrates a bound molecular payload in muscle cells as compared to another cell type within a subject. In some embodiments, the muscle-targeting agent concentrates a bound molecular payload in muscle cells (e.g., skeletal, smooth, or cardiac muscle cells) in an amount that is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, or 100 times greater than an amount in non-muscle cells (e.g., liver, neuronal, blood, or fat cells). In some embodiments, a toxicity of the molecular payload in a subject is reduced by at least 1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 90%, or 95% when it is delivered to the subject when bound to the muscle-targeting agent.


In some embodiments, to achieve muscle selectivity, a muscle recognition element (e.g., a muscle cell antigen) may be required. As one example, a muscle-targeting agent may be a small molecule that is a substrate for a muscle-specific uptake transporter. As another example, a muscle-targeting agent may be an antibody that enters a muscle cell via transporter-mediated endocytosis. As another example, a muscle targeting agent may be a ligand that binds to cell surface receptor on a muscle cell. It should be appreciated that while transporter-based approaches provide a direct path for cellular entry, receptor-based targeting may involve stimulated endocytosis to reach the desired site of action.


i. Muscle-Targeting Antibodies


In some embodiments, the muscle-targeting agent is an antibody. Generally, the high specificity of antibodies for their target antigen provides the potential for selectively targeting muscle cells (e.g., skeletal, smooth, and/or (e.g., and) cardiac muscle cells). This specificity may also limit off-target toxicity. Examples of antibodies that are capable of targeting a surface antigen of muscle cells have been reported and are within the scope of the disclosure. For example, antibodies that target the surface of muscle cells are described in Arahata K., et al. “Immunostaining of skeletal and cardiac muscle surface membrane with antibody against Duchenne muscular dystrophy peptide” Nature 1988; 333: 861-3; Song K. S., et al. “Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Cavcolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins” J Biol Chem 1996; 271: 15160-5; and Weisbart R. H. et al., “Cell type specific targeted intracellular delivery into muscle of a monoclonal antibody that binds myosin IIb” Mol Immunol. 2003 March, 39(13):78309; the entire contents of each of which are incorporated herein by reference.


a. Anti-Transferrin Receptor (TfR) Antibodies

Some aspects of the disclosure are based on the recognition that agents binding to transferrin receptor, e.g., anti-transferrin-receptor antibodies, are capable of targeting muscle cell. Transferrin receptors are internalizing cell surface receptors that transport transferrin across the cellular membrane and participate in the regulation and homeostasis of intracellular iron levels. Some aspects of the disclosure provide transferrin receptor binding proteins, which are capable of binding to transferrin receptor. Accordingly, aspects of the disclosure provide binding proteins (e.g., antibodies) that bind to transferrin receptor. In some embodiments, binding proteins that bind to transferrin receptor are internalized, along with any bound molecular payload, into a muscle cell. As used herein, an antibody that binds to a transferrin receptor may be referred to interchangeably as an, transferrin receptor antibody, an anti-transferrin receptor antibody, or an anti-TfR1 antibody. Antibodies that bind, e.g. specifically bind, to a transferrin receptor may be internalized into the cell, e.g. through receptor-mediated endocytosis, upon binding to a transferrin receptor.


It should be appreciated that anti-TfR1 antibodies may be produced, synthesized, and/or (e.g., and) derivatized using several known methodologies, e.g. library design using phage display. Exemplary methodologies have been characterized in the art and are incorporated by reference (Díez, P. et al. “High-throughput phage-display screening in array format”, Enzyme and microbial technology, 2015, 79, 34-41; Christoph M. H. and Stanley, J. R. “Antibody Phage Display: Technique and Applications” J Invest Dermatol. 2014, 134:2; Engleman, Edgar (Ed.) “Human Hybridomas and Monoclonal Antibodies.” 1985, Springer). In other embodiments, an anti-TfR1 antibody has been previously characterized or disclosed. Antibodies that specifically bind to transferrin receptor are known in the art (see, e.g. U.S. Pat. No. 4,364,934, filed Dec. 4, 1979, “Monoclonal antibody to a human early thymocyte antigen and methods for preparing same”; U.S. Pat. No. 8,409,573, filed Jun. 14, 2006, “Anti-CD71 monoclonal antibodies and uses thereof for treating malignant tumor cells”; U.S. Pat. No. 9,708,406, filed May 20, 2014, “Anti-transferrin receptor antibodies and methods of use”; U.S. Pat. No. 9,611,323, filed Dec. 19, 2014, “Low affinity blood brain barrier receptor antibodies and uses therefor”; WO 2015/098989, filed Dec. 24, 2014, “Novel anti-Transferrin receptor antibody that passes through blood-brain barrier”; Schneider C. et al. “Structural features of the cell surface receptor for transferrin that is recognized by the monoclonal antibody OKT9.” J Biol Chem. 1982, 257:14, 8516-8522; Lec et al. “Targeting Rat Anti-Mouse Transferrin Receptor Monoclonal Antibodies through Blood-Brain Barrier in Mouse” 2000, J Pharmacol. Exp. Ther., 292: 1048-1052).


In some embodiments, the anti-TfR1 antibody described herein binds to transferrin receptor with high specificity and affinity. In some embodiments, the anti-TfR1 antibody described herein specifically binds to any extracellular epitope of a transferrin receptor or an epitope that becomes exposed to an antibody. In some embodiments, anti-TfR1 antibodies provided herein bind specifically to transferrin receptor from human, non-human primates, mouse, rat, etc. In some embodiments, anti-TfR1 antibodies provided herein bind to human transferrin receptor. In some embodiments, the anti-TfR1 antibody described herein binds to an amino acid segment of a human or non-human primate transferrin receptor, as provided in SEQ ID NOs: 105-108. In some embodiments, the anti-TfR1 antibody described herein binds to an amino acid segment corresponding to amino acids 90-96 of a human transferrin receptor as set forth in SEQ ID NO: 105, which is not in the apical domain of the transferrin receptor.


In some embodiments, the anti-TfR1 antibodies described herein (e.g., Anti-TfR clone 8 in Table 2 below) bind an epitope in TfR1, wherein the epitope comprises residues in amino acids 214-241 and/or amino acids 354-381 of SEQ ID NO: 105. In some embodiments, the anti-TfR1 antibodies described herein bind an epitope comprising residues in amino acids 214-241 and amino acids 354-381 of SEQ ID NO: 105. In some embodiments, the anti-TfR1 antibodies described herein bind an epitope comprising one or more of residues Y222, T227, K231, H234, T367, S368, S370, T376, and S378 of human TfR1 as set forth in SEQ ID NO: 105. In some embodiments, the anti-TfR1 antibodies described herein bind an epitope comprising residues Y222, T227, K231, H234, T367, S368, S370, T376, and S378 of human TfR1 as set forth in SEQ ID NO: 105.


In some embodiments, the anti-TfR1 antibody described herein (e.g., 3M12 in Table 2 below and its variants) bind an epitope in TfR1, wherein the epitope comprises residues in amino acids 258-291 and/or amino acids 358-381 of SEQ ID NO: 105. In some embodiments, the anti-TfR1 antibodies (e.g., 3M12 in Table 2 below and its variants) described herein bind an epitope comprising residues in amino acids amino acids 258-291 and amino acids 358-381 of SEQ ID NO: 105. In some embodiments, the anti-TfR1 antibodies described herein (e.g., 3M12 in Table 2 below and its variants) bind an epitope comprising one or more of residues K261, S273, Y282, T362, S368, S370, and K371 of human TfR1 as set forth in SEQ ID NO: 105. In some embodiments, the anti-TfR1 antibodies described herein (e.g., 3M12 in Table 2 below and its variants) bind an epitope comprising residues K261, S273, Y282, T362, S368, S370, and K371 of human TfR1 as set forth in SEQ ID NO: 105.


An example human transferrin receptor amino acid sequence, corresponding to NCBI sequence NP_003225.2 (transferrin receptor protein 1 isoform 1, Homo sapiens) is as follows:











(SEQ ID NO: 105)



MMDQARSAFSNLFGGEPLSYTRFSLARQVDGDNSHVEMKLAVDEE







ENADNNTKANVTKPKRCSGSICYGTIAVIVFFLIGFMIGYLGYCK







GVEPKTECERLAGTESPVREEPGEDFPAARRLYWDDLKRKLSEKL







DSTDFTGTIKLLNENSYVPREAGSQKDENLALYVENQFREFKLSK







VWRDQHFVKIQVKDSAQNSVIIVDKNGRLVYLVENPGGYVAYSKA







ATVTGKLVHANFGTKKDFEDLYTPVNGSIVIVRAGKITFAEKVAN







AESLNAIGVLIYMDQTKFPIVNAELSFFGHAHLGTGDPYTPGFPS







FNHTQFPPSRSSGLPNIPVQTISRAAAEKLFGNMEGDCPSDWKTD







STCRMVTSESKNVKLTVSNVLKEIKILNIFGVIKGFVEPDHYVVV







GAQRDAWGPGAAKSGVGTALLLKLAQMFSDMVLKDGFQPSRSIIF







ASWSAGDFGSVGATEWLEGYLSSLHLKAFTYINLDKAVLGTSNFK







VSASPLLYTLIEKTMQNVKHPVTGQFLYQDSNWASKVEKLTLDNA







AFPFLAYSGIPAVSFCFCEDTDYPYLGTTMDTYKELIERIPELNK







VARAAAEVAGQFVIKLTHDVELNLDYERYNSQLLSFVRDLNQYRA







DIKEMGLSLQWLYSARGDFFRATSRLTTDFGNAEKTDRFVMKKLN







DRVMRVEYHFLSPYVSPKESPFRHVFWGSGSHTLPALLENLKLRK







QNNGAFNETLFRNQLALATWTIQGAANALSGDVWDIDNEF.






An example non-human primate transferrin receptor amino acid sequence, corresponding to NCBI sequence NP_001244232.1 (transferrin receptor protein 1, Macaca mulatta) is as follows:











(SEQ ID NO: 106)



MMDQARSAFSNLFGGEPLSYTRFSLARQVDGDNSHVEMKLGVDEE







ENTDNNTKPNGTKPKRCGGNICYGTIAVIIFFLIGFMIGYLGYCK







GVEPKTECERLAGTESPAREEPEEDFPAAPRLYWDDLKRKLSEKL







DTTDFTSTIKLLNENLYVPREAGSQKDENLALYIENQFREFKLSK







VWRDQHFVKIQVKDSAQNSVIIVDKNGGLVYLVENPGGYVAYSKA







ATVTGKLVHANFGTKKDFEDLDSPVNGSIVIVRAGKITFAEKVAN







AESLNAIGVLIYMDQTKFPIVKADLSFFGHAHLGTGDPYTPGFPS







FNHTQFPPSQSSGLPNIPVQTISRAAAEKLFGNMEGDCPSDWKTD







STCKMVTSENKSVKLTVSNVLKETKILNIFGVIKGFVEPDHYVVV







GAQRDAWGPGAAKSSVGTALLLKLAQMFSDMVLKDGFQPSRSIIF







ASWSAGDFGSVGATEWLEGYLSSLHLKAFTYINLDKAVLGTSNFK







VSASPLLYTLIEKTMQDVKHPVTGRSLYQDSNWASKVEKLTLDNA







AFPFLAYSGIPAVSFCFCEDTDYPYLGTTMDTYKELVERIPELNK







VARAAAEVAGQFVIKLTHDTELNLDYERYNSQLLLFLRDLNQYRA







DVKEMGLSLQWLYSARGDFFRATSRLTTDFRNAEKRDKFVMKKLN







DRVMRVEYYFLSPYVSPKESPFRHVFWGSGSHTLSALLESLKLRR







QNNSAFNETLFRNQLALATWTIQGAANALSGDVWDIDNEF






An example non-human primate transferrin receptor amino acid sequence, corresponding to NCBI sequence XP_005545315.1 (transferrin receptor protein 1, Macaca fascicularis) is as follows:











(SEQ ID NO: 107)



MMDQARSAFSNLFGGEPLSYTRFSLARQVDGDNSHVEMKLGVDEE







ENTDNNTKANGTKPKRCGGNICYGTIAVIIFFLIGFMIGYLGYCK







GVEPKTECERLAGTESPAREEPEEDFPAAPRLYWDDLKRKLSEKL







DTTDFTSTIKLLNENLYVPREAGSQKDENLALYIENQFREFKLSK







VWRDQHFVKIQVKDSAQNSVIIVDKNGGLVYLVENPGGYVAYSKA







ATVTGKLVHANFGTKKDFEDLDSPVNGSIVIVRAGKITFAEKVAN







AESLNAIGVLIYMDQTKFPIVKADLSFFGHAHLGTGDPYTPGFPS







FNHTQFPPSQSSGLPNIPVQTISRAAAEKLFGNMEGDCPSDWKTD







STCKMVTSENKSVKLTVSNVLKETKILNIFGVIKGFVEPDHYVVV







GAQRDAWGPGAAKSSVGTALLLKLAQMFSDMVLKDGFQPSRSIIF







ASWSAGDFGSVGATEWLEGYLSSLHLKAFTYINLDKAVLGTSNFK







VSASPLLYTLIEKTMQDVKHPVTGRSLYQDSNWASKVEKLTLDNA







AFPFLAYSGIPAVSFCFCEDTDYPYLGTTMDTYKELVERIPELNK







VARAAAEVAGQFVIKLTHDTELNLDYERYNSQLLLFLRDLNQYRA







DVKEMGLSLQWLYSARGDFFRATSRLTTDFRNAEKRDKFVMKKLN







DRVMRVEYYFLSPYVSPKESPFRHVFWGSGSHTLSALLESLKLRR







QNNSAFNETLFRNQLALATWTIQGAANALSGDVWDIDNEF.






An example mouse transferrin receptor amino acid sequence, corresponding to NCBI sequence NP_001344227.1 (transferrin receptor protein 1, Mus musculus) is as follows:











(SEQ ID NO: 108)



MMDQARSAFSNLFGGEPLSYTRFSLARQVDGDNSHVEMKLAADEE







ENADNNMKASVRKPKRFNGRLCFAAIALVIFFLIGFMSGYLGYCK







RVEQKEECVKLAETEETDKSETMETEDVPTSSRLYWADLKTLLSE







KLNSIEFADTIKQLSQNTYTPREAGSQKDESLAYYIENQFHEFKF







SKVWRDEHYVKIQVKSSIGQNMVTIVQSNGNLDPVESPEGYVAFS







KPTEVSGKLVHANFGTKKDFEELSYSVNGSLVIVRAGEITFAEKV







ANAQSFNAIGVLIYMDKNKFPVVEADLALFGHAHLGTGDPYTPGF







PSFNHTQFPPSQSSGLPNIPVQTISRAAAEKLFGKMEGSCPARWN







IDSSCKLELSQNQNVKLIVKNVLKERRILNIFGVIKGYEEPDRYV







VVGAQRDALGAGVAAKSSVGTGLLLKLAQVFSDMISKDGFRPSRS







IIFASWTAGDFGAVGATEWLEGYLSSLHLKAFTYINLDKVVLGTS







NFKVSASPLLYTLMGKIMQDVKHPVDGKSLYRDSNWISKVEKLSF







DNAAYPFLAYSGIPAVSFCFCEDADYPYLGTRLDTYEALTQKVPQ







LNQMVRTAAEVAGQLIIKLTHDVELNLDYEMYNSKLLSFMKDLNQ







FKTDIRDMGLSLQWLYSARGDYFRATSRLTTDFHNAEKTNRFVMR







EINDRIMKVEYHFLSPYVSPRESPFRHIFWGSGSHTLSALVENLK







LRQKNITAFNETLFRNQLALATWTIQGVANALSGDIWNIDNEF






In some embodiments, an anti-TfR1 antibody binds to an amino acid segment of the receptor as follows: FVKIQVKDSAQNSVIIVDKNGRLVYLVENPGGYVAYSKAATVTGKLVHANFGTKKDFE DLYTPVNGSIVIVRAGKITFAEKVANAESLNAIGVLIYMDQTKFPIVNAELSFFGHAHLG TGDPYTPGFPSFNHTQFPPSRSSGLPNIPVQTISRAAAEKLFGNMEGDCPSDWKTDSTCR MVTSESKNVKLTVSNVLKE (SEQ ID NO: 109) and does not inhibit the binding interactions between transferrin receptors and transferrin and/or (e.g., and) human hemochromatosis protein (also known as HFE). In some embodiments, the anti-TfR1 antibody described herein does not bind an epitope in SEQ ID NO: 109.


Appropriate methodologies may be used to obtain and/or (e.g., and) produce antibodies, antibody fragments, or antigen-binding agents, e.g., through the use of recombinant DNA protocols. In some embodiments, an antibody may also be produced through the generation of hybridomas (see. e.g., Kohler, G and Milstein, C. “Continuous cultures of fused cells secreting antibody of predefined specificity” Nature, 1975, 256: 495-497). The antigen-of-interest may be used as the immunogen in any form or entity, e.g., recombinant or a naturally occurring form or entity. Hybridomas are screened using standard methods, e.g. ELISA screening, to find at least one hybridoma that produces an antibody that targets a particular antigen. Antibodies may also be produced through screening of protein expression libraries that express antibodies, e.g., phage display libraries. Phage display library design may also be used, in some embodiments, (sec, e.g. U.S. Pat. No. 5,223,409, filed Mar. 1, 1991, “Directed evolution of novel binding proteins”; WO 1992/18619, filed Apr. 10, 1992, “Heterodimeric receptor libraries using phagemids”; WO 1991/17271, filed May 1, 1991, “Recombinant library screening methods”; WO 1992/20791, filed May 15, 1992, “Methods for producing members of specific binding pairs”; WO 1992/15679, filed Feb. 28, 1992, and “Improved epitope displaying phage”). In some embodiments, an antigen-of-interest may be used to immunize a non-human animal, e.g., a rodent or a goat. In some embodiments, an antibody is then obtained from the non-human animal, and may be optionally modified using a number of methodologies, e.g., using recombinant DNA techniques. Additional examples of antibody production and methodologies are known in the art (sec, e.g. Harlow et al. “Antibodies: A Laboratory Manual”, Cold Spring Harbor Laboratory, 1988).


In some embodiments, an antibody is modified, e.g., modified via glycosylation, phosphorylation, sumoylation, and/or (e.g., and) methylation. In some embodiments, an antibody is a glycosylated antibody, which is conjugated to one or more sugar or carbohydrate molecules. In some embodiments, the one or more sugar or carbohydrate molecule are conjugated to the antibody via N-glycosylation, O-glycosylation, C-glycosylation, glypiation (GPI anchor attachment), and/or (e.g., and) phosphoglycosylation. In some embodiments, the one or more sugar or carbohydrate molecules are monosaccharides, disaccharides, oligosaccharides, or glycans. In some embodiments, the one or more sugar or carbohydrate molecule is a branched oligosaccharide or a branched glycan. In some embodiments, the one or more sugar or carbohydrate molecule includes a mannose unit, a glucose unit, an N-acetylglucosamine unit, an N-acetylgalactosamine unit, a galactose unit, a fucose unit, or a phospholipid unit. In some embodiments, there are about 1-10, about 1-5, about 5-10, about 1-4, about 1-3, or about 2 sugar molecules. In some embodiments, a glycosylated antibody is fully or partially glycosylated. In some embodiments, an antibody is glycosylated by chemical reactions or by enzymatic means. In some embodiments, an antibody is glycosylated in vitro or inside a cell, which may optionally be deficient in an enzyme in the N- or O-glycosylation pathway, e.g. a glycosyltransferase. In some embodiments, an antibody is functionalized with sugar or carbohydrate molecules as described in International Patent Application Publication WO2014065661, published on May 1, 2014, entitled, “Modified antibody, antibody-conjugate and process for the preparation thereof”.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VL domain and/or (e.g., and) a VH domain of any one of the anti-TfR1 antibodies selected from any one of Tables 2-7, and comprises a constant region comprising the amino acid sequences of the constant regions of an IgG, IgE, IgM, IgD, IgA or IgY immunoglobulin molecule, any class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2), or any subclass (e.g., IgG2a and IgG2b) of immunoglobulin molecule. Non-limiting examples of human constant regions are described in the art, e.g., sec Kabat E A et al., (1991) supra.


In some embodiments, agents binding to transferrin receptor, e.g., anti-TfR1 antibodies, are capable of targeting muscle cell and/or (e.g., and) mediate the transportation of an agent across the blood brain barrier. Transferrin receptors are internalizing cell surface receptors that transport transferrin across the cellular membrane and participate in the regulation and homeostasis of intracellular iron levels. Some aspects of the disclosure provide transferrin receptor binding proteins, which are capable of binding to transferrin receptor. Antibodies that bind, e.g. specifically bind, to a transferrin receptor may be internalized into the cell, e.g. through receptor-mediated endocytosis, upon binding to a transferrin receptor.


Provided herein, in some aspects, are humanized antibodies that bind to transferrin receptor with high specificity and affinity. In some embodiments, the humanized anti-TfR1 antibody described herein specifically binds to any extracellular epitope of a transferrin receptor or an epitope that becomes exposed to an antibody. In some embodiments, the humanized anti-TfR1 antibodies provided herein bind specifically to transferrin receptor from human, non-human primates, mouse, rat, etc. In some embodiments, the humanized anti-TfR1 antibodies provided herein bind to human transferrin receptor. In some embodiments, the humanized anti-TfR1 antibody described herein binds to an amino acid segment of a human or non-human primate transferrin receptor, as provided in SEQ ID NOs: 105-108. In some embodiments, the humanized anti-TfR1 antibody described herein binds to an amino acid segment corresponding to amino acids 90-96 of a human transferrin receptor as set forth in SEQ ID NO: 105, which is not in the apical domain of the transferrin receptor. In some embodiments, the humanized anti-TfR1 antibodies described herein binds to TfR1 but does not bind to TfR2.


In some embodiments, an anti-TFR1 antibody specifically binds a TfR1 (e.g., a human or non-human primate TfR1) with binding affinity (e.g., as indicated by Kd) of at least about 10−4 M, 10−5 M, 10−6 M, 10−7 M, 10−8 M, 10−9 M, 10−10 M, 10−11 M, 10−12 M, 10−13 M, or less. In some embodiments, the anti-TfR1 antibodies described herein bind to TfR1 with a KD of sub-nanomolar range. In some embodiments, the anti-TfR1 antibodies described herein selectively bind to transferrin receptor 1 (TfR1) but do not bind to transferrin receptor 2 (TfR2). In some embodiments, the anti-TfR1 antibodies described herein bind to human TfR1 and cyno TfR1 (e.g., with a Kd of 10−7 M, 10−8 M, 10−9 M, 10−10 M, 10−11 M, 10−12 M, 10−13 M, or less), but do not bind to a mouse TfR1. The affinity and binding kinetics of the anti-TfR1 antibody can be tested using any suitable method including but not limited to biosensor technology (e.g., OCTET or BIACORE). In some embodiments, binding of any one of the anti-TfR1 antibodies described herein does not complete with or inhibit transferrin binding to the TfR1. In some embodiments, binding of any one of the anti-TfR1 antibodies described herein does not complete with or inhibit HFE-beta-2-microglobulin binding to the TfR1.


Non-limiting examples of anti-TfR1 antibodies are provided in Table 2.









TABLE 2







Examples of Anti-TfR1 Antibodies












No.





Ab
system
IMGT
Kabat
Chothia





3-A4
CDR-
GFNIKDDY (SEQ ID NO:
DDYMY (SEQ ID NO: 7)
GFNIKDD (SEQ ID NO: 12)



H1
1)








CDR-
IDPENGDT (SEQ ID NO:
WIDPENGDTEYASKFQD
ENG (SEQ ID NO: 13)



H2
2)
(SEQ ID NO: 8)







CDR-
TLWLRRGLDY (SEQ ID
WLRRGLDY (SEQ ID NO: 9)
LRRGLD (SEQ ID NO: 14)



H3
NO: 3)








CDR-
KSLLHSNGYTY (SEQ ID
RSSKSLLHSNGYTYLF (SEQ
SKSLLHSNGYTY (SEQ ID



L1
NO: 4)
ID NO: 10)
NO: 15)






CDR-
RMS (SEQ ID NO: 5)
RMSNLAS (SEQ ID NO: 11)
RMS (SEQ ID NO: 5)



L2









CDR-
MQHLEYPFT (SEQ ID
MQHLEYPFT (SEQ ID NO: 6)
HLEYPF (SEQ ID NO: 16)



L3
NO: 6)















VH
EVQLQQSGAELVRPGASVKLSCTASGFNIKDDYMYWVKQRPEQGLEWIGWIDPENGDT




EYASKFQDKATVTADTSSNTAYLQLSSLTSEDTAVYYCTLWLRRGLDYWGQGTSVTVS




S (SEQ ID NO: 17)






VL
DIVMTQAAPSVPVTPGESVSISCRSSKSLLHSNGYTYLFWFLQRPGQSPQLLIYRMSNLA




SGVPDRFSGSGSGTAFTLRISRVEAEDVGVYYCMQHLEYPFTFGGGTKLEIK (SEQ ID




NO: 18)














3-A4
CDR-
GFNIKDDY (SEQ ID NO:
DDYMY (SEQ ID NO: 7)
GFNIKDD (SEQ ID NO: 12)


N54T*
H1
1)








CDR-
IDPETGDT (SEQ ID NO:
WIDPETGDTEYASKFQD
ETG (SEQ ID NO: 21)



H2
19)
(SEQ ID NO: 20)







CDR-
TLWLRRGLDY (SEQ ID
WLRRGLDY (SEQ ID NO: 9)
LRRGLD (SEQ ID NO: 14)



H3
NO: 3)








CDR-
KSLLHSNGYTY (SEQ ID
RSSKSLLHSNGYTYLF (SEQ
SKSLLHSNGYTY (SEQ ID



L1
NO: 4)
ID NO: 10)
NO: 15)






CDR-
RMS (SEQ ID NO: 5)
RMSNLAS (SEQ ID NO: 11)
RMS(SEQ ID NO: 5)



L2









CDR-
MQHLEYPFT (SEQ ID
MQHLEYPFT (SEQ ID NO: 6)
HLEYPF (SEQ ID NO: 16)



L3
NO: 6)















VH
EVQLQQSGAELVRPGASVKLSCTASGFNIKDDYMYWVKORPEQGLEWIGWIDPETGDT




EYASKFQDKATVTADTSSNTAYLQLSSLTSEDTAVYYCTLWLRRGLDYWGQGTSVTVS




S (SEQ ID NO: 22)






VL
DIVMTQAAPSVPVTPGESVSISCRSSKSLLHSNGYTYLFWFLQRPGQSPQLLIYRMSNLA




SGVPDRFSGSGSGTAFTLRISRVEAEDVGVYYCMQHLEYPFTFGGGTKLEIK (SEQ ID




NO: 18)














3-A4
CDR-
GFNIKDDY (SEQ ID NO:
DDYMY (SEQ ID NO: 7)
GFNIKDD (SEQ ID NO: 12)


N54S*
H1
1)








CDR-
IDPESGDT (SEQ ID NO:
WIDPESGDTEYASKFQD
ESG (SEQ ID NO: 25)



H2
23)
(SEQ ID NO: 24)







CDR-
TLWLRRGLDY (SEQ ID
WLRRGLDY (SEQ ID NO: 9)
LRRGLD (SEQ ID NO: 14)



H3
NO: 3)








CDR-
KSLLHSNGYTY (SEQ ID
RSSKSLLHSNGYTYLF (SEQ
SKSLLHSNGYTY (SEQ ID



L1
NO: 4)
ID NO: 10)
NO: 15)






CDR-
RMS (SEQ ID NO: 5)
RMSNLAS (SEQ ID NO: 11)
RMS (SEQ ID NO: 5)



L2









CDR-
MQHLEYPFT (SEQ ID
MQHLEYPFT (SEQ ID NO: 6)
HLEYPF (SEQ ID NO: 16)



L3
NO: 6)















VH
EVQLQQSGAELVRPGASVKLSCTASGFNIKDDYMYWVKQRPEQGLEWIGWIDPESGDT




EYASKFQDKATVTADTSSNTAYLQLSSLTSEDTAVYYCTLWLRRGLDYWGQGTSVTVS




S (SEQ ID NO: 26)






VL
DIVMTQAAPSVPVTPGESVSISCRSSKSLLHSNGYTYLFWFLQRPGQSPQLLIYRMSNLA




SGVPDRFSGSGSGTAFTLRISRVEAEDVGVYYCMQHLEYPFTFGGGTKLEIK (SEQ ID




NO: 18)














3-M12
CDR-
GYSITSGYY (SEQ ID
SGYYWN (SEQ ID NO: 33)
GYSITSGY (SEQ ID NO:



H1
NO: 27)

38)






CDR-
ITFDGAN (SEQ ID NO:
YITFDGANNYNPSLKN (SEQ
FDG (SEQ ID NO: 39)



H2
28)
ID NO: 34)







CDR-
TRSSYDYDVLDY (SEQ
SSYDYDVLDY (SEQ ID NO:
SYDYDVLD (SEQ ID NO:



H3
ID NO: 29)
35)
40)






CDR-
QDISNF (SEQ ID NO: 30)
RASQDISNFLN (SEQ ID NO:
SQDISNF (SEQ ID NO: 41)



L1

36)







CDR-
YTS (SEQ ID NO: 31)
YTSRLHS (SEQ ID NO: 37)
YTS (SEQ ID NO: 31)



L2









CDR-
QQGHTLPYT (SEQ ID
QQGHTLPYT (SEQ ID NO: 32)
GHTLPY (SEQ ID NO: 42)



L3
NO: 32)















VH
DVQLQESGPGLVKPSQSLSLTCSVTGYSITSGYYWNWIRQFPGNKLEWMGYITFDGAN




NYNPSLKNRISITRDTSKNQFFLKLTSVTTEDTATYYCTRSSYDYDVLDYWGQGTTLTV




SS (SEQ ID NO: 43)






VL
DIQMTQTTSSLSASLGDRVTISCRASQDISNFLNWYQQRPDGTVKLLIYYTSRLHSGVPS




RFSGSGSGTDFSLTVSNLEQEDIATYFCQQGHTLPYTFGGGTKLEIK (SEQ ID NO: 44)














5-H12
CDR-
GYSFTDYC (SEQ ID NO:
DYCIN (SEQ ID NO: 51)
GYSFTDY (SEQ ID NO: 56)



H1
45)








CDR-
IYPGSGNT (SEQ ID NO:
WIYPGSGNTRYSERFKG
GSG (SEQ ID NO: 57)



H2
46)
(SEQ ID NO: 52)







CDR-
AREDYYPYHGMDY
EDYYPYHGMDY (SEQ ID
DYYPYHGMD (SEQ ID



H3
(SEQ ID NO: 47)
NO: 53)
NO: 58)






CDR-
ESVDGYDNSF (SEQ ID
RASESVDGYDNSFMH (SEQ
SESVDGYDNSF (SEQ ID



L1
NO: 48)
ID NO: 54)
NO: 59)






CDR-
RAS (SEQ ID NO: 49)
RASNLES (SEQ ID NO: 55)
RAS (SEQ ID NO: 49)



L2









CDR-
QQSSEDPWT (SEQ ID
QQSSEDPWT (SEQ ID NO: 50)
SSEDPW (SEQ ID NO: 60)



L3
NO: 50)















VH
QIQLQQSGPELVRPGASVKISCKASGYSFTDYCINWVNQRPGQGLEWIGWIYPGSGNTR




YSERFKGKATLTVDTSSNTAYMQLSSLTSEDSAVYFCAREDYYPYHGMDYWGQGTSV




TVSS (SEQ ID NO: 61)






VL
DIVLTQSPTSLAVSLGQRATISCRASESVDGYDNSFMHWYQQKPGQPPKLLIFRASNLES




GIPARFSGSGSRTDFTLTINPVEAADVATYYCQQSSEDPWTFGGGTKLEIK (SEQ ID NO:




62)














5-H12
CDR-
GYSFTDYY (SEQ ID
DYYIN (SEQ ID NO: 64)
GYSFTDY (SEQ ID NO: 56)


C33Y*
H1
NO: 63)








CDR-
IYPGSGNT (SEQ ID NO:
WIYPGSGNTRYSERFKG
GSG (SEQ ID NO: 57)



H2
46)
(SEQ ID NO: 52)







CDR-
AREDYYPYHGMDY
EDYYPYHGMDY (SEQ ID
DYYPYHGMD (SEQ ID



H3
(SEQ ID NO: 47)
NO: 53)
NO: 58)






CDR-
ESVDGYDNSF (SEQ ID
RASESVDGYDNSFMH (SEQ
SESVDGYDNSF (SEQ ID



L1
NO: 48)
ID NO: 54)
NO: 59)






CDR-
RAS (SEQ ID NO: 49)
RASNLES (SEQ ID NO: 55)
RAS (SEQ ID NO: 49)



L2









CDR-
QQSSEDPWT (SEQ ID
QQSSEDPWT (SEQ ID NO: 50)
SSEDPW (SEQ ID NO: 60)



L3
NO: 50)















VH
QIQLQQSGPELVRPGASVKISCKASGYSFTDYYINWVNQRPGQGLEWIGWIYPGSGNTR




YSERFKGKATLTVDTSSNTAYMQLSSLTSEDSAVYFCAREDYYPYHGMDYWGQGTSV




TVSS (SEQ ID NO: 65)






VL
DIVLTQSPTSLAVSLGQRATISCRASESVDGYDNSFMHWYQQKPGQPPKLLIFRASNLES




GIPARFSGSGSRTDFTLTINPVEAADVATYYCQQSSEDPWTFGGGTKLEIK (SEQ ID NO:




62)














5-H12
CDR-
GYSFTDYD (SEQ ID
DYDIN (SEQ ID NO: 67)
GYSFTDY (SEQ ID NO: 56)


C33D*
H1
NO: 66)








CDR-
IYPGSGNT (SEQ ID NO:
WIYPGSGNTRYSERFKG
GSG (SEQ ID NO: 57)



H2
46)
(SEQ ID NO: 52)







CDR-
AREDYYPYHGMDY
EDYYPYHGMDY (SEQ ID
DYYPYHGMD (SEQ ID



H3
(SEQ ID NO: 47)
NO: 53)
NO: 58)






CDR-
ESVDGYDNSF (SEQ ID
RASESVDGYDNSFMH (SEQ
SESVDGYDNSF (SEQ ID



L1
NO: 48)
ID NO: 54)
NO: 59)






CDR-
RAS (SEQ ID NO: 49)
RASNLES (SEQ ID NO: 55)
RAS (SEQ ID NO: 49)



L2









CDR-
QQSSEDPWT (SEQ ID
QQSSEDPWT (SEQ ID NO: 50)
SSEDPW (SEQ ID NO: 60)



L3
NO: 50)















VH
QIQLQQSGPELVRPGASVKISCKASGYSFTDYDINWVNQRPGQGLEWIGWIYPGSGNTRY




SERFKGKATLTVDTSSNTAYMQLSSLTSEDSAVYFCAREDYYPYHGMDYWGQGTSVTV




SS (SEQ ID NO: 68)






VL
DIVLTQSPTSLAVSLGQRATISCRASESVDGYDNSFMHWYQQKPGQPPKLLIFRASNLES




GIPARFSGSGSRTDFTLTINPVEAADVATYYCQQSSEDPWTFGGGTKLEIK (SEQ ID NO:




62)














Anti-
CDR-
GYSFTSYW (SEQ ID
SYWIG (SEQ ID NO: 144)
GYSFTSY (SEQ ID NO:


TfR
H1
NO: 138)

149


clone 8










CDR-
IYPGDSDT (SEQ ID NO:
IIYPGDSDTRYSPSFQGQ
GDS (SEQ ID NO: 150)



H2
139)
(SEQ ID NO: 145)







CDR-
ARFPYDSSGYYSFDY
FPYDSSGYYSFDY (SEQ ID
PYDSSGYYSFD (SEQ ID



H3
(SEQ ID NO: 140)
NO: 146)
NO: 151)






CDR-
QSISSY (SEQ ID NO:
RASQSISSYLN (SEQ ID NO:
SQSISSY (SEQ ID NO: 152)



L1
141)
147)







CDR-
AAS (SEQ ID NO: 142)
AASSLQS (SEQ ID NO: 148)
AAS (SEQ ID NO: 142)



L2









CDR-
QQSYSTPLT (SEQ ID
QQSYSTPLT (SEQ ID NO:
SYSTPL (SEQ ID NO: 153)



L3
NO: 143)
143)





*mutation positions are according to Kabat numbering of the respective VH sequences containing the mutations






In some embodiments, the anti-TfR1 antibody of the present disclosure is a humanized variant of any one of the anti-TfR1 antibodies provided in Table 2. In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a CDR-H1, a CDR-H2, a CDR-H3, a CDR-L1, a CDR-L2, and a CDR-L3 that are the same as the CDR-H1, CDR-H2, and CDR-H3 in any one of the anti-TfR1 antibodies provided in Table 2, and comprises a humanized heavy chain variable region and/or (e.g., and) a humanized light chain variable region.


Examples of amino acid sequences of anti-TfR1 antibodies described herein are provided in Table 3.









TABLE 3







Variable Regions of Anti-TfR1 Antibodies








Antibody
Variable Region Amino Acid Sequence**





3A4
VH:


VH3 (N54T*)/VK4
EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDP




ETGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLD





YWGQGTLVTVSS (SEQ ID NO: 69)




VL:



DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLIYR




MSNLASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTK




VEIK (SEQ ID NO: 70)





3A4
VH:


VH3 (N54S*)/VK4
EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDP




ESGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLD





YWGQGTLVTVSS (SEQ ID NO: 71)




VL:



DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLIYR




MSNLASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTK




VEIK (SEQ ID NO: 70)





3A4
VH:


VH3/VK4
EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDP




ENGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLD





YWGQGTLVTVSS (SEQ ID NO: 72)




VL:



DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLIYR




MSNLASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTK




VEIK (SEQ ID NO: 70)





3M12
VH:


VH3/VK2
QVQLQESGPGLVKPSQTLSLTCSVTGYSITSGYYWNWIRQPPGKGLEWMGYITF




DGANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDY




WGQGTTVTVSS (SEQ ID NO: 73)



VL:



DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLH




SGVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQGHTLPYTFGQGTKLEIK (SEQ




ID NO: 74)





3M12
VH:


VH3/VK3
QVQLQESGPGLVKPSQTLSLTCSVTGYSITSGYYWNWIRQPPGKGLEWMGYITF




DGANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDY




WGQGTTVTVSS (SEQ ID NO: 73)



VL:



DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLH




SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPYTFGQGTKLEIK (SEQ




ID NO: 75)





3M12
VH:


VH4/VK2
QVQLQESGPGLVKPSQTLSLTCTVTGYSITSGYYWNWIRQPPGKGLEWIGYITFD




GANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDYW




GQGTTVTVSS (SEQ ID NO: 76)



VL:



DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLH




SGVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQGHTLPYTFGQGTKLEIK (SEQ




ID NO: 74)





3M12
VH:


VH4/VK3
QVQLQESGPGLVKPSQTLSLTCTVTGYSITSGYYWNWIRQPPGKGLEWIGYITFD




GANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDYW




GQGTTVTVSS (SEQ ID NO: 76)



VL:



DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLH




SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPYTFGQGTKLEIK (SEQ




ID NO: 75)





5H12
VH:


VH5 (C33Y*)/VK3
QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYYINWVRQAPGQGLEWMGWIY




PGSGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYH





GMDYWGQGTLVTVSS (SEQ ID NO: 77)




VL:



DIVLTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFR




ASNLESGVPDRFSGSGSRTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGTKL




EIK (SEQ ID NO: 78)





5H12
VH:


VH5 (C33D*)/VK4
QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYDINWVRQAPGQGLEWMGWIY




PGSGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYH





GMDYWGQGTLVTVSS (SEQ ID NO: 79)




VL:



DIVMTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFR




ASNLESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGTKL




EIK (SEQ ID NO: 80)





5H12
VH:


VH5 (C33Y*)/VK4
QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYYINWVRQAPGQGLEWMGWIY




PGSGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYH





GMDYWGQGTLVTVSS (SEQ ID NO: 77)




VL:



DIVMTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFR




ASNLESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGTKL




EIK (SEQ ID NO: 80)





Anti-TfR clone 8
VH:



QVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYP




GDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARFPYDSSGYY





SFDYWGQGTLVTVSS (SEQ ID NO: 154)




VL:



DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQ




SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIK (SEQ




ID NO: 155)





*mutation positions are according to Kabat numbering of the respective VH sequences containing the mutations


**CDRs according to the Kabat numbering system are bolded






In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the CDR-H1, CDR-H2, and CDR-H3 of any one of the anti-TfR1 antibodies provided in Table 3 and comprises one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) amino acid variations in the framework regions as compared with the respective VH provided in Table 3. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a VL comprising the CDR-L1, CDR-L2, and CDR-L3 of any one of the anti-TfR1 antibodies provided in Table 3 and comprises one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) amino acid variations in the framework regions as compared with the respective VL provided in Table 3. In some embodiments, the VH of the anti-TfR1 antibody is a humanized VH, and/or the VL of the anti-TfR1 antibody is a humanized VL.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the CDR-H1, CDR-H2, and CDR-H3 of any one of the anti-TfR1 antibodies provided in Table 3 and comprising an amino acid sequence that is at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) identical in the framework regions as compared with the respective VH provided in Table 3. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a VL comprising the CDR-L1, CDR-L2, and CDR-L3 of any one of the anti-TfR1 antibodies provided in Table 3 and comprising an amino acid sequence that is at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) identical in the framework regions as compared with the respective VL provided in Table 3. In some embodiments, the VH of the anti-TfR1 antibody is a humanized VH, and/or the VL of the anti-TfR1 antibody is a humanized VL.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 69 and a VL comprising the amino acid sequence of SEQ ID NO: 70.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 71 and a VL comprising the amino acid sequence of SEQ ID NO: 70.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 72 and a VL comprising the amino acid sequence of SEQ ID NO: 70.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 73 and a VL comprising the amino acid sequence of SEQ ID NO: 74.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 73 and a VL comprising the amino acid sequence of SEQ ID NO: 75.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 76 and a VL comprising the amino acid sequence of SEQ ID NO: 74.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 76 and a VL comprising the amino acid sequence of SEQ ID NO: 75.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 77 and a VL comprising the amino acid sequence of SEQ ID NO: 78.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 79 and a VL comprising the amino acid sequence of SEQ ID NO: 80.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 77 and a VL comprising the amino acid sequence of SEQ ID NO: 80.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 154 and a VL comprising the amino acid sequence of SEQ ID NO: 155.


In some embodiments, the anti-TfR1 antibody described herein is a full-length IgG, which can include a heavy constant region and a light constant region from a human antibody. In some embodiments, the heavy chain of any of the anti-TfR1 antibodies as described herein may comprise a heavy chain constant region (CH) or a portion thereof (e.g., CH1, CH2, CH3, or a combination thereof). The heavy chain constant region can be of any suitable origin, e.g., human, mouse, rat, or rabbit. In one specific example, the heavy chain constant region is from a human IgG (a gamma heavy chain), e.g., IgG1, IgG2, or IgG4. An example of a human IgG1 constant region is given below:









(SEQ ID NO: 81)


ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSG





VHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV





EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVV





DVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW





LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQ





VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT





VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






In some embodiments, the heavy chain of any of the anti-TfR1 antibodies described herein comprises a mutant human IgG1 constant region. For example, the introduction of LALA mutations (a mutant derived from mAb b12 that has been mutated to replace the lower hinge residues Leu234 Leu235 with Ala234 and Ala235) in the CH2 domain of human IgG1 is known to reduce Fcγ receptor binding (Bruhns, P., et al. (2009) and Xu, D. et al. (2000)). The mutant human IgG1 constant region is provided below (mutations bonded and underlined):









(SEQ ID NO: 82)


ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSG





VHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV





EPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVV





DVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW





LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQ





VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT





VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






In some embodiments, the light chain of any of the anti-TfR1 antibodies described herein may further comprise a light chain constant region (CL), which can be any CL known in the art. In some examples, the CL is a kappa light chain. In other examples, the CL is a lambda light chain. In some embodiments, the CL is a kappa light chain, the sequence of which is provided below:









(SEQ ID NO: 83)


RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQS


GNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPV


TKSFNRGEC






Other antibody heavy and light chain constant regions are well known in the art, e.g., those provided in the IMGT database (www.imgt.org) or at www.vbase2.org/vbstat.php, both of which are incorporated by reference herein.


In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising any one of the VH as listed in Table 3 or any variants thereof and a heavy chain constant region that is at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to SEQ ID NO: 81 or SEQ ID NO: 82. In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising any one of the VH as listed in Table 3 or any variants thereof and a heavy chain constant region that contains no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with SEQ ID NO: 81 or SEQ ID NO: 82. In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising any one of the VH as listed in Table 3 or any variants thereof and a heavy chain constant region as set forth in SEQ ID NO: 81. In some embodiments, the anti-TfR1 antibody described herein comprises heavy chain comprising any one of the VH as listed in Table 3 or any variants thereof and a heavy chain constant region as set forth in SEQ ID NO: 82.


In some embodiments, the anti-TfR1 antibody described herein comprises a light chain comprising any one of the VL as listed in Table 3 or any variants thereof and a light chain constant region that is at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to SEQ ID NO: 83. In some embodiments, the anti-TfR1 antibody described herein comprises a light chain comprising any one of the VL as listed in Table 3 or any variants thereof and a light chain constant region contains no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with SEQ ID NO: 83. In some embodiments, the anti-TfR1 antibody described herein comprises a light chain comprising any one of the VL as listed in Table 3 or any variants thereof and a light chain constant region set forth in SEQ ID NO: 83.


Examples of IgG heavy chain and light chain amino acid sequences of the anti-TfR1 antibodies described are provided in Table 4 below.









TABLE 4







Heavy chain and light chain sequences of examples of anti-TfR1 IgGs








Antibody
IgG Heavy Chain/Light Chain Sequences**





3A4
Heavy Chain (with wild type human IgG1 constant region)


VH3 (N54T*)/VK4

EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDPE






TGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLDYW






GQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGAL




TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKS



CDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN



WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP



APIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQ



PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGK (SEQ ID NO: 84)



Light Chain (with kappa light chain constant region)




DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLIYRMS






NLASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTKVEIK





RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ



ID NO: 85)





3A4
Heavy Chain (with wild type human IgG1 constant region)


VH3 (N54S*)/VK4

EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDPE






SGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLDYW






GQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGAL




TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKS



CDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN



WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP



APIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQ



PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGK (SEQ ID NO: 86)



Light Chain (with kappa light chain constant region)




DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLIYRMS






NLASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTKVEIK





RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ



ID NO: 85)





3A4
Heavy Chain (with wild type human IgG1 constant region)


VH3/VK4

EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDPE






NGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLDYW






GQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGAL




TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKS



CDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN



WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP



APIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQ



PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGK (SEQ ID NO: 87)



Light Chain (with kappa light chain constant region)




DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLIYRMS






NLASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTKVEIK





RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ



ID NO: 85)





3M12
Heavy Chain (with wild type human IgG1 constant region)


VH3/VK2

QVQLQESGPGLVKPSQTLSLTCSVTGYSITSGYYWNWIRQPPGKGLEWMGYITFD






GANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDYWG






QGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALT




SGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC



DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN



WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP



APIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQ



PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGK (SEQ ID NO: 88)



Light Chain (with kappa light chain constant region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLHS





GVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQGHTLPYTFGQGTKLEIKRTVAAP




SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSK



DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 89)





3M12
Heavy Chain (with wild type human IgG1 constant region)


VH3/VK3

QVQLQESGPGLVKPSQTLSLTCSVTGYSITSGYYWNWIRQPPGKGLEWMGYITFD






GANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDYWG






QGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALT




SGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC



DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN



WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP



APIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQ



PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGK (SEQ ID NO: 88)



Light Chain (with kappa light chain constant region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLHS





GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPYTFGQGTKLEIKRTVAA




PSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDS



KDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO:



90)





3M12
Heavy Chain (with wild type human IgG1 constant region)


VH4/VK2

QVQLQESGPGLVKPSQTLSLTCTVTGYSITSGYYWNWIRQPPGKGLEWIGYITFDG






ANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDYWGQ






GTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTS




GVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD



KTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW



YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA



PIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQP



ENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLS



LSPGK (SEQ ID NO: 91)



Light Chain (with kappa light chain constant region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLHS





GVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQGHTLPYTFGQGTKLEIKRTVAAP




SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSK



DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 89)





3M12
Heavy Chain (with wild type human IgG1 constant region)


VH4/VK3

QVQLQESGPGLVKPSQTLSLTCTVTGYSITSGYYWNWIRQPPGKGLEWIGYITFDG






ANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDYWGQ






GTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTS




GVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD



KTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW



YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA



PIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQP



ENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLS



LSPGK (SEQ ID NO: 91)



Light Chain (with kappa light chain constant region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLHS





GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPYTFGQGTKLEIKRTVAA




PSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDS



KDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO:



90)





5H12
Heavy Chain (with wild type human IgG1 constant region)


VH5 (C33Y*)/VK3

QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYYINWVRQAPGQGLEWMGWIYP






GSGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYHGM







DYWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV



EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE



VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN



KALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWE



SNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT



QKSLSLSPGK (SEQ ID NO: 92)



Light Chain (with kappa light chain constant region)




DIVLTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFRAS






NLESGVPDRFSGSGSRTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGTKLEIK
R




TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVT



EQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID



NO: 93)





5H12
Heavy Chain (with wild type human IgG1 constant region)


VH5 (C33D*)/VK4

QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYDINWVRQAPGQGLEWMGWIYP






GSGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYHGM







DYWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV



EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE



VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN



KALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWE



SNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT



QKSLSLSPGK (SEQ ID NO: 94)



Light Chain (with kappa light chain constant region)




DIVMTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFRA






SNLESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGTKLEIK





RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ



ID NO: 95)





5H12
Heavy Chain (with wild type human IgG1 constant region)


VH5 (C33Y*)/VK4

QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYYINWVRQAPGQGLEWMGWIYP






GSGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYHGM







DYWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV



EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE



VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN



KALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWE



SNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT



QKSLSLSPGK (SEQ ID NO: 92)



Light Chain (with kappa light chain constant region)




DIVMTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFRA






SNLESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGTKLEIK





RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ



ID NO: 95)





Anti-TfR clone 8
VH:




QVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPG






DSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARFPYDSSGYYSF







DYWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV



EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE



VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN



KALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWE



SNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT



QKSLSLSPGK (SEQ ID NO: 156)



VL:




DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS





GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKRTVAAP




SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSK



DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO:



157)





*mutation positions are according to Kabat numbering of the respective VH sequences containing the mutations


**CDRs according to the Kabat numbering system are bolded; VH/VL sequences underlined






In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain containing no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with the heavy chain as set forth in any one of SEQ ID NOs: 84, 86, 87, 88, 91, 92, 94, and 156. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a light chain containing no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with the light chain as set forth in any one of SEQ ID NOs: 85, 89, 90, 93, 95, and 157.


In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising an amino acid sequence that is at least 75% (e.g., 75%, 80%, 85%, 90%, 95%, 98%, or 99%) identical to any one of SEQ ID NOs: 84, 86, 87, 88, 91, 92, 94, and 156. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody described herein comprises a light chain comprising an amino acid sequence that is at least 75% (e.g., 75%, 80%, 85%, 90%, 95%, 98%, or 99%) identical to any one of SEQ ID NOs: 85, 89, 90, 93, 95, and 157. In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising the amino acid sequence of any one of SEQ ID NOs: 84, 86, 87, 88, 91, 92, 94, and 156. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody described herein comprises a light chain comprising the amino acid sequence of any one of SEQ ID NOs: 85, 89, 90, 93, 95 and 157.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 84 and a light chain comprising the amino acid sequence of SEQ ID NO: 85.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 86 and a light chain comprising the amino acid sequence of SEQ ID NO: 85.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 87 and a light chain comprising the amino acid sequence of SEQ ID NO: 85.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 88 and a light chain comprising the amino acid sequence of SEQ ID NO: 89.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 88 and a light chain comprising the amino acid sequence of SEQ ID NO: 90.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 91 and a light chain comprising the amino acid sequence of SEQ ID NO: 89.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 91 and a light chain comprising the amino acid sequence of SEQ ID NO: 90.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 92 and a light chain comprising the amino acid sequence of SEQ ID NO: 93.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 94 and a light chain comprising the amino acid sequence of SEQ ID NO: 95.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 92 and a light chain comprising the amino acid sequence of SEQ ID NO: 95.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 156 and a light chain comprising the amino acid sequence of SEQ ID NO: 157.


In some embodiments, the anti-TfR1 antibody is a Fab fragment, Fab′ fragment, or F(ab′)2 fragment of an intact antibody (full-length antibody). Antigen binding fragment of an intact antibody (full-length antibody) can be prepared via routine methods (e.g., recombinantly or by digesting the heavy chain constant region of a full-length IgG using an enzyme such as papain). For example, F(ab′)2 fragments can be produced by pepsin or papain digestion of an antibody molecule, and Fab fragments that can be generated by reducing the disulfide bridges of F(ab′)2 fragments. In some embodiments, a heavy chain constant region in a Fab fragment of the anti-TfR1 antibody described herein comprises the amino acid sequence of:









(SEQ ID NO: 96)


ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSG


VHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV


EPKSCDKTHT






In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising any one of the VH as listed in Table 3 or any variants thereof and a heavy chain constant region that is at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to SEQ ID NO: 96. In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising any one of the VH as listed in Table 3 or any variants thereof and a heavy chain constant region that contains no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with SEQ ID NO: 96. In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising any one of the VH as listed in Table 3 or any variants thereof and a heavy chain constant region as set forth in SEQ ID NO: 96.


In some embodiments, the anti-TfR1 antibody described herein comprises a light chain comprising any one of the VL as listed in Table 3 or any variants thereof and a light chain constant region that is at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to SEQ ID NO: 83. In some embodiments, the anti-TfR1 antibody described herein comprises a light chain comprising any one of the VL as listed in Table 3 or any variants thereof and a light chain constant region contains no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with SEQ ID NO: 83. In some embodiments, the anti-TfR1 antibody described herein comprises a light chain comprising any one of the VL as listed in Table 3 or any variants thereof and a light chain constant region set forth in SEQ ID NO: 83.


Examples of Fab heavy chain and light chain amino acid sequences of the anti-TfR1 antibodies described are provided in Table 5 below.









TABLE 5







Heavy chain and light chain sequences of examples of anti-TfR1 Fabs








Antibody
Fab Heavy Chain/Light Chain Sequences**





3A4
Heavy Chain (with partial human IgG1 constant region)


VH3 (N54T*)/VK4

EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDPE






TGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLDYW






GQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGAL




TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKS



CDKTHT (SEQ ID NO: 97)



Light Chain (with kappa light chain constant region)




DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLIYRMS






NLASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTKVEIK





RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ



ID NO: 85)





3A4
Heavy Chain (with partial human IgG1 constant region)


VH3 (N54S*)/VK4

EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDPE






SGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLDYW






GQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGAL




TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKS



CDKTHT (SEQ ID NO: 98)



Light Chain (with kappa light chain constant region)




DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLIYRMS






NLASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTKVEIK





RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ



ID NO: 85)





3A4
Heavy Chain (with partial human IgG1 constant region)


VH3/VK4

EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDPE






NGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLDYW






GQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGAL




TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKS



CDKTHT (SEQ ID NO: 99)



Light Chain (with kappa light chain constant region)




DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLIYRMS






NLASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTKVEIK





RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ



ID NO: 85)





3M12
Heavy Chain (with partial human IgG1 constant region)


VH3/VK2

QVQLQESGPGLVKPSQTLSLTCSVTGYSITSGYYWNWIRQPPGKGLEWMGYITFD






GANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDYWG






QGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALT




SGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC



DKTHT (SEQ ID NO: 100)



Light Chain (with kappa light chain constant region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLHS





GVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQGHTLPYTFGQGTKLEIKRTVAAP




SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSK



DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 89)





3M12
Heavy Chain (with partial human IgG1 constant region)


VH3/VK3

QVQLQESGPGLVKPSQTLSLTCSVTGYSITSGYYWNWIRQPPGKGLEWMGYITFD






GANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDYWG






QGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALT




SGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC



DKTHT (SEQ ID NO: 100)



Light Chain (with kappa light chain constant region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLHS





GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPYTFGQGTKLEIKRTVAA




PSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDS



KDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO:



90)





3M12
Heavy Chain (with partial human IgG1 constant region)


VH4/VK2

QVQLQESGPGLVKPSQTLSLTCTVTGYSITSGYYWNWIRQPPGKGLEWIGYITEDG






ANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDYWGQ






GTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTS




GVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD



KTHT (SEQ ID NO: 101)



Light Chain (with kappa light chain constant region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLHS





GVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQGHTLPYTFGQGTKLEIKRTVAAP




SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSK



DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 89)





3M12
Heavy Chain (with partial human IgG1 constant region)


VH4/VK3

QVQLQESGPGLVKPSQTLSLTCTVTGYSITSGYYWNWIRQPPGKGLEWIGYITEDG






ANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDYWGQ






GTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTS




GVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD



KTHT (SEQ ID NO: 101)



Light Chain (with kappa light chain constant region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLHS





GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPYTFGQGTKLEIKRTVAA




PSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDS



KDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO:



90)





5H12
Heavy Chain (with partial human IgG1 constant region)


VH5 (C33Y*)/VK3

QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYYINWVRQAPGQGLEWMGWIYP






GSGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYHGM







DYWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV



EPKSCDKTHT (SEQ ID NO: 102)



Light Chain (with kappa light chain constant region)




DIVLTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFRAS






NLESGVPDRFSGSGSRTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGTKLEIK
R




TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVT



EQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID



NO: 93)





5H12
Heavy Chain (with partial human IgG1 constant region)


VH5 (C33D*)/VK4

QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYDINWVRQAPGQGLEWMGWIYP






GSGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYHGM







DYWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV



EPKSCDKTHT (SEQ ID NO: 103)



Light Chain (with kappa light chain constant region)




DIVMTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFRA






SNLESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGTKLEIK





RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ



ID NO: 95)





5H12
Heavy Chain (with partial human IgG1 constant region)


VH5 (C33Y*)/VK4

QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYYINWVRQAPGQGLEWMGWIYP






GSGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYHGM







DYWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV



EPKSCDKTHT (SEQ ID NO: 102)



Light Chain (with kappa light chain constant region)




DIVMTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFRA






SNLESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGTKLEIK





RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ



ID NO: 95)





Anti-TfR clone 8
VH:


Version 1

QVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPG






DSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARFPYDSSGYYSF







DYWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV



EPKSCDKTHTCP (SEQ ID NO: 158)



VL:




DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS





GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKRTVAAP




SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSK



DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO:



157)





Anti-TfR clone 8
VH:


Version 2

QVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPG






DSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARFPYDSSGYYSF







DYWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV



EPKSCDKTHT (SEQ ID NO: 159)



VL:




DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS





GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKRTVAAP




SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSK



DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO:



157)





*mutation positions are according to Kabat numbering of the respective VH sequences containing the mutations


**CDRs according to the Kabat numbering system are bolded; VH/VL sequences underlined






In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain containing no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with the heavy chain as set forth in any one of SEQ ID NOs: 97-103, 158 and 159. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a light chain containing no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with the light chain as set forth in any one of SEQ ID NOs: 85, 89, 90, 93, 95, and 157.


In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising an amino acid sequence that is at least 75% (e.g., 75%, 80%, 85%, 90%, 95%, 98%, or 99%) identical to any one of SEQ ID NOs: 97-103, 158 and 159. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody described herein comprises a light chain comprising an amino acid sequence that is at least 75% (e.g., 75%, 80%, 85%, 90%, 95%, 98%, or 99%) identical to any one of SEQ ID NOs: 85, 89, 90, 93, 95, and 157. In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising the amino acid sequence of any one of SEQ ID NOs: 97-103, 158 and 159. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody described herein comprises a light chain comprising the amino acid sequence of any one of SEQ ID NOs: 85, 89, 90, 93, 95, and 157.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 97 and a light chain comprising the amino acid sequence of SEQ ID NO: 85.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 98 and a light chain comprising the amino acid sequence of SEQ ID NO: 85.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 99 and a light chain comprising the amino acid sequence of SEQ ID NO: 85.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 100 and a light chain comprising the amino acid sequence of SEQ ID NO: 89.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 100 and a light chain comprising the amino acid sequence of SEQ ID NO: 90.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 101 and a light chain comprising the amino acid sequence of SEQ ID NO: 89.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 101 and a light chain comprising the amino acid sequence of SEQ ID NO: 90.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 102 and a light chain comprising the amino acid sequence of SEQ ID NO: 93.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 103 and a light chain comprising the amino acid sequence of SEQ ID NO: 95.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 102 and a light chain comprising the amino acid sequence of SEQ ID NO: 95.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 158 and a light chain comprising the amino acid sequence of SEQ ID NO: 157.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 159 and a light chain comprising the amino acid sequence of SEQ ID NO: 157.


Other Known Anti-TfR1 Antibodies

Any other appropriate anti-TfR1 antibodies known in the art may be used as the muscle-targeting agent in the complexes disclosed herein. Examples of known anti-TfR1 antibodies, including associated references and binding epitopes, are listed in Table 6. In some embodiments, the anti-TfR1 antibody comprises the complementarity determining regions (CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3) of any of the anti-TfR1 antibodies provided herein, e.g., anti-TfR1 antibodies listed in Table 6.









TABLE 6





List of anti-TfR1 antibody clones, including associated


references and binding epitope information.

















Antibody Clone




Name
Reference(s)
Epitope/Notes





OKT9
U.S. Pat. No. 4,364,934, filed Dec. 4, 1979,
Apical domain of TfR1



entitled “MONOCLONAL ANTIBODY TO
(residues 305-366 of



A HUMAN EARLY THYMOCYTE
human TfR1 sequence



ANTIGEN AND METHODS FOR
XM_052730.3, available



PREPARING SAME”
in GenBank)



Schneider C. et al. “Structural features of the



cell surface receptor for transferrin that is



recognized by the monoclonal antibody



OKT9.” J Biol Chem. 1982, 257: 14, 8516-



8522.


(From JCR)
WO 2015/098989, filed Dec. 24, 2014,
Apical domain (residues


Clone M11
“Novel anti-Transferrin receptor antibody
230-244 and 326-347 of


Clone M23
that passes through blood-brain barrier”
TfR1) and protease-like


Clone M27
U.S. Pat. No. 9,994,641, filed
domain (residues 461-


Clone B84
Dec. 24, 2014, “Novel anti-Transferrin
473)



receptor antibody that passes through



blood-brain barrier”


(From
WO 2016/081643, filed May 26, 2016,
Apical domain and non-


Genentech)
entitled “ANTI-TRANSFERRIN
apical regions


7A4, 8A2, 15D2,
RECEPTOR ANTIBODIES AND


10D11, 7B10,
METHODS OF USE”


15G11, 16G5,
U.S. Pat. No. 9,708,406, filed


13C3, 16G4,
May 20, 2014, “Anti-transferrin receptor


16F6, 7G7, 4C2,
antibodies and methods of use”


1B12, and 13D4


(From Armagen)
Lee et al. “Targeting Rat Anti-Mouse


8D3
Transferrin Receptor Monoclonal Antibodies



through Blood-Brain Barrier in Mouse”



2000, J Pharmacol. Exp. Ther., 292: 1048-



1052.



US Patent App. 2010/077498, filed



Sep. 11, 2008, entitled “COMPOSITIONS AND



METHODS FOR BLOOD-BRAIN



BARRIER DELIVERY IN THE MOUSE”


OX26
Haobam, B. et al. 2014. Rab17-



mediated recycling endosomes contribute to



autophagosome formation in response to



Group A Streptococcus invasion. Cellular



microbiology. 16: 1806-21.


DF1513
Ortiz-Zapater E et al. Trafficking of



the human transferrin receptor in plant cells:



effects of tyrphostin A23 and brefeldin A.



Plant J 48: 757-70 (2006).


1A1B2, 66IG10,
Commercially available anti-
Novus Biologicals


MEM-189,
transferrin receptor antibodies.
8100 Southpark Way, A-


JF0956, 29806,

8 Littleton CO 80120


1A1B2,


TFRC/1818,


1E6, 66Ig10,


TFRC/1059,


Q1/71, 23D10,


13E4,


TFRC/1149,


ER-MP21,


YTA74.4, BU54,


2B6, RI7 217


(From INSERM)
US Patent App. 2011/0311544A1,
Does not compete with


BA120g
filed Jun. 15, 2005, entitled “ANTI-CD71
OKT9



MONOCLONAL ANTIBODIES AND



USES THEREOF FOR TREATING



MALIGNANT TUMOR CELLS”


LUCA31
U.S. Pat. No. 7,572,895, filed
“LUCA31 epitope”



Jun. 7, 2004, entitled “TRANSFERRIN



RECEPTOR ANTIBODIES”


(Salk Institute)
Trowbridge, I. S. et al. “Anti-transferrin


B3/25
receptor monoclonal antibody and toxin-


T58/30
antibody conjugates affect growth of



human tumour cells.” Nature, 1981,



volume 294, pages 171-173


R17 217.1.3,
Commercially available anti-
BioXcell


5E9C11,
transferrin receptor antibodies.
10 Technology Dr.,


OKT9 (BE0023

Suite 2B


clone)

West Lebanon, NH




03784-1671 USA


BK19.9, B3/25,
Gatter, K. C. et al. “Transferrin receptors


T56/14 and
in human tissues: their distribution and


T58/1
possible clinical relevance.” J Clin



Pathol. 1983 May; 36(5): 539-45.












Anti-TfR1 antibody







CDRH1 (SEQ ID NO: 984)



CDRH2 (SEQ ID NO: 985)



CDRH3 (SEQ ID NO: 986)



CDRL1 (SEQ ID NO: 987)



CDRL2 (SEQ ID NO: 988)



CDRL3 (SEQ ID NO: 989)



VH (SEQ ID NO: 990)



VL (SEQ ID NO: 991)











Anti-TfR1 antibody














VH/VL
CDR1
CDR2
CDR3







VH1
999
992
993
986



VH2
1000
992
994
986



VH3
1001
992
995
986



VH4
1002
992
994
986



VL1
1003
987
988
115



VL2
1004
987
988
115



VL3
1005
987
996
989



VL4
1006
997
998
989










In some embodiments, anti-TfR1 antibodies of the present disclosure include one or more of the CDR-H (e.g., CDR-H1, CDR-H2, and CDR-H3) amino acid sequences from any one of the anti-TfR1 antibodies selected from Table 6. In some embodiments, anti-TfR1 antibodies include the CDR-L1, CDR-L2, and CDR-L3 as provided for any one of the anti-TfR1 antibodies selected from Table 6. In some embodiments, anti-TfR1 antibodies include the CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3 as provided for any one of the anti-TfR1 antibodies selected from Table 6.


In some embodiments, anti-TfR1 antibodies of the disclosure include any antibody that includes a heavy chain variable domain and/or (e.g., and) a light chain variable domain of any anti-TfR1 antibody, such as any one of the anti-TfR1 antibodies selected from Table 6. In some embodiments, anti-TfR1 antibodies of the disclosure include any antibody that includes the heavy chain variable and light chain variable pairs of any anti-TfR1 antibody, such as any one of the anti-TfR1 antibodies selected from Table 6.


Aspects of the disclosure provide anti-TfR1 antibodies having a heavy chain variable (VH) and/or (e.g., and) a light chain variable (VL) domain amino acid sequence homologous to any of those described herein. In some embodiments, the anti-TfR1 antibody comprises a heavy chain variable sequence or a light chain variable sequence that is at least 75% (e.g., 80%, 85%, 90%, 95%, 98%, or 99%) identical to the heavy chain variable sequence and/or any light chain variable sequence of any anti-TfR1 antibody, such as any one of the anti-TfR1 antibodies selected from Table 6. In some embodiments, the homologous heavy chain variable and/or (e.g., and) a light chain variable amino acid sequences do not vary within any of the CDR sequences provided herein. For example, in some embodiments, the degree of sequence variation (e.g., 75%, 80%, 85%, 90%, 95%, 98%, or 99%) may occur within a heavy chain variable and/or (e.g., and) a light chain variable sequence excluding any of the CDR sequences provided herein. In some embodiments, any of the anti-TfR1 antibodies provided herein comprise a heavy chain variable sequence and a light chain variable sequence that comprises a framework sequence that is at least 75%, 80%, 85%, 90%, 95%, 98%, or 99% identical to the framework sequence of any anti-TfR1 antibody, such as any one of the anti-TfR1 antibodies selected from Table 6.


An example of a transferrin receptor antibody that may be used in accordance with the present disclosure is described in International Application Publication WO 2016/081643, incorporated herein by reference. The amino acid sequences of this antibody are provided in Table 7.









TABLE 7







Heavy chain and light chain CDRs of an example of a known anti-TfR1 antibody










Sequence Type
Kabat
Chothia
Contact





CDR-H1
SYWMH (SEQ ID
GYTFTSY (SEQ ID NO: 116)
TSYWMH (SEQ ID NO: 118)



NO: 110)







CDR-H2
EINPTNGRTNYIE
NPTNGR (SEQ ID NO: 117)
WIGEINPTNGRTN (SEQ ID



KFKS (SEQ ID

NO: 119)



NO: 111)







CDR-H3
GTRAYHY (SEQ
GTRAYHY (SEQ ID NO:
ARGTRA (SEQ ID NO: 120)



ID NO: 112)
112)






CDR-L1
RASDNLYSNLA
RASDNLYSNLA (SEQ ID
YSNLAWY



(SEQ ID NO: 113)
NO: 113)
(SEQ ID NO: 121)





CDR-L2
DATNLAD (SEQ
DATNLAD (SEQ ID NO:
LLVYDATNLA (SEQ ID NO:



ID NO: 114)
114)
122)





CDR-L3
QHFWGTPLT
QHFWGTPLT (SEQ ID NO:
QHFWGTPL (SEQ ID NO:



(SEQ ID NO: 115)
115)
123)











Murine VH
QVQLQQPGAELVKPGASVKLSCKASGYTFTSYWMHWVKQRPGQGLEWIGEINP



TNGRTNYIEKFKSKATLTVDKSSSTAYMQLSSLTSEDSAVYYCARGTRAYHYW



GQGTSVTVSS (SEQ ID NO: 124)





Murine VL
DIQMTQSPASLSVSVGETVTITCRASDNLYSNLAWYQQKQGKSPQLLVYDATNL



ADGVPSRFSGSGSGTQYSLKINSLQSEDFGTYYCQHFWGTPLTFGAGTKLELK



(SEQ ID NO: 125)





Humanized VH
EVQLVQSGAEVKKPGASVKVSCKASGYTFTSYWMHWVRQAPGQRLEWIGEIN



PTNGRTNYIEKFKSRATLTVDKSASTAYMELSSLRSEDTAVYYCARGTRAYHY



WGQGTMVTVSS (SEQ ID NO: 128)





Humanized VL
DIQMTQSPSSLSASVGDRVTITCRASDNLYSNLAWYQQKPGKSPKLLVYDATNL



ADGVPSRFSGSGSGTDYTLTISSLQPEDFATYYCQHFWGTPLTFGQGTKVEIK



(SEQ ID NO: 129)





HC of chimeric
QVQLQQPGAELVKPGASVKLSCKASGYTFTSYWMHWVKQRPGQGLEWIGEINP


full-length IgG1
TNGRTNYIEKFKSKATLTVDKSSSTAYMQLSSLTSEDSAVYYCARGTRAYHYW



GQGTSVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSG



ALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVE



PKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE



VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKV



SNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAV



EWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL



HNHYTQKSLSLSPGK (SEQ ID NO: 132)





LC of chimeric
DIQMTQSPASLSVSVGETVTITCRASDNLYSNLAWYQQKQGKSPOLLVYDATNL


full-length IgG1
ADGVPSRFSGSGSGTQYSLKINSLQSEDFGTYYCQHFWGTPLTFGAGTKLELKR



TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC



(SEQ ID NO: 133)





HC of fully human
EVQLVQSGAEVKKPGASVKVSCKASGYTFTSYWMHWVRQAPGQRLEWIGEIN


full-length IgG1
PTNGRTNYIEKFKSRATLTVDKSASTAYMELSSLRSEDTAVYYCARGTRAYHY



WGQGTMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS



GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV



EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP



EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCK



VSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIA



VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA



LHNHYTQKSLSLSPGK (SEQ ID NO: 134)





LC of fully human
DIQMTQSPSSLSASVGDRVTITCRASDNLYSNLAWYQQKPGKSPKLLVYDATNL


full-length IgG1
ADGVPSRFSGSGSGTDYTLTISSLQPEDFATYYCQHFWGTPLTFGQGTKVEIKRT



VAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESV



TEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC



(SEQ ID NO: 135)





HC of chimeric
QVQLQQPGAELVKPGASVKLSCKASGYTFTSYWMHWVKQRPGQGLEWIGEINP


Fab
TNGRTNYIEKFKSKATLTVDKSSSTAYMQLSSLTSEDSAVYYCARGTRAYHYW



GQGTSVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSG



ALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVE



PKSCDKTHTCP (SEQ ID NO: 136)





HC of fully human
EVQLVQSGAEVKKPGASVKVSCKASGYTFTSYWMHWVRQAPGQRLEWIGEIN


Fab
PTNGRTNYIEKFKSRATLTVDKSASTAYMELSSLRSEDTAVYYCARGTRAYHY



WGQGTMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS



GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV



EPKSCDKTHTCP (SEQ ID NO: 137)









In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a CDR-H1, a CDR-H2, and a CDR-H3 that are the same as the CDR-H1, CDR-H2, and CDR-H3 shown in Table 7. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a CDR-L1, a CDR-L2, and a CDR-L3 that are the same as the CDR-L1, CDR-L2, and CDR-L3 shown in Table 7.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a CDR-L3, which contains no more than 3 amino acid variations (e.g., no more than 3, 2, or 1 amino acid variation) as compared with the CDR-L3 as shown in Table 7. In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a CDR-L3 containing one amino acid variation as compared with the CDR-L3 as shown in Table 7. In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a CDR-L3 of QHFAGTPLT (SEQ ID NO: 126) (according to the Kabat and Chothia definition system) or QHFAGTPL (SEQ ID NO: 127) (according to the Contact definition system). In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a CDR-H1, a CDR-H2, a CDR-H3, a CDR-L1 and a CDR-L2 that are the same as the CDR-H1, CDR-H2, and CDR-H3 shown in Table 7, and comprises a CDR-L3 of QHFAGTPLT (SEQ ID NO: 126) (according to the Kabat and Chothia definition system) or QHFAGTPL (SEQ ID NO: 127) (according to the Contact definition system).


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises heavy chain CDRs that collectively are at least 80% (e.g., 80%, 85%, 90%, 95%, or 98%) identical to the heavy chain CDRs as shown in Table 7. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises light chain CDRs that collectively are at least 80% (e.g., 80%, 85%, 90%, 95%, or 98%) identical to the light chain CDRs as shown in Table 7.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 124. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a VL comprising the amino acid sequence of SEQ ID NO: 125.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 128. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a VL comprising the amino acid sequence of SEQ ID NO: 129.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH containing no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with the VH as set forth in SEQ ID NO: 128. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a VL containing no more than 15 amino acid variations (e.g., no more than 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with the VL as set forth in SEQ ID NO: 129.


In some embodiments, the anti-TfR1 antibody of the present disclosure is a full-length IgG1 antibody, which can include a heavy constant region and a light constant region from a human antibody. In some embodiments, the heavy chain of any of the anti-TfR1 antibodies as described herein may comprises a heavy chain constant region (CH) or a portion thereof (e.g., CH1, CH2, CH3, or a combination thereof). The heavy chain constant region can of any suitable origin, e.g., human, mouse, rat, or rabbit. In one specific example, the heavy chain constant region is from a human IgG (a gamma heavy chain), e.g., IgG1, IgG2, or lgG4. An example of human IgG1 constant region is given below:









(SEQ ID NO: 81)


ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSG





VHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV





EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVV





DVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDW





LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQ





VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLT





VDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






In some embodiments, the light chain of any of the anti-TfR1 antibodies described herein may further comprise a light chain constant region (CL), which can be any CL known in the art. In some examples, the CL is a kappa light chain. In other examples, the CL is a lambda light chain. In some embodiments, the CL is a kappa light chain, the sequence of which is provided below:









(SEQ ID NO: 83)


RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQS


GNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPV


TKSFNRGEC






In some embodiments, the anti-TfR1 antibody described herein is a chimeric antibody that comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 132. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody described herein comprises a light chain comprising the amino acid sequence of SEQ ID NO: 133.


In some embodiments, the anti-TfR1 antibody described herein is a fully human antibody that comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 134. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody described herein comprises a light chain comprising the amino acid sequence of SEQ ID NO: 135.


In some embodiments, the anti-TfR1 antibody is an antigen binding fragment (Fab) of an intact antibody (full-length antibody). In some embodiments, the anti-TfR1 Fab described herein comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 136. Alternatively or in addition (e.g., in addition), the anti-TfR1 Fab described herein comprises a light chain comprising the amino acid sequence of SEQ ID NO: 133. In some embodiments, the anti-TfR1 Fab described herein comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 137. Alternatively or in addition (e.g., in addition), the anti-TfR1 Fab described herein comprises a light chain comprising the amino acid sequence of SEQ ID NO: 135.


The anti-TfR1 antibodies described herein can be in any antibody form, including, but not limited to, intact (i.e., full-length) antibodies, antigen-binding fragments thereof (such as Fab, Fab′, F(ab′)2, Fv), single chain antibodies, bi-specific antibodies, or nanobodies. In some embodiments, the anti-TfR1 antibody described herein is an scFv. In some embodiments, the anti-TfR1 antibody described herein is an scFv-Fab (e.g., scFv fused to a portion of a constant region). In some embodiments, the anti-TfR1 antibody described herein is an scFv fused to a constant region (e.g., human IgG1 constant region as set forth in SEQ ID NO: 81).


In some embodiments, conservative mutations can be introduced into antibody sequences (e.g., CDRs or framework sequences) at positions where the residues are not likely to be involved in interacting with a target antigen (e.g., transferrin receptor), for example, as determined based on a crystal structure. In some embodiments, one, two or more mutations (e.g., amino acid substitutions) are introduced into the Fc region of an anti-TfR1 antibody described herein (e.g., in a CH2 domain (residues 231-340 of human IgG1) and/or (e.g., and) CH3 domain (residues 341-447 of human IgG1) and/or (e.g., and) the hinge region, with numbering according to the Kabat numbering system (e.g., the EU index in Kabat)) to alter one or more functional properties of the antibody, such as serum half-life, complement fixation, Fc receptor binding and/or (e.g., and) antigen-dependent cellular cytotoxicity.


In some embodiments, one, two or more mutations (e.g., amino acid substitutions) are introduced into the hinge region of the Fc region (CH1 domain) such that the number of cysteine residues in the hinge region are altered (e.g., increased or decreased) as described in, e.g., U.S. Pat. No. 5,677,425. The number of cysteine residues in the hinge region of the CH1 domain can be altered to, e.g., facilitate assembly of the light and heavy chains, or to alter (e.g., increase or decrease) the stability of the antibody or to facilitate linker conjugation.


In some embodiments, one, two or more mutations (e.g., amino acid substitutions) are introduced into the Fc region of a muscle-targeting antibody described herein (e.g., in a CH2 domain (residues 231-340 of human IgG1) and/or (e.g., and) CH3 domain (residues 341-447 of human IgG1) and/or (e.g., and) the hinge region, with numbering according to the Kabat numbering system (e.g., the EU index in Kabat)) to increase or decrease the affinity of the antibody for an Fc receptor (e.g., an activated Fc receptor) on the surface of an effector cell. Mutations in the Fc region of an antibody that decrease or increase the affinity of an antibody for an Fc receptor and techniques for introducing such mutations into the Fc receptor or fragment thereof are known to one of skill in the art. Examples of mutations in the Fc receptor of an antibody that can be made to alter the affinity of the antibody for an Fc receptor are described in, e.g., Smith P et al., (2012) PNAS 109: 6181-6186, U.S. Pat. No. 6,737,056, and International Publication Nos. WO 02/060919; WO 98/23289; and WO 97/34631, which are incorporated herein by reference.


In some embodiments, one, two or more amino acid mutations (i.e., substitutions, insertions or deletions) are introduced into an IgG constant domain, or FcRn-binding fragment thereof (preferably an Fc or hinge-Fc domain fragment) to alter (e.g., decrease or increase) half-life of the antibody in vivo. See, e.g., International Publication Nos. WO 02/060919; WO 98/23289; and WO 97/34631; and U.S. Pat. Nos. 5,869,046, 6,121,022, 6,277,375 and 6,165,745 for examples of mutations that will alter (e.g., decrease or increase) the half-life of an antibody in vivo.


In some embodiments, one, two or more amino acid mutations (i.e., substitutions, insertions or deletions) are introduced into an IgG constant domain, or FcRn-binding fragment thereof (preferably an Fc or hinge-Fc domain fragment) to decrease the half-life of the anti-TfR1 antibody in vivo. In some embodiments, one, two or more amino acid mutations (i.e., substitutions, insertions or deletions) are introduced into an IgG constant domain, or FcRn-binding fragment thereof (preferably an Fc or hinge-Fc domain fragment) to increase the half-life of the antibody in vivo. In some embodiments, the antibodies can have one or more amino acid mutations (e.g., substitutions) in the second constant (CH2) domain (residues 231-340 of human IgG1) and/or (e.g., and) the third constant (CH3) domain (residues 341-447 of human IgG1), with numbering according to the EU index in Kabat (Kabat E A et al., (1991) supra). In some embodiments, the constant region of the IgG1 of an antibody described herein comprises a methionine (M) to tyrosine (Y) substitution in position 252, a serine (S) to threonine (T) substitution in position 254, and a threonine (T) to glutamic acid (E) substitution in position 256, numbered according to the EU index as in Kabat. See U.S. Pat. No. 7,658,921, which is incorporated herein by reference. This type of mutant IgG, referred to as “YTE mutant” has been shown to display fourfold increased half-life as compared to wild-type versions of the same antibody (see Dall'Acqua W F et al., (2006) J Biol Chem 281: 23514-24). In some embodiments, an antibody comprises an IgG constant domain comprising one, two, three or more amino acid substitutions of amino acid residues at positions 251-257, 285-290, 308-314, 385-389, and 428-436, numbered according to the EU index as in Kabat.


In some embodiments, one, two or more amino acid substitutions are introduced into an IgG constant domain Fc region to alter the effector function(s) of the anti-TfR1 antibody. The effector ligand to which affinity is altered can be, for example, an Fc receptor or the C1 component of complement. This approach is described in further detail in U.S. Pat. Nos. 5,624,821 and 5,648,260. In some embodiments, the deletion or inactivation (through point mutations or other means) of a constant region domain can reduce Fc receptor binding of the circulating antibody thereby increasing tumor localization. See, e.g., U.S. Pat. Nos. 5,585,097 and 8,591,886 for a description of mutations that delete or inactivate the constant domain and thereby increase tumor localization. In some embodiments, one or more amino acid substitutions may be introduced into the Fc region of an antibody described herein to remove potential glycosylation sites on Fc region, which may reduce Fc receptor binding (sec, e.g., Shields R L et al., (2001) J Biol Chem 276: 6591-604).


In some embodiments, one or more amino in the constant region of an anti-TfR1 antibody described herein can be replaced with a different amino acid residue such that the antibody has altered C1q binding and/or (e.g., and) reduced or abolished complement dependent cytotoxicity (CDC). This approach is described in further detail in U.S. Pat. No. 6,194,551 (Idusogie et al). In some embodiments, one or more amino acid residues in the N-terminal region of the CH2 domain of an antibody described herein are altered to thereby alter the ability of the antibody to fix complement. This approach is described further in International Publication No. WO 94/29351. In some embodiments, the Fc region of an antibody described herein is modified to increase the ability of the antibody to mediate antibody dependent cellular cytotoxicity (ADCC) and/or (e.g., and) to increase the affinity of the antibody for an Fcγ receptor. This approach is described further in International Publication No. WO 00/42072.


In some embodiments, the heavy and/or (e.g., and) light chain variable domain(s) sequence(s) of the antibodies provided herein can be used to generate, for example, CDR-grafted, chimeric, humanized, or composite human antibodies or antigen-binding fragments, as described elsewhere herein. As understood by one of ordinary skill in the art, any variant, CDR-grafted, chimeric, humanized, or composite antibodies derived from any of the antibodies provided herein may be useful in the compositions and methods described herein and will maintain the ability to specifically bind transferrin receptor, such that the variant, CDR-grafted, chimeric, humanized, or composite antibody has at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95% or more binding to transferrin receptor relative to the original antibody from which it is derived.


In some embodiments, the antibodies provided herein comprise mutations that confer desirable properties to the antibodies. For example, to avoid potential complications due to Fab-arm exchange, which is known to occur with native IgG4 mAbs, the antibodies provided herein may comprise a stabilizing ‘Adair’ mutation (Angal S., et al., “A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (lgG4) antibody,” Mol Immunol 30, 105-108; 1993), where serine 228 (EU numbering; residue 241 Kabat numbering) is converted to proline resulting in an IgG1-like hinge sequence. Accordingly, any of the antibodies may include a stabilizing ‘Adair’ mutation.


In some embodiments, an antibody is modified, e.g., modified via glycosylation, phosphorylation, sumoylation, and/or (e.g., and) methylation. In some embodiments, an antibody is a glycosylated antibody, which is conjugated to one or more sugar or carbohydrate molecules. In some embodiments, the one or more sugar or carbohydrate molecule are conjugated to the antibody via N-glycosylation, O-glycosylation, C-glycosylation, glypiation (GPI anchor attachment), and/or (e.g., and) phosphoglycosylation. In some embodiments, the one or more sugar or carbohydrate molecules are monosaccharides, disaccharides, oligosaccharides, or glycans. In some embodiments, the one or more sugar or carbohydrate molecule is a branched oligosaccharide or a branched glycan. In some embodiments, the one or more sugar or carbohydrate molecule includes a mannose unit, a glucose unit, an N-acetylglucosamine unit, an N-acetylgalactosamine unit, a galactose unit, a fucose unit, or a phospholipid unit. In some embodiments, there are about 1-10, about 1-5, about 5-10, about 1-4, about 1-3, or about 2 sugar molecules. In some embodiments, a glycosylated antibody is fully or partially glycosylated. In some embodiments, an antibody is glycosylated by chemical reactions or by enzymatic means. In some embodiments, an antibody is glycosylated in vitro or inside a cell, which may optionally be deficient in an enzyme in the N- or O-glycosylation pathway, e.g. a glycosyltransferase. In some embodiments, an antibody is functionalized with sugar or carbohydrate molecules as described in International Patent Application Publication WO2014065661, published on May 1, 2014, entitled, “Modified antibody, antibody-conjugate and process for the preparation thereof”.


In some embodiments, any one of the anti-TfR1 antibodies described herein may comprise a signal peptide in the heavy and/or (e.g., and) light chain sequence (e.g., a N-terminal signal peptide). In some embodiments, the anti-TfR1 antibody described herein comprises any one of the VH and VL sequences, any one of the IgG heavy chain and light chain sequences, or any one of the F(ab′) heavy chain and light chain sequences described herein, and further comprises a signal peptide (e.g., a N-terminal signal peptide). In some embodiments, the signal peptide comprises the amino acid sequence of MGWSCIILFLVATATGVHS (SEQ ID NO: 104).


In some embodiments, an antibody provided herein may have one or more post-translational modifications. In some embodiments, N-terminal cyclization, also called pyroglutamate formation (pyro-Glu), may occur in the antibody at N-terminal Glutamate (Glu) and/or Glutamine (Gln) residues during production. As such, it should be appreciated that an antibody specified as having a sequence comprising an N-terminal glutamate or glutamine residue encompasses antibodies that have undergone pyroglutamate formation resulting from a post-translational modification. In some embodiments, pyroglutamate formation occurs in a heavy chain sequence. In some embodiments, pyroglutamate formation occurs in a light chain sequence.


b. Other Muscle-Targeting Antibodies

In some embodiments, the muscle-targeting antibody is an antibody that specifically binds hemojuvelin, caveolin-3, Duchenne muscular dystrophy peptide, myosin IIb or CD63. In some embodiments, the muscle-targeting antibody is an antibody that specifically binds a myogenic precursor protein. Exemplary myogenic precursor proteins include, without limitation, ABCG2, M-Cadherin/Cadherin-15, Caveolin-1, CD34, FoxK1, Integrin alpha 7, Integrin alpha 7 beta 1. MYF-5, MyoD, Myogenin, NCAM-1/CD56, Pax3, Pax7, and Pax9. In some embodiments, the muscle-targeting antibody is an antibody that specifically binds a skeletal muscle protein. Exemplary skeletal muscle proteins include, without limitation, alpha-Sarcoglycan, beta-Sarcoglycan, Calpain Inhibitors, Creatine Kinase MM/CKMM, cIF5A, Enolase 2/Neuron-specific Enolase, epsilon-Sarcoglycan, FABP3/H-FABP. GDF-8/Myostatin, GDF-11/GDF-8, Integrin alpha 7, Integrin alpha 7 beta 1, Integrin beta 1/CD29, MCAM/CD146, MyoD. Myogenin, Myosin Light Chain Kinase Inhibitors, NCAM-1/CD56, and Troponin I. In some embodiments, the muscle-targeting antibody is an antibody that specifically binds a smooth muscle protein. Exemplary smooth muscle proteins include, without limitation, alpha-Smooth Muscle Actin, VE-Cadherin, Caldesmon/CALD1, Calponin 1, Desmin, Histamine H2 R. Motilin R/GPR38, Transgelin/TAGLN, and Vimentin. However, it should be appreciated that antibodies to additional targets are within the scope of this disclosure and the exemplary lists of targets provided herein are not meant to be limiting.


c. Antibody Features/Alterations

In some embodiments, conservative mutations can be introduced into antibody sequences (e.g., CDRs or framework sequences) at positions where the residues are not likely to be involved in interacting with a target antigen (e.g., transferrin receptor), for example, as determined based on a crystal structure. In some embodiments, one, two or more mutations (e.g., amino acid substitutions) are introduced into the Fc region of a muscle-targeting antibody described herein (e.g., in a CH2 domain (residues 231-340 of human IgG1) and/or (e.g., and) CH3 domain (residues 341-447 of human IgG1) and/or (e.g., and) the hinge region, with numbering according to the Kabat numbering system (e.g., the EU index in Kabat)) to alter one or more functional properties of the antibody, such as serum half-life, complement fixation, Fc receptor binding and/or (e.g., and) antigen-dependent cellular cytotoxicity.


In some embodiments, one, two or more mutations (e.g., amino acid substitutions) are introduced into the hinge region of the Fc region (CH1 domain) such that the number of cysteine residues in the hinge region are altered (e.g., increased or decreased) as described in, e.g., U.S. Pat. No. 5,677,425. The number of cysteine residues in the hinge region of the CH1 domain can be altered to, e.g., facilitate assembly of the light and heavy chains, or to alter (e.g., increase or decrease) the stability of the antibody or to facilitate linker conjugation.


In some embodiments, one, two or more mutations (e.g., amino acid substitutions) are introduced into the Fc region of a muscle-targeting antibody described herein (e.g., in a CH2 domain (residues 231-340 of human IgG1) and/or (e.g., and) CH3 domain (residues 341-447 of human IgG1) and/or (e.g., and) the hinge region, with numbering according to the Kabat numbering system (e.g., the EU index in Kabat)) to increase or decrease the affinity of the antibody for an Fc receptor (e.g., an activated Fc receptor) on the surface of an effector cell. Mutations in the Fc region of an antibody that decrease or increase the affinity of an antibody for an Fc receptor and techniques for introducing such mutations into the Fc receptor or fragment thereof are known to one of skill in the art. Examples of mutations in the Fc receptor of an antibody that can be made to alter the affinity of the antibody for an Fc receptor are described in, e.g., Smith P et al., (2012) PNAS 109: 6181-6186, U.S. Pat. No. 6,737,056, and International Publication Nos. WO 02/060919; WO 98/23289; and WO 97/34631, which are incorporated herein by reference.


In some embodiments, one, two or more amino acid mutations (i.e., substitutions, insertions or deletions) are introduced into an IgG constant domain, or FcRn-binding fragment thereof (preferably an Fc or hinge-Fc domain fragment) to alter (e.g., decrease or increase) half-life of the antibody in vivo. See, e.g., International Publication Nos. WO 02/060919; WO 98/23289; and WO 97/34631; and U.S. Pat. Nos. 5,869,046, 6,121,022, 6,277,375 and 6,165,745 for examples of mutations that will alter (e.g., decrease or increase) the half-life of an antibody in vivo.


In some embodiments, one, two or more amino acid mutations (i.e., substitutions, insertions or deletions) are introduced into an IgG constant domain, or FcRn-binding fragment thereof (preferably an Fc or hinge-Fc domain fragment) to decrease the half-life of the anti-transferrin receptor antibody in vivo. In some embodiments, one, two or more amino acid mutations (i.e., substitutions, insertions or deletions) are introduced into an IgG constant domain, or FcRn-binding fragment thereof (preferably an Fc or hinge-Fc domain fragment) to increase the half-life of the antibody in vivo. In some embodiments, the antibodies can have one or more amino acid mutations (e.g., substitutions) in the second constant (CH2) domain (residues 231-340 of human IgG1) and/or (e.g., and) the third constant (CH3) domain (residues 341-447 of human IgG1), with numbering according to the EU index in Kabat (Kabat E A et al., (1991) supra). In some embodiments, the constant region of the IgG1 of an antibody described herein comprises a methionine (M) to tyrosine (Y) substitution in position 252, a serine (S) to threonine (T) substitution in position 254, and a threonine (T) to glutamic acid (E) substitution in position 256, numbered according to the EU index as in Kabat. See U.S. Pat. No. 7,658,921, which is incorporated herein by reference. This type of mutant IgG, referred to as “YTE mutant” has been shown to display fourfold increased half-life as compared to wild-type versions of the same antibody (see Dall'Acqua W F et al., (2006) J Biol Chem 281: 23514-24). In some embodiments, an antibody comprises an IgG constant domain comprising one, two, three or more amino acid substitutions of amino acid residues at positions 251-257, 285-290, 308-314, 385-389, and 428-436, numbered according to the EU index as in Kabat.


In some embodiments, one, two or more amino acid substitutions are introduced into an IgG constant domain Fc region to alter the effector function(s) of the anti-transferrin receptor antibody. The effector ligand to which affinity is altered can be, for example, an Fc receptor or the C1 component of complement. This approach is described in further detail in U.S. Pat. Nos. 5,624,821 and 5,648,260. In some embodiments, the deletion or inactivation (through point mutations or other means) of a constant region domain can reduce Fc receptor binding of the circulating antibody thereby increasing tumor localization. Sec. e.g., U.S. Pat. Nos. 5,585,097 and 8,591,886 for a description of mutations that delete or inactivate the constant domain and thereby increase tumor localization. In some embodiments, one or more amino acid substitutions may be introduced into the Fc region of an antibody described herein to remove potential glycosylation sites on Fc region, which may reduce Fc receptor binding (see, e.g., Shields R L et al., (2001) J Biol Chem 276: 6591-604).


In some embodiments, one or more amino in the constant region of a muscle-targeting antibody described herein can be replaced with a different amino acid residue such that the antibody has altered C1q binding and/or (e.g., and) reduced or abolished complement dependent cytotoxicity (CDC). This approach is described in further detail in U.S. Pat. No. 6,194,551 (Idusogie et al). In some embodiments, one or more amino acid residues in the N-terminal region of the CH2 domain of an antibody described herein are altered to thereby alter the ability of the antibody to fix complement. This approach is described further in International Publication No. WO 94/29351. In some embodiments, the Fc region of an antibody described herein is modified to increase the ability of the antibody to mediate antibody dependent cellular cytotoxicity (ADCC) and/or (e.g., and) to increase the affinity of the antibody for an Fcγ receptor. This approach is described further in International Publication No. WO 00/42072.


In some embodiments, the heavy and/or (e.g., and) light chain variable domain(s) sequence(s) of the antibodies provided herein can be used to generate, for example, CDR-grafted, chimeric, humanized, or composite human antibodies or antigen-binding fragments, as described elsewhere herein. As understood by one of ordinary skill in the art, any variant, CDR-grafted, chimeric, humanized, or composite antibodies derived from any of the antibodies provided herein may be useful in the compositions and methods described herein and will maintain the ability to specifically bind transferrin receptor, such that the variant, CDR-grafted, chimeric, humanized, or composite antibody has at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95% or more binding to transferrin receptor relative to the original antibody from which it is derived.


In some embodiments, the antibodies provided herein comprise mutations that confer desirable properties to the antibodies. For example, to avoid potential complications due to Fab-arm exchange, which is known to occur with native IgG4 mAbs, the antibodies provided herein may comprise a stabilizing ‘Adair’ mutation (Angal S., et al., “A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (lgG4) antibody,” Mol Immunol 30, 105-108; 1993), where serine 228 (EU numbering; residue 241 Kabat numbering) is converted to proline resulting in an IgG1-like hinge sequence. Accordingly, any of the antibodies may include a stabilizing ‘Adair’ mutation.


As provided herein, antibodies of this disclosure may optionally comprise constant regions or parts thereof. For example, a VL domain may be attached at its C-terminal end to a light chain constant domain like Cκ or Cλ. Similarly, a VH domain or portion thereof may be attached to all or part of a heavy chain like IgA, IgD, IgE, IgG, and IgM, and any isotype subclass. Antibodies may include suitable constant regions (see, for example, Kabat et al., Sequences of Proteins of Immunological Interest, No. 91-3242, National Institutes of Health Publications, Bethesda, Md. (1991)). Therefore, antibodies within the scope of this may disclosure include VH and VL domains, or an antigen binding portion thereof, combined with any suitable constant regions.


ii. Muscle-Targeting Peptides


Some aspects of the disclosure provide muscle-targeting peptides as muscle-targeting agents. Short peptide sequences (e.g., peptide sequences of 5-20 amino acids in length) that bind to specific cell types have been described. For example, cell-targeting peptides have been described in Vines c., et al., A. “Cell-penetrating and cell-targeting peptides in drug delivery” Biochim Biophys Acta 2008, 1786: 126-38; Jarver P., et al., “In vivo biodistribution and efficacy of peptide mediated delivery” Trends Pharmacol Sci 2010; 31: 528-35; Samoylova T. I., et al., “Elucidation of muscle-binding peptides by phage display screening” Muscle Nerve 1999; 22: 460-6; U.S. Pat. No. 6,329,501, issued on Dec. 11, 2001, entitled “METHODS AND COMPOSITIONS FOR TARGETING COMPOUNDS TO MUSCLE”; and Samoylov A. M., et al., “Recognition of cell-specific binding of phage display derived peptides using an acoustic wave sensor.” Biomol Eng 2002; 18: 269-72; the entire contents of each of which are incorporated herein by reference. By designing peptides to interact with specific cell surface antigens (e.g., receptors), selectivity for a desired tissue, e.g., muscle, can be achieved. Skeletal muscle-targeting has been investigated and a range of molecular payloads are able to be delivered. These approaches may have high selectivity for muscle tissue without many of the practical disadvantages of a large antibody or viral particle. Accordingly, in some embodiments, the muscle-targeting agent is a muscle-targeting peptide that is from 4 to 50 amino acids in length. In some embodiments, the muscle-targeting peptide is 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 amino acids in length. Muscle-targeting peptides can be generated using any of several methods, such as phage display.


In some embodiments, a muscle-targeting peptide may bind to an internalizing cell surface receptor that is overexpressed or relatively highly expressed in muscle cells, e.g. a transferrin receptor, compared with certain other cells. In some embodiments, a muscle-targeting peptide may target, e.g., bind to, a transferrin receptor. In some embodiments, a peptide that targets a transferrin receptor may comprise a segment of a naturally occurring ligand, e.g., transferrin. In some embodiments, a peptide that targets a transferrin receptor is as described in U.S. Pat. No. 6,743,893, filed Nov. 30, 2000, “RECEPTOR-MEDIATED UPTAKE OF PEPTIDES THAT BIND THE HUMAN TRANSFERRIN RECEPTOR”. In some embodiments, a peptide that targets a transferrin receptor is as described in Kawamoto, M. et al, “A novel transferrin receptor-targeted hybrid peptide disintegrates cancer cell membrane to induce rapid killing of cancer cells.” BMC Cancer. 2011 Aug. 18; 11:359. In some embodiments, a peptide that targets a transferrin receptor is as described in U.S. Pat. No. 8,399,653, filed May 20, 2011. “TRANSFERRIN/TRANSFERRIN RECEPTOR-MEDIATED SIRNA DELIVERY”.


As discussed above, examples of muscle targeting peptides have been reported. For example, muscle-specific peptides were identified using phage display library presenting surface heptapeptides. As one example a peptide having the amino acid sequence ASSLNIA (SEQ ID NO: 975) bound to C2C12 murine myotubes in vitro, and bound to mouse muscle tissue in vivo. Accordingly, in some embodiments, the muscle-targeting agent comprises the amino acid sequence ASSLNIA (SEQ ID NO: 975). This peptide displayed improved specificity for binding to heart and skeletal muscle tissue after intravenous injection in mice with reduced binding to liver, kidney, and brain. Additional muscle-specific peptides have been identified using phage display. For example, a 12 amino acid peptide was identified by phage display library for muscle targeting in the context of treatment for Duchenne muscular dystrophy. Sec, Yoshida D., et al., “Targeting of salicylate to skin and muscle following topical injections in rats.” Int J Pharm 2002; 231: 177-84; the entire contents of which are hereby incorporated by reference. Here, a 12 amino acid peptide having the sequence SKTFNTHPQSTP (SEQ ID NO: 976) was identified and this muscle-targeting peptide showed improved binding to C2C12 cells relative to the ASSLNIA (SEQ ID NO: 975) peptide.


An additional method for identifying peptides selective for muscle (e.g., skeletal muscle) over other cell types includes in vitro selection, which has been described in Ghosh D., et al., “Selection of muscle-binding peptides from context-specific peptide-presenting phage libraries for adenoviral vector targeting” J Virol 2005; 79: 13667-72; the entire contents of which are incorporated herein by reference. By pre-incubating a random 12-mer peptide phage display library with a mixture of non-muscle cell types, non-specific cell binders were selected out. Following rounds of selection the 12 amino acid peptide TARGEHKEEELI (SEQ ID NO: 977) appeared most frequently. Accordingly, in some embodiments, the muscle-targeting agent comprises the amino acid sequence TARGEHKEEELI (SEQ ID NO: 977).


A muscle-targeting agent may an amino acid-containing molecule or peptide. A muscle-targeting peptide may correspond to a sequence of a protein that preferentially binds to a protein receptor found in muscle cells. In some embodiments, a muscle-targeting peptide contains a high propensity of hydrophobic amino acids, e.g. valine, such that the peptide preferentially targets muscle cells. In some embodiments, a muscle-targeting peptide has not been previously characterized or disclosed. These peptides may be conceived of, produced, synthesized, and/or (e.g., and) derivatized using any of several methodologies, e.g. phage displayed peptide libraries, one-bead one-compound peptide libraries, or positional scanning synthetic peptide combinatorial libraries. Exemplary methodologies have been characterized in the art and are incorporated by reference (Gray, B. P. and Brown, K. C. “Combinatorial Peptide Libraries: Mining for Cell-Binding Peptides” Chem Rev. 2014, 114:2, 1020-1081; Samoylova, T. I. and Smith, B. F. “Elucidation of muscle-binding peptides by phage display screening.” Muscle Nerve, 1999, 22:4. 460-6). In some embodiments, a muscle-targeting peptide has been previously disclosed (see, e.g. Writer M. J. et al. “Targeted gene delivery to human airway epithelial cells with synthetic vectors incorporating novel targeting peptides selected by phage display.” J. Drug Targeting. 2004; 12:185; Cai, D. “BDNF-mediated enhancement of inflammation and injury in the aging heart.” Physiol Genomics. 2006, 24:3, 191-7; Zhang. L. “Molecular profiling of heart endothelial cells.” Circulation, 2005, 112:11, 1601-11; McGuire, M. J. et al. “In vitro selection of a peptide with high selectivity for cardiomyocytes in vivo.” J Mol Biol. 2004, 342:1, 171-82). Exemplary muscle-targeting peptides comprise an amino acid sequence of the following group: CQAQGQLVC (SEQ ID NO: 978), CSERSMNFC (SEQ ID NO: 979), CPKTRRVPC (SEQ ID NO: 980), WLSEAGPVVTVRALRGTGSW (SEQ ID NO: 981), ASSLNIA (SEQ ID NO: 975), CMQHSMRVC (SEQ ID NO: 982), and DDTRHWG (SEQ ID NO: 983). In some embodiments, a muscle-targeting peptide may comprise about 2-25 amino acids, about 2-20 amino acids, about 2-15 amino acids, about 2-10 amino acids, or about 2-5 amino acids. Muscle-targeting peptides may comprise naturally-occurring amino acids, e.g. cysteine, alanine, or non-naturally-occurring or modified amino acids. Non-naturally occurring amino acids include β-amino acids, homo-amino acids, proline derivatives, 3-substituted alanine derivatives, linear core amino acids, N-methyl amino acids, and others known in the art. In some embodiments, a muscle-targeting peptide may be linear; in other embodiments, a muscle-targeting peptide may be cyclic, e.g. bicyclic (see, e.g. Silvana, M. G. et al. Mol. Therapy, 2018, 26:1, 132-147).


iii. Muscle-Targeting Receptor Ligands


A muscle-targeting agent may be a ligand, e.g. a ligand that binds to a receptor protein. A muscle-targeting ligand may be a protein, e.g. transferrin, which binds to an internalizing cell surface receptor expressed by a muscle cell. Accordingly, in some embodiments, the muscle-targeting agent is transferrin, or a derivative thereof that binds to a transferrin receptor. A muscle-targeting ligand may alternatively be a small molecule, e.g. a lipophilic small molecule that preferentially targets muscle cells relative to other cell types. Exemplary lipophilic small molecules that may target muscle cells include compounds comprising cholesterol, cholesteryl, stearic acid, palmitic acid, oleic acid, oleyl, linolene, linoleic acid, myristic acid, sterols, dihydrotestosterone, testosterone derivatives, glycerine, alkyl chains, trityl groups, and alkoxy acids.


iv. Muscle-Targeting Aptamers


A muscle-targeting agent may be an aptamer, e.g. an RNA aptamer, which preferentially targets muscle cells relative to other cell types. In some embodiments, a muscle-targeting aptamer has not been previously characterized or disclosed. These aptamers may be conceived of, produced, synthesized, and/or (e.g., and) derivatized using any of several methodologies, e.g. Systematic Evolution of Ligands by Exponential Enrichment. Exemplary methodologies have been characterized in the art and are incorporated by reference (Yan, A. C. and Levy, M. “Aptamers and aptamer targeted delivery” RNA biology, 2009, 6:3, 316-20; Germer, K. et al. “RNA aptamers and their therapeutic and diagnostic applications.” Int. J. Biochem. Mol. Biol. 2013; 4: 27-40). In some embodiments, a muscle-targeting aptamer has been previously disclosed (see, e.g. Phillippou, S. et al. “Selection and Identification of Skeletal-Muscle-Targeted RNA Aptamers.” Mol Ther Nucleic Acids. 2018, 10:199-214; Thiel, W. H. et al. “Smooth Muscle Cell-targeted RNA Aptamer Inhibits Neointimal Formation.” Mol Ther. 2016, 24:4, 779-87). Exemplary muscle-targeting aptamers include the A01B RNA aptamer and RNA Apt 14. In some embodiments, an aptamer is a nucleic acid-based aptamer, an oligonucleotide aptamer or a peptide aptamer. In some embodiments, an aptamer may be about 5-15 kDa, about 5-10 kDa, about 10-15 kDa, about 1-5 Da, about 1-3 kDa, or smaller.


v. Other Muscle-Targeting Agents


One strategy for targeting a muscle cell (e.g., a skeletal muscle cell) is to use a substrate of a muscle transporter protein, such as a transporter protein expressed on the sarcolemma. In some embodiments, the muscle-targeting agent is a substrate of an influx transporter that is specific to muscle tissue. In some embodiments, the influx transporter is specific to skeletal muscle tissue. Two main classes of transporters are expressed on the skeletal muscle sarcolemma, (1) the adenosine triphosphate (ATP) binding cassette (ABC) superfamily, which facilitate efflux from skeletal muscle tissue and (2) the solute carrier (SLC) superfamily, which can facilitate the influx of substrates into skeletal muscle. In some embodiments, the muscle-targeting agent is a substrate that binds to an ABC superfamily or an SLC superfamily of transporters. In some embodiments, the substrate that binds to the ABC or SLC superfamily of transporters is a naturally-occurring substrate. In some embodiments, the substrate that binds to the ABC or SLC superfamily of transporters is a non-naturally occurring substrate, for example, a synthetic derivative thereof that binds to the ABC or SLC superfamily of transporters.


In some embodiments, the muscle-targeting agent is any muscle targeting agent described herein (e.g., antibodies, nucleic acids, small molecules, peptides, aptamers, lipids, sugar moieties) that target SLC superfamily of transporters. In some embodiments, the muscle-targeting agent is a substrate of an SLC superfamily of transporters. SLC transporters are either equilibrative or use proton or sodium ion gradients created across the membrane to drive transport of substrates. Exemplary SLC transporters that have high skeletal muscle expression include, without limitation, the SATT transporter (ASCT1; SLC1A4), GLUT4 transporter (SLC2A4), GLUT7 transporter (GLUT7; SLC2A7), ATRC2 transporter (CAT-2; SLC7A2), LAT3 transporter (KIAA0245; SLC7A6), PHT1 transporter (PTR4; SLC15A4), OATP-J transporter (OATP5A1; SLC21A15), OCT3 transporter (EMT; SLC22A3), OCTN2 transporter (FLJ46769; SLC22A5), ENT transporters (ENT1; SLC29A1 and ENT2; SLC29A2), PAT2 transporter (SLC36A2), and SAT2 transporter (KIAA1382; SLC38A2). These transporters can facilitate the influx of substrates into skeletal muscle, providing opportunities for muscle targeting.


In some embodiments, the muscle-targeting agent is a substrate of an equilibrative nucleoside transporter 2 (ENT2) transporter. Relative to other transporters, ENT2 has one of the highest mRNA expressions in skeletal muscle. While human ENT2 (hENT2) is expressed in most body organs such as brain, heart, placenta, thymus, pancreas, prostate, and kidney, it is especially abundant in skeletal muscle. Human ENT2 facilitates the uptake of its substrates depending on their concentration gradient. ENT2 plays a role in maintaining nucleoside homeostasis by transporting a wide range of purine and pyrimidine nucleobases. The hENT2 transporter has a low affinity for all nucleosides (adenosine, guanosine, uridine, thymidine, and cytidine) except for inosine. Accordingly, in some embodiments, the muscle-targeting agent is an ENT2 substrate. Exemplary ENT2 substrates include, without limitation, inosine, 2′,3′-dideoxyinosine, and calofarabine. In some embodiments, any of the muscle-targeting agents provided herein are associated with a molecular payload (e.g., oligonucleotide payload). In some embodiments, the muscle-targeting agent is covalently linked to the molecular payload. In some embodiments, the muscle-targeting agent is non-covalently linked to the molecular payload.


In some embodiments, the muscle-targeting agent is a substrate of an organic cation/carnitine transporter (OCTN2), which is a sodium ion-dependent, high affinity carnitine transporter. In some embodiments, the muscle-targeting agent is carnitine, mildronate, acetylcarnitine, or any derivative thereof that binds to OCTN2. In some embodiments, the carnitine, mildronate, acetylcarnitine, or derivative thereof is covalently linked to the molecular payload (e.g., oligonucleotide payload).


A muscle-targeting agent may be a protein that is protein that exists in at least one soluble form that targets muscle cells. In some embodiments, a muscle-targeting protein may be hemojuvelin (also known as repulsive guidance molecule C or hemochromatosis type 2 protein), a protein involved in iron overload and homeostasis. In some embodiments, hemojuvelin may be full length or a fragment, or a mutant with at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98% or at least 99% sequence identity to a functional hemojuvelin protein. In some embodiments, a hemojuvelin mutant may be a soluble fragment, may lack a N-terminal signaling, and/or (e.g., and) lack a C-terminal anchoring domain. In some embodiments, hemojuvelin may be annotated under GenBank RefSeq Accession Numbers NM_001316767.1. NM_145277.4, NM_202004.3, NM_213652.3, or NM_213653.3. It should be appreciated that a hemojuvelin may be of human, non-human primate, or rodent origin.


B. Molecular Payloads

Some aspects of the disclosure provide molecular payloads, e.g., for modulating a biological outcome, e.g., the transcription of a DNA sequence, the splicing and processing of a RNA sequence, the expression of a protein, or the activity of a protein. In some embodiments, a molecular payload is linked to, or otherwise associated with a muscle-targeting agent. In some embodiments, such molecular payloads are capable of targeting to a muscle cell, e.g., via specifically binding to a nucleic acid or protein in the muscle cell following delivery to the muscle cell by an associated muscle-targeting agent. It should be appreciated that various types of molecular payloads may be used in accordance with the disclosure. For example, the molecular payload may comprise, or consist of, an oligonucleotide (e.g., antisense oligonucleotide), a peptide (e.g., a peptide that binds a nucleic acid or protein associated with disease in a muscle cell), a protein (e.g., a protein that binds a nucleic acid or protein associated with disease in a muscle cell), or a small molecule (e.g., a small molecule that modulates the function of a nucleic acid or protein associated with disease in a muscle cell). In some embodiments, the molecular payload is an oligonucleotide that comprises a strand having a region of complementarity to a mutated DMD allele. Exemplary molecular payloads are described in further detail herein, however, it should be appreciated that the exemplary molecular payloads provided herein are not meant to be limiting.


i. Oligonucleotides


Aspects of the disclosure relate to oligonucleotides configured to modulate (e.g., increase) expression of dystrophin, e.g., from a DMD allele. In some embodiments, oligonucleotides provided herein are configured to alter splicing of DMD pre-mRNA to promote expression of dystrophin protein (e.g., a functional truncated dystrophin protein). In some embodiments, oligonucleotides provided herein are configured to promote skipping of one or more exons in DMD, e.g., in a mutated DMD allele, in order to restore the reading frame. In some embodiments, the oligonucleotides allow for functional dystrophin protein expression (e.g., as described in Lee T, Awano H. Yagi M, et al. 2′-O-Methyl RNA/Ethylene-Bridged Nucleic Acid Chimera Antisense Oligonucleotides to Induce Dystrophin Exon 45 Skipping. Genes. 2017; 8(2):67 and Watanabe N, Nagata T, Satou Y, et al. NS-065/NCNP-01: an antisense oligonucleotide for potential treatment of exon 53 skipping in Duchenne muscular dystrophy. Mol Ther Nucleic Acids. 2018; 13:442-449). In some embodiments, oligonucleotides provided are configured to promote skipping of exon 45 to produce a shorter but functional version of dystrophin (e.g., containing an in-frame deletion). In some embodiments, oligonucleotides are provided that promote exon 45 skipping (e.g., which may be relevant in a substantial number of patients, including, for example, patients amenable to exon 44 skipping, such as those having deletions in DMD exons 7-44, 12-44, 18-44, 44, 46, 46-47, 46-48, 46-49, 46-51, 46-53, 46-55, 46-57, 46-59, 46-60, 46-67, 46-69, 46-75, or 46-79).


Table 8 provides non-limiting examples of sequences of oligonucleotides that are useful for targeting DMD, e.g., for exon skipping, and for target sequences within DMD. In some embodiments, an oligonucleotide may comprise any antisense sequence provided in Table 8 or a sequence complementary to a target sequence provided in Table 8.









TABLE 8







Oligonucleotide sequences for targeting DMD.













SEQ

SEQ
Antisense
SEQ
Antisense



ID
Target sequence
ID
Sequence
ID
Sequence



NO
(5′ to 3′)
NO
(5′ to 3′)
NO
(5′ to 3′)
Target Site





160
CUUUGCCAGUACA
400
ACCACAUGCAGUU
640
ACCACATGCAGTT
Intron 44



ACUGCAUGUGGU

GUACUGGCAAAG

GTACTGGCAAAG






161
UUGCCAGUACAAC
401
UACCACAUGCAGU
641
TACCACATGCAGT
Intron 44



UGCAUGUGGUA

UGUACUGGCAA

TGTACTGGCAA






162
UUGCCAGUACAAC
402
CUACCACAUGCAG
642
CTACCACATGCAG
Intron 44



UGCAUGUGGUAG

UUGUACUGGCAA

TTGTACTGGCAA






163
UGCCAGUACAACU
403
ACCACAUGCAGUU
643
ACCACATGCAGTT
Intron 44



GCAUGUGGU

GUACUGGCA

GTACTGGCA






164
UGCCAGUACAACU
404
UACCACAUGCAGU
644
TACCACATGCAGT
Intron 44



GCAUGUGGUA

UGUACUGGCA

TGTACTGGCA






165
UGCCAGUACAACU
405
CUACCACAUGCAG
645
CTACCACATGCAG
Intron 44



GCAUGUGGUAG

UUGUACUGGCA

TTGTACTGGCA






166
UGCCAGUACAACU
406
GCUACCACAUGCA
646
GCTACCACATGCA
Intron 44



GCAUGUGGUAGC

GUUGUACUGGCA

GTTGTACTGGCA






167
GCCAGUACAACUG
407
ACCACAUGCAGUU
647
ACCACATGCAGTT
Intron 44



CAUGUGGU

GUACUGGC

GTACTGGC






168
GCCAGUACAACUG
408
UACCACAUGCAGU
648
TACCACATGCAGT
Intron 44



CAUGUGGUA

UGUACUGGC

TGTACTGGC






169
GCCAGUACAACUG
409
CUACCACAUGCAG
649
CTACCACATGCAG
Intron 44



CAUGUGGUAG

UUGUACUGGC

TTGTACTGGC






170
GCCAGUACAACUG
410
GCUACCACAUGCA
650
GCTACCACATGCA
Intron 44



CAUGUGGUAGC

GUUGUACUGGC

GTTGTACTGGC






171
GCCAGUACAACUG
411
UGCUACCACAUGC
651
TGCTACCACATGC
Intron 44



CAUGUGGUAGCA

AGUUGUACUGGC

AGTTGTACTGGC






172
CCAGUACAACUGC
412
CUACCACAUGCAG
652
CTACCACATGCAG
Intron 44



AUGUGGUAG

UUGUACUGG

TTGTACTGG






173
CCAGUACAACUGC
413
GCUACCACAUGCA
653
GCTACCACATGCA
Intron 44



AUGUGGUAGC

GUUGUACUGG

GTTGTACTGG






174
CCAGUACAACUGC
414
UGCUACCACAUGC
654
TGCTACCACATGC
Intron 44



AUGUGGUAGCA

AGUUGUACUGG

AGTTGTACTGG






175
CAGUACAACUGCA
415
GCUACCACAUGCA
655
GCTACCACATGCA
Intron 44



UGUGGUAGC

GUUGUACUG

GTTGTACTG






176
CAGUACAACUGCA
416
UGCUACCACAUGC
656
TGCTACCACATGC
Intron 44



UGUGGUAGCA

AGUUGUACUG

AGTTGTACTG






177
AGUACAACUGCAU
417
GCUACCACAUGCA
657
GCTACCACATGCA
Intron 44



GUGGUAGC

GUUGUACU

GTTGTACT






178
AGUACAACUGCAU
418
UGCUACCACAUGC
658
TGCTACCACATGC
Intron 44



GUGGUAGCA

AGUUGUACU

AGTTGTACT






179
GUACAACUGCAUG
419
GUGCUACCACAUG
659
GTGCTACCACATG
Intron 44



UGGUAGCAC

CAGUUGUAC

CAGTTGTAC






180
GUACAACUGCAUG
420
UGUGCUACCACAU
660
TGTGCTACCACAT
Intron 44



UGGUAGCACA

GCAGUUGUAC

GCAGTTGTAC






181
AUAAAAAGACAUG
421
UGAAGCCCCAUGU
661
TGAAGCCCCATGT
Intron 44



GGGCUUCA

CUUUUUAU

CTTTTTAT






182
UCUUACAGGAACU
422
GCCAUCCUGGAGU
662
GCCATCCTGGAGT
Intron 44/exon 45



CCAGGAUGGC

UCCUGUAAGA

TCCTGTAAGA
junction





183
UCUUACAGGAACU
423
UGCCAUCCUGGAG
663
TGCCATCCTGGAG
Intron 44/exon 45



CCAGGAUGGCA

UUCCUGUAAGA

TTCCTGTAAGA
junction





184
UCUUACAGGAACU
424
AUGCCAUCCUGGA
664
ATGCCATCCTGGA
Intron 44/exon 45



CCAGGAUGGCAU

GUUCCUGUAAGA

GTTCCTGTAAGA
junction





185
CUUACAGGAACUC
425
UGCCAUCCUGGAG
665
TGCCATCCTGGAG
Intron 44/exon 45



CAGGAUGGCA

UUCCUGUAAG

TTCCTGTAAG
junction





186
CUUACAGGAACUC
426
AUGCCAUCCUGGA
666
ATGCCATCCTGGA
Intron 44/exon 45



CAGGAUGGCAU

GUUCCUGUAAG

GTTCCTGTAAG
junction





187
CUUACAGGAACUC
427
AAUGCCAUCCUGG
667
AATGCCATCCTGG
Intron 44/exon 45



CAGGAUGGCAUU

AGUUCCUGUAAG

AGTTCCTGTAAG
junction





188
UACAGGAACUCCA
428
GCCAUCCUGGAGU
668
GCCATCCTGGAGT
Intron 44/exon 45



GGAUGGC

UCCUGUA

TCCTGTA
junction





189
UACAGGAACUCCA
429
UGCCAUCCUGGAG
669
TGCCATCCTGGAG
Intron 44/exon 45



GGAUGGCA

UUCCUGUA

TTCCTGTA
junction





190
UACAGGAACUCCA
430
AUGCCAUCCUGGA
670
ATGCCATCCTGGA
Intron 44/exon 45



GGAUGGCAU

GUUCCUGUA

GTTCCTGTA
junction





191
UACAGGAACUCCA
431
AAUGCCAUCCUGG
671
AATGCCATCCTGG
Intron 44/exon 45



GGAUGGCAUU

AGUUCCUGUA

AGTTCCTGTA
junction





192
UACAGGAACUCCA
432
CCAAUGCCAUCCU
672
CCAATGCCATCCT
Intron 44/exon 45



GGAUGGCAUUGG

GGAGUUCCUGUA

GGAGTTCCTGTA
junction





193
ACAGGAACUCCAG
433
UGCCAUCCUGGAG
673
TGCCATCCTGGAG
Intron 44/exon 45



GAUGGCA

UUCCUGU

TTCCTGT
junction





194
ACAGGAACUCCAG
434
AUGCCAUCCUGGA
674
ATGCCATCCTGGA
Intron 44/exon 45



GAUGGCAU

GUUCCUGU

GTTCCTGT
junction





195
ACAGGAACUCCAG
435
AAUGCCAUCCUGG
675
AATGCCATCCTGG
Intron 44/exon 45



GAUGGCAUU

AGUUCCUGU

AGTTCCTGT
junction





196
ACAGGAACUCCAG
436
CCAAUGCCAUCCU
676
CCAATGCCATCCT
Intron 44/exon 45



GAUGGCAUUGG

GGAGUUCCUGU

GGAGTTCCTGT
junction





197
ACAGGAACUCCAG
437
CCCAAUGCCAUCC
677
CCCAATGCCATCC
Intron 44/exon 45



GAUGGCAUUGGG

UGGAGUUCCUGU

TGGAGTTCCTGT
junction





198
CAGGAACUCCAGG
438
AUGCCAUCCUGGA
678
ATGCCATCCTGGA
Intron 44/exon 45



AUGGCAU

GUUCCUG

GTTCCTG
junction





199
CAGGAACUCCAGG
439
AAUGCCAUCCUGG
679
AATGCCATCCTGG
Intron 44/exon 45



AUGGCAUU

AGUUCCUG

AGTTCCTG
junction





200
CAGGAACUCCAGG
440
CCAAUGCCAUCCU
680
CCAATGCCATCCT
Intron 44/exon 45



AUGGCAUUGG

GGAGUUCCUG

GGAGTTCCTG
junction





201
CAGGAACUCCAGG
441
CCCAAUGCCAUCC
681
CCCAATGCCATCC
Intron 44/exon 45



AUGGCAUUGGG

UGGAGUUCCUG

TGGAGTTCCTG
junction





202
CAGGAACUCCAGG
442
GCCCAAUGCCAUC
682
GCCCAATGCCATC
Intron 44/exon 45



AUGGCAUUGGGC

CUGGAGUUCCUG

CTGGAGTTCCTG
junction





203
AGGAACUCCAGGA
443
AAUGCCAUCCUGG
683
AATGCCATCCTGG
Intron 44/exon 45



UGGCAUU

AGUUCCU

AGTTCCT
junction





204
AGGAACUCCAGGA
444
CCAAUGCCAUCCU
684
CCAATGCCATCCT
Intron 44/exon 45



UGGCAUUGG

GGAGUUCCU

GGAGTTCCT
junction





205
AGGAACUCCAGGA
445
CCCAAUGCCAUCC
685
CCCAATGCCATCC
Intron 44/exon 45



UGGCAUUGGG

UGGAGUUCCU

TGGAGTTCCT
junction





206
AGGAACUCCAGGA
446
GCCCAAUGCCAUC
686
GCCCAATGCCATC
Intron 44/exon 45



UGGCAUUGGGC

CUGGAGUUCCU

CTGGAGTTCCT
junction





207
AGGAACUCCAGGA
447
UGCCCAAUGCCAU
687
TGCCCAATGCCAT
Intron 44/exon 45



UGGCAUUGGGCA

CCUGGAGUUCCU

CCTGGAGTTCCT
junction





208
GGAACUCCAGGAU
448
CCAAUGCCAUCCU
688
CCAATGCCATCCT
Intron 44/exon 45



GGCAUUGG

GGAGUUCC

GGAGTTCC
junction





209
GGAACUCCAGGAU
449
CCCAAUGCCAUCC
689
CCCAATGCCATCC
Intron 44/exon 45



GGCAUUGGG

UGGAGUUCC

TGGAGTTCC
junction





210
GGAACUCCAGGAU
450
UGCCCAAUGCCAU
690
TGCCCAATGCCAT
Intron 44/exon 45



GGCAUUGGGCA

CCUGGAGUUCC

CCTGGAGTTCC
junction





211
GGAACUCCAGGAU
451
CUGCCCAAUGCCA
691
CTGCCCAATGCCA
Intron 44/exon 45



GGCAUUGGGCAG

UCCUGGAGUUCC

TCCTGGAGTTCC
junction





212
GAACUCCAGGAUG
452
CCAAUGCCAUCCU
692
CCAATGCCATCCT
Exon 45



GCAUUGG

GGAGUUC

GGAGTTC






213
GAACUCCAGGAUG
453
CCCAAUGCCAUCC
693
CCCAATGCCATCC
Exon 45



GCAUUGGG

UGGAGUUC

TGGAGTTC






214
GAACUCCAGGAUG
454
GCCCAAUGCCAUC
694
GCCCAATGCCATC
Exon 45



GCAUUGGGC

CUGGAGUUC

CTGGAGTTC






215
GAACUCCAGGAUG
455
UGCCCAAUGCCAU
695
TGCCCAATGCCAT
Exon 45



GCAUUGGGCA

CCUGGAGUUC

CCTGGAGTTC






216
GAACUCCAGGAUG
456
CUGCCCAAUGCCA
696
CTGCCCAATGCCA
Exon 45



GCAUUGGGCAG

UCCUGGAGUUC

TCCTGGAGTTC






217
GAACUCCAGGAUG
457
GCUGCCCAAUGCC
697
GCTGCCCAATGCC
Exon 45



GCAUUGGGCAGC

AUCCUGGAGUUC

ATCCTGGAGTTC






218
AACUCCAGGAUGG
458
CCCAAUGCCAUCC
698
CCCAATGCCATCC
Exon 45



CAUUGGG

UGGAGUU

TGGAGTT






219
AACUCCAGGAUGG
459
GCCCAAUGCCAUC
699
GCCCAATGCCATC
Exon 45



CAUUGGGC

CUGGAGUU

CTGGAGTT






220
AACUCCAGGAUGG
460
UGCCCAAUGCCAU
700
TGCCCAATGCCAT
Exon 45



CAUUGGGCA

CCUGGAGUU

CCTGGAGTT






221
AACUCCAGGAUGG
461
CUGCCCAAUGCCA
701
CTGCCCAATGCCA
Exon 45



CAUUGGGCAG

UCCUGGAGUU

TCCTGGAGTT






222
AACUCCAGGAUGG
462
GCUGCCCAAUGCC
702
GCTGCCCAATGCC
Exon 45



CAUUGGGCAGC

AUCCUGGAGUU

ATCCTGGAGTT






223
ACUCCAGGAUGGC
463
GCCCAAUGCCAUC
703
GCCCAATGCCATC
Exon 45



AUUGGGC

CUGGAGU

CTGGAGT






224
ACUCCAGGAUGGC
464
UGCCCAAUGCCAU
704
TGCCCAATGCCAT
Exon 45



AUUGGGCA

CCUGGAGU

CCTGGAGT






225
ACUCCAGGAUGGC
465
CUGCCCAAUGCCA
705
CTGCCCAATGCCA
Exon 45



AUUGGGCAG

UCCUGGAGU

TCCTGGAGT






226
CUCCAGGAUGGCA
466
UGCCCAAUGCCAU
706
TGCCCAATGCCAT
Exon 45



UUGGGCA

CCUGGAG

CCTGGAG






227
CAGAACAUUGAAU
467
UCCCCAGUUGCAU
707
TCCCCAGTTGCAT
Exon 45



GCAACUGGGGA

UCAAUGUUCUG

TCAATGTTCTG






228
AGAACAUUGAAUG
468
UCCCCAGUUGCAU
708
TCCCCAGTTGCAT
Exon 45



CAACUGGGGA

UCAAUGUUCU

TCAATGTTCT






229
AGAACAUUGAAUG
469
CUUCCCCAGUUGC
709
CTTCCCCAGTTGC
Exon 45



CAACUGGGGAAG

AUUCAAUGUUCU

ATTCAATGTTCT






230
GAACAUUGAAUGC
470
UCUUCCCCAGUUG
710
TCTTCCCCAGTTG
Exon 45



AACUGGGGAAGA

CAUUCAAUGUUC

CATTCAATGTTC






231
CAUUGAAUGCAAC
471
AUUUCUUCCCCAG
711
ATTTCTTCCCCAG
Exon 45



UGGGGAAGAAAU

UUGCAUUCAAUG

TTGCATTCAATG






232
AUUGAAUGCAACU
472
AUUUCUUCCCCAG
712
ATTTCTTCCCCAG
Exon 45



GGGGAAGAAAU

UUGCAUUCAAU

TTGCATTCAAT






233
AUUGAAUGCAACU
473
UAUUUCUUCCCCA
713
TATTTCTTCCCCA
Exon 45



GGGGAAGAAAUA

GUUGCAUUCAAU

GTTGCATTCAAT






234
UUGAAUGCAACUG
474
AUUUCUUCCCCAG
714
ATTTCTTCCCCAG
Exon 45



GGGAAGAAAU

UUGCAUUCAA

TTGCATTCAA






235
UUGAAUGCAACUG
475
UAUUUCUUCCCCA
715
TATTTCTTCCCCA
Exon 45



GGGAAGAAAUA

GUUGCAUUCAA

GTTGCATTCAA






236
UUGAAUGCAACUG
476
UUAUUUCUUCCCC
716
TTATTTCTTCCCC
Exon 45



GGGAAGAAAUAA

AGUUGCAUUCAA

AGTTGCATTCAA






237
UGAAUGCAACUGG
477
UUCUUCCCCAGUU
717
TTCTTCCCCAGTT
Exon 45



GGAAGAA

GCAUUCA

GCATTCA






238
UGAAUGCAACUGG
478
AUUUCUUCCCCAG
718
ATTTCTTCCCCAG
Exon 45



GGAAGAAAU

UUGCAUUCA

TTGCATTCA






239
UGAAUGCAACUGG
479
UAUUUCUUCCCCA
719
TATTTCTTCCCCA
Exon 45



GGAAGAAAUA

GUUGCAUUCA

GTTGCATTCA






240
UGAAUGCAACUGG
480
UUAUUUCUUCCCC
720
TTATTTCTTCCCC
Exon 45



GGAAGAAAUAA

AGUUGCAUUCA

AGTTGCATTCA






241
GAAUGCAACUGGG
481
AUUUCUUCCCCAG
721
ATTTCTTCCCCAG
Exon 45



GAAGAAAU

UUGCAUUC

TTGCATTC






242
GAAUGCAACUGGG
482
UAUUUCUUCCCCA
722
TATTTCTTCCCCA
Exon 45



GAAGAAAUA

GUUGCAUUC

GTTGCATTC






243
GAAUGCAACUGGG
483
UUAUUUCUUCCCC
723
TTATTTCTTCCCC
Exon 45



GAAGAAAUAA

AGUUGCAUUC

AGTTGCATTC






244
AAUGCAACUGGGG
484
UAUUUCUUCCCCA
724
TATTTCTTCCCCA
Exon 45



AAGAAAUA

GUUGCAUU

GTTGCATT






245
AUGCAACUGGGGA
485
UAUUUCUUCCCCA
725
TATTTCTTCCCCA
Exon 45



AGAAAUA

GUUGCAU

GTTGCAT






246
AUGCAACUGGGGA
486
UUAUUUCUUCCCC
726
TTATTTCTTCCCC
Exon 45



AGAAAUAA

AGUUGCAU

AGTTGCAT






247
AUGCAACUGGGGA
487
AUUAUUUCUUCCC
727
ATTATTTCTTCCC
Exon 45



AGAAAUAAU

CAGUUGCAU

CAGTTGCAT






248
AAUUCAGCAAUCC
488
UCUGUUUUUGAGG
728
TCTGTTTTTGAGG
Exon 45



UCAAAAACAGA

AUUGCUGAAUU

ATTGCTGAATT






249
AAUUCAGCAAUCC
489
AUCUGUUUUUGAG
729
ATCTGTTTTTGAG
Exon 45



UCAAAAACAGAU

GAUUGCUGAAUU

GATTGCTGAATT






250
AUUCAGCAAUCCU
490
CUGUUUUUGAGGA
730
CTGTTTTTGAGGA
Exon 45



CAAAAACAG

UUGCUGAAU

TTGCTGAAT






251
AUUCAGCAAUCCU
491
UCUGUUUUUGAGG
731
TCTGTTTTTGAGG
Exon 45



CAAAAACAGA

AUUGCUGAAU

ATTGCTGAAT






252
AUUCAGCAAUCCU
492
AUCUGUUUUUGAG
732
ATCTGTTTTTGAG
Exon 45



CAAAAACAGAU

GAUUGCUGAAU

GATTGCTGAAT






253
AUUCAGCAAUCCU
493
CAUCUGUUUUUGA
733
CATCTGTTTTTGA
Exon 45



CAAAAACAGAUG

GGAUUGCUGAAU

GGATTGCTGAAT






254
UUCAGCAAUCCUC
494
UCUGUUUUUGAGG
734
TCTGTTTTTGAGG
Exon 45



AAAAACAGA

AUUGCUGAA

ATTGCTGAA






255
UUCAGCAAUCCUC
495
AUCUGUUUUUGAG
735
ATCTGTTTTTGAG
Exon 45



AAAAACAGAU

GAUUGCUGAA

GATTGCTGAA






256
UUCAGCAAUCCUC
496
CAUCUGUUUUUGA
736
CATCTGTTTTTGA
Exon 45



AAAAACAGAUG

GGAUUGCUGAA

GGATTGCTGAA






257
UCAGCAAUCCUCA
497
CUGUUUUUGAGGA
737
CTGTTTTTGAGGA
Exon 45



AAAACAG

UUGCUGA

TTGCTGA






258
UCAGCAAUCCUCA
498
UCUGUUUUUGAGG
738
TCTGTTTTTGAGG
Exon 45



AAAACAGA

AUUGCUGA

ATTGCTGA






259
UCAGCAAUCCUCA
499
AUCUGUUUUUGAG
739
ATCTGTTTTTGAG
Exon 45



AAAACAGAU

GAUUGCUGA

GATTGCTGA






260
UCAGCAAUCCUCA
500
CAUCUGUUUUUGA
740
CATCTGTTTTTGA
Exon 45



AAAACAGAUG

GGAUUGCUGA

GGATTGCTGA






261
CAGCAAUCCUCAA
501
UCUGUUUUUGAGG
741
TCTGTTTTTGAGG
Exon 45



AAACAGA

AUUGCUG

ATTGCTG






262
CAGCAAUCCUCAA
502
AUCUGUUUUUGAG
742
ATCTGTTTTTGAG
Exon 45



AAACAGAU

GAUUGCUG

GATTGCTG






263
CAGCAAUCCUCAA
503
CAUCUGUUUUUGA
743
CATCTGTTTTTGA
Exon 45



AAACAGAUG

GGAUUGCUG

GGATTGCTG






264
AGCAAUCCUCAAA
504
AUCUGUUUUUGAG
744
ATCTGTTTTTGAG
Exon 45



AACAGAU

GAUUGCU

GATTGCT






265
AGCAAUCCUCAAA
505
CAUCUGUUUUUGA
745
CATCTGTTTTTGA
Exon 45



AACAGAUG

GGAUUGCU

GGATTGCT






266
GCAAUCCUCAAAA
506
GCAUCUGUUUUUG
746
GCATCTGTTTTTG
Exon 45



ACAGAUGC

AGGAUUGC

AGGATTGC






267
GCAAUCCUCAAAA
507
GGCAUCUGUUUUU
747
GGCATCTGTTTTT
Exon 45



ACAGAUGCC

GAGGAUUGC

GAGGATTGC






268
GCAAUCCUCAAAA
508
UGGCAUCUGUUUU
748
TGGCATCTGTTTT
Exon 45



ACAGAUGCCA

UGAGGAUUGC

TGAGGATTGC






269
CAAUCCUCAAAAA
509
GGCAUCUGUUUUU
749
GGCATCTGTTTTT
Exon 45



CAGAUGCC

GAGGAUUG

GAGGATTG






270
CAAUCCUCAAAAA
510
UGGCAUCUGUUUU
750
TGGCATCTGTTTT
Exon 45



CAGAUGCCA

UGAGGAUUG

TGAGGATTG






271
CAAUCCUCAAAAA
511
UACUGGCAUCUGU
751
TACTGGCATCTGT
Exon 45



CAGAUGCCAGUA

UUUUGAGGAUUG

TTTTGAGGATTG






272
AAUCCUCAAAAAC
512
GGCAUCUGUUUUU
752
GGCATCTGTTTTT
Exon 45



AGAUGCC

GAGGAUU

GAGGATT






273
AAUCCUCAAAAAC
513
UGGCAUCUGUUUU
753
TGGCATCTGTTTT
Exon 45



AGAUGCCA

UGAGGAUU

TGAGGATT






274
AAUCCUCAAAAAC
514
UACUGGCAUCUGU
754
TACTGGCATCTGT
Exon 45



AGAUGCCAGUA

UUUUGAGGAUU

TTTTGAGGATT






275
AAUCCUCAAAAAC
515
AUACUGGCAUCUG
755
ATACTGGCATCTG
Exon 45



AGAUGCCAGUAU

UUUUUGAGGAUU

TTTTTGAGGATT






276
AUCCUCAAAAACA
516
UGGCAUCUGUUUU
756
TGGCATCTGTTTT
Exon 45



GAUGCCA

UGAGGAU

TGAGGAT






277
AUCCUCAAAAACA
517
UACUGGCAUCUGU
757
TACTGGCATCTGT
Exon 45



GAUGCCAGUA

UUUUGAGGAU

TTTTGAGGAT






278
AUCCUCAAAAACA
518
AUACUGGCAUCUG
758
ATACTGGCATCTG
Exon 45



GAUGCCAGUAU

UUUUUGAGGAU

TTTTTGAGGAT






279
AUCCUCAAAAACA
519
AAUACUGGCAUCU
759
AATACTGGCATCT
Exon 45



GAUGCCAGUAUU

GUUUUUGAGGAU

GTTTTTGAGGAT






280
UCCUCAAAAACAG
520
UACUGGCAUCUGU
760
TACTGGCATCTGT
Exon 45



AUGCCAGUA

UUUUGAGGA

TTTTGAGGA






281
UCCUCAAAAACAG
521
AUACUGGCAUCUG
761
ATACTGGCATCTG
Exon 45



AUGCCAGUAU

UUUUUGAGGA

TTTTTGAGGA






282
UCCUCAAAAACAG
522
AAUACUGGCAUCU
762
AATACTGGCATCT
Exon 45



AUGCCAGUAUU

GUUUUUGAGGA

GTTTTTGAGGA






283
CCUCAAAAACAGA
523
UACUGGCAUCUGU
763
TACTGGCATCTGT
Exon 45



UGCCAGUA

UUUUGAGG

TTTTGAGG






284
CCUCAAAAACAGA
524
AUACUGGCAUCUG
764
ATACTGGCATCTG
Exon 45



UGCCAGUAU

UUUUUGAGG

TTTTTGAGG






285
CCUCAAAAACAGA
525
AAUACUGGCAUCU
765
AATACTGGCATCT
Exon 45



UGCCAGUAUU

GUUUUUGAGG

GTTTTTGAGG






286
CCUCAAAAACAGA
526
AGAAUACUGGCAU
766
AGAATACTGGCAT
Exon 45



UGCCAGUAUUCU

CUGUUUUUGAGG

CTGTTTTTGAGG






287
CUCAAAAACAGAU
527
UACUGGCAUCUGU
767
TACTGGCATCTGT
Exon 45



GCCAGUA

UUUUGAG

TTTTGAG






288
CUCAAAAACAGAU
528
AUACUGGCAUCUG
768
ATACTGGCATCTG
Exon 45



GCCAGUAU

UUUUUGAG

TTTTTGAG






289
CUCAAAAACAGAU
529
AAUACUGGCAUCU
769
AATACTGGCATCT
Exon 45



GCCAGUAUU

GUUUUUGAG

GTTTTTGAG






290
CUCAAAAACAGAU
530
AGAAUACUGGCAU
770
AGAATACTGGCAT
Exon 45



GCCAGUAUUCU

CUGUUUUUGAG

CTGTTTTTGAG






291
CUCAAAAACAGAU
531
UAGAAUACUGGCA
771
TAGAATACTGGCA
Exon 45



GCCAGUAUUCUA

UCUGUUUUUGAG

TCTGTTTTTGAG






292
UCAAAAACAGAUG
532
AUACUGGCAUCUG
772
ATACTGGCATCTG
Exon 45



CCAGUAU

UUUUUGA

TTTTTGA






293
UCAAAAACAGAUG
533
AAUACUGGCAUCU
773
AATACTGGCATCT
Exon 45



CCAGUAUU

GUUUUUGA

GTTTTTGA






294
UCAAAAACAGAUG
534
AGAAUACUGGCAU
774
AGAATACTGGCAT
Exon 45



CCAGUAUUCU

CUGUUUUUGA

CTGTTTTTGA






295
UCAAAAACAGAUG
535
UAGAAUACUGGCA
775
TAGAATACTGGCA
Exon 45



CCAGUAUUCUA

UCUGUUUUUGA

TCTGTTTTTGA






296
UCAAAAACAGAUG
536
GUAGAAUACUGGC
776
GTAGAATACTGGC
Exon 45



CCAGUAUUCUAC

AUCUGUUUUUGA

ATCTGTTTTTGA






297
CAAAAACAGAUGC
537
AGAAUACUGGCAU
777
AGAATACTGGCAT
Exon 45



CAGUAUUCU

CUGUUUUUG

CTGTTTTTG






298
CAAAAACAGAUGC
538
UAGAAUACUGGCA
778
TAGAATACTGGCA
Exon 45



CAGUAUUCUA

UCUGUUUUUG

TCTGTTTTTG






299
CAAAAACAGAUGC
539
GUAGAAUACUGGC
779
GTAGAATACTGGC
Exon 45



CAGUAUUCUAC

AUCUGUUUUUG

ATCTGTTTTTG






300
CAAAAACAGAUGC
540
UGUAGAAUACUGG
780
TGTAGAATACTGG
Exon 45



CAGUAUUCUACA

CAUCUGUUUUUG

CATCTGTTTTTG






301
AAAAACAGAUGCC
541
GUAGAAUACUGGC
781
GTAGAATACTGGC
Exon 45



AGUAUUCUAC

AUCUGUUUUU

ATCTGTTTTT






302
AAAAACAGAUGCC
542
UGUAGAAUACUGG
782
TGTAGAATACTGG
Exon 45



AGUAUUCUACA

CAUCUGUUUUU

CATCTGTTTTT






303
AAAAACAGAUGCC
543
CUGUAGAAUACUG
783
CTGTAGAATACTG
Exon 45



AGUAUUCUACAG

GCAUCUGUUUUU

GCATCTGTTTTT






304
AAAACAGAUGCCA
544
GUAGAAUACUGGC
784
GTAGAATACTGGC
Exon 45



GUAUUCUAC

AUCUGUUUU

ATCTGTTTT






305
AAAACAGAUGCCA
545
UGUAGAAUACUGG
785
TGTAGAATACTGG
Exon 45



GUAUUCUACA

CAUCUGUUUU

CATCTGTTTT






306
AAAACAGAUGCCA
546
CUGUAGAAUACUG
786
CTGTAGAATACTG
Exon 45



GUAUUCUACAG

GCAUCUGUUUU

GCATCTGTTTT






307
AAAACAGAUGCCA
547
CCUGUAGAAUACU
787
CCTGTAGAATACT
Exon 45



GUAUUCUACAGG

GGCAUCUGUUUU

GGCATCTGTTTT






308
AAACAGAUGCCAG
548
GUAGAAUACUGGC
788
GTAGAATACTGGC
Exon 45



UAUUCUAC

AUCUGUUU

ATCTGTTT






309
AAACAGAUGCCAG
549
UGUAGAAUACUGG
789
TGTAGAATACTGG
Exon 45



UAUUCUACA

CAUCUGUUU

CATCTGTTT






310
AAACAGAUGCCAG
550
CUGUAGAAUACUG
790
CTGTAGAATACTG
Exon 45



UAUUCUACAG

GCAUCUGUUU

GCATCTGTTT






311
AAACAGAUGCCAG
551
CCUGUAGAAUACU
791
CCTGTAGAATACT
Exon 45



UAUUCUACAGG

GGCAUCUGUUU

GGCATCTGTTT






312
AAACAGAUGCCAG
552
UCCUGUAGAAUAC
792
TCCTGTAGAATAC
Exon 45



UAUUCUACAGGA

UGGCAUCUGUUU

TGGCATCTGTTT






313
AACAGAUGCCAGU
553
GUAGAAUACUGGC
793
GTAGAATACTGGC
Exon 45



AUUCUAC

AUCUGUU

ATCTGTT






314
AACAGAUGCCAGU
554
UGUAGAAUACUGG
794
TGTAGAATACTGG
Exon 45



AUUCUACA

CAUCUGUU

CATCTGTT






315
AACAGAUGCCAGU
555
CUGUAGAAUACUG
795
CTGTAGAATACTG
Exon 45



AUUCUACAG

GCAUCUGUU

GCATCTGTT






316
AACAGAUGCCAGU
556
CCUGUAGAAUACU
796
CCTGTAGAATACT
Exon 45



AUUCUACAGG

GGCAUCUGUU

GGCATCTGTT






317
AACAGAUGCCAGU
557
UCCUGUAGAAUAC
797
TCCTGTAGAATAC
Exon 45



AUUCUACAGGA

UGGCAUCUGUU

TGGCATCTGTT






318
AACAGAUGCCAGU
558
UUCCUGUAGAAUA
798
TTCCTGTAGAATA
Exon 45



AUUCUACAGGAA

CUGGCAUCUGUU

CTGGCATCTGTT






319
ACAGAUGCCAGUA
559
UGUAGAAUACUGG
799
TGTAGAATACTGG
Exon 45



UUCUACA

CAUCUGU

CATCTGT






320
ACAGAUGCCAGUA
560
CUGUAGAAUACUG
800
CTGTAGAATACTG
Exon 45



UUCUACAG

GCAUCUGU

GCATCTGT






321
ACAGAUGCCAGUA
561
CCUGUAGAAUACU
801
CCTGTAGAATACT
Exon 45



UUCUACAGG

GGCAUCUGU

GGCATCTGT






322
ACAGAUGCCAGUA
562
UCCUGUAGAAUAC
802
TCCTGTAGAATAC
Exon 45



UUCUACAGGA

UGGCAUCUGU

TGGCATCTGT






323
ACAGAUGCCAGUA
563
UUCCUGUAGAAUA
803
TTCCTGTAGAATA
Exon 45



UUCUACAGGAA

CUGGCAUCUGU

CTGGCATCTGT






324
CAGAUGCCAGUAU
564
UCCUGUAGAAUAC
804
TCCTGTAGAATAC
Exon 45



UCUACAGGA

UGGCAUCUG

TGGCATCTG






325
CAGAUGCCAGUAU
565
UUCCUGUAGAAUA
805
TTCCTGTAGAATA
Exon 45



UCUACAGGAA

CUGGCAUCUG

CTGGCATCTG






326
CAGAUGCCAGUAU
566
UUUUCCUGUAGAA
806
TTTTCCTGTAGAA
Exon 45



UCUACAGGAAAA

UACUGGCAUCUG

TACTGGCATCTG






327
AGAUGCCAGUAUU
567
UUCCUGUAGAAUA
807
TTCCTGTAGAATA
Exon 45



CUACAGGAA

CUGGCAUCU

CTGGCATCT






328
AGAUGCCAGUAUU
568
UUUUCCUGUAGAA
808
TTTTCCTGTAGAA
Exon 45



CUACAGGAAAA

UACUGGCAUCU

TACTGGCATCT






329
AGAUGCCAGUAUU
569
UUUUUCCUGUAGA
809
TTTTTCCTGTAGA
Exon 45



CUACAGGAAAAA

AUACUGGCAUCU

ATACTGGCATCT






330
GAUGCCAGUAUUC
570
UUUUCCUGUAGAA
810
TTTTCCTGTAGAA
Exon 45



UACAGGAAAA

UACUGGCAUC

TACTGGCATC






331
GAUGCCAGUAUUC
571
UUUUUCCUGUAGA
811
TTTTTCCTGTAGA
Exon 45



UACAGGAAAAA

AUACUGGCAUC

ATACTGGCATC






332
GAUGCCAGUAUUC
572
AUUUUUCCUGUAG
812
ATTTTTCCTGTAG
Exon 45



UACAGGAAAAAU

AAUACUGGCAUC

AATACTGGCATC






333
CAGAAAAAAGAGG
573
UGUCGCCCUACCU
813
TGTCGCCCTACCT
Exon 45/intron 45



UAGGGCGACA

CUUUUUUCUG

CTTTTTTCTG
junction





334
CAGAAAAAAGAGG
574
CUGUCGCCCUACC
814
CTGTCGCCCTACC
Exon 45/intron 45



UAGGGCGACAG

UCUUUUUUCUG

TCTTTTTTCTG
junction





335
CAGAAAAAAGAGG
575
UCUGUCGCCCUAC
815
TCTGTCGCCCTAC
Exon 45/intron 45



UAGGGCGACAGA

CUCUUUUUUCUG

CTCTTTTTTCTG
junction





336
AGAAAAAAGAGGU
576
UGUCGCCCUACCU
816
TGTCGCCCTACCT
Exon 45/intron 45



AGGGCGACA

CUUUUUUCU

CTTTTTTCT
junction





337
AGAAAAAAGAGGU
577
CUGUCGCCCUACC
817
CTGTCGCCCTACC
Exon 45/intron 45



AGGGCGACAG

UCUUUUUUCU

TCTTTTTTCT
junction





338
AGAAAAAAGAGGU
578
UCUGUCGCCCUAC
818
TCTGTCGCCCTAC
Exon 45/intron 45



AGGGCGACAGA

CUCUUUUUUCU

CTCTTTTTTCT
junction





339
AGAAAAAAGAGGU
579
AUCUGUCGCCCUA
819
ATCTGTCGCCCTA
Exon 45/intron 45



AGGGCGACAGAU

CCUCUUUUUUCU

CCTCTTTTTTCT
junction





340
GAAAAAAGAGGUA
580
UGUCGCCCUACCU
820
TGTCGCCCTACCT
Exon 45/intron 45



GGGCGACA

CUUUUUUC

CTTTTTTC
junction





341
GAAAAAAGAGGUA
581
CUGUCGCCCUACC
821
CTGTCGCCCTACC
Exon 45/intron 45



GGGCGACAG

UCUUUUUUC

TCTTTTTTC
junction





342
GAAAAAAGAGGUA
582
UCUGUCGCCCUAC
822
TCTGTCGCCCTAC
Exon 45/intron 45



GGGCGACAGA

CUCUUUUUUC

CTCTTTTTTC
junction





343
GAAAAAAGAGGUA
583
AUCUGUCGCCCUA
823
ATCTGTCGCCCTA
Exon 45/intron 45



GGGCGACAGAU

CCUCUUUUUUC

CCTCTTTTTTC
junction





344
GAAAAAAGAGGUA
584
GAUCUGUCGCCCU
824
GATCTGTCGCCCT
Exon 45/intron 45



GGGCGACAGAUC

ACCUCUUUUUUC

ACCTCTTTTTTC
junction





345
AAAAAAGAGGUAG
585
UGUCGCCCUACCU
825
TGTCGCCCTACCT
Exon 45/intron 45



GGCGACA

CUUUUUU

CTTTTTT
junction





346
AAAAAAGAGGUAG
586
CUGUCGCCCUACC
826
CTGTCGCCCTACC
Exon 45/intron 45



GGCGACAG

UCUUUUUU

TCTTTTTT
junction





347
AAAAAAGAGGUAG
587
UCUGUCGCCCUAC
827
TCTGTCGCCCTAC
Exon 45/intron 45



GGCGACAGA

CUCUUUUUU

CTCTTTTTT
junction





348
AAAAAAGAGGUAG
588
AUCUGUCGCCCUA
828
ATCTGTCGCCCTA
Exon 45/intron 45



GGCGACAGAU

CCUCUUUUUU

CCTCTTTTTT
junction





349
AAAAAAGAGGUAG
589
GAUCUGUCGCCCU
829
GATCTGTCGCCCT
Exon 45/intron 45



GGCGACAGAUC

ACCUCUUUUUU

ACCTCTTTTTT
junction





350
AAAAAAGAGGUAG
590
AGAUCUGUCGCCC
830
AGATCTGTCGCCC
Exon 45/intron 45



GGCGACAGAUCU

UACCUCUUUUUU

TACCTCTTTTTT
junction





351
AAAAAGAGGUAGG
591
CUGUCGCCCUACC
831
CTGTCGCCCTACC
Exon 45/intron 45



GCGACAG

UCUUUUU

TCTTTTT
junction





352
AAAAAGAGGUAGG
592
UCUGUCGCCCUAC
832
TCTGTCGCCCTAC
Exon 45/intron 45



GCGACAGA

CUCUUUUU

CTCTTTTT
junction





353
AAAAAGAGGUAGG
593
AUCUGUCGCCCUA
833
ATCTGTCGCCCTA
Exon 45/intron 45



GCGACAGAU

CCUCUUUUU

CCTCTTTTT
junction





354
AAAAAGAGGUAGG
594
GAUCUGUCGCCCU
834
GATCTGTCGCCCT
Exon 45/intron 45



GCGACAGAUC

ACCUCUUUUU

ACCTCTTTTT
junction





355
AAAAAGAGGUAGG
595
AGAUCUGUCGCCC
835
AGATCTGTCGCCC
Exon 45/intron 45



GCGACAGAUCU

UACCUCUUUUU

TACCTCTTTTT
junction





356
AAAAGAGGUAGGG
596
UCUGUCGCCCUAC
836
TCTGTCGCCCTAC
Exon 45/intron 45



CGACAGA

CUCUUUU

CTCTTTT
junction





357
AAAAGAGGUAGGG
597
AUCUGUCGCCCUA
837
ATCTGTCGCCCTA
Exon 45/intron 45



CGACAGAU

CCUCUUUU

CCTCTTTT
junction





358
AAAAGAGGUAGGG
598
GAUCUGUCGCCCU
838
GATCTGTCGCCCT
Exon 45/intron 45



CGACAGAUC

ACCUCUUUU

ACCTCTTTT
junction





359
AAAAGAGGUAGGG
599
AGAUCUGUCGCCC
839
AGATCTGTCGCCC
Exon 45/intron 45



CGACAGAUCU

UACCUCUUUU

TACCTCTTTT
junction





360
AAAGAGGUAGGGC
600
AUCUGUCGCCCUA
840
ATCTGTCGCCCTA
Exon 45/intron 45



GACAGAU

CCUCUUU

CCTCTTT
junction





361
AAAGAGGUAGGGC
601
GAUCUGUCGCCCU
841
GATCTGTCGCCCT
Exon 45/intron 45



GACAGAUC

ACCUCUUU

ACCTCTTT
junction





362
AAAGAGGUAGGGC
602
AGAUCUGUCGCCC
842
AGATCTGTCGCCC
Exon 45/intron 45



GACAGAUCU

UACCUCUUU

TACCTCTTT
junction





363
AAGAGGUAGGGCG
603
GAUCUGUCGCCCU
843
GATCTGTCGCCCT
Exon 45/intron 45



ACAGAUC

ACCUCUU

ACCTCTT
junction





364
AAGAGGUAGGGCG
604
AGAUCUGUCGCCC
844
AGATCTGTCGCCC
Exon 45/intron 45



ACAGAUCU

UACCUCUU

TACCTCTT
junction





365
AGAGGUAGGGCGA
605
AGAUCUGUCGCCC
845
AGATCTGTCGCCC
Exon 45/intron 45



CAGAUCU

UACCUCU

TACCTCT
junction





366
AGAGGUAGGGCGA
606
CUAUUAGAUCUGU
846
CTATTAGATCTGT
Exon 45/intron 45



CAGAUCUAAUAG

CGCCCUACCUCU

CGCCCTACCTCT
junction





367
GAGGUAGGGCGAC
607
CUAUUAGAUCUGU
847
CTATTAGATCTGT
Exon 45/intron 45



AGAUCUAAUAG

CGCCCUACCUC

CGCCCTACCTC
junction





368
GAGGUAGGGCGAC
608
CCUAUUAGAUCUG
848
CCTATTAGATCTG
Exon 45/intron 45



AGAUCUAAUAGG

UCGCCCUACCUC

TCGCCCTACCTC
junction





369
AGGUAGGGCGACA
609
CUAUUAGAUCUGU
849
CTATTAGATCTGT
Exon 45/intron 45



GAUCUAAUAG

CGCCCUACCU

CGCCCTACCT
junction





370
AGGUAGGGCGACA
610
CCUAUUAGAUCUG
850
CCTATTAGATCTG
Exon 45/intron 45



GAUCUAAUAGG

UCGCCCUACCU

TCGCCCTACCT
junction





371
AGGUAGGGCGACA
611
UCCUAUUAGAUCU
851
TCCTATTAGATCT
Exon 45/intron 45



GAUCUAAUAGGA

GUCGCCCUACCU

GTCGCCCTACCT
junction





372
GGUAGGGCGACAG
612
CUAUUAGAUCUGU
852
CTATTAGATCTGT
Exon 45/intron 45



AUCUAAUAG

CGCCCUACC

CGCCCTACC
junction





373
GGUAGGGCGACAG
613
CCUAUUAGAUCUG
853
CCTATTAGATCTG
Exon 45/intron 45



AUCUAAUAGG

UCGCCCUACC

TCGCCCTACC
junction





374
GGUAGGGCGACAG
614
UCCUAUUAGAUCU
854
TCCTATTAGATCT
Exon 45/intron 45



AUCUAAUAGGA

GUCGCCCUACC

GTCGCCCTACC
junction





375
GGUAGGGCGACAG
615
UUCCUAUUAGAUC
855
TTCCTATTAGATC
Exon 45/intron 45



AUCUAAUAGGAA

UGUCGCCCUACC

TGTCGCCCTACC
junction





376
GUAGGGCGACAGA
616
CUAUUAGAUCUGU
856
CTATTAGATCTGT
Intron 45



UCUAAUAG

CGCCCUAC

CGCCCTAC






377
GUAGGGCGACAGA
617
CCUAUUAGAUCUG
857
CCTATTAGATCTG
Intron 45



UCUAAUAGG

UCGCCCUAC

TCGCCCTAC






378
GUAGGGCGACAGA
618
UCCUAUUAGAUCU
858
TCCTATTAGATCT
Intron 45



UCUAAUAGGA

GUCGCCCUAC

GTCGCCCTAC






379
GUAGGGCGACAGA
619
UUCCUAUUAGAUC
859
TTCCTATTAGATC
Intron 45



UCUAAUAGGAA

UGUCGCCCUAC

TGTCGCCCTAC






380
GUAGGGCGACAGA
620
AUUCCUAUUAGAU
860
ATTCCTATTAGAT
Intron 45



UCUAAUAGGAAU

CUGUCGCCCUAC

CTGTCGCCCTAC






381
UAGGGCGACAGAU
621
UCCUAUUAGAUCU
861
TCCTATTAGATCT
Intron 45



CUAAUAGGA

GUCGCCCUA

GTCGCCCTA






382
UAGGGCGACAGAU
622
UUCCUAUUAGAUC
862
TTCCTATTAGATC
Intron 45



CUAAUAGGAA

UGUCGCCCUA

TGTCGCCCTA






383
UAGGGCGACAGAU
623
AUUCCUAUUAGAU
863
ATTCCTATTAGAT
Intron 45



CUAAUAGGAAU

CUGUCGCCCUA

CTGTCGCCCTA






384
AGGGCGACAGAUC
624
UCCUAUUAGAUCU
864
TCCTATTAGATCT
Intron 45



UAAUAGGA

GUCGCCCU

GTCGCCCT






385
AGGGCGACAGAUC
625
UUCCUAUUAGAUC
865
TTCCTATTAGATC
Intron 45



UAAUAGGAA

UGUCGCCCU

TGTCGCCCT






386
AGGGCGACAGAUC
626
AUUCCUAUUAGAU
866
ATTCCTATTAGAT
Intron 45



UAAUAGGAAU

CUGUCGCCCU

CTGTCGCCCT






387
GGGCGACAGAUCU
627
UCCUAUUAGAUCU
867
TCCTATTAGATCT
Intron 45



AAUAGGA

GUCGCCC

GTCGCCC






388
GGGCGACAGAUCU
628
UUCCUAUUAGAUC
868
TTCCTATTAGATC
Intron 45



AAUAGGAA

UGUCGCCC

TGTCGCCC






389
GGGCGACAGAUCU
629
AUUCCUAUUAGAU
869
ATTCCTATTAGAT
Intron 45



AAUAGGAAU

CUGUCGCCC

CTGTCGCCC






390
AGAUUAUAAGCAG
630
CUUUCACCCUGCU
870
CTTTCACCCTGCT
Intron 45



GGUGAAAG

UAUAAUCU

TATAATCT






391
AGAUUAUAAGCAG
631
CCUUUCACCCUGC
871
CCTTTCACCCTGC
Intron 45



GGUGAAAGG

UUAUAAUCU

TTATAATCT






392
AGAUUAUAAGCAG
632
GCCUUUCACCCUG
872
GCCTTTCACCCTG
Intron 45



GGUGAAAGGC

CUUAUAAUCU

CTTATAATCT






393
AGAUUAUAAGCAG
633
UGCCUUUCACCCU
873
TGCCTTTCACCCT
Intron 45



GGUGAAAGGCA

GCUUAUAAUCU

GCTTATAATCT






394
AGAUUAUAAGCAG
634
GUGCCUUUCACCC
874
GTGCCTTTCACCC
Intron 45



GGUGAAAGGCAC

UGCUUAUAAUCU

TGCTTATAATCT






395
GAUUAUAAGCAGG
635
CUUUCACCCUGCU
875
CTTTCACCCTGCT
Intron 45



GUGAAAG

UAUAAUC

TATAATC






396
GAUUAUAAGCAGG
636
CCUUUCACCCUGC
876
CCTTTCACCCTGC
Intron 45



GUGAAAGG

UUAUAAUC

TTATAATC






397
GAUUAUAAGCAGG
637
GCCUUUCACCCUG
877
GCCTTTCACCCTG
Intron 45



GUGAAAGGC

CUUAUAAUC

CTTATAATC






398
GAUUAUAAGCAGG
638
UGCCUUUCACCCU
878
TGCCTTTCACCCT
Intron 45



GUGAAAGGCA

GCUUAUAAUC

GCTTATAATC






399
GAUUAUAAGCAGG
639
GUGCCUUUCACCC
879
GTGCCTTTCACCC
Intron 45



GUGAAAGGCAC

UGCUUAUAAUC

TGCTTATAATC





†Each thymine base (T) in any one of the oligonucleotides and/or target sequences provided in Table 8 may independently and optionally be replaced with a uracil base (U), and/or each U may independently and optionally be replaced with a T. Target sequences listed in Table 8 contain U′s, but binding of a DMD-targeting oligonucleotide to RNA and/or DNA is contemplated.






In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a region of a DMD sequence. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a region of a DMD RNA (e.g., the Dp427m transcript of SEQ ID NO: 130). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to a DMD RNA (e.g., the Dp427m transcript of SEQ ID NO: 130). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to an exon of a DMD RNA (e.g., SEQ ID NO: 131, 954, or 972). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to an intron of a DMD RNA (e.g., SEQ ID NO: 958 or 967). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to a portion of a DMD sequence (e.g., a sequence provided by any one of SEQ ID NOs: 955-957, 959-966, 968-971, and 973). Examples of DMD sequences are provided below. Each of the DMD sequences provided below include thymine nucleotides (T's), but it should be understood that each sequence can represent a DNA sequence or an RNA sequence in which any or all of the T's would be replaced with uracil nucleotides (U's).















Homo sapiens dystrophin (DMD), transcript variant Dp427m, mRNA (NCBI



Reference Sequence: NM_004006.2)


TCCTGGCATCAGTTACTGTGTTGACTCACTCAGTGTTGGGATCACTCACTTTCCCCCTACAGGACTCAGATCTGGGA


GGCAATTACCTTCGGAGAAAAACGAATAGGAAAAACTGAAGTGTTACTTTTTTTAAAGCTGCTGAAGTTTGTTGGTT


TCTCATTGTTTTTAAGCCTACTGGAGCAATAAAGTTTGAAGAACTTTTACCAGGTTTTTTTTATCGCTGCCTTGATA


TACACTTTTCAAAATGCTTTGGTGGGAAGAAGTAGAGGACTGTTATGAAAGAGAAGATGTTCAAAAGAAAACATTCA


CAAAATGGGTAAATGCACAATTTTCTAAGTTTGGGAAGCAGCATATTGAGAACCTCTTCAGTGACCTACAGGATGGG


AGGCGCCTCCTAGACCTCCTCGAAGGCCTGACAGGGCAAAAACTGCCAAAAGAAAAAGGATCCACAAGAGTTCATGC


CCTGAACAATGTCAACAAGGCACTGCGGGTTTTGCAGAACAATAATGTTGATTTAGTGAATATTGGAAGTACTGACA


TCGTAGATGGAAATCATAAACTGACTCTTGGTTTGATTTGGAATATAATCCTCCACTGGCAGGTCAAAAATGTAATG


AAAAATATCATGGCTGGATTGCAACAAACCAACAGTGAAAAGATTCTCCTGAGCTGGGTCCGACAATCAACTCGTAA


TTATCCACAGGTTAATGTAATCAACTTCACCACCAGCTGGTCTGATGGCCTGGCTTTGAATGCTCTCATCCATAGTC


ATAGGCCAGACCTATTTGACTGGAATAGTGTGGTTTGCCAGCAGTCAGCCACACAACGACTGGAACATGCATTCAAC


ATCGCCAGATATCAATTAGGCATAGAGAAACTACTCGATCCTGAAGATGTTGATACCACCTATCCAGATAAGAAGTC


CATCTTAATGTACATCACATCACTCTTCCAAGTTTTGCCTCAACAAGTGAGCATTGAAGCCATCCAGGAAGTGGAAA


TGTTGCCAAGGCCACCTAAAGTGACTAAAGAAGAACATTTTCAGTTACATCATCAAATGCACTATTCTCAACAGATC


ACGGTCAGTCTAGCACAGGGATATGAGAGAACTTCTTCCCCTAAGCCTCGATTCAAGAGCTATGCCTACACACAGGC


TGCTTATGTCACCACCTCTGACCCTACACGGAGCCCATTTCCTTCACAGCATTTGGAAGCTCCTGAAGACAAGTCAT


TTGGCAGTTCATTGATGGAGAGTGAAGTAAACCTGGACCGTTATCAAACAGCTTTAGAAGAAGTATTATCGTGGCTT


CTTTCTGCTGAGGACACATTGCAAGCACAAGGAGAGATTTCTAATGATGTGGAAGTGGTGAAAGACCAGTTTCATAC


TCATGAGGGGTACATGATGGATTTGACAGCCCATCAGGGCCGGGTTGGTAATATTCTACAATTGGGAAGTAAGCTGA


TTGGAACAGGAAAATTATCAGAAGATGAAGAAACTGAAGTACAAGAGCAGATGAATCTCCTAAATTCAAGATGGGAA


TGCCTCAGGGTAGCTAGCATGGAAAAACAAAGCAATTTACATAGAGTTTTAATGGATCTCCAGAATCAGAAACTGAA


AGAGTTGAATGACTGGCTAACAAAAACAGAAGAAAGAACAAGGAAAATGGAGGAAGAGCCTCTTGGACCTGATCTTG


AAGACCTAAAACGCCAAGTACAACAACATAAGGTGCTTCAAGAAGATCTAGAACAAGAACAAGTCAGGGTCAATTCT


CTCACTCACATGGTGGTGGTAGTTGATGAATCTAGTGGAGATCACGCAACTGCTGCTTTGGAAGAACAACTTAAGGT


ATTGGGAGATCGATGGGCAAACATCTGTAGATGGACAGAAGACCGCTGGGTTCTTTTACAAGACATCCTTCTCAAAT


GGCAACGTCTTACTGAAGAACAGTGCCTTTTTAGTGCATGGCTTTCAGAAAAAGAAGATGCAGTGAACAAGATTCAC


ACAACTGGCTTTAAAGATCAAAATGAAATGTTATCAAGTCTTCAAAAACTGGCCGTTTTAAAAGCGGATCTAGAAAA


GAAAAAGCAATCCATGGGCAAACTGTATTCACTCAAACAAGATCTTCTTTCAACACTGAAGAATAAGTCAGTGACCC


AGAAGACGGAAGCATGGCTGGATAACTTTGCCCGGTGTTGGGATAATTTAGTCCAAAAACTTGAAAAGAGTACAGCA


CAGATTTCACAGGCTGTCACCACCACTCAGCCATCACTAACACAGACAACTGTAATGGAAACAGTAACTACGGTGAC


CACAAGGGAACAGATCCTGGTAAAGCATGCTCAAGAGGAACTTCCACCACCACCTCCCCAAAAGAAGAGGCAGATTA


CTGTGGATTCTGAAATTAGGAAAAGGTTGGATGTTGATATAACTGAACTTCACAGCTGGATTACTCGCTCAGAAGCT


GTGTTGCAGAGTCCTGAATTTGCAATCTTTCGGAAGGAAGGCAACTTCTCAGACTTAAAAGAAAAAGTCAATGCCAT


AGAGCGAGAAAAAGCTGAGAAGTTCAGAAAACTGCAAGATGCCAGCAGATCAGCTCAGGCCCTGGTGGAACAGATGG


TGAATGAGGGTGTTAATGCAGATAGCATCAAACAAGCCTCAGAACAACTGAACAGCCGGTGGATCGAATTCTGCCAG


TTGCTAAGTGAGAGACTTAACTGGCTGGAGTATCAGAACAACATCATCGCTTTCTATAATCAGCTACAACAATTGGA


GCAGATGACAACTACTGCTGAAAACTGGTTGAAAATCCAACCCACCACCCCATCAGAGCCAACAGCAATTAAAAGTC


AGTTAAAAATTTGTAAGGATGAAGTCAACCGGCTATCAGGTCTTCAACCTCAAATTGAACGATTAAAAATTCAAAGC


ATAGCCCTGAAAGAGAAAGGACAAGGACCCATGTTCCTGGATGCAGACTTTGTGGCCTTTACAAATCATTTTAAGCA


AGTCTTTTCTGATGTGCAGGCCAGAGAGAAAGAGCTACAGACAATTTTTGACACTTTGCCACCAATGCGCTATCAGG


AGACCATGAGTGCCATCAGGACATGGGTCCAGCAGTCAGAAACCAAACTCTCCATACCTCAACTTAGTGTCACCGAC


TATGAAATCATGGAGCAGAGACTCGGGGAATTGCAGGCTTTACAAAGTTCTCTGCAAGAGCAACAAAGTGGCCTATA


CTATCTCAGCACCACTGTGAAAGAGATGTCGAAGAAAGCGCCCTCTGAAATTAGCCGGAAATATCAATCAGAATTTG


AAGAAATTGAGGGACGCTGGAAGAAGCTCTCCTCCCAGCTGGTTGAGCATTGTCAAAAGCTAGAGGAGCAAATGAAT


AAACTCCGAAAAATTCAGAATCACATACAAACCCTGAAGAAATGGATGGCTGAAGTTGATGTTTTTCTGAAGGAGGA


ATGGCCTGCCCTTGGGGATTCAGAAATTCTAAAAAAGCAGCTGAAACAGTGCAGACTTTTAGTCAGTGATATTCAGA


CAATTCAGCCCAGTCTAAACAGTGTCAATGAAGGTGGGCAGAAGATAAAGAATGAAGCAGAGCCAGAGTTTGCTTCG


AGACTTGAGACAGAACTCAAAGAACTTAACACTCAGTGGGATCACATGTGCCAACAGGTCTATGCCAGAAAGGAGGC


CTTGAAGGGAGGTTTGGAGAAAACTGTAAGCCTCCAGAAAGATCTATCAGAGATGCACGAATGGATGACACAAGCTG


AAGAAGAGTATCTTGAGAGAGATTTTGAATATAAAACTCCAGATGAATTACAGAAAGCAGTTGAAGAGATGAAGAGA


GCTAAAGAAGAGGCCCAACAAAAAGAAGCGAAAGTGAAACTCCTTACTGAGTCTGTAAATAGTGTCATAGCTCAAGC


TCCACCTGTAGCACAAGAGGCCTTAAAAAAGGAACTTGAAACTCTAACCACCAACTACCAGTGGCTCTGCACTAGGC


TGAATGGGAAATGCAAGACTTTGGAAGAAGTTTGGGCATGTTGGCATGAGTTATTGTCATACTTGGAGAAAGCAAAC


AAGTGGCTAAATGAAGTAGAATTTAAACTTAAAACCACTGAAAACATTCCTGGCGGAGCTGAGGAAATCTCTGAGGT


GCTAGATTCACTTGAAAATTTGATGCGACATTCAGAGGATAACCCAAATCAGATTCGCATATTGGCACAGACCCTAA


CAGATGGCGGAGTCATGGATGAGCTAATCAATGAGGAACTTGAGACATTTAATTCTCGTTGGAGGGAACTACATGAA


GAGGCTGTAAGGAGGCAAAAGTTGCTTGAACAGAGCATCCAGTCTGCCCAGGAGACTGAAAAATCCTTACACTTAAT


CCAGGAGTCCCTCACATTCATTGACAAGCAGTTGGCAGCTTATATTGCAGACAAGGTGGACGCAGCTCAAATGCCTC


AGGAAGCCCAGAAAATCCAATCTGATTTGACAAGTCATGAGATCAGTTTAGAAGAAATGAAGAAACATAATCAGGGG


AAGGAGGCTGCCCAAAGAGTCCTGTCTCAGATTGATGTTGCACAGAAAAAATTACAAGATGTCTCCATGAAGTTTCG


ATTATTCCAGAAACCAGCCAATTTTGAGCAGCGTCTACAAGAAAGTAAGATGATTTTAGATGAAGTGAAGATGCACT


TGCCTGCATTGGAAACAAAGAGTGTGGAACAGGAAGTAGTACAGTCACAGCTAAATCATTGTGTGAACTTGTATAAA


AGTCTGAGTGAAGTGAAGTCTGAAGTGGAAATGGTGATAAAGACTGGACGTCAGATTGTACAGAAAAAGCAGACGGA


AAATCCCAAAGAACTTGATGAAAGAGTAACAGCTTTGAAATTGCATTATAATGAGCTGGGAGCAAAGGTAACAGAAA


GAAAGCAACAGTTGGAGAAATGCTTGAAATTGTCCCGTAAGATGCGAAAGGAAATGAATGTCTTGACAGAATGGCTG


GCAGCTACAGATATGGAATTGACAAAGAGATCAGCAGTTGAAGGAATGCCTAGTAATTTGGATTCTGAAGTTGCCTG


GGGAAAGGCTACTCAAAAAGAGATTGAGAAACAGAAGGTGCACCTGAAGAGTATCACAGAGGTAGGAGAGGCCTTGA


AAACAGTTTTGGGCAAGAAGGAGACGTTGGTGGAAGATAAACTCAGTCTTCTGAATAGTAACTGGATAGCTGTCACC


TCCCGAGCAGAAGAGTGGTTAAATCTTTTGTTGGAATACCAGAAACACATGGAAACTTTTGACCAGAATGTGGACCA


CATCACAAAGTGGATCATTCAGGCTGACACACTTTTGGATGAATCAGAGAAAAAGAAACCCCAGCAAAAAGAAGACG


TGCTTAAGCGTTTAAAGGCAGAACTGAATGACATACGCCCAAAGGTGGACTCTACACGTGACCAAGCAGCAAACTTG


ATGGCAAACCGCGGTGACCACTGCAGGAAATTAGTAGAGCCCCAAATCTCAGAGCTCAACCATCGATTTGCAGCCAT


TTCACACAGAATTAAGACTGGAAAGGCCTCCATTCCTTTGAAGGAATTGGAGCAGTTTAACTCAGATATACAAAAAT


TGCTTGAACCACTGGAGGCTGAAATTCAGCAGGGGGTGAATCTGAAAGAGGAAGACTTCAATAAAGATATGAATGAA


GACAATGAGGGTACTGTAAAAGAATTGTTGCAAAGAGGAGACAACTTACAACAAAGAATCACAGATGAGAGAAAGCG


AGAGGAAATAAAGATAAAACAGCAGCTGTTACAGACAAAACATAATGCTCTCAAGGATTTGAGGTCTCAAAGAAGAA


AAAAGGCTCTAGAAATTTCTCATCAGTGGTATCAGTACAAGAGGCAGGCTGATGATCTCCTGAAATGCTTGGATGAC


ATTGAAAAAAAATTAGCCAGCCTACCTGAGCCCAGAGATGAAAGGAAAATAAAGGAAATTGATCGGGAATTGCAGAA


GAAGAAAGAGGAGCTGAATGCAGTGCGTAGGCAAGCTGAGGGCTTGTCTGAGGATGGGGCCGCAATGGCAGTGGAGC


CAACTCAGATCCAGCTCAGCAAGCGCTGGCGGGAAATTGAGAGCAAATTTGCTCAGTTTCGAAGACTCAACTTTGCA


CAAATTCACACTGTCCGTGAAGAAACGATGATGGTGATGACTGAAGACATGCCTTTGGAAATTTCTTATGTGCCTTC


TACTTATTTGACTGAAATCACTCATGTCTCACAAGCCCTATTAGAAGTGGAACAACTTCTCAATGCTCCTGACCTCT


GTGCTAAGGACTTTGAAGATCTCTTTAAGCAAGAGGAGTCTCTGAAGAATATAAAAGATAGTCTACAACAAAGCTCA


GGTCGGATTGACATTATTCATAGCAAGAAGACAGCAGCATTGCAAAGTGCAACGCCTGTGGAAAGGGTGAAGCTACA


GGAAGCTCTCTCCCAGCTTGATTTCCAATGGGAAAAAGTTAACAAAATGTACAAGGACCGACAAGGGCGATTTGACA


GATCTGTTGAGAAATGGCGGCGTTTTCATTATGATATAAAGATATTTAATCAGTGGCTAACAGAAGCTGAACAGTTT


CTCAGAAAGACACAAATTCCTGAGAATTGGGAACATGCTAAATACAAATGGTATCTTAAGGAACTCCAGGATGGCAT


TGGGCAGCGGCAAACTGTTGTCAGAACATTGAATGCAACTGGGGAAGAAATAATTCAGCAATCCTCAAAAACAGATG


CCAGTATTCTACAGGAAAAATTGGGAAGCCTGAATCTGCGGTGGCAGGAGGTCTGCAAACAGCTGTCAGACAGAAAA


AAGAGGCTAGAAGAACAAAAGAATATCTTGTCAGAATTTCAAAGAGATTTAAATGAATTTGTTTTATGGTTGGAGGA


AGCAGATAACATTGCTAGTATCCCACTTGAACCTGGAAAAGAGCAGCAACTAAAAGAAAAGCTTGAGCAAGTCAAGT


TACTGGTGGAAGAGTTGCCCCTGCGCCAGGGAATTCTCAAACAATTAAATGAAACTGGAGGACCCGTGCTTGTAAGT


GCTCCCATAAGCCCAGAAGAGCAAGATAAACTTGAAAATAAGCTCAAGCAGACAAATCTCCAGTGGATAAAGGTTTC


CAGAGCTTTACCTGAGAAACAAGGAGAAATTGAAGCTCAAATAAAAGACCTTGGGCAGCTTGAAAAAAAGCTTGAAG


ACCTTGAAGAGCAGTTAAATCATCTGCTGCTGTGGTTATCTCCTATTAGGAATCAGTTGGAAATTTATAACCAACCA


AACCAAGAAGGACCATTTGACGTTCAGGAAACTGAAATAGCAGTTCAAGCTAAACAACCGGATGTGGAAGAGATTTT


GTCTAAAGGGCAGCATTTGTACAAGGAAAAACCAGCCACTCAGCCAGTGAAGAGGAAGTTAGAAGATCTGAGCTCTG


AGTGGAAGGCGGTAAACCGTTTACTTCAAGAGCTGAGGGCAAAGCAGCCTGACCTAGCTCCTGGACTGACCACTATT


GGAGCCTCTCCTACTCAGACTGTTACTCTGGTGACACAACCTGTGGTTACTAAGGAAACTGCCATCTCCAAACTAGA


AATGCCATCTTCCTTGATGTTGGAGGTACCTGCTCTGGCAGATTTCAACCGGGCTTGGACAGAACTTACCGACTGGC


TTTCTCTGCTTGATCAAGTTATAAAATCACAGAGGGTGATGGTGGGTGACCTTGAGGATATCAACGAGATGATCATC


AAGCAGAAGGCAACAATGCAGGATTTGGAACAGAGGCGTCCCCAGTTGGAAGAACTCATTACCGCTGCCCAAAATTT


GAAAAACAAGACCAGCAATCAAGAGGCTAGAACAATCATTACGGATCGAATTGAAAGAATTCAGAATCAGTGGGATG


AAGTACAAGAACACCTTCAGAACCGGAGGCAACAGTTGAATGAAATGTTAAAGGATTCAACACAATGGCTGGAAGCT


AAGGAAGAAGCTGAGCAGGTCTTAGGACAGGCCAGAGCCAAGCTTGAGTCATGGAAGGAGGGTCCCTATACAGTAGA


TGCAATCCAAAAGAAAATCACAGAAACCAAGCAGTTGGCCAAAGACCTCCGCCAGTGGCAGACAAATGTAGATGTGG


CAAATGACTTGGCCCTGAAACTTCTCCGGGATTATTCTGCAGATGATACCAGAAAAGTCCACATGATAACAGAGAAT


ATCAATGCCTCTTGGAGAAGCATTCATAAAAGGGTGAGTGAGCGAGAGGCTGCTTTGGAAGAAACTCATAGATTACT


GCAACAGTTCCCCCTGGACCTGGAAAAGTTTCTTGCCTGGCTTACAGAAGCTGAAACAACTGCCAATGTCCTACAGG


ATGCTACCCGTAAGGAAAGGCTCCTAGAAGACTCCAAGGGAGTAAAAGAGCTGATGAAACAATGGCAAGACCTCCAA


GGTGAAATTGAAGCTCACACAGATGTTTATCACAACCTGGATGAAAACAGCCAAAAAATCCTGAGATCCCTGGAAGG


TTCCGATGATGCAGTCCTGTTACAAAGACGTTTGGATAACATGAACTTCAAGTGGAGTGAACTTCGGAAAAAGTCTC


TCAACATTAGGTCCCATTTGGAAGCCAGTTCTGACCAGTGGAAGCGTCTGCACCTTTCTCTGCAGGAACTTCTGGTG


TGGCTACAGCTGAAAGATGATGAATTAAGCCGGCAGGCACCTATTGGAGGCGACTTTCCAGCAGTTCAGAAGCAGAA


CGATGTACATAGGGCCTTCAAGAGGGAATTGAAAACTAAAGAACCTGTAATCATGAGTACTCTTGAGACTGTACGAA


TATTTCTGACAGAGCAGCCTTTGGAAGGACTAGAGAAACTCTACCAGGAGCCCAGAGAGCTGCCTCCTGAGGAGAGA


GCCCAGAATGTCACTCGGCTTCTACGAAAGCAGGCTGAGGAGGTCAATACTGAGTGGGAAAAATTGAACCTGCACTC


CGCTGACTGGCAGAGAAAAATAGATGAGACCCTTGAAAGACTCCAGGAACTTCAAGAGGCCACGGATGAGCTGGACC


TCAAGCTGCGCCAAGCTGAGGTGATCAAGGGATCCTGGCAGCCCGTGGGCGATCTCCTCATTGACTCTCTCCAAGAT


CACCTCGAGAAAGTCAAGGCACTTCGAGGAGAAATTGCGCCTCTGAAAGAGAACGTGAGCCACGTCAATGACCTTGC


TCGCCAGCTTACCACTTTGGGCATTCAGCTCTCACCGTATAACCTCAGCACTCTGGAAGACCTGAACACCAGATGGA


AGCTTCTGCAGGTGGCCGTCGAGGACCGAGTCAGGCAGCTGCATGAAGCCCACAGGGACTTTGGTCCAGCATCTCAG


CACTTTCTTTCCACGTCTGTCCAGGGTCCCTGGGAGAGAGCCATCTCGCCAAACAAAGTGCCCTACTATATCAACCA


CGAGACTCAAACAACTTGCTGGGACCATCCCAAAATGACAGAGCTCTACCAGTCTTTAGCTGACCTGAATAATGTCA


GATTCTCAGCTTATAGGACTGCCATGAAACTCCGAAGACTGCAGAAGGCCCTTTGCTTGGATCTCTTGAGCCTGTCA


GCTGCATGTGATGCCTTGGACCAGCACAACCTCAAGCAAAATGACCAGCCCATGGATATCCTGCAGATTATTAATTG


TTTGACCACTATTTATGACCGCCTGGAGCAAGAGCACAACAATTTGGTCAACGTCCCTCTCTGCGTGGATATGTGTC


TGAACTGGCTGCTGAATGTTTATGATACGGGACGAACAGGGAGGATCCGTGTCCTGTCTTTTAAAACTGGCATCATT


TCCCTGTGTAAAGCACATTTGGAAGACAAGTACAGATACCTTTTCAAGCAAGTGGCAAGTTCAACAGGATTTTGTGA


CCAGCGCAGGCTGGGCCTCCTTCTGCATGATTCTATCCAAATTCCAAGACAGTTGGGTGAAGTTGCATCCTTTGGGG


GCAGTAACATTGAGCCAAGTGTCCGGAGCTGCTTCCAATTTGCTAATAATAAGCCAGAGATCGAAGCGGCCCTCTTC


CTAGACTGGATGAGACTGGAACCCCAGTCCATGGTGTGGCTGCCCGTCCTGCACAGAGTGGCTGCTGCAGAAACTGC


CAAGCATCAGGCCAAATGTAACATCTGCAAAGAGTGTCCAATCATTGGATTCAGGTACAGGAGTCTAAAGCACTTTA


ATTATGACATCTGCCAAAGCTGCTTTTTTTCTGGTCGAGTTGCAAAAGGCCATAAAATGCACTATCCCATGGTGGAA


TATTGCACTCCGACTACATCAGGAGAAGATGTTCGAGACTTTGCCAAGGTACTAAAAAACAAATTTCGAACCAAAAG


GTATTTTGCGAAGCATCCCCGAATGGGCTACCTGCCAGTGCAGACTGTCTTAGAGGGGGACAACATGGAAACTCCCG


TTACTCTGATCAACTTCTGGCCAGTAGATTCTGCGCCTGCCTCGTCCCCTCAGCTTTCACACGATGATACTCATTCA


CGCATTGAACATTATGCTAGCAGGCTAGCAGAAATGGAAAACAGCAATGGATCTTATCTAAATGATAGCATCTCTCC


TAATGAGAGCATAGATGATGAACATTTGTTAATCCAGCATTACTGCCAAAGTTTGAACCAGGACTCCCCCCTGAGCC


AGCCTCGTAGTCCTGCCCAGATCTTGATTTCCTTAGAGAGTGAGGAAAGAGGGGAGCTAGAGAGAATCCTAGCAGAT


CTTGAGGAAGAAAACAGGAATCTGCAAGCAGAATATGACCGTCTAAAGCAGCAGCACGAACATAAAGGCCTGTCCCC


ACTGCCGTCCCCTCCTGAAATGATGCCCACCTCTCCCCAGAGTCCCCGGGATGCTGAGCTCATTGCTGAGGCCAAGC


TACTGCGTCAACACAAAGGCCGCCTGGAAGCCAGGATGCAAATCCTGGAAGACCACAATAAACAGCTGGAGTCACAG


TTACACAGGCTAAGGCAGCTGCTGGAGCAACCCCAGGCAGAGGCCAAAGTGAATGGCACAACGGTGTCCTCTCCTTC


TACCTCTCTACAGAGGTCCGACAGCAGTCAGCCTATGCTGCTCCGAGTGGTTGGCAGTCAAACTTCGGACTCCATGG


GTGAGGAAGATCTTCTCAGTCCTCCCCAGGACACAAGCACAGGGTTAGAGGAGGTGATGGAGCAACTCAACAACTCC


TTCCCTAGTTCAAGAGGAAGAAATACCCCTGGAAAGCCAATGAGAGAGGACACAATGTAGGAAGTCTTTTCCACATG


GCAGATGATTTGGGCAGAGCGATGGAGTCCTTAGTATCAGTCATGACAGATGAAGAAGGAGCAGAATAAATGTTTTA


CAACTCCTGATTCCCGCATGGTTTTTATAATATTCATACAACAAAGAGGATTAGACAGTAAGAGTTTACAAGAAATA


AATCTATATTTTTGTGAAGGGTAGTGGTATTATACTGTAGATTTCAGTAGTTTCTAAGTCTGTTATTGTTTTGTTAA


CAATGGCAGGTTTTACACGTCTATGCAATTGTACAAAAAAGTTATAAGAAAACTACATGTAAAATCTTGATAGCTAA


ATAACTTGCCATTTCTTTATATGGAACGCATTTTGGGTTGTTTAAAAATTTATAACAGTTATAAAGAAAGATTGTAA


ACTAAAGTGTGCTTTATAAAAAAAAGTTGTTTATAAAAACCCCTAAAAACAAAACAAACACACACACACACACATAC


ACACACACACACAAAACTTTGAGGCAGCGCATTGTTTTGCATCCTTTTGGCGTGATATCCATATGAAATTCATGGCT


TTTTCTTTTTTTGCATATTAAAGATAAGACTTCCTCTACCACCACACCAAATGACTACTACACACTGCTCATTTGAG


AACTGTCAGCTGAGTGGGGCAGGCTTGAGTTTTCATTTCATATATCTATATGTCTATAAGTATATAAATACTATAGT


TATATAGATAAAGAGATACGAATTTCTATAGACTGACTTTTTCCATTTTTTAAATGTTCATGTCACATCCTAATAGA


AAGAAATTACTTCTAGTCAGTCATCCAGGCTTACCTGCTTGGTCTAGAATGGATTTTTCCCGGAGCCGGAAGCCAGG


AGGAAACTACACCACACTAAAACATTGTCTACAGCTCCAGATGTTTCTCATTTTAAACAACTTTCCACTGACAACGA


AAGTAAAGTAAAGTATTGGATTTTTTTAAAGGGAACATGTGAATGAATACACAGGACTTATTATATCAGAGTGAGTA


ATCGGTTGGTTGGTTGATTGATTGATTGATTGATACATTCAGCTTCCTGCTGCTAGCAATGCCACGATTTAGATTTA


ATGATGCTTCAGTGGAAATCAATCAGAAGGTATTCTGACCTTGTGAACATCAGAAGGTATTTTTTAACTCCCAAGCA


GTAGCAGGACGATGATAGGGCTGGAGGGCTATGGATTCCCAGCCCATCCCTGTGAAGGAGTAGGCCACTCTTTAAGT


GAAGGATTGGATGATTGTTCATAATACATAAAGTTCTCTGTAATTACAACTAAATTATTATGCCCTCTTCTCACAGT


CAAAAGGAACTGGGTGGTTTGGTTTTTGTTGCTTTTTTAGATTTATTGTCCCATGTGGGATGAGTTTTTAAATGCCA


CAAGACATAATTTAAAATAAATAAACTTTGGGAAAAGGTGTAAAACAGTAGCCCCATCACATTTGTGATACTGACAG


GTATCAACCCAGAAGCCCATGAACTGTGTTTCCATCCTTTGCATTTCTCTGCGAGTAGTTCCACACAGGTTTGTAAG


TAAGTAAGAAAGAAGGCAAATTGATTCAAATGTTACAAAAAAACCCTTCTTGGTGGATTAGACAGGTTAAATATATA


AACAAACAAACAAAAATTGCTCAAAAAAGAGGAGAAAAGCTCAAGAGGAAAAGCTAAGGACTGGTAGGAAAAAGCTT


TACTCTTTCATGCCATTTTATTTCTTTTTGATTTTTAAATCATTCATTCAATAGATACCACCGTGTGACCTATAATT


TTGCAAATCTGTTACCTCTGACATCAAGTGTAATTAGCTTTTGGAGAGTGGGCTGACATCAAGTGTAATTAGCTTTT


GGAGAGTGGGTTTTGTCCATTATTAATAATTAATTAATTAACATCAAACACGGCTTCTCATGCTATTTCTACCTCAC


TTTGGTTTTGGGGTGTTCCTGATAATTGTGCACACCTGAGTTCACAGCTTCACCACTTGTCCATTGCGTTATTTTCT


TTTTCCTTTATAATTCTTTCTTTTTCCTTCATAATTTTCAAAAGAAAACCCAAAGCTCTAAGGTAACAAATTACCAA


ATTACATGAAGATTTGGTTTTTGTCTTGCATTTTTTTCCTTTATGTGACGCTGGACCTTTTCTTTACCCAAGGATTT


TTAAAACTCAGATTTAAAACAAGGGGTTACTTTACATCCTACTAAGAAGTTTAAGTAAGTAAGTTTCATTCTAAAAT


CAGAGGTAAATAGAGTGCATAAATAATTTTGTTTTAATCTTTTTGTTTTTCTTTTAGACACATTAGCTCTGGAGTGA


GTCTGTCATAATATTTGAACAAAAATTGAGAGCTTTATTGCTGCATTTTAAGCATAATTAATTTGGACATTATTTCG


TGTTGTGTTCTTTATAACCACCAAGTATTAAACTGTAAATCATAATGTAACTGAAGCATAAACATCACATGGCATGT


TTTGTCATTGTTTTCAGGTACTGAGTTCTTACTTGAGTATCATAATATATTGTGTTTTAACACCAACACTGTAACAT


TTACGAATTATTTTTTTAAACTTCAGTTTTACTGCATTTTCACAACATATCAGACTTCACCAAATATATGCCTTACT


ATTGTATTATAGTACTGCTTTACTGTGTATCTCAATAAAGCACGCAGTTATGTTAC (SEQ ID NO: 130)






Homo sapiens dystrophin (DMD), transcript variant Dp427m, exon 44



(nucleotide positions 6535-6682 of NCBI Reference Sequence: NM_004006.2; nucleotide


positions 1127547-1127694 of NCBI Reference Sequence: NG_012232.1)


GCGATTTGACAGATCTGTTGAGAAATGGCGGCGTTTTCATTATGATATAAAGATATTTAATCAGTGGCTAACAGAAG


CTGAACAGTTTCTCAGAAAGACACAAATTCCTGAGAATTGGGAACATGCTAAATACAAATGGTATCTTAAG (SEQ ID


NO: 954)






Homo sapiens dystrophin (DMD), exon 44 target sequence 1 (nucleotide



positions 1127547-1127601 of NCBI Reference Sequence: NG_012232.1)


GCGATTTGACAGATCTGTTGAGAAATGGCGGCGTTTTCATTATGATATAAAGATA (SEQ ID NO: 955)






Homo sapiens dystrophin (DMD), exon 44 target sequence 2 (nucleotide



positions 1127595-1127643 of NCBI Reference Sequence: NG_012232.1)


AAAGATATTTAATCAGTGGCTAACAGAAGCTGAACAGTTTCTCAGAAAG (SEQ ID NO: 956)






Homo sapiens dystrophin (DMD) exon 44/intron 44 junction (nucleotide



positions 1127665-1127724 of NCBI Reference Sequence: NG_012232.1)


GAACATGCTAAATACAAATGGTATCTTAAGGTAAGTCTTTGATTTGTTTTTTCGAAATTG (SEQ ID NO: 957)






Homo sapiens dystrophin (DMD), intron 44 (nucleotide positions 1127695-



1376095 of NCBI Reference Sequence: NG_012232.1)


GTAAGTCTTTGATTTGTTTTTTCGAAATTGTATTTATCTTCAGCACATCTGGACTCTTTAACTTCTTAAAGATCAGG


TTCTGAAGGGTGATGGAAATTACTTTTGACTGTTGTTGTCATCATTATATTACTAGAAAGAAAATTATCATAATGAT


AATATTAGAGCACGGTGCTATGGACTTTTTGTGTCAGGATGAGAGAGTTTGCCTGGACGGAGCTGGTTTATCTGATA


AACTGCAAAATATAATTGAATCTGTGACAGAGGGAAGCATCGTAACAGCAAGGTGTTTTGTGGCTTTGGGGCAGTGT


GTATTTCGGCTTTATGTTGGAACCTTTCCAGAAGGAGAACTTGTGGCATACTTAGCTAAAATGAAGTTGCTAGAAAT


ATCCATCATGATAAAATTACAGTTCTGTTTTCCTAAAGACAATTTTGTAGTGCTGTAGCAATATTTCTATATATTCT


ATTGACAAAATGCCTTCTGAAATAGTCCAGAGGCCAAAACAATGCAGAGTTAATTGTTGGTACTTATTGACATTTTA


TGGTTTATGTTAATAGGGAAACAGCATATGGATGATAACCAGTGTGTAGTTTAATTTCAACTTGTGGTGTCCTTTGA


ATATGCAGGTAAAGATAGATTAGATTGTCCAGGATATAATTTGGTTGCTAAATTACATAGTTTAGGCATAAGAAACA


CTGTGTTTATTACACGAAGACTTAATTATTTTTGCATCTTTTTTAGCTCAAATTGTTCATGTTGCAATAGTCAATCA


AGTGGATTTGAATTGTAGCCAATTTTTAATGCCAGAAAATACTGATTAAGACAGATGAGGGCAAAAAACACCCAGTA


GTTTATTAAATACTTTAGATATTTCAAAATGCTGGATTCACAAAAGCAGTATCACATTTGACTTTACAAGTCTTCAT


TCTCAAATATGTTTCCATAGTAAATATGCCCTTTAATATTAAGGAGTTAAGCATTTAAACACCTATTTATATGATAA


GCTATTTAAACACAGAAAATATTTTTAAAACCTTGTGTAATTATATGTGTATCAATCAAACTTGCATGCACACCAGC


GTTGGCATTTGTATAGAGAGGAAATGTATGGATTCCCAATCTGCTTTAATATAGAAGATACATTTTAAAAATAGCAC


TGAAGTGAATTTTGGGCTAATGTAGCATAATGGGGTTTCTGCCTGAGAGGCAGAAACATATTAGAGTTATATAAAAT


GTTTTGGGGTAGATATAGAAACCACTTGCCATTTTCAATGATATCCAACCCAAGGTAGTTATATATTTCAATTTATA


TTTTATTATCAAATTAGTACTTATTGTGAAAAAAATCAAGTAACATAGAAATTTGTAAAAGTACCTCCATTCTACTC


TTTGGAGGATAGTTGTTCAGTATGAATTTTGCTACATATTTCAGGCTGGGTTTCTTGGAAAGCCATTGTAAAATGGA


GATTTGTATGTAGAAGGTTAACTAGGGAGTACTTTTACGATGAAGCAATTTGTTTTGATGTAACTTGGTGTAGTTTT


CTTCATGTTTCTTGTTCTTGAAGTCAGTTAAGCTCTTGAATCTGTGCATTTAACATTTCATCAAATTTAGAAACCTT


TCAACCATTTTTTTAAAAAAAATGGAACTCCAATTGTACATTTATTAGGCTCCTTAAAGTGCCCCACTACTCACTGA


TGTTATGTTCATTGTCTGTTTGGTCTCTCTTTTCTCTGTAATTTGTTTTATATAATCTCTATTGTCAAATTGACTAA


TCTTTTTCAAAGTCTAATCTATGGCTAATCCCATGTAGTATATATTTTTAACATCAGACATTTTCATCTCTTAGAAG


TAAAAGTTGGGTCTTTTTATTTCTTCCATGTGTCTACTCAACATGTTCAGTCTTTACTTTCTTGACTATATGGAATA


CAGATATAATAACTGTTAGAATATTCTTCTCTACTAATTTTATCATCTGTGTCTATTCTGGGTTAATTTAAATTGAT


TTATTTTTCTCCTCATTAAGTGTGTTGTTTAACTGCTTCTTTGGATGACTGGTAATTTTTGACTATATGCCAGACAT


TGTGAATTTTAACTTAGCGCGTGCTTGATACTTCAAATAAATTCAAATATATTGAAATAAATATTCTCAAACCTCGT


TCTGGAACACAGTTAATTCACTTGGAAACAATTTGATCTTTTGAGAATCTTCCTTTTATGCTTTGTTATGACCAGAA


CAGTGTAAGTTTAGGGCTACTTTTTCCCCACTACTGAGGCAAAACCCTTCTGAGTACTCTCTCTGATGTCCTGTGAA


TGATAAAATTTTTCACTGGGGCTCGTGGGAACAGGTGGTATTACTAGCCACGTGTGAGCTCTGGTGATTGTTTCCTT


TAATTCTTTTGTGAAGTTCTTTCCTTAGCTTTGAGTGGTTTTCTTGCATACATGAACTGATCAAGACTCAGATGAAG


AATAAAATAAAGCTTTCTACAAATCTCCAAAATTTCCTCTGTGTATATATCACCTCTCTGGTATTTTGCCCTGTGAT


CACTAGTCAGCCTTGGGCTGCTGAAACTCTCAGCTTCATCTTTTAACAAAAGCCTCCTGGCAAGGATCACTGTCCTT


CAATGTCTGATGTTCAATGTGTTGAAAACCGTTGTAGCATATATTTTGTCTTTTTTTTTTTTTTTTTTTTTTTAAGT


GTTTCAGGTGTTTCAGGCAGGAGATTAAGTTCAGCCTCCTTTACTCCAACTTGAAAACAAGTCCAAAACAAACTATT


TTGATGTAATTTGATCTTTTAATACATTAACATTACACAATTTTGTGAATATATCATAATTTAAAATTTTCAGAGAA


TGTCTAATGGTCCTCATTTCTTGACAGTGTGGTTTAGTTGAAACTGATGAACATTTTATCAAAACTTTTCCCCTCAA


TTGGATACTTTTTTTTTTTTGAGATGGAATTTTGCTTTTGTCACCCAGGCTGGAGTGGCATGATCTCAGCTCACTGC


AACCTCTGCCTCCAGGCTTCAAGCAATTCTCCTGCCTTAGCCTCCCGAGTAGCTGGGATTACAGGTGCCCACCCCCA


CACCTGGCTAATTTTTGTATTTTTAGTAGAGACGAGATTTCACCATGTTGGTCAGGCTGGTCTAGATCTCCGACCTC


AGGTGGTCTGCCTGTCTCAGCCTCCCAAAGTGCTGGGATTGCAGACGTGAGCCACCATGCCTGGCCAACTGGATAAT


TTTAAAAAGACCATTTTATTTAGTCTATTTTTTCTCAATCTATAGATGAGATAAGAAAAATCATTCTAGATGTCCAA


GGAAAAATTCTTTCAGAAAAGAGCTGTGAATGATATCACAAACCCCCCAAACAGTTAAGGTATTTCTTTCCTGGTTA


TTTTATGTCCAAAATCATGCATATGAACATGTGCACACACATGAGCGTGCACACACACATGAATACATATACACGCA


CATAATGTACCTTAGGTTATCTTTCCATTCTGAGTAATTATCGTAAAATGGGTAAAATCAACCCCGTAAGATACCTT


CATCGATAAGGCAAATCAAAGCTTTGGTAATTTCTGCTATCTTGGCCTTTGTTGATTGACTAATAATGAATAAGAGA


ATGAGTTTCAATATTTACTATGAAATTATTTTAGAAGACAGGATGTAGACAGTGGCTGTTAGCAGGCAATTGTTTGG


CATGAGCCAGTAATGGTTACTGTGAAAAAAATCAACCAAGCAGCCCATATATTAAACAAACACACGCAGAAGCACGT


TGGAGTCTGAAGCCTCATATGTACAATTTTCAGTAAAGAAATAACTTTTAGATATGAAATAAACAAATAGATATATG


TTGTAAACTTGTCCCTATGTATTTTGATCAAATTGCATCATATTTTTTTCACTTTAAAGAAGAGAATTTAGTGCTTT


AACTGAGACTTAGTGTTATCATTCAAAATATACTGACTGCCAATAGCAGTAGAAAGATAATCTGGTTCCATGCAACT


CTATTTTTTTTCCTCTGTCGCAAGTAAAAGACAAAATTAAGTACATGAATTAGTGCTTTTTGAAGATATTCCAGAGC


AATATACCATGCCACTATGGAGAACCTCTCTAAAAATATCCCATTTTTTTACCTGAGAAAAATATTGATCATGTTAT


ATGCCACTCAAATTGGTTTATTAAATTCGTTGAATGATATCAGCATCTCTTAATGCATTCACTAAACAAGCAGTAAT


TGAGTGCATATACAAAGTTTTATCATCCACCAAAACAGTGACAATCCACATGAGGCTCTAATAGAAGTTTAGAAAGG


GGGTTAAGTGGTTAAATGCTGGACTCAGAAAGATTGGATTCAAATCCCAGGTCCTTTAGCTTAATAGTTGTAGAATC


TTGTGAAAATATCTTAATTCTTTTCATGTCTCTGATTTCTCTTCTCTAAAATGGAAATATAAATGAGATGTGTATAA


AGCCACTTGGAATAGCATTTTGCACAAAATAATTACTCATTAAATGTAAGCCCCTATTATAACTAATCACTCTTTAT


AAGTGATTAGTTCATATCAATACAAACTAAGACTTATTTACTGAATTATCGTCTCTAAACATCCACACTGCAGAAAA


ACCAACCTGGAAATTTCATAAAACCTTATTTTTATGTAGTATAATTTCTTCTCAAAGCATAAGGGCTCTTGGATTAG


GAATTGAGGAAAATTCCAATTCAGCCAAACGCATCTGTTTCAGATAGCTGACACTTCTGCCTACTCATTTCCTAGCT


AACAAGAAGAAATGTTAATGGGAGTTTTCAAAGGAAAAGCTGAACACCATGAAGGAAAGTGACACAAATAATGTTAG


CTCATATATTGACAGGGTGAATTTGTGTGCTTTCAAGTCCCTTCAGTGAAAATAGGAAAGTAGAAATTATAAAATGC


CCTAACATTTAAAGCTAGCATGTTCTTGGAGACTAGGAAAAAATAAGTTTTAAAACATGGGCTATGATAGAATGAGA


TGGAAAATGTTTGTAGTTGCCAGTAGAAACAATAACAATTACCATTAGATTAAGTATTTAAACCAGCTGAATATTTT


TATTAATGGAAATGGCATCTGTTTTATGAAATAATGCTGCTGAATGAACCATATTAAAAATGACCAGTATTTCCTGC


AGAACGTTGTCGCAGACATACAAGCCTGAGACCCTAAAATCTTAAGGTATTCCATTTGAAATCGACCTTAAGACATT


AACAGTAGTGGTATTGTTTAGATGAAATTTTTTAGGCTTTAAATCAACAAATGTTAAGCAGACATGGGGAGCGAAAC


ACCAGTGTGTTATTCTGACATGAATAAACTGCTGTTTTTAGGGAAAAAATATAGTCTTGTTAAGGTTAAGCTAATTG


GTTTTCTGGTATCTTTTGCAATGTTAGTGTGTTTTACTGCTCCATAACCTATGTTATATGGTAAATGTGCAATATAT


TTATATATGTTGCTGTAAAGAAATGTAATAAAAAACTGTTTACTTTGTGATATGAAAGTAAAAATTTATTCATTGTC


ATTGAGCATACAGAAGTAAATATGGATTACATATGTCATATTTTAATGTTCACATGGTCCCACCATCAAATGTTGAA


AAACTTATAGTTTAACGTCATATTCTATTGAAGAAAAATACACTCCCTTTTCTCAAATGTGAAATGTCCAGAGAGAA


TGGAAAATTACATATAAAGCATGTAGTTATAGCATGGTGACCCTGCTGTGATCTCTCAGATGAGGAACAAAAGGGAG


AAAGAAAGAGCACACTGGTGCTTTGGAGTTGAGAGAAGGCAAAAAAAGAGTACAAAAATGTCAAAGCCAAGTTTAGC


TGCTCTTCAGCTCTCCCTTTAGCTGCTCTTCAGCTTTACCTTACCATGGTTATTAGTGATTGAAGAAAATTCTAAAG


CACTTTTTAAAGGACCCAATTCTGAAGAGTTTAGATTCAGAGAGCACAATGGAGTTGGAGTGACTCCTGCTCAAAAG


TTTGAGACAAGCGAGTCCATGAAAAGACCGTCCTCCTCTTAATGGAAATACCCAGGTTTTCTCATTCTTCTCGCCTT


GCTTTCAGCACTCGCAGCCCAGAAAGCCCTTATCTAACAGGTACTGCCGTTGAAAGGTCATTGACTTGTACAAAAAT


GATGAGTGCTGAATAGATGTGCATAGGTCACTGACAGTATCTGCTACAGAGAATGAGTTTTCGTATTTTTATTAGGA


TACACCTAACATGGCAATCTACTGCCTCAAAGAACTCTATAGGAGGTAAGTGAATTTATATTAATACAGATTGAATT


AAAGGATAATCTAGAAAAAGGCATATGATGTAAAAAAATCAGACACAAGTATATTTTCTGTATAGTCAGTTTTTACA


TTGTGATTTCACCAGCTGGCTGCTGAGTTTGACGGCTTCTTAACAGCCACACTGCTGAGATTCAAATGCTGATAGAA


ACTTTGATGGAAAAATCACTGGAGTAAATATTTCTACCATCTGTTGCCCTTCACTGGGACCCTAACGTTAAGAATAA


TTCATACCATTGCTTGTCCTTTATATTTCCCCAGCAGTAATAAAATTTCATAAGATTTTGTTTTGTGGTCACAAAGC


TATCCTGGTTTCTGTAACTAGAAGACATACACTAGCATAAGGGAATCAGCCGGAAAATTTACTGCTAAGAGAATTTG


TCTCTAGTCACTTACTTTAAGGTTACAGCAATGTGTAAGTGTGGGAATACATTTTAAAATGAGCTTTTCAAAGTTAT


TAGCTGGTAGTGGCATGAGAGTTAAGTCTCTTAATACAGTTAAACAGTTGGGCACTTCATCCTTGCGTAAATATTGT


TACCCTTTTATTGCTGCTTGGAAACTCCTCTGCAACTTTTTGGCCCCTATCCATCTTTTCAGAAGTAGTAAATAACC


AATTTACTGGGAGTGTGGTACCAGGCAGAAATTCCGAGAGGGGCTTTCAATCCTTGCCCATCAAGTGTATCTTTCAG


AAATAAGTATATTAAAATAATTGGATAATTTCAGTGGCTTGTTATTAGACTTCCGTTGTCCAGCATGGCATGTTTAA


GAAGATGACAGATTTTCATACATTATTGGAAAGAAGCAAGAACAAAAAAACATAACTTACTGTAGTAACCACGGTAA


AGAACTGCTTAAAATGCAGGATAAACATGTCATCCCTAAGGGATTCCCATTCTTAGAGCATGAAATTATCAAGAGAG


TAAGAGACTACAAAAAATGAGAAGAATGCTGATTGCAAATTCCAAATAGAAAAAATCAAAACAAAACTGCGCACCAT


CATTCTGGAAGCAATGAGAAGCAGAAATTGTCATTTAATGAAATGTAAGATTAAAGTTAATAGAAGTAATTTTCATG


AAATAATATTTTGCAAGGACGATGTTCCAGCCATATTGATCTTCGTGTTTTCTTTTCACATCCCTTCTTACTGTTCC


CTAGAATGCTTGTTTCTACCTTTAAATTTGCTTTTCTCTCTACCAGAGGGCTCTACCCTATCTCCAGTTTCTCACCA


TGTCCCAATCTACTCCCTCTCAGAATTTTTGTACACTTCCCTTTATATATATTTGTGCTCTAATTTTATATTCACAG


ATATGCCTTTTGTAACTCCCCCATCTTAAAGAAAGCACACACGTACGCACACATGCACACACACAAAATTGAACTCT


TTCTGGGAGATCTGCTTAACTTTCTTCATAACTCTGTCACTTGCTGAAACTGTAGTATGTGTTTTCATGTTTATTAT


CTTTTCCATTAGAATGAACATATTTTGGGTACTTGGTCTTTCTCGATCACCAATATACCTCGGTACGTAGAAAAATT


GATTCATATATTGAAAATGTAATATTCAGTAGAACGAATAAATACATAAATAAATTTAAAAATGATACTTTTATTGT


ATTACCTGAGACAAATGATCCCCAAGTTTGTCCTTGCTTTTCATAGCCAAAACATTCTCTCTTACATTGAGCTTCCT


TCACCTCTTCTGTGTACAGAGCACTTAAAATTTTCACATTGCCTGATACTTTAACAATATGATGGCCCTGTTCTCTT


ACCCATTGGAGCATATGTTAAATACCAGAACCCATGTAACAAACATATATTGTGATCCTACTGTGTGCAAAGCAGAT


ACTGCTTGCTGCTAGGAATACAGAGCTGACTAAGAGCTCCTTTTCTCTTTATGAGCTCACAGTCTCATGAGTTCAAC


GTCTTAAGGCACAACGTCTAAAGCAAAGGGCAGTAAGTAAACACTCCAGAAAGTACTGGATCTGGCCTAGGACAAAT


GGTGGGTTGTTTTTCCAGCTGTTATTTTTCCTGCCCCCTAATTGACAGTCCTCCATTACACCTCTGGGATACCTAGT


CTGACTTGGGAAAACCTGACTTTGGGAATCAGAGGCAGTCTCTCTTGCTTATATATGAGGAACTCTAATGGATACTT


ACTGTCATTAGAGAAACTCTGCTTCTAGCCTGGCTCCTTTTGTAAAGAAGGTTGAGTCCCCTTGGAGAGCCTGCAGA


ACATAACCATTTGCATGTAATGAACAGTTTGTAATACTTTGAGATTGATGTGCAATTTCTATTTGACAAGGGAAAAA


CAATTAGGATTAACCGTGGTCGTATATCCCAGAATACCAACGTTGTTTCCACACTCTAAGTGTTGTTGGGTCATTAT


ATGAGATTCATAATTTTGTCCTGTTGTACCCACGTTTGCATTACCATTCAGTCTTAATTTATTATACCCTATTAAAA


GTTTTTTTGGTAATTTGTTCTTATTGCTACTCAGGCATTAAAATGTCTGCAGGCTGTGAAAATGAATAAATTTAATG


TGGCAGCATAGTTCTCAAAATCCTGGCTTTACAACTCATAGTACAGGCTTGTATTGTAAATCCTAGTTAACATGGAT


TTATTTGAAAATCCAATTTTACTGCTAATCTTAAATAACACATTTTTCAAACATTTTATCCTTGAATTTCTATTTTT


TTATAATTTATGGCTGTTGTATGTATTTACAAAAGGACAATGTGTGTACTTTTAAATACTAGTAATGGATTGCTGAA


ACAACTGTAACTTTAAAACAATGCAATTGTTAAAAAAATAAACTGTGCAGCCTGGCTTAATGGAGGCTTATGAACAT


ATGATTAAGATATATGCTATAATAAGCAAATTCACTCAACTGATAGTTCATAGGAACTTTCAAATTTAATCTCATAA


CCAGTGCTATCCTTCAAAGAATGGTCAGGGCAATTTAACGAGTACATGACCACGCAAGATAATTTCATTGAAGAGTG


GCTGAACTGTTGAAATATTTTCTAGTCTCCTTGGGATATCATTAAGAGCAGAAATTTTGAAATGGAATTGTAATGAT


GTTCAGAAAAGATAAGTAGGTAACTCTCTTAATACGTTTTGTGCTGCTGTAACAAAGTACCTAAGACTAGGTAATAA


TTTGTAATGAACAAAAATGTATTGGCTCACAGTTCTGGAGACTAGGAAGTCTAACATTAAGGTGTCAGCCTCTGGCG


AGGGCCTACTTGATATGTCATCACATGATGGACGATTAGAGGGCAAGAAAGATCAAAAGGGGGCTGAACTCCCACTT


TTATAAGGGAACCAAACCCACTCGTGAGGGTGGAGCCCTCAATCCTTAATCACCTCCTAAAGCTCCCACCCCTTAAT


ACTGTCACAATGGCAATTAAATTTCAACATCAGTTTTGGAGGGAAAAACATTGAAACCATAGTAGTGATACTGACTA


CTACCACACAGGGCTTGGGAGGCTACCCTAGCTGTTGCACCCAAGAGATGAATCTTCTAATGTGATTACCTTTATCA


TTTTTTTTACTTTATTAAAATACTTTTATTTTACATGTATACTTTTGTCTACCCACCATTTCCATGTCTGACCACTG


CTACTACTATGTCCTAGCATAACATTCCATACATCCTTAAAACCAAGCAAAGGGTGGAGTTCCATCTTTAAAAACTA


AACAGGCATTTTGGACAACACATTCTTGGCAATGGAATCTGGACAACATTTATCAAACATGGTAGGGAAGGTTCTCA


CTCTGCATTATCAAAACGACAGCCAGATATCAACTGTTACAGAAACGAAATCAGATGGAAAATTTTTAACAAATTGT


TTAAACTATTTTCTTAGAGAGACTTCCTCCACTGCCAGAGATCTTGAATAGCCTCTGGTCAGTCATCTGGAAGCAAT


TCTTCACATAATTCATGAACTTGGCTTCCACTTTAGGAAGAGAACCACCTTTTTCTATACTTGCTTGCATTTTTGCT


TTAATGTCTTCTACAGAACTAGGTCCTTTGGGTGTTTTAGGAGTTTTTCCTTGTTTTGAAGGATTCTTGTCCTTTTG


ATCTTGGTGTTGACGGTTTTGAGTCTTTTCCATTCCGATTTGACTTTTGTGCATTTTTGGCTGGAGTATCTCATATA


GATTTCTTCACTGGCGCTTTTTCTTCAGTTTCCTCATCATCAAAATCATCATCATCATCAAAATCATCATCTTCATC


AGCAGCAAGTTTTACTTTTTTCTGTGGAACCTTGCTACCACCTCCAGGAGCAGATCGCTTTCCAGATATACTTATGA


GTTTCACATCCTCCTCCTGTTCGTCTTCTGACTCTGTATCTTCCTCCCCAGCTACTAAATGCTGTCCACTCACATGC


ACTGGCCCTGAACCACACTTCAACCGTAAGACCACTGATGGTGTTATTTCAAAGCCCTCAAGGGAAACCATGGGCTG


TACAGACATTTTCAAAGCTGCCAGTGTTACTTTAATTGGACTGCCTTTGTAACTCATTGCCTCTGCTTCAACAATGT


GCAATTTATCCTTTGCCCCAGCCCCTAAACTGACCGTTCTTAAAGATAACTGTTGCTCAATTTCATTATTATCCACC


TTAAAGTGATCATCTTTGTCGGCCTTTAGTTCACAACCAAAAAGATAGTTTTGGGGCCTCAGAGGACTCATGTCCAT


CATCGTCCATCAGGTGGCAGGACGCACTTAGGTGGGAGAGAAGGCAGATGATGATAAAGGACCACTGCTCAAGAGAA


CAGCTGTGCAGGACAGAATCACACCAGGGAGATTACCTTTATCTTAGAAAACCTGAACATCTTGTGTACTTTGACAC


TTCTCTACATTTCACCTAACCTTTAACATCAACACATTTATTCAGAAAACTTTTACTTTTGGAGCTGCTCTGTGTCA


GGCTCTATGCTAGGTGCTCAGGATATTGAAATTGATACAATCCTAACCTATTCACATATAATCCAAGGTTTGCTGAA


ATTGATGGACATTTAAACAATTGAAACATTTAAGTGGTATAATTAGCAAATGGACATTTAAGCCATAAAAATAGCAT


CTAATAGATATAATAGAGGTCGGTACACCATTGATGAGTCAGAGCAGAGGCAACCCAAAGAGTAACTAGCCAGAAGA


ATTGGGAAAGCTTCATAGAGAGAGCGATATGAAAATAAGGGAGAGAATTGTAAATCCATGAAAATGAGAAAAAGTTG


AAAAGTGATGGTGTCAGAAAAACTTGTGGTATGATAATGACAAGATGAGAGGAACTCTTGGTAAGCGTGTTGGATGC


ATGGAAAGAAATGGCACAAAATAATGCTGAGGACATTTTTTATTTTATTGTTGGTTTTGTTTTGGTTAATTTCATTT


TTTAAATCTAGTATGCTAGTGTTCATTGTCCAAACTGTGAATCATAAACTCAGTTTGTGGATCAACACCGGCCTTTG


ATTTTTAGTGAAACAAAATAGAAAATATCAGCATTCATCACAAATAGATGTTTCACAGATTTTTTGTTTTAATTGCG


ACTGTGTGTGTGTGGGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTATGTGAGAGAGAGAGAGAGAGAGAGAGAGA


GAGATGGCTTGGATGTTTATCACCTCCGAATCTTATATTGAAATGTGATTTCCAATGTTGGAGGCAGGGCCTGGTAG


GTGTGATTGGATCATGTGGGTGGATCCTTCATGAATGATCCCTTTGGTGACAAGTTAGTTCATGCTATATGTGGTTG


TTTAAAAGAGTATGAGACCTCAACCCCCACCTGTTTCCTGCTCTCCCCTTTGCCTTCCACCATGGTTGGTTGTAAAC


TTCCTGAGGCTCTCACCAGAAGTAGATGCCAGTGACATGCTTCCTGTACAGCCTGCAGAACCGTAAGTCAAAAGAAA


ACCCCTTTTCTTTTTAAAGCACCCAGTTTCAGGTATTTCTTTATAGCAATGCAAGAAGGGACTAACACAGTTGTATG


TGTATGTGTGTGTTGGGTGATTTCTGGTTGAGTGTCACAAGGTTGTAATATGGTGAGTGTAAGGAAGTATAAGTTTT


AGAAAATTAAGAAGCCAGTTCAGAAAACTAATACTTTTGGAAAATAGTACAAAATCAACTTTACAAGAATATACACA


GAAAGATGTAATACAAGATTTATTTCATTGCAGTAATTTATAAAGTTGGTTTAGTGCCTTGCTTTTGCATGCTGTTT


TAAAAATTACCAAGAATATGACTTCATGTGATTTTGAAATACTCCCAGCAAGATAGGTAGAAAAGGTATTCTTATAA


CTCTTAGACAAAAATTTCGGAAAGTTTAAACGCTTTATCCCAAATCATAAAGCTAATAAATGAAGAATCTGGGATTC


AAACACCATATTTTTTTTACTGTTCATCAGCTAGAAGTTAGAAATGTTAAGCCAAAAACATTAAGTCACTGCTCTGC


CTAATAAATCTTGAGGAAACTAATAAAAAGAATAATACCACTGACTACAGGACAAGGTCTTCCTAAGAGACCTTAAA


TATATTAAGTGATGAAGATGAAACTTCTTTTATTCATAAAAATGTTATTTAGTTATGAGTAGAGCTCTAATTAAACT


TATTTTATATTGTCATCAGTAAAGTTGAGACATAACATATTTATTAATATAATTATAATTTGACCCATAGTGTATTA


AAAGAAGGATGTTAAAAGGAGTTGTTATTAGAGATGATGTTAGGGTTGTTGATGATAATAACAGTAGTCATAACATA


ACAAAGCACTTCATAATTTAAGAAGTGCCTTCAATTACATTGTTACTCTCATGGTAATCTCTGTTTGATATATAGAT


TTGGCGGATTCTATATCACTCTAAGACATAGGTTACTGAGGTGACGGAGGAATTTAGCAAGCGGCTGTCAAATGGAG


GACATGAGCATTGGATTGTGTATGGCAAGGGCTGATGGTCTCTAAGAAAGCCTCTTGGTTTCCACAGGGCAGAAGCC


CTTTGAAGATCATAGCCAAGGATTTAGTAATTGCCTCCCTTTCAGAATACCCTCAAGAGAAAAGCCCACCATAAGAC


ATGGTTCCCTACAGGCAAAACTGCTTTTCCTTAAAATTTACTGTTCCCTGAATATCAGCCTTCTTTGGCTCATTCAA


CATAGTTTTCTTAAGTTTCAGGACAGTGCTGCAGACCAAAAGTTTCAACATTGAGGAAAACAATACTACTTGTGCAG


TGACCCTACCTCAGTCAGGGAGGCAGATGCCTGCCTTTATGTGAGGGAATAAGGAATCAATCATATTTCCAGCACTC


AAGAAAGCCAGTCTAGTGCAGGGAGAGATAGATACATAAACCTCAAAGTTATGATATAGCATAATAGTTTTAAATTT


CCATAATAACTGTATTTTAAAAGTTTTATAGAAACAGAAGAGATGACCTCAGTCTGGAAAAGCCAGCTTGGAGAATG


GCAACCAATATTAAGTGGCAAAAGCTTTGGGATCCCAGGCCTCCAGATGGAGGGTGATAGCATGGGCCAGACAGGTA


GGTTAGGAAAACTTTGCAAAGGACATTACACGGTACACAGACAAGTCTGTGTTTTAGCCTATAAACCACAGTTGCAG


AATGTGTTTGAGCAAAGGCTTTTGGGGATGAGATTTGCACTTTTCAAGATTTAAGTTTGTTTAGGATACTTACGGTT


TGCTGTATACTTCCTGGGTTTTTACATTATAATTACGGTTTGAACTTTAAAGGAAAACTGCAGTTTAGCATACTTGA


AAGAGTGCAACTTCAAGTCATGATTGGAGACAGATATTTAACAGATTTTGTGATCCTGTGATGCTTATTTTCTTCTC


AGACATACCACATGACAATCATTTTTAAACAGTTTATTTCTACTTTAGCATCCATCTGAAGGTGTTGTGTATGTTTT


CTGCTTGAAAATAAAGCAGTGGGCTGGGTGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCAGG


CAGATCACTAGGTCAAGAAATCGAGACCATCCTGGCCAACATGGCGAAACCCCATCTCTACTAAAAATATGAAAATT


AGCCAGGCGTGGTGGTGCATGCCTAGAGTCCCAGCTACTTGGGAGGCTGAGGCAGGAGTATCGCTTGAACCCGAGAG


GCGGAGGTCGCAGTGAGCCAAGATCGTGCCACTGCACTCCAGCCTGGCGACAGAGTGAGACTCTGTCTCAAAAGAAA


TAAAAAAGAAAATAAAGCAGTGAATGCGATTAAGATGGATTTATTATGATCATAAAGTACTCAGGAGTCTTATTTTA


AAAGACAGCATTACTGTAATTAAAAATATAGGGAAGAAACTAATGCTGTTTTGCGTATCATTCTCAGCTCTCTCAAA


ATCAGATATTAAGCTCTTGCTGCCAAAGGAGACTATACTGCACGGTGCTCACCTGCATAAACTTTGAGAGGGTTGAA


TTGTGCCAAGCAATTCTCTCAATACATAAATTAACCAAATATTTGTTGACCTACTGTGTGACAAGTATTATTCCAGG


AAATAAGAGATCCAGCAATGAAACAAGTATGGCTTCTTATAGAGTTCCCAAAAAGGAAATAAAAGGATATACGTATA


GTGATATCCCTGAATTAAATTTCTCTTTTGAAAATAAAAATTCTATCATAAGCTGTAACTGCCAACACTTCAATACT


CATTCAGCAGTTTTCAGGGATTTGTACCTTTTGACTTATGAGAATTTGGAAGTCTAATTGTATCATTGCACTGGAGT


CTTAAAGAAACAGATAAGCGAATGACTTTGCCTGTATCATTGTTGACTGTACTTACAATCAGAAAGGGGCACAGGAC


AGATGCCAGGGAGTAAGTGGACAGCCCATAAATGGAATGGTAAGAAAGAAGAACTATAGTGGATTTGGAAAGTTCCC


TTCAGCATTTTCCCTAGACAATCTTTGGCTGTGTTTGCATGATCAGTATTTCATTCACAGGATATTGAGCTCTTGAT


ATAGTTCTCAAAACCCAAAATGAAATAAGAAGTCTACTCTTTATTTAAATTCAAATTCCAGAGAGTTAAGTAACTTT


CCAGGAGGTAATCTAAATATGGCCTCCTTGTTGGGGGGGGGGGGGGTGTTTGAATTTGCATATAAATAGTCTCACCC


TTAAAGGAAAACCACAGATGGTGGTAATGATGTAGTCATAATGTACATCTCCACAGTGGTGGAACAAAATATCCACA


GTTTTGCTTTCCCCAGTTTCAGTGACCCATGGTCAACTGCTGTCTGAAAATAGGTGACTACAATACAATAAGATATT


TTAAGAGAGAGAAAGAAAGATCACATTCACATGATTTTCATTACAATGTATTGTTATAATTGTTCTATTTTTATTCA


TGATTTTTAATCTCTTAACTGCGCCAAATTTATAAATTAAAATTTATCACAAGTACATATAGTTTATATAGGGCTCA


GTACTATCTGCAGTTTCAGACATCCACTGGGAGTCTTGGAATGTATCCCCTACAGATAAGGGGTAAACCACTGTATC


CTATTTGTGTGAATGCTACAGGTGTTGTGAGCTCATAACAATATGACATCAACACTGAACTAATCCAGGATTTGGTA


GTGAGAGTGATGTATTTGCAAGGAGTGAGACGTGGTGCCTCATCCAAGCAGAGAAATAATTTTGAAATTTGCCTGAC


AATAAAAATCACAATGTGAGGTCTCTCTTTAGAGCTGCAAAGTCCAATTCAGTGCCCCCTAGCCACATAAGATACTG


AGCTCTTAAAATGCGGCTAGTACTAATTGAGATGGGCACTGAGTATAACACACATGCCAGGGTTTGAATACTTAGAA


CCAAAAAGGAAGTAAATGCTCATTTATTGCATGTTAAAATTATGGTTTTATTATAGTTGATTAAATAAAATATATAA


TTAAATTGACTTCATTTTGCTTTTAAAAATGTGGCTATGAAAAATTTCAAATTATATATGTGTGTGATTACATATGT


GTGTTTTCACATATGTAACTGATGTTACATGTGAAATTGATTGTTACATGTGACATGTAAAACACGTTACCTAACAC


GTGCATATGTATGCAACACATATGTAACGTGTTACATATATAACACGTTACATATGTATTGTTACATGTGTGCTTGC


ATTACACACATGCATAATATGAAATTACATGTAATTTCAAATTACATGTGTATATTTTGAAAATTACAAATTACGTA


TTTTGTTATTTTTGCTTTACAAAGTCAAATTTACCCTATTTAATAAAGCATCATGAGTTTTTTATAACTAGTAAACT


TTGAGACTTTTGTAGGAGAATAAATAATGCTTATTATAAAAACTGATTGGAAAAGTGAGCTGGAGCAGGGAGCGGAG


GAAAAAGGACTAGAGATCACCTTTCTTCCCAGCTCCGCTCCTCTCCCAACCTTTTTTCTTTCCATTCTCTCATCCCA


ATTCAAAAGTGCAGAGTTCACAGTTGGTGTGCTGATTTAGAAAACAGATATATAAACAGCCTTAAATTTTCTCCAGG


CTTTTACAATGAAAAGAAGTTCAATATCAAAAGTAACAATATAATCTGTGGAAAGGTATAGGGGGCTATGTTTTTGA


GGTAGAAACTATAGGTGCTCCTGGCCAAGCATGGTGGTTCAAGCCTGTAATCCCAGCACTTTGGGAAGCTGGGGCGA


GAGTATTGCTTGAGCCCAGAAGTTTGAGTCTAGCCTGGCCTACAGGGTGAAACTCCACCTCTACTAAAAATACACAC


ACACACACACACACACACACACACACACACACACACACACAAAAGCCTTGCGTGGTGGCGCTTGCTGATAGTCCCAG


CTACTCAGGAGGCTGAGGCGGGAAGATTGCTTGAACCTGGGAGACAGAGGTTGCAGTGAGCTGAGATAGCACCACTG


CACTCCGACCTGGGTGACAGAGTAAGACTGTCTCAAAAAAAAAAGAAAAGAAAGAAAGTATAGGCACTCCTTATATG


CAGCTGCTCACACCCCTCCTCCTTCACACCCCTCCCCCTTCACACCCCTCCCCCTTCCCCAAAATTTGCAAGGGGAA


AAATGTGTGTAATTGGCAGTATTTAGTGGCGTGCAACCGTGAGTCATCAGACTGCACATCCTCACTTCTGCTAGTGG


CTCAGTACCCAACAGCACTCAGTGAAAACTAACTCATTTCAAAGGTGAAAACAAGTGAGTTTGGCCACCAGGGAGTG


TTCAAAACTGTCAGTGCTGAAGCAAATGTGGAGGGTGTTCTGTAGTTTGTTCAGGTTGATATTTGTGGTCCAACCCC


TAGCTGAACTACTAATTATTAATATCTGTCTTGATGGTGCCTCAGGAGAAAGCTTCTCAAAGGGAATCAATGTTCAA


ATTATAGTAGGTATCTTGGCCATGGAAGTTATTGAATTTTAGCCAATACTTGCTACTCTTTCATTTATAGTGTGAGA


ATGCAGTGTAATGAACCTGACTCTCACTGTCCTGACTTGCCTTTCTCATCGCATTCACAATAAGCACGTCAATACGT


ATACACATTTCATATTTCTAAAGTTTACTTTATTTCCTTATTGTACATCGCTGTGCTGCTGATGGAAGAGAAAAGGA


AAAACACTATTGATTGCAAAACTGTTTTATCTTTGGTGGCTTAGATTTTTTTTGTATGATATGTAACGTCTTGCATA


CCTAAGGCAACACGAAGCTAAATAGATTTGCATATAGCATGTATTTTTTCCAATTAAATGTTTAATTTTGTTCAGAG


TATACTGGGGACATTTTGAATAATGGAGAAAAGTACAAAGAAAATTCATAATTCTACCACCTATCAGCACAGTGAAA


TTTTATGAAGAAACATAATTTTCATGTAAATCATAGTGAACTCACGGTAGGTTTTATTTAATACAGTAATTGGAGAG


CTGGTAGGAAGACAAAACTGGTTCAAAAGAGAATACAAGAAACAAATGCTTCTATAATGAGTGAATTTTTAAAAAAG


TATTCTGGAATAAGATTAGTGAATAAGATACTAAACTCGTTGATACCCTACAGCCTTTGGGGTTATATCCTCTACTG


GGTAAAAAGTCATTTACATCATATCAGTTTTCTAAAATTTGCATTGAACTTCATAGCGTTGTAACATGTGTGGGCCC


AAATTAATAGTAAACAGTAAGAGTTGCTTTACTCTGAAAATATTGAAGCTCTTGTGAGGGTGTGAGGAGTTTGTTAG


AAAACAACGCTACCATTATTTTGAAACACACACGATCATCTTTTGTTTTACTTCTAAGTTTTGGATAATTTTTCTTA


AATTATCTTATTATCTTATCCATTTTCTTAATTTCCTTAACCTTTTAAATGTTTCTCCTAGGCACTTTTATTGATTT


TTGGAATATAGTTGATATGTGCTGAATTTTTATCATCCAGTTTTAATTCTACTGAAAAATCTAAAAGATGTTCATCA


ACTACTATATTTCAAATGCATACATCCCCTTTCATGCTAAAGAAACTGTATGGGAAACACAGTCTGACATTTTCAGG


ACCTGGTATCATTAAAAGTCTTGACACTGTTAAAATTAAACAACGCCTTTTTTAAAATCAAAGGATACAAAAGGGCT


GTGTTGGTCAGAGGATACAAAATTTCAGTTAGATAGGAGACATAAGTTCATGAGATCTTTTGTACGACATAGTGACT


ATAATTAATAATAATATGTTTTCGAAAATTACTAAGAGAGTCGATTTTAAGTGTTCTCACCGCAAAAAAATAGTATG


TGAGGTAATGCATATGTTAATTAGCTCATTTTAGCTAGTCCACATTTTTCAATACAATGTGTTGTATAATACGTGAT


ATATACAACTTATATTTTCCAATTCCAATAAGTAAAAATAAATGTAAATTATTTGAAATAAATAAAATGTGAAGAAC


ATCCACTTTTCATATGAAACCATGAGATATTTTCTGTTAAAAGATTAAATGTCCAATAAATTTTTGATGTTAACAGA


AACAAAAATGTTTAATATTTAAATACATATTTGCATGCTATTGACCCCCTGAAGTTCACTGCTGGGCTAAGTGAACC


AACTATATCTTAAGTCAAAAATGCTGAAATTCTTCCCCAAATCCCAAAGCTCATGAAAACATAAACAGAAAATTTCC


AAATAATTCTACAGGGAAAATAAGACACACTATTTGATCTGATCAAACAACGGGATGATTATGGTTAATAATGAGTT


ACTTGTACATTTAAAAATAACTAAAGGAGTGTGATTGGATTGTTTGTAACACAAAGGAGAAATGCTTGAAGGGATGG


ATACCCCGTTCTCCATGATGTGATTATTACCCATTGCCTGCCTGTGTCAAAACATCTCATGTACCCTACAAATATAT


ACTCCTACGATGTACCCACAAAAATTAAAATAAAAAAGAGAGGGACCCGAAGATAAGCTAATATTTAAGCTCATCAT


ACTTATTAAGATAAGCAATACATACCGAAAGTAATAGCATTTAAAACCAGATGTTGGGGGAGGGTTCTAACTTGTTC


ATTAAAATTCAAAGTCACCTGTCTTGTTTTTTCTTTTGTTTTTGTTTTTTTTTTTTTTTTTTTGAGATGGAGTCTCG


CTCTGTCACCCCAGGCTGGAGTACAGTGGCGCGATCTTGGCTCACTGCAAGCTCTGCCTCCCGGGTTTACGCCATTC


TCCTGCCTCAGCCTCCCGAGTAGCTGGTACTACAGGCGCTGGCTACCACGCCCCGCTAATTTTTTTGTATTTTTAGT


AGAGACGGGGTTTCACCGTGTTAGCCAGGATGGTCTCGATCTCCTGACCTCGTGATCTGCCCACCTTGGCCTCCCAA


AGTGCTGGGATTACAGGCGTGAGCCACCGTGCCAGGCCACCTGTCTTGTTTTATCATGATCCCGAGAGTATATATGT


ATGTGTACAGCTCATCTAAACCCTTTTTCTTTCAACATGATCAATAGATTGAACATTGGAGATATTTTATAAGAAAT


AATGAAGACAACTCAATCAGCACATATATATATTAAATGTGGAATCTATAATGATTGCGAAGCCTGAAGCAAACTAA


ATATTCAGTAATAGGTTCTTTTTTTCCATGGTATATCCATTTGAATATATAACATAAATGCCTTACATTTGTTTTAA


CTATTTAAGGTTTATGTTGTTAGTGTGATGAAATGGCTGGCAAAAGTCAGAAACTCAGGAAAGTTTCAGGCTTATAT


CTGGAGCCTGGTTTTCTTTCTTCAAGGTAGAACCTCTGTGAAGTGAAAAATTTTTTTTATATCTGGAGCAATAATGT


AGAAGCTTAAATGTATTATCCAAGTTGTCATAAGCCTATTATTTCTTTACATTACTGAAGTGAAAGACAGCATTAAT


GGCTAAATGCCATACTTGGCTATAATTTATATTGTTTAGGACTGGAAATGAGCCTGAAATGTACATTTTTTTCCAAA


ATAGTTCATGTAATATTTGAAACCTGACAAGTAACCTGATGATTTCATGGAATACCATCAAATATAAATGTGAAGTT


TTAAAGACACAGGGAAATACTCAGAATAAACCCCCTAACCACAGGCCAGCAGAAGAACTAGACTTGAGAAAATGAAT


GGGAAGATAGATAGTAACAAATGACTTCTTTGGCAGCCTTATATATGCTTAGTCTTATAGACTGTTTTATGGATGCT


CTGCACTCTATTTCCAGCAAGTATGGCATTTGGAACAGGACCACACGAGACAAACTATGAGTTCACATTTCCCACAA


CTGCACAGATAGAAAGAGGGAACAACAGAATACTCCCTTTCTTCTTGAAACAATAACTTCTGTTGAAGCTCACTGGC


TTCTTTTCAGCTGTTTCTGCTAGCTCCTCCTCCGCCTCTTGACCTCTAAGGCAATGCTCTTCAAAATTTCAAGACTG


CTTTCTAATTGAAACAAAACTTATAAGCACATTTCTTCCCACAAAATGTACATTTATTTGTAAATCATATATGAATA


TGACTAAGCATGTAAACGTATGTGAAAATAGAAATCAATAAATATAAATGCAAACACAAATAGAAGCATTCACAGTT


TTCTTTTGTGTCCCAGTGAGTTGTTCCAAATTCCTCGGAGGTAGGTATGTCACAGTTTGAGACTATACCTTCAATCC


TAGGGTTTCTGGTTTCGCTCTCCTCCTAGGTGATAGCATCCATTTCTACGGACTTAACTGCCATCTTTAGTTGAATA


ACTCCTCTATCTTTCCATCCCATATTTCTCTTGATTCCAAACCTGCTTGTTCACCTGAGCATATGACACAATTCATT


GGCTGCCGCACATGCAGCTTTGACATTTTATTTAAAATCTTTCCCCTTCCCCAGCCCTCATCTATTTCACAGTAGTA


TCTTCTTCTTATCTACTTGATTGGTAAGCAGAGTCCACATGATTCCATCATTTATCTCCCATTTTATATCTAATCTA


TAAGCAAGTAATGCAATGCAACTTCTGTCTCCAAAAATTTATTTTGAATTTGCCTTCTCTTCCTCTGCATCTCCCCC


ATCTTAGGCCAGGTCACCTCTGCCCTCTTGCCAGATTAGGTCACATTCTCTTACTACTGTTGTTATTCTCTTCCTAT


TCAATCCTACACCGCAGCAAAATGGATCTTCTCAAAATGTCAGCTAGATAAAGGCATTTCTGTGCTTAAGGCCCTCA


TGGATTTATCTTATTAGGATGAACACCCAACTCTTTATTATGGCTTAGAATACAATGAATTACAACACATAATGAAT


ATATTATATTTCTATCTTTACCATTTTCTTCTTAAGTCAACCTTTCTCAATCCATATAGGATAATCATATTAGTGCT


TCCTCACTTTCTAAAACATCTCAGGGCCTTTGCACGTGTTTCTCTGTTCTTAGACCCAGAATGCTCTTCCTTTTCTC


TTTGTGTAGCTAGGTGCTTCTTTCCATTTACGTATCACATGAAATGCAGTCATTCCCTCCTCCTTCCCTCACTACCT


CACAAAAAGTTGATGCCTCTGTTAAACCATGAATGGAATTTTACTCGGCAGTGAATAGAGGAAAAACCAATGGTAAA


AGCAACCATATGAATGAATGAATGTCAAAAATATTATGCTGAGCCAAAAGTCATAGACACAAATATGGGTATTTACA


TGAAGTTAAAGCACAGCAAAACTCAATTACGGTAATAGAATTAAGAAAGTGGTTACCTCTGGGTGAGGGTTGGAATT


GAGTGGACAGAGGCATTAGTGACTTTTTCGGGGTAATGGAAATGTTGTCTATTTTGTTCAGGTGGTGAATACATAGA


TACATTCAATTGTCAAAACACATCCATCCAAACACTTAGACTTTTGCACTTTATTATATGCAAATTATGCCTCAACT


GAAAAAAGTTTGTTTTCAAAATTATATCAACAGTTGAAATTCTTTTAAAGATTTGATTCAAATGAGATTAATTCTGT


ATCCATCATTGATGTATGATAGTTTTGTATGTAGTTAAGGTTATTGGAGATAATTGAAAGTTATACTCACAAGAAGG


CTGCATAATATGAAGTTTATCTGCCTTGATCTTTAATAGCTTTCGCGATTTCAACTTCTTCACAGCTCTGTAAGAAG


GCAGTGTGGCATGTTGAAGCAAGCATGTGTTTTAGAGTAACACAGAGCTGGTATACAACCCCATGTCTACCAATTAT


CAATGATGTGGGTATGTTGCTGGATCTCAATAATCTTCCACTGTGAAATGGAATGTAACACCTGACTCACAACGCAA


AGGTATTTACCTTATGTAATATAATTCCTGCGATCCTGGGACCTCCCTTAATCCCATCCACAGATGCCAGGTTAAAG


ACCCCATCACAGACTAGAACAAGTTGGGATGTCAAAATGAATAAATATTAATCGAAGGGCCTATTGTGATTGAACAC


CACGCAGTAGGCACTCTCTAATACCTACCGTCTCCCTCCTTTTTGGGGGAAACATTCTAAATGTGCAAAAAATAAAG


GGTTATTTGCTTTCTGGCACTTGGGATCGATTTATTGAGGATATGTTAGCAGAACAGCAAAGGTGAAACACTAAAAG


CACCATCAATACACAGGCAGAGGTGAAGCCATAAAGCCTTTATTTTTTAAATTAATGCACAATATATAAGAGGTATG


TTAGAATGAACGTCCAATCCCTGAAAGGATATACGAAAGACATTCATAAAATTACATGGGCATGTTTTCTTAATGTT


CAAAATATTGTTTTAATTAGTGTATTATGAGTTTATTCATGTGTCTGTGTGTTGTGTTATATTAATCTTTTCTTGCA


TTGCTATAAAGAAATACCTGAGACTGGGTAATGGATGAGAAAAGACACTTACTTGGCTCACAGTTCTGCAGGCTGTA


CCGGAAGCATAGCAGCATCTCCTTCTGTGGAGGCTTCGGGAAGCTTCCAGTCGTGGCAGAAGGCAGAACGGGAGCAG


GCACTTCACCTGGCTAGAGCAGGAGCAAGAGAGACAGAATGAAGTACCACACACGTGTAAACAGCCAGATCTCAGAG


AACTCACTCATCATCATGAGGATGGCACCAAGAGGATGGTGTTAAACCATTCATGAGAAATCCACACACATGATCCA


GTCACCTCCCACCAGGCCCCACCTCCAACACTGGGAATTACATTTCAAGATGAGATTTGGGCGGGGACACATATCCA


AATGATATCCATGTTTAATCAGAAAAATAAAAGTTAACAGTAACAGTGATTTTACTTTGTAGACCTTTGCTAATGGC


TGAAATCTAGCTCCATTCCGAGAACAGCCTGCGGTACACATTTTGAAAGATAGTTGATTAATATGAAAGAAGCCTTA


TCTGTAGTCCTTAAGGCCATTATGGTTTACATATATGAGTAAATATTCCAAAGTAGCCATGCCAGTTAACATATATC


CAGAGTCTAAAGGCCACTGGGCGACAAAAGTAAAAGATACATAGCAATTGTTACTTTATATCACAGTAATTCTTGTA


TATTTTAAATGGATATTTGCATTTGAGGATATCCACTTAAGAGTTAGGTACATGGCTCTTACATTTAAGTAACATTT


ACTTAAATTTCTGGCTGCAGCAATTCCACATAGGTAGAAATGAAGTCTGAATTGAGTTGGGGGTCTTTGCAGTGCTC


TCTCTGTTCATTGGCTATTTTGACAATGCTGAGAGATGTGGTTAGCCATTCTTTTTCATTTCATATTGGCAACCTAG


AGAGCAATTAAGCCTTCTCCCCTTAACTAGATGTATGTTTTACTCATTTCTGGATCTTTATGGCTGACTTTGAATCC


TAGCCTGTGGTAGAAAGCATGGTGTCAGAAGGAACTATGAGTTAAGACTATGCATACTTGGCTTTGAGTCTTGGGTA


TCATACCTCCCTCATAGAGTGAAGGAACCAGGGATTCTTCTTGAGGCCCAGACCCGGCATCCATGTTAAGAATACCT


GTGCAATTTTGCTTCCTGATATTTAAGGTGAAAATGCATGTTTGGGTCATTGTGAGGATTATGTGAGATGTTACTTT


TAAATATAGGCCCCCTTATTATATGCTCTCATAGTTTCAGGCAACACTTGTCGTATTTGTAACCTCAGTTTTAACTG


TAATGTTTCCATCAATGTCCCTCTTACCTGGTACAGGGGCTCTTCATATTCTTGGATTACAAATCTGTGAATGCAAC


CATGCATCAAAAATATTCAGAAAAACAATGAATGCCTACCTCTGTACTGATGATTTATAGGTGTTTTTCTTGTCATT


ATTCCCTAAACAGTACAATGTAATAAGTATTTATATAGCATTTACATTGTATTAAGTATTATAAGTAATCTAGAGAT


GTTTTAAAGTATATAGGAGGATGTGTGTAGGTTGTATGGAAATAGTATGTCATTTTATATGTCACTTGAACATTTGT


GGATTTGCTATCCGTGGGGATCCTGGAACCAATCCCCCATGGATACTGAGGGACAATTGTATTATAAGCAGCAAGAG


GGAAAGGAATCTGTCTATTTTGCCCAAAATCGTGTTCCCGGGACCTAGCATAGCTCCTGGCAAAGAGTATACAACAA


ATATGCATTGAGGAGAGAACAGAGGGAACCATTATCCCCTTATTCTCGCTGTTCCTTCATGTAATGAATAAACAGTC


AAATCTTACAAGAGATTTTAAACCAGTCAGAGAAAAGTTGGAAGTTAGTTAGTTGTTCATACATTGAGAAGCCTCGA


CGCTGTGTCATCTAGGTAATGAAAGATCTAGGGAAGTTTAGCAGGGAGAAGAAGAGAGATGATAGTTGTCTTCAAAT


GTTTGAAGGACTGTTACGGACACAAAAATTTAAACTTGTGCTGAATAATTCCAAGAGGTACACAGTCTCTCGATAGA


AGCTAAAGTGGGGGGTGACATTTGACTCAACAAAAAGCCATCTAAATATCAGAACTTTCAAAAGCAGGAACTGGTGC


CTCAATTAATAGTGTGTTTTCTAGCACTTATGATACCTGATCATAGGCAAGATAATGAAAAATTGGGACCTGGGAGT


TATACATGGGAATTTGTTTATCAGTTGGGTGATTAGGAGAGGTGGCCTTAAAGTCCTGTTGTGTTCTAAGAGTCTGT


GATTCTGAGTCTTATTTCCCAACAAGAGAGGTACAGAGCAGAAGATGGGATTGGGAGAAATAGGATAAAGATACCAG


GAAATCCTAAAGGTAAGAAAAGGAAGGCAGACCTGAAGCTAACTCTATACTTCAGGTGCTTGCCTAGAGCCAGCCCT


ACCTACTTAGAGAATGTTGAAGAGCCAGTTAAAACATCTTTAACACGGATGTAAAACAAAACTATCAAAACCTGAAG


ATTTCGAATGTTCTAACCTACTCGTCAGTTGGGCTTTTTTCACAAATACTTCAGTAAATAGGCATAAATTTATTTTT


TAATGATAGAAAATATCTCTTAAAGAACTTATAACTGTGGATAAAAGCACCACCATAAAAATCTTGTGGTGAAATAT


ATATATATATATATATATATATATATATATAAAATTTTAAATATGGTTAGCTAGAATATGACGACAATGTTTATGAA


ACACAGAGACTCTTGACAAGTCCCATGTATACACTATAAAACTTTAAGTTATCCACTATTCACTCACTAAGCTTATA


CTTAATGAGTGTCTGCTGTGTCACTTATTGCGGAAGGCACAGGCGGTATAGCATTGCACAAAACATATGTGGTCTCT


GATGGAGTTTTTCAGTCTAGTGGTGAAAGCAGTGAATGGGTGTACAGATGTTAAATAATTGTACAATTAGTTGCATG


TGTAAACGTCAAAGTTCAGAAGATGACAATTGATCTACGGCAATGTTTCTCAATCTCTGACGTTTTGAGCCAAATAC


ATCTTTGTTGTGGTGGACTGCCCTGTCCACTATAGGATGTTTGGCATCACAACTGACCTCTGCCCATTAGATGCCAA


TAGTACTCTCTTCTTTAATCACAAATTTGTCCCAGACATTTCCAAATGTCCCTTGGGGAGCAAAATCATCCCTAGTT


GAAAATCACTGGTCTAGGGGGAGGTCTTTATGAGGAAGTAACATCTAAGAAAGCTGGTATGTTTACATATAGCTACA


GTCTATTACACATGTATACATATGTAACAAGCCTGCATGTTGTGCACATGTACCCTAGAACTTAAAGTATAATAAAA


AAAATGTAACAAAACAATACAGTATGATAAGTGCTATGGGACCAAAGATGAAAGGGTTCTACTGCACAGTTATGAAC


TCATAGTTAGGCTTTTGGGGTCAAAATTTTGCTGAAGATATTTGCCACCCACGTGACCTTTGGCAGGTGACTTAGCT


TATTCATGCCTCAGTTTTATCCAATGTGAAATGGGGCTGGAAAGTCCCATGTACTTCCTAATAACTTTGCGGAAATA


ATATGTGGTTATATAGGAAAAAAAAAAAAATCCTAGAAGTATGCCTGCTGCGTAGTAAAAGGAAGGAGAAGGATAAA


GAGAAATCTGCATTTTTTCTTCTGTAATGGGGCAGATAGTAAATATTTTAAGTTTTGTGGCCCAAATAGTCTCTGTC


ACATTTACTTGATTCTGCAGTTGTGGCATTGGAAGCAGCTATGGACAATACTTAAATTAGTAGGTGTGCCTGTGCTT


TCAATAAAATTTTATAAATACAAAGTTTGCAAAACAAAGTTGTTTTTTTTTTTTTTGTAGTTTGCTGACACCCTAGT


AAAGAAGCACCATTGTCAACGTTAAAAATTATCAAATTTTTATTTTTCAAAGTTTTCAAATTTGCTTTGCTTGGTCT


AGCTCATGAAATAAGTCAAAAGTAGCAAGACCTCCACCTCTAAAATAATAATAGTAATGATAACCTCAAAAGGAAAG


AAGAAATATTTTTAAAGAAGAAAAATTATTGTTAAATAGGATTATTGTGCAGAGAAAACCTAGGAGACTCAATTTTA


AAATCTGTGAAATAATTTTAAAAATACTTTATGAATAGATACATAATAGCTTTTATTCATATTAATGACTATAAATG


CAAATGGAAATATTTCATTCACACTGATGACAATGTATAAATTAAGGAGGAATAAAAATTGTAGACCCTATAGGTGA


AAAGCATAAAAATATACATAAGAAAAAGCAAAAATTGACTACGTAGGATTGTTTTAGGATTTAAGATTTATTGTCAT


TAAACTTGCAATACCAGCCAAGTTAACATTTGAATTTAATACAGTTATAATCAGAATGCTTTTGATGTGTTTGGGGG


CAATATAATTTCAAAGGAAATAGGCAATGATGTAATTTAAAGTTTATATAGAAGGAAATTGTGTGCGTGTATGTGTG


TGTATAAATTGGAAACAATTTTATTAATAAGCATATTATGGCAGCAACATACACTTCCAGATTTCTACTATACTTTG


AAGTAATTGTGATCAAAACCACAGTGTGCTGGCATAAGGCTAGAGAAATGGGTTAGTGGTTTACAAGTGAGAGTCCA


GGAAAACATCCAAATAAGATTGGATATTTTAGTTCTGTGTGGATAGCCTATTTCACTTAATAAATAGTGTCTCGTAA


TTGACTATTCATGTACCTATAAGTTTAACTATAGACCAAAAAAACGCCCTACTAGATTAAGGAGCTAACTAGAAATA


TAAATTCATATAAACAATAAAGGAAAGTGTAGGACTTTATAAGCTTCATGGGAGACAGATTTTTGGTAAGTCAGGAA


GCCTGGAAGACTTAAAACATAAAATTGGCAGACTGAATTAACTGATAGTTTAAAGCTTCCATAGAGCAAAATAAATC


ATAAACCAAGTTTTAAAATATATAATGGATTTAGAGAAGGTATTTACAAAAATATATGACTAATGGAGGTTAATAAT


AACAATATGTAAGAAGGATATGAAATGGCATTTTACTATAAAGGTCAAACAAATGACCTATAAGCATAATAAATCAT


ATTAATCTCCACTAGTAATAACTACACACATCTACATAATATAGATGTTACGCCTGCATTTGATTTACTTTATCTGT


CTTTTGGCAGAACTATTTGTCACCAGATAAAAAATTCTATATCATTACCAGAAAGGTATATTATTATAATGTTTATT


ATGTTGCAGTTGTAAAAGAAATAACAGCTTTTCAATTGTTTACAAATCCTATAGAACATTTACTGAAATACATTTAC


ATTTTGTGGCAAACTTGGATTTAAATACCGTGTTCGTGCTTTGTTTTATGCCGTTTTCCCATCTTTTCTCCAGGAAT


TTGATTGTGCTTCATTGAAAGCTAAAAAGAAAAAAAAAATAATTCTGGTTTTGGTTTAAAAAATTAGGTTAGGGGTT


AAAAAGTTGTACGTTGTCTTCTGTAAAAATAAAAAACAAGTTTTCTTTGTTTCTTGGAGGCTTTATATTAAATGGAT


TTTTAATTCATAGACAGCATATTGTGATGAAATTTCCCCATGAGCTTCACATTTTGTTTCAATAGCAGAAACTAACT


TGGTTGCAGTTACTGCCCTTCTGAGAACAGTGTTCTGGAATAATTTTGACATACATATGTATCTCTTTTTAAAACAT


GTGTTAATCTTTTCATAAAGAAAGTTTTCCCAGCTGTGTCACCTGTGACTCCAACTTTCTGGGGGGACAGGGATATG


AGATGTTGGAAGGGAATGGCTTGAAGAAATAAAGTGCAAAAGACGTAATGCTTTCCTGTGGTAGAAATGTATTCAGT


GACCCTGAATGACCTTCCTACTCTTGTCCCTTCATTTTTCCCACAAGTATGGTCTGGGCAATTATAAAAATTGACAT


TTGCAGTGGGCTCTTCTGTAAAAGATGCTCAATCAGAAATGATTTATTTTAGAAAAAGAGATGATATAAACATATAT


ATCCCCTGTCTCGGAAGTGTGAAGGTTGAAAAGCAAGGAGATGATCTTCAAAGTGTCTAAAATATTGATTTGTAACA


TCGTTTTATGAAAGTGCTTCAGATTATTTTTTTTCTTGGATGGCCCCTTATGCTTTGGTCAGTTGATGCTAAAATCT


GAACTTCTTTATTTTAAAAAAAACTTTTAATTTTGAAAAAGGAAGTTCACGGTGCTGTCTAATTCTTTTTAGATAGT


CATTAATGTAAATGTAAGAGTCATTCTGAGAACCACATCTGCTGATATGTTCCGTTAAATTACAAGTTCTATGTGTA


TTTGCTTTGCTTTCATACAATGAATCTTCTTTACTCTCTTCCCCACCTGCCAGAAATTGCCCCACTCAACGTTCATA


AAAGGTCCATTTTCAATCGCTATATTTATTTCAGAAGCAGAGATATCATATATTCAAATTTTAGTTACTTTCCAATA


TCAAGCTAATAACTCACACAAATAAATCAAACTACAGCAAAACAGCAATCTAGCATTCAACAAAACCTCCCCAATGC


ACATATTTCAAGCTGTAGATATGTATCATCCACCATGCTGAAATAATGTACATGTTCAAATCAAATGGAAAACTAGA


ATCAAAATTGTTGATTACTTCTTATCAGGGCATTTTATTATATTTAAGAAAAATACAAATTAAATCATTTTCAGGAA


GCAATCCTTCTGGCTAAGATTTTTTTAGCATAATGCTTAAAGTTAATTGTTGATCTTTATCTATAAATTCAAAGGTG


GACTAAAAATGCAGAATCAATCAGGTAGTCCATTTTGCATCAGGTGAAATATATAAAGCATAAAACAGCGAGTTACA


TTTCCTAACAAAATTGAATTACAGTGAGTAAAAGTGACAGGACAAATGCATTAAGAAAAGATGGACTGAAATGGATA


GAGTAGAATATATGCATCTATAAAACACAGTCATATATAATACACTCATTTTTTTTCTTACGAGTGTGAGATTAATG


GAAGAAAACAACAATAATAACAAAACCAGTGTGATGTGTCAGATTTCACCTTTTAATTAAAAAATTATTCACTTCAG


AGGGGAATTTTCTTTCTTGGGTTAGCTCAATCATGTCAGATCTTGTTCATTTAAAAGGTCAGTTTACTTGCCTTCTG


AGGTTTTTGTTTGGGAAAAAGAAAAGAAAATAGATTTTCATTGGTATCCTGGGTAGAATTAATTGTTTATCATTCAT


TTTTAAGATCTCCGAGAGGCAGAAAAAGGGGAACTGTGCAACCCTTTTGTCCTTCTGGATCTCAAAATGAAGGGATA


CATTCTGCTACATGAAATGTGGAATTAAGACCATGATGCAACATGATAAACAACACAAATTTGGGGGTGTCTCTGTG


CTATACATTATTGAATTTTTCCATGCTATACACTTTTTGGATGTGTCTGTGCTATTTATTCAGTTTTTTTAAATAAA


AGTTTTTGTAGACTAAATTGCCCTCTCTACTTTGCATCGTTTTTGAACAAAGGATTTTCAAGACTGATAAGCTCAAA


TGTATCATTTATTGTATTCAAGTAGCATTCAATTTTTCTTTAGAAGTATAATTTGTAGATATTTTAACACAGAAAAC


TTGCAACACTGCTCATGATAGGCACTTATTATATATTTTTTGAAAGACTATATGGATAATGATTCTAACTTTGACTT


TTCCTGTTTTGCCTTCACTTTAGAATTAAGCAGAGAATCAAATCCATATTCCTGGGGGCGATGCTTGGACAACAGTA


TCTCTTTAAAGATCTTTGTGTGAGTCGAAGGTGCAGCCAGACTGGGAGTTATTGTGAAGAAACAGATTCAGGAAGGT


TGAGAAACTTGCCTAAGGCTAATCAGATAGTTACTGGCAATGTTGTTTCTAAATCACTGTTTGGCTCCCTCATTCAA


TGAATCTACACTATGTGGGACTGCCTCTTGCTCCTGACATCTTTTGCTGCTGAAATAAATGAACTCAAAGCCTAGAA


GGTAGAAAAGAGGGAGTTCAGAATTATATTCAGGCACAAATACCAATAAGGCTATTGCCCCCAGAACTGCAACTTCT


CTTGGTTTAACAGATAACTATTTAGCTGTGAGGTACAACTGAGGAAGTGGACACACAAGTTATCAGGAGATTCTGAT


GTGCCAGTTTATATTTCTTGTCACAGGTAATGATTCGAAATTTCTTAAAACAGCTGTCCTCACAGTGGAGTAACCTG


GGAGTACATGAAGGCATTCCAAGGAGTAGGCACAGATAGTTTTAAGGGAATTTATTTCTAGATCTTCTACTTTATTT


TGTACTCTTCCTGAAAACTGAATTGCCTGAAAAAAAAAAAAAAAAAAAAAAGACATCTGTAGTCAAGACCTCAGGCT


GTTTCTCCTTTCTAACCACTTGCCTTTTCTAACCACTTCTCCCAATTTAAGAAAAAAAGCCTTATATTTCATCCAAC


TCTGATCTTACTAAGGCTTCAAACAAAAGAAGCATGAATGACTTTCATGACAGGGCAACATAGCTTTTTGCAAGAAG


AGTGGTTGCTAACTCTTTGCTTTCAACTGAACCCGAAGAGAAGACCTGATAAGTTGTCAGCCGATAGATCATTAAAA


ATACGTTTTGGTAAGCAATCATCATGTACTTTTAGCATATGCCATAGCAGGAGCACAAATGATTAAGCAATGCTACT


ATAATACAATTCCTTCCGTTTCTTTCTACTCACCTATTTGAATAAGATTTTTCATCATTTACATCTATACAGACAAA


AATTAGGGATAGAATTGATGCTGAAGCCTTTCCAATTGTAGAATTAATTTATATTCTTCTGAAGGTGTATAAATTGT


TAAATACCCATCCATCTTATTAAGAGATGTATTTTCAATAAAATTTTATTTTTATGTTTATCAAATTTTATAATATA


CATATATTGTTTTGGTCAATTGCACGTTAATAATTGTAACAATACCTCAATTGAAAAGGTTTGTTTTTTACATTTAG


GACTTACAGTAACAGAAAAAAAACACTCATTGTGTATACATACTGTTTAAGAAAAGTATACTAGGTGATCAATAAGA


TTTTTTCAGGCATAAACATATATCTTAGTTTTAAGATATCGATATTTACAATGTCCCTCAAATTATATTATTTTCAG


TCATTTAAGAATGAAAAGTACATTTCGAATGCGGATTTTAAATCTGCAAGGGTTGACTCATTTTTCAAGAGTCTTTT


TAGGGGATACAGAAGCAAGAATGTTTGGAGTTCCCTGATCAGTATCTTTAAGAGAAGGTATTTGTTGGTAGTTCCTA


GCAAATTCCAACAGCCTGATGCTACTTAAAAGATAATAGTAATTATTTTAAATAATGCTTCTGATAAAAAACATTCA


TGCACACTCAGTTTAAAAAGATATTTAAACATTTGTAGTTGTAGTTTGGGAACTCATGATACAAGTACAGTCTGTAA


ATGAAGCTCTTAGTTTGCAAATATCAGAGATAAGCTATTAAAATGCAGAAATTGAAATTGCCCTGATATATGCATAA


ATTAGTGTCATCTCCATCTTGTCAGTTAGAGTATTTTTTAGATTCTCTCTATGTATACATACATATATATATATATA


TATTTATATATATATATATATTTGTGTAGCTGTGCATGTGTGTATTTGGACTAATGGGTCAAAGGACAGTACTAACC


CAATTCAATAATTAAAGAAAACATAATTTTGAGAATTAGCTTTATGGTAATTGTTTGACTTAAATGAGTAGATCAGA


GAAGAATAAGGGCTTTCCCTTATTTAAACAAGCTTCATTTTTTTATCCAAACATTTACTTAGCTGATTAAGCTTCAC


TTGTTTATTTTCTTCAAAGCATTCATTCAGGTGGGTACTGAGTAAACTGAAATATCACACCAGGGAACTTCAACACC


ATCCAAGTCTTAAAGGCTTCACTTGTTCACAGTTGGCATTTAGTGAATGTCTAGGCTACTGATAATATTGTGAGTAA


GTTGGCAGGGATCATAAGAAATGATAAAATACAGTTCTTGAAAATGTTATGGTTTGAGGAAAAGATCTATGTTTGGA


ATTAGACTGACTTGGATTCAAACTCTGGCTGTACCTTTGGGACAAGGTGTTCAGAAACTCTAGCCTATGTTTTTTTT


CTGCAAAATGATCCTCTTTTCCAGGATTCCTGTAGAGATTCAAAGATATGTGAATGTTTAGAAAAAGAATAGACTTT


TGATCATTGTTAATTCCCTTACTTTCCCCAATTAGACTTGTAAGACTGGGAAGAAAGCTACACAAAAGATTGAACAA


ATTATAGCTGACAGACCATAGCAAAAGATACAGGGCAAAACTTAAAGGGGAAAACTACACATTAAATTATTTTAAAC


CATTAAATAGCACTAACTTTTGTCAGATATTACAACCAAACACCACTCAAATTAAAGTAAACTGAATAAAATGCCTG


TTTTTTTCTGTTTACTGATGTTTTCATTTGCTTCATTCATTTATTGGAAGATATAAAATGTGTTAGACACTGTTAGG


TGCTGAGTGTATAAAAAAATCTTATTAATACAATTTAAACACGCACACACATATATATGGTTATAACAATTGATGCC


ATGTATGTACTGTTTATATGCCTATACATTATTCCACAGACCTGGGGGGAGGGGGATGTAGAGTCTTACCAGAACCA


TAGGAATCTTCTCACATCAACATTTCCTTTTGAAGTTTGTTCATGAGGCACCATCCAGATAATACTACCATCTGCAA


TGTGGCTTGAGAAGATGTTAGATTTTTTTATTACACATAATAAGGCTGTAAAGTATTTCTGTATTTAGGTAGAGGTA


TGTAATACAATATGTATATAAAATTACATATCCAATAAAATCTGGTGTTAAATAAGGACTAGCTTCTATGATAATAT


AGTCTAAAGGCTTTTCATTTGGTGTTATAGAAATTATGTGAAATATGTTTCCTGGAGTAGAATTATTCGCATTTCAG


CTCTCTGACAGTGGAAGAAAAGCTAGAGGGAGAGGTGAACAAGAGAGGGAGCATAATGGACAAAGCTTTGCTGGAAG


CCAAACCACCACTTCATATGTCAAATCTGACAGGCCTCCCATTTTAGGTGTGCTGTCATTGAAGCTTTCAGCTGCAC


CTTGCCTGTGGCTAGGCTATTTTCAAAGATTAAAATGCGAAACTGGAAATTAAATGCAACTTAATTCCCAATTTAAA


TTTCCATTATTTTTGAAAAGTAAAAGATTAAAAGAAATGTATAATTGCAATTCTGGTGGAAGAGGTAATTATAGGAA


AGGTGGGATGTATTTCAAGTGGGGGATATAGCTTACTGCAGCAGAGAGGAATCTAAGCTATCATTCTTTTGAAATTG


GTCTGGAAATATGTTTTCACATGGAAAATATACTATATTTTTAGGAATTTCCTTGTCATATTACTGTATCCTTTTCT


GTTAGAATATAAATTCTGAATTCCCTATTCCACTGTAGATCTGCCTCCGATTATATTAGCTCTTCTGAAGTTATCAA


AAAATAATGAGATATACAATATTCCATATATGTCAAAGCAATTATTTTTAGGTTAAGTAATAAACCAATGACCTTTA


ACCCGGTAATATTCTGGGTTGTTCATAAAAAAACTATATTCAGGTAATAATGTCTTTCCACTTAAGCAACTGAAAAA


ATACACAATACTTAACATTTGGTTAATTAAATACCTACTCCAGACAAAAGGATTTTCTGTTTTCAAGTTATCTTAGC


AAGCTGAGCAGGAAGCAATGATATATCCAATCAGAATATCCATGGAAGCTCTGCTACAGTTTCAAAAAGTTCTCATC


AGGCAGCTTTTAAAATGCCTACTCTGAAAATGGTCCAGGTTAAAGAACAACAGCTTCCTCGTCAGATAGCAGTATTG


CTTGGCCATGTTTCTTCCTAGCACAAAAAAGTACCTGCTCTTCTCTGAGTACCTACATTCTAAGGACTATGGCTTAC


ATAAAACAGCATGGGTTGGGGCAATTTCCAGCACACTGCTCACTCTCGAAAACGTATGATGCAGGTGAGAGTAATGT


TTTTGTTTGAATCTGCTTTCACTCGTGGAAGATGAAACTACTTGCAAAGATCTGTACTTTAGCTATTATGAGTAACA


AAAGACTCCTAAAATATTGCACACATTGTGGGGATGGAGAACCATCATCCTGGGATTTGATGGATCCTATGGTTTGG


CTTTGTGTCCCCACCCAAATCTCATTTTGAATTGTAATCCCCACAATCCCCACATGTCAAGGGAGAGAGACCAGGTG


GAGGTAACTGAATCATGGGAGCAATTTCTCCCATGCTGTTCTCCTGATAGTGAGTGAGTTCTCACAAGATCTGATTG


TTTTATAAGGGGCTCTTCCTGCTTCACTGGGCACTTCTTCCTGCCACCTGTGAAGAAGGTGGCTTGCTCCTTCTCAC


CTTATGCCACGATGGTAAGTTTCCTGAGGCCTCCCCAGCCATGCTGAACTGTGTGTCAATTAAACCTCTTTCTTTTA


TAAATTACCCAGTCTCAGGCAGTTCTTTATAGCAGTATGAAAATGGACTAATAGAGACGTGTCTCTCAGAAGTCACA


GTGATGCTTGAACGGATCCAGAGCTCCTTCTTCAGGAAGGTCCCAACTCATTCTGAAGGGTCTCTCCAAGCCCACCT


CTCTCTGTAAATGGGAAAGGTTTTACTTTGAGCACTAAAACCTGCCAGAATTCTCAATTTTCCTAACAGTGTGTTAA


TAAACACCTACTCATTTAGTATCCAAACCAGGTCTGTATTTCTCAATTAGAGCTCACCAGGCTTTCATCATAAAGTA


GAGCTTCAAATTGTCTGCAATCCCACTCCTATCAAAAACCTAGAAGGAGGTAATATTTCAGAGTAATACTATAACCA


GATGACCACATCTAAGAAACTGCTGACCCTACGATGTAACCTTCTGTCCATTTTTCCCTTTGGAAAGTCTAGGATCT


TTTCTTATACCAGCAAGTTACAAGCCTGGACTACACTAACTTGCTTTCCGCAGAAGAAAACACCATGAGTTCTGTTT


TCATATTAAGCACTTAGTCTCCATCAGACATCAATCGAGAAAAAATCATTAAAAATCACATTTTATATTTGATGTAT


ATTTCTCAATAATCCTATGTATTAGTTCATTTTCCTACTGCTATGAAGAAATACCCAAGACTGGGTAATTTATAAGT


AAAAAGAGGCTTAATGGACTCACAGTCTCACATGACTAGGGAGGCCTCACAATCATGGTGGAAGGTGAAGGGGTAGC


AAAGGCATGGCTTACATGGTGGCAGGCAAGAGCGTGTGCAGGAAAATTGCCCTTTATAAAACCATCAGATCTCCTGA


GACTTATTCACTGCCATAAGGACAGCACAAGTATTTAGCTCCCTCAGCACAGAACCATCCCCGTGATTCAATTACCT


CCCACCAGGTCACTCCCATGACACATGGGGATTATGGGAGCTACAATTCAAGATGAGATTTGGATGGGGACACAGCC


AAACCATATCATCCTATTTGGATGATCAATATTATCAAGGTATGCTCCCCTGAGGGGGCGTCCTTTTTACCATTTAA


CTCCAGGACAAAAGTTTATTTCTTTGTAAGGACAGTGTTTATTTCTTATGGTCCTATTTTCTCCTAAGATCCAGACA


CCAAAATGGCCATCTATCATTGACTTAACTCCTGAATTTTGCTTAGAGTAACAGATTTAGTGAATCTAAATATTTTC


TGGCTGTGGAATGTTAATTTATACATGTTCAAGTTACCTTTGATTCATGTGACAGTTTGTGCCAAAACACACTCATT


ATCAGAACTCAGATCATTATGTTGGCTCTTGTTTTCGTTACTAAAGGAAGAAAAACAGTTTCTCAAAAAGAAAATTC


TGATACCTAGGAAGACCATTATACCTCACTCTTTTCTTTATCTCATCACCACATCCAATATTATAAAAGAACTTACA


AAGTAAAAAGAAAGGTGTTCTGTAGATGTAGCGCCTGGCTTGTATGGTAGCTTAAATGAACACAGCTAAAAATATTT


TATGGCTAGTGTCCAAAACAGTCTGGCACCAGACAAAATAAGAATATTTAAAATTATATTTTAGAGTTACTTTAAGA


GGAAGGGAGAGAGAGATGTAGGCAGGAGGAGGAGGAGCAGGAGGAGAGGGAGAGAGAGAGAGAGAGAGAGAGAGAGA


GAGAGAGAGAGAGAATCTGGGGTTTCTATGGAAGGGCTAAGAATATGTAGAAAACAGTTTACAAAGAAATATGGTCC


AAGAATCGTGTGTACACACACACACACACACACACACACACACACACCCCCTGGAATATTTTTCAGCCTTAAAAAGA


AGAAGATCTGTCATTTGTCCCAACATGGATGGACCTGGAGGACCTTATGCTAAATGAAATAAGCCAGACCAAGAAAG


AAAAATATTGTATGATCTCACTTATATATGGAATCTTTTTTTAAAAAAGGTCAAATATATACAGATAGTGAATTAAA


CAGTGGTTACCAGGGTCAGGGTAGTTGTGAGGAAATGGGGCAATGTAGGTCATAGGATACAAATGATTAAAATATAT


TAATATATTAAAAGATATAATATACATCATGAGGACTACAGTTAATAATAGTGTGTATTCAAGATTTTTGATAAATG


AATAGATTATAGCTGTTCTTGCCACAGAGTGAAAAATGGGTAACTGTGAAATGATAGATATGATAATGTTCTCCACA


ATGGTAACTATTTTACACTATATATATAAATATCTATGCATCTTACACCATTATGTGGTATCCCTTAAATATATACA


ATAAAATTTATTTTACAAACACATATTAGGAATGCATATTCTGATTTTTAACAATAGTTAACCTCATTAATATATTT


CACACTATCATTTCTAGTGTACATGAAAAGTAGTTTATTGACATTAGTTGTAAAAAAAAAAAAAATGGTCTTGAGAC


TTTTGGGTCAGAGAATGTTCTGGCCATAAGGTAGGTTTCTGCTTGCCTACTAGATATCTTAACTTCGATTTCCTGAA


CATCCCATCACTTCAGAATCTCTCAATCCTTTCTAACATCCGCAACATTGTTTTTCTTTCTGCATTTCTTATATTGA


CTGATGGATTTATAATTCACTTTCTCTGAAAAACCCTGCAGTTATCATATATCCCTATCCATTCTGGCTCTTTATTG


CCCAAATCTCTACCAAAATCCTGTCAGCACAGCCTCTGAAATATTTCTCAAAGCATTTATAATCTGGCTCTCATCAA


CATTTTCAACACTCTGTTTTATCATTCCACTATTTTACATCATTTCATTTTCATTTTTACCACAATCACTCATCCAA


CAAATAAGTATTTAGCTCCCTCAGTAATTAGTATTATTATTATTAATTATAACTAGATGCTGAGCATACAGAAGTGA


ACATGACAGACATAATCCCAGCAGGGATGTCAGACTTTATGCAAGTAATCAACCATGATGAATCTCATGAGATTCTG


AGAGAGAGAGAGAGAGATTGAGAGAGAGAGAGAAAGGGGAACCACTGGTGTCCGAGTTAGAAATTTGAATTAGTATC


TGGGTCACCAAAAGCTTCTGTGAAGAAGTGATATAGACTTGGCCACACAAAACTACCGTGAAGGTGGTGGAAATTTT


TCTATGCAGAGTACCACATTTAAAGAGCTAAGCCTGAGAGTGTCAGAGATAAAGGAACAGAAAGAATGTGACAGCAG


ATTATGTTTGGAAGAAAGATGTTCAAGAGACCAAGCTAAAGAGGAGATGGGGCTAGAACCTGGAGGGTCCTTCGGGT


CCTGTTGGGAGTTTTTTCTCTGCCCAGAAGGGCTTTGTCACGTGGTTGTCAGGAAAGAGTCATGATTAGAGCTTTGA


TTCAGAGACTTCTTTCGCTGAAGTGTGGAGAATGGTTCAGAGAGAAGCAAATCTGAATGGACAAAAGAGGTTATTAT


TGTAATCTTGGCAAGAAGCGATGGTGGTCTTGACTAAAATAGTTCTAGTGAGAATGTGACAACAAACCTGAGAAAAA


TACAGGAGACGTAATTGACGGGGGTTAGTGTTAAGTTGAACGATTGCAGAGTTGAATTTGAGGAAAGTGTCATATAT


CATTCCCAGTTTCTGATGTCATACACCTCTGGAGATAACACTGCCATTTCTTTTGAAATGGGAAAATAATAAGTGAT


CAGTAAGTACGTATTGGATAAAATAATGAATGGTTAAATGCATAAGGGGAGAGGAAAAGAGTTGCAGAGAAAGAGAG


TAAACGTATTTTGGATGTGTTAATTTTGAGATACCTTTGAAAAATCCAAGTGAGGGGTTGGGTAGTCAGAGAAATGA


ATGTGGATGTCAGGACGAAAGGTGACCGTGATGAACTGTATGTCTTCCTCTAAGCACGTTATACAGCTTCATGTCAC


AAGTGACTCACTTCATGTCACAAGTGACTCACAAGGTCACTTGTGACAAGCATTTGCCTGGTGCTTCATCCCTAACC


TCCCTTTCTATACTCAGCTAAAATGTCACCTACAATACTTCTTCCTTGACTCCACCGTCCCCACTTTACTGATATGA


ATACATTTTAATAAAATGATATAATAATGCTTAGTTTGTAAACCTAATGTTCCTCAAGTGGTATAATTATCTGATTT


GTATGTGATCATCAACCCAACCATATTAGGAGCACCTTGAAGGTAGAAGATTTAGGTTCATGCTTAACACCACATCT


GGACCACTGTGGATTTAACTTTCTACAATGATTGTATTCATTAATATATTGGGTGCCCACTATATTCCAAGTAATAT


CCTGCACACTACGTACAAGGAAGCATAGGTCCCGTGTGCTCATGAAACTGTAATTTTAGTAAGCAGGGATAGGATAC


AAACTGAGAAAGGAAAACAATTTAGAAAGTGGGAAATATTATGCACAGAATTAATAAAAAAGAGAAAAATCTTGAAA


AAGTCTTCAATACCTCACTTGGAAGGTGATTTTGAAGAAGAACTGATGGACAAACTAGAGTCAGCCATGTAATGATG


TAGGGGCAAAGCATTCCGGGCACAAGGGACAGCTTATGCAAAGACCTTAAAAATGAACTAGCTTTGTATGTTGGAGA


AGGATAAAGAGAACTAAGGTATCTATAAGGTAATTAGGAAGAGGATGAGTTATTTAGTCCCTTAGTCTTTGAAGCAC


ATTATCTCATACTTCAATTGAGTTTATTCTTAGTGTCATTCTTCTGGATGCAATATTTGAGATAAATGTCTTAATGA


ACGTTCACCTCCCTCCGTAGTAATGCCTGAGTGTCACAAAAACTTTTTTTGTTTACATACGTAGCCATCTAATGGAA


ACATAAAATAGGAATCAAAAGTTGAGTTTCATGTACAAAAGGTAAGGACTGTACATGTGGTCATAACAACTTCAAAA


GCACCTGAAGGTAACCTTTAAGGAAGATACAAAGGCTAGGAAATATCTAGGATCCATGAAGACAGACTTACTTAAGG


TCATAGTGTGTCCAGAGTTGGTTCCCGCCGGTGGGTTCGTGGTCTCGCTGACTTCAAGAACGAAGCCACGGACCTCT


GCGGTGACTGTTACAGCTCTTAAAGGTGGCACGAACCCAAACAGCGAGCAGCAGCAAGATTTATTGTGAAGAGCAAA


AGAACAAAGCTTCCACAACGTGGAAGGGGACCCAAGCAGGTTGCCGCTGCTGGCTTGGGTGGCCAGCTTTTATTCCC


TTACTGTCCCCTCCCATGTTCCATTTCTGTCCTATCAGAGTGCCCTTTTTTCAATCCTCCCCACGATTGGCTACTTT


TAGAATCCTACTGATTGGTGCATTTTACAGAGCGCTGATTGGTGCGTTTTACAATCCTCTTGTAAGACGGGAAGGTT


CCTGATTGGTGCGTTTTACAATCCTCTTGTAAGACAGAAAAGTTCCCCAAGTCCCCACTCGACCCAGAAAGTCCAGC


TGGCCTCACCTCTCAATAGCATTAAGAATATAGTTTCACGAGCATATATGAATCAAAACTTACATTTGCCAATTTTA


TTTGCTTGTTTATGTGTTTCCAACATGTCTTGTCTTAGGGCCAAATGTTTCCCTAGAGAATAACTATTCCAACTATC


TTAGTTGCTGTATTTTTATGCAACCTTCAACTCTCCATACTAAAATGTCTCCAGAATAGAAAATAAATCTTTTCAAA


GTTTCAAAAGAGGCTCTCTATATATTCCCCTTAAAAGTACCAGGCAGACATATTTCTAGGTTTCTAACATTGCGTGT


TGCCAGGAAGTATATCCAAACCATCACAAGTTATTCATGTAACCAAGCACACTTATTGGAGTGCTTCTGCTTCTGTT


CTTGCTTGAAATTGGAAGCTCCTTCCAGGAAAAAAAAAAAATATCTATAGAAGGGGAAAAAAGTAATTTTACTTTGA


AAATAAAATATACGTGAGCAATAGTTTTATTCTGTTTTTAATTTACCATAGCTTCCAAAGACAACATTGTTTTATAG


TAGGGGTTAGCAAGTGTTTTCTGTAATGTAAACGTAAAGGGCCAGAGAGTAAATATTTTAGGCTTTGTTTTCTATAC


TCTGTTGCAACTATTCAACTCTGCTGTTAGAATGTTGAAGCAGTCATAGACAATAGAGAAATGAAGATGTGTCATTG


TGATCCAATAAAACTTTATTTACAAAAATGGCAATGGGCTAGTTACGGCTTGAGGGCTGCAGTTTGCAGACTCTCAC


TTCAGAGCTAACAGTTGTTGTCAGGAGTCACTTGTTTTTGGAAACCTACAATGAGGTACTATAACACCAAAAAGAGT


TATCCCTTCCTTTTTCTCTCTCACTTTTTGAATTATGAGAAGAATTAGAAATGTAGTTAATGATAATGTCCAACCAG


TGTAATTATACTTGTTAGAAACACAGCTGGAAGCCTGTTGTCCAGTCTTATTTCTCCTCTGTGATCCTCATTTTCAG


AGGTTGAAGTCATAAGTTTGCCATGTCTACTTTCTGACAGGGGAATTATAATAATGTGGAGTCACCTTTTGTTTGTG


ACTTTGACAATGCTTCATTGACTTACTCACCAATTTTCTAATTTTTATGAAGACTTTTTGCCGAAATGTAGACTCAG


TCTTCTCTCTTGTCTACTCTTTCTATAACAATTAACAATGAACTTATTTACCTTTTTAACATCTTTTTAAAAATTTT


CTATACACCTTGAAAATGTGAATACAAAGTAATGCTGCATCATGTATATTGCCTTATTCACACATAGCCTCTTATGG


TATATCATATAAAAATGGAACAATACAGCAACAGGTTGAATGAACAGTAATCAGGTAACAGGAAAATGAGATGTCTT


TAATATTTCACTTAAAAACTCAATTTCCTAAAGCATACATATAAATATTTGGAAGTATAGTTAGAAGAAAAATATCT


TTAAAATATTTTAATTGATTAGTCTTATTTATAAGATAATTTTTAGGAGGCTGGTTGCGGTGGCTCACACCTGTAAT


CCCAGCACTTTGGGAGGCCGAGGTGGGCAGATCATGAGGTCAGGAAATCGAGACCATCCTGGCTAACACGGTGAAAC


TCCGTCTCTACTAAAAATACAAAAATTAGCCGTGCATGGCAGCGCATGCCTGTAATCCCAGCTACTCGGGAGGCTGA


GGCAGGAGAATCACTTGAACCTGGGAGGCGGAGGTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAGCCTGGTGA


CAGAGCTAGACTCCGTCTCAATAATAATCATAATCATAATAATAATTTTTAGGAAGCATCAGAAATATATAAGAAAA


AGATTATTTTCTTAATTGCTTTACTAAAAACACCTCTATGATTTTTCAGTAAAACTTGATTCTTATGTCATGTGTGA


GTGTGATCTGCCTCTCTTGGGATACTACTGTACTCATGAGGAGTGATTTTTTTCTCCAACGACCTCTTTGTCACGTC


AACAGGTCACAGGAATAGTGTACCCTAAAAAGCCACCTGCCACATGCTGCTGAAAATGTAAAAGTACACACATACAC


ACACACACACACACACACACACACACACACACACACCAAAATCAGGTATCACAAGCTGAAAATAAAATTGAGTCCAA


TTTTTTTTTAATTGAGCAGTTAATGTCCTTAAAACAAAATCCTATACTGCAACAAATACTTAGCCAGATCATTCTGA


TACCTCCAAACTGTGGTGTATTCCAAGATACCTCTATGATCTTTGATTTGATCCACAGCTTTTCAGTTATCATGCAA


ATACCTTCAAGTTTTATCTCATTTCTCAGTGCAAACTCATTAAAAATTTTCAGCTGAATTCAATTTTATAAACATGT


TGTGAATGTCCTCTTTATATAAGCAAGGTTGTAAGGAACTGGCCACATAAACAGAAAATTGAATAACATATGGTTTC


TGGCCTTAGTGATCTCATGTGTGAGTTAGGCATATGGGCAAAATCAGAACACTATAGAGTATAAGTCTAAAATGGTA


GTATTTTATAATAGAGGATGAAGAGGGTGCTGTGGGATCATAGGTGACAGATATAACTCCCGTTGTGGGACTTGAGA


AAGGCTTCACAGTCTGGAAACATTTAGTTGCTATTGAACACAAAATAAGACTCACTGTTGAGAGAAGGGAGAGGGAG


GGCATTTCAATCAAATTAAGATTCTGTGGCATATTCGGAAACTGATGTTTTTAAAAAGAGTAATGTTTATTACATTC


CTCTACATAAATTATATTTCTATGTAATATGAATGACAAATATTTAACACAAAATGCCTTATAACATTTGAATGAAA


TCCATCATATGACCTGTTATCTATTTCCATTTCCTTTTTGCTCATATCATTATGAACAATGACCTGATAAATTTTTT


ATAAGACTTTGCTGAATTAGTAAAGGATTATTAAGTTTAGAATGAACAAAGCTGACCAATCATTCAGGCAAATTTGA


CCGTTTTGTTGTCGCTTTTCTTATTTCTGAAACCATACAATTCCCTGAAATGAATAAGTACATATTTGATAACTTCC


TAAATTAAGGCTCAAAACACTGGTAATCTACTGGGCTTTCATTTGTTCCTTCTATTTGTCTAATCCTATCTATATTT


CTTTATATGAGCTATGAAAATATTAGATTTATTAAGTTGTCCTTTATCTTAATAGAGAAGAATGTTTTTCTATGACA


TTAAGAGGAATTTGATTTTTTTCTTTAATGATCTACTTTTAATTTTGGTAGAGTAGCATTGATAAGATCAATATTAC


ACATTGTTAAGTATGCATTACATGTTGATAAGATAAATATTACACTTAAAATATGTTTATCAAATGTATGAATGATA


AAAACGAATTCTGAAATGTATGGGAAAGATCTTGAATAAAGGTCTATGTACATTTCAAGGATGTCTACATATGCAAA


TTATCATAATATAATAACTATTGAATATGATTATCTTCACATACTTTCTTTATTTTTCATCTCTTAGATGAAATTGG


GTATTGTTTTCTTATAGCTGGAACAAAGCATTACAGAGAATTCTTAGTGTGATTTCATTGAAACTCACTGTTATATG


AGTTCAACAAAGTTTAAATTAGTCCATGACTTAATCATCCTTTATAAATCCTATCACTAGTATTCGGTAAGGACAAA


GTCAATTAAAAAATTAGCAACAGAAGCATTAAAAGAAGGATTAATAAATACAAAATAAGGGATGTGATATCTTTACG


TATTGCTGAGATGTTAGTGCTAAGGAAAAACTTCCCTGTTCATAATGTGAGGTGGGAAAAAGAAGAACTATTATTGT


ATATTTCTCCTCTCTAAAACTGCCTATCTGACTGTGTTTTTCTGTGTCAGCCGTATTAACAGATGTTTAATTTTACT


CACTTTAGTATATAAGGCATCATAATGTATGAACTATTTCAAAGGCCCTATGATGGCTAATTAAATAAAAATATATT


AAATATTAGCTGGACAAAATAAAATATGTATTAATTTTGGAAAAAGTAGATCAAGGTTTTGCAGATCTTTTCATATC


AATATATTCATTTGCTGAATAAGCTTTTATTGTTTACCAATATTACTAGTTTTATAGAGATGTAGATATCACCACAG


TATGACTAATTTTATAGGGACACAGATAGATAGATGTTATTTTATTCCAATCTTATTTTTACATATAACAGGTATAA


ATATGCGCTTGAAAGGAGTATATCACTTAGGAGTCAGTCAGAAAAGTAAAGATCTTCTAGTCTAATACAGTGGTTCT


CAGCCAGGGGTGATTCTGCTGCACGCTGAGGGATAAATTGGCAATTTCTGGAGACATTTTTGGTTGTGACAATTGCA


GGAGTGTTACTGGTATTCATTTGGTAGAGACAGAGATATTGGTAGACACTGTACAGGACACAGGAAAGTCTCTTACA


ACAAAGAATTATTCTGTCCAAAATGTCAGTTGTGGTGAGGTTGGGAAACACTGGTCTGGAAGAAGGAATTTACTATG


AGGAACTAGTTACGAAAGTATAGAGACATTTAACAAGCTGAACAAAGGATAGTGAGATGGCTCAGAGATTAGCAACT


GTGGCATGAAGCCACTACTACGTTTAGGTAAAAATAAGCTACCATTTATTCTTATAGTAATAATAATAATAATTATT


ATTATTATTATTTGAGATGGAGTTTCGCTCTGTTGCCCGGGTTGGAGTACAATGGTACAATCTCGACTCACTTCAAC


CTCTGCCTCCCAGATTCAAGCGATTCTCCTGCCTCAGCCTCCTGAATAGCTGGGATTACAGGTGTGCACCACCCCTC


CCAGTTAATTTTTTGTATTTTTGGTAGAAACGGGGTTTCACCATGTTGGTCAGGCTGGTCTCGAACTCCTGACCTCA


GATGATCCATCCACCTCAGCCTCCCAAAGTGCTGGGATTACAGGCATGAGCCACCACACCTGGCCCACTCTTTCTTT


TTTAATTATTGAGAAATATAAAAATATGTCAAAAGTAACAGGTGTGGTGGAGTTACAGCATGCACATAATGGGATAC


AGCCCATTATCTAATCTCAGATGGAAACTAGAAAAAAAAGAGAAGATCTTTGCTAAAGCACAGATTATGTGGAAAAT


CATTTAGAAAAATAGCTTATCACAACATTAAAATTAAATCCTTTAGCTGATCATTTTTCCTTGCTATTTTTTCTTTT


AAAATTGAGAAGACAGTGAGTTTTTTTTCTTTATTGTCATTATCTTGATGTCAAAAAATAATATGCACATTATAAGT


GGGAAAAAAGATAAGTCGAAATGAAATGAAACAATGCGAGGAAAAAAATGTCACAACACTCTTCAATTAGAAAAAAT


GACCCCCATCTTTCCTCCAAATAGAAATGACGTAACTGAAGTAGTGGAACTTTCTCTTCCATGGCAACTCTAGAGAA


GGGGTAGATGGCATGGGATTGTGGACAGATGGACACAGAAAGAGGCCTCATTTATTGTTATTGTTAAAACTTTTACT


TCTAGTAATAGTGACACCTCCTTCAGCATTTCTTTATCAATTGTCAATATTTTTTGGATCACCAGCATCACCTTCTA


TATGTATGTCTAGAAACCTCCTGTTATGAATTTACACTTCTCAGAGTCAAGACAGAAATGCTGTGAATTGGGCGATA


AATAAAATACCCCCCTTTTATTGCCTTGCTTTGTCTCTTAAAGAAAGATGCCTGTTGGGGGACTATGAGAATGCTTT


GTGCTTCTGGACCTCAAGGGACAAATCTATAATAAAAATTATGCATAGTGATGAGAAATATATATAATGCAAGTTTG


TAGAGATCAGTTAACTTATCTTGTCTAGGCAATTATTTCTAAACAATGATTTCAAATCATTAACTATAATATAGCCC


ATTCATACCCTCCATTTTTGTCAAATCCCTGTCACCTTCAAGGACTTGGCCATCCCATAGGCTGCTCTGCTTTTAAT


AGAGGAAGATGCTGTAACTCTTGGTACCATTGCCAGTTATGAATTTATCCATTAATGAACATTGCATTTAAGGCATA


GGTTTATCTCCTTCTCCAGGTATGAACCTGCAGGATTCCTACCTGAAGCTTAAGGGAGAATAAATCCACCTGGGACA


ATCAAGGACAGATCAACCAATCAGCTCAAAGCAGGTGTGAATTACACAGTTTATTTGAGTGACAAGGTAGCTAAAGC


AGGGATAATAAAAGAAGGGAGTGGGTTGATGTGGACAGACGAACTATGGCTTTAGGAAATTTGGTAGGGACTGAAAC


ATATTTTGTGTAATTTATGTGGGTCTAATAGCTTTTGAAACTTGTTTACAAGACCTGTGTAAGTGGTACTGGCATAT


TCATGCATGAGAAAACATCAAGGGAAAACTTAATAGTTCAAGGAGGTGACAAAGAAGAGAGGAACCAATTATTTTCA


CTAGCCGTCAAAAGCAAGAAAATAATCAGCTTGAGCCCTTCGGGGAAAAGATAGGTTAAATATTAAGTAACAGTTTG


TTATTATTCCAAGTGTTTTCTTAAAGTTGCTCCCATACTTTCCTGTTTTCTCTGAGGGAATTTAGTTTTTTTGTTGG


TTTTTTTTTTTTTTTTTTTATAACTGTCATTGGTCAGAGCTTGATTTGATGCCAGTCAAATTTTTTTAAAGAGATTA


TGAAAACTGCTTAAACTCTTCCAAAGGGAAGATGGGTCATTCTTAACATGTGTTTCAAGAGGAAGAGCATAAGAGCA


TTATATGGTAAGGCTGAAAGCAGATATCAGCGTTTAGGGGCCATGAAGAGGTAGAGCTCACATTGGTAGGATCATTG


ACTAGAATTCCAGAGATCAAAATTGTATGTTAGTCTAGCATTGGGGAGGACTTGTAGCTAGTATCTTCATTCTAGCT


TGGGAGCCTAGGAATCAGGTTAGGCATCTTGCACAGGAATGGGCCGATGGGCTAAAATCTCCTTGAGAGAGATGATT


AATCCAGGACAAACCAAGCAGTCATGCCAATGAATTACTTTAACAGGGTACTTCATATCCTCATCCTTTGGGCAGCA


CGGTCTTCAGAGATGGGGCAGGCCCCAGGCTGCAGTTGAGATTCTATAAACTAAGGTCAAAAAGATGCAGCAGTGAA


GAAGTCATGCTTATCTTGTATAAATCATGTTTTCTTTTCTTTTTAATGAAAATGTACATTTAACACATTTTAAAACT


AAATATTGACCCTAAAATTCCAACCAAAAAATGCTACATAAGTGGTATTTATTTTTGAATTTCCCTCATGCTCCTCC


CACTGTGGGGACAAGGAGTGGTGGTGGAAGAGAGATCTTTTAGCAAACCTGTGAGTAGAGAATTAGAAGGTAATGGG


AGGAAGGTAAAAGGAAAACATCATAGATGGATAGGCTCACAAACATTAAAGGCCTTCGTGCCTGTCCTTCATGCCTA


TTCATCCCTCTCCAGTATGTGAATCAATGTACTTGTTAAATATTCATTCACCTCACATATTTAGCATTAACCGTGTA


TCAGGGACGTTGTTAGACCGTTGGTTTACGATGATGTGTAAAATATCATTTGTAACTCAGACTAACTGGAAGTGCTC


AATATAATAAGATGTAATGTTATGGAACACTAAGTCTGTGCTGAAGACTTATCTCCTTTAATCCTAAAACAATCCTG


GTGGGTAGTCTCAATGATCATCTCCAAGTCACAGTTGAGGAAATTAAGGCTTCAAGAAGTTAAGAAACTGGACCAAC


ATCACAAAGGTAGCATCAGAGTGACAGTTTGATTTCAAAGTGTACTTGACTTCAAGGCCCACATTTCCTTGCACGTT


TAATATTGCCTTTCTCAGGTAAATATACCATTAAATGTGATACAACTCTAAGCATTTGAATTACTTACAACGTGCAG


AGTTAAAACCAGCATTATTTACACTATACTTCAGCTCGTTTATAAGTGAACTATTATTTTGTGGACTAACCTATGAA


ATGTAACCACATTGAATTCCTCTGTTAGGTACAGGTTTGGTGATTCCAGGGAATAGAGTATGACTGAATGCACAGGT


AGGGGTGAAGTGAACCCGGTCAGAAAATTTAGAGAGCATCGAGCAGATCATTAAGCAGCTGTCTTTCAAATGTGCAG


AACACAACTCATTTGTAATCTAGGGACTATCTGTATTGATTCTTCCCAGGGAAGTTACTTATTTTTATACATATGTG


GTGTGTTCTGTCCATAATACCATTCTACATGGTAATGCTCAACTTTATTATTTAAAAAAACTGCTAATAATGAGGTT


TTTCTTTGTATCACAGAAGCAGCAGGAGCAAGTTTTCTTTTTCCTTCCCAGTTTTTTTAAGTACTGCCAAGGAATGT


GATTTTGTCAGACTTGTATTTCCTATTAAGCCAATCTGCATGACTGTTCCTTCTACTAGCTTTACCTGTTCACTCAT


TTATTAATTCATCAAATATTTGTAGAGTGACTATTGTGTGCCACATACTAATATAGGCACAAGGATAACCAAAAACA


GACAAACGCTGTCCTTTCAAGGAGCTCATATAGTAATGGGAAGTTAGGAAAGGAGAAAATAAATATGTGGTATTTCA


AATGGAAGTATTAAAGTGTTAAGAAGAAAAGAGAAACTAACAAGATAGGGAAAAAGTGACAGGAACATGATGTTTTA


TTTTTTATTTATATATATTTTTTGAGACAGGGTCTCATTCTGTTGCCTAAGCTGGTGTGCAGTGACGTGATCATGGC


TCACTGCAGCCTTGACCTCCCTGGGCTCAGATGATCCTCCCACATCAGCCTCCCAAGTAGCCAGGTCTACAGGCATG


TACCACGATACCCAGCTAACACGTTTTCTTTTCTTATAGAGACAGAGTCTCACTGTGTTGCCCAGGCTGTTCTTGAA


CTCCGGGGCTCAAGCAGTCCACCCACATCTACCTCCTAAGGTGCTGGAATTACAGGCATGAACCACCATGCCCAGCC


GAAATTGATGTTTTATATATGGCAGTCTGGGCAGACCTCTTTGATGTGATATTTGAACAGAAATCTCAAGAGAGGGA


GTGTATTAGCCCGTTTTCATACCGCTAGAAAGAACTGCCCGAGATTGGGTAATTTATAAAGGAAAGAGGTTTAATTG


ACTCACAGTTCAATATGGCTGGGGAGGCCTCAGGAAACTTAAAATCATGGCAGAAAATGAAGGGGAAGCGAGGCACC


TTCTTCACAAGGTGGCAGGAAGGAGAAGTACTGAGGAAAGGGGGAAGAGACCCTTATAAAACCATCAGATTTTGGGA


GAATTCACTCACTATCATGAGAACAGCATGGGGGAAGCCAACCCCATGATTCAATTACCTCCACATAGCCTCTCCTT


TGACACCTGGGGATTATGGGGATTATAAGGATTACAATTCAAGATGAGATTTGGGTGGGGACACAAAGCCCAAACAT


ATCATTTTGCTCCTGGCCCCTCCCAAATCTCATGTCCCTTTCACATTTCAAAACCAATCATGCCTTGACAACAGTAC


TCCAAAGTATTAATTCATTTCAGCATTAACCCAAAAGTCCAAGTCCAAAGTCTCATCTGAGACAAGGCAAGTCTGTT


CTGCCTGTGAGCCTGTAAAATCAAAAGCAAGTTAGTTACTTCCTAGATAAAATGGAAGCACAGGCACTGGGTAAATA


TACCCATTACAAATGGGAGAAATTAGCCAAAATGAAGGGGCTACAGGCCCCAAGCCAGTCCAAAATCTATCAGGGCA


GTCAAATCTTACAGCTCTGAAGTTGTCTCCTTTGACTCCATTTCTCACATCCAGGTAACACTGATGCAAGAGGTGGG


TTCCCATGGTCTTGGTAAGCTCCACCCCTGTGGGTTTGCAGGGTAGAGCCCCTCTCCTGGCTGCTTTTACAGGCTGG


CATTGAGTGTCTGCAGCTTTTCCAGGCACGTGGTGCAAGCTGTTGATCGCTCTACCATTGTGGGGTCTGGTGGACAG


TGGCCCTCTTCTCATAGCTCCGCTAGGCAGTGCCCCAGTGGGGACTCTGTGTTGGGGCTCCAACCCCACATTTCCCT


TCCACACTGTCCTAGCCGAGGTTCTCCATGAGGTCTTCATTCCTGCAGCAGACTTCTGCCTGGACATCCAGGAGTTT


CCATACATCCTCTGAAATCTAGGCAGAGGTTCCCAAACTTCAATTCTTGAATTCTGTGTATCCACAGACTCAACACC


ACGTGGCAGTTGCCAAAGCTTGGGACTTGCTCCCTCTGAAGCAATGGTCCGAACTGTACCTTGGCCCCTTTTATCCA


TGGCTGGAGTGGCTGGGACACAAGGCACCAAGTCCTGATGCCGCACACAGTGGTGGGGTTGGGGGGGGGACCTGGTC


CACGAAACCATTTTTGCCTCCTAGACCTCTGGGTCTGTGATGGGAGGAGCCGCAATGAAGGTCTCTGACTTGCCCTG


GAGACATTTTCCCCATTGTCTTGCCTATTAACATTGGGCTCCTTGTTAAATATGCAAATTTCTACAGCCAGCCTCTC


CAGAAAATGGGTTTTTCTTTTCTACTGCATTGTCAGGTTGCAAATTTTTCAAACTTTTATGCTCTGTGACCTCTTGA


ATGCTTTGCTGCTTAGAAATTTCTTCTGTCAGATACCTTAAATCATCTCTCAAGTTCAAAGTTCCACAGATCTCTAG


GTCAGGGTCAAAATGATGCCAGTCTCTTTGTTAGTCATAGCAAGAATGACCTTTACTCCAGTTACCAATAAGTTCTT


CATCTCCATCTGAGACCACCTCTGCCTGGACTTCAGTGTTCGTATCACTATCAGCATTTTGGTCAAAACCATTCAAC


AAGTCTCTAGGAAGTTCCAAACTTTTCCACATTTTCCTGTCTTCTTCTGAGCCTCCTAACTGTTCCAACCCCTGCCT


ATTACCCAGTTCTAAAGTTGCTTCCACATTTTCAAGTATCTTTATAGCAGTACCTCACTACCTCAGTACCACTGGTC


TTAACTCCTGCGCTCAAGCGATCTGCTTGCCTCCACCCCTAAAGTGCTGAAATTACAGACATGGTCCATTGTGCCGA


GCCAAAATTGATATTTTATGTATGACACTCTGGGCAGACCTCTATGAGGTGACATTTGAACAGAAATCTCAAGGAAG


GGGAGAAATTATCCATTTACATATTTGGGGAAAGAGCATTCCAGGTAGAAGAAACAGAAAATCCGTAGTCTTGAGGA


ATGCCGTGTATATGCAGTATTTTTCAAACTTGTTATTTTGAAATACATATACACTTACAGGAAGTTGCAAAAGTATT


AAGAAAGATCATGAGTACCCTTCACTCATCTTCAGCTAATGGTTACATCTTACATAATTATATGTAATATCAAAGCC


AGGAAACCAGGAAATTGATGTTGATACAATCTATGCTTTATTCAGATCTCACATCTTACATAGCTATGCACAATATA


AAAACCAGGAAATTGATATTAACACAATCTATGCCTTATTCAGATCTCACCAGCTTTTACATGCACTTATCTGTGTC


TGTCATTCTATGCAATTTTATACCATGTTTAGAGTCATATAACAACTACCCCTATTTTGATACATGGTACTGAATAG


TTCCAGCGTCACAAAGGAACTATCTCAAGCCACCCTTTAATTGTCACACCCATCCAATCTCCCATTCTACTTCCTGA


ATCACTAGCAACCCCTAATCTGTTCTCCATCTCTATGATTTTGTCTTTTCAAGGGAGTTTTCTAAGTAAACTCATTT


GGGGAAAGAAAGGAGATGAATTGTTCTAGCCACGGAGTGGAGAACAGAGAGTAAGAGTACCTATTGAAGCAGAGGGA


GTCATTGCAATAATTCAAATGAGAAATAATGGTGATTCTAAACCAGGAAGCTTTCAGTGAAAACAATGAGAGGTACA


TGGATTCTGGGTATTTTTGGAAGGTAGCACTACCAGGTTTGCTGATGAATGGGGTATGGGGTGGGAAAGAAAGAGAA


GAGCCCAGGATGAGTCCAAGGTGGATAAGGTGAATAGAATTGAGAAAATGGTAGAAGGATCAAGTTAGATGGTAGAG


GGGTAAAGGTGGAAGCAATAATTTTGTTTTGGAATTGTTAGGTTTGAAATCTTGTTAGACATCCCAGTAAAGTCACA


AAGAGTGCAGTTGGATGAAAGTATGGGATTCAGGGAAGAAGTATGTGCTAGAGATGCAGATTTGAGAGTCATCTGTG


TGGAGGTATTATTCAAATTCAAGTCCCCTTGGAATGAATGGCTATTCAGGCAGGGTCTTCATAAAAATGCTTGTTGC


ATGCCTGTAATCCCAGCACTTTGGGAGTCTGAGGTGGGTGGAACACTTGAGGTCAGGAGTTTGAGACCAGCCTGATC


AACTTGGTGAACCCCCATCTCTACTAAAAATACAAAAAAAAAAAAAGTTAGCTGGGCGTTGTGGCACATGCCTGTAA


TCCCAGGTACTTGGGAGGCTGAGGCAGGAGAATTGAGCCAAGATTGTGCCATTGCATTCCAGCCTGGGCAACAAGAG


CAAAACTCCGCCTCAAAAAAAAAAAAAAAAAAAAAAAAAAGCTTGTTGCTTCAAATTCATGTCAGTCTGTAAAATTA


TCTGGGAAGGCAGTACAAAAACTGTCACTTTGACTACGATGTTTCTGGTGACCCATCTTCATTGATCAGTATGGAAA


AGGCATGTCTCTGAAAATCTCTGAGAGTCTTTGATACAGCAAGAACATAAGGATAAATCATTCTTCTATGTTCATGG


TTGTAGAGGATCTTGAATGTTTAATGGCAGAATAGCCAGATCACACTCTGGCACTTCTGTATGAGAGGCTGAGGGAT


GTTACTGATTCACCCCGAGAAATATTTACTACTAAGGGGACAGAGGCAAAGGGGATACAAGACTTCACCCTGAGCTG


TAGCGCTCCCTCCTTCCCTATCCTGCTTTCATTCTTCACATTGTTTTCCTTCTTTCTTTTTTATTATTATACTTTAA


GTTCTGGGATACACGTGCAGAATGTACAGGTTTGTTACATAGGTATACATTTGCCACGGTGGTTTGCTGCACCCATC


AACCCGTCATCTAGGTTTTAAGCCCCACATGCATTAGGTATTTGTCCTAATGCTCTCCCTCACCTTTTCCCTGTGTC


CACATTGTTTTCTTTCTTTTTGAAGCCTCTCATTCACTAGGTTTCAATCCTGCCTTGCTAGTGTTCTAACTCTAAGG


CCTAGGCAAGTTATTTCACCGAACTTAGCCTCAGTGTCCTCATCTGCAAAATGGATAGTTTTATGATATCTTCAGCC


CTTAAAGTCAATGGTTCTGACAGCTAGGGTGTACTATCTTCTTGGATATCAGTCATCTCAAGCAAGCCCTCCTTTTT


TGGACCTTCTTTTCACACACTTCACATACCTTAGAGAACATAATACACATCCTCTTTACTCAGGGCTTATTCTTTAT


AACAGGCTTCCTAATTCAATTAACTCAACTTTTCAAAAATATTAGTGACTACTGTGATGTAAATAAATTTGCATTTT


ATAGGGGTCTTAGTAACCCAGAAGGGAGTGGGGAAAATTAATATATATTGAGAGTTTATTAAGTGCTAGGTACTGTA


AATATTTTCTTGTATTTAATCCTCCGAGTAATTCTACAACAAAGATATTATCATTGCTATTATGTAAATAAAAGAAC


AAAGTAGAAAGAAACCCACGGTCTTGTATAAGCTCCCCTAGTTGGTGGGTATTGAAGGGAGTATTTCAATCTTTGGT


AGCTTCTGAGTTTTTGTTCTCTCAGGGAATCTGCCAGATGTCCAGGGCACCTGCCAAACCCTATGAGGCTATAAGAA


AACCATTAAGGGTCTTAGATTACCCAGCTTTTTGGGAGTTAGAATTCTGAATGAAATTTAGTGTTCCTGCAGCTACA


AAGGAATTGAGTTAGGGAAGTGATGACTTTATCTTTAGCTACATTGGTTATTTTCCTTATAATAATCCTGGCTTGGT


AGATTAGAGGCAGCCCGAGTAACCCAGAATCGCTAAAATAGAAGTGCGAGCTCATTGCCCGCTGTCCTTCACTATGT


TTGCATATAGGAAGCAAGAATAAAACAAGCATAAAATAGGCTAACTAGCTTGTCAGAGCTCTTCACACCAAGTCTTT


GTGAGTTCCAATAAGACACTGACTATTATTAAAAAGACAGAGACTCCACATAAGTAGGAATTTATTGTTTTCCTTTT


CAGTCACCAAAGGACAATCCTCTGCATAGGTTAGCAAAAAATGGTACTGATCCTATAATCTCTAATATTAAAGTTTA


GATTTGGCAAGCTGTACATCTTATGTTGTTCATTAACAAAAAACAATATTGATTGGTATCTTGTACTATAACTTGTA


CTGTGGGTCAAATTCCAATACAGCAAATACCATTGCAATAACAATTCTACAAAACTACATCAAAAAAACCTTTCATG


TTTGAGCCAACAGCCTGATAGTGCTAAGGACTTTGAGTACAGTATGCTAGAAGATTCTTAACAGTTATTTGTCCTGG


ACAACAAAGGTTGACTCCATTAAAAACATAGCCATCAGTGTGGGATTATTTCCAAATCAAGCTTTTGGAAAAGTCAA


ATGAAAGTTTGCAAGCAGGTGGGGCATGGTGGTTCATGCCTGTAATCTCAGCACTTTGGGATGCTGAGGCAGGCGGA


TCACCTGAGGTCAGGAGTTCGAGACCAGCCTGGCCAACGTGGTAAAACCCCCATCTCTACTAAAAATACAAAAATTA


GCTGGCTTTTGTGGTGCATGCTTGTAATCCCAGCTACTCAGGAGCCTGAGGCACGAGAATCACTTGAACTCGGGAGG


CAGAGGTTGCAGTGAGCCGGGATCATGCCACTGCACTCCAGCCCACATGACAGAGTGAGACCCTGTCTTCAAAAAAG


CAAAAAACAAACACGCAAACAAAAAAAAAAAAAACCAAAGTTGGAATGCAATAAATGTTCATTGAATGAATACTGAA


TAGGGAGTTTCAGCTAATCCACTCAAAATAGTGCTGAATTTCCAGCTCTAAGGTCAATGCTTGGCATATATATCCTG


AAGGAATGAATGGACACAGAGTAATTTTTTTTCTAAAATGCAAATTCAATTATGTCACTTCCCTTCTTAAAATCCTT


CAGTAGCTTCCCGTAGCCTCCAGCATATTATTTTGAATAGTGCTTCTCAAACTTTGATGTGCATCAGAATCACCTGG


GGATTTTCTTAATTAACTGATGCTGATTCAGTAGGTCTGGGGTATTGTCTGAGATTCTGCATTTCTAGCAAGTGCTC


AGGGTTATAGCAATGATTTTGGCCTGCAGACCATACTTTGGGTAGCAAAGACATAAGCCACTTAACTTGACATAAAA


GACTGTTTAGACCCTTAGTTTCTCTCTCGCTCTTTCCCCATTTTGAGCTTTTGCTCCGGTTCATGTTTTTCCCTGAA


AATACCGTGATCTTACATTGTCTGTCTGGATGCTGAATTTTCCCTAATTCTGGGCCTCCATGTAGTTTTAGGTTTGA


CATCACAACCACCAAAAGATTTCCCCTTCTCCCTTAATCTTGGTTAATGTCACTCTCATGTATTATACTGTTAATGA


AGCATTGAGGACATAAAACTTATCAAATATTTTATCACAATCAATGATGGCACCAGTGATAACATCCAAATGCCTGG


GTGAGTAAATAAGAGGAGAATAGGGGACTTGTTGTTAAACTAAGTTTGCAGAGAAAAAATGTACTGATTATAATTAA


ATTGGATGTTTATTTGTTATGACAAAAAAGGAGCTAGAGTCTTTTAATCCACCCCTTGGCACCACTGCTTATCTCCT


TGTAACATACGTTTGATTCCCATGTCTATTTCTTCCATATGGGAAATTTCAGCTCCCTAAACATCACCAATACAACC


TGTTGATAAGACAAAGTTAAATTTATTGCTTACTATGGTAAGAAAGACCACAGCCTGGACAAAGCTTTGGTAGTATT


TCATAAGGAGAAAGGTGAGGTTGGATTTCATTGGGAGTATGAAGCTTGGTTTAAGATTGGTCTTTCACTGTGGGGGC


ACAATTAGGATTGGGTAAGGATCATGGTATTACAACTTAGTTTGGTGGAAACAGCACAGTGAAGATTTCTAGCCAAG


AGGCTCAGAGACTATTAAGGTGTGAACTCTATTGATGTTTTTTGTTGAAGAGTTGATGGGAGTTTGGGGAAGTTACT


TTAGTGAACAGTCAAATTATTTGCCTGGCCAAGAGTTATCTGTAATAGGAAAGTTATGCTAATGAAGACAATGGAAA


GGTAAACCATGTTAATGTCGACAGCCAGCTATGTGAGCATAAGGGGTAGGTAGCTTTGGTCCTCCATGTCCAAACTG


TTTGTAGTGGTAAGTGATCTTCATTCTCACATAGATTGAAAGCTTCCTGAGGACAGGGCAATGTCTTTGTAAACTTT


AAAATATCTATGTCCTGCACATCACCTGCCGTAGACAAGCATCTAGTAATTGACGGTTGGGTAGATACTGAGGGAAA


ACATGCACCAAATAAAAATGGCAATAGGACACAAATTCACTATCATTTGGAAGAATAACAGTGTTTTCCACTGATAT


TTGCTACACACAGTGGGGTCCACAGAGCAGCAGTACCACTTGGGAGCTTATTGGAAATGGAGACTCTCAGGCACCAC


CGCAGGTCCAATGAATTAAACTCTGCTTTTTTTAAGGTCATTTGTATTCAATTATTATTTTTTTCTTTTTTCTTTAC


TTTCGATGCATTTTTCTTTATTTGTTTTTGAGATGGGGTCTTGCTATTTTGCCGAGTCTGGTCACAAACTCCTGAGC


TCAAATGATCCTCCCACCTCAGCCTCCTAAGTAGCTGGGATCACAGATGTGAGCCACCACACCTGGCTTGTATCACA


TTAAATTTTGAGGAGCAGTGCTTTAATATCTATTCCATTCTCATCACTTGATGAGGTATTATTAATTCCACTTATGG


ATGTGGAAGTTGAAGCCAGAAAGTTTAAATGACTTGTACAAGGTCAAACAGCTTACAGGTAGTTGAGCCAAGAGGCT


CTCAAGTCTTCTGCCTCCACAAACCCCTGTTCAGCTGCTGCCCTACAATGGAATAAAATATACTAATCCCAGAGGGA


CAAATATGCTAAAAATCTCAATATTATACACTTTGGAAGGTGCAGGTGCATTATCTTTCAATTCTAATTTCTCTTTC


AAGTTTTCTGATGCATAAAAATATGAACAGCAGGTCTGAGCAATGTTTAGATGCCGTGCTTTGATCCTTTTGCCATT


CAAGATGTTTGATTTGCATTCTGCCAAGGAATGTCTGGTAACCTCCATGATGCAGACCACACCATTAGTCAAGAGAG


AGCTGACGTACCTTCATCTGAGAGCTGGCTGGCTGTGAGCTGCTCAGAGGGAAAGGATTTCTATTTACAAATTGTAT


CGATTATTTATAAATAAAAGTTCCCCTTGCTTTCTTCAGTTGTAAAATCTGCAGTTAGAGAGTCGGGAAGAAGATCA


AAACTGCATACATTTGCATCTGCCAAGCCTGATAACTAGTTCCAGAATTACAGAAATGGTGCTGAAATAGCACCTCA


AGTACCAGGCTCTATCAAATTTAATCTATCCATAAGGCAACTGCCAATTATATTTTAGAGAAAAAATGTAGACTGAA


AAGATAGACAATCCAAGTAGCAACTCCTGTAAAATTATATGCCCATAGGAGCAATCTTGAAGATATAAATATTGGTA


TGTTTCTCCTTCATTTATCATTTATCTGATCATTTGACAAGTATTTATTGAATGCCTGTTAAGGGTGTAGATATATG


TGGTGAGGCTGCAGGTGTAAGTAGGTCTTTCTGAGGATATGCATGAAGTTGATGTTCATAACTTGGAGATGTGTGTA


TACAGACTGAGGATTCCTTCAGTGGATATTAAGAAGTGGAGTAATAGGCAGTAAAGAATACACTAGTCAGTTGTGGT


ACATAAACACGTCAGCACCACTTAGGTATTAACTTCCTGTTTTGTTTTGTGTGTGCTTAATTACGCTGTTTATTAAA


CAAGCACATCATAATCTGCAGATATTGTCATAAACAGCACAATAAAGCCTGCCACATCAGAATGTCATCTATCAAAT


TAGGTGTGTTCCTCAGCTGTCCCGATAGGCACACACCTGTGCCTGTAAATAGGCGCTTGGCGGAGATTGCTTCCAGG


TGTGGATCTGTTGGGCGACCTTGGGATGTAGGGCACTTTGGAACCTTTTCCTCTAGCTTCAGGAATTAACCTCTGGG


CTTGGTTCCATGCCAGCTTGCATTTTGCTTTGGGACAGTAACATGTAAAGAATATGCCTGTGAATTTAGGGTTACTG


AGAAGTCCTCATAGAAGAAGTAAAATTTCCTTGAGGAATGGGAGTCTTTTATTCAATCCAGGTTTAATGCAAGGCTT


GGTGAACAGCTCCAGAAGGTTAATAATTGCGTGCGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTATCCTTT


TGTCATTCAAAAGTATACGTATACACACACACCTGTACAGCTGATGATAAATATACATTGTATCAATGAGTTCAAAT


GAAGTGTGCTATTCATTCACTGAGGAATGGGCTATTATAATGAACTATTATGATATTAGAAATTGTCAGGGCAATAA


GCAAATAATACATACGGTTTTCAACAAACTTTCTAAGTATTGTTATCAGTGGGTTTGCTTAAATCTTTTTTTACAAA


TTTATTTATTTTTTTGAGACGAAGTCTCGCTCTGTCGCCAGGCTGGAGTGCAGTGGTGCAATCTCGGCTCACTGCAA


CCACTGCCTCCCGGGTTCAAAAGATTCTCCTACCTCAGCCTCCCGAGTAGCTGAGATTACAGGTGTGCGTCACCATG


CCCATCTAATTTTTGTATTTTTAGTAGAGACGGGTTTTCACCATGTTGGCCAGGACAGTCTCGATCTCTTGACCTTG


TGATCCATCTGCCTCAGCCTCCCAAAGTGCTGGGTTTACAGGCGTGAGCCACCGTGCCCAGGCAATAGCCCCATTGC


TCAGTGAATGAATAGCACACTTTATTTTAACTCATTGATATAATGTATATTTATCATCAGCTATACAGGTGTGTGTG


TGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTGAATGACAAAAGGATACACACACACACTCTTATTAACCCTC


TGGAGCTGTTCAGCAAACCTTGCATTTTTTACTTTCATTACAGTGTGTAAATAATTTAGCAAATTCTAATTTGAACC


TGATATCAATTGAGCATTTAATATTTAGCCAAATATTTATCAAGTGCTGACTGTGTTCTAGATGCTGGGGCTGCAAT


TTCGAAACAGACCATTGAGGCCCTCATGGAGCTCACAATAAATGATCTTCCTTAAAGTATCAGGTCTCTGGTTTGTT


ACCGTATTTTTTAAATTGTTAAGGAAAGAAAAAGGCCCTATCTTTTTGTAGACAAACATGCCCTAAGTGCTTCCAGA


AATAATCTCCATCAGGTAATGCAGACTGTGTGTGGAGTGAAATTGAGTCCAATCCATGATCCAGCAGAGTTTCAGCC


CAGGATTTCTTTAGAGCCTTTGCTACACACAAAGTTGGCTGATGTGCCATTCAGCATCCCAGCAGCTCTTTCTCTTC


ACACTAGCAATGGCAAAGCTTTGTGCGGAGGCATTGCTGGCTGCTCTGAACTAAAAGCATCCGTGGGGACCGAAAGA


GGTTTTTGCACACCTTATTAAGGTAGGCAAGTGTGTCTGAGTGTGTGTGTGCCTAAAAGCTGGAAGACATCTGTTGA


GAGGAAAGTGCTCTTCTGTGGGTCTGGCAGCTTTTCTGTAAGTCTTCTATTCTGATGCAGGAGCGTGTGAGCAGTGG


GTGGGAGGAGATGCTTTGGTACTTGGAATGCTGAGGTCCGGATTAAGTGGTATTGTAATAGCTAGTTAGAGGCAGAA


TAAAAAGCTGGGAATCAAAGCATTTAAAAATGCATCCTTCCATTATTTGCTCTCAAGTTAAACCATATTCATTCTAG


GGGAAATTAAAAAAAAAAAAAAAACACAGCAAGGGCAAGTAGCCCAAATCTGTAAGGTCTTTGAGCTTCTCTGTTCG


TCCAGCTTTTGAAGTCTTCCTACAGCCAATTTGTTTGGCTCCTCTGGAGGGGGCAATTCATATCCACTTCCCTCTCC


TGGAGCATTTCTTTCTTCTATACTCCATCAGGGAACAATAGAGTTTAACAGTAACAGGCAATTTTTTTTTTTTTTCA


AAGCTTGTGCCCTCTTCTGCGTTTAAAGGTGTTTTTTAAGAGACTCCTGCTAGGGGAATCTTGGCGCCTGTGTGTTA


AGACGGCAATTAACTTTTAGTATCAGTGCTTACATTAAATTTTCTCTCTTTCTGCTTTACTAAAGCAGTCATTAAAA


TTCAGTGTGAGTACCATGAAACTTTATCATAAAACCCTGCTTTGCTTAGAGAACCTTGATTGTTTTCTGAAAGCAGC


CTTCTCAGTTTATATATACATAGCTGCCTTCCTTGGAATATCAAATTGCTTTGTGTCACATTAAGAAACACTAGGTT


GAACCTCTATACTGTGTTTTATCTGAGAAAAATACTACTGCAAAAAGTTTGATTTGTTCAAGTTTTAGGATGAAAAT


TTCTTTGTAACAAGTTATTTGAGTTGCATACTATGTCATCGTATATCTCTTTAGTTCAAGTAATTTTGCAATTAACA


TACGGTTATGTAAAGAAGATAATGATTTATTTTTTATTTATATTTTTAAAAGTTATTAAGTGAGGTTTTCCTTTCAG


TAAGAGTTTAGAAAAAATAGCCAGAACAAGTAACTGGACTTGGAAGATAAAGATACCTTTGCACTTCTAAATTTTAC


CTTTGTACACTTCGGTTGTGATTTAATCATTGAAATGCCTCTGCTTTGAAGTAAATGCATCACTTATGGTGTATGCT


GTGTTTTAATAAAGGGAAAACAGTTATGGGTTCTCTGTTGCACATTTGAATGTTGTTATTTTTTGCTGTATTTAATA


ACCTCTTTTTTCTCTTGTGAGGTTTACTTTGGAAATGAGGCATGTTCAAAAATAGGCTGACATTCAGCTTCTATGTT


TTAAATTTAAATGCTGTCTGTGTTTTATCACATCTGGAATGTGTGGGGAGAAAAGATACCAAGTTTTATTATTTAGA


TTTAATTGTAGAATTGCAGATTGATATTTTTCAATGCATTTTCATTATAGTTTCTGCCATGGAGGCAGCGTGAGGGC


TTTCAGGAAGATGGAGTGGTGTAATTACCAGGTGCGCACGTTCATTAATCCTTCCTGGCTAGAGAAAGCTTCAAGTT


CTTCTCCAGTGGCCCATTCGTAAAGCTATAAATATCTAAATTGTGTCAGCCAAGAAGTCACACAGAATGGTGGCTCT


TTTTGAGTTCAATTTCATGCACTGTTGCTTTGGTCTTGTGAGGAAAGCTCTGAATTCCTTAGGATAGTCTTGGTTGT


GAAGTTCCAAAAACAAAATATCAAATCATTAAGGATTTAATTTAAAATACATACTCTTCTTTCACAAACTAGATGAT


TGCAGTAATGTGGATTATAAATTTTTTTTTTTGCTTTATTTCTTTAGAGCTCCTCTTTTTATTTTGTATGATCAAGA


TTATAGCTGAGATTTTGGTGATTTTTTTAAAAAGATTTATGGCTTATGGTCCATCAGTCTCTCCACTACTTCAAACC


TGTGTACCCCTGTATATTATCTGCAGTACTGGAATGTTTGCATTGTATGTGGAAGCTATATACGATTTGGTAAAAAA


TAACACTTAAAGGTCTTCGCTAAGAGTGCTTATTTAATCATTAAATATCCCTTAATAAAAATAATTCCAGAGATATT


GTCTGTGTACAAACTTAAAAAAAGAGAAATATAAAATACTGTGATGTGAATAAAATGTATAGCAATACACTCCAATA


ATACCATTCTTATGTTTTCCCTTGTTCTCAACTGAAATAACTAAGCTAATAGAGACGTCAGTAAGGAATGTGTTGTT


TCTTCATAATACAACTACAAACTCATCTGATAAGAACAACCTGAGAGTGAACGTTAACTTTCCTCATTAGAAAGATT


CAATTTAACACATATATACAAATACATTTTTAAGATAATGATATTTGCAGAGTTTTTGTATTCTATGGAGTAAAGGA


GAATTATCACATATTCAAAGTAAAGGTATAAAATACATCTTAATGTTTTACTTAAATTTTAAAGGGTCCAAAATATA


CTAAAATTGTTTTTCTAATTCTTTCCTATGTTTAAACGTGCCAGAGTCATTGGAAATAGGACATTCTTTTTCTTAAG


AAGATTTTGCCCAAAATATTTAAAACTATTTTCTTTTCCCTTGATTTTACAATTTCAATATTCATGGATTTTTCTAC


TTTAAAAATAACAGTAGTTTTTATGATCTTAAAACAAATGTTTAAGGGCACTTTCGCTCTCTGGAGACTATACCATC


CACATATTTATTATCAGCAAAAGAAAGGGCAGGGCATACTTTTATTTGAAGTTGAGTATAAAAATGTGTCTGTGTGT


GAGTGTTATTAAAAAGATAAGTGAAGAGACAAATATAGAATCCAGGAACATTTTCAGCCTGGCTTTTACTCTCTCTA


AAAATCTAATGAAACCCTTGAGCATCTCTTATCTCAAGGTACATTAGGAACTGTCCAACACTATGATCCGATGGGAG


ATCAGTATATTCATATAAAGAAGAAAATTTGTTGTTAGTGAAAGTCAAGTCTTTTAAAAAAATAATAGTTACAGCAT


TTGCAATATACAAGCATAATAGATTTACTCAACGCCCACCCCCCATCTTTAAAAAATCAATTTCCGACAGTTGTCTA


CTTTAAAATTGAACATATTTGCTACCTGGAGGGAACATTGTAATGTAGCCCATATGTGGTATGCATCCTGAAGAAAA


CCTGAAATTATAGAGGAAGTTATCCTGCCTTCTTTCTTCTGTTGAATGAGTTAAAATATATTAACAATTTGCCTTTC


ACTTTGTATTTATCATTTTGTATCTTTGCATATTTACATATACATTCATGTGTACAAGGGCATATATACTCACAGGT


CAGGGCTATTTAAACAGCTATTTATTTGAATATGCCAGGGAAAATCTCCAAGATATAAAGAAGCAGTTATTAGATAC


TATGTCAGTATAGAATTAACAGCCATCTTTTTTAAGATGGAAGAGAAAATTAATTAATTACATACAATTTCTAACCT


CAAGACATTTTCTTTCTGGAGACAAGGAATACTGAGGTGCTCACGATAGTGAAGACTCAACAAGACCCTAATAAAAT


AGATGAGGATAAGTAAAACTACAATAGCCAATAAAAAACAAAAAACAATAAACCATGTTTCGCTGGCATGTTGGTGA


GTATCTCTGTAATATCTGTCAATAAGGGTCTCTGTAGATTTGGAGTAATGTTCAGGAACTACCTGTACTAGAGAAGA


CAGTGGAGAGGACTCCAGTGGCTAAATTCTGCTGCCTTTGCTTCCAGAAATGTAAATAATAAGGAGGTATTGTGGCA


TTTCCTGGAAGCAGTAGTCTTGTTTCATGGTCTGACTGTATAAGAATGCCTAGAGAAACATAACCTCAGCTGACTAA


ACTCCCTTGATGATTGTCACTTTGTCACTGAACTCTGACCATACCTTTTGCCTCCAGAGGCAAAAGACGGGTGAGGA


AGTGATCTCCTCATCTGGTTTTTAAACAAGTATATAACTAGAGAACTGGATTATCTCCTAAACCCACTCTTGTCCCT


GGAAAAAGGGGAGTCATCCTATCCGTTTCTTAGCCAATTTATGTATACTCTTAGTTTGAGAGCATGAGAAGGAAAAC


TATTTTCTTTTCTTACCTTGGCTGGGTTTTTAAGAATTTATTTTTAGTTTAATCAAAATAATATTTTAAAAGGTAGT


AAGCCTCTCATAAGCAGTTTGATCTGTTCTAAAATAACTTCAATTTTTCTTTTTTTAAACTTTCTTTTATCTTACAC


ACAAAGTATAATAGTAATATGTACTCACTAGAACAAATGAAACAGGATGGAGTCACATAGAGAAATATATCATATTC


TCCCTATCCCCTCCCTTAATATTAACATTTAGGTGTCATGTGCTTCTCCATTAATTTTCATTGCAAAGGCCTAAATT


TTCTTCCAAGAGTGAGGAGTAGCAGCACGGTAGTTTGGACCTGATATAGCTCTCTTTCCCTAGCCTTTTGCTTAAGT


GCTTTCCTAGGGGCTGACTTTACTTACCTAAAGATGTTTCAAGCAAGGGCTCACATTTTTGGTAGCAGAAGACACTT


ACTGATTGCTCTCACTAATAATTTTGAAAGGAATGTCAAAATCTGGGAGGATCATGAAAGAAATATCAGAAATTTCC


TTTCAGCTGCCATTCTCCTTAATACTGTTATCAATAAATTCAGCATCTCATATGTGATAGCAAAAAAGGTGCTGCCT


TTTGTTCTTGCATCCTGAGGTTCTTACCTAATACCATGGTAGCAATAAAGATGGTGAGAAAATTGCTTCTTCTATGG


TGTTCAGGTCCTGAACGAGCACCCTCACCTCCACAGACGGTGGCAGGTATTCAAGCATTTTACAGACTTTGGAGTTA


AATATAGCAGTGTTATTCTAATTTAGGTATGCCACCACCAGCGGCACCGGCAACTGCAATAGGAAAAATGATTGGCA


ATGCCAGCTATCTGATGTTTTCATGTGCCAGGTGCTGTCAGTTCTTCACAGTATTACATTCCATCCTCACAACAAGA


GAGTGCCAGTGAGTGTTGCTGTGTGCCAGTGCCCAGGCTAAGGGCTTTGAACACATTACCCTGTTTTATCCTCATAA


CTTTCCACGTTATTTTTATTCCTGAATGAAGAAACAAGTTCTCTGTAGAGATGCTGTCATTGATCCACTCATATCCT


TTCACATCCGTTTAACATTTTCCCTGCTGTGCTTTTACTCCCAACAACTAGCTCCCTAATCGCTCTGTTGGAGGGTG


GCCTTGAGGCTGCCAGAGCCTATTTGGTCTGTGTAAAGAGAGAGATGGATCTATCCTGGAATTTATGTCCCTGTGTG


TGGGAAGCCCTTAATCAATGACTGCTGGTTGCAGACACATAAATACGTGAGCTTTCTTGTTCCCAACTGAGAAATTC


AGAAGTGTGAATGGCACTGCCACCCTGGGCTTTTATGCCATATATGTGTTTGGTCTGTTTCCCTTCCCAATCTCACT


TCATTTTCCCTTACCAGTGTTTCTTGAAAACACATCCCATTAGATCATTTTTGCATGAAGCTTCATCTCAGAACCTC


CATTTAGGGAACCCAAACTAAGATATTCTCTAAAATAGAAACTTTATTGATAAAGTTTCCAAACTGTCTTAGTAGAT


GGCCAATATAAGACCAAGCCAAATCTTTCTGGGTCCAAATTCCCTGTCTTTAATTAATAGACTCCATTACAACACAT


TCTTCAATCTTTAGTCAGCAAACACTTACCACGTGCCTATTTTATGGCATATTATATTTATACCATAGTTAGGATAT


TATGGTTCATGAATATTTTATATCTGTACACCTGAAATTCTATTGACCTCTCTGGGCCACAGTTTTGCATCTGTAAA


ATCAGCACAATAATGCTACTTATCTCATAGAGTAGACTTAAAAACGAATGAAATGATATATGCCAAGTGTTGAGAAT


CACAATTGGCAATTACTCATGCTCATTAAATATTAGCTGTTTTTATGAGTATTGTTTCATTTTCGGTGCATAATATC


CTATGCAAAGAACAAAAGGTATTGGTATAGGCATTGAAACTTGAAGCATAGAAGAAAAAGTTAATTAACCGGTGCCC


CACTAGATGCCTCTAACTGCTGGCTCCGTGTATCCCTTTAGCCTTGGCTCGTCACGAGAAAACCTTGGAGACATTTC


TGCTGGACTCAGCAGATCAATTTAAGAAAGATGAATGACATTTTTCTTGAAATGTATTCAGTCATAGCTGCCTTTTT


CTACTTTCATATTTTGGAGTTCTTAGAAAAAATTAAGGACTCCTTTTTTTAAAGAAAATGGTATAAAAGAAAATGCA


TATCACTTTGTCACTTTATTATTGTAACCTCATCAAAGTATTCAGTGTAAAGACAGTAGCCAAGTGAACTCTTCTTG


TAATGCTCGGAAACCATTTTAGCAATGGTAAAATTGCTGCAATTTATATTCGTCAAATTGCATGATTTGACTTATTT


TAGAAAAGTTATTAACTTCTGAAGAGAATGCTTCAGAAGCATTTAAATGAGTACAAGTTATCACCAGTGATATACAT


AAATTTCATTTCAAAATATACTTCTAGAAACTGTACTTAGTTAGCTATAGTATTTGTACAAGGATTAATTCCTATTT


CATTTTGTAGGAATTTATTTATGAATGTCTATGGCCTGCCAGTGTAAAGCAGACTTAGAGCATCATCTTTTACAATA


ATCTTTTTTTTTTTAATCAAAGGGGAGATATTCTGGTAAAACAAAACAAAACAAAAACAATAGTTTATTCTGCATTT


TTATTAAGTCCCTCTGTAAGTCATCCCTGAAATGGGATATGTAGAGTCTTATATTTATTTATTTCTCAGAAGCTTAT


TGGAGGTGATATGAAGGATTTTAAGACCCTACTAACTAACAAAACAACAATTTAAAATTAATTTTCAAAATACCTTA


ACAAATCTTATTCTCCTTATTTTCAAATTCTTTAACAATGTTTTTCTTATTACTAACATAATATCTTCTGATGTAGT


CATAATAATATCTAAAATGACAGGTCTAAGTAACTTACATGGATTAATTGAGTCTTCTAAATAGTAAGGTAGATGGC


ACTATTACTTCTATATGAGAAATGAGGAAGTAGAGGTATAAATAAGAAATTTTTTGGCCGGGTGCGGTGGCTCACGC


CTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCTGATCACGAGGTCAGGAGATCGAGACCATCCTGGCGAACACG


GTGAAACCCCGTCTCTACTAAAAATATAAAAAATTAGCCTGGCGTGGTAGTGGGTGCCTGTAGTCCCAGCTACTCGG


GAGGCTGAGGCAGGAGAATGGCGTGAACCCGGGAGGTGGAGGTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAG


CCTGGGTGACAGAGCGAGACTCCATCTCAAAAAAAAAAAAAAAAAAGAAGAAATTTTTTTGAGTGTATACAGTTAGA


AAATGGCAAAATGGGAATTCAGACCCAAACAGTAAGACTCAAGGATACCTTTCTTATCAGTATGCTAATATGAAAAC


CTAAGCATACTAGAAAATCTAAGTGCCAGTTGGAAACCAGAATTAACATTTTGGTGTGTAACTTTCTGGCTGCTTTT


TCTATGCTAACAAACATATATGACATACAAAAATACACACATACACAAATTCCTGTTCACTACTTCTTTTATGTTAA


CATCACAATGTACCGTACACAGCTGTATTATTTTATATTTGATTTCATATTTTTTCTAAAGTCAGTGTATTTGTCAA


ATATCAACTTATCTATTTAATAGGAATATGGGATGATCTTTGCTTATACATACATACATATGTATATAAAAACAAAA


TCAAGTATTTTAAGCGTTCACCAGAAGTCATATGTCAATCAGTAAAGTATATAATTTTTTGCTGCCAATGACATATA


TCATAAAAACGCTACCTATCATAGAATGAAAATGAAACACAGCAATATTGGGACACCTATTCTCAAGCAACAGCTTT


GTGATTTATTAGCTATCTCACATGAAATAACTCATTAACTTGGTATTCCAAGCAGCAAAAGAAGGATCACTTAGGTC


ACTTGCAAAATAATACAAAGCTAGGTTTAGGGGTGGGTTGCGCTTGGTGGGATGTAGATGAAACCATATGGGCCCTT


GAGTTTATAATTGCTGGGATCTGCATGGTGGGTATATGGATGTTTATTACAGTATGCTAGTGAGTTAAGAAAGAAGA


GGAATTATTATTGACTTACATCATAGAGTTTATGCAAAAATTAAACGATAATTTATTTTTAAACTCTAGAGGTATAG


GTACCATCATGAAGGGACCCACAGAACTGATGTAGCCAGTAATTATTGGAGCTGGAACAGATACTCTGCTGTCAGTT


GTTCTGGTTTTGTGGTCATTGTTCTTGCCTTTGCAAGTTACCAACTCTAAGACCTTGGGCAATACTTTAAGTCTTGG


TTGTCTCATCTGTAAAATGGGGAGAGCAGTAAGTGTCTTAAAGGTTTATTCTCATGTTATATGACTTACGGTATGTA


AAACATCTGCGTTTAGACACATAGAGGGTGCTTAATGGATGATTGCTCTCATTATTAGGCTACATCTAATCTATGAA


TTTAAAAACTGTATAGAAATATGTGACAGATTCTTTAAGAGCCAAATACCAACTACAGTGAAAAATACTTAACACTT


GCTGAGCTCTTAGTATGTGTCAGGCTTAACTACCTTAATGCTCATAGCAATCCTATAAGATAGGTACTCTTGTTATC


CTATTTTATATCTTCTAAAATTGAAGCAAGGGAAGTTAAATAATAGGACAAAGATCATACGCTATCTATCCATATAT


ACCCATCTGGCTGTCTACCTGTCTCCTTCCATCCATCCATCCACTTATTCATCTACCCATCCATCCACTCAGTTACT


TCTCTCTCTCCCACCATCCCTTTCCCTTTCCCTCTCCCTCTCCCTGTCTCTGTCACTCTCCTTTACTTATCTATCTA


TCGATGGATCGGTTTATCTATCATCTATCTATCTCTATCATCTATGTATAGTTGTTAATAACACTAACATTTTATAA


ATTACAAGACTGAAAAATGTTTTCATTAACTTATGGTAACAAAAGACCACATTGTGAATAAAAAAAGCAGTAAACAC


AGGTCTCTGCACATATGAAAGAGATGTCCTAAACAGGAAGAGATGTCCTAAACAGTAGGGATACATAGTATCATACA


ATCAAAACATGGCAGCCCTATAAAACTTACAAAGCAATTTCATGTAAGTTATTTCATTTGACTCTTACCACAATCTA


TGAGGTTACTATTTTTATTTTTCTCATTTTACAGGTTAAATTTAATATGGCTTCCAATAAAAAATTAGTATGGTTAA


TAAATATCTTGACGTCTTGCTCCTATAATCCTACCGATAGTTTACAGTAATTAGTAAAATAAAATAATAGGAAAAAT


ACCTTTGATACTAGTATTAAATTATAATCATATCATTAGGTAATTTCAATTTGTGATTTTCAAGAATCTGTAATATG


GTAGCTTCTTCCTACTGACATGTTTGAATTCATTTTAAGGCTTATAATTCACAAGTAATCTATATATTATCTAAAAT


GTAAATGCACATTCACATGGAGATAATAAATTAGCGTGAAATGGCTGTATTTTGCTCTCTATAATTTTTAACATACA


GGAAATCACTGTTGTCTCAAAAATCAAGGAAATATAGTATTTGAGGTGAACTTATTCTTTCTACTATTAACACATTT


TAATATAGTTCTCTCACAGTGCAACAGAGCAAGAAGCTTTCAGACACATTTGCTGCTGCAAGGAGCATGCTGTGCTG


AACTTAAAACACCTTCCCTTTCAAACTCCTTGGGACTGTTTTTTTCCAAGAGACTTCAAATGCACTAAATTTAGCAT


CCGTTGGAGGCACACCCAGGCATATTATAGTGAAAGCCCCAATAACTGAATGTGTTACCACTATTCACAATGTTTAT


GTGTGTATATGCCTTATCTATGATGTATTGCAAATTACAAAAATTGTGTTATTATTCACAGTAACAAAAACACTTCC


AGCAAATTTCTAACAGTGATCTCTTTTGAAATAACTTACATACATGTGTCATGGGTCTTAAACTTTGTCACTTTTAT


GTTTCCATCATGTTGTTTTAGCCAGTGAGGGTTTTGTTTGGTTTTCATTTATGATTATATACTTTCAAAAAATAGAT


TTCAAAGTGTGAATTTGATTGATTGATTGACTGATTCATTGAGACGGTGTTTCACTCTTGTTGCCCAGGCTGGGGTG


CAATGGTGCGATCTCGGCTCACCACAACCTCTACCACCCAGGTTCAAGCGATTCTCCTGCCTCAGCCTCCCTAGTAG


CTGGGATTACAGATGTGCACCACCACGCCTGGCTAATTTTTTGTATTTTTAGTAGAGACAGGGGTTCACCATGTTGG


CCAGGCTGGTCTCGAACTCCTGACCTCAGGTGATCCACCCTCCTCAGCTTCCCAAAGCACTGGAATTCCAGACGTGA


GCCACCGCGCCCAGCCCGTGAATTTTATTTTTGAAAGACAAGAATGTCCTTGCCTAATTGCATAATAGTTTAACATC


ATGAAGACTAAATATGCTTTTTAGCCATGACAATTTTATTTATTATTGTTTTCATTTTTAATTTTCTCAAAGATCCT


CATCAGTGTACTCTTTTTGGTCTTCCTTATAAGCGTATTTTAACAGGACATAATAATAAGATAAATCCCAACTTTTT


AAAGTTGTATCCGTATGTATTACTTTAAAGTGCTATTAATATAAACGAATTAGAGGCAACTTTTATTCAATCAGATT


TTAAGTAATTTTACCAAAAATATGGCCTTGATAATGTCTCTGTAACAGGTTCTCTGTAATATACATGCTGAGGATTG


GTTTGTCTTTGCTTTTGATACTATTTTAATTAGAAAAGTAATGGGGAATCCAGACCCTTCTCATTTAATAATCCAGA


GAAAAATCAGTCCATGTTCTAATAGTTTAAATTTTTCTACTAAAACCCATGTGAGAATCCATATGAGTGGAATGGAG


AGGAGTTCAGCTTCAAAGTTGGCAGATTTGAGATGATTCTATGGCAACAGAAATGTGCTTGAGGGAAATCAGTTGCG


GCATCTTCTATAATTGTGTCACCTAGATTTTGCCTTAGGAATTTCTAGATTTCCATAGAACATTGTGACCTCAAATG


CTTTATCTTAATAAAGAAATAAAAGCAGATTAGAAGAATTATTTGCCTACAGTTTGTGGGAGATGGGCAAGTCTTAA


GAGTTTATTAGGTACCCAGAACGAAACATATTTTCTTGGGCCTCATAATCACATTGAAATACAAGGATTTAGTTATA


CACAGTGACCAGTTAGTGAATGACAGTCTTCAGTATCTAGTAGACAGTAAACATATAAAGATGTATTTGTGGCCGGG


CACGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGATCACGAGGTCAGGAGACCGAGACC


ATCCTGGCTAACACGGTGAAACCTCGTCTCTACTAAAAAATACAAAAAAAAAAAAATTAGCCATGCGTGGTGGCGGG


CGCCTGTGGTCCCAGCTACTCGGGAGGTTAAGGCAGGAGAATGGCGTGAACCCGGGAGGCGGAGCTTGCAGTGAGCA


GAGGTCAGGCCACTGCACTCCAGCCTGGGCGACAGAGGGAGACTCCATCTCAAAAAGAAAAAAAAAAAAAATGTATT


TTTACTTTTAACTACAGCGAGAGACCCTGGCAGCCTACAGCATACAATTAGTGTTCATTATTTAGATTGCATGGATT


TAATGTGAGGGGTCAATTACTTGTCTAACCAGTGAGCCTAGCCTCTTGCTCAATACTGCCTGCTTCATGAGGGTGAA


CTGTGCTGGAGAAATATATTACAGGATTATCTGCAGATTTTTTTTAAATGAGTGGTTAAGTCAAAAGTTCTTGTGAA


AATTCAGAGTAATAAATTATTATGAAGTTGTGTAACTAGGTAAAGGATAGTTTCTTTTACACGGGTAAAGATTAACA


TGAGGAGGAAAACTTTAGCAATGGCATTTAATTCCATTCAATATATTTATATTGAGCTCCTTTAAAAATACAGGGCC


TTGTGGTGGGTGCTGAGGACAGAACAAAAACCAAGTAATACATGAACATAACCCTTGATTTCATGATCTAGTAGACC


TATAAAAGTTGTCGATATCTGATGAAAAGAAAATGGTAAAGATATTCCAAACAGTGTATGCAAATCCAGAGATAGGA


TGGAGGGGCTCTACCTGAAGGATGATGATAAGAAAACCGTGTTGAGTGAAGGGTGATTTGTGGAATTCAGATAAAAT


ATCAGTCTTGAATGCTGAGTGAATACTCAATGATTGACTAGATCCCATGGACAGTAATTTCTTCAATTATGACGATG


CTAGTGTTTATGACTATAACTATCATTCTCCATGCCAGGCACTTTGCCATTTGGTAAATGTATAGTGTGCTATTCTA


ACAAGCATGCACAGAGCTTTTACTTTAATGTATCCATGAGTTTATTGGGGTTCAGAATTTAGGTAAGCTTTGCAAGG


TCGTAGCATGGAGTAAAATATCTGAAATTCAGACCCATATCTAACTAAGTTCAAAGACTGTACAGATATTTCTCCTC


CTTTGTGCAGAGAAGGATAGGAATGGTTCCATATTATCATGGACTTAGTCAGATGTTTTAAAATTATAATGTCCTGT


GTTAATGAAGAAGGGATGATATTCAGTGCATATTCTTAACCGTTACTTTGCTTAATGCTCTCGACTTTTCTGTGAGA


TGGATAGTGTAGATAAAATCCCCAAGGGGACTCAGCAAGTGCAAGTAAAACAATGAAACTTTAAAGCCCTTTGTCAA


AACCTCTCTTTTTCTCAGAGGATGGAAGGGCCGTAAAGGTTGGTGAGGAAGGATGGACCATTTCCTATGTAGTCTTC


TGACAATATTCAAACAAAAGGAGAGTCAGCAAATCCCCCTTGATGTGGGAAGTTTTAATACAATTTGCAGAGTGTCT


CTCTGGAGTAGACATCCTCCTCTGCAATCGTGTCTTCTATATAGCCTCAGGGCTTTGGGTAGGTAATCCTCTCCAAG


GAGAGTCCTGGAGAGGGCTGTCTACCCCCCTTGCACCATCCTCTAACATTATTCTATAGCTCAGCTCCTTGTTTCTG


TTTCCTGCCTTGTTTTTGTCTGAGTCTGCAATTATGATGTAAGCACCATGAAGGAAGGTATGTTGCCAGTGTTTGCA


TCAGCATATCCCCCGTGTGTAGCAGCGCAAGGGATATAGTGAGCCCTCAATGTCTATTTGTAGAAAAAAGAATGAAC


GTATCAACGAAATCTGATACATATTCATTGTGTCTGTTATCTCCATCTCTCTTGTCCTGCCTTGTTATCTTGCCATT


TTCACAAAAGGCCCCAAGGCCCATCATTTCTTGTGTAACTTCCAGAGTGTTAATTTTTAAATTAAAATTAAGGCTTT


CTACATGAGTGTCTATTATTTGAGAAACCATGCAAGATCGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT


GTGTGTGTTGCACTCTATATTATATTGAATTCTGGATTTTTTCTTATAAATAAAATTTTAAAAATAGTTCTTTAAAA


ATAGGAATAAGATGTTTTAGGAGGCACAGAGAGCAAAGGAGAATAAAAATTGCAGGTTTGGGGTTGTGCATACTAAT


TGCCATTGAGTAAAGAGAGCACACTGAGGCCATTTAGAAGAGAATTAACGTGTTTTGTTTTTGTTTTTGTTTTTGTT


TTTGTTTTTGTTTTTGTTTTGAGACGGAGTCTCGCTCTGTCACCCAGGCTGAAGTGCAGTGGTATGATCTCGGCTCA


CTGCAACCTCCACCTCCCGGGTTCAAGTGATTCTTGTGCCTCGGCCTCCCAAGCAGCTGGGATTAGAGGCGCCCACA


ACCACGCCAGGCTATTTGTTTTTTTTTTTTGTATTTTTAGTAGAGACGGGGTTTCACCATGTTGGCCAGGCTGGTCT


CGAACTCCTAGCCTCAAGTCATCCACCCGACTCAGCCTCCCAAAGTGTTGGGATTATAGGTGTGATCCACTGCACCT


GACCTTATTTTTATTCATTTAAAAATATTAAATGTTACTGCATAGGGAGTAATGGGCTTAACAATGAGGTGACCAAA


ACTCCTATGTACCATGCAGAGCAATGTATCAAATGTTTTTAACTATAAACTTCTCAAAAACATAAACCTAATTGTTC


TGCAGCTGCAGGTTATATCTGCCTTGTTTGAGCAAAATTTGGTGGTGAAAATGCCTTGCTTCCATTTTTCCTTCAAT


AACTGATATGGTTTGGCTGTGTCCCCACCCAAATCTCATCTTGAATTCTACTCCCATAATTCCTACTTGTTGTGGGA


GGGATCCAGTGGGAGGTCATTTGAATCATGGGGGCGGTTTCCCCCATACTGTTCTCATGGTACTGAATAAGTCTCAC


GAGATCTGTTGGTTTTATCAGGGGTTTCTGCTCTTGCGTCTCCACATTTTCTCTTCTGCTTCCATGTAAGAAGTGCC


TTTCACCTCCCACCATGATTCTGAGGCCTCCCCAGTCATGTGGAACTATAAGTTCAATTAAACTACTTTTTCTTCCC


AGTCTCAAGTATGTCTTTATCACAGCATGAAAACGGACTAATACAATAACCTATATAATTTTGAAAAGTACTTGTCT


AATAGACTTTCACAATAGAAACTATATCCTTATCAACTTTGAAAAGTCATTGCTTAATGCCTTTGGATAACTGAATT


TTCTAAGATTATTTTAATTTTGAAAGTTAAATTTTATCCCAGTGTTGACGATTTTTGTATGCTACTTTTAAAATATT


TTGTCAGTGATTTATATCTATGGTGCAATCTTGTAAAAAATTAACAATGCAAATGTGGCTAGACCATTTAAAAATCA


ATATGTTATAATTCAGCCCATTTAATCACTTTAGTTAAACATCTTAGGAACAACTCAGTTCCATTTGAGAGAAGACA


CAGTTTTCTAGATGTGTGTTGTGGCATCATATTGCTTTACAATATCTTACATAAGGTGAATTCAAATCATATCATTG


AATCTGTTTTAAATTCTGTCATAGCTTAAGATTAGTGACTAAATATTGGCAGGTTTATGGAAGTAGGATGTAAACAA


GACAAAAACAAGGGTGGAACAAGTAATTTTAGTATATTATTCACTTGCACAGAGAAAAGTCATTCACACCTTCTTCA


GCTTTGTGAAGAAAATAGACTAAAATCCTGTTGATATAGCAACTATGTTTTCCGTTTCTTGTATAAAAATAAAGAAA


ACTTCCTATTAGGAATTAGCCAGACATTTTAATTTTCTCTCTTCTTTCTCTATTTTCCCTTACAGTCTCTTTGAAGG


CAGGCAAAATTTCTATAAAGTTTTAAGAATGTTTTAAGATTTTTTTATTGTGAAATATTCATAGACTCACAAGGAGT


TGCAAAAACAGTACAGAGATTTCCTGTGTATACATAACCCAACTTTCCCCAGTTACATATTAACCAAATACAGTATA


TTACCAAACCCAATAAACTGACATTGGCACAGTGCAATCAACTAGACTGTAGACCTTACTTGGATTTCACCTGTTTT


TGCACATGCTCTTTTACTGTGAGTCATTATCTGTTATTCTATGACATTAACCATGTCTATAGATTTATATAGTTACT


ACCACTATCAAGATAAAGAAGTGTTTCATCACCACAAAGTAACTTAAAGGATTATTTTTATAAAGTAATGACAAATG


TGTCAAAAGCCATTCCTGTGTTATATAGCAAGTATGTTTTGAGTTATTAAAACTCACTGATCATGTCTTTCAGTGTC


ATAACTTTGGGTTTCCCTCCCTAACTATAATAATCCTGATGAATTACAGTTGATGAATATGAGAATATCCAACTCTT


CCTGACTCTATAAATATATTGACTGAGATTGTAATATTTATGGTGTCTTAAGGGGCGCTTGTTTTATTATGATGATG


TGAACATGTTGAGAATAGTAAGAACAGCCCAGTTTAGCAAACAGGATATGAGTCTTCTATATCCAGCTCAATCGTTG


CCCCAACAGGGGACATCTGCCTTTGCTACTTAATTTTCCATTCTGGAAAATGTGAAGTGTATGAGAATGAATAATCG


TCTCCGATTTTCCAGCACATAATAATCTGAGGAGAGCAGGTACAGCAATTTAGGAGCTGTTTTCTTTTGGTTTCCAA


AAAAAGTTCCGTCCAGTGGTCTAAGTTAGTCGTTTACTAAGTGATAGAGCAATTGGCTATGCTTTTTGAACGGACTG


ATAATTATGTGGATGCAGCAAATAGGATATAGACAATGCATCTACTCCATTACAGTAAAAAAGACTCTGATAGCAGT


TAATCCACATACCAGGCACTTAGCTTAGGCACAGTTGGAGGAAATGGAATGGTAATAGACTGTAGTATGGCATGACA


GGAGCTGTAGCTTGAGATTCAGAATTCCAACTCTGCCTCTCAATATTTGAGTCCTCATGGCCAAGATATGTAAAGTG


CTCTGTGCAGGTCTTGGCAACCATCCACCACACACTTAGTATGCAATATCTATCTTTATTAGTCAAGGATCTGGAAA


GCTAGTTGATGAGACAAATGATAGAAACAAGAGTTCATTAGATGAAATAAAGTAATAAATGATGCAAGAATTTAAAA


AAGATTTAGAGAAGGAAAGGGAACAGAACTCACATGCAAGTAGAGCAACTGTGTATCAGATAATGTGCTAGCTGAGT


TAGAAACCATGTCTCATATTACCCTGAAAATAATTCTGCAAAGCTGTAGGTGTTATTTTTTTCATTTGACAGGTGAA


TTCATGAAGGCTTGAATATAGGGTTAAGTGAGTTGTTTCAATGTAGTTATTGATTCAAATCAAGATCTGAATGACTC


TAAATATGGTGCTATAGAGATTTGAAGTAGGATAAATAGGATTTGAAAAAAAGAAAAAATATATAGGGAAAGGAATT


GGTACACTGTAGCAGTGTCATAAATGAAGCTTCAGTTGTGTGATTCCAGATGATGTATGTGAGGCCTAATCAAACAG


CTTTGTGGAATCAAAATTTCTGCTCTTGTCTCCAACTGGGGACGAGTTGGCTCGGGATTAAGGTGGGCGACCTTGGG


AAGACTAGAGTCTAAGCAGGACTTTAGTCCCTCATAAGAATTATATGAGGATGTATATTTGCATACAAATTCCTGGG


CCCACCGAGATCTGCCAAATTGGAATGTGTGGTGATATCACCCAGGGAAACATAGAGAGCTGTTATAATTAGTCATG


AAATATTTAGTACTGAAATTATAGATTATGTTAAATAATCACTTATAGGGGACATAGCAGGGTTGGCAGGTTAACCA


TACAGCAAACAGGGTTGTAAGTCAGGGCCTAGAGAATTTTCAAGAGGCAGGAATTCTGCAGAATGAAGGCCTGGTCT


CATGCAGCACCATGGACAGCTCCGAGGCACTCTTGTTTCTCCAAAAACCTGAAATCAAAAACTTTGCTTTTCATCAT


GCAACATACCCATGTAACAATCCTGCATAGGTACTCCCTAGTCCAAAATTAAAGTTGAAAAAAAAAACTATACTTTC


ATTTGAATACAGTTCTCTTCGGCTTTACCAGCTCTACTCTGGAAGGAATATCTTTTACTCAATGAAAGGCCATCCCC


TGTTAATGCCTGGCCAGGTTCTCCTTATCAGTCATTCACTATCTTTGTGTGTGAGTGACTAAACATATAATGCTATG


TTTAGTGGATGGAGTAAGATTACCTTTGCAGAGGTTGTACTGGCTTACCCCTTTGGTTCTTGTAGTTTTCTTCTATT


AGAGTTTTTTCCATCCCTAGGTTTCTATACTGTTCAAATGGGTTTAAGATTCTTGAAGGTATTCCTCTGACCTTGTA


ATTTATGCTTGTCTCCTAGCACAACTTTTTTTTGTAAAGGAGGCACCAACTATGTGGTTTGCTGGCGATGGCATACA


CAAATCAGGTGGGAGGAATTAATGAGAGCAGCAATTCCAATATCTGGTTCTTCAAGATTAACTTGTATAGTTTAATT


CAGCATTCTAAATAAGCCTCATAGATTTAAAAATCTAGAATAAACCCACATTTTTAAAAAAAGTTTTATGTTATCTG


TGCTGATAATGCACGCTGTACATAATAAAATATTATTTTCTTTTTTTTAAATTTATTATTATACTTTAAGTTTTAGG


GCACATGTGCACAATGTGCAGGTTAGTTACATATGTATACATGTGCCATGCTGGTGCGCTGCACCCACTAACTCGTC


ATCTAGCTTAAGGTAAATCTCCCAATGCTATCCCTCCCCCTTCCCCCCACCCCACAGCAGTCCCCAGAGTGTGATAT


TCCCCTTCCTGTGTCCATGTGTTCTCATTGTTCAATTCCCAATATTATTTTCTAAGTGGCAGTGGAAGAAACATGGA


AAGTTCTACTTCATCCATCGGTGGATTAGAATTTGTATACCATGAGATGATTAATTTTCAAAACCAGTTTGAATCTC


ACAAAATAATGACCCTGTTTTTTGAAGGACAAGGCAGAACAAGGAACTAGGCTGTGCCACGTTCAAGTCACAATCTC


TAACATTTGTTTTGTTTTGTTTTGTTTTGTTTTGTTTTGTTTTGTTTTGTTTAATCTCTGTTGCTTGTTCACTTTCT


CTTGTAATCTGCATTGATTTGCTACCTGGCTATTTGTAGATTGACTTCGGCTGCCAGGAATGGAATGTTTTTCATAA


AGGAACATATGCCTTAATGAAAGTACCATAAGAAGGGAGTAGAGTGTGACCAATTGCCTAGGTAATAAGTAGTGACA


ACAATGATATTATTCTAGTATAAATGGAATCAGTTTTTCTTTGCCCAGGGGGCATGATAAAGAAGGCCTGGCTGGTA


TATACTAGGTGGGACACACCAACAGTGCCTAGAATGTCAATGGATCAAACCTGAGGGAACCAGAAGTTGAAAAGACA


TATCCCAAAAGAAAGCATTTGATGTTTAAGGGTTGGCTTACTTAGAACACAATGAAAAATATTACTAAAATTAAAAC


TATGATTTTAGCTATTTTTAAATATGACAAATTAAATAGCAGAACATTTTAATAAAACATTACTTAAGGTCCACAAT


TTTCTGTAAGTCTAATACATGGGTCATTAAAATAAAAAATTCCCCATGATTTATGGAATCAGATTTTTTTAATACAA


CGAATTCTAAATGGTTTTATAATGCCAATTCCAATTAATATCCTAATTATAACATGTCATCCAGAAGGGTTAATGAC


TAAATTTTATTAATATTTGTTTTCTATTTATTTTGATTTGTGCAGTTTATGTGTATAGTAACGATAGCTGCAAATTA


GATACCATTAGCATTAAATAAGGTATATATTTTAATAGAAAATTAAAGTTAAGTATTTGAGCTAGCCTAAAATATTC


AACAACTTAAATTTGTTTTTTGTGGATCACATTTTTTTGAGACAAAGTCTTGCTCTGCTGCCCAGGCTTGAGTGCAG


TGGTGCATTCATGGCTCACTGCCTCAACCATCCAGGCTCAGGTGATCCTCCCACCTCAGCCTCCCGGGTAGCTGAGG


CTACTGGCGCACGCCACCATGCCCAGCTAATTTTTTGTATTTTTTTTTAGAGATGGTGTTTCACCATCTGGTCTCAA


ACTCCTGAGCTCAAGCAATCTGCCCACCTTGGCCTCCCAAAATGCCGAGATTACAGGCGTGATCCAGTGCACTCACC


CCTGTGAACCACCATTAAATAGCTAATAAAAGATGCATGTCAATAAAAATAAACAACTTACTAGAATGATTATGTGA


AAATCATTTATTCTTCCAAAGCATGAATTTTCAAACACACCTTTTGTTACTGTTTTAAGAAGGGAATCATTTCCATA


TATTTGCATGTAAATCACTTTTAGTCTCAGAGAACTTTCCATAAAAGTTTTTTTATTACTGCTGTAACCGATAGAGC


TAGTGGACTATTAATTTAAAAAGCTGTACATAAAAACACATCTATAGCTCAAATAATCTAGGATACCTTTTAGTTTG


GGGAAATGTAGATGAAAATGAAGTAATTACAGAATCCTTGTTAATTTTCAGATTTAGACAGTCTAGGCAATATCTTT


CAGGAATGAAGAGATATGTGTTTTTTGGCATCTTGGTAGAGTATATTCCCATTGTAATTCTTTTGTGAAGTCTAGAC


CAGATGTGGCCATAAAAATAGACCCCTACTACAATAATATATTTCATAGATAATCCAATAAAGTCAAATCTTATTGC


AGTAGGCTTAGAACTCTGTTTGCACCCATGGAATTTATATCAGTTTTTGGCAAATCCTTTCATCTCTGAGGATACTT


TTTCATCTCACATATACCCTATTTTCTGAACATTTTGCCTTCAAAGTATACCTCATTTATCAAGAATTTCTCTTTAT


TCATCTGACTTATACAAGTGGCAATAACAACGTCTGGTTCCCATGAAGTAACCAGTGACCCTTTGAAATAATATAGC


GCTGGAAGAAAGAAAAGGAAAGGGAGACTGATCATTCAGCAACTCTTTAAAACCATGTCACCGTTAAACACATAGTT


TATTTTATCTTTTTTTTAGAATTGTGAAAACCTATATTAGCATCTTCACGGATGTCTCCTTTGTTTACATCCCCGCT


TCTGTGCCTTGCCTGCAGTAGAAAAAAAAAGGACATGTGTATCCCTATTCCCCATTGTCTTCTCATTCTACATGAGA


ATGAGAATTCTTTTAATTTCTTCTCTATCTACATGAACCCACTTCCATTATCTGTTTGTTCAGTTCTTTAAATGCCC


TGAAGCTAGCTCTGTGACTGGGCAGTTGAAAGTTCTGGACTTAGCATCAGGTTAATTTGAAAAATACTTATTGAGCC


ACCACCATATGTCAGCCACTACTGTAGATGTTTTGAATGTGTCAGTGAACAAAGCAGAAAAGATGTATGCCCTCTGG


ATTCTTGGGGGTCTCAAATAGTGAAAGACAGATACGATAAGTATATTGTATAGTATGTTCAAAAGTGATAAGTGCTG


TGAAAAAAAAGAAGAAGGGTAAAATAAGAGATGGCTCATGCTGGAGTACATTCCAATTTTAAATAGGGTATCATGGT


ATTCTTCATTGAGAAGGTGACATTTGAGCAAAGATCTCAAAGAATGAGGCATGGGGTTGAATCATGTAGATATCAGC


AGTAAACTCATTTTGGGTTCAGTAAACAGTCAATGCAGAATTCCTAAGCCATCGGTTTATCTGCTGTTTGGGGCTGG


TTATCTGCAGTGTGGCTAGAGTGAAGTAAGTGAGAGAGGTTTAGGAGAGAATGTTAGTGAGGTGAGGGTGGACCTTT


GAAGCCATTGTAAGGACGTTTTTCTCTTTCTAAGTGTGAGAAGATGATGCTGACTGAGACCAGGGTGATAAGAAATA


GTCATATTCTGAACGTGTTTGGAAGTGGGGCCAACAAGGATTTCTGGATGAATTGGATAAGGGGCATGGGAGAAAAA


TGGAGTCATGAATGGCTCCAACGTTTTTGCTCTGATTAACTGGAAGGGATAAAGTTGCCCTAAACTGAAATAATAAA


GACTATAGATAGAATGGGGCGATTAGGGAGGCATTAAATTTGGATATCTGTTAGACATATCACCAGATATATTGAAT


AGGCAATTGAATAAATACCTTTAGAGTTCAGCAAAAAAGGTCCAGGTTGGACGTTTAAATTTCGGAGGTGTTTGTAT


AAGATAACATTTAAAGCTGTGATATCAGATTGTATCACTAAGGAAGAATATAGATAGAAATGACAACGTGACTAAGG


ACTCTAACATTAAGAGGTGGATTGACAAAGGAGAAAACAGCACAGGATAATGAAAAGGAATGATCAGCCAGGCATGG


TGGCTCACACCTGTAATCCTAGTACTTTGGGAGGCCGAGGCGGGCAGATCACGAGGTCAGGAGTTGGAGACCAGCCT


GGCCAACATGGTGAAACCCCATCTCTACTAAAAATACAAAATTAGCTGGGTGTGGTGGCACACACCTGTAGTCCCAG


CTGCTCTGGAGGCTGAGGCAGAAGAATTGCTTGTACCTAGGAGACAGAGGTTGCAGTGAGCCAAAAGATTGTGCCAC


TGCGCTCCAACCTGGGCGATGGAGCGAGACTTCATCTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAAAAGAA


AAGGAGTGATCAATGAGATGGGAAGAAAAACAAAAGTGTGTGGTGTCCTCAAAAACTGACGTTCTATTTTCAAAACC


TACATTTTGGGTCTCCTTTTACTATATCCTGACTTTCTAGCTATATAACCAAAAGGAGAAAGCAGTAATTTTTTTAG


ATATAACATGTTAATAACTCTAAGGGTATTCAATGAATCTGAATAATTCAGTGGTATAATGTGAAAAAATATAGTAT


TCATAGGAAAAGGAACAGAAGTTAGCTCAGGAAATGACTTGAATGAACACCGAAGCCAAATCTCCAGCGCAGGTCCA


CGTATTATTTGTCTCAGTGGTTGAATTAGCAGCAAGATTCCTTAGTAGGATGAAAAAAGATGTTGTGAGCATCTGTA


TCTACATGACTGAATTAAATTCCTCCAACAATGAAATGTAGTTAACGTAGTATCTCGAAAAGAACCCTAAGTGGAAT


TCAGGGAACCTAAATTCCAACCATGGTTTTGCTGCTGACTGATTGCATTCACTTCAAATCTATCATTAACCTCCTTG


TGCCTCATTATCCTCATTTCACCAAATAAGAAAAATGAAATATTCCTCCTTCCCTACCTCACTAGGATGTTGTGGAT


TTAAATGTGTGAGAAGTGCTTGAGATGCATAAAATTTGATGGAGTGTTTTATTCATGAATTCAAGGCATCTGAAGTA


ATTTGACCATGATGGACAGTTGCTTCCTTGCACATTTTTTAGAGTGACATTTCCGTTACTGACCCACCCATTTATGC


AACATGTTGCCTAATCTAAATTTAGGTCAAAACAAATTGACCTTATAGGTAAGCATTATATCTATTAATATTGTATT


TTTGTATTATTTTATAATATTCATCATTCACCTATTTTCTCATGCAATATATGTTACTGAACACATATAGATTAAAA


AGCCTTCATCCCTAAATAACAATGATGGGACCTTCCATTTTTATATCCCTCTGGCATTTAAAATGTGCTTTTATAGC


CATCATCTCCATTGATCTCTCAGTCCCTTGAGGTTGATATGACAGATATGCTTTTTCCATTTTAAAATTACGGAACT


GACAGTCTCAGATGACTTTACCCTCCAACTACTGTGTGAAGAAGCAGGGTCTGGCACTGAGGTCTTCTGACATCCAG


TGTAGAGCACTATACTTCACAATATGGCCATTGGCTTACTTTATTACAAGCACTAAATATTTTCCACTGAATACGTA


ATACCTAGAGGAGAATGTCGTGTAAAACAGCAGCAGTAGAACAGAGGATTAAATGACCCATTTTCTTGAAGTTATCT


TAGTTTTAAAGGGTTTTTTCTTCATCACTAATGACCATCCCTGACTAAGAAATTATTCTCATAATACATGATAATAT


CTGCGTTTTCCAATGCGACAAGAATGTTAGGATGTCTATACATGATCTTGACAATCCCTAGCTCCATCACAATGTGT


CCAAATTCATTTTATTTGGCTAGACAGGCATGTAGTCTTACTTTCAATGGTTGGCTCTGCTGGATGCTATGTGATCT


AGAACCTGTCACTTACCCCTTCTAAACTTCAGGAATTTTTTATCCTTAAGATAACAAGAAAACTCGTACCTGTTTCA


AAGAGCTGTTTGTTCAATCACCTATCCATTGATTATCTTCTATATGCCAAATGTTTTTCTAGGTGCTGAATTACAGG


AATGAATCAGAAGCAAAAAGTTCTTACTCTCAAGGATCTTATATGCTAATGAAATAGATGTTAAAAAATAACAATTT


TTGTTTCATTTTATTTTATTTTATTTTGTTGAGACAGAGTCTCACTCTGTCACCCAGGCTGGAGTGCAGTGGCACAG


TCTCTGCTCACTGCAACCTCTGCCTCCCGGGTTCAAATGATTCTCCTGCCTCAGCCTACCGAGTAGCTGGGATTACA


GGCATGCGCCACCATGCCTGGCTAATTTTTGTATTTTTAGTAGAGATGGGGTTTCACCATATTGGCCAGGCTGTTCT


CGAGCTCCTGACCTCAGGTGATCTGCCCTCCACGGCCTCCCAAAGTGCTGGGATTACGGGCATGAGCCAGCGCACCT


GGCATTAAAAAGTAATAACAATTTTTAAATATCAATATGTCTTATACAGAAAAGTGAGCAGTGTGGTAGAGTGTAAC


TGGAATGTGAGTTGAGACATAACACCAGACAGAGAAGCCAGAGAAGGACTTTTGTTTGAGGAAATGACATTTGAAAA


GGAACCTGAATAGTGACAGAGGCAGATACCTAAAGAATATGTTCCAGACAAAGGAAACAAAAAGCGTGCAATTGCAT


AGTCAACTTAGCCTACTTGAGGAAAAGTGTGAGTGGATTTTGGTGATGGAGAGGTAAGTGCCAGGAGATGAAGGGAG


AGATCTGGCATGCATCAGATGATGTGCAGTCTTCCGGGACGTTGTAAAGAGTTGGGCTTTTTTTGTTTATAAATTAA


ATGTTAAGCCATTGGGGTTTTTAACCAGAGGAGTTATGTGATATGATCTATAGTTAAATTATGTTTGTTCTTGGATG


GAGTGTGCATTATGGGAATTTATACAGAAACAAGATTTCACATATATATATATATAAAACTCAGTGTCAATAGAAAA


TAATAAAAACAAATTTTATCCATTGATAATTCTGGCATTGATAGTAGTGGGTATGGTGGTAATAATTGTGTGTAACA


CTCAAACTTTCTGAAAACCTACACTTGATCTGTAAATCCAAAAGTATATGTAGCAAAAGCCATAATCTGCTCTTATT


TCTGCACCACTTGCACCAGTGTGGAGTGATAAGGCAAATTATTCAGGCACCTGTGTAAGCCTTCAGTGTCCTCACCC


CCTTGTTATAACTCTCCACTAATATTACATTGGTAAAGACGTCCCTGACCTATATGTCACTGAGACCTCAAAGAAAA


GAGCAAAGCTAAAGCGTAAGGGGGAAAAAAGCCAGCTTAAAAAGACTTAAAGGTTTCTGGGACCAAAAAAAAAAAAA


AAAAGTCTTTGAAAAATGAGAAAGGAAGGATAGAAGAAAAGATTCTCCTTTGGTCAATCTGGCCAACCTTTGGAAAT


AAAAAGTATTGTGTTGCAGCTAATAACTATTTGTCACTGCAGGCACTTGCTGATGTCTGCCCTTTAAAATGACCCAA


ACTCGTTGGCCTCGAAATCAGAAGCCAAGGAAAAAATCTTGGACATAATGTTTTCTGTAGAATTACCAATTTTCTCT


CTCTCTCTCTCTCTCTCTCTCTCCCTCCCTCTCTCTCTCTCTCTCCATATCTATATATATATAGATGTATATATATT


TTTTCTGTAGGAACTACCAATTCCTATCTATAGGGACTGATTGAGAAGTCCCTTATAGCAGTTTTTCTTTGGCTTTT


AGGATGCAATGATTATTGGTGAGAATAACTCTTTCATTTCACATTTGTCATTGGCTTATTTGAATGTAATCCTGATT


CAATCGTTATGATCTCCTTTAAGTAGGAAGAGAAGCTGGTATTACATTGTAGGATTTTAATTTTGTACTCATGAAAC


TTTTGAAAAACATTACTCATACTCTTCTGACTGTCAAATTGGCCTCTAAGAGGTCCACATCTCAAGAGGTATCAAGC


ATTGGTAACTATTTTTTGGTGTTGTTTTCTCATCATAAAATGTACTTTTATTAGGTGACTTTGGAAATTTTATTGAA


TCAATGCATGACACTGCCTCATTCTAGTAATCTGATGAAGCAAAGCTGAAAAACAAAATTTGAGGATTGTCAGTATA


TATACTTTTATTTGCAGTCAAGAGTTATGCTGCAAAAATGGTTTATTGAAGTAACAAAATTTTAGCTGATATATTAA


TCTGAAAGATACAGTATACATTTTTAGTATGGAAAAGATGAGGAAAAGGAGGTTCTCTTTCCTCTAGGTATCTAGAG


CAAACTGTAACTGTCCTTGGTATTTAATTTTTGGCTAAGGTACTGAGATTAGAGGTGGGGCCTTAGATATGATTAAT


TGTCAGACTGATAAGCTAGATATTTCATTGAGTTTCTGTTGTGCTCTTTCTTTCAGATCCTCTGTTCGATGCTTTGT


TATAAAGATTTGGGCATTTCAAAATCTTCTCCATATCTGGTGTCTTTCCAAACAGCAGGTCATAGACTTTACACAAA


GAGGAACGACACAGGTTATAAGTAGAAGTGTTTTAAACCCTGAGTTCCTATTTCAGTTTTGCTTTCTTAAACATATT


TTCCTTATGTGATAAATGCGAGTGTTGAATGGTGATAAATACCACCCATAGGCTTTAAAGCCTAAATGTTGAATTTG


ACACTGAGAGTTTAAAGGCATCATGAAAATTTCTCCAGAACTAATGTTCAAGCAATTTAGGTTTTACAGGCAACTCA


ATAGTTTTGAATGATGTAGTTATTTTGAAAAAGTCACCATAAAACGCTATGTTTAGGGAATTGGTACTTTGCATTTA


TCAGAAGATTGTAAATGTCAATCGATTGGCTTGCTATTTGGAATATAATTTTTTAAATTATAGTTCAAATCATTAGG


ATTTAATTCATGATTTTGTACTACAAACTAAATCTATGAAAAATATCAGATATTTATTTTAAATTAGAGGCATGTAA


AGGAAAATATAAATTTTGAAATGCCATTTTACTGGATTTTTCTCTTCAGCCCACCCTAGGCATTTGTTACATAAAAT


ATTTCTGAGGAAGTCTTCCACTGATTTTGTAAACAAACATGTTTTATTGAACAGTTCTTTGTTGACTAGATTAACAT


TGACCATTGTATGCAATGCATTCTCAAAATCTTAGAAGCTGGTTTTCTTTTTAATCATATAATTTTACTTGTTTTAC


AGTGAAATTAATGCATGTAAAAAGTATACCTATATAGAAAGTTAAAAGAATATTGCTAACTAGTTACTATACTTCCA


AATTGCCTATTTTCTGTGTCTTGCATTGGACAGTAGTGATTACCTCTAAAAGAAAATGGATGGTCTTTGTTTCATTG


AAGGGATGGATAATGGACATAACTGGCATTCTTGAGCAATGCAATTGCAAATACATGTCTTTGCATTTATGGTCCAA


TCATCTTCTTACTATGATAGCATATAATTGAAGGTTCAAATAAATGCCTCGTCCCTTCCTGTGGCATATTAAAGAGA


AAGAAAAATTAGAAATACTTTCAAAGCTACCTCACATACTAATGGTAGAGTTGTTTGAGTATTTAGGTGATTTAACA


AAGCTGATGTATTTTATTATGCTTGATCATTGAGGAAAATTTATTTATCGGAATGCTTTTGAGAGCATATATATTGT


CAGAGATAAACACAGCTGGATATTAAAGAGGTAAAAACAGATTTTATTCAATACCTCGTGAAATTAGGGGAGAGCTG


AGATCCATTCTAATTTGTGCAGAGGCGACTTGGTTGTTTTAAGGCAAGAAGGAGGGAGAAGGAGTGGGGGTTCATTC


GAGTTAGAGAAGTAAAAAAGTACAAAGGGCTGGACAGTGTAAATGTGATTAGGCCAGCTGTGTTAGCTGGAAGTTAT


TGAAGTTAGGATTCTATCTTCCCACAGAGAACAGGAGACAGAGGACTTATCCTTCTTGATGATGTCATTTGAAAAGA


ATGGCTTTCAGGTCCTTGAGTGAGAGACACTTCTGATTTCCAAGAGCTACATGTTCACAATTGTAAGCCCTTTTGAG


TAAATGTTCTAAGAAACGGAGGTAAGAGTCCTATCAACAGATGTGTGTTGGCTAGAACAAACATTAAATTTTCCTGG


CAGCACTGAGCTTTCTCAAGCAGGCACTTAAGGGAAGGCTAGGGTCATCCTAGGGACATGGCCTTCTGGGGCTAGAA


ACCATACTAGAGTTTAGTCAAGTCTTAGTGCAAGGGTTTGGACAGAGTTGTTAAGTGCTGAGAGTTCTGTATTTCTC


ACTGTCACAAAGGAAGATCAGAAGCTCCTGATACTTTTTTCATCAGTACAATTGAATATATAAATCCTATACACAAA


AATAAACTAAGCTTATACAAGCATATTGGTCAAGGAATGTTGCTGGCCTTATTAATTAGATAGCCCAGTTAAAAGAA


GAATTTTTTAATATAATTAATGTTAAAGTAGGATGATAGTATATAAAACGTGTCTACTGTCCTGAATACAAACTAAA


CTGTTTGGTTTAGCATTTACCTCAAGATCTCTTAATATCCCCCAAAGGGTCCCTAAAACCACAACTTATCTTTGTGC


TCATGAAGTAGAGAAGAGACAGTTAATAGACATTTCTAGCTGATAGACTGTTGTAGAGCAGAGAACGCTCTGTGTTT


TTGAAAATTAAACATATGAATTTGCCCCTCTTCCCCTATTAAGGAAGAAGAGTTTCTTAATTGTGCGAACACATCAA


GTGAACTATTCAATTAGATTTTTGTGACCCAGGGTATAAACATCTGGTTAAGGTTACATATTTCAAAGGAACAAAAC


ACTAGAAACTCTTGGTTTTAAATCTCATGGCTGGAGGATAATTTGCAGCAGAGATTTATCTGGCAAGCATACAGAAT


TGCTGAGACTGTTCTAAAGATGTAAGTGTGGGTGTTTGTGTCGTGAAAATAGCTGTTTACATCTATTAAGTGGATAC


CGATGGTTGAAAGTGCCGTCTATGTCAAGTTTTTACCAAATCAACTTTTGCCTCACTGTGTCAGACCATTTTACCTA


ATCAACTTGGACTGCTAATGTCCTTTCCCCTGGCACCACTATCTGTCTCTTTTGCAAAGCACAGAAACGGCATGCAT


GATTGTAGTTTATAAAACACATGTACCAATGTGGTCTACAGCTTCTGTTGAGTTCGAGAGGGTCAGTTTCTGTAATC


TCTTCTGGCACAGAGTCAAGAACAGCTTCACTTTCCTCCTGCTACCTCTCTACCCGTAAGTGTGAACCCATCACTTT


GCTAACACTCAGGAAGGGGATTACACAAAATAGAGCAGGAGCCCTCTGACCTGAATATGCATCTGAGCCCTAGCCAT


AGAGCTTCTGATTCAGTAGATCTGGGATGGGGCCTAAATATTTGCATTTTTAAGTGTATAAGTGATGCTGATGCTGC


TGGTTCCAGGACCACATTTTAAGAAATATCGATAAAGGTGGAGAATTAAACTGCAGCTCAGAAGACCTGAGTTCTTG


CCCCAGCTTGACTTTTACAATCTAGCAAATGGATAAAACTCGCAGGACTTCAGTTCTCTTCATCTACACAGTGAGTG


GTTAGATTGGCTTTGTAATTTAAAATTAAACAGGGTTTGATTCTGATTCACTACACAAGGTTCCAAAGAAGGAATGA


TATCTCCTTTCATTTCTTCACTTTGTCTTCTGTCCCTAGGTAATCTTATCTATGTTCCTGATTTAACCTAACTAATG


TTTCTGCAAAGCTTCTAATATTTACATCTCCAGCCCTGAAACTCTCATTTGAATGCTAGTCTTATATACATACCCCC


CTGCCTAATTGACATCTCCACTTAAATGTATCAGAGGCAACTCAGACTCAACAAGGACCAAACTGAATGTTCGACCT


TGTCCTTCAAACCCGATACACATCCAGGTTCCTCCATCCCAGTGAATGACACTATCCAGTTAAGCAAGCCAAAAGTC


TGGATTTTTTTTCCTCACTCTTCCTCACTGTCCGTCAACTACCATTATTAAATCTGTCACCTGGTCCTACTGATTTA


ACCTTCTCAATATCTCTACAGTTTTTCTTTATGCCCATTAGTATCCTAGTGCAAGCTACCATCGTCTCTCATTGGAA


TTAACACAGTAACCCCCCTACCCACCAGACTGTTCTGCCTACAGATAGTGTGATATTTAATAAATATAAATCTAGCC


TTGGCTAGATTTCTCCTTCAAAAGGTTCACATTAATTTTAGCCTTAAAATGGTGTGCAAAGCTTTGCATAGTCTGTC


CTTTGCTATGTTGGCAGTATTTTTTACTATCCCTCTCATCTGCTCATTCTCTGTACTCCAACTACACTAACTTTGTT


TTTTTTTTTTTTTAGATTTCTCTAACTACAGTGCTGTAATCTCTTTTTCCTTTGCACGTACTATTCCGTTTGTCAGG


GAATCTGCTCACTGTCTCCACCCACTCCACACACTCACGTTTTCCTGCCCGTCTTACCGGTCTTGATCGGTTGTCAC


TTGCTCAGGAAGGTTTCCCTGGTCACCCCCTCCACAAATTGAATTAAGTCCTCTTGCTGCATGCTGTCCTAGTGCTC


TTTATTTTCCTCTCCTCATCCTTAATTCAGTTTGTAATTACATGTTATTTGTGTGAGGATTTGATTATTATCTGTGT


CACCCACTAGATATTGGGCATTCTTTACTTACTCACCACTGAATTCATAGAACCACAGTAATTGTACACAACAAATA


TTCAAGAGAAATTTATTGAATTGATGAATGAAAAGTTGTACCTTAACATGTTCCTGACATGTATCCAAAAAAGAGCT


CCCCTTTGGGGTCTATTAGGACTTTGGACCTAGGTAAACGTAACCCTAGTTTCGCTCAGGTTTAAACAGTAGAAAGT


AATTGGGTCTCTTTTGCATGTGGCTTTCCTAAGGGCTAACCCTGTCTTCGGAATGAGTCAATACAGCAGAGCTGTTG


AAAGCAGACTCTAGCTTCGGACAACGTTGGTCCGAATCATGGTTCCGTCATTTCTTAGCTGTGTGATTTAGAATAAA


TTAATGTTTTAAAGCTTTGATTTCCTCTTCCTTAATCTGGAGATGCTAATAAAGCCAACTTCGTAGAGGTATTGCGA


TGAGTAAATAAGCATAATTTGCTGTAAACACCTTGCAGATTGCCTGTTGTATGCTAACTAATCAATAAATTGAAGCT


CTTAACATCATTATATTAGATATTTCCAGCATTGAGTATACTATCAGGCATGTGGTAGAAGCTCAATATAAAGTTTT


GTTAAATTGAATAGATTCCATATATGGTATTTCTACAGCATTATGCTCCTTATTTAAGTGTCTCTAAGTATTTTTTA


AGTATCACCTCACAAAAGACAGATGTTTAATTCATTACACATGTGAATTGTTTTAGATAGAAAATAAAATAAAAAAT


TCAAACATTGAAATCAATAGTGTACCTTACCTTAGGATTACACCATAAAATTTCTACCAATCGAGAATAAAGTGTAC


AGTCTATTTCCTTTCTAATACTTTTAACGCAACAAATGTTTATTGAACACTTACTACTTCTAATCTATGACAGACAT


AAAGATGAATAAAGCATGCCACAATGTTTAAAGGAGCTCACTATATCATAAGAAAGCGGATTCACACAGACAACTCT


ATAAGATAAAGTGGTAAATTTAGGCTGGCCTGTGAAACAAAGGATTATAGGTATAGTTAAGAGGTGGAATTTATTTT


ACTTCGAGGATTTCAGTTACCTTTATATTCTTTGTCTAACCTTTCATGTTTCTCTTTCTTCAGAAACAGAGCACCTT


TTTCCTGACACATTCATTTCCCCCTATGGAGTAGAGCAGTTGTTTTCAAAGTGTGGGTCCCAGATCAGCATCACGGG


GATGGTTAGAAATGCCCATTCTTGAGCCTCACAACAGACCTACTGAAACAGAAATTCTTGGAGAGTGGAGCCCGCAG


ATCTGTGATCAAGCCCTGTAGGCAATTCTAACGCACACTCAAGTTAAAGAACCACGGGAAGAAAGGTCCATCCTGTA


ACAAGACAGATTTTTTTCATTAGCATCAATTTTGATCATTTATATATATATATATATATATATATATATATATATAT


ATATGCATGCTCACAAAACCATTCACCTTACTAGGTTTTAGTATTCCCCTTCCTGTATTCATGTGGTATGTATGTAT


ACAAGATGAACACACATTTACCTGAGACAAGGTAAGACTACACATGTCTCATTTGGGGACCAGAGGCTGTAATCTTA


CTCAAGGTCAAAGCGTCTTCACTGCTTTCTTTCACTGCTTTTCAAAAGTAAAATTTCCATGTAGGTGTCATTTGTTT


TCTTTTTGTGTTTTAGAAAACCGATTAAGGGGTGAAGTCTGGCTAAACTTAGTGTCAGGACATTTACTTAGATAAAA


TTATTTTAATTTATCTTGTAATGTTCAATGTGAGAAGAAAAGTCCTTATGAGTAGTGTATTCCTTAAATAACAACAA


TTTAAAAACTACCACTGAAGTCTGTCAGAGTAGTTTTGCCTCATTTGTCTAGATAAGAGAAAAAAGGTTCACATTAG


GGATTGCAATTTGTCTGCCAAAGTGCAGTTTATTTATTCAGAAACATTTAGAGAGGAATGTGTCAGTTCTGTTGCAG


GCACTGTGCTGTGACGGGGAGCTCAAGATGATCTCAAAAAATTTCACAGATGGGGTGGGCAGGGGGCACAGAGAGAT


GTATTTAGTGGTTCAGATACTATTTAGACTGTGGCCAGCATTTCTCTAAATGCAATCCAGATAACACCTTACAGAAT


CATCTGGGCAGCTTGATAAAAGCTGTAGACTCCTACCCTTCATCCCAAACCTATTGAATCAGTGTCTGTGTGTGAAG


ACCTAGATTGTGACTGGTAATTATACCAAAGTCTTAGAAGCAACTCTAGGCCAGTAATACTCACATCAGAATCAGCT


GGAGGGTTTGCTATACCACAGATTGCTAGGTTAGCCTTCAGAGTTGCTGGTCCAGTAACTTTGGTGCAGGTCCAGAT


TTTGCATTTCCAGCAAGTTACCAGGTGATACTGATGCTGCTGGCCTTGATCGTGCTTTGAAAACCACTGCTTTAGCT


ACGCTATAGGAAAAACCATATAAGGCTTTTATACTGGCCAATGACTTCACAGGCCTGAATTTTAGAAAGCCCCCTTC


TGCAGCTTGGCCTATAGATTCGAAGGAAACAGAACTAACACAAGAAAGCTAGTTAGGAGCTAGTTAAAAATCATCCT


GACTTGCCAAGGAAAGGTGCTGAAGACCTGGGTCACAGAGCAAATGCAAAACACTAGGACTTTGTCCCTAGTTCACC


ATTAAATCAACTTATTTTCTCTTACCCCCTCATATTCACGTTTACTCCTTACTTTGTAGTGGTTGGACAAAAATCAA


ATAAATCTGAGAATTCTAAAATGCACACCCTTGTTTATTTTCTAACTCAAATATGCCACTGTTGTCTGTGCTCTGTC


AAGATTTCAACACATCTTTTTCTCCTGTTTGCTTTTCCTTTTGGCATATAGTGAGTGTGTGTATACACACACACACA


CACACATTTTTTTTGACTCCTTCCAATGCCCTTCTGCTCTCCGCAGATACACTTCTGCATTCTGAATAAAACCGAAT


ACATATATATATATATATATATATATATATATATATATATATATATGCACACATATTTTGAAAACCTTATTTGAAAA


GAAAGCTTTCGGAGGAAACGTTATTTAGCCACTTAATCGAGTCTTTTACTGAGGGACTTTTTGTCGTCCCCTAACTT


CCTGTCAGCAGTCCACAGGCAGCAGGAATAATGTGGGAGAAGATCAACAGGCTTATTTCAGGAGGTCAGGGGCCAGT


GCCACCACCTGCAGGTGGAGACATCAGAAGCAGGAAGCAGCCCACCAGCTGCAGGGAGAACTCCCCACAGAGCCTAA


CCAAGATGAAGGGACTTGTAAATTTCAACCCTCCCTTTTGGCTTTTGTGCTAAAAATGTGAATATTGAGGTCTGCCC


TGATTAAGAACTAGATACATTCCTCTTTGTGACTGCCACACTTCCTTAGCGTATTCATTTTTTGTCTTTCGATCTCA


AGTTATTATTTTCAAATGCATTGCACGTATCTACCATGGATACCATTGCAATTGGAAGGAGCAAACGTTTTGTATGT


TTACTTGACAAAGAGAAGTGACTGCCCAAGCCACACAGAGTTCTGCACAAATCAGTAACTTCTAACGAACGTTTGCA


CTTCCGGGCTTGTTCTCTACCTATTTCAGTCGATGCATTTGTATTATTTACTTCAAACTCCAATACTAATAATGCCT


CAATCAGGTTGCAATTGGGATTTGAGCAGCCAGAATTTCAGAAATTTGGTTTGGTCCATATCTGTGACAGGTCAGTA


AATCAGAGAAGCAAGGGTTTGGTTGCTATTATAATACATTGCTTACCTATCAATTTAGTTATCAGCCAAGGTGGTTG


TTATCATCCAAAGTGGCTCATTAACCACCTTGGAGACTCAGTATACAATTGCAAGTAACCCTGGAAGTTGTAAATAA


TCCCAACTGAATTTGTATGAGTTTGGTAAGGTTAAGTGGAAACCAGCTGCTTAGGGCCTTGATTATAAATGAAGTTA


GGAGTGGAAGAAGTAACAAAACCCCAGGCAAATTCATTAAACATTTTTTCCCTTCAACTTTATGCTCACGAATGTGT


TGAGACTCTTCTGAATCCATAAAACACCTTTCAGCATCATCTGGGCAGCTTGATAAAGGCTGTAGACTGCCTGCCCT


TCATCCCAAACCTACTGAATCAGTGTCTGTGTGTGAAGACCTAGATTCTGACTGGTAGTTATACCAAAGTCTTAGAA


GCAACTCTAGGCCAGTAGTACTCACGTCAGAATCAGCTGGAGGGTTTGCTATACCACAGATTGCTAGGCTAGCCTTC


AAAGTTGCTGGTCCAGTAACTTTGGTGCAGGTCCAGAATTTGCATTTCTAGCAAGTTACCAGGTGATGCTGATGCTG


CTGGCCTTGATCATGCTGTGAAAACCACTGCTTTAGCTAGGCTATAAGAAACCATATAACATGGACAAGGCAAATGA


AAAGGTTGGAATTCTTCTGAATCCCAACACATTTGTGAGCATAAAGTCGAAGGGAAAATGATTCTTCTGAATCCAGA


CACATTTGTTTAAGGATAAACTGTTTTTTCCTTCTGAAAATTTAATGTCTGATTCTCGTTCATTCATTCATCAAAAG


TTATCAACTATCAACTATAGGTAGGAACTGTGCAATATGCTGGTGATAAAGAGATGAAAGACACAGCCCCTCCCTTC


AACCAGCTCCTAGTTGAGGTGGCAAGTCAGCTGTATAATCAAGTAATTGCAAGACTGTGCACTGAAAAGGGTGACCA


CAGGGTGTGATGGCCACCCAGGGCTGTGGAATCAGTCCCAAAATGAAGAATGAAAGCAGGGAAGGGTAATTCAGAAA


GAAGAAACAGTTCGCATAAAGACCCATAGATAAACATCAATCAGATGTGGTTAAGACAAAAGTAAGTTTCTGGAGGC


TGAGGACCTTCTCAGCTATATGTTTGCAGTGCTTGGTATAGGGCTTTATGCATCTACATGGAAGACAGAAAGGGCCA


CATCACAGTGGACAAGGCAAATGAGAAGGAGGCAGTATCAGAAGATGAGGGTACACCGGAGATCCTAGTTATATATG


GGCATTGTGTTCATCTCAGGAGTTACTGAGTAATGGGACCTTGACTCAAATGAATCTCAAGTCTGTTTTTGCCTAAT


CTTGGTTTTAGGACTAGGATTAGCATACAACCGCACTAGGAGCCTAGTTATACGAAAGGCTGCATTGCGGACCTGAT


ACAGTTCAATATACATACTGTCACCTTGCAAATAGGGTTACGTTAGTTCTCAAGACTGCCAATCCTCTGTGCTCTAA


TCCTTTTGGCTTTTTTTTTTTTTTTTTTAACTGTCTCACTCTGTCATCCAGGTGAAGTGCCCTGGGATGATCTAAGC


TCACTGAAACCTCCGCGTCCCAGGTTCAGGTGATTCTCATGCCACAGCCTCCCAAGTAGCTGGGATTACAGGTGCTC


TGGCGCCACCAGGCCCTGCTAAGTTTTGCATTTTTAGTAGAGACAGGGTTTCACCATGTTGCCCAGACTGATCTCAA


ACGCCTGACCTCAAGTGATCTGCCCGCTTTCCTTTGGCTTTTAACACTATAGAGCAAGGGTCCCCAGCCCTGGGGCC


ACAGACCAGTACAGGTCAGTGACCTGTTAGGAACCGGGGCCCCACATCAGGAGGTGAGCTGCAGGGCCGCCAGCATT


ACCACTTGAGCTCCACCTTCTATCAGCTCAGCAGCGGTATTAGATTCTCATAGGATCACGAACCCTATTGTGAACTG


TCCACACGAGGGATCTAGGTTGTGTGCTCCTTATGAGAATCTAATGCCTGAAGATCTGAGGTGCAACAGTTTTATCC


CCAAACCATCGCCTCCCACGCACCTCTCCCCACAACCCCACCCGCCCCTGATCCATGGAAAAATTGTCTTCCTCTAA


ACCAGTCTCTGGTGCCGAAAAGGTTGGGGATTGCTGCTATAGGGCGATGGTTTTCACATTTGATCCTGCATCAAAAT


TTCCAGGTGACTCATTAAAATACTGATTGCTGTGCCCCACTCGTAGGAGTTCTGATAAGGTAGCTGTGGGGTGAGAC


CTGAGAATTTACTTTTCTAATAAGTTCCCAGGTCATGCTGATATTGCTTTGATAACCAAAGCAATATCAGCTTTGGT


TATCAATATATAACCAAAGCCACATAGAGGGGGAGAAGTTCCTTGGGTTTAGCCCAGTGTTTACTGCGACCACCAAA


ATTGCTGGAGCTTAACCATGGCTCAGAGAGTTATGTTCTGTTCACTCTGTAGGCTGCTATTCCCTGTCACCTTTTGA


ACTATGATGGAGGGGAAGAGCTGCCAGCTCAGGAGATTTCACTTTTTTCTCTGCATAATTGAAAATCCAGAAACACA


GGGTTTTGGGAAAGCTATAGAACAGATCATCAGTGATCAGTGTTTAATAAAGTAAAGCAATAAACTTTACTGTGTAA


AATAGGATACTTTATTATATAAATTTTGTCCCCTTCCCCCACCTCACAGGCCAATAAAATAATATACTTCTTGTCCC


TGGGTGTAATGTTATTGGAAACCTTTGAATGTAGGAGAGGCATGGGCTTGTAAGTTGCAGAAAACTGCTAGCCTAGG


ATTGAGAATTTCATGGATAATCCAAAAATAGATGATTTTACAGTTATAAGCCTTACGTGAACTTGAGGTAAGAAAAC


ACAATGCCTTTATAGTCTTCTCAGTTGCTCCACATGCCCTCTGAGATTCTGTTCTGCCCAGCCTCTCTGGTTGTCAC


ATCTCTGGGCATTAACAGAAAGTTCACATACTCTTTGTCTCTGATGATAATCCTTCTAGGTCCATATAGAAGATCCC


TATCCAAACCATCCCCCAAACAAACCTATTGGTTAAATATTTTCTCCACCGAAGGCACTTTCTTAGATTCTAAGTGC


CCTGTAGGCAGGCTTCCTCTCTGATTTGGGAGAGTACAAATTGCGACAAGGTTAAATCATAGCCTGGGAATTTGACC


TAAAATTCACTCTTCTCCCATATGCATTCATGAACCTTCTGCTGGTTTTTAAAAGAAGCTACTTAATGTCAGCTCGA


AGAGGTTGGAAGGGGTTAAAAACATGAGCATGGCAGTAAGAAGATTTATGAAGGATCTGAGAAGATTATGACTTGAT


CAGATGGTATTTTGTCAGCTAGCCACATTTGTGAAGACTTGAAAACTAGGGAGGCTTGTCCTTCTAAGAGGGGGCAC


TGCTGGGACCTGGATTCTGTGGAACCGTATTAGTAGAATAAACAATAACCTTTGCTTGTATCAAATGAACTTCTATT


CTCATGTGTCTTTTGACATATTTTTATTAATCATATCACTGGGACCTCCTTGCTGAAAGATATCTCCGTTCCCCATT


CTGATGACTCCCAACTAGGAGTGAGATCAAATGAAGATGGCATGGACCATTTCTCCATGTGACAGCTCTCTGTGGTT


GCCTTTTAACACTTCTAATGCCCTTTCTCTTAAGAATTCCCATTTGTCGTCTGGCACTGGTGCTGTGATCAATAAAA


ATGTAATGGAGTGAGGCTTAGAAACATGAGGAAATTTACTCAAGCTATCCATTTATTGATGTGTCCATTTGTGTTGT


CAGGGAAGAAAAACTTTTTCACTCCCCTCTTAGGTTCATTACTTGGGGGGCTGCAAATTAAACTGACGACAGATAGA


TTGGCAATAGAAAAGACAAAGTTTATTCAGAGAAGTATGTGGGAGCTCACAGAAAACATAGCTCAATGAAGTTAGAA


TTTGGGGCTTATGTACTATTTTAACAAGGGTTTTGAAAAGAAGAGTGTTAGAATTTCAAGCCACAAAGTTGGTGGGA


AATATGAAAGAAACTAATGAAAGGTAATGTTTGTTTTAGTAAAGTCTGTTTATGTAATTTTCTTTTCCCAGCGACAA


CTTCTCATCTCTGGTGACAGGAGTCACTCTTTACCCCTGGTGCAAGAAACTTTCCTTAAAGGAGGATTTAAAACAGT


TGAATTATTTCAGAAATCTTTGCTTTTAGGCAGATAGGGGGAGTACAGAAAAAGCCCCTTCCCGTATCTGTTGATCC


TCAAATGGCTTTAGCTCAAAACAATTTTTACATCACGATGGCATAATGTAGATCTCTTCAATGTGTTCATTTATTCC


ACAGATATTTGTGAAGTACATGATATATGCCAGGTACTTGGGATACAAGAATACATAAGTATGTCCCTAGTCTCGTA


GAACTTACACTCTAGTAGTGAGCTAGAGAATAAATGATATTATTTATTATATGCATACACATATGATTTCAGATAGT


GATCCATATTGGAAATAAAGCTGGTTAAGGGAATAGAAAATGATATTGAAGGTGGACTTGTTTAGATTGGGTGGATT


GGCATGGCTTCTCTAGGGGGCAGTATTTGAGCAGATATGAGAGCAGATATTCTCCAATTTGGGCAAAAACATTCCAG


GCAGAGGAAACAAGGGCAAGGGCACTGAGTTCAAAAGAGACTTGACCTAGCCAACAAATAGCAAGGATTCCAGTGTA


AGAGAAGGTGGGGAAGGAAGGAGGTGCAAGTATAGGCAAGGGCAAGATCACACGGGATCTTGCAGGCCGTGATAAAA


GAATTTAACTCTTTCATAATTTTGACAGGACATCATTGAAGAATTTAGAAAAATAGAGTGGAGATACCTGATCTGCT


TTCTTCAAAGAGTTCATTCATCATTGCTGAGTAGAGGTTAGACTGAAATGGAAGCAATAGTGAATACAGGGAGATAG


CACAGGAAGCCACGTTACTAGTCCACATCAGAGGTGGTTCAGACTAGGGTGGAGTGGTGGGGTCAGTTAGAGAGCTG


GTATTTAGGATACATTTTAAAGACAAAGCTGACAGGATTTGCTGTGATGAATTAGATGTAAAGTATGAGAATAATTG


AGAATTATTTCTAAGTTCTTTGCTGGGGAAAAGTGGAGGAGGAAAAAGTTAGGGTACAAGGTGTGATGAAATCAAGA


GTCTCTCTTATTATCAGAGTCTCATTAGATATCCAAGTGGAAATGCTGGAAAGAAAGTTGGGTAGATCAGTCTGAAG


CTGAAGACAGATACTGTGACTGGAATAATAACGTAAGAGTTGGCCGGACACAGTGGCTCACTCCTATAATCCCAGCA


CTTTGGGAGGCCAGGATAGGAGAATTACTTGAGCCCAGGAGTCCAAGACCAGCCTGGGTAACACAGCGAGACCTCGC


CTCTACACACACACACGCGCGCAAAAATTAATCGGGTGTGGTGGCACATGCCTGTAGTCCCAGATACTCAGGAGGCC


GAGGCTGAAGGATCACTTGAGCCTGGGAAGTCAAGGCTGCAGTGAGCCGTGATCACACCGCTGCACTCCAGCCTGGG


CAACAGAGTGAGACCCTGTCTCAAAATAAATAAATAAATAATGTGGCAGTCATAGGCCCTTAGATGGTTTTTAAAGA


CATGGGACTGGATGAAGTCTTCTAGGAGGAGAGTTTGGGAAAAGAGCCCGAGAATTGACTGCACCTTTCAAAACAGG


AGGAAGAAAAAAAATACTCAAAGGAGACAAAAGCAACTTCTGTGATTTATAGAGAAAACCAGGCAAGTGGGATGAAG


AAAGTCCTTCATGATAGAATCAAAAACAGTGTCAAATGTTGAAAATACAATTAGACAAACACAAAAGAATAGACCAT


TGGGTTTTGCAATATGGAGCTCATACTTGACCTTGATAAAAGACATTTTCACTGGAAGCATGCATCAAAAAACTATT


TGTGGTAGGTTAAAATGTAGTAGGAGGTGAGGATATACAGACAGTGGCTTTCACTGTGCAGATACTGCTGCTCATGC


ACTAATTAAAAGACATTTGTTGAGTATCTACTATGTTGTATCCATTGCTAAATAGTAACAGCTGGGTTTAGTCAGGT


AGAACAGCATCAAAATCATTATAGTATCCCAAGATAGGTACAGTAAAATCTGTGAAGGAATCAGAGTAGTCTCTTCT


CCAACAGAGCGTAAGACCCAGCTTCACGGAGAAGGTGGTAGATTAGCTCATCTGGGAGGCTGAGTAGAAGCTTGTCA


TTATAGAGGGAGAACATCAGAAGTGTGGACAACAGCTTGAATAACCTTGAAAGGACAAAAGAGGACGGTCTGCCCTG


GAAATATTAAGAAGTCTCACATGATTAGACACAAGATATTAGGGGAAAGGCATAAGGTGAATTGAGTCAATGAGGTC


AAAGAGAAGCTAGCTGGAGGAACAGGCGATCATAAAATGAGTAAAAGTATATATTCAAAGATTCTTTTTAGAAGGGC


TACACAGGATGGATAAGGGGAGAGAGAGAGTTGAGGCACAGAGACAAATTGGAAAGGTGCAATCATAACCAGAGACA


TGAAAAACCCATAGAAATCTGATGTAGATTATGTGGTCCCCAAGGTTGAACAATTAAGTACGCTTTCAGTTGTTATG


CCCATGATATTAACATATTTTATAACTGCAATAAGTGCTGAAGCTAAAGATAAATACAAACAATGTAATTCTTATTC


TGTGAGAAAATGTTGTAGCTGGAAGTTAAACATGTTTCTTAGCTAAAGAAAAATATTGTGTGATCTGGATTACTTAA


TGTTATAATTTAGCAACAAAATGTTGACATTGAGCCTTGCATAATCAAAAAAGTAGTCTATTCAATAACCACATTCT


CAGAAAAAAAACAAGAAAATATTAGAAACAATGATAAATTATCGTAGTAATTTAATTCAGTATTCTATTGTTTTATT


TGGATTTAGGAAAGGCAGAAATGTTGAAATATTAATATATATCCCTGTAATAATATAATTTGTGTCTGAGAGGTAGG


AATGAGGGCATGAGGTCAAAGTTTGATAATGAACTTCAAAGCTATAACTATGATCAGGAAATTAAAATTGGACAATA


AATTCCTAGAATCGTCAGGAGTTGCTTGTGAAATCGAGAAAGGAAAGGATATACACAAAAATAAAGAACAGCCAATG


CTCTCAAAGGAGTCTAACTTTTATAATAGTCTTCTGTGTTAGAGCTGAACTCTTCTGGTTTAGAAGGACACTCTGTT


GCCTGGAAATAGGGCATGGAAAAAGTCATCAGAGTCATGTCATCTTTCATTCTTCCCATGAACGAAATCGAGGCCCT


GAAAAGTCACCTGTGTTTGCTGTATTTTATTGCAACTAAGATGTGCATTTTTAAATTGATACATAATAATTGTACAT


ATTTGTGGGATACATGTGATATTTTGATGCATGCATACCATGTGTAATTATCAAATAAGGATATTTCTGTATCCGTC


ACCTCAAACATTTACCATTGCTTTGTGTTGGGAACATTTCACGTATTTTATTATAGCTATTTTGAAATACAAAATAG


ATTGTCATTAACTATAGTCACCCTACTGGATGCACCTTGTTTTTAATATTTCTGAAAACAGATACGTCTCATAGGTG


ATGGTGTCACAGCTGTGCATTAGTTATTATTGCCTGTGCAGGTGCAAACGTAACTATTCATATTGTTGTCAATTAAT


TAAATAGTTACATTTATTTATATGCGTTTATTATACTAATAAACACAATATTGAGATAGTTGAGCTCTAGTTTTGAC


TCTGCTGTTAACTAGCTGCGTTACTTTAATTTACTTAACTAATTTGGCTTTCAAATTCCTGATAAGTAAAATTACAA


CATGAGTTTCTCCTGCTATAATAGCCTGAGAAATCGGTGAAACACATGAATTCAGATGTTGATGCTATTTAATAGCG


GGATTCCAGATATCTACTTGCCATTATGGGAGGGAGAGAGGAGGTGGACTGGAGGCTGTGATTTCCCTAGGAGGTTG


TTAAAATTGGCCAGGTGAGGAAAGCTGAGACAGACCATAAATATGAAGCATGATACCTAGCCCTCAGTGTTGAAAGA


AAATCAAATCTCATCTTTGTGGTCTAAATATCAGTATGATACAATCCTCTGTGTAGACATATCCTCTGCCCTATTGT


TTTCTTTCTAAAAGCTAAAGCCCAGGTGTGATCACATCCCTCCGTTATTTACAAATTTCTGATGATGATGATTCTTC


TAATATCTACATTCCTTACCATTACCATGATGTCCAAAACCTATTATAATCTATTCGTCTCCAAGTGCCATGTTGTG


GTCACCCTATGCACCCTCTAAACCCACCATATGACCTTCCCGCTGCTACTTGAATACAGTTGGCCCTCTACCTCGTT


GTGTCTTTGCATTGCCTATTTAATTGCCTTTCCATTCTCTAAATCACTCTTTCGCTGGACCAGCAACATCAGCACCA


TCTGGGAATTCATTAGAAATATAGATCCTCAGGCCTCATCTCAGACCTGCTTGATCAGAAACATTGGAGAGTGGAGA


TGAGCAGCCTGTATTTTTATCAGCCCTCTAGGTAATTTGATGCACACTAAAGTTTGAGAACCACTGGTCTAGAGCAT


TCTTCTTTAACTCTCTTCTAAAAATTATTAGAATGAATTCGAGGGACGGGATCTCCTTGAAAGCCAAGAACATTTCT


TTGTCATCTTTCTGACTTCAGGGCGTAGTACACTTTTTGGCCCATAATTAAAGCTCGATAAATGCATTCTATGCCAA


TAAATCAGCTAATCAAATATATTATTCATGCCCTTGAGGTATCTGAAATTTGTTTGCAGAATGTAATATATAACTAT


AGAGTAACAAGAGAATAATTTATTGCCATAGATAATAAAACAATATCCTCTGTATAATAAATCCTAGCCTCTGCTCA


ATGGGCAAAAACGGGACTGGGGTTTCAGATTTTAAAAAGATTATTGGTAATTAAATCACCTGGAGAAGCACTTGCTG


CAGAGATGGGACTTGAAGCATCATAATAAACTGTTGTTTATTATGATTCGGTCAGAGCTGATGGAATCACAGGGATT


GTGTGAGGTATGGAAAGTGGTTGACATTGAATTCCAGGCTGCACAGTTGGGACTTGATATGATAACCAAAAAGAAAG


AATGTCTGGGGTGGTAGCAAGCTCTAAATTTAGACAATCTAGGCTTATCCTAAGGAGAATATAGATACAGATAACTG


AAGTTTGATTAAAGGGAACCTGGTGTATCACAAATAGTAAAAAGCTGTAGTTAGTCTATGCAGCTATCAGCTAGCCA


CATAATACTTTTGGGCAAATACATTATAAACCAAAAGAATGACATGGCTTATCTCTGTAACAAAGTGGCTCATTGTT


CTTTATTCTACTGTTATCCTTAAGAAAAAAATTTTAGTAAATTTGTTATGCTATACTCAACTTCAAGAAGGGATAGC


GCTTATAAAAAAATTGTTTAAAGAAACAGGCCTATTTCTCTTTGGGAGAAGCCACGGAGAAACGAAAAGAATGGAAC


GTGTGTTTCTGCCCAGATGGCAATAAAATGTAGGGTAAATTTCTGTCTTTTAAAACTGTATTTTTTCCATCCCTCTG


TATATACACATATCCTAGGACTGTTATAAAATGCTGCATGCGTATGTGAAAATGGAACCTTATTGGGCTGTTTGATG


GACCTTTAAAATATATTTGTTGGTTTGGGGTACATACTAGCTATGCAATATAATCCGCATTATTTCTTATGTAAACA


ATGGATAAACTGTTTCACAGTCCAGACATTTATTTGGTCACTGTTTGTAGAATGTCTATTTTATTTACTTCTGAATT


TGTATTCCAGAGATCTGCCTTCAATGTTGGATACTTCCACTGTAATATTCTAGGAGATGCTCACTTTCTTTTTCAGC


ATCTGACACAGTACCATCTGCCTCCTCTTTTCTTGCCACAAGTAATAACAATTTTATAAAGGAGGATCACATTACAG


AATTATAGGTGGTAAACTTTCTACCACCAGATTTACCCAAGAACCTGAAACACATTTTTTCAAAAGGAAATAGAATG


TCCTTCTTGTGACTACATCGGAATTTTGCTTGCAGCATTATGCTTTTTTTTTCCCCCTAGTGTAGCTAGCCATGTGG


AACTGAAGCCATTAGCCAGCTCCTCATCCTATAAATGCTATTACCTGGGAAAAGAGGCAGAAAATATACTCTCTTCT


CCAGTTAGAGTCTAAAGGAAGAGAACAATATGGGTAGTTGTGTTTACCACAAATTGATAGAACTCCTTTATTTTAAA


TGCTAAAACCAAATAACTTGTTTATATGACTTCAACATTGACTATCACACACTGTTGCATGATAACAGAGTGAAAAC


TACCTCTATTGGATTTAAGTGGGGAATCTATGTCTCATTCTCATTCTTTTTTTACTGTGGAAACTAGTTGATTCCAG


GATCAGCCTTAGCTCCAACTTGCCACACTTTGAGTTTTGGTTTTTCACTTGCATTGTCACAGGAAACTTCTATAGGA


TAAATCGAGGAAGATTTTACTCTGCAACGTGTTGCAGAATTAAACATTTAAAGTGGCAAAACCTTCGTGTGTAGGTT


GTCTCCCCAGAGAATGTAAAAATGAATTGAAGGCAGCACCTAATAGGTAAACGACAGCCAATCAAACAAGAACAAAT


GAAATTTGACTGGCAAAATCAAATTGAAAATGTATAACGCTGAATCTCAGAATATAGGAGGATGCATAGAAACTAAG


CTGTACTATTATAAAAGTCATAGCCATTGAAAAATAATGACTGGTTAATTTGGTTTTCTTTACCTCATGGATGTGAA


TGGTTAGATTTTGATGTTGGTGTTATTTGACGTGTGTTTGTCAAGAAGTTGCCTTAGTCGGCTCGCATTTAGGATAA


AAAAAATATTTTAAGAAATGTTTAAGAGATTATGTTGGAGACATTAGAAACAAAATAATTATGCAGAGGGCAGGACT


ATCAAAATATAATAGAAAAATTACACCGCTCTTTTATGATTTCCTCCTTTTTGGCATTTAACACAAAACTTTATGAT


TACACACACCACGCACTCCAGAAATGCTTAAAGGAAGATGAGAGGAAAATTCAATAGAAGTAGCAGGCATTTCTGTG


AGGACAGCAGAATGATCACTTCATCTCTGTATTTTTTTTTTTTCAAATTTCTGTATCTGTACAATGTCTTTTCCAGC


TCTAATATTCTGTGATTTGGTAATTTCCGCACTCAGATTTTCTTTAATGAATTTTGTATGATATTACCTATTTTTAT


ACCAGATATTACCTGGCTCTAATTTCTTTTTCACCCTAGGAAATAAAAGTATCGGGTGAATTTCCCATTTTCTTATG


TTATTGATACAGGTCTCTGTTGGATATCCCCACGATTAACTTTCCTGCAGCATGTTCGATGGTGGCTTAAAGAAGAA


ACCATGTATCAGAGCCCCTTGTCTATATAGACTTTTAGATAAAGAGAAATACATATCACAGAATTATTCTGGGCGCA


TAGAGTCTCTAAATGCAAAAAAAAAATTGTATTGTAGCTGTTGATTCTTCTCAGATAGATTGAGTGTAGAGAGAGAG


CATTCCAAAAACTGAGCAGAAGAAACACAGTCTGAATCAAATAACATGAAATTTTAGCTAACAAGTAAATAACACTT


TTTTCAGAATATGCAAATAATATTGGTTTATTATGAAAAATGTATAGGCTGATAGATGAGCATAGAGAAAAAATTAT


AAATATCTTCTTTAATATCACTTTCCCCAGCAAACCACTTTTAACATTTTGATACATTTTCATGTTCAAACATTTCC


TAATAGTCTTTTTTCCTGTTATATAAATATGAATTTTAAACATTCGTATGTTTATGAAAAGGCAATAAGATACTGCT


CTTTTATAACAGGCTTTCTGAACTTCACAACATGCAGTGTATTCTAACATGCTCCTTGTGTTCTTAACTAATAAAAA


ACCTCACGTTATTTAAAAAACCATCTTAAACATAATTATCCATTAAGAGAAGAGGTTGGGGTAGAGAGTTTCAGACT


ATCAATATCAAAGTTATATTTTCTGTAAGTATTTTAATTTTTAAGTGTAGCTATAGGTATATGATTATAAAACCAAT


AGCAGAGAAAAGATACCACCTTTGAATATAGTTTTCCTTGGTTCCATGAAAATGGCCTCCTTTCTTTTTGCCAGTCC


CTCAGTATCATTAACTCATTTTTCTGTAAATGCCATCATTGTATCACATGTCCTCAGGAAAAGGCACTTTTCTCTTT


TAAGCTAGTGTTTGTTCTTGTTCTAATTTTATGGCAATTTAACGAGTAACAATCCTGTTTCTATAAATACTGTTTCC


TAATTAATCTATTGCATTCTATCCATGAGAATTTAGATGACTTTCTTTGTAAGAGAAATCTCTGTAGCATGAGATTC


TTCTTTGCTCTTAAATTTCATTCTTTCACATTTTTAAATGACCTGATAGTATTTTGTTGTATTTGTGCTGATTTTTT


TTAACCAATCTTACCTTGTTGAACATGTAAGTTGTTTCTAATATTTGCAATGATCAAAATGTGGATCCAACTTCACT


AAAGCGTTAAGAATCTAAAACAAAACAAAGAACAAAAAGTTGGCTGTCATCTTGCTTGGACCACCCCGTGAGTTACT


ATTTTCTTGTTTCCGGTCACAGTTCATCCTAAATCATTTCAGTACACAAAATGTTTTTTAAAGTTTGGGACAGGGGG


TAGAGAATGTCAATTATTCCTCCAAGGCAGTCATATGAGCATTGAGTATCATGTGGAATAGTTGTTACTTGTAAAGT


TATGGGGCATCAAACCCAGTCAATATGTTTCTGGAATTGAAAAAGTCCCTGGACATTCTAATGATACTGTTGTTCAC


TTTGCACCTACTGTTACCACTACTTTGATCTGTCAACACTGCCCGTAATGGTTAATTTTGTGCATCAACTTGACTGG


GCTACAAGGTGCCCAGATATTTGGTCAAACATTATTCTGGGTGATTCTGTGCAAGTGTTATCAGATGAGATTAACAT


TTAAATTGGTAGACTGAGTAAAGTAGATTGCCCTTCCTAATGTGAGCAGACTTCATGTAATTAATTAAAGGCCTGAA


TAGAAGAAAAACACTGACCCTCCCCTGAGCAAAAGGGAATCGTTCTGCCCGACTGCCTTCAAACTGGGACATGGGCT


TTTTCCTGCCTTCAGACTTTAACCACAATATTAGCTGTTCTTGTATCTCAAGTCTGCTCTACTTCGATTGGAACTAC


ACTATCAGCTCTCTCGGGTCTCCAGCTTGCTTGTTCACCCTGTATACCTTGGGAGTTGTCAGTCTCCATAGTTGCCT


CCATAATTGCATGAGCCAATTTCTTACCACATACAAACACACACAGAGACACACACACACACACACACACACACACA


CACACATATAATTATATATGTGTGTGTATACATATTCTCTTATTCCTTTTGTTTCTCTAAGGAACCCTAATATACTC


CTTATTACTCTTTCTACTGCCTTAGAGATCTTCAAGGCCAAGAGCGTAATCCTCCATCCTGGCTCTTTTTCCTAATC


ATTAATGATCAACTCATAGCCATTTAGCTCAACTAAAAATAATTTGTTCATGAAGCTTTACACTCCCACATACTGAG


GAACGTGGTACCTAAGATCAAACAGTCACTGCCTCATCAAATGCATTCCTCTTCAACCCCATACAAATGTCCCCAGA


TGGAACTCACACCATAAAAATATTAGATCCCATTGACTTTTCTGCTTTCTCAAGGATCATTGCAGAGCTTGAAAAAG


ATGGCTCCTCCCTTTGCCTAAGCAGGTTAACTTGGTGTAAAAGTACATGTAAGATTTGGCACAAAGGAAAATAAATC


AGTTTTGCCTGGGTCCTAAGAAACATTTCCCTCTGCCTCATGGTAATTGTACCTGCCAGTTGATTGCATTACTCAAG


TGGAGACCATGAAGTGAAGTGGTAGAACAAGAAGAAATCCCTATAATTTTATTAAGTATGGTGAAAAATACAGATAT


GTAGAGAAATGACTGGGATTAGATGGAGCAAAACATAATTCGAGATCCTGATACAAATTGTACTTCCTGGCTCAAGG


GAGGGAGCAGAACATTCCCTGCTACATGGGAATAATAATAAATGCCTGATAAAAATGCAGATATATCATAGACTACA


GAAGCTGAAGTGGATTCTTATGGTCCCCTACTCAGACAGCCTCTCCTTCAGATGAAGAAACTGAAGCACAGAAAGCT


CATCCTAGTGTTTCATATTGAAAAACCCATTCAAGTCTATTTTAATAACCTGTTACCAAAAATGAGGGAAATAATTT


AACTTTAATGTTTCACTTTGCATTACCCTTTTCCTGACTAGACTTCTATCCTTTTCTTGAGTTGAGCTCATTAACTA


CTATGAAATTATGGTTATGGGTAGAGGTTAATTTTATACCTGTCCATCTTCTGGCATCTTATTTACACTAAAAATCA


TTTTTAAATGGCTTCATTTTAAAAAATATTATTTCAGTTGACATTTTAAAAGACACATCATTTATGTACTACAGAAT


ATGCATTTTATACTCTCCTTTATTAATTTTATTATTTTCCAGGTAGACCAATCAAATGAATCAGAAATTCTTGGTTA


GATCTATTAGACAGCATAAGTATGTTTTTCATCATTAAATTAAGATGAAAACACAATTTTACTTTAAAGTGTTTGAC


GTTTCCAGCCTTTATAAAGTCAACACTTAATCACATCTGAAATTTGCAGGAAAAAATTTTGAAAGCCTTCAATTATT


AACATTATTTCGGGAGAAAAAGCCACTTTGCCGCAGAACTTTCACTTTTCTCTCGTGAATTAAGTCTGATACAAATT


ATTCATTATGGTGAAGTTTAAACATAATAGAGTCTAGCTACTTCCACAAAAATACTATTCAATGAGTTTCTACATTG


ACATCTAACTGACCTTGTAATTAATGTTGTACACGATCCTTTTATTATATGCTGGATTATCAAATATGACTTATTAG


CAGTATAAAGACACAAAGTTCTGAAATGTAATTTATAGCCATGAAAAGGAACTGAGCTTTGTGTGACAGTTAAATTT


GAAGAGATCAGGTGATTATTATGAAGCATGAATAATAATGCATATTAAACTCACGTTTTTGTTTAAATCATTAATAT


GATTGTTTTAGAAGAAAGTCTACCTCTATCATATGGGCAATAAAATGTGTATAAGAGCAAACATTTGTGTATGTGAA


ATAACTCAAATTAAAACCAGTTTTCCACATTAATTCTTACAGTTTTTAAAATTTAAATCATTTAATGTATCACACAT


AGCTTTATTCATTTTAAGCTATAAATGTTACAATTTCTGTTTAAGCTGTTAATATAAGCTTTGTAAGAGCAATTCTG


TATAAATATAGAATTGTCATTATTCACTAATAGCTACCATTTATTTAGTGCTTGTTGAGTGCAAAAGTACTGCACTG


AGATCTTTGCATATGTTCTCTTAATGTTACAATTCTTACCTGAGGCATTTCTGTTTCTGCTGGAATATGGTCTCTCT


GAATTGAACAAGGGAGGCATTTTTGGTTGTTATGATGAAAGGTGGACACTGCTGGCACTAACGTGTGTTGGTAAGCG


ACTAGACTCTTCATGATGCGTAAACAGTGTTTCCTCATACCCCTGCACATTCAAATAGAGGAAAACCTTGTTTATAG


TTAATTTCCCCTAGAATGTAAATCCATTTAACATATAAACACAAAGCGTGTTTTGTGTGGATGTTTTTTACTGGAGC


AGGGAGACAGGAGAGGAAATGCAGTTTTGATAGTTGCTGAATTTTTCAAGAATGCAGCAATTATAGAACAATTTCTA


GAAGTTTCCTAGGAGCTCTTTTCCATAGCAGAAAACTAGGACTTAATAGCCTTGCGACTCATGGTACTTGAGTGTTC


CATACAACTCACCTATATTCAGGGGACATTTGAAAAATTCTACATTAAAGGGGATTCTTAACATAGGCGCAAGTGTC


TGGCATCTTCAATAGGTCTTCTGGTGTGGCCATGAAAACATTCACACGTTTCAAAGTATTTTAAAATAAAATAAAAC


ATATATTGTTGTGTTATGAATTATTTTCTTTCTTTTTTATATGATGGTTAGATCACTGTGCAGACAAGTTTATGAGA


TCTATTCATTTCATTTCAGGGTGGTAAATGAGGGTGTTACTAAATGTTGGTTCTAAAAAGGGAGACATTGGGTATTA


CAGAATTCAGAACAGCTCTAAGCCCTGTGCACATTTAGCATTAGAGGACACAGGCAAATCTGGCCTCCAGTCCTGGC


AGCTTCTTCACTATGTATATGATGTTGGGTGGGTTGCTTTACCTCTCTAGTTTTTACTTTTATTTCTAAGCTAGGGC


TATTCATAGTTCTTTATCATGTGGTTACTGTGAAGTAGCAAAGCACCTGACATAATTAGAGCAGATAAAATGCTCAA


CAAATATTGCTTATCAGAAGGATTATGTATTACCTCCCGAAATACATCAAAAATATATTTTCCAATTCAAAGAATAT


GTAGTACAAAAATCATGCCTAAATTAACAGAGTTGCAGTAGCCCAAGGAGAGAAGATAATCATTATTGATTTCTTCT


TCCTTTTTGCTAAGCAGTTCTCTGTCTCTGCCTCCTCAGTTGTTGTCCATCCCACTCCCCCACTCCCAAGCCCTGAA


CTCTGAGGGGTTTGCTGCCGTGGCCGGTTCTGTAGTCATTGCTGTCCAATGATGAAAACACAAAATACTGCAACAGA


ACACTATGCCTGTCAGCTTAGCTCCCTTCTTTCTGCTAAATGACACTCAATCCTATTCTTTTGTTCTAAAGGATATC


CTAAATGAATAGCCACTGGGGGGAAAAAAGGTTATATAAGATTGTGCACTGTGTGAAACTGATGCAACCAGATCAAT


GATGTGAATTTCTCTTAACTATTTACTGGGATCTAGAAACAGGTCTCTCAACTTAGCAGTGTTTACGAATATAATAG


GCCTTCCTTATACATACATCTGAAGCCAATCTGAGTCAGGAAGAGTCGTGGTCTGATAAATATTTTGAAAACTTGCA


TTTGTTCTATTAAAGCAAACTGTTTATTAATAGTGTGCCTTATTTTTTAAAGCAAAACATTTATAAACAGTAGTCAT


TACAGGCACTTCAGTGTACGGAGTGATCAATTGTTAGACCTTTAGGAATCGATTGTTTCGTGGAGCTTCGGCTTATA


ATTGAAATGTCATCAGAAGGAGTGTAAGACATAGCTTCAGGAGAGGCCATTTATGCGCTTTTGTTTTCAGCTAAGTT


ATAGAGTCATCATGTGAAGAAAGATTCTTCTCTTAGTAAAAATCCTTTAATGGTTGGAATAACACTTGATATTTAAT


ATTTCTTTCTACTTTATATCCACATTTATTCAAGTGCTAACGCGTGTGGGGCAGCAATGAAGCACTTTATTCCAACA


TTATAGTTCTCATATCTGCGTATGATTATTTTTCATTTATCGTTAGCATATATATAATGATGACTTTTAAAGTACAC


TGTATTATATTCACTGGAATAATGATTAGCTATTAATAATTTGAACACTATCCAGGAAATTACTGAACATGTCCTAC


AAGATAAACCTCGTATGATATTGTCTCCAAATAACAGTGCTAACCAAGAAGAGTGCTACCAAGTTCAAAAGTAATCA


CAGGGAGTAACCTAAATGCAGCTCCGTTGGGTTAAAAATAGTTTCTCTAAATTATATGTTCCCTAAGTTTGAGATCG


ATTTCTACAAGGGGATAAAATGTTTTTATAAATTCTCAGTGATAAGTCATGTGATTAAGAACCCCCAACTTTTTTTC


CAAAGACATTTGCATCTCTGATCAAAATAACAAGATCCAGTCTTAGTTATAAATTGGGGAATTTTCATCAAAATAAG


GAGCTACTCGTTGCATAAGAAGACTAGTACAACTTAAAGCCAATTTAATTTCAATGAATGCATGATCAGCTCCATTG


CCAATTGAGTGTTTTTCTTATTCATCAGAAGATGGGTTCATCATCGTGTTTCATATCAACTGTTCTCAAACCATATT


GCCCATTTAAATAAATATAGATTTGTCTCGAAATTCTAAATTCATGTCATATTTCATAAATAGCCTATGGTCCTATT


TATTACTTTAAAATATTATAGATATAATATTTTTATTCTAAAGTAACTGTGTTATACAACCAAATTATTCATTTAAA


TATGTGACTTTTTAAATAAGTAAATGACTTATTTAAGTAAAGTCATTAAAATTTTCCAGTCTGTCCTTCATCCACCT


GATCTTTGAATGAGTTAGGAACAATACAGGAAACTAATACAAACTTAATTTTGATTACAAAAGATGAAATCATTCTG


TTATTTATTCAACACACTATGTGTCAATAAAATCTTATACTGTGAAAGAATTCGTCTAAGTCCATTTGCTGTTGCTT


GTAACAGAATACCTGAAAATGGGTAATTTACAAAGAAAAGGAGTTTACTTCTTACAGTTACGGAGGCTGAGAAGTCC


AAGGTTGAGGGGCCACATCTGGTCAGAGCCTTCTCCCATCCAAGTACTAACCAGGTCGAACCTCACTTAGCTTCCAA


GATCAGATAAGAGTGGGCGCGTTTAGGCTGGTGTGGCTGTAGACTTGTTAGAGCCTTTTTGCTCATGGGGACACAGC


AGAGCCCTGAGGCAGTGCAGGACATTACATGGCAAGAAGGCTGAGTATTCTAATGTGTTCATGTCTCTCTTCCTGTT


CTTATAAAATCATGAATCCTACTCCCATGATAACCCATTAACCTATTAATTTATGAATGGATGAATCCATTCATAAG


GGCAGAGCCCTCATGATGCAATCACCTCTTAAAGGCACAATCTCCCGGTGCTGCCACGTTGGGGATTAAGTTTCCAA


CACATGAAATTTGGGGGACACATTTAAACTATAGCAAAATTGTAATAAAATGTTATATAGAAGCAATGTTCTTACTG


ATTATAATTGTTATATTGGTAAAGTGTTAAGTCCTCTAACCAAGGGATATATTTCAGCTTATTATAATAGTTTTAAA


TTTACAATTCAATATGAATAACATCTGGTAAAAGTTCTTTTCAAGAAATGGGAAAATTAGAAATGTTTAGAAGAAAA


TAATTCAATAAATATTAAGTTCAAACTGGATTCATAGTTTATGTGAAATTCTGGGAACCAATTGCAAGGGGAGAAAA


TAGTTACAATAGCAATGGTGAGGATGAGAATAAGAGCAGGTATCAACGTTAATTGAGGGTGTGTTATAGTTCTAATC


GTGCTATGCCCACTACATGACTTTTCCCTGTGTGAGGTTTCCGAGCTTCTTCGTAGTAATCCTAAATTGAGCTGGAG


AGAGGCTAGGGTAACTTACTCACGCTCATAGAGCCATAGAGTAGTAAAACCTGTATTTGAACTCTGGCCTGTCTGAC


ATCATTCTGTGGTCTTTTAAACCACCACTGCTTCTCCATATTAAAACTCCAAATCTAGGTGAAAAGAAGAAAACTCA


GAACATGTTCTGCAACAAAATATAACAAAATATAATGTATATAAACACTTATACATAATATCACTAATATCTTTACT


ATGAAAAGACTCTGATACGAACATTTTACATAATTCATGCAGAAGTGTTAATCACATTGTCTGTGATGAGCTGTGTA


TGTATCTGATAAAATTCTGGCAACCAGACATCAACTCGTAGGCATAGATCTGTAACACTAAATATTTGCCTCGAGAA


ACTTAAAGAAATAAAGACAAATGAATGAATAGGAACATGGAACTGAGTACAAGATAAAATCCTCCTAAAGCAATCGA


TGTACTTGCTGCTGCGTTATTGTTCTAAGCAAAAGAAGCATGGCGAAGGGAGATGTGAAGCTAAAAACAGAATGCTT


AGAAGGAGATGATAGCAGGAGGGAAGCAAAGATGGGACCAAGCTCCCAAAAGGCGGGCTTTGAACAAACAAAACAGA


AAGCTAAGCCTTTGACGGATGCACGGGATGCAAGAAACTTTAGTCAGGAAAGAGGAGGCGAAGAAAAACCCTCCAAA


GAAAAGGTGAACAATATTTTAATAGGCAAATTGACAGATAGCAAGAGATATATACCATGCTATGTTTTCTCATTGCA


GCTGAAGACAAACTGGGGTTATTTATGCTTTGAAAAAGCGTAAATCTAAAAAACAATTGTGGAGGAAGAAGCGATGA


AAACACGTGTTAATACAGAAAACATGGCTCCAAGGCTTTAAACTTCCTTGTGAGATAAATGCATTTACATTTTCCGT


AGTAGCTAATATATATATATATACATATATATATATATATCTGGGAAAATAATACACAGTGATTTTCTTTCTTTTTT


TCATCTACTTATGTGAGAAAAAAGTAGGCTATCTGAAAGCTTTTCAGTTAAATGAGGAAGAAAGTTAGGTGATCTTG


TAAATAATATATATGTTCAAGATAATGTAAGGCCCTTGTGTAGTTTTCAAAACTTATCTTTAATAGCAGTTTCTTCT


GGGGATGGGGTAGTTCAAAGTTGAAATGTTAGAAAGATGTTAACTTTTTTTCCTTTTTACTTCTCCCTTTCAGGATG


GAATTAACAAATTTGATTACAAATAGATCTCAGAGAGAGGCAAATGCATTGAATCCAGAAGTAACATAAAATTAGAT


CATGTTTAGTTATGCCCGAGGTCACATGGTGATAAAAATGAGGATAAACTGAAATTGTCTGTGAGCCAGATTAGTTT


ATTTTATGCCAGTCCTAGGAAAAAGACACATCATGGTAGGATACATCCTTTTTTTTTTTAATTATACTTTAAGTTTT


AGGGTACATGTGCACAGTGTGCAAGTTAGTTACATATGTATACCTGTGCCATGTTGGAGTGCTGCACCCATTAACTC


TTCATTTAACATTAGGTATATCTCCTAATGCTGTCCCTCCCCCCTCCCCCCACCCCACAACAGTTCCCAGGGTGTGA


TGTTCCCCTTCCTGTGTCCATGTGTTCTCATTGTTCCATTCCCACCTAAGAGTGAGAACATGCGCTGTTTGGTTTTT


TGTCCTTGCGATAGTTTACTGAGAATGATGTATTCCAGTTTCATCCATGTCCCTACAAAGGACATGAACTCATCATT


TTTTCTGGCTGCATAGTATTCCATGGTGTATATGTGCCACATTTTCTTAATCCAGTCTATCATTGTTGGACATTTGG


GTTGGTTCCAAGTCTTTGCTATTGTGAATAGAGCCGCAATAAACATATGTGTGCACGTGTCTTTATAGCAGCATGAT


TTATAGTCCTTTGGGTATATACCCAGTAATGGGATGGCTGGGTCAAATGGTATTTCTAGTTCTAGGCCCCTGAGGAA


TCGCCACACTGCCTTCCACAATGAACAGACACTTCTCAAAAGAAGACATTTATGCAGCCAAAAAACACATGAAAAAA


TGCTCACCATCACTGGCCATCAGAGACATGCAAATCAAAACCACAATGAGATACCATCTCACACCAGTTAGAATGGC


AATCATTAAAAAGTCAGGAAACAACAGGTGCTGGAGAGGATGGGGAGAAATAGGAACACTTTTACACTGTTGGTGGG


ATTGTAAACTAGTACATTCTTAACATCAATTTATTCCTAAAAGCAATGTTCATAGGGCACACTGTAGGCCATAGATT


TGCCTCACAAATTTAAAGGCCTAAGCCCTCAACATGCACAGCAGTATACTCAGAGACTATTTGTAAAGATGACGATT


CTGGAACTTTTTAATGACCCCAATCATTAGCAATGATTAAAATTAATATTCAACATTCTATATTTACCAAGGCAATA


AAGTAGACTAATCTATTTTAAAAGGGTTTTAAAATGAAGAGATGAAACAAACCAAATGATTTTGATTTAAACTTCAT


GAAAACATAAGTTGCATTAATCAGGTGATTTTGTTTTATGAGCATTCTGATTGAAGTGATCATATTTAGCCCCGGGA


GAATAAGAGAAGGTAAAGTATGGGTATGGCACTGAATTTACTGAGATGATTATATTGTTTGAGTTAAAGAACTTGTA


TTAAGAAACAAGTATGTGCCAAACATTGTGCTAGGAGCAAGCAATGCTAAAATTACATGGGTAGAAAGAGAGAATGA


AATATCTAGAATGAGTTAGAAACATCAGTGTTTTCCAATGTGGAGCCCTGACTTCACATGAAAATTCTCATTTTCAA


ACAAGGTAGTTTATGAAAACTGGACTATTAGCAAGACAGGGTGGGCATGCCATCAGTATAGTACCTGGTGTAAAACT


AGAAATTTTAATCATTTGTGCTTTCATTTTATAATCAGTAAAATCCAAGGTAGGACAAACTTTTACTTTTTCTGTAT


AATGGACTGATATTTGAATTATACCCAACTTTAATTTTTTGCCAGAAATTATGCTTTATTGTTTCTCTAAAATGGTA


CTATAGATCTTTATTTATTTCTATATATTTATATGATTTTTACATATATGTGCATTTACATGTATATACATCCATAA


ACTATATACATATATACACATAAATTACAAATATGTGTACCTACGTACATATATATGCATATATCACGCAAATACAG


GCACATTTTCAATACCCCTTTTTGATTTTTTTCCTTGAAGAGCATAGCATCTGAATTTATTATGGATTTATTTTTAA


TTTATGGTCATGTTCTTTGAGTGCTTTTGGTGTTTATCTGGTTGCCCCAAACTCGCTAGCATTGTAAAGAAGATGTG


CAAAGCCTGAATCTAGACTGACTTTCATATTGACTTTATTAGTCAAAAAAAGTAGATGAAAATGTAACAGTCCGTGT


TAAAAATGGGAATAAGACAGATGTTCAAGCCCTAGCTTCAGCAGTTTTTAGCTGAGATTTACTGGAAGAAAACATTT


TCTGAACTGTAAAACATGCAAAATGCCTACGTGACAGACTTCATTAACATTATTAAATGCTATGATATAGTAAAAGA


ATTTGTAAACTGTCAAGTGCTTTGTCAACATTAGGAATTTAGTTATTATAGGTATTTCCATATACATGTTGTATTTA


GAATTCCCTTTAATTTTATACTTAGGGTTGATTTGTATTTTAACTAAGTCACTTTATATATCTGGTCCCATTATACA


AGTATACTTTTCCTTAGGATAAGAAAGTGATCTTTATATATGTTTATCAACCCAAATGCCCATCAGTGATGGACTGG


ATAAAGAAAAGGTGGCACATACACACCATGGAATACTATGAATCCATAAAAAAGAACGAGTTCATGTCCTTTGAAGG


GACATGGATAAAGCTGGAAGCCATCATCCTCAGCAAACTAACACAGGAATGGAAAAACAGACACCGCATTTTCTCAC


TCATAATTGGGAGTTGAGCAATGAGAACACATGGACACCGGGAGGGGAACATCACACACCGAGGCCTGTCGCGAGGT


GGGGGGCAAGGGGAGGGAGAGCATTAGGACAAATACCTAATGCATGCGGGGCTTAAAACCTAAATGACGGGTTCATA


GGTGCAGCAAACCACTATGGCACATGTGTACCTATGTAACAAATCTGCACGTTCTGCACATGTTTCCCAGAACTTAA


AATTTAAAAAACTTTAAAAAAAGAACTGTAGATACTGATCCAAAAAAAATGTTCATTAATGGGGGTTAAATGATTAT


TTCTAAGTAGACTACTCTTGAACCCTTGAATCTTTAAGAATTTTCTTTGCTATTGAAGCCATTCAAACTCTATTTTA


TTAAAGCTGTCGTTATTCTAGTAGATTTTAAACAGTAATACCTGAATACATTAGAAATATGCAAATCTGCATTACAT


ATGGCATCTGCAGAGCAGAGGAGTTTGGTCATCTGGACTCATGCTAAAGTCTCCGAAAAATCCGCTTGTCTTAATGA


TGGTTGACTCGCTAATGCTATGCGTATATAGTCTTATTTTAAGTGATTGAATGATGTGGCTAATAACCCCTCTGTTA


GATGCACTCAGAACCTCACCTACCTGGGTCCTCAGCTCTCCAGTGAAATCTCTACTTTAAGTTTATTTTCTAACATG


GTAAGAGCCTTCAGTTTATGTTATGCTCAGGCCCGTCACTGTGAATAAAATATTAGAAATGGACTTTTTTTTTTTGT


ATTTTTTTAATGGATCCCTTGGAACTTTAAAAAAATTATTTATTTGAGCTTTCTACTGTTATCACAGTGTCTCCTAA


GCATGGCCTCCCGTTTTTTGTTGGTAATATAATTCTTACGTTATTCAAATTAGTAACCATTATTTTTCTCATGGCTA


GAATTCTGGAAACTATTAGGAAATCACTGAGCATAATTGAATGGCTGTTTATTTGAAGAGCTATGTCAAGGCAGCAT


AGAGTTGTATTTTCTTGCAGGGGCTCTGGAGTCAAAGAGCCTGGGTTCAAACCTTGGCTCCACCACTTTCTATCTGT


GGGGCATTGGGCGTGTTACATTTGTGAAACTTTTGTTTCTCCATTTGTAAAGTGAGGTTTGGGGGATGATTAAACCA


GATAACTCATGTGAAATATTTAATGGAAATGTATTTGGTAGGGGATTTATTATTTTTAAATTTGGATTGCACATGAC


ACATGTCAGGGATCATGCTATGCATTTTGGATAGAAAGATGGCTAAGATATCATGCCTGACTCTTAAAAACTTACCT


AATGGTAAATGACGAGTTAATGGGTGCAGCACACCAACATGGCACATGTATACGTGTGTAACTAACCTGCATGTTGT


GCACATGAACCCTAAAACTTAAAGTATAATAAAAAAAAAAACTTATAATCAACTGTAGTAGAAAGAGATCTGAATGG


CTTGCCATTTAGCTAGGCACATGGTATATGTGCTTAATTCATACTAGCAGCCACTACAGTTGTCATGATTAATAATG


AGCTTCCAACTGCACAGAATGCTTTTAATCCATAGAAAATCAAATCAGAAACAAGTTTTTGTAAAATTAATGTGAAA


GGAGCAACAATTAAAATGCAAGATTGACATTTATTTTCTAAATTGGTTCTATTTTCTTTCACATTTACAAAATTTAT


AAGAAAATTCTTTATTTCTATGTGATATAAAGAACTAGAATGTACTTTGATGTGAATTATTGTTGCCAGTGCTGTTC


AACTTTTATCCATAATTTACTAAGCACCTACATTTAGACAAAGGCATTATCCATCCCTTTGGGGAGGATTTCAGATG


ATTCATACACAGACCTGGTCTCGAGGAATTTAAGATTTTCTTTGGGGAGGGAAATAAGGACTTTAACCAACTCAAGA


GTACTTAGAGAATTTTCTGAAAATAATTTTATCAATGAAAACTTGTTATATTAAAAGAAACTGTCATTCTGACTTCC


ACAAATCTAGGCTTGAAACTATGGATAACGAGATATTTTCTATTACTCTCACTCACGTCATTTTCACAAAGTGAAAA


GGTACATTTTAACTAGTGAAAGAATAGAGGAAATGGAAGTAGCTCGAGGCAGTGGACGATGATTCAAAAAGACAGGG


CCCTATTATTTGATCAAGTTATGCAACGACTCTGGGCCTGTTTCTTCACCTCTGGAAGGAGGAATAATCTCCAAGCC


CTTTCAGACTCTTTTGGTAATTCACCTCCAGCACATCTTCTAAATGCCAGCATTAACTGTCCTCTGATTTGTCTCAT


GTTTTTCTAGCCCCATGCTCTCCTGTTCGCCATTTACCCTCATGCAAGGTACAAATTACACCCATCATCACAAGACA


CTTGCTCAAGTCCCATTGCCCCCTTGAAGACCTGCCACACCTACTCTCTCAAAAACCATCATTTCCTGAAAGTCCTA


TACAGCTCATTTGGTATTTACAGTGTACTGCCACAAGCCACTAAGCATCGTTTTGTGAATACATGACTTACAGACTT


AGCTTGAGTAAAGATACTTGAAAATGAACACCATTTCTTGGCTATCTTCCTATTTTGATGTACCCTTCAGGCCTATG


AATTTTAGTATAATAGATAACCAATAATTATTTCTTGGTTCTTTCCTGCACATCTGAATAACCCTATGCAAAGTGAT


AGAATGTTTTTCTATAAGGAGGTCCTACACTGGAGATTGTGTATTTCTTAATGCTGTTGAAGGAAGAGATGTGTATC


TAAAATAAATAGACTCTAACAAACATTAATTTATATTTCTATTATCTGTTTTGTGTATTGAGATATCTCACAAAAAT


AACTAAACATTTTGGCATTATTGATATTACATATTTGCCATGAATATTTGTAAATGAAGAAAAATATATATACATCA


GTAATTATCTTGGCAAACTCTTCAATTATGCAATATTGTTACATAGATTACATATCTAAGTGAACACTGGAGTTTTA


ACAATATTGTGTGTTCATAAATGTTTTATTTATTATTGCCACTAATTCTTATTGCCATTTCAAGAACTATGTATAAG


TTGTTCTAAAAACTATTAAAGTATAGGTGACCATGGTCACTACTGCCTACTTTGGTAAAGGCCAAATATGTGAAGAC


TTTTTAATGTGTTAACAAACGTTGAAGGTTTTTTAACCTGTTAACAATCAGTAGGACTCTTGAAATTATTTCCTAAG


AGAGTAAATTTTACAACTTGCAAAGCATGATTAACCTCTTGTAATTATAAACCATCTCTTGTAGTTATGTAGCATTT


TGTTAATGAGCAAAGAACCATTGTGGTTCCTTTTTACATTTCTTAAAATAATTCTCCGTAACCTCATTGATATCTCC


AGTAAATTTAGATAAGCTTTTTTTTTTAAAGGAGGGTTAAAATGACATTTTAAACTAATTTTTCTTGTTAGTTATAC


AGAGTTGAACTATCTGAGGGTTTTATTGACAGTCATAAAAAATTTGTTATTTTCTGTGAAATATAGAGAATTTAATT


CATTATCATATTATTAATTCTGTGGGCCATTGTCTTAATTCTAGAGGCACAAGCTGTTTTCATCCCACTGAAATAGA


GGAATCAAAGTATGTTCCTTGCTCAAAGCACAAAAGTGACATACTACATAGTATGCTTCTTGAGTAGTCGTAAATCT


CATGTGTTAAATTACATCCCAAAGATTTCAGTATGTTTTATGACTTTAATAATTTATGGTAATTTCTAATCTGGCCT


TTGTTGACCTGTCTTGCTTTTTAAATTTTTAGTTTTTCGACAAAATAATTAACATATTTTAATAATCTTCCAAAGGT


GTTTAAAATGGCATTGTATAGAGATAGCTGAAGGCTTTTGAGCTTCTGTGTTGTAAACACTTTCTTAATAAAACATG


AATTGCTACCAGATGATCCAGCAATCCCACTACTGGGCATTTATCCAAAGAAAAGGAAATCAGTATCTTTGAAGAGA


TAGCTTTGTTCCCATGTTTACTGCAGCACTTTTCATACTAGCCATGATATGGAATCAACCTAAACGTCCATCAGTGG


ATGAATTGAAAAGAAAATGTGGTATGAAACAGAAATTGCTGCTTTAATTTATATTAAACACACTCATATTCTTCTCA


GCTGTTAAGTATTGAGTTATAGATTTAAAGAATTCTATTGTGAAGACTAAAGTGACTATTAAAGTAAGAAATTATTT


TTTCCATTATATTTAACTTATTTCATACTTTAATGTTAGCGCCAATGAGCAAGACTATTGAATACAAAAACTAATTA


AGTAGTGGTGATAGTACAGTATATAAGGGAGAACATTCTTTTAGAAAGGAACAATAACAGGGAGCAATAGAAACAAT


GAATGAGTGTAAGGTCACTTAGTGTTAAAACAGCTAAAATATAGTACAAATAAGTTGCGTTTTAATAGTGATTTTAT


ATAATTACACCTTGATGTTTTATTTGTTACAAGAATTGTCCAGGAAGATTTCTCTAAAGACCAAAGGCACTCTTCCC


CTAAATAACTCCAAAGCCAGTCCTGTGTTTCTATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGTGAAAATAA


CGTGATGAACATTTTTGAGGAAGTATAAAACCAAAATACTCCACTGCATAGCTGTTTCTGCAGGTATTGTATTGATA


TATTACATTATTCAGCTTTGGAGTCTCCACATCCAATGTTACATCATCACTCTAAATTAAACATGTATAGATAAATG


AAATAAATGAGATAGCATATGAAAATCTCATAGCCCAGCCCCTGCACTATTTAAAATAGAAATACCAAAGAATTGTA


TTCCTCATCTGAAAGCTATTTAGTGGTGGTGTTTCAAATAAAAATTCCATCTACTGCTGTTGCTTCCATTGTATCTT


TTTCTCTGCGGTACTGAAAGAGAAAGAGACCCAGAAGGGGCCTTGTCTGAAGTGTCCCTCTTTTAAGCTGTTGCTGC


TTTAAGCACAGGGTGGACAAATGTAATAGGAGTTTCATAAAGGTGGAATAAACCAGCGGATTACGGTGTGGGTGAAT


ACTTTCAGATGTTAACCAGGAGCTCTGCTTGCATGCTGGGAGTTGCCCATGCCTCTTCTAGATTGAGGCACATTATC


ATGCACAACCTAACTCCAAGAAATCTTTTAAACCACTGGAAATTGAACCCAGAACATGTCTCTAAGCCAGCCTTTTC


ATCCTGACACCGAATCATAGCATGAGCCAGTCTGTCAGGGATGCTGCTGCTCTCTAGGCAAATTTTAAATGTTGAAA


TAATGAATCATGTTTTCTTGAAAACCATGTACACCAAAGAAAAGTTAGTCATTTTATAGATGATGAATATTAACATT


TTCTTAGACAATCTGATAAATTATCAGATCTCACTTTTGGCTCTTTTTAAGACAGTTATGCCTCAGAAATATTAATA


AACCCCCAAGCCCTTATACTGATCAGTATGTTCACTACTAGCTATGAGAAATTCTTGAAGTTCTTGTAATTATTGTA


TTATTTCCTTACTTTCATTTTATTAGTATGTGAATAATATTTTTAAAAATTCTAGTGTATGTCTTGTATATATTTTA


ACAACATGACTTTTAATTAATGTCTTGATAACATTTCTTCTAGTGTATGTTTTCAGTAACATGATTATTAACTGTAA


CTTTAAAAACCTGTGGATTAGATGGGACCATTTTAAAATGTTTTAAACCTGGAAAATCTGATGGCTTTAGGTTTAGT


TCAAGCTATAGATCACCTGTGGAGAATGGAACTGCCAAAAAAAAAAATAGCTGTAGCAGCCCTTTGAGTATTCTAAA


ATAGGGATGTTATCCAGAGCATTGGTTTCTAAAGCTTCCATTATTTATTGATGTTGAGCTTTCAGGATTTAGCTACA


ATATTTACTCAACATCTAAGCCATGCTTTTTTATCAGTCATGTTTTATATCTTTTATAATCAAACTGCTTATCACTG


AAAAAAATATATAAGTTTCTATGTATCTGGAAGAATTCTCTGGTGTTTCTTAGATATGGATTTTGATGTGTGGAATA


AGAATTCAATTCAAGGATAACAGAGATGTTGTCCTGAAAAAAATCGAAGAAAATCAGCTTTTCTTTAACATTCTGTC


AAAGCTCCTGACTATTAGTTTATCAGCACTGTTTTGCCAAAGGTGTCTTCTCTTCTCTTCTTTGAAAAAAATCATCT


GCTGCTGCTACGCCGCAAGTGTGTTCCCGCTGTGCCTGAGAAGATGTGTGGCATAAAAAAATGGGCATGGCCTGAGT


TAAAAGTGCTACATTTAAGCCAGAGCTGGCTTATTTATTAGTTGTCTAATCATAGGAAAATGACAGAGCATGCTTTT


CTCTTGCAATATCCGTTGCTGAAAATTAAACACATGAGCAGAGCTTTCAGAGAGGTTGACTGGCCTCTCAGACAGCA


CCTCATAGGATGGCCTGTGTTGAAGCATCTCCTTTAACCAGGGTCTGTCCCTCAGCATTGGGTTGGCTCACCTAGAT


TGGATTGTCCCAGCAGAAAAAAAAAACCCAAAATTCAGAATCATATCCAAACCGGAATACTCTTTCATTCACATTAC


TTGTACTACCTTTTCAGAAACTGGATACCTGAGTGTGTGAGGGTAACTTAGAAACTTATCTCATGGTTAGAAGTTTT


AGAATTAGAGAGCGATGATCATGAAACGGACTTCATGATCAGAAGCAATGGAGCAAGGAATGAGATGTCTTTGAGGA


GTATTTCCCTGAGGCTGTGGATAACGCTGACGAATAATCCCCACCTTAAAAGTGGGTTGACCACTCTAGTAGCTGTA


AGGTGGGAGGGTTCTTTCTTCAGAGATAAATCTGTGCTCTTCACTTGCCCATTTCCCAGGTTTTCATGTAGGTAGAA


GAAACACCTGTAATCTGAAGACACTCTTCCTTCAGCTTTGTTAGTGACAGGGATTTAAATATGTCTTTCACACATTT


TCCTTAGATAGTTAAATTTCACTTTTCCTGTTTGTTTTTCTCTGAAGGTATTCTAACTCCCCTCCTAATGGACTTCT


AGAGCTTTCTAATTCTATGCAATTTCTGTTGATTTGTTCTGGTAAACTTTGAAGGTAATCTCTGATTCAACTTCTTG


GAGATTCTATCATGTCATCTCTGTTTATTAACTTTATGTTACTCATGGTTTCTTGATGAGGACTCATTAAACATAAT


GTAAGTAGAAAATTATTAACTACATAATATTTACTACGGGTTGTTATTTCTGATAGTAGCTAGCTGTAAGATTCCAA


TTGTTCTTCAAATCTTTGTCTCAGTGATCTCTGTGTAGTTCTTGACTACTTCAAATAACTTCCTAGAAGGATAGGGA


TTTAATAATCTCTTAATAGGAACACTTAACACACTGCTGGTGGGAACGTAAATTAGTTCGGTCGTTGAAAGCAGTGT


GGTGATTTCTCAAATAACTTACAAAAGAATTACCATTTGACCCAGCAATCCCATTATTGGGCATATACCCAGAGGAA


TAGAAATCATTCTACCATAAAGACATATGCACGTTGTGTATGTTCATTGCAACACTACTCACAATAGCAAAGACATG


GATTCAACTTAAATGCCTATCAATGAACAGACTGAATAAAGAAAATGTGGTACATATACACCATGGAATACTATGTG


GCCATGAAAAAGAATGAGATCATGTCCTTTGCAGCGACATGGATGGAGCCAGTGGCCATTATCCTTAGCAAACTTAT


ATGGAAACAGAAAACCAAATACTGCGTGTTCTCACTTATAAATGGAAGCTAAATGATGAGAACATATGGACACAAAG


AGGGGAATAACACACACTGGGGCCTACTGGAGGGTGGAACACAAGTGGAGGGAGAAGATCAGGAAAAATAATTATTG


GGTACTATGTTTAGTACCTGCGTGAGAAAATAATCTTTACACCAAACCCCCGCAAAATGCAGTTCACCTGTATAGCA


AACCTGCACGTGTACCCCTGAACCTAATTTAAAAGTTATAAAATAAACGTATCTTATTTTCAGTACAATACACCACA


GAGTAGAAGGGTTAAAAGAGATTGCTTCTGAGGAGGTGAGATGGGGGTAAGGACAGCACAAGAGCATTTTGGGGGGT


GATGAAGCTGTTCTGTGTCTTGCCTGCGATGATGGCTACACGACTAAGCCCTTGTCAGAACTCACAGAACTTTACTT


CAAAAGGAGCGGATTTTACTACACATCAATTCCAATAACAAATACTTTGTCTTTAAGCAAAGGGATACCTAAATATA


GCGTATTGAATGGATCTCCAGAAAAACACATTTTTCAGTTCATGTTTCAGCCTAGGCCTCATCTCATCCAGGAAACC


TTGTCTTGCTTGCCTTTACATACATGTGGCAATCAGTAGTTTCTTTTAGGGCTCGGACTGAACACTCAATGAACTTC


AATCTTAGCGCTTGTCGTAGCAGATTGACATGGTTTATTTATATGTGTCATTCTCTGTAGTAAAAGGAAAGGATCAA


GGCCATTCACTTTTGTAGTGATTGTGCATGGCAGTATTTGGCACATAGTAGATTATTAATTATGGAACTTCTGTTTT


CACACACACACACACACACACACACACACACACTTCAGAGCTATTTTCATTTAAATATTTGCTTTAGTCTCCAAAGC


CCCTCTGCCTCAACACCAACCCTTCTATCTCATTATTCATCAGCTTTTCTCCTATTACGAAACTACTTAGGAAAGCC


CACTTATTTAGCTTATGATGGCAAAAATAAATATTTGTACTTTTTTTTTTTTTTTTAGTCATCGCTTCATAGAACAG


CCTCTGTCCTCTGCTTATGCCATGTCTGAATATATGCTGGAGGTAAAAAGAGTTCCTGGTTGAGAGCTTCAATTTGA


GAAACTATCTGAGATTACTTTCCAGGTTCCACCGTGGAACCTGTCTGACCTTGAACAAATGACCTCGAACAAGTGGC


TGAAATCTCTTCTATTTCGTCAACTGTAAAATGGGGGAAAACCATGTCTATCTCATGGGGTTCATGTGAAGGTTAAG


AAATTGCTTATTCAGTGTTTAGCACAGTGCCTGATATGCATAAAGCTCCTAGGAATATTAGCTGTTATTGTATTTCC


TTAAAGAAGCCCATAGCTCTATATGCCCTTTCATTATATGTTTTAGTAGCCCAATTTAACATATGGATAAAATATTT


TTAAGTTAAATGATTTGCTAATGGATTGTTGAACGAGTGGCAGACACCCATATTATAGACGAAGGTCAAGTCCATAA


CATACAGTACATTTCCCCACTTTCATTTCCCATTACCAAAATTCATTATTCTCCTGAGAAACTCATTATAGAATTCA


TGTCAGATTCATCTGTGTGTTCCCAGCAGTGCCTTATATCCAGAAATAACACTGAGTCATTGTCTAGATGTAGCAGA


GGTGGAATCCTCCAAAGAGAAGCCTCAGAGTGGCCAGGTTTGCCAAGTATAGGGATGCCTTGATTACTGGCCTTACT


CTTTATGCTCGTGAATTCCTAAGTTTTATTCCTCCTGTAGTCATAGATTGGCTTTTAAGCTACAAGCTGAAGAGAGA


GAAAACCTCTTCCACCTCGTTGGAATATGTCTCTTCAATCCATTTGAGCCAATTTAGGACATGAGACTGCTCTTAGT


CTAGAACCAGTCATCAGGAGAATTCCAGGTCTGATTGACTCGGACTAGCGGGTCAATATCAGGGCAAAAATTCCAAC


GCACAACACGATGTATCAGTAAGGAGAACCTCAAAATTATTTCTTAACGTCCAGATCATGTTCCTATTTTTATATAT


CTATTTTCTCACATAAGTCATTAAAATGATGTACCTGTGCGGGTCCTTTAATGATACTCAAAGATCTTGAATTATAG


GCTAATAACTAACTTAATAAGCTGCAGAAATTAACATTTCTGCTACGTTTATGTAGCATTTTCCCACATGTACTTCA


GAGGCTTGAGAAAAGACCCTGAAATAATGACTGAATAACAGCTTTACTCACTTAATTTCAAATTTGTTAATTCTTCT


GGGAAATACCGTCAACATCCATTTTATTATTTTTCTCAATTACATGTACGTTTCTACATCAGTGGATAAGTTAAGGA


GAAGAATTCCCTCATGATAATTTTTTCATGCTCGAAAATTTTGAATCAATTTTTTATTTTACATTATACTCTTTCCT


AGTCATTAGAAAGGGAGTGGTGGTTAAGATAGGCAAGAATGCTTTATAAGGATACTACTCTCGTTTCAATTCTTAAC


ATCAAAAACCTTAACAGTGTGTAGACTATAAAATAAAATATCTAGGGATCAGAGCATTGTGCTGAACTTTGCAGGTT


TTTTAGTCAATAATATATATGACGTGTTCACAGAATTCTTTGTCAACAAAGTACTTTTGGAGCTCCAGGCCATTTAA


GTTGGTTTTTGTACTTTTTCTTTTTCTTCGGAAGACTTTTTTTGTTCTATTTACCTGGAAGTGTTTCTTTTTTGGTA


CTGTGAATTAAAATGAGACCAATCTACTAGGCAGGAAAAAACCTTAATTAGATTGTTGACACAGACAAATAAGAATG


TCAATTAGCATCTACTGTCACATGCCTCTCCAGACTGCTTCTAGGATGAGTGGCCTCAAGCAGCTACATCATCTTTA


TACTCCTAAAGCATCAAGGAAACTTGGAGTGACAATTCATATCATGAACACATCCACAGTGATGATGATTGTGCTTC


TTCCCCCCCACCCAACAACAAAGGATGAATGCCAATTAATGTATTCAGTTTTTTGCGTCAAAGGCTGGATCACTTGT


GCAATGAGGGTAATCATCCTGACCAGACAGGCCATACAATCCATATTGTGTGAATTAAAGATAATATGCGTGAAACA


CCTTACTCTGGATGTGGTTCATAGCAGTAGCAAAAAGATGAAAACTATGGTATGCTAACATTTTAGAGATCTGTACT


CTATTTTAAATAATTTTATAAAAGTGCATATACAATAAAAAGTGCACGTATCACAAGTATATGCCTCAAAATCTAAA


GCCAGTCATGTAATCAGCATCCACTTCAAGAAAGAAAACAAAACAGTACCCCTGGTTCCTCTTTGCAATCATTAGTC


TCCCAAGAGTAATCACCGATCTGATCTGTGACAGCATAGATTGGTTTTGCCCTACTATATTTTTGCTGAATTATACA


ATATATGCTCTTTAATGTCTGGCTTCTTAGTGCATTGTATTTGTGTATCAGCTATTCTCTTGTGTGTAGTTATTAAA


CAATCATTTTATGGGCTGCATAATATTCCATAGGGTAAATATAACAGTTTTATTGATAACTTAGCTATTACAAATAG


TGCTGTTGCAGACATATATTCTATTACATGTCTTTTGGTATAAGAATTTACACATTTCACATGGGTGTATACCCAGA


ACTGAGATTGCTAAATATTGGGGCACATTGTATACATTTTGATTTAGTAGATAAGATATTGCCAGATATCGTAAATG


CACAGTTTGATAAATATAGAGATTTATACTTTTTCTAGAGAAAAGCCATCAATATCAGTGTATGTGTATATATATAC


GCGTGTGTATATATACGTATATATATACGCGTGTGTATATATACGTATATATACACACATATATATACGTATATATG


TGTATATATATACGTATATATATACACATATATACATATATGTGTGTGTGTATATATATATATGAAACAACTCAGAA


GCAGAAAGATACCCCATGTTCTCACTTATAAGTGAAAGACAAATAATGTATAAACATGTACACATGGACATAGAGTG


TGTAGTGATAAGCATTGGAGACTGAAGTGTGGGGGTGTGCAAGGGAATCAGTGATAAATTAATGGCTACAATGTACA


TAATTTGGGTGATGGATACACTAAAAATCCAAAGTTCACCACTATCCAACATACTCACATAATAAAATTGCACTTGT


ACCCCTTACATTCATACAAATAAAAAATTATTTAAATAAAAATAAATATGTGTATATGTATGCATACATACATATGC


ATATACATATGTGTTTGTGTGTGTGTATATAACTTACACTTAAAATAAGCATGGATGCTGCAATGAATGCTCAATTT


ACAAGGGTTGTCCATCCAAACTTGTGGCAAGTATCTCACCTCTCAAGTTGTTTTCTTTTTTCTTCATATATTTCTTG


CTTTTGTCTAGGAAGGAATAATTTGGCTTGCCTTTCAAGAGTGTACAGTCAGCATGATAACCCAAACACTTAAGACA


CGTGCTAACCCATGTGGATCCCTTGAGAGAAGGAAAACAGTGGTCCTTTTACTGGGCAGATAGAGCCCGGGGCCAGG


TTTCGTGGCTTGAAGATTTCAGCTTCTCTGCGCCTCTCAGCTCAGTGCCTCTGGAAGCAATTTACAACTTGTGAGGC


CATACTCAAAGGCCCTGTTATTAATTCCCCGCCTTCCGAGACCCCATTTCAGAGGATCTCAATTGCTCTCAGAGTGA


ATTTACTGTTTCCTGAATTCCGTAATCCCAATAGCAGGTCTGTTGTCCTCATTAGATAGCTTAAGTTAGAGTCGGCA


GTGTAATTGGCAACTGAGCTACTAAGTATCCAATGCTTATGTGGAAAATATGTTCCCTATTGCAAACAACTGATATT


CATATTCAATTTGGCACCATCATCTATCTATAAAGCAGATACTACTTGTGTTTATTAAGTTTTATCCCAAATAATTA


TTTTAGTAATAATGCTTGAAAATAGGCCTTGGTCATTTGCATGTCTGTATATGGCATATCCTGAGTCTTTGTATGTA


TTAGAAAGATCACTCGTTTTGACTTGATGGTTTAATAAAAGATGTCCCTCACTTTGGGCAGAGACATTTGAAAAAGG


CACTCCAACCAGGGACCTAAGAGGTGAATGAGATGCAGCTCTGAATCAGGTCACACGGCCTCAGGAAGGAAACATCT


TGGTTTTCACATCCCTCACTTCTCGATGTCATGTGCAATACACAAATGACCCCTCAACACACACACAGGCACATACA


CAAACACACACTCACTCACTCACTGTATTGTCTCTTTCCTTGACTAAGTCCTTCTTACTAACTCAAGCTCTAAAGCT


TTTTTACTTACCTAAGGTGAGTGTGTGAGGATTTGAGGTTTCAATATTAAAATTCAGAAACATTTAAAGTTCATTTT


AAATATTAGTAAAAAAAAATCTTGACAAAATACAATTATAGACAAAAAGAAAATTCAGAATATTTGGAATTTAAGGT


TGAGGTTACAGCCCTATTTATGAAATATTAGAAGAAAAATGCTGGAGAGAATAAAGCAGGTTTATGAGTCTGATAGA


AAGCATAACCAGATGATTATGCATATATTTGCATATGCAAAGCTTTCTAGGCAATCTGAACATTTAAACCTACAAAT


GTGGCTGCGATGAACAGCCACAGAAGAGCAGGCTAGAACAGAAGAGGAGGCTAGAACAGAAGAGCAGGCAGAAGTTG


TAAATGAAATGTTAATTTTCAATGGTTGATCTCCCAAGTACTGGAACAGATTTGTGCTGTTTTCAAGGTTTTGGTTC


AAAGAATCCAGTAGTGTATTGAATTGTTTTGTGGCACTTCCCTGTTATTTTGCTTTGTAAGCTACCTCAATCCATGA


AGTGGCTATGAGCCCCTTATACAACACTGTTGATTTTTTTTTCCTTATCTACGCAAAAGATTTTTGATTCAGGGCCA


GGCATGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCAGGCGGATCATGAGGTCAGGAGATAGAGA


CCATCCTGGCTAACACGGTGAAAACCCACCTCTACTACAAATACAAAAAATCAGCCGGGCGTAGTGGCATGTGCCGG


TAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATCACTTGAACCCGGTAGCCGAGATCCTGCCACTCCACTCCAG


CCTGGGCGACAGAGCCAGACTCCATCTCAAAAAAAGAAAAAAAAAAAAGATTTTTTATTCAGGTGGCTATCAGACTC


ATTAAATAGAAGCCTTAGGTTAAGTTCACGGGTTGCTAGTTGGAAGCCTCCATGGACTATGTTCATAAAATAATAGA


AAGGAGTTATGCAGGACTTCTTGAAATGTTATTTAAAAAGTCAGAATAGGCTTTCTATTACTTGTCTGAGGTCAAAT


ACATGTAGTGCTTTCTGACCATTTCATCCAGGGTGTTAGCTAGGACAATAAGAGGTGCTTAAAAATTATTAGATTGA


GTAAATGAGAAAGCCCTTAGAAACATAGGAACAGAATGACCCTTGCTTTGGATCTAATATTGACTCCCACGCCTAAA


TCCCTTTGGAGAACTCCTTTATTTTCTCTTCCATCAAGAGCAGGTATAAATTAAAAACACCATTAAAGGGGCCATCT


AGCTCAGCTGAAGCTTTCATCACACATGTAGGGGAGGTATGGTTGGGAGGGATCTTTTTATCCTTTAGGTCTTCAAT


TTACATAGGACTTTTGAATAATCAAATAGCCCCAAAGAGCTGATCTTAGGACTAGTTGTAATTGAGACTATTTCTCC


ATGGGGTAGAAAAATCTAGTTGTAGGAAAACTGAGAAGTAGATGTATGTTAACCTCAAAGGCTGTTTTTTACAAAGG


ATGTTAAAGCATCATCTTTGCTCAGAAAGGGAGCAATAAAACAAATGAGTGGAAATAACAAAAGGAAATAATGGCCA


GGTGCAGTGCCTCACACTAGTAATCCCAACACTGGGGGGCTGTGGTGTAAGGATCGCTTGAGGCTAGCAGTTCAAGA


CCAGCCTGAGTAAAATAGGCCTCATCTCTACAAAATAGATAGATAGATAGATAGATAGATAGATAGATAGATAGATA


GATAGCCGGGCGAGGTAGTGTGCCCCTGTAGCCCCAGCTACTCAGGAGGCTGAGATGGGAGAATCGTTTGAGCCCAT


GAGGTCAAGTCTATGGTGAGCTGTGCTCCCTCCTGCCACTGCACTCCAGCCTGGGTGACAGAGTGAGATCCTGTCTC


GAAAACAAAAGGCATACTTTTTAGATGTAATGGAATAGAGTACTTCCAAACCTGGCTGCCTGCTGGAGTTGTATTGG


AAGAGGTTGCACGACTTCAGTGGAGATGGCCTAGATGCCTGCTCAGCAGTCATCTAGTTAAAGCAACTAAGAACATG


TAATATGAAACTGCAAAAAGAGATCGTGTACGTAAAATCACTCTGGGCTCCTCAGATAGAGTAATAAACACAACTCC


TGACAGCCAAATAAAAAGAGAAATAATACAGCCCTTGACTTCCTTGGTTGCTTTGACATACTAAGTAGGTGTTACAG


GTTGGGTTCTCTGGGAAACAGACTCTAAAACATTTTTATTTTTACTTTATTTGTTGTTATTATTATTATTATTATTA


TTTTAGACAGAATTTTGCTCTCGTTGTCCATGTTGGAGTGTAATGGCACAATCTCGTCTCACTGTAATTTCCGCCTT


ATGGGTTCAAGTGATTCTTCTGCCTCAAACTCCCAAGTATCTGGGATTACAGGCAAGTACTACCACGCCTGGCTAAT


TTTGTATTTTTAGTAGAGACGGGGTTTCATCATGTTGGTCAGGCTGGTCTCAAACACCCGACCTCAGGTGATCCACC


CACTTCTGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACTACGCCCGGCCAGACTCTAAAATAAAGTTTAATA


TGCAGAATACTTATCAGGGAATGCCCACTGGACCAATACATATTCAAGAGAGGGCTTAGAAGCAGGATTGGACAGAA


AGAGAAGTTGAGCTGTAATGCAGGCCCAATAACAGCCTTAGTGTTAAGCAGGCTGAGAGATTCAGCAGTTAATGAGA


CAGTCAACCCAAACAGTTTTATAGGCATCAAAAGTATGATCAGCATGGTGTCAGTTTCCTGTGTCACTTGTCCCACA


GTATGATACCAAAATTAAAGAGACCAGATGACATGCAACACAAGCAGTGTGCACTCTGTTGTTGAGAAGCCAATTTC


GTCATGCAATTAAGCAGTTTTATACTCTGCAGCTGTACTTTAAGGGGAGCTGAGATGGAACATCATATGTCTCACCA


TAACCAGAAAGGCAGATGAGAAATGTTCTATCGCCACCTCCCACAAGGTAAGGGACTTCCCTAAAGATACAGAGGTG


GGTGGAATATTGCCTTGGTAGACTTCCTCTCAAGACTGCCTATCTTCCCATGTTGGAAGGATCACAGAGCATTTGTC


AAGACGTGGGTCAATCTGCAGTTGAACTTTGTGTATGTGGCCTATGTGGATACTTATAATATCATTGGGCACCTCCA


TAGAGCTGTTTCCCAATTGACCAAACATATGGGAAGCTTCAGAGCTTCGAATGACCCTTCAGAGTAGTCCTGAGAAC


AGTGAGCCTTACTACTCCTGCATTAATCAGTCATTGGATGATAGCCTTCTCAGAAATAAGTCATGACCTTGTGCAAG


GGGGCTCTTCATGGCTGGGACCACCCCTAAAACTGAGAGCTGAAGGCTGTCTGCCACCAGCCCTTCCACCTGCTGGG


ACAAGTTCTTTATTGAAGGGAAATCTGAGTAGTTCATCAGCGTCCATCACAGTAGTCAAGCCGTTCATTCTTCCTTC


TTATGACAACATTGTGCTTATTGTTATGTAATCCCTTTCCAGAACATTTTAGGTTAAGTTTTAAAAATAATGCATAT


AAATAGACAATTCAAATACTGGGGAAAAAAAGCTTGCACTTATATTGTTATAGAAATGTGCACACTTAAAGAGCTGA


TTTCTTCTGGGTATTTACATAACTTTATTTAAAAATCCATCCATTTTTAATTAGCTGTTTTTAATATGCAGTTAGCT


AAGATATTATAAGCCATATATTAGGCTAATGGACATTTAACAGCTTAGTTAAGTTCTTTTAATGGAAATGCTGACAA


ACCTTTGTCTGTAATTATAGCAACACTGTGATTACAGAAGGAGGTGCCTCTCCTTGTTGTTTGCAGCCCTAAAATTC


CATGTGGCTATAAGTAACAAAGTCCATTATTAGATAAACACAAGTCATACTTGGCATTACTTGCATTACTCGTCTCC


TTGCTTTATTTGAATCATTTTTTAAAGTTGTAAAATGTTTTTCAAAACTCAGAATAGTGGCCAGTTAATAATATGAT


TCCTCTTATATTATGAGATTTTAAAAAATAGTTCACCAGTTTCTGGTGGCCTCTATACCCATTGGCAAGTCCTAGCC


ATTGTGAATTAAGTAAACAATTCTTTATGGAAATTTTTTAATCCTTAAACCCTATAAGTTTTTATTCATCATGTCAG


GTCACTTGTCAAAGGGTTTAACATTCAGAATTCAACAAAAGTTTATCAAACACCTATTACAGGACGTGCAATTTTGG


GCGCACTGGGATTTCAGCAATTAACAATCAAGATATGATTTGTATCGACATGGATATTACATTCTCTCACAGGAGAC


AGAAAACAAAATAACTAGAAAATATACATAAAGAGACTTTAAAATGGGGTAAAATTACAGATTGTGACAGGATGACC


ACTTTGGTTCAGAATATCTAGGACATTTTTTTCTTTTTTTTTCCCCTCCCTCCCTCTTTCTTTTTTTTCTTTTTCTT


TTTCTTTCTTTTCTTTCTTTTTCTTTCTGCCTTTCGGAGTCTTGCTCTGTTGCCCAGGCTGGAGCGCAGTGGTGCAA


TCTCAGCTCACTGCAACCTCTGCCTCCCATGTTCAAGCTTTTCGTGTGCCTCCGCCTCCCAAATAACTGGGACTAGA


GGCATGCACCACCAGGCCCAGCTGATTTTTGTATTTTTAGTAGAGATGGGGTTTGACCATGTTGCCCAGGCTGGTCT


CAAACTTCTGACCTCAAGCGATCCACCCGCCTCAGCCTCCCAAAGTGCTGGGATTTACAGGCGTGACCCACCAGGCC


CAAGCAAGGACATTTTTTTCTGAGCCATGTTATTTAAACAGAGATCTGAATGACAAGAAGGGGCCAGCTCTGTGATG


TAGGGGAAGAAAAATATGTTCCTTCTACCCTTCTAGGCTGCCCAGCTGGAGTCCTACAAAGTTAGAGTGACAAAAGA


CAGATTAACAAGAGGAAAAGCCTAGAAGTTTATTAAAATATTCAGTGCACATACACCTGGTAGAAACTCAGTGATGA


GTAACTCAAAGGGGTGGTTAGAATGTTGGGTTTATATAGCATCTGAACAAAGAACAGTAAACTTGTAGAGAAATGAC


AAAACAAAGAAAAAAGGGGTTTAGGTATTTAGGGTTGCCAAACTGTAGGAAGGTAAATATATGGGAGAAACATGGAG


TATAGTTTGTTTATGCCAAGTCTATCTTGAGATCAACTTTTCGTATTCTTCATGGCCATAACAATTTCCCAGGAGAG


AGGGCTTATAGCAGTTATCATTTCTCAGAAGTTTCTGCTTTTATTTAGACAAGGGAAGCACTGGGAAGGCTTCTTTT


TGCTTATATTGATTCTTACTTGCCTCTAACTAAAAGTAATCTTTATGTCAAAGTGCCATATTTTGGAGTGGTATATA


TTGATCTCCTATAATAACAATCAAAAGGAACAGTATTCTAGGCAGGAGTACCACTAATGCATAGTGTTTGGTGTAAA


GACAAGTTAACATATTCATGGGGCAACAACAACAATAAGCCAATATGGCTAAGACATTGAGGATGAGTGAGTTGGAG


AAGTAGGCAATGGCCAGCTCATATAAAGACTTGTTCGTTTTTATAAATTGTTTAGATTTTATTGTAATTATGGTGGC


AAGTGATTGGAGAGTATTAGCTTCACTTTGACTGGCTTATCGAAAACGGAATGTAGGGGGTGAAAGTGGAATAAAAA


GACCAGTCATTAATTGAGTAGTCCGTGTGAGAGATGATAGTGGCTTGGACAAGGACGATTGTACTGGAGAGATTGAA


GCGACTGATTTCAGATTTGTAGTCAACAAGGCTTAATTGGTAGGAGAAAAAAATAAATCAGTGTTAACTCTTTAATG


TTTAACTTGAATAATTATGATGAGGGTATTACCATTTATTGAGATGTAGAATATTATAAAGTAAGAGCAGATTTGTT


CAAAAAGTATCAAGAATCTTTATTTGGACATGCTAGTTTGGGGATGCTTATTAGAGACCCTAGGAAACTGAATATAA


ATGTGGATTTTAGAGAAGAGCTTAGGGCTGGCAGATGCACATTAAGGATCTGTCTAGAGCCATGGCGCTAGAGACCT


CCAGGAGAACATAAATAGTCTCAAGATCAAGCCCTGAGACACTCAGATGTTTAGAAGTGGAACAGAAGAGGGACATC


CAATATAGAATACCAAGAATTAGGAGGGGAATCAAGAGAGTGTGGCAATATGAAAGATACAAAAAGAGTGTTGAAGG


GAGGGAGTAATTAATAACCAGCATGTTATGAGGGGCTCAGTATAATGAAAAGATAAGTGACTATTGGATTTGGCAAC


ATATAATTTTTTGGTGATCTGGACAAGAGCAATTTGAACAGAATGATGGATATGGAAGGTCCAGAGGAGTAGGCTGA


GTAAATAATATAAGGTGGGAAAATAGATACAAAGATTATAGACAACTTTTTCAAGAAGTTTTACTGTGAAGGGGCAC


AGCAAGCTGAGACAGTGAGGATAAATAATAGACTCAAGGATGGTAACTTTAGAATAAGAAATTTCAATCTGATGGGA


TTTAAGTGTTAGCAAGGAAGCTTTAAGAAGTTATTTTCCCCATTAGAATGATCTGAAAAATGTTTTAGAACATTCCT


CTTATATTCTATTTTATCACATTTATATAACTTTCAGAGAATTGAAAGAGGTATTAAGTTATTATGAAATTTTCTGA


GATTAATAAGATAACAATTATAGGATGTTTTCTTTTAGTTGAAATACACCTACTCAGCCTAATTTTTATAACTTCTT


ACTGAAGTATAATATACTTCAGTAGAAAAGCATGCCTAATATAAAGGTGCAGCTAGATGAATTTGCACAAACTGAAC


ACATCCCTTTAACCAGCACTTAGATTAAAAACAGAACCTTGATGATACCTCAGAGGCCCCCTTCTGCCCCTTTTCAG


TCTCTCCGTGCTACCCCCATGGATAAGCATTATCGTGATTTCTAATACCATAGATTAATTTTGCCAGTTTTTGAATT


TTATGCAAATGGATCTATTTCACCTAATTGTAAATATATAACATTGTCATAGCAAGGCACTCATTGCCTTACACTGA


AAATTACATTGACTCTTTGCCACAAGCTTAGACTTGCTTTCTCATTTTATTATCATCAAGCCTATAGCTTTCACACT


ATACCTTGTTCCTGCTCTTCCCTACTCTATTTCTTGGTAGATATTCTATATCAGTCTTAGAGTGCAGTTTGCAGAAC


CCCTCCATCAGAATCTCCTAGGGAGCTTGTTAATAATGCAGATTCCTAGGCCCCTCCCATGGTTTATGAATCTGAGA


GTGAGGCAGACAAGACTATACCCTCTCATGCCTCTATAATGTAATAATGTCTTCCTAGAATGTTCTTTGCTGCATCT


CTTATTAAAGAAATCTTATGGGCCGGGCAGGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGCCTGAGGCGGGC


GGATCACATGGTCAAGAGATCGAGACCATCCTGGCTAACACGGTGAAACCCCATCTCTACTAAAAATATAAAAAATT


AGCCGGGCGTGCTGGCAGGCGCCTGTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGAAAATGGTGTGAACCCGGGAG


GTGGAGCTTGCAGTGAGCTGAGATCACGACACTCCACTCCAGCCTGGGTGACAGAGCGAGACTCTGTCTCAAAAAAA


AAAAAAAGAAAGAAAGAAAAAAAGAAGTCTTATGTTTCCTTTATGGCCAGAGCACAACATTGTCATGAAGTCATCTA


AAATTTCCCACTAGAGGTAACATCTCCTTCCCCTGTCTAGCTCTTTTAAAGCATTACCTCCATTTGCCTTGTATCAT


AGCTGCTTGTACACCTGTCTGTCTTTCCGCTGAGGTTATAATCCTCTGGAGGGTCATGACTTTGCATTCCTTTGTGT


CTCCCATTAGCAGCCAGCACAGTGCCTTGCATACTGTTAGTTCTAAATAACTTCTCTCTCTCTCTCTCTCTCTTTTT


TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGAGACAGAGTCTCGTTCTGTCACCCAGGCTGGAGTGCAGTGCAATGG


CATGGTCACAGCTCACTGCAACCTCCCCATCGTGGGCTCAAATGATTCTCCTGCCTCTGTCTTCCAGTAGCTGGGAT


TATAAGTGTCTGCCACCACGCCTGGCTAATTTTTGTATCTTTAGTGGAGACGGGGTTTCACCATGTTGCCCAGGCTG


GTCTCGAACTCCTGGTCTCAAGCAGTCTGCCCTACTCGGCCTCCCAAAGTGCTGAGATTACAGGCGTCAGCTGCTGC


GCGCATCCCTAAATAAACTTTTTTTTTTTTGGCATGAAATCTGTAACACTGGAAAGATGTTATTGCCTTAGAATAAT


TAAGAGATTAAATGTAGAATCTCAAAAACATTCATTTTTTTCCATGAAAACTTTACCAGGCCTCAAGGGATAGGAAA


ATTATGGGTACAGAATTGAGAATCTGTAGGAACTTGCAAGATAAACAACGGTTTCACAAGAAAGACCTTGTTGGAGA


GTTAAATTTTCAGACAGTTGTAATAACTTCACATTAAAGTTTTGTCAAAAAATAAGTATCTGCATGTTTTGTTTGCC


TTCCAATGCCCTCATTTTATTTGATTTTTTCCCATAAGTAACTATAGTGAAAGCACGAAAATGTGTTTCTGTGTTTG


TGTGCCTGTATGTTAATTGTGACTGTTTCTATTGCATTGTTATTGCAGAACCTAGGCACGCACTCTGTAGGCTTGGG


TGCTTTCTCCAACTGAAAAAAATCCTACATATGGATAAATTATTTTTACAGCCAGTGTTTAATTTTACAAGTGGTCC


CCCTCCTTCTGTTTTTAGGATGGCAGAGAGAATACATATTTACTTACCATTATCACTTACTCATGCTTTGAGCTTGA


AGGAAATGAGACAGAAAAATGAAGTAACATTAACTTCTCTCTGGAACTATGTTTCTCATATTAGAGCTTTATCTGAG


GAGTTCACTTCCTCTCTCTTCAATGCTTTGTTCCTCTCCAGTCGATTCAAATGTCCTCTTAAAGCAGAAGTTCCGAA


CCTCTTTCTGTGACTTCAGGAGAGCATGAGAATGTAAATATAAGTTTTAGGACTAAATTTTCAAAGACTTTTTCCAC


TCAGCTCTCTTTTCCTCTTCGGTTTGTTGTTGTCGTTGTTGTTGTTGTCGTTGTTGTTGTTGCTGCTGCTGCTGCTG


TTTTTCCCCTTCCACTTCCGTAACTGAGCTCTTAGGGTCCATCTGGAATCTGATTGCAATTAAAAAAAAAAAAGTTT


ATTTTTACCTCCTTGTACGTGCTTTCTCCTAAAGCAGGAGTCAGAAGCCTTTTTTCTTTGAAGGGCTAGTTAGTAAA


TATTTTAGGCTTGTCGTCTTTGTCGCAATTACTCAACTACGCTGTTGTAGTATGAAAGCAGACAATACATACCTGAA


TGAGCATGGTTTTGTTCCTAGCAAACTTTACGCACAGAGAAATTTGGATATCGTATAATTTTTATGTGTTGCAAAGT


TGTATTATTCTTTTGATTTCTCCCCAACCATTTAATATGTAAATCCCATTCTTAGCTTGTGTGCCATACGCACACAG


GCAGCAAATGCGAGTTGTCACACAGGCTATAGTTTCTGACTTTATGTCTTAAAGTAAACAGTAATAATCATTCTCTT


TTTCCAAACAGTCCACTAATCTCCCTTTGTATTCAGCCCTTGCATAGTAAACGCCGTTTCTTCATCATCCTGATTTT


TATTCTGAGAAAATACTGTATATTGTTCCCATGCACTAGGGTTCGGGGAAATTTAAAAGGATGTAGGATCTCCTTTT


CATTGGTCCTAAAATTGCACTGGGGAGGCAGGTCATGTTTATGAACAGATAAATAGTATCATAATATAATCATGCAT


TTCTATGGCTAGCATTTAGAACTATAGCTTTTGATGTCATGTGGTTTTTATATGGTTGATTATTTTTTTCTTATTTA


TAAAATGAAAAAGTTTGAGAATTTTTCATCTCCTTAATGTATTCCCTTATTTGAGGGAAAAGTATTTACCTACTACA


TAGGAATTTATCTTAAAATTTTCTTTGTCTATCTATTTTTATGGAATATAATCGAGCAACTATTTTACTAATTAATA


CTTTAATATCATTATGAAAATGTTCTCATATTTTTAACCTTATAAGATCAGATAATTGCTATGCCAATCTATGGTTG


AAATGGGTTCTTATACTTAACGCTATGCTCTTTCTTCTGAGATGTAAAAATATGTTTAAATCAGAATTTATATAGGT


GTCAATTCAAAATGACAGTAGTTCATTATTTTGATTAGTATAAATGTTCACAACTAATTCTATTCTCTTATCTATTA


AGTCACCAAATAAAGTATATTTGTTTTAAATATTTAACAGTTTAAATTATTCTTTGAAAACTTATGAGTCTAAAGTA


AGAACAATTAACCCATTCATTTTGCAAGTGGGATAGTTGAATTTTACTTGCAATCCAGGGATTTTTGACAGTTTGAA


ATATACATACATACCATGTATGTTTAGGAAAACATTTAAAAAGAGGGGGTTGTAAAATAATAATAGTTCTTCCATGA


TTTTTTAGCCATAATGTTTATAATATAAAATATGTATACTCTTGTTATTGAATGTAGTATGTTTCTAATTTACCAGA


AGGCAAGAGAATAATCCTGGAGAATTTCTCAAGGCATCTTCGAACTCTTTGATTTATTGCTCACATATAGTAATTTG


CCAAATGACGCCCTAGTGAACTGAAAGAATTAATGCCCCGTCCTAAGTCACTTTCACCGAGGGACTGAAAACCTGCA


GCATTTTGCCAATTAGAGGAGGAAACAATCTACCTTGCAGAGTCAGGAGTACTGGATAAAGGAGCTAAGAGTGTTGC


TTTTTTTCCCCTTCTTACTTTAAAAATCCCAATTCATCCCATGTCTTTCTTAAAGGCTAAGTGAAGTAGTAAGTACG


TTTTTGCAACATACGAATTTAGCAGACTGGCCTTGTGTTTATTTTTGGCCGGAACCATTACACTTATTTCCAACCCT


CTCCTTTATTTGTTGGTTGATAATGGGCTAATTTTGAATCTTTACTGTCAAAAGAACATTAAGAGAAGCAGCCCTGC


CTGCATCGCAGGCTATGTCTGTCCTTTGCCGAGTATTAAACACTAAAAAAAAATTAAGAAAATACTAACAAAATGAC


AAAGCATTAAGAAAATAAAACTAGATGTTAAAGGAAATGAGAAAATAGGAAAGGATGCTGTACCTGGAGTGATTTTT


TTTCCCCAGGCTACCTAAGATGATCAAAAAAGAGCTAATTTCTCTTAGGTTTCTATTAAGGAATTACTAGAATATCG


GGCACACCAGGAAACTTTATCAGTGGACCTGTCCTGAACCAAATTTTCTTAATGTATATATGATAATTTGTTACCAC


ATCCCAGATTATTTTACAGGAATTAAAATATATTTGAAACACTGACAGGGAAAATTGGGTAAGACATTGATAGATAC


TACAATCTGTACTTGAAACTGCACTCAAGGAATTCGTTAGTCAAGAAAGAACACAATGACTGTGGGCCCCTCTGGGT


TTTGGAACCTCTTTTGTAAAGCATTTTTTTTTTTCCCAAATAGAAGATATTATTTTTGAAAAGGTTAAATAAAAAAT


CTTTGTTCACTATATAGTTTCCTCCTAAGGAGTAAATTAATTTATATAAAATATTGCAATATAAATAACAATTTTAA


AATCTCAAAAGAGCAGTGTTTTAAAAATAATGTAGAAACATTAAGAAATGACTTCAAATGATAAGAATGTCATTGGA


GAGCAAAGGGTTTTTAATATTACATATCGTGGCACGTATATCAGCACCCAACCGCTCAAGATACAGAGTTCTTTACA


AAAATCAAACAGAAGGAAATGTGCCACCTTGTTCATAAACTATATTTAATAATAAGCCAGGCAGATAAAGTCACTTT


CACAAATAATGAGCAAGCCCATGGTAATATAATTCATTTACAATAAGATTTATCTCATGGAATTCTTAGACTGTGCT


TTGAAATTTAAATAATTCTGATAAATGCCAACAGAATAGAGAAATCAATTCCAGAGCAATTACTAACACGTTGCATT


ACCTTTCTAACATTAATATTTCTCTTCATACATATCATTGAAGAGAAAATGAGGATGGAAAATAAAAAGATCAGGTA


ATATATTTGCTTTCTCATCTAGGGTTGTTATGATCTTCAAGATGAAGTTTTATTTTTTACTCCTAGCAAATGATATT


CTTTTTTATTTTAGTTTTTATTATTTTATTTTTCTGTAAATTATTGGGGTACAGGTGGTATTTGGTTACATGAGTAA


GTTCTTTTTTTTGATATTTCTGAGATTTTTTTTTTATTCTACTTTAAGTTTTAGGGTACATGTGCACAACGTGCAGG


TTTGTTACGTATGTATACATGTGCCATGTTGGTGTGCTGCACCCATTAACTCGTCATTTAGCATTAGGTATATCTCC


TAATGCTATCCCTCCCCCCTCCCCCCACCCCACAACAGGCCCCGGTGTGTGATGTTCCCCTTCCTGTGTCCATGTGT


TCTCATTGTTCAATTCCCACCTATGAGCGAGAACATGCGGTGTTTGGTTTTTTGTCCTTGCGATAGTTTGCTGAGAA


AACCACGAGGTACCATCTCACGCCAGTTAGAATGGCGATCATTAAAAATCAGGAAACAACAGGTGCTGGTGAGGATG


TGGAGAAACAGGAACACTTTTACACTGTTGGTGGGACTGTAAACTAGTTCAACCATTGTGGAAGTCAGTGTGGCGAT


TCCTCAGGCATCTAGAACTAGAATTACCATTTGACCCAGCCATCCCATTACTGGGTATATACCCAAAGGATTATAAA


TCATGCTGCTGTAAAGACACATGCACATGTATGTTTATTGCGGCACTATTCACAATAGCAAAGACTTGGAACCAACC


CAAATGTCCGACAATGATAGACTGGATTAAGAAAATGTGGCACATATACACCATGGAATACTGTGCAGCCATAAAAA


AGGATGAGTTCACGTCCTTTGTAGGGACATGGATGAAGCTGGAAACCATCATTCTCAGCAAACTATTGCAATGAGTA


AGTTCTTTAGTGGTAATTTGTGAGATCCTGGTGCACCCATCACACGAGTAGTATACACTGCACCATATATGTTATCT


TTTGTCCCTCGGCACCCCTTTTCTACCCCCCAAGTCTCCAAAGCCCATTGTATCATTCTTATGCCTTTGCATCCTCA


TAGCTTAGCTCCCACGTATCAGTGAGAACATATGCTGTTTGGTTTTCCATTCCTGAGTTACTTCACTTACAATGATA


GTCTCCAATCGCATCCAGGTCATTGCAAATGCTGTTAATTCATTCCTTTTTATGGCTGAGTAGTATTCATATATATA


TATATAGACACACGTACATACATATGTATATATACCGCAGTTTCTTTATCTACTTGTCGATTGATGGGCATTTGGGT


TGATACTTGCACACACATGTTTATAGCAGCATAATTCACAATTGCAAGTGATATTCTCAGGAAGCATGATGTAAGTG


ACAGAGACTTACTTTGTAGACTGCACTCATTCACTTGTTCTCTGAATGTGCTCTAGGCAGCCTGAGTTTCTACTATG


TCAGTGTTACATAGATGAGAAACCCCATGGGTGGTTTCCACAGAGGCTGCAATACTATTTTTGATACCAAAAATCTG


TTTGGTTTTGTGAGCCCCAGATGCCCATATGGAAAACTGAAGTGTTGATACCTCTTTGTAGCCCTCTGATGAACTGC


ATGGTTCACCTTCCTCAGCAGTTTGAGCGGGGTGGGGAGAGCGCCTGCTTCCTAGCCATCCGATTGGCCTGAATCAT


CAAAAATGCTATCATGAAACAGGTTCTGTTTATCTGCTCCAGATTACACCCATCATGTTCTAGAGTGCTGGTTTCAT


GCTTGAATCTAGATCAAGCCTGCTTTCCTCCCCTGCCTGTACTCCCTGTGGCTACCTACAGTCCTGCTGCTGACAGA


TAATCTAAACCAATAGCACCTAATTAGCCTATTTGCTCATGTGTTTTTTCCATCGTGGTATAATGTCCTCCTTGTCA


ATTTAGGGTGAAAATGTAGCAACACGTTGCTGATGGTTTAATTTCTGGAATGCAGGTAATGAATGTGTTTTTGCTTA


TCCAAGTCTTCCCATCAGATGTCAAATATAGAAGAACAGTGTTCAGAGGTCCTAAATTTAAATTGGAGTGAGAAATT


CACAGCGCCCCTGAACTCAGGCAAAATGCACTCTGACAAGTCAACCAGATATTCACAGATGGTCTGGAGGATTTGAA


GCCTAATTTGGTGAAATAAAATTAAATGAGTGAAATTGTATGCAGTCATTAATCTATCACCATACTTAAAATGCTTC


ATTGAAATTTCTTTTACTGCTTCAAATGAAAAAAGATCAAACTATGTTATAGAAAAGCATTCAAAACCCTTACATAA


CATAGATAAAACTTGGTTGGAGACTTACAGAACTTTCTCTGCTGCTTCGAGAAAGTTACAGTGCCCACAAATCTATT


GCTATTAGAATATTTTATTGTATTCAACACTCAATTCTACCATAATTATGTATATGAGAAAAATATTTTTACCTATA


AAATAATTATTATTACCTTTTAAAAATCTGACATTCTTCCTTTTTTCTAAAGAAACATATTTAGATTTAGCTTTTAT


TTTATTTTTGTGTTGATACATAGAGATTGTACATATTTCTAAGATTCTAGTGATATTTTGATACAAGCGTATAATGT


GTAATGATCAAATCAGGGTAATTGGGATATCCACCATCTGAAACACTTATCATTTCTTCTTTTCAATGCCATCATAC


CAAAAGGAAGTAAATAGAATTTCAAATATAAGGACAGCCATGATTTTACATACATGCCTACGATTCCACCACAAACC


ATAATTACGTCCCCCAAACTTTTAACATTTCAGATACTTTGTCCCAGGTATTTCATGATAAGGATTGGGCTATGACT


CTGTTACAGAAGGGCCAAATGACTAAAATGTCTCTGAACAATATTGATTGCAAATATTCTACCCAGTTGTCAGGTCA


ATATGTTCCAATTCGGAATTTATAACATTGTATCTCTACTCCCAAACCATCCAATCTCACCTACCTCACTTCCATAT


TATGGTGGGTGATCTCAGATTATATTTAAGCTCATGGTTACTTGTCAAGTAGATATGGAGTTTAGCCTAACTTTTGA


AATTTATGCTGAGATTACCCTTCTCATTATAGAATTAAGTAGGCAGTTTCCAAGTTTAGATTTAGCAGGCAGTTTTT


TTCAAATCACTTAAAAGTTATATTTTTTTAGGGCATTGAACAGGTTTGAAATCCTACCAAGATGTCATGTACACATA


GACCAATAGAACAGAATAGAGAACACATAAATAAAACTGCACAGCTACAGCCAACTGTTCGTCGACAAAGTCAACAA


AAAAATAAGCATTGGGAAATGGATTAAAGATTTAAATGTAAGACTTCAAGCTATAAGAATCCTAGAATAAAATCTGG


GAAATACCATTCTGGACATTGGCTTGGGAAAGAATTTTTGACTAAGTCCTTAAAAGCAATTGCAAAAAAAAAAAAAA


AAAAAAAATGACAAGCAAGGACTTACTAAAATAAAGAGCTTCTGCATGGCAAAATAAATGATCAACAGAGTAAACAG


ACAAACACCAAATGGGAGAAAACTTTTGCAAGTTATGCATCTGACGGTGGTGTAATATCCAGAATCTATGAGGAACC


TAAACAATTGAACAAACAAAAATCATAAAACATCATTTAAAAAATGGGCAAAAGACATGAACAGACATTTCTCAAAA


GAAGATATACACGCAGCCAATAAACATGAAAAATGCGTCACATCACTCATCATCAGAGAAATGCAAATCAAAACCGC


AAGGAGATACCATCTCACACCCGTCAGACTGGCTTTGTTAAAAAGTCAAAAGACACCCAATGCTGGCAAGGCCGCAG


AGACAAGGGGATGCTTATACACTGTTGTTGGGAATGTTAATTAGTTCAGCCACTGTAGAAAGCAGTTTGGACATTTC


TCAAAGAACTTAAAATAGAACTATCATTTGACCCATCAATCCCATTACTGAGTAGATATCCAAAAGAAAACAAATGG


TTCTACCAAAAAGACACATGCACTCACATGTTTGTCACAGCACTATGCACAATAGCAAAGTAATGGGATCAACATAG


GTGTCCGTCAACGTTGGATTGGATAAAGTAAATGTTGTACACATACACCATAAAATACTATACAGCCACGAAAAGAA


GAAAATCATATCCTTTGCAGCAACATAGATGCAGCTAGAGGCCATTATCCTAAGCAAATTAACATAAGAACAGAAAA


CCAAATACTATATGTACTCAGTTATGAGTTGGAGCTAAATGTTAGGTACTTATAGAATTGAAGATGGCAACAGTAGA


AACTAGGGACTAATAGAAGGGGAAAGGAAAGGGGGAGACAAGGGTTGAAAAGCTGCCTATTGTGTACTATGCTTACT


ACCTGGTTAATGGGATCATTTGTATCCCAAACCTCAGCATCACGCCATATATCCAGGTAACAAACCTGAACATGTAC


CCTCTGGATCTTAAAAGTTGAAAAAAAAAGATGTCATATAAATATTCGTGGTCACTAAAAGTATCTAATGTATTATA


CATAAAAATAAAAATTGGGTGAATTGGAAGTGTATTCTTTGTATCAAGTCATGTCGGAGATCCTATTCTGCTTTGAT


CACAGTGTGAATTCTTTTGCATTTTTGTTACCAGTCACTTCTTTATTTATTGAACTAATAATTACATATTCTGATAA


TCTGTCAGAAAGATAAAAACATTCTTTGTCCATGTGTCTGAAAATTTTTAACCTATTTTTCTAATGTTTTAAGTGAG


AAGAGCATGTTAATACTGAAATTGTAAGCAGTAGACTGAAAAATCATCCCAATCCATGGGTTATATATTGAATTGCT


TTTAACTGTATTACTAAATATTAAGCTTAATTTATTTTATTTCTACATATCCCCATTTCCACTATAGGTGATTTGTA


TGAATTTAGGAACTTCCTTCTCTCATCCATTTTTATATTAAAACTCAGACTTTCTAAAACAATATTTCTATCCATCC


ATCGTTGGTAACTATGTACTGACATGTTTTGTGCATCCGAAAAATGTTAGCATTAGTTTGTGCGCACAGAAGTAATT


CCAGTCACCATATGATGAGCTGATTTATTTATTTCGTAAGTGTGTTCATTATTATTATCTCTTCAGCACCCAAATAT


ATAGGGGACTTAATGATACCTACAAGTAAAAACGGAAGACAAAAACGCCCTGCTCTCTACAGAGGTTAAAATGTTTT


TGCAACAGGGCTCTAGATCTCAGCTGTGAAAGTAGGGACGAGATGAGGCTAGGCATGCAGTGTCAGTATAATACAAT


ATAATCAACATGTCAGCATCTAATGCAGGTGTTGCAAAACAAAATGTACACATGGGTAGTCAGGTAACAGAAAAGCA


TGAAGTAGTAAGGGCTATCTATGCAAGAGGTTCCAAGCTGACTATATACTGAAATATTTAAACACTATGTGGGGCAA


ATAAAATGGACATTAGAACAGTTCGATGGTCAGTTGGGGACTTCTGCTCTTTCTTCCAGTCTCTGAACATATCTTAA


AGCCACAATCATCTATTTTTATTTATTGTTATACATTTATTTATAAGCCAGCACCCCTGTGATTTAAGTTCTGTTGA


AATGCTGAGTTGGAAAAGATCGATGGATGGGGGAAATTTAGTGCAGAGGTTTTGCCCCAGGTTCAAAATCCTTTATA


AAATATTAATACATGGAACAAATATTGAACAATTAAACCACTGATAAGTTAATCAATCTGATTCAAAGTACACCTGT


GAAGAGGGACATGGCAAGAAAAATATTACAGTAAGAACTAGAAACATTCCTTCATGGCTGCTTGATATGGATATGTC


ATGTTTAAGAAAATTCTTCTTTAGACTGTTGAGATTTTTTTTCCTGACAAAGAAGATTCACTGTCGAGGAAAGAAAG


AGGTACTGTGAAATTTGTTATTGAAAACATGCACATACTTTTGTCAGAATGAGTTAAAGAGTGAACAAAATGTGCCT


ATTACTTACGTGTTGTGCTGTTTTAATTCAAGATTAAAATATTTAACGTCCACAGACAAGACCACTTTTATATGAAT


ATTATTTTTCTGCTTTATTGCTCAATTTTATTACCATTTCAAAACACCCGTGTTGCTTTCTATGGCCAAAGATGTTT


AGCACTTTTCATGGTTATACTTCTGTACAGTCCAAAATACAACACTTACTTTACACATACACAAACATCCAATGTAT


TTTGTTTTCTGTCAAGTAAAGACAATGTCTGTGTTATTAAGTTAAATGTCACTTTCAAATACAGGATATGTTGATAT


TAGAATGTTCAACTTTATTTCCTCATTTAAGCAAATTACAGTGTGAAGAATGTAACTGCAGCAATTTATAAAAATCA


TATCACATTCAATTATGAGAGCAAACTTGTTTTGTAGACTTGAACTAGTTTCAATTAATCTTGGAGTTATCATTTCA


AAAATTCTAAACAGAGAGAAATACGGAGTGTAATAATGGTAGGTCTTTGGGTAAGCTGCTTCCAGGAAAAGAAAGCA


ATTATATATGTTCACATAGCACTGACAAGGAGAAACAAAACTTTGGACGGCAAAGAACTTGCATTAGTCTTTTTGAC


ATGTTCCTGTGGTGTGATTTATTACGTAGACAATCAGCTCAACTTCTCAAGTTTGATATCCTTGGAATCATTTGAAA


TTTAAATTTTAATGAAAATTCATTAATTCCAAGGCCAAAAGAAGTGATTCTAATTGCTTTTGAGAATCAGACTATGA


AAGAATTCTTTGGCAAACTTGCACTGTCTTTTCTCTTTTATCATTGGTTGCTTCGTAGGTACTTAATTGAAGGTCCT


CTGATTATCAGCACGGGCTGACATCAGTTCACTCCATGCATTTTAAACAGTAGGCCAGATGTTTAAAGGATCAGCTG


AAGCATCGATAGCATGCTAGGGTGAATAATAAAATTTTCATTATCTACAAGAAGCAAATAAAAAGCATAAGCATTTT


CCCCCATTATCCTGAAGGAGAAGATGAATGCCTAAGCAACATTTTAAGAATGGGTTGAGTGTGGCCTGTGGGAAAAT


TTGGGTAGAAAACTTGTAGTTAGCTAATGTATATACTGTTTGCCTCTTTAGCTCACCATATACCCACACACATGGGC


ATGCATGCATACAGACAGACACATACAATACACACAACAAACAGGAAATTCAGATATACTGAAGAAATGTATTTAAG


GGATTACTAAGTTTTTGTAAATAAAATCCTTTAAGATGCTGAGAAACAATGGAAGAGAAGTAGGACATGATGGCTCA


TACTTTCGTAATTTACTTGTTTAACGTTTGCCAAGGTTTAAATTAATGTAGATGTTTTTGTGGCTAGGATTAATGAT


CTAACAGTTTGGAATAATTAGGCACTTTTATCACCTAGAAAGCCCAGAAACCCAGCATGCAAAAATTCTGGTATGTC


TGCATTTTACACTTAGATATAACAGAGAAATGACAAGTAGTCAAGTGGATAGAGAAACGAATGATTCTTCACACATG


CACACACACATAGAAATTGTCTTTTTAATAGTATTTTAATGTAACACATTTATGCATAATTTCTCCATAGTGTTTAT


CTTATAGTGAATATGTGATGAATAGTCTCTAACATTAGTGGTTTTATAGATTAAACATAATTAAGGCTTTATATATT


AAAGAGTCAATTGGTGACATTCTAATATAAACATGTTTATCTCATATACATTGAAATATTAGATAATTCATTCGTTG


AGAATAAATCGAATGAGTCAAAACTTTTAACCTCCACTTTGAGCTTTGTAATAGTATCCACTGAAAATATTCATGAA


AATTTTTAAGTCATTTCTATTTATATATTCAGTCCAAACATCTCACAAGTTTAAAATGTAAACTCAAGAATATAATT


TCTGTATTCTACAATTGGAAGCATCCATCATATCAGATGAACTTATATAGTTTGTGAAATTTTGCAAACTTTCTGTT


TAGTAAATCTTAATGTCAAACATTTTAACTTCCAGGTTGTCTTTCTTTTCAGTTTTAATATCCGCGATCTTTGTATA


CTCGTTGAATGGATTCTCAATAAGTAACCCACAAATATATATACATACTATGTACCTACAAAAAATAATAAAAAGTA


AAGAAATCGACACTTATCCATACCTGTCCCATAGTAATAAACTATTCATAAGTATATTTGAAAGATATGAGAATCAT


AAAAGTTCGTGTTTGCACCCTTTTGTGCGTGGAATCCTAGGTTTGCATTTTGTGGATCTAGACTTTTTGGAGTGTGG


AAATAAATGAAACAAATAATCGAGACCCAGTCTTATATTCAGGTTATCATTTTACTACATAAAGCATAAATAACATT


TGCAGTTTGTTTCTATGGCTAGCTCTAAAGTCTTAGCAACGAGAACATTATAGAAAGACTTCAACTGTAGCTTCCAG


CAGAACTTCTGAGGTTCCGTTTATGGACTAAGCAGCAGTTGAGGGGGACAAAACTCATAGGCAATTGATCACTCCAA


AGGATAGATTGTCTTTTCTAACCTAATCAAAAGATTTATAGTGAAGGCATATTCAGATTTTGTTGAAGGATATGGAT


ATATAATCATGTGTGTGTGTGTGTGTGTGTGTGTGTTAGACATACTTAAAACATTATTTGAGTAGAAAATTCTGCAC


AAATGGAAAAGTATAACATGTGTTATATCCACACATGTTGAGCATTTACCTGGCTGAAACATCAAAAGCTGAATTGA


CTTAATTGAATGTTGAATACTTAATAGTTACTTTGTAGTGACTCACTATTAAAACATTATCTCAAGCTTTGTCAGAA


TTAATTTTTTTAAAAAACTCAGATTAGTGTCAGGTTTACTGAAACAGCAGATCTGAAATTACTGTGTTTTTTTTTCC


TTTCAATAATCAGTTTCTAATCCAAAATTGAATATCAGTTCCAACTCTACATTCAGTTTCTGTTTTACTTGTTTGGA


CTGGCTTTTGGTTCTGTTTTCCACATAGATCCTCTCTGTGTAAGACAAAGCCATTTGTGCAGATTAAATTTTACTGA


GCGTGTTAACCTATTTAAAACATTCATCCAAAAAGACTAGTATGAATTCTTCATATGGCAAGCTGCTTGTTTTAAAA


CTTCCATTTATTCTAAAATCCTTTTTACTTATACTTTTTAAGAAACGTATTCCCGATATACAAAAGTAACACATGCT


CATTAAAACAAATTAAAAATAGTATTGTATAAAGAGCTGATACATTTCTGCCTTGCCCCATTTAACTTTCTTAAGTG


TTCATGTGAATCATCCATTCACATCAAGACATTTATCTGTATTCATATGAACGTGTTTTAATATATATAACATATAT


AGAATTTTATATAAACTTTCCTTTTAAAATAGAAATGAAATTATATGATATATTTATTCTGTGTCTAGCTCTTGTCA


CGTAATTATTCAAGAACATATTTCTAGGTTAATATCTGTATTCTTAGGTAGCATTCACTAACTCCTCATCTACTTGT


TTTCTTCCATTCTAATTGTGTTTAACATTTCTTCATACAATTGGTTGTCATTTGGTCTTCTTTCATGGAGGGTGCAT


AATGTTCATTCTCACCAATTCTTTACACTTTACATAACTGCTTGATACGAAGCCAGACCTTATAAATATCAACAAAG


CAGGAACACTGTAATCAGCTATCAGTTTCAGTTGAGCTGAATGACCCTGAATATGTGTACACATATTTTCCAGGAGA


TTTTAAAACTGACACCTCAGATTTCTAAGACCTGGAGAAATCAGCATGAGAAACATTGATCTATATTATTCCGTGAA


ATGATTTCACTAAATAGTGAAGCATCTCCCACATGTGGACTCTGTAATTTATTAGAATAAAGAGTTCATGTGCTTCT


GAAGAACTTGAACTACTCTTCTGGCCTCCGTACATTGGTTTCTTAGCTATAGGAAGGCTGAGCATGTTTTTCCTATG


CGTTTCCTTTCTAGCTCATCATTTTAGTGACAAAACAATCTTTCGTGGTGTTGCTCTAGCTATAGAATTGTTTCAGA


TTCATTTGACCAAAGGTGGCAAATACAACAGTCCCAACAAAAACAAAAGACCTATTACAGAATGATGGAAATGACCC


CAGGGAACAATGGCACCTCCACATTTCTTAATTCCAAGGTTATAAGCAGTGGTGTGGACAATTCTCAATTCCAATGC


TGAATCGCCTTCTAATTTCAAATACCTGTGCTAAAAATTATTTACGTCTACTGAAATAATGAACTGGACCCCACCAG


GAATGGCCGATATGCTTGTAGTCAGAGCACAACTGTAGAAAGAAAATAACATTTTAATTTATAGAGGTATGATGATA


GCTGTTTCATACTGTTTTCAGAACGATGAATGGCCTGCTCAGTAGTTTCTTGTCATCGTACTGAGACACTTTAATTT


CTTACCAGCTGAGATGAGGAATACGAGCCCAGTGTGCAGGTGAAATTGGTTAACAGGAGCCATTAAAATTTGGAAGA


GTCAGAATAGCATCAATCAAAATGCTTTCAGTGTAGGAAGTAAACATGTACTAGCCTGACCCACCTGTCTTTTCTTT


TAGGTATGTTGGTAATATTACAATCATTTTGAGGTATCCATAAACAACTGCTTAGATCTGAAGAATTGTATATCTTT


CTTTACTCTGCCCTGGCCTGGGGTTATGGTTCTCATTGAGCTCTAACCTTTCAGAAAAAAAATGTAGAGAAGTGGTT


CAAGAAGAATGCTTTATCTTGCTTCATAAAAATGATAGTGATAGTTTTATTGAAGGCTTACTATGTGCCAGGCCAAA


GTGCGTTTTATTATCGTTCCCATTTTCCAGGCAAAGAAGCTGGAGCACAGAGAGGCTAAGTGAGTTGTCCAGGATGG


CTCAGCTAACATGCTGCAGTTGGGATTTGCACCCAGACCAACTTCTTTTCAACCACTGTCCCATCCTGTGTCTTCTC


TACTCAAAAAGTGTTTCAGCTCCAAACCTGAAACTTTAAAGAAAAGGAAATCCTTAGTGGAAAGACTAGGTTTTAGT


CACAAATTATCTCCTTCCTTACATTATTTGTCTCTTTTTCAAATACTCCAAGCTTTGATTAAAACTGTCTATCACTA


GGAACATTGTAGAATTGCTAAGGTGGAATTGTTAAAAGAACTCAATTCCAATTAACTTTGCCATTGATTACTGTGTG


TTCTGGAGGGGTGTTCTTTCTTTCAGGTTAATGATGCTTTATTGTATATCTCAAAGATTAAAAATAACAATGAAGGA


AGTAGCAAACCGGAACTTCTCTCACAATGCATCTTTCAATCTCGTGCTTTAAATGAAGATAAAATCATGGCTGTGGT


AAGGTTGCAGGAAGGATGATATAGATTAAGTTTCTTGCAAACTGCCCTCTGAATTTTCAATAGCTGTAGAAGGTATT


GGTTTTCCAAAAAATTGACAAATTGAGGATTCATTCAGCAGTTTTTTTCTAGGTCTCTTACCAGAAAGTGATCACTA


AAAAGTGTAGGGAAACCACTCAAAGTTGGATAGATCATTATTTTCACTTAAGCATTTTAATTTCTTGAAGGAGCTTT


ATAATGCAACAAAGAATTTACAGTCCTGTGTCACCGCTTAAATTTTCTAGGGTCATCAGTAAACTCAGTGGAAATAA


ATTAGTTCATGAATATAATTGACCCTTAAATTCTGTCACTGTGCAAGTAATCGGTGGGTCTGCTGGATATGGCTTTC


GAGCAGACAGGTCAACTTCTTCAAACAGAGAAGAAGCATAGCATAAATTGAAGACAAATAACAAACTACTTGTTTCC


TCCTTCTTTGGCATCACCCTATGGATGGAGTATGCATTTATAATTTAACACAATCAAGAGATCTTTATTATCCTACT


TTTGGGTACAACTGCTTCGTTTCTCTTTTGAATCTCTACAGCTATTTAAAAATCTGTTTTGTAAAATTCTTTAAAAA


ACTAAAACATCAGATTCATATTTCAGGTATCTTACTATCTTATACCAACTTAAGCATCCAGTATTATCACCCACCCT


TCCCCTGAGTGAATCCTTAGCACTGGGCTCTTCCTGTTTTATCCCTGTGCATGCTGAGCTCTTTCTGGCCTTCAAGT


CTACTTCCGTTGCAACTGTTGTCTGAATGGTCTCTCTATGTCCTTCTTACTCTCTAAATATTTCGGAATTTAAAGCC


TGGAATAATCTACCTTAGTCCAAAAGATATGCTACACTATTCTAGTTCACAATGATCTCACACTGCCGTTGATACAC


AACATTTAATATCAACTTAATATCTATTTCAGTTCATTACGAGGTCACTTATGCTACATCTTATATTGTTGCCTTGG


ACTTTTATTATCTCTTCATATATGTGTTTATGGTGCTCCCACCCTCACGAGAAGTTGCAAATACCATGTTAGCTGTC


TGATGGCTTTCTATGTTGTCAGGTATACCATTTCCCAACCAGTTGGCATTCAATGATTAAGTTCATTAACAAAGAAT


TGTATGTGTTGAAAAAGATGTTTTTTTCTTAATGAAGCACTTGTTTTTATTTTTTTAATGAAATCCACCCTCTTAAT


AAATTTTAAGTGCACAATACAGTATTGTTAAATATAAGCAAAATGTTGCATAGCAGATCTTTATAATTTTTTTAACC


CTACATGCCTGATAGTCTATACCCATTGCACAGCATCTCACCATTTCTTCCCTCCTCCAGCCCTTAGCAACCACCAT


TGTACTTTCTGTTTCTATAATTTTGACTACTTTAGATACCTCATGTAAGTGGATGCGTGCAGTATTTGTCCTTTTAC


GACTTGCTTATTTTATTTAGCAAAATGGCTACAAGATTCATCCACATTGTAGCATATGGTAAGATTTCCTTTTTGTG


GCAGAATGATATTCCATTGTATGTATATAACATAGCTTTATACATTCCCCTGTCAATAGACATTTAGTTTGTTCACA


CCTCTTGGCTACTGTAAAAATGCTACAATAAACATGGGAATGCAGATATCTCTTCAAGATCCTAAATTGAATTCGTT


TAGATAAATATCCAGATGCGGGATTGCTAGATCTTATGGTAGTTATATTTTTTATTTTTTTGAGGAAACTCCATATT


GTTTTCCACAAAAGCTGCACAATTTTATATTTCCACCAGCAGTCTACATCTCCAATTTTCCTACACCTTCACCAACA


CATGTAATGATCTTGGGCTTTTTTTTTTTTTTTTTTTAATAATGGTTATCCTAATCCGTGAGGTAGTATATCATTGT


GGATTTGATTTGCATTTCCCTGGTAGTTAGTGATGTTGAACATCTTTTCATATAACTGTTGGTCATTTTAATGTCTT


CTTTGGAGAAATATCTATTCAATTCCTTTGTTCACTTTAAAAATTGGGTTGTTCGAATTTTTGTTGTTGTTGTTATT


ACGTTCCTCATGTATTTTAGATATTGACACCTTATCAGATATATGGTTTGCAAACCTTTTCTCTCATTCTATAGGTT


GCTTTTAATTCTGTTGATTGTTTCCCTTGCTTTGTAGAAGCTTTTTAGTTTGATATATTTCTGCTTATCTAGTTTTG


TTTTTGTTGGCTGTCCTTTTAGCGTCATATCCAAAAAAAATTATTGTGAAGACCAATGTCAGGAAATTTTTCCCTTA


TGTTTTCTTCTATGAGTTTCATAGTTTCAGATCTTATTTTTAAGTCTTTACTCCATTTCATTTTGAGTTGATTTTTA


TGTATAGTTTAAGTTAAAGGTCCAATTCCATTCTTTGCAATGTGTATATCCAGTTTTCCCAGCACCATTGGTTGAAG


AGGATATCCTTTCCCAGTTGTGTATTCTTGGCACCCCTATTGAAGGTGATGCTAGGTTTATTTCTGGGATCTCTATT


CTGTTCCATTGGTCTATATGTCTGCCTTTATGACACTATCGTGCGCTCTTGACTGAGGTAGCTTTGGTAATTCATTT


TGAAACTAGCAAGTGTGATGCCTCCAGTTTATTCTTCTTCCTCAAGACTGTTTTGGCTATTTGGAGTCGTTTGTGGT


TTCATATGAATTTTAGGAAATTTACCTTATTTCTGTAAAAAATGCGATTGGGATTATGATAGGAATTACACTGTATC


TGTAGATGGTTTGGATATATAGACTTTTAAATGACACATCAGATGTATTTCCATTTATTTTTGTCATCTTCAATTTC


TTTCAACAATATTTCATAGCTTTCAGCACACACATCTTTTACCTTCTTGGTTGGGTATTTACTAAGTTATTTATTCT


TTTTATTGCTATTGTAAATGAGATTGTTTTCTAAATTTCCTGTTTTTATGTTGCTAGCGTATAGAAACGCAACTGTT


GAATGATGACTTTGTATCCTGCAACTTTGCTGAATTTGTTTATTGGTTCTAACCATGTCTCTGTGTGGCGTCACTCT


TAAGATTTTCTACGTATCAGATCATCTAATTTGCAAACAGATATAATTTTACATCTTCCTTTCCAAATTTGATGTAT


TTTATTTCTCTTTCTTATCTAATTGTTCTGGCTAGTACTTCTGGTACGATTTTGAAAAGAAGTGGCAAAAGTGTGCA


TTCTTGTCTTGTTTCTGATCTTAAGGGAAAAGATTTTCAGTCTTTTGCCATTAAATGTGATATTCACTGTGGGTTTT


TCATATACGGTTTTTATTATGTTGCGGTAATTTCGTTCTATTCCTAGTTTGTTGTGTGTTTTTATCATGAAAGTGTT


GAAACTTGTTAAGCGCTTTTTCTGCAGCTATTGAGATGACCATAGATTTTTAGCCTTTGTTCTGTTAATGTTGTGTA


TCACACTGATTAGTTTTCATAAATTGAACCATTTTTGCATTCCAAGAATAAATCCTATATGGCTCTCGTGTATAATC


CTTTCAATATACTGTTGAGTTCAGTTTGCTAGTATTTTAATGAGTTATTTTGCTTCTATATTTATCAGCGGTATTGT


TCTGTACTTTTCTCCTAGTGTCTTTTATTGACTTTGATATCAGGATACTGATGCCCCTTGTAGAATGAGCTTGGAAG


TGTTCTCTTCTCTTTAATTTTTCTGAAGAATTTGAGAAGGATTGGTGTTAATTCTTCTTTAACTGTTCATTAGATTT


CACCAGTGATGACATTTGGTCCTGGGCTTTTCTTTGTTGGAAGGTTTTGGACTACTGATTCAATCTCCTTACTAGTT


TCGGCCTACTCAGATTTTCTATTTCTTCAAGATTCAATATTGGTAGATTGCATGTTTCAAGGAATTTGTTCATTTTT


TTCTAGGTTAACATACAGTTGTTTACAGCAGTGTCTTATAATCATTTGCATTCTTTTTGGATACCAGTTGTAATGTC


TCCTCTTTCATTTCTGATTTTACTTATTTGAATTTTCCTTTTTTTTTTTTTTTTTTTACTTAATCTACCTAAAGATT


TGTCAATTTTATTGATTTGTTTTTAAAAAAACTCTTAGCTTTGTTGATTTTTCTATTGTTTTCTATTTCAATTTTGG


CTTTTTTCTGATCTAATCTTAATATTTCCTTCCCTCTGCTAACTTTGGGCTTAGTTTGTCCTTCTTTTTCTAAGTCT


TTGAGGAAGAAAATGGCAAGGACATGACTTTCTTTAGCAGTTGGAAGGACAATGCTGTAAATACTCAAAAATTAATT


ATTTTTATAGTGACAAAAACAAAATAAAAAACACTTCAAAGCAAATGAAAGTTTATCATTTAATTTATCAAATCACT


AAGCAGACTGCTTGATCAGAGAGAAGATACTCATATGATCACATAAAACTGAAAGATTAAGAGGTAAGGACATTCAT


GTTATCATTACATCTAACTTTCTTATTTCCAAGATGGAGAAACTGAGGGTTGGAGAAAAAGAAAGATTTCTTTGTTA


GATACAAACAGACAGGACTAAACTCAGTATAGCAGCCTCCTAAATTCCAAAGTATCATGATACTGTGATTTTATGCA


TTCTTCAGAAAAATAGTAGAGCCACTGGATTCTGGCAAAGAAGTTATATAAAATGTCAAGTTCTTCCTTTGCCTCAG


AAATGAAGTTTTATGTTCCAAAATTGATTGGGAAGTTCTCCTTATACCTCACATCACGTCTACTATTTTACATTGTT


TACTTTTGAAGAATTTTTTTAATTGACAAATAATAATTGTACATATTCATGGAGAACCTAGTGATGTTTTTATATAT


GTAATGTATAGTGATCAGATCAGGGTAATTAGCATATCCATTATCTCAAACATTGGTCATTTATTTGTGTTGGGAAC


ATTCAACGTTCTCCTTCTAGCCATTTGAAACTTCTATATTATTGCTAACTATAGTCACCATTCAGTCGTATAGAGCA


CTAGAACTTATTTCTCCTATCTAGCTATAATTTATTTTTAAATATGCTTTTTGAATCTGTTACTATAAATTGAATGT


CACATCGTTTTGAAAATATTCTTAATTTATGCTCAACAGGCAAGATTACACACCTGTGATAATATCTTTAATTTAAA


ACATTACTCTGTTTAATTTACCAGAATATGGAACCCTAGTCATTTTAGAGGTGGAGCAAATTTCAGTGATAATCTAG


TGCAAATTTCTCATCTTATGAATGAGGAGATTGAGTCTGATATAAGGGACGAGATTTTCGTCAATGAGCAGCTTGTT


AACATTAGCTCTGTGATAGAACACAGGCACTTGTCCTCCCAGGCCGGTGTTTCTTCTACTCTATGATGGGCTGTTTT


GTTGTAGTTTTTAAACAGCAGCATTTTCACCATGCATAGTTTTCTTCCAAAGTTCGTTCTTAACGTTTTTGCACAGA


ATAACTAGATTTTGGAAGTAGAAAAAGGAAATTCTCTTTGCATCCTTGTATCTCTGGTTATTTTCTTTGTCCTTTGA


TCTCTCTCTCCTCCCCTCCCCTCCCCTCCCCTCCCCTTCCCTTCCCTCCCCTCTCCTTCCCTTCCCTTCCCTTCCCT


CCCCTCTCTCACACATTAGAGAAAGAGTTAAGGTATTAAAGAATACATAATACTATTAAATTTCCTTCACATAGAGA


AAGGAATGAAAAAAAGTGAAAAATGGTCCTCACCAAATGTCCAAACTTCTGTAGGTCATTTCCATAGTATCAGCAAT


GTCCTGTATGGTGCCTCGGGGATATGTAAGCAAATGAGCAAGTGGTTAGCTAATTCTAGCTTTGGCAAACACTTGTT


ATGGCTTACTTGAGGAGAAGTCACTTCTCCAAAGTGAAAATAATGTGCACAGGTCAATTAGAATTTTTTTGTAGAAA


AGGAAAATACTTTGTAGGGACATGGATGAATCTGGAAACCATCGTTCTCAGCAAACTATTGCAAGGACAAAAAACCA


AACACCGCATGTTCTCACTCATAGGTGGGAATTGAACAATGAGAACACATGGACACAGGAAGGGGAACATCACACAC


CGGGGCCTGTTGTGGGGTGGGGGGAGGGTGGAGGGATAGCATTAGGAGATATACTTAATGCTAAATGACCAGTTAAT


GGGTGCAGGACACCAACATGGCACATGTATACATATGTAACAAACCTGCACGTTGTGCACATGTACCCTAAAACTTA


AAGTATAATAAAAAAAAAAAAGAAGAAAATACCTCCTTATGCTCCTGACTTATTTTCTTTTTGGTTCCTCAGTCCTC


TTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCACACACACACACACACATACCCCACATA


TACAATATGATTAAGGATATATGTGAATAATGAAAGCTTCTTGTGTATAGATTTAGAAGTCTAATGGACAAAATCAA


TATTTTCCTATGTGCATTTAATTCCCCCCTTTGATTTAGGTATATAGTCTTTTTTTAAAAAAGAGAAAAAAAATTAG


GTGACCTTAAGGTATAGATCCTACTTTCAAAAGGTTTACAGAACTAGGGAGAGGAACATGGACAAGATTTAAAGAAC


TATTTTAAGCAGAATAAAATGTGATTTATGAACAAAGCATATATTATTTGTGCGTATGTGTGTGTGCCAACAAAGAT


GCAATTAGGAGATTGCACAGGGAGATGTCATTAGAACCAACCTTAACGGGTGAGAAGTCTTTGAAGACATTTAGAAC


ATGGAAGATCTCTGACAGAGGGAACAAAGGCATAGTGACAAAAGTCAAGGGCATATTTAGGACTGGAGAGTGGTATG


TGTGGCTTGAGAGTGGGCGAGAAAAAACAACAATGCCTCTGTAATAGGAAAGTAGACAGAGGCATGACATTAAGAGC


TTTGCCAGCTGTGCTAAAAGTAGTGAACAAGAGCTAACAAAGTGAAGAAATGTACCTTTTCTGATGTGTATCATTCC


CTTATTCATATACTTCTTGAGGGGGAAATTCATTCTGTGTTGATCTAGTAAACTACTACAGGACCAAATGATAAAAA


GAAGTATAGGAAAGAATGTTTCAGCATACTTTACGAGATAACTTCCTTGTAGCTATTCTCCATAGTATTTTGAGCAT


CACAAAGCAATGAGCTGAAACTGTCTAAGCCAAAATTGACTTGTCATCTGTTAGGGATGCTTAGATGAGAATTCTAC


ATTTGAGAGCTTCTTAGATTCATTGACCACTATGTCCCATTCTAAGATCCATGAATGCGTGACCTAACTATTACACC


TTCTTTTAGTCTGATTGTCAATTTTGTATTTTCAATTGTGCAAGTTTCTAAAACTATTTTAGGAAGATAAATCTAGC


AGTGGTGTGGGAATAGACAAGAGAGAAGGGGAAAGACTCTTCAGGAAACTAAACTCACAATTTATGAGTATTCTTTA


TTGCCCAAGTCTTCCCAAAGTCTTTCATCAAGAAAGAGGCATTGCAACTCTCCTTTTATAGTTTGTTTTTATTCTGG


AGCAGTGATGTTTTGGTGGAGTTGTTCCTCAGTGCGTAATTAAAGGGCCTATGACAATTACAGTTCATCTCCTGCTG


CTCAAGGTACTGCAGATATTTGGATCTACTACTCTCATTCATTTCCAATTAATGTCAGCTTTAGATTTCCTTCAGTA


TGCTATGTTATAAAATTTGATTATCGTTGTGCCCACCTTCCCACTTAATTTCAAGCAGGTTTCTCGATTACCTGACT


AAACTAATGAAATCTGACTAACCCAATATCTGTGGACAGTAGTGTGATGTTACTGATTTTTGTATGATTAGTCAAGT


CATATTCATGCCACGTTTTCATATAGTACCATAAAGGATATTCTTCTCGTGGTCCTTTTCTTTTATTCTGAACATAC


AATGAGAAGACCGGTAAAGTGGGCTAGGAAATTAAAGAAAAATACAAATGGCAAAAAATATGGGTCACTCGAAGTCT


AGAATAGAGAGCACAATCAATTTTGAATTAAGGGGTGATAAGGTGATTTGGTCAGGTGACTGGTGAAACAGGAAAGA


AACTATACTTTTTGAAGTGTTTCATCCATGTGTTAAGATTCATTTGGGGTCAAGAATCTAAATTTCATATCCCTGGG


AGTGGAAACTAAGTAAAAAAAAAAATTATGGACCTTGGTTTAATAGCTAGAGGAGCAAGAGTGTATCTTTATGTGAC


TTAACTTCTATGTGAAAAGTGAACCTTAAGATTAATTATTGGGGGAATTTACTTACTCAGGTTCTATGCCTAGATGG


TCTGCCCAACTAAGAAAACTTATTTTCCTGTTACTCCATCCTATTTTTCATACTTTTATACTGCACTTGCAGAAAAG


CATATATTTCTACCCAATACGAAAATTCCTGGGAACATATTTTTCTACATTTCCCAAATTACTTCAAAAAGTAAACT


TAGGTTATTTCATGATCTCCATTACAATGGACAGGTGGCCTTATTGAATGTTGTCCTGTGAATACAAAGATCCAGAG


TTTAAAGAACAAGGTGTACTTGCATCTCCCACTTAGGGTTTGCTTGTGGTGGAGAGAGAATCTAGTTTGCTTAAAAG


GATGACAGTGCAGTGCCCCAAAATATCTGATATCATTAAAAGTCTCATATTTGTCTTTCGTAACTTCTCTAGGGCTG


TCGATGACAGGAGACCCTTAACTCCTATGCCTTGATTATGTGAATAAGCACATGAAAATATTTTAGTTATCTTAGTT


CACTTTTAAACTAAGTTTCAATTATCACTAGATTCTAAATATCATCATTGAGCCGTTCTTAAGGAACTGATTTTCTA


CATATTCATTCACTTCACCTATATCTAGTGTGTCTACTATTTGCCAAGAAAAATTTACTCTCTTAATTCAGCATTCC


ATATACTTAACATCATAAAAAGTAGGCCATTTTTAGTTTTCTAAATTATTTATTTAAACATTTCTTTAAAATTACAT


TCTATCATTACACTATATTTCAACACTACAGTAAGCAGCCTATTTTGTGATTTTTCCTTATATAAAATACATAATTG


AAATTAAAAATGAAGTTACCAAGAGCCATTTTCACTCTGGGGAATGCACATTTATAAATTATGGGGTTATTTTTTCT


TCATCAGCTTTCATATTATTAAACTTTGTCTCTTCATAATTACAGAGATGACTAGACACAGAAGGGAATTTAACATT


TGGTGTGCATTTGTCTAACCTATACTTTATGTTAGAAAATACATTTCCATTTGAAAAAAAATCAGTAATTGTGGGTG


TGATCAAGAGGGCAGCCTGAAAGTCGGGTGATGTGACTCACACCTGTAATCCCAGCATTTTTGGAGGCCAAGGTGGG


ATTATCGATTGAGCCCAGGAGTTCAAAACCAGCCTGGGCAACACAGTGAGAGCCTGTCTCTATTAGGGGGAAAAAAA


AAAAAAGAGGAAGTTAGCCTGAGGCAATGTAAATGAAATACATATTTCAAGGATATTTATACATGATTCACGTTATT


CATATAAAGATGTGCCAGAGAAGACTATAGGTACGTTATTTTACACTATTTTGCTAGGATTTTAAGAAATTCAATGT


GTTTTTATTTCAGTTAACTTAGAAAACTTACCTAACTTATACTTCTCATGGACACAAAAGTTTTTAAAGATAGGATC


AAAAAGCCCACATGGTGAAGCATTTTGAACTGGATGAAAAACATCTATTATCTTTAAAATTTTATGATATTACTGAT


TGTAATAGACTCCCTTTTTAAGAAATCATTCCTTATAGAACATAAGGTTTACATTTACAATCAACAATTTCTATCCT


TACTACAATAAAGGCACATATAAAAAGTACAGTTGCATATTTAGCAGGTTTAATTGTACATTTTAATGTAGAAATCA


ATTCAATTCTTTCATTTATCAGCATTATTACAGTGATTTCAAATTAAGCATAGGTAACTTTGATATAGATAAATGAT


GTACACAGCAGTTAAATTTTATTTTCAATTATGTAGTAATTGTATAACCTAGGCAGTATAATTTGTAAACTTTGTAT


TTTATTATTATGCTTCTCCCACTTGGCATAAGCACAACACTTCCTAAAAGCATAATTTTCTATAGACTTAATAACTC


CCTAAAAACCTGTTTTGGACCCCTATACTATTTGATATAGGCAGAAAAAAAACATAATCCATGCTCAAATTTGAAAA


ATGACTGGTCACATTTGGTATAATACTAAAGGTAAATAAAATCAAGAGTCTATGAACATTTCCGGACCTGCACATTT


GTTTTATTAAAATGCATAATTGTCTTTAGTGTGTTTCTATTTGTTTATACTCTACTGATTTTAATTAAAAATACCAA


AATACGTTTATTAAAAAACTGTCAGAATCTAAGTTGTTAAATATACTTAACTAGGAAAGTAACTGTTTAAACGAGAT


AATTTATAGAGAAATGTGGTGTATTGCCAATTAGATGTCAAGATACAATACAACTGATAATGAAAAAGTAGCATTTT


CTTAGGGATGGAATACAGTGTAAGGAACACCCCAGTAAGAATACAAAAATTACTGAAAAAAAATCTTCCTTCCTGAA


AAACCAAGTGCCCTTCAAGTGCAGAACCTCATCCAACTAATTGTTAGGTATCACTAAAGCCTGATACCTTCAATTTT


CTGGATCATTCAAGCTGTATTTTTGAGTCCTTATACTAGAGGAGGTAAAGAGCTATAAAAACACTTAATGGTATCTG


ATGTGAACTGTGGATCACTTTGACCCATCACTTCTACGTCTACATCTTGGATAAATTCCCATTGTTGTCATAGATTG


TACAGGTTTAATGGTGCGTTTGTGGAGGGGGCTCGCTTATAGAAAATGGAGACTCTGAAGGGATAAGGAATAAATGT


ATCACTTCAGGTCTTTTATTTGAAATTGGGGTCCAGAGAGCCTTTTTGTATCAGACTTGTCAAACCATTTCCATTTA


GTAATTATATATGCACTAGCACTTATTCCTACTTACCTCACCTCTTTATGCCCATTTCCTTGTAGTTGCGGTTATGC


ATGAATAATTTATTGCACCCCTTACCAACAATGGAATAAAACTTCCATTCTGAAAGCTTTCCATACTCATTTCCAAT


AGCAATAGGGTTTTTTTAACGGACGTATTACAAATGTACGAGTCAGTTGAACATAGTATTCCTCTTTGTAAGAACTC


CAAGTGGATGCATGCTGTTGTCTCAAATCTCAATTAGACCTTGCTTTGAGGTCCCTTCATTGCCAGTCATCTGTTCT


CCTTCCCCTGACTTGAGTATTTCTCCAGATATAGATAATACATTTTCCCAACTCTGTGTTCCAAGAACTGACAGTGG


CTTTCATTCATTTTGTTTGTTTGTTTGTTTCTTCTCGTTCTCAAGTATCCCGCAGTCTACTGTTTCTTCCCTCCATT


CGTTTGTCCTTTCAGAGTTTCAAAATCCAGCATAGGTACTTCTTCTAAAATGTCTTACCCTTCACATACACACACCA


CTTGAGACCCCATCAGCCTCTGTCCACACAGTTTGGTTACATTCATAGACTATTTTTATACATCAAAATATTTGAAA


ATTTTAGGGTAAATCTCAGTAGTCATTCATTTTTGCTCTTATTCAACCAATACTAGTCAATCAGCCTGTGCCAGGTT


TTGTTGCAGGTACCAGGTATCCATCCATAAAGAAAACAACGTCCCTTTGTTGTGGAATTTACATTTTAGCAGGGGAG


GCAAAGAACCCAATAAATATGATAAAATATCAGATTAAAAGTACGATGAAAAAAATCATCAGGGTAAAGGAAAAAGG


GAAGCAGTATTTTAGCAAGAGTGGTGAAGAGAGGAGGCTGAGAGTGTGACATCTGAGCAGAGACCTAAATCAAGTCA


AGGAATGAAACATGCTACTATCTAAAGAAATGAGTCAGGATAAGGAACTAGTAAGAGCCGAGGCCCAGAGATGTGAA


TATGCTGTTCCAGGAACAGCAAAGAGACTGGTTGATATGATGTGAAAAATGAGAAGAAACCTTATGATATGTGTCAA


GAGAAAAAAAAAATTTAAAAGCATGCTTGGGAACGGAGGCCTCCAGATGAAAAAAAAAAACACAGTTCAAATCCTTG


TTCATGCATTTAGTTTGCTTTGCAATCTTGGGCAAAATGTTAAATTTCTGTACGTTTTATCTTCCTCATTTTTAAAA


TAGGCACAAGGACATCTACTTAATAGGTTCATTGTGAGGAGTAAATGAGATGATATATCTAGGATGCCTGGCATTAT


ATCATACACTTAATAATACACTGAATAAATAATAGTTATGTCTATTTATTTCCTTATCGTTTTTATTATTATTTCAA


TGCACAGACCTGTTCATAAGATAATGATAAATATTAGTGGCAGAAACTGAAGATGTTATAAATTATTAGGAGGCGGG


ACCACTCAGTTCAATGTATCTGTTTTAATATAGTCAGCAAAAGTGTGAAGATACCAACAATTAAATTTCAATGCATT


CTTCCATTTCACTAGTTTTATAAACTGATGAACTACCAGAATGTCAATGTATGAATTGCATACTCATTCTTAACAAA


CAGATTTGCAAAATTATGTGTAAAATTAGCCCTCAGCCTTCCAATTTGTTATTGTCATATTTCATGGAAATACATAA


TCTGTAAATTTTTGTTTTAATGATATGTGAAACTGCCTAAAGTAGAGTCTTGGCAACTACTTCACATTTGTCCTCCA


GAGATAGTGGATAAAAGTGTCAATAAATGAACACTCTATATTCACTAATCACAGGCAAGGGACAAGGAACAGAGTGG


TCACAAAATACCACAAAATTAAAGCACATTCCAAATTAAATATATATGTTTTTATTACAGATAATGTTTGCTAGACT


CTTTCTAATTATCTGCAAAGATTTTAGGAATGTTTTAATGTTTTAATATTTACACACCTGTGTATTTCAAGTTCAGT


CAAACACTATTGTTAAAACTAAATCTTCTCATCTCTAATAATAAGATGTGAACTTATCTTGGAAGGTGGTTATTAGG


ATGGGAGAGATAATGTATTTCATTCAAAGTAAAAATATTTCTCTGTTTCTATCTTTCTCTTTCTCTGTCATCTATTT


ATCATCTATATCCAGGTATCTATGCACCTATGTAGACTAGCATTCAATGAACCATAGATATTATTAGTAGTAGAATT


GTTACTAATATTAAAATAAGAAGTATTTAAGAAGAAACATGTCCTAAAGCATAAGGTCAATTATTACTCTCATGTTT


TTTGGCATATGAAGCCTAAAAAGTGTCAATTTCAAGAGAGTATTAATAAAGATTGTGATAACTGAAAGGTTCCTGCT


TGAAATTTTGTGTGGTCTTACAAATATATAAACTCTAAGCATTTCAGTGAGCCAATTACTGACTAGGCACTATGTCT


TATGACTCTTTTGTCATAGTATGTAAAAAACAAAGAGTAGAGACATCATAAAAATTATAGTAGATGGGCACTAGGGA


ATTACGCAAAATAATTTGTAGATTTAATGTGAAACCAAAACATCTGTTCAAGTCAATTTCCCACAGGTCATGTGGCA


AAGAGTATGAGTTCCAGACTGAGGAGAGGAAAAGGTTGTTCTTCCACAGGGAAATAAACTGAGTGTAATAAACATAA


TTTTTCTTCTTAAGCATTATTTAAAACAAAAAAAATGCCATTAAATCTATCTTTCCTGCCTCTCTTATCAATGCTCC


CTTCCCTTTCACCACTTGTTTCAAACTCCAAGCCTTGGGATTTTATTTTGGCTTTTTGCCTTAATGTAACTAAAATG


AGAGCATCACAAATATGAAGCTCATCAAATAATTTAGCAGCATTTTCCCCTGTTTTTAACTTTCTCTTTGGAAACGT


AGATTTCGAAATTTAAGGGCCCAAAATATGAAATGCAATTATAATAGGCCATTTGTTCATTCAGCTTGATAAACTTG


AATAAATAGTATTGAACTTTTAATGCAAAAAGAACAAAACAAAATAGAACTCTCCACGAAGAAACTTTTCAATGTTT


GCATTTCTGTGTGAGGAGAAGGGTAATGAATGTGGGAACCTTAATGGAATCCATGTTCTTCCAGTGATGACAAGGGT


CAAAATGGAGAAAAATGGTCACTTTCTACCCAGTACATTATATTAGTTCTATGTGGACAACTATAACATAGCTGATG


CTGGTTTTCAGGCCATAAATGTAGGTATGTATTTTCCTACTATTTATAAGGCAAAATTTCTATTTGTTTAATGATTT


CTATATAGGTAGATTATTCTGTCTTTAGGATTAAAAACGACCTGTAGACCAAGAGACTTTCTAATGTCCACCTTAGA


GTATATGGCTTTTACTGTTACAGTTTCCATTTCCTTTGCTTGCCCCTTTGAGAGAAGGAAAGGAGACATTTGGGATA


CATACATCAATGAGGAGCTATTAATGAATAAATGAATGAAATTGTCAGTCAATTTATCCACATGATCATCAATTGCC


AATAATTTTATCACCTCTGTGGGATTAAGTAGAGGTAACAGTTTAGAAATTTGATTTTTTGAAAGCATTTAAAATGT


TCAAATATATCACTCTGGTAACTAAGGGAAAGTGTATTATTTTCTTATGCTTAGTCTTATTTTGGTTTTGCCTTTTT


AATTTAAATTGAACACTTATATCAAAGAGCTTGCAGGATTATAATTTGAATTTTTGAAGCAAAGATCATTTTCTTAA


CATCAAACAAAGAGTAGATACAATAGGAATAAAATCGGCAGAAAAACAAGAGTATCAAGGACAGACGGGGAGGGTGG


GTCTGTGTTAGCATGTATTGCTATGAAGAAATAGCCGAGACTGGGTAATGTATTTTTAAAAAGAGCTTTAATCGATT


CATGATTCTGCAGGTTGTACAGGAAGCAGGACACCAGCATCTACTCAGCTTCTGGGGAGGCCTCCGGGAGCTTTTAC


TCATAGTGGAAGATGAAACAGGAGTAAGCATGTCACATGGCCAGAGCAGAAGCCAGGGGGAGGTTGCCACACATTTA


AAAAAAAAAAAAACAAAACAGATCGCTCAAGAACTCAGCTGCTATCATGAGGACAGCATCAAGCTGTGAGGGATCCA


CCTCCGTGACTCAAACATCTCACACCAGGCCCCAAGTCCAACACTTGGCATTATATTTCAACAAGAAAAAAAGTTTA


ATTGGCTGATGGTTCTGCAGGCTGTACAGGAAGTGTGGCACAGGCATTTGCTTGGCTCCTGGGGAGGCCTCAGGGAG


TTTTTGCTCATGGCAGAAGGTGATGCCCACACACTTTAAAAAAAAACCAGATCTCATGAAAACTCACTCACTACACT


GAGGACAATACAAAACCATGAGGGATCTGTCCCCATGACCCAAAAACCTCCCGCCAGGCCCCACCACCAACATTGGG


AATTATATTTCCACTTGAGATTTGAGTGGCGGCAAATATCCAAACTATATCAGGGCTCATGTCCAGTTATATGTCAA


CATGCCTGCATTCGAAACATCCTGTCCAAATCACTGCCTTGTCATAATACTTATATTTTTCTTTATTGAATACGAAC


ACAAGAAGATTAAATAATAGCATTTCTACTTTAAAACAGTGGGCACCATATTAACATTGGAATAATAGTAGTAATAA


CGATAGTAATAACAATGATATAGGCTGGGTGCGGAGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCAAGGCGG


GCGGATCATGATGTCAGGAGATCGAGACCATCCTGGCTAACACAGTGAAACCCCGTCTCTACTAAAAATACAAAAAA


ATTAGCTGGGCATGGTGGCAGGCACCTGTAGTCTCAGCTACTTGGGAGGCTGAGGCAGGAGAATGGCGTGAACCTGG


GATGCAGAGCTTGCAGTGAGCCGAGATCGTGCCACTGCACTCCAACCTGGGCGACAGAGCGAGACTTCATCTCAAAA


AAAAAATTAAATAAATAAATAAATAAATAATAACGATAAAAGGATATGTGTAGGTTTTTTTTTTAATAGGCTGTTAA


CATTAATAGGCATTGTGATTTCAGGGATATCATCAAACATCCTGGTCCTAAGACATCCCCTATTGAATAGGAAGGGC


TTAAGTTAAACTTCTCATGAGCCACAATTTTCTGATTATATGTTTGGTGTGTGTAATAGCCACCTCAGTGATGATTT


GATTAGCCTGGACCCTTACATAATCATTGAAGTATACCCATGTTCCTTTATATACTTCTTTAGTGTTGAAAGCTCAA


AATTAAGCAAAATAGTCCCCTTGATAATGTTTAGATTCTTAACATTTGCTTTCTAAAGCTGGCAAATACTCTCTTCC


CAGTGTCATGAAGTTAAATAACATGTTGCTTAGTGAGGACTTTAATGTTGCCATGCCATAGGAAGACCTTATTCGAA


ATCCCCTTACCTGGGAGAATGTCAGATTATTACCCCCCAACTTGTTTAACACTTTTAGGATTTTAAAGGTGTTCACA


TTTGTATTAGAACAAAATACTATTGAGAAACATTTCTAGAAAAAAATTATCTTTCCAAATTAAAATCAGTGGTATGT


AATGTAGGAGTCTGATTATAATGATTAAAATACATGGGCTTTGGGCATACTGCCTAGGTGAAACTCCTGGTTTATTG


CATCACTATTAGTATAACCTATGGGAGTTAACCTACGTAAGCCTCAGTTAATTTTTCTCTCAAATTGATCTAATAAT


CGTCTCTCATAGGCTTGTTTTGATAGATATTTCAGTGTATATAATATACTTAGGACAGTGCCTGATATCAGTAAGTC


TCCTTATATGCTATTTTTCTTTCTATTTTAATTATTTATGCAAGAGAAACTATTATGCTTTAACTCAATTAAAATAA


AATGCCTTTGTATTTATTCATGTCAAAGGAAATATGCAAGTATTGCATTCACTTCCTAGGTGCCTTTTTGAATTGAG


CTTTGCATGGTTAGTTTGTATAAAAGGTTCAGTGAACTTTCTCATAATGATTTTTTATTGAACATATGGAATCCATT


AAGTGTTAGCAAAAGTCACTATCCACTGAGCTGTGTCCAGGGGCTGACAGTTATGTCTATCTCTTGCAAAAATAAAC


ACATACATAAATGCACTAAGACGTATATTACCTGTCGTCATCTCTTAGAGCATTTCCATTTTTCTTTTAAGTTTTTT


CTTTCAATGGGTTTTTTATCTTTGTGAGTACATGGTAGGTGTATATGTCAACGGGGTACATGAGGAAGGTGTATATA


TTGATGGGGTACAAGAGAGGTTTTAACACAAGCATTCAATATGAAATAGTCACATCATGGAGAATGGGTTATCTATC


CCTTCAAGCATTTGTGCTTTGTATTACAAACATTCTAATTATACTCTGTTAGTTATTTTAAAATGTACCATTAAGTT


ATTACTGACTATAGCAACCCTATTGTGCTATGAAACAGTAGATCTTATTCTTATTTTTCTAACATCTTAGAACATTT


CCACAAACACTACCTGCTTGTTAAATATACCTATTCTAATCTTCATATAATCAATTACTTTTTTCCTCTAGAATGTA


CTATGACACATCCATGGGGAAAATGTAGTAATCTAATTAAGACTATTTCCTCTCATTTTATATTTAAAAGAATGTGC


TCTATCAATTTATTTACTTGTACAGCCGTAGGCAACCTCTAAAATATTTAAAGTTCTTAAAAGTCAGATATTTCAGT


TAATATTGTGATTATATAGTTGATTTTGATGAACATGTTCATCTACCAGAAATAAATTATACACACACATTGATATG


GTTAGGCTTTCTGTCCCCACTCAAATCTCATTTTGAATTATAATCCCCGTGTGTCAAGGGAGAGACCAGGTGGAGGC


AATTGGATCTTGAGGGTGGTTTTGCCCATGCTGTTCTCCTGATAGTGAATCATGAGATCAGATGGTTTTATAAAGGG


CTCTTCCCCCTTCCCTCCTCACTCATTCTCCTTCTTGCCACCTTGTAAAGGAGGTGCCTTGCTTTCTACTATGCCCT


TTCTACTATGCCCTTCACCTTCTACTATGATTGTAAGTTTCCTGAGGTCTCCCCAGCCATGCTGAACTATGAGTCAA


TTAAATCCCTTTCCTTTATAAATTACCCAGTCTCAGGCAGTTCTTTATTGCACATATATGTGTGTGTATGTGTATGT


GTGTGTGTGTGTATATGTATGTATATATGTATACATATGTGTGTATATGTATGTATATATGTATGTATATATGTATA


CATATGTGTGTATATGTATGTATATATGTATACATATGTGTGTGTGTATATATGTGTACATATATATATATATATAT


ATATATATATATATATATATATGAACAGAGAGAGAGAGAGAGAGGGAGGAAGGGAGAGAGGGAGGGAAGCATGGAGA


AAGAGAGAGTAATAGCCTAAATAGAAATAAAACTAGCTCCAAGTACAGGTTCGTCAACACTCTCCTATCATACCCCC


ACCAAAGTTAATGTTAACCACTTGGAGCCCTGTTCTTCCTTAGTTGTGGAGTACTTTAGCAAAATTTTAAATCTAAT


TATGCCTAATTCAACGACAGTGCTAATTTGAAAGTGTTAGAAACTGAAGACCTATAATAATAATGAGAGTTACAAAA


CATAAATAGTGAGACAATGATGAATGTAGTGGATGCATGTACGAGGGCTATCATTTGACAGTAGAGATGATGCTCAA


GGACAGACAATGAGTCTTTCAATGTGTGGAGAATGTGCTGCTGTTACAGTGATGTACAGGAAAGAAACAAAAACTGA


GGAAGTATCAGTAAACAAAACACTCAAACATATGAGTATACAGCTAGAATAAAAGCAACAGTACTAGATGACAATAA


GCCCAATGTTAACTCAGAAAGCAGAAGGTTTTTAAGAATTTGGGGAATACTGTGGCTGATGATACTTATGTCTCAAG


CCACAGATGCCATATGGGCTCTGCGCCCAGTTGAATCGGCACCACCTGGCAGTAAGTGGGCAGGTCCACGACTGCCA


GGACATCCCTTCCAACACTTGTGGAGATCACCAGGAAGGGGGGAGAGACCTGCCTTGACAGATTTTCAATGTGGGCG


AAACAGGTCTATTTTGAGAAAAGATGTTCAATAGAACATATGTCAGCAAGGAAGAAGAGATGATGCTTAGTTCTAAA


GCTCCAAAGAGCTGGCTTACACTCCAACTTGGGGAAAATGCATCCGGGAAATGCAAGATTAATCTCATCTTAGCCAT


TCTTTTGAATGGATGGACATGACCCCTTTCTACTTGAAGACAGAAAACATAACCATATTGATTTCAGGTTTTCTTCA


TTGGTTTCCATTTAGGATTGTTCCTCCCCATCTTCTTTCTGTGTAGGCATCCCAGTTCCCAAGTGTTCATGAAGCAC


GTATGGCCTTCAGGGGATGTGTCTGTATACATTGTTATCTTATGGATGCACGGTTTTGTCTGCACCTTGGTTCTGAA


TGTCTTTACTCTTGAGCATCTGCCCATGGGTCCCCTTCTCAAGGCCTCAATTTCTTGAGTTTAACACTGCATGGCCC


ATGCAGCTTTTCAGTTAAGCATCTCTTGCTATGACCAACTCTTTTCCTCAGTCAACTCCCACACTCTTTTCAGGGAC


AGGAAAAATGTAGCCACTTGCTGGCTGCACTCTGAGGCCTCAAGAAATTTAGTGAATCTGCCTTTGCCCTTCTTGCT


GATGAAATACTGCCACATCAGGCCCCCTCTTCGGAAACCTACAAGCATCTAATTTTCTTGCTTCCTCCCCAACTTTC


TTTTTGACTCCCCCCCATCCAGAGAGTTCTTATGTCTACTGTACTAGGAAAAACTCATTCTTAAGGTATGGTTTTCA


AATCATTCTCTGGTCTGGACTTTAGCTACGGTTTTAAATGAAGAAACAACCCAGAGCCAAAATATAATGAAACTATT


TCCTTCTTCCACAGAGTGGAAACTGCTTTGGGGTTAAAGGGCCAGTGAACCAAATAGAAAAGGATCTCAGGGAACAC


AGATTGAAGAGAGAGAAGAAAAAATATGAAGGCATTGTTGGTTCTCTTTTGAGTTTAAAATCTAGTGGGGATTGTAA


GCACACACACATATACACACACACGCTTACACACACACACCAGTGAAGTTATGAAGGATTTTGTCACTCCAACGACC


TTGAATTTGATTATCTAGGTCAGTTGTTACCAAAGTGGAATGTACATGCCCAATAATATGCGTGCTAAACAGTTGGG


GTAGTGAGAAAAAATACTTTTTATTTATCTTGTTCTCTAGAAATTAATATTTTGATTGTATATTTTATAGTGTATGT


GATGTGTAAGTTGTGTCTACAAAACTAGTGTCAATGTAATTTAAAATTACATATGTCTGTGAATATATATTTATATA


GGGTACATGCTTAAAATGTGTTTACTTCTGAGGTACATGAACATTTTTCCCCCAGGCACAGAAAGACAAATACCACA


TGATGTCACTTAAATGTGCAATGTAAGAAAAGTTGAATTCATAGAGATGTAGAGTAGAATCATGGTTAACAGAGGCT


TGGGAGGTGGAGTGAGGGAATAGAGAGTTACTGTTCAAAGATTACAAAGTTTCAACTAGACAGAGGGAATACATTTT


GAGATCTATTTCAGGAACATTTTGAGACCCTCACTCTAAGTAATAGGAAATCATTACTTTAGTTAACATATTTGAAT


ATGAGTTGTGATGTTCTATATCGTTTATTTGGATTCTACTAACCCACACCTAGATTTTTATGGCATTACCTTTTTAC


TCACTGTGAATATCCTACTCATAGACAGATGCCCTGGGAACTTGGACTTGAGGCACCCAAGAACTGAGACAGTGAGA


TTTGGGGGCACAAGGATCTATGGATAAGTTCATCTTAGTGATGATAAAATCAATTTGGCATGTTTCACGGACAGTGT


GCATTTTAGAAAGGGTAAAGACTTGGAAACGGGATATTTTTGAGCCCAAGTGTTTCCAATAAATAGCTGTATAATTT


GAAGCAAATAATTGATTTTTTGTTCTCTTTGTGCCCTCGCCTGTAAAATGGGAGAAATGTATTCCTTTCTCATCCTT


CTCATGAGGCCATTGAGAGTATCTAATGAGATCAGACTGTGACATAGCATAATAATTCTCATTTCTTGAAGGCCTAT


TATACACTTTGCAAGCACTGTATGTGTTGTTTCTACTTCTCTTGTTCGTTTTTCCTGGAATAAATATCCCCCCCTCC


TTTACATTGGATTGCCATTATTCACCCTGTAAGGAAGGCTTCATGGTTCTCATTTTCATCTGAGAAAACTTAGGCTC


AGAGAAGATCAGTAACTTATCTAAAACACACACATACACACACAGACATATCTATGCCCATTATTCTTAACCTAGTT


TCTCTATTCAGGAGTTATCTCTGCTGTCTCTGCTTCTGATTATAATCTGTGTAAGCTGATCCAAGTGACACGATTAC


AGGGAAATTGTAAGCCCTTTGAGAGCAGAGACTACCTATTGATATCTACATTTTAAAATTTGATTTTAGCCAACCTG


TTTATATGCAATGACTAACAGGTTAGTTTGACTTGCAATAAATATTCCAAATCCTAGACTAAGTAAATTTATTAATG


TAATGATTTAACTTGATTTTTTCATTGGCATGTTTCCCTGAAGTCGTCATGCAAAATTGAAAAAAAAAAAAGTATAG


TGTGTGATTCTAGATTGAAATTCAGGAATCCTCCAGGGTTACCTTGTTTGCTTTCCAAATAGTTCAGATTGCTTAGT


CTGACCAACAAGGTCCCTGACACTTGGAACTCTGTCTATCCCTCTAATTGACTTTGTCCCTGATGACCTCGCCCAGA


GATACTCTTCACCCCAGCTATACTGTGTTGCTAGAGTTTCTCTGATATCCCATGCTATTGTTTCCTTTGTTCTCTTC


ATAAGGTACCATTTCCCACCCGCCAACTCCTGTTTTCCTGATGGACTTTTGTTTCACCTTACAAGATCATTGCTAAT


GTATTTATTTTGAGAATAAAAAGTGTAGGAAAGGTCACGGGACAAAGCTGTACACCAGACCTTTCCCAGACGAACCT


AGTGTATAATCTCCCTAGTCCAACATCATGGCTTAAGGCAGTCGATAGATCCGTCTTAATGTCCCTTTTGAGTTTTC


TACTATTATTATATGAGGATTTATTTTTGTCTGAATTCCTCCCTAGATTTGCCCTAGAGAGCAATGACTATTTACAG


TTTATTCCTCTTTGTATCTCTTATGTTAAGGCCAGACCTTGGCACATATTCTAGCTGATTAGAAGACGTTTGTTGAA


TGACCAAGTGATTGAACAAATGACCATGTGCTCTGCCACAGTCCGGTCAGTTCTACTTTGGTTTGGTTATGTGTTTG


CCACATTAAAGTTGTAGCCTGGGAAGTTCAGTTGTGAGATGTCTGCAGAACATGAAAAATTGGAATAATGAGGTTAT


TTCTAAAATTGCTATAATTTAAAATAAATAGTGGTTTATTCCATATATGAATATACACTGGAAACAAAGAATTTCTA


GAATACTGGAGATTCAATGATAACATCATTGAAATTAAATAAATAATAGGATTATGCTAGTTACTTTCTAATTTACT


AGAAATTGACCGTGTGCATGGCACGTATAATGAGTATCATGGGATAGTTACAAAAAGTGGTGCTTAGTGAGTTTCTG


TGGAAAATCTCGGTACCAATAAAACGGAGGATTTCCAGAAATCGATATTCCTCAAAGCTTGACAGTATTTATGCACG


GTTACACTTTGTGTGTCTTTCGTTTGAATCAATGGAAGGAGGCTATAACTGAAAATTATTGTTTTAGTGTATTATAT


CTTTAATAATAAGAGTTTTAAGAATCTATCATTAGAAATAATTATTCCTCAATTTGTAATTCTCAACATTTGAACAA


ATAAATGCTCTGTGTCTATCAGTTAATCTTGCCCATGAAGATTTAATAAAGCACGCTAGTTTTTACAAATGTGATTT


TAGAGATGGTCATTACTTGGTAAAATATTTTGTGTTAACACTTCCATGAATATGTTCTGTGGGAATATACTGCCTCC


ACATTGCTTGCTCATGAAGACATGATTTTTCACATCATCCTATCAGTATTTTGAGAAAGAGATTGATCCCATATTCT


ATGAGCATTTGAACATTCTCTAGTATTTTTGTTTAATCATTAAAACAACCCTTGAAGTCTATGTGCTACACTGGTTA


TTTCCCTCTTGACTTTCCTTTACAGATAACCCTCTATCATAAACAACCTATCTATATTTGTTGTCTCCACATCATGT


TGCCAGCCCTGCTTTAACACACTGCACATTGACTTCTAGCAGCAAAGGCTCATGGGAGGTACTCTCATCAAGGACAC


TGATGGTCCTCATGTTGCTAAATTTGGTGGGTCCTCTACAGTCTTTATCCTAGTTCACCTTATTATGGACCACTGTC


AACTCTGTTCTGCTTAAAACACTCTGTTCCTTGCTTATATGACTCTACACTCTTAACTCCTTTGTGAATTCCTCATC


TGCCCTTCCATTAAGTATTGACGACATCCTTCATAGTTTTGATCTAGGACCTCTTTTCCTCTTACTTGACATTATGT


GGGTAATCTTGTCTTTGAACGCAATTACCATTCTTATGTTGATGACCCTTAAGCTATAATTCCAGCCCAAATCATTT


TTCTGAGGAAGCTACAAGAATACACAAATGTCTAATAGATCTCTATTTAGATGTCCCTCAGGTGCTTCAAGCTTAAA


ATACTCACCTGAGCTCATCACCTCATCTATAAATTCTGCTTCTCCTCCCTGGCTCCCTGATTTATTTAATATGACCA


CCATCCACTTAGTTGAATAAAGCAGAAGCCTGGACACCATCTATACCTCCAATTAATCACTAAGTTTTGTTGTTAAA


TACGTTCTTACATTTTCTCTCTAGAATGTCTTATTTTCCCCATCTTTACACCCAAAACCAAAAGTCAGATGACCCTG


ATCTCCTGCTTAGATTTCAAAACACTATCTCTTGCCTAGACTCTGGAATTTCAGTCTTGCTCCTCTCCAATCTATTT


CTACACCCTAGACTCTGGAATTTCAGTCTTGCTCCTCTCCAATCTATTTCTACACAAAAGCTAGAGTAATTTTTTAA


AAAACAAAAATCTGAATGTGTTCATTTTCTGCCTAAAAGCCTTCAGTAATTCTTATTTGTTCTTCCAGGGATAGAGT


AACAACTTTCAGACCTAGTTTATTAGCTAGTTCTTTAACCACAAAGGACTCTCTCACTTGTCTACTCCCCCTAACAC


ACTTCGCCCTAACCTTTGCCATTCCTCCCTTTCCCTTTTCCTTCCCAGATGGACTTAAGTCCTTTCAGATTCTTAAA


TGTTTCTTCCTCCAGTCTCTTACATCTCTTTTCCTTGTAACTCTAAAAACTACTTAGCTTACGCAAGGAAAAAGGTC


TGTACAATTCCCGGAATCAGCGATCCTAACGTTCCCTGTTGTTTTTTTCGTTGGGACATGAATTCATTCACAGTGGC


TCTAAACATCACCACCCCTGCCTATCTCTCCCATTCCTACTTTATCTGAGCTTATCCATACTCTTGAAGACTTACAT


ATTTTTTTTCTACCAGGAAATCATTACTAGCCTTATTATCCCACTGTCCAAACCAATAAGTCTGATTAGGTATCTGT


ATATATTTAATATTACTATATGTGTTTTTCTAACACTCTAGTAGAGGAGAAGGTGTATTTCTTTCTGTTTTTTAGAA


GCCTGTATTTCTGCTATTATAGCTCTTAAGGAACTCTCATGCAATTGCCTACTAGAATGTAAGTTACGGTAGGATAA


GAACTGGATCAGTCATATCACACATCCACATATAGGACCTAGCACCATATCTAACACACAGCAGGTACTCAATACAT


TTCTTTCCCAAATAACTAAAGAGTTTAAACAAACCAAAATGATTAAATGAGAAGTAACTGTTTTGGTAATTCTTGTG


TCCTTACTAGAGTCTAAATTGAGTGATTTTTATATCATCAGTTTATACTCCCCTTTCCCAACCCCAATTCTTTCTTT


TTTAAATTTTTTAAATCAAATATGCCTTAAAACTTCAGGATCAGTTGAGTAAAATGATGCTTTTGTCGTCTTTTGCA


AAATAATTGTATTTCAGAATTTTGATTTAGATATTATAAACACACCTAAAATAATAGCTTTAGTCTTAAGATGAAGT


GCTTCTTAAACTCCCTAAGATGGGTTGGACTATGGATATGAACATGGACAATATCACATTAATTTGTGTACACAGTT


CTAACACAGGGTCTGGCATATAAGAACAAGTCAGTAAATAGTTGTTGAATGGAATTGAAAATTTAAGTAGCAAATAA


AGTATTTTGACCTACAAAGCAAGAAATCACATTTTTCTTTTTGTCACAGTTCCTTAGGAAGATAATTAATTTTTTAG


TATTTAAGGATGTTAAATATTTATTTTATGTTCTATTTACTAGGCTTCTTTTTATGAAAATTAATTGGTGAAAATAG


CGTACATATCTTCCTTTACCAGAACATTTACATTTTGGGCAGTAACGCTGGCTTTTGTTAAAAAAGCAAAATATGTG


TGAAATTTATGTTTGAGTTGATTTCAATGCATTACATTTCCATTTTAAATCTTCTTTGAAATACTCTATTTTTGACA


CCATGAAACTGTATTAGATCTTAGTATGTTAGCAATGTTTTGCAGTTTTAGAGCCATAATTATTTTAATGACCACTT


TCAGCATATACGTTTTCTACAGGAAAAATAATCTCAAGAACATGAAAAGTGAAATCTATATTTTGGGTTTCAAAATG


ATACATTTTAGCTAAAATATCATAGTTTTAATTTCTCAGTGAAAAATATAGTGTGGTAATTTATGAAGAGACTCAGT


GTTTAAAAATTATGACTCTATAGTCAAGTTTATGTTTATAGGACATAGGTTATTCAATTACATTTAAAATAATTAAT


TTAGAAAATGTGATCAATGTAACAAATTTTACCTGTTCTTTTCTAAAGCTAAATTTGTTGTTTGAAGTGTTTCTTCT


AAAATGCTAATGAACTATCAATTTAATTGTTGAGCTTAGAGTTAGAAACTTAATTATATTGCCAGAAATAAAGAAAC


AAATGGATCCCAAAAGATTCACACATTAGAAATGTATGCCAGGGAAATGCTTTTGAATGTGTTCAAGTCATGGCTTC


TAACTCGTAACTTATAACTTGTGTTATGTCTGGCTTCATTCCCTTAAGAAAAAGGAATAATAATGCCTTCGGAGAGC


ATCCCAGCTGTAAGAGCTATGCATTGGTGTCTAAAAAAGCTTCTCACTCCTCATACCATCCTGGTCTGGGAATTTAA


AAAATTGTCATCTTTTGATAATCTGTATCACATAGTCTTCTGCATAGTCATATGAGGTTAGAACTGCCCCATAACTT


TTGCAGGGCCTATAGTAAGTGTGCAAATGGTTGCCTGCATGCCACATATTTAATATTTATAAGGTATAAAGTCAACA


GACTATTAAATATATCCTATCTGCTTTCCTTGACAATTATACAATCATAATGATATGGACATCTAGATTCGATTTAG


AATTCTCTCTCTCTCATTTTCTTTTTCTTCTTTCTTTCTTTCTCTTTCTTTCTTTCCTTCCTTTCTTTCTTTCTTTC


TTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTGTCTGTCTGTCTGTCTTGTTTTTTT


AAATAGTGCAAGCAGTTTATTCCCTGGCAAGGAATTTGGAAAAAACTCAAATAGCAAACCACTTGATACAATAAAAT


AAATTCCTTAGAGTTTTGTACTGGAATGAGGCAGCTTGGTTAGAGCTAACCCTAAGCCTGTTATTTAGGATACATTG


GCTTTTCTTAAGCTTAAAAAAAATTTTACTGTGTTAATGACATTTAACATGAGATCTATCATCTTAATAAATACTAC


ATGCACAATACATTATTATTGACTCTAGGTAGAATGTTGGACAGCAGATCTCTAGAGCTAATTCATCCTACTTAACT


GAAATGTAATGTCTGTTGATTAGTAACTTCCTATTTCGCCCTATCCCCAGCCCCTGGCAACCACCAGTCCAGTCTTT


GATTTTATGAGTTTGACTGTTTTAGATACCTTATTTCAAGTAAGTGGAATCATGCAGTATTTGTCTGTGTCTGTCTT


GTTTCACTTAGCGTAATCTTAAGGTCCATCCATATTGTTTCATATTGCAGAATTTCCTTTTATAAAGGCTGAATAGT


ATTCCATTGTGTATATATACCACATTTATCTATTCATCTGCCAATGGGCATTTAGGTTGTTTCTGCATCTTAGCTAT


TGTGAATCTGTTGCCTTTTTTCCCTACCTCCTTTACTCCATCCTGCACTGTGAGGAACTCTGTGCACATAGATCTGG


TCGCCCCATTTCCCACCCACATGTTCAAGTTTTTCCCACTCACCTCATGCAAAGATTTACCCCTTAGCCATACCCAG


TAACTGACTTTGAAACATTTGCCCAGGGAGTTGAGGGATTCTGAATGCCAGATCATGGGAGCGGGGCTTCTAGTGAG


CATGTTGGCTTGGTCCTACAGACTCCTAATCAGAGCTTTGCCTTTGAAAGCATGGGGCCCAAGGGCAAGGACCCTAC


TTGTTAAGGTCTAAATTTTTTTTCTGAAATAACCACATCGAGCTTTTATGTGTAGATGGCCTAAATTGGGCTAACCC


AGAGGCAGTGACACTCAAGTAGTTTACATCTAAGCGCTTTCCATGTGCTTCTTTTCCCATTTCTGTTACTTCTTACA


AAATAAAAAATCAGCATCTCAATTACCCTGATTTGATCATTGAGCAATCTAAAAAGTATCAAAATATCACATGTAGC


CCCCATATACATACAACTGTTATATATCACTATAAATAAATATATACACATTATATTTAAAAATCAATACTTTAATT


TTACATGTTTAACAAATCACTAGCATATACATTCCAGATTGAACTTACGAGGGATGTGGAAAAGATTCAGTGACTAA


ATAACAATAAAGTACTCTAAAAATGAAAATGTGAAATGGAGACAGTATAAATCTAAAATCATATCACTTATGAAGTA


TTGTTTCAAATAAACAATAAAATATATCTTCAATCAATTTAATTTTATTTTAGTTGTATAAAATCTTTCGGTCAGCA


TTAACCTAATTGGAACACTAAATAGGTACATCTAAAAAATATAATCCCCCCCAAAAATATGTAGCTCATAAGAGATA


ATGCATTGAACACAGATAATATTGGCGTTAAAAACAGAACTCTACCACATTTGCAACGAAATGTTTATCTGTTCTTC


CTACTAGAAAATAATAAAATAGTTCTGCATGAGCTTGAACTCGAAGTATTAGGTGTACAAAGACCTTTTAGTGAATG


AATGCTAGCTGAAAAGCAAATTTTAAATATGAAAAATTAGCAAGACAAACATTTGAATTTGTGGGAGATGAGTAAAA


CTCCTATAAAAATGAATTGTTTAGTGTTAAACAGATTGTGTATGAAATATTAATGGCATATTGTCCTGAGCTCCCCT


TCCGCTGTTTCCATGTAGATGACTGAATTTCAAACAGAAATATGCCAGGAATGATTACGTGAATGAATATTACTACA


TGAGATTGCTTAAAGAGTATTTCTTCTTTTGCCTTCTTTTTACTTTCGTTATTTCATTTAGTAGTTAGAAAATACTG


TCTACAAATATGTGAGAACTGCTTAATTTATTTTTGAGACATTAATTAATTCAACTAAACTATATTGACTGTGTGAG


AGAGATTCCCTTGGTGAATATGTGGATTTTTGCGGTGGTAAGAACTCTCCTCTGGAGCGCAAATGGTATTGCTCTAG


GAATAAAGCATATACCTCAGGCCCAGATGAACCAGTGCAATCTACAGTAACAGGTTCAAAGATGACCTCATGACCTA


CTGTGGACTAATAAAAATCAAGGAGACCTACTGCAAAGGTTTCTGGGAAATTCTTTTTCTCTTGCGTTGAACTAAGT


AATATACATATGTGATAGTTAGAGCTGCAGCCTTTGTAATACCATGACAGAAGATAACCTGAAATAAGGCTGACAGA


CACAAGAGGGAGACCTAAGAGTACTGAGAGATATGGAGCAGGACCCCCTGATTGAACTTCACTTGCAGCCCCCTTCT


GCAGTTTTCAATGACGTGAACCAGTAGAATCCCTTTGTTTACTGTTTTTGATTAATTTGAGTGCAGCTTTATGTTAT


GAGCAACTAATAGCATCCTCACTGTCACAACTGCCCTCTATACGGCAGGCACTTTGTGATACTAAAGAAAGCAGTAT


ACAGAGTAGAGCCCAGTGAATAACAGGGCAGATGTTGCAATTAAACTGCCTGTTTAAATTCTAGCTCTTCCACTAGC


TAACTTGTGACTATCTAAGTAATTTAACCTTCCTATAATCATACCTATCTTGAAGACTTGTTGTAAGATTTAAAGCA


CAACAGTGCTACTATAAAACAGGTATACAGTAAAGCTTAGCTACTTTTTTATTAGGCCATATGATATCATTTCATTA


AAATCTTATAGCCATGCTATAAGGTATTATGATCCTCAATTTATAAATAAGACAGCTCAAGTTTTGGTCAAGTGACT


TTACCAAGGTCATAGAGCTAGAAAATAATGATTCCAAGTTACAAGCCAAACCTCTTCAATGCCAAATTTACATCATC


CCCCATTACTTGAAGTGTAAGATTCACATGGACAGAAATTTTTGACTGTTTGATCACTGCTATCTCCTTATCATCTA


AAACAGTCTCTGGTCCATATTAGGTGTTCAATAAATATTTGTAGAGTACATAATTTCCTTCACAGACTCCACAATCT


GGTGAAGGAGGCAGACATGTAAGAGAATTATTTCAGGATTCCACAGTTGATGCTGTAACAGAGCTAAATATAATGAA


TGGAGGAGGAATGAATAAGTTTGTCTGGGAGCAATGCTATGGCTATTGAAATAAGTCTTGCTCATGCTTTGATTGAA


ATGGTGGATATAGATCACACAACAAATAACAATTAGATAACAGCTTGTTGGGAGAAAGCGAGGATCAGTGTTTGCCA


TAAACATTTCTCATAGCTAATGTCAGGTGTTTGATTTCTCAACATTTTATATCTTTGACTTTGATTTTCTCTGTTTT


TATTTTTTAACTCCATTCTCAAGAAGTCTGCACATAAGAGTTTCAACATCTAGCACTTCATAACTCCGTCATCTCCT


CTCAGGCTTAGAGCAAATTCTGAGACGTGGATTTATCGTCGAGTGATTTCTTCCTGGCATTTTATCTCTGAGACCAG


GATCTGGTTGCTAAGCATGTAGACATAGAAATGCATTTCTTCATTGAACCCCATAGGTTCAAACTAGTGGATAATGA


GCACAATGTCAATGTGATTATTTGTAATGGGGGAAAGGTTACCGGAGAATATTACACGACCATCCACATAGACTAAC


ATTTTCCTCATGACTAAGTTTACTTAGCAAAACAAATTAAAAACAGAAGTTTGTTTAGCAGCACAGAATTGAAGGAA


GACAACCAGATGGTTATGAGGAAGATTCATCCAAACTATGCCAGAACTGAAAGAAATTAAGTTCATTCAGTACAAGA


ATTGTCTAGAATAAGAGAATCCATTTTGTGTCAGCACTTCCCAAGTTCTTGTTAATGCTACCTTAAGTTCAATTCAA


ACCAGGCAGCATTTATTACGTGTTGTGCTGGGTCCTAGGAGGACCGCGTTTTAAGAACTTACTGTGATCTTCTAGAT


CAAGTTTTTATTTCAATATTTCTACCTCATTTCTGATTCTTAGGTGTTCCTTATTTCCCAATTTATCCCCTGCAGAA


ATTGAGGCAATAAGATGTCTATCTTATTGCCTATGGTGTTGATTATTTATGTTATATTCTGTTTTGTGAAGTTTGAC


CTCTACCTAATTAAATTACATTTTCAATTGTATCTTGGATTGATTTATTCAATAAGTATTCTTTAATATTTTTGCAT


GAGGTCGGTCAGGTTTCATCAGACATTAGGAATTAATTATAAAAATCTCTAGATTGGTACTTGGAGCTTAAAGGAAT


AAGGTGGTGGAACGTTAAATGAGGAGGAAAGAACCAGCAGAGCTGGGATAAAATTCATCTCTATCATCTTCCCACCT


GCTTGATCTCTGGCATATAATTTACTATCCGTGAACCTCAGGTTTCTCTTCAGAAAAGCTGCAGGGTTGTTGGGGGA


AATAAGGCAATTCCTGGGCTTCAGTATGTTCAAAACAGAGCATTAATATTATTATAGACTTTTGATGATTTACACAA


TTTTAGCTTTTTGGCAAGACATATTTACTAGTACTAAGTAAAAGCACGTTGACTTTCTAAAATGAAAATGTGTATGT


GAGGATGAAGAAAAAGAAAGTGTTTTGTTTGATAATATAGCATTATAACACTGCACAAAAAAAAAATGGTATATGCA


GAGACTTCCATCACTTGCTTATGATGCCGCATTGGGATCTCATTAATAAGACACTTCCTCAGACACTTCCTTTGTGT


TCAATAAATTTCAATTTCCTCCTTTCCTTCAGTTCACTTCAAGAAGGACGGCAGCAACTTTCTTGTTGCCAAACCTG


ACAAATGTTTTTTAGTGCTGATTATACTCGAGCATTCTGTAGCAAAATGCTGTGGGTGAAAATGCCTTCCTTCTTAA


GGGAATTTAGCTTCTGTAGTACCAGAATCTCCTTGTTGAATGAACATGTACTGCCTAAGTCTTAGTAATCCCTCCTT


TTTGAGCCCATTTTCTGGCATCTCTCCCTTTAATATTCCTCAAAAAGTTGGATTTTTCCTGGACTTTTCATATTACA


GACTTTCCTTTGGTCATCCTCATCCATTCCGTGATTCCAACTACATTTTCCCTCCATCCTGGCATCTTCTTTCTTCC


AGACTTGTATATGCAACTGCTTCCATTCATACACTTGACCAACCTTTTAATTTCTATAAGATCAAAAACTCAGCTCA


CAAGCTTTCCCCTACCATCGAGCGGGGTTCTTCTTTTGCTTCTTTGTTTCAGACAATGGCACCACCATACTCGAGTA


AGGCACGTTCATTTATCAGGTCCTACCAAATCTACAATAAACTCTCTTGAATTTATCCACTTGTTTTCATTTGAACA


GTCATTTCTTTACCTGGGTAGCCTGCACCTTCTACCTGCATTGATTCAGCAGTCTCTTCACCACTGGCTCTCCCTCC


CTCTCCTGCCTCTCTTCTTGCTCCTTCAATTTATTCTCTACTCTTCATAGTGACTTTTATTAATGCAAATATGACCT


TATAACTCCCTTGCTTAAAGACCCACTCATGTTTGTCTTTGTATCCATAACTTCCGGCCTAGGGCTTAACGCATAGC


AGGTGCTCAGTAAATCTGTGGTAGATGAAAGAACAAGTTGTATAAATACTGAATGGTCTGATGTGCTCTTTGTTGTG


TCAAGAAGGACATTTTGCAGTCAGGATAGCTACATCAGTCCTTTAGTAGGCATTTGACAGCACTCGCATTATTCCTC


AAGAGAAGATGGATGTATTGATTCTGTATTTCAAATGACATAACTTTTGTGAAATAAGAGGCTGCCACGGTAATCTG


AGGGATCTCTCAAGTTCAAGGGACTCCACAGTGCTTTGTGTAAGGTAACAGGCTAAAGGGTTCAGTCTTAAACTTTC


TTAAGACTGTAGTTCAGGGTTCCTATGGTGGGGCTATAACCCTGAATTACATCCTCTTTCATTTCATGCTGATAATG


AGAACTACAAACCAAGGGGTATTAGGAAAGAATCCAGGTTTGATGCAGGGAAAAATAAAAACAACTGATAATCTCTA


GTGTCCCCAACTTCAAGAATTCCTTTCTTCTTTACACCAAGCTTTTTTTCTCTGCCAGGACTTACTTTGTCTTCTAC


ATGTTTAAGGGAGAAAAATGAGTTAACAGAAGGGGAGGTACAGCATTTCTATTTACTTAGATGCTAGAGAACAGGAT


GAAAGGTATGAAAAATATGAAAGTCTCTCTCTCTCTCTCTCCCCAGCCTTCCCCCGCTTCTCTCTCTCTCTCTCTCT


CTCTGTGTGTGTGTGTGTGTGTGCACGTGCGTGTGTGTGTGTGTCATAATACTCAACCTTTCTTTTCTTTCAAGCAT


ATGTTGTGGCAGAGACAAGTGTACATCAAAATTCGTGGTCCCTCTTTCATAGTATAGAGTTCTTGCTAGGATCCAGC


TGCAAGCCAGCAACTACATTTCCCAGCCCCACTGGCATCTAGTTAGAGCCATGTGACTAGTTGTGACCAATTGAATG


TGAGTGGGAGTTATGTTGCAGGCATACCTTTTCCATCTTCTTACTTCCCATTTGCTAACCTTATGGAAAAGAGTCCC


AAAGACCTAGGAGATGAAAAAGCCTAAAATGGAAGGACTCAGAGTCCCTGAATTACTGGGTAGAGAAAAGCTGTTTG


CAGATGGGAATGCCCATTTTGTAGTATTCTTTCTTTTCTTAAGCCACTAAAATTGTGGGATCTCTTTGTTATAGCTA


CTGGCATTAACCTCTTACGTATACATACAGCTATGTGCTACAAAGAGGAATAGATACATTTTTTAATCGTTGAAAGG


GGAGAAAGAAACATATTTAGGAGGAAAATAATTTAGTCTCTACAATTGAAAAGTGTTTTATGAATAATATTTTGTTT


TGGCAGCATATTAAATCTCAGGCAGCTGAACTACATTAATTTTCAATTCTCTATATATGTTTTTGTCTTCAGGGTTT


AGTAACACTGATATATAACAGTTTCTTTCTTTTAATTTCCAAATTTAAATGTCTAAGTTTGCCTTCTAGGCAGAAAT


TAAGTCCCATTGTGGAATGAGATTGGATCAACACTTCACCAAGATCATTTTAGTTCTTTGTAATCTTAAATGAAATA


AGCTAATAAAGCATTAAATTAGCATGTTGTAAAACTTCGTGAAGTTTTAATATGCTTCTAAGTGGCAGCTCTTAGCT


TATTATCTCTAAAGCTAAAGTCAAAATAAATGTCTCAGTTGATGAAATGGAGATGAGGCAACATTTTATCAAATTTA


ACAAAATATTTTATATCTGAATTATAAAGTCCAGATTATCTAGTAATTATCATATAAATGTATTTAACCAGACATGC


ATTTTTCTCTAATCAGTAGCCCTGGAGTCTTTGGACCACAAATGTGCCTTATCTCAAATGCTTTAACTGTGACATTT


TGCTTTAGACTAGCTCGACTACTTCTACAGAAATTATACACTTCATTCACATTCATCCAGATGAAAAAAATACATGT


AGAAATGATCATAATAAGTAACATTTGTTTAGGATTTCAGAGTTTACGAAGGGTTTTTCTATTCACTTTCTCACTTG


TTCTTCATGTAAACTGGTTTGGTGGACAACTGTCATTATCCCTGTTACCTGGAGCCCCTGGGTCTTAGGGAGACTTC


TTGACTTCTCAAGGTCATGAAGGTGCTAACTCTGACCGTGTTTTTATTCCTACTGTGCCACACTTCTCAGGTAAAAA


TCATATTGCAGACACTTTAAGAGAAGTACTTAAGAAAATAAATTCCTCCAGAGAATTACATTTAAGTTGTTTCATTA


ACTGCAGTGCATAAAGAAAGGAAAAGTGTTCCCAAACCCATGTAGTATTTTGCTATTGCTTATGGTAATATTCTGCA


CACCTAATATTGTCAGCATAATTTTCCATGTAACAAAATGTCCTAAATCAGCAATGTCCAATATAACTTTGTGTGAT


GATAAAAATGTTCTGTCTCTGTGCTGTCCAATACAACAGCCACTAGATACACATGACTACTGAGCAATGGTAATATG


GCCAGGGACACTAAGGAACTAAATTTTTATTTAATATTAAATAACGTTTAAATTTCAAAAGCCGCATGCGGCTAGTG


GTTGTCATCAGATACTGCAGTTATAGAAAATTAGAATTTACCTCTTTAAATACTAAACCTATTTTTAATAGTAGGAT


TTTTAAATTAAAATAGTTCTAAGTGCTTTTAAGTGATACGAAGTCAAATGCAAGATTTCTGTTTTAATAGTACTCTC


AACCCAGAGACAATCTTCATGCATCCTTATACATGTTCTTTGTTGCCTTATTCTAGTTTTATTTTAACATTAAATGC


CTCTGTTCTACTTGATATTGACTTGCTTCAGAGAACACCAAGTATAGTGGAAAGAAACACACACATGAGGACTTGAG


GCTACCAACCAGGTTCAACTAAATGCACTCTGATTTAATTGTAGTATTGGGATCCCCTGTTGCATTTATTGAAGAAG


AAAAAAACTTTGCAACCAAAAAGATATTTGAAAGCAACTGTTCTTCTTGGACACATGATCCCTCATAAAGTGGGGCT


TCCTGCTTTTCAGAGACTTAATTTCTGTTCATATTCATTTCAGCAATAGTAATAATGATGATGGCGATGATGATAAT


AATCATGATGATGCCTAAGTGTTGTAGTAATGCTTCTTCTGAGCCAGACGTTAGTCAAATTACTTTCTCTACATTAA


TTCAGGCAATCATCACAACAATCCCACAGGACAGGTTTTATTATTATACTTATTTAGCTAGCAAATGATATAACTAG


GTTAAGTTACTTGCCCAAGGTCATACTGCCAAGACAGTGGCTCTAGTGTCCCTGCTTCTGACCATATGTTATGCTGC


CTATCCTAGAGCTTTTCTCTTCTAAAATAGTAAAATAATATATTCTTTGTTTGTTTCATACTTTTTTTTTTTTTTTT


TTTTTTGAGAGGGAGTTTCGCTCTTTCGCCCAGGCTGGAGTGAGGTGGCGCAATCTCAGCTGACTGTAACCTCTGCC


CCCACCAGGTTCGAGTGATTCCCCTGCCTCAGCCTCCGAAGTACCTGGGATAATAGGTGCCCACCACCATGCCTGGC


TAATTTTTGTGTTTTCAGTAGAGACAGGGCTTCACCATGTTGACCAGGCTGGTCTCGAGTTCCTCAGCTCTGGCAGT


CCGCCCGCCTTGGCCTCCCACAGTGCTGGGATTACATGCATGAGCCACTACACCCGGCCCATACATAAATATTTTAA


GCGAAGTACACATGCATGATCATCATACTTTTAATAATTTCATTTAACTGTTTCCAAAGAATGTTAGTATGAGGTTT


TCTTTTTTTCTTTTTATAATTTCAACTTTTATTTTAGATTCAGCGGGTACATGTTCCCTGGATATAGTGCATGATGA


TGAGGTTTGCTATATGAATGATCCCACCACCCAGGTAGCGAGCATGGTAACCACTAGTTCTTCAACCCTTGCCTGTT


CCCTTCCTCCCTCCTTCCTCTGTAGTCCCCAGTGTCTATTGTTCCTGTCTTTATGTCCATGTGCACTCAATGTTTAG


CTCCCACTTTTAAGCGAGAACATGCAGTACTCGTTGTCTGTTCCTGCGTTAACGTGCTTAGGATAGTGGCCTCCAAT


TGCATCCATGTTGTTGCACAGGCCATGATTTTGTTAGTTTTTATGGCTGTGTAGTATTCCATGGTGTATACGCGCCA


CATTCTTTATCCTGTCCACCATTAATGGGCACCTAGGTTGATTGCATGTCTTTGCCATTGTGAATAGTGCTGTGATG


TTATATGTACTTTTTGGTATATTCAAAGAGAAATGCTATTTTCCTCTTGACATATTTATGTCAATTTAACATATTTA


TGTCCCTTTTCTTTTTAGGAGCACCATTCTCTTCCTTTAACATTATAAATAAAATATTTTTTGCTTTTCTGTTTTTG


TAAGTGCAGTTTTATTGACAGAGTGAGACATACACGTCGATATTGTGACTAGCTGCATGTCTTCTATTATTTAGAGG


TCTCACTCAAATGTAGATTATCAAATTCTGTTAGTGAAGAGGGTAGAACAGCAGAACTAATGCTGGTTTCCTTCTCT


AGCATTATTTGATGATAAACTAAGATGATAATACCCCCCAGGTCTTAGATACCTGCAGTAGGACAGGCACCCTACAT


TTAATGCTCCTAGGAATCCTTCAAAGTGATAGCATAGTTATTATACAGTAATTGAGAAAACTGATGTTCATAAGTTA


GAAATTTTTCCGAAGTTGCAAAGAAAGTGAATGGAAGAATTATACCAAGTTCTGGCCGGGCGCAGTAGCTCATGCCT


GTAATCTCAGCGCTTCAGGAGGCCGAGGCGGGCGGATCATGAGGTCAAGAGATTGAGACCATCCTGGCCAACATGGT


GAGACCCCGTCTTTACTAAAAATAGTAAAATTAGCTGGGCGTGGTGGCACGCACCTGTAATCTCAGCTACTCGGGAG


GCTGAGGTAGGAGAATCACTTGAACCCGGGAGGCGGAGTTTGCAGTGAGCCGAGATCGTGCCATTGCACTCCAGCCT


GGGCGACAAGAGCAAAACTCCGTCTCAGAAGAAAAAAAAAAAAAAAAAAAGAGGATTATACCGAGTTCTCTTTGATT


CCAAGCCCAAACAAATCCTTTTTTGCAATATATGACATTGTTTCCCTGTTTGCATTCCCCATTCTGTGTATCACACA


TCCTGTGGCCTGATCAAAATTCATTTTCAGATTCTGAATTTATTTTCCATTGAATCTATATAAACTATAAAGACAGA


AGATATATGTATGTGTGTATACCCACGTTTCTCTTCCAGTGTCAACTGATAAAAATAGATTTCAAAGTCTCAATAAC


CTTTAATTCCCTTTTTCTCTTAAAAATTCTTTAGAACTTGTACATGACATTCTGACTCTAGCAGATTTTAGAAAACA


GAGAGGCCATTAGATATTCATACCTTACTATTCAGATGAAGTATTCAATGCTAAATTATGTAATTTATCTGCTTTGC


AAATTGTATGGTCAGATTGAGTTCCACAAAGGAGAGATAATTTTTAATATAGGCATTCTGTAGCTTCCCTAATTATT


GAATTAGTTTAGAGCAAAATCCTTAAATTGTATCGTTGCTATGCTCAAATTTTGTATACTTGTCCACGTAGGCTATA


TTAAGATTTCATTGAATTTTGGTTTCTTTCTCAGTGATAATTCAATATATCAACTCACCACTCAGATTTGCCTTTGG


GAAAATCCAGGCCCCTTTTCTGGATTTTTAGAGCAGATTTTAAAAAAGTGATTCTGTATATGTGTTGAAATTAACCA


CATCTCATTGCTTTTGAATGATTGAGGTAATGTATACCTACTACTTTAAAAAAAATGACTTACTTAGAAGGTGTCCA


TAGTTTTATAAGTTCCATTGAACTGGTTTATATTGTATTTAGAAAGGAAAACTACTCCTTTTATCCTTAAGGGTGAA


AACCTGGATTTTATTATACAATTAACACATATTTATTTTTTATTATGAAATATATCACAATATAAACGTTTACAGGG


AGTGTTTAAAGTGGTGTTGTCCAATGGAAATATAATGTGAGTCAAATACGTAGTTTTCAATTTTCTACTAGCCATAT


TAGAAAAAGAAACAGAGAAATTAATGTAATAGGATACTTTATTTAGCCTAGTATATCCAAATCACAATTATTTAAAT


ATGTAATCAATATAAAAATTACTAATTATGTATTTAACCTTTTTCTTTAGTAAGTCTCTGAAATCTAGTGTATATTT


TACATTTATGGCACATTGCAATTTGCATTAGTCACATTTGAATTGTTCAATAGCCACAGGTGGCTAATGGCTACCGT


GTTGGACAGCACAGGTTTAAAGAATAATATGAACATCTGTGTTCCAACATTCTGAGTTTCAAATAAGAAGAACACCA


TCAGTATTTTGGGAGAAGCTCCCTATGTTACCCCTTGCTAATCACCTTCCTTCCCCCCAGAGCCAAAAGTAACCATT


ATCTTGAATTTCTAGTAAACAATGCTCATTTTTTAAAAAACGTATGTTCAACACCTGTATTTGTATCTTTAAAGAGT


AGCTAGTTTTAGTTTGCCTGGATTTGAACTTTATATTAAGGGAACCACCCCATCTCTAATCTTCTCTGTGAATTCTT


TTCTCTCAATACTATGTTTTACATATTTACGTTCATCAATGTGCAACTCATTGTATGTATATAACACAATGTATATA


TTTTACATGCGTATGGACATTTGGGTTGTTTTTATGTTTTTGTTCATCACAAACCACAACACACATGTGTTCTTGTA


TATGTTTTATAGTGCATGTTTAAAAATTTCTCAACAGTATTCGCTAGTAGTATTGTCAGGTCATAGGGTATGCACAC


ATAAATAGAAATGATTGATTAGCTGCAATTTGTAGTGCACACATATTTGCTATGTAAGTGATCCATGTTTAAGACTT


TAACTGAATTTAAAAAATATTTTATTGGAGCCAATCTAAATGAGCTAAGGGTTTGTATTGTTTACATAAGCAAAGAT


TACACTTACTGGGTCAATTCGGTTGATTAACTTTGGATATATAAAATATATAGCTAGTTGTTAAATAGATATAATTA


TTAATTGGCATTACTTTTGTTTGTATATAAAAATTTCAAAATATCCATGACTTAAGCAAGGTAAACACCCACTGGGT


GGCTTAAGCAACAGAAATGTATTTCTTGCAGTTCCGGAAGTTGAACGTCTAAGATTAAGGTGATGACAGGGTTGGTT


TCTGGTGAGTCCTCCCCCATTGGCTTGCAGATAGCCGCCTTCTCCTTCATGACCTTTCCTCTGTGTATGTGCATCCC


TTGTAGCTGTTCTTCCTTTTATGAGGACATTAGACTTATTGGATTAAGGTCCTACCCATATGAACTCATTTAACCTT


AATTACCCCTTTAAAGGCCCTACCTCCACTTGCAGGGGTTAAAACTTCAACATATGAATGGGGTTGAGGAGACCTAC


TTCAGTCCATAACAGTTTCTATATTCTGAAGATGGTCTTTAATTAACTAAACAGTTAATGTTACTTTACTGGGAATG


TCTTTTGGATGGGGGAATAAGCTGATGATATGAGAAGGGTTGGTGAATTTCTCATAAGTGTGAAATTTGTTGGGCCG


GCCCAGCATGATTTTCAATCAAATACGCTTTGGGGACAAGTAGGTTGAATCACTACGAGAGGTTTAAAAGAAAGCAA


GTTGTAATTGCAACTTTTAATTGAAAGAAAGACAGGCTTTGTTGATGTGCCAGCAAGACTGATAACTGGCTTTAACG


TAGATAGTAAGGCAGCAGATTCAATCCACTGATCGTGATCTACTAGTGAATTTCAAAGCCTTATGCAATAGAACTAC


AAACCCTTTCCTTGCCCACCTTGCAGGTGGATCCATAGGCAAAATGAACATTTGCAAAAAAGCCGCTATGTTTCAGA


ATTTGTGCTAGGGCTTTAATATCTATAATTTCTCCAAATCCTCACAATTTAAGAATTAATTCAACTTAGCCCCATGA


ATAGGGTGAAAATTCTGAGATTTAACAAACTAAAATAAGTTATCTGAAGACAGACAAATAGAAAGAGTTGAGATATT


CTATTTGAATGTAAAATTTTCAAAAAGTAGAATGACAGCGTCAGGAATTACAGTCTCAGTGTTGAACACAAGACTTA


GGAACAAATTTGCTGCATGTAATTTCATTGAGATGGGACAAAGTACAGCATACGTAAGGAAGTTTTAGAACAAATAA


GATAATTATTTTACGAGCTTTGAAACATGTGTAAGAAAGATACGAATAAAAGTATAATCACATTTGACTAAAACATG


AATACCTTAAAACTGAAAAGCACTGAGATTATCATTATATAATTTTGAATATTTTAAACCACAATGCTTTGGGAGTG


CACTGTAATATTTTAGAATTGGAATTTTAACTTACTGGCTTAAAAAGTAATGTACTTTGTTTTAAATTCAAAGATTA


TCTTGTAAATTCAGTTCGATCTATTGAAAAAATTATAAAATTCGGCAAGAAGCCAAAGAAGAACAATTATGTAGCTC


AAGATAATTAAATTTTCATGTTTGGCTTTAGAAATATATTCGTCGTGACATAGTACATGGTAATCTAGTGAGCCCAG


ACAAGTAGTTTTCTCTTTTTGTCAAAGGGAACAATTTGATGCGTGTTCAAGTTGCTTAAATAAAATTTTGTATGTGC


TTTCTCATCACAAGAGAACAATATGATTTTTGAAATTATTTTTACTTTATAAAAGAAAAAAAAAAGCCCTCACAGAG


AAAAAAGAAAAAAATGATGATGTCTTTGAAAAACAAAGTTAATACAGCTTTACATATATTTGACCTACATCAGGGTT


AATATTTTTCAAGGTGAAACATTAGATGCTGGAACTTGCAAAAACAGGCAATCCTCCTTTAGATGAAACGGACACTC


TAAGGGTTAATTCATTCACTGAGACCTATTGTGAAGTAAGCCCTACAGAGACTGAAAAAGTTAAATGCAACTCACAA


AAGTTGCTAGAAGAGTCATGATGTTAAAATAAAATAAGTACACAATGTATGCTGCAAGTATACTTAGAGCCATGCTA


GGTGCGGTTGAGAAGTTCAATACAGGTCCAAGATAATAGCTGCTTCTCCTATAGAACATGTCTTCTCATTGGAGGGA


TAAGACCTGTGTCTATGAAACAGGCGTAATTACATAGCTCTGGAACTATATATGCCGAAATAAATGAGACAGTAAGT


GTTATTGTACTATAAAGAATGAAGAAATCATGATGAGAAGTAACAGTTAATGAATGTTTTCTAGAAAGAGTAGGATC


TGAATTGGCCTTAGGTTGTAAGCAGAGTTTATAGATAGAGTAGTGGTATGTCAGAGTCACTCTGGGTGCTTAAACAT


ACAAATCCCCAAGTCTCACCCAAATGTGTCTTCAGATGAAAGGAAAAAACAAATGACTTGAGCTCCCCCGCAAAGAA


CACGGGTGGTATATTGAGCAGCCAAGGAGTGACCAGAGTGGCAGGCCCATGTTGAGGGACAAAAGAGGACAATTAGA


ATATGATTAATACAAATTTACAGTGGGATGAGTTGTTAGCCTGAGGAGCTTGAATGTGAACCTCTGTGCAAAAAGGA


GTCATTAAATACTTTTGAAAAAGGTGGGATGGGAAGAAAATGACATTCTCAAGACAATTAGATCGAACAGTATTAAG


CATGCTGACTTATTAAGTTATGCACCTTGAGAGGGTGGAATGAGGGAAAAGGGTCTTTATCTGGAGTAAGACAGGAA


GAAGCTAAGCTGTAATTCTTACTGGACTGTAAATTATGTGCAGATATATTATCTGTCATGTTCGTGGGCGCATTCTC


AGTACATAGCACTTGAAACAGGTACTCGATAAATTGTCAAATGGATGCATGGAGTGATTTCCATGCAAAATCTAATA


TTGTATAGTATTAGAAGGGGGAAAAAAGCATGGCATTATGCTAGCAGAAATGTCATTTGGTATTGAGGATGAAACAT


TTTCAACAGTTTGCAAAGCCATCCACTCAAACATTCTGTCACTTTCCAATAATTTTGAAGGATGTTCTTTCTACTTC


TACCTTATTACACAATGAGTTGAGTAAGATAAAGAAGTCATGTGCAACAAAACAGAGGGAGATTTTCTGAAAGGCAC


TACACCAGGAAGTTGTTGTACTCTTGCTTCATCTTGCCATCTTGGATATACTTCTGGCGCTACCTCCAGGCCAGTTC


CTCGTTACATATGTCATTTACTTCCCACATGCTAGACTCACCGAGTTAATCATTTTGCTGCAGTTAACACATTTTAG


CAGAGTGTAGGTTTATGGGTGAGAAGGAAATCAATGATGTTTCAATACAGGGTTCTTTTCCCATCCCCCTTATTTCC


ACTTAGAACTGTCTCTCAAGTCTTAATTTGCCTCTAAACTTTTTTCCCAGCTTACATTCTTTTCTGAAAAATGCAAC


GACGATGCCAATGTTTGTTGACCTGAAATACATTGTAAAACATTCATAATACTTTGAGCAGAGCTTCCAAACTCCCA


TTTGCCTCTTTTATCTCCCTTACCTTGGCCCCTTTTTGAAGGCAATGTGATATTTAATCCGTTTCTATTGATGCTTC


AAAATTATTGAAAAACTGGTAATTGTATTTTTCCCTTTACTTATCAGTTGCTAGTTGACAATGAGTGTTTGCCCAAA


CAATAACCAATCAAAAGGTAAAAAGGAGATTCCAGACATATCTGAGAAGAAATTCTTTGGAAGAAGCCCGTAAATGG


AATGGGAATTCAAACAAAGCCGTTTCCAAAAGAAATACTAAATGGTCTCTAAATGCAAAAGGATTGCTCCCCAAGCA


TTTTATGGGAGCATAAAAAGCTCCCAACACATTTTATGACAATACTTCTACTCAATGACTTCTTGTGTTGACATATT


TGTTGCACTCGACGTTAGTATTTACAGCTTCTTATCCCAAATATTTACTTAACTGAAGCCCTGATGTTTTTAAAAAC


TTTTCATCTGTGTTTAACAGCCCATTTTACAGAAACTTATTTGTTTCATCAGGCAGATATTTACTGAGAACTTGCAA


GTGCCATATATTCTAAAAATGCTGATGATAAAACTGTGAACACAATAGATTCTCATGGTGCTTATGGTCAGGGCTAG


CACACACACTTGTGAAATGATCACTGATGATCAAAGGCATAAACACTACATTTGGAAGAAATACCGAGGGATCCAGA


AGTATCTTGGAAACACTAGCAAGTATAGCAGATGGTGGGATTGGTGCTTCAAAGAACTTCTTGTGGAAGATGTTACG


TATGTACCTTCTCTGTGCCAGGCACTGCTAGGAAGTGCTGGAGAGAAAAAGATGTGCTAGATACCGCCTCTGTCCTA


TGTGCTTGTGCTTTGTGGGGAGGTGAGTAGGATAATCCCAGTTCTCATGCAGTGTAATGAGTACCATGACGGAAATG


CACTCCAAGAACTAGGCAGCATGACCAGAGATAGGACATTTGAGAAAGACTTCACTCGGGTGGTACTATCTTAGTCT


GGGTGCTAAAATAGATGTGATAGATGAGTAAGGGTGACCCGGAAGCAGGAGGGAAAGGGAGGGGCTTTCAGAACAAC


AAGTGCGAGGACATTAAGGTGAAATAGAGTATAATAGTATTCCCAGATCCTTGGGATTGTTCTCCATTAGGCTAAAA


CAAAGGTGTTTTCTCTTCTTTAAGATTTCATGACTGCAGATTGCATAACAGAAGGTCATTTAATAGACCTCTAAACT


GAAGGAATTCTTGAATTAAATCACAACATATCTTCCATGGCCAGAGAAACCATTGCCTCCTTATGTCGACATTACTA


ACAGCACCAGCACCTGCTGCTCAGGCCAGCGGGAGGGTTGGGTGTTGCTGCCTAGGTAATGCTCACCAACTGATGTC


CTGCCATGAGTAGTTTTGCCAAGTTCCACAAAAAAAACTTAGTGTTCTATCAGCATCTAATGAGAATTACAGTCATT


AGTTAAATAAAAGAACTATTAGATAAGGAGCAGAATGAACAACACACAATCCATCAGCTTGGTGAATGGTATCAGAT


GGTTTCTGGGTGCTGGGCAGCTGTGCATCCAAGTAGACAGGGAGAATATATATGTCCTTTGCCTTATGTACTTGTTT


CTCTAATCCAAAGGCACAGCAATCCGTGGAAGCTGCTATGATAAGGTGTTTAGTGGTGAAAATGTCTTGAAAGCCAG


TAGATTATTAAAGTGATGTTTTTAAAAATGCAGATGGAGAGTAAGTACTTTTTATCTAGAGTAGTAGTTCTCAAAGG


GAGGTCCCGGGATCAGCAGCGTTAGCATCACTTGGGAACTTAGACCTGCATGGGCCCCATTCCAGATCTCACTTGAA


AACTCTAGGGGGTGTAGCCCGGCAGTCTTTGTTGTGACCAGCTCTCCAGGGGGTTCTGACACTCCAAATGTTCAAGT


TTCAGAACGCTACTCACAGGCCATCATGCTCGGCATCACCTGAAAGCTTGTTAGAACTAGAAAGTCTTGGCCCCACC


CCAAGCCTACTAAATCAGAGTTTTTGGGAGTAGGGCCAAGAAAACTGTGGGTTAACAAGGTCTCCAAGTGATTCTTA


TTCATGTCAAAATTTGAAAAGCGTCGATCGAACTGTTGGTTCTCAGCTTTGATTGCGTATCTGAATCACCTGGGGAG


ACAGTTGAGCTATTCCGGGCCCAGATCACATCTAGACCAATTGAATCAGAATCTATGGAGGCAGGACCCAGACATCA


GTATTTTAAAATATTTCTTGAATGATCCCAGAGTGTAGCTAAGGTTGAGAAACACTGTTCTAGGATTAAAGGATTAA


TGTGTTTGAGAGTATGTTAAGATCTTAGGCAAATCACAAGGGTGTTAAGAACTACCATCTTCGCAAAAGGAGAATGT


GCCTCAGATATTCTGGTACTGCTTTGATTTTACCTTCAGTAGTCTTACCTATTTTGAGTATGCTTAGTAGTACTAAT


ATGAGGCTTATTACTAATATGTTAAAATTTGTCTTTTAATTAAGTGGGTCTAAACGTTTTAATCTTTAATCTCTGAC


CCAACTAGAACTTTTCTAAACATTTTCATAATAGTCTCCACCTTGTCTTCTGACCTTCACTTATGTTCTTTCAGGGT


TCTTCGTGTGTTACTAGTAATAGTAATGGCAAGTGTTTATTGAACACTTACTATGTGAAGATTCTAACTGGCTTTTA


ATAATCACATCAGCTCTGGGAGGTAGAAGGTAGGGATCCTCCTTGCTTATCAGGTGAGAAAACTGTACTATAGAGAA


GTTAGCAACTTTTCCCAGGTCATAATATGTGACAGCTAAAGGGAGCATAATGGTTGGAATAAAATAAATCTACTCTA


GTTGTACCGAAGGCTCATATTTGTCTCACGTACTTGATTTGGTCGAGGCCCAAGGGGTCAATTTCCAATGCTTGGAT


TCCTGGATATGTAGAGTTGTATTAAAAATGCTAAAAACCTATTATGTATCATACAATCATACATATCACCTAAAGTA


TTATGGAAATGAATCTGTATTATTAAGGGAAAAAGGCCTGTGTGAAGAACAACTGAAACTTCATTTTAATTGAAATT


AAATAACATGCATCATACACTAAAAGTGCACGTTATGACCCCATGAATTACTTCAGGTGGCTTTGATTCATGTTACA


TACACTAACAAATATAGAAGAGTGATATAATGCTTCTTAATTAACTACTAATGGAAGTTTACTATTTAACTGCTTCT


TATGTAAGAATGTAAATGTTTTCTGAAATATCAGAACTTTTCATTAGGAAGCACTTTTAAAAATAGCAAAACTGATA


TGCACTATGATTTCCATATACATTAAATTGAACTTGTAAATGATGTTATAAATTATAGAAACCAAGGGGATGTTCAA


ATTAGATATTTGTCTAAATAAATCATGTATGGATTGAACAAATACTCATTGAGAAATAAATGTATTCCTTTTCTTTC


AATTATCTAGGATTCCTTGTTTATCTCTTCAGAAGCAAAATGTCTTCTGTCCGTTTTATTTCCAGTTAAACATTCTT


CAGATTATGTAAATAAGTTAACTTCCAATCCTCTTATTTCTGTTTATCTCACCACTCTTCTAATTTAGACGTGATCA


ATATCTTATCTTTTTGCATTTCATAGACATCAGGATCCAGAATAATTGAGTGAGCTCAAAACAACAATGGCAAGAAT


GATGTTTTCAGAAAACTCAGCAATCATTCGTTTAATAAATATTCATTGCCTACCAACTATAAGCAAAGTATTGGCTA


GGCCATGTGGGGTATACAAAAATGTATTAAATATGGCTCATTCTCCCTAAGAACTTACACCTATTAGACAAAGTACA


TGCATAAAAATTATAATGTATAATAGAAAATAAATACAAGCCCTAGAATGCACAGTTGAAGTACGATTTGCATTTAT


TATAAAAAGAAAGATGAATTGGCTGGGCACGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCAAGGTGGGC


AGATCACGAGGTCAGGAGTTCGAGACCATCCTGGCCAACATGGTGAAACTCTATCTCTACTAAATATACAAAAATTA


GCCGGGTTTGGTGGTATGCACCTGTAATCCCAGCTACTTAGCAGGCTGAGGCAGGAGAATTGTTTGAACCTGGGAGG


TGGAGGTTGCAGTGAGCCAAGATCTGGCCATTGCACTCCAGCCTGGGCAACAGCAAGATTCCATCTCAAAAAAAAAA


AAAGGAAAGAAAAGAAAAGATTAATTTCCTGTTAGCTAAATCAAGGAAGGCTTCATGGAGAAAAAAATATTTCAACA


CACACTTGACGTAGCAGTGGGATCAGGCTGATGTTAGGGAAGAATGAATGACATTCTACACTGAGAAAGAGATATTC


AGTATATATATGAAGAGCAGTAGAGAAACTAACAAGTGGAAATAGACTCAATTTACAATACTTGCCTGCCTGGAGTA


CTCTATACGTTGACTGTAAGTTGCAGTTTACTCAGAACAATCCCACTTTCTACTTGTTTATCCTATGTAATCATTTA


TTGGGCCTCCTTTTGCTCTCAAAAATATCCTTGTTTGGATAATAGATTATCACTCTGTTCCTAAATGAACTGCCCTG


TGTCCTATCCCAGTAAAAGGGTGCATTCGGGCCCTTCGTAACTGCCTCCACTACATGGTTGATTGAAACCAGAGCTT


GGCATTAAGAAGTTAGCTGAACAATCAGATTTCTATTCTTGGAAAACCCAAGAATTTCAGAATAGATACAGAAGCTG


TATAGCTTTAATAACATGACAGAGTTGTAGCCTTGAAAGCTATGTACAATTCAGAATTATGAGGGAGAAGAAATTGA


AGAAACAGTAGCAGCCGGGTAAATGCAGAAACAAATGAGGGAGACACCTAGGGGGTGACTGAGGCACAATAATGGAA


GAGAAGTGCAGTGAAATTGCTTGAACTCTTACTGATGAGATTTCTACTGTTGCCTTGAATCCAGGACCACCTATATG


TTCATTCTTTGTCATGCTCAGAGTTATGACAGATGCTGTTATTGAATTCCCCAGAGACTCCCTTATCGTCTCACCTC


AAACCTTACAATAATCCCTTCTATCTTTCTATCCATCCAAGCTGGCTTAAGTAAAGTCTATGATCCATATTCCTAGT


AAACAGAGAAGGGAAAGAGACTGAAGGCAAAGGCCCCAATTAGTAGGCTATTGCAATATTTCAGGGAAAAGGCAATG


GCCATCACATTGTTGTCCCAGGAATGAGAATAGAAATGAAAGAAGATAATGAAAGTTGAAAGGACTGGGGGGGCTTG


ACAACTGTTTAGACTTGAGGAGTCAGATAAAATAGGAAGCCAAAGATAATTCAGAATATTTTGATTTTGATTTTCAT


CACCAAATAAGATAGTAGTACTATGAAGAAAAAATGGTTAAAAAACAATAATAATAAAGAGAACTCCTCCAAATAGT


ACCAAGGGAGGGAGTTTAATAGAGGAAATTAATTCCGTAGGTGATGAGAGTCCTGAGAAGCCAAACGAGAAAAGATC


AAAACAACCCAGGGATTGGCAGTCGCAGGAAGCTGTTCTCACTTATGGCTGGGGCTTTAAGCACAAGGTGACATGAG


ATTTCAGAATTTGAAGTCGTCTGGAGGCAGCTAGGATCAGGTGGGGCCTGTCCTGTTCGGCAGGACCTGCAACCACA


GGAGGAGGATGCGTCAAGCAGAAAGTTGGAACACAAGAGGGGATTCAGCCATAAGCCACAAAATACCTTCCAGAGCA


GAGAGAAGGAGAAATACCCTGAATTCCGTATTTTCCCTGCCATTTAGTTCCCTGCTATTGCCACACATTGACGTATT


CCATCCAGAGAAGTCCATTGGCATATGAGTCTGGGAAATGTAGTTCCCAGGGGGACATGATCTTAAGGGAAATAGAC


AATGACTGGTGCAACAACTGACCTGTGTGAGGCAGGAGGGAAAAAACAGGAATAATATAGTTTTTCTCTAGATCCCT


TCATGCACAAAGATGCAAAAGAAATGTGTTGGCTTAATGAGCCATTCTGGGTGGCCCTGTAGGTGGCTGTCCTACGA


ATAAGATTTTTAGACAAAACAGAGATGACTTCAAATGTCACAAGAAAAGTATCAGACAGGAATTAATATTGACTTGA


TCTGTCACAGGCGTCAATGATTTGCATTAAGCCAACGATCTTCATTGTTAATGTCTGGGAAATTGCCAGCAGCATTA


CGACTACTTGTGTGGATTAGTGTAACGGATTCCCCCACTAACATTCAGGAAATCATGTCAAGCACAGAGTGCCTATG


TAAGAGTGGTTGTGTCTATTCACTACATTTCTTGGACTAATAACACACTTAGCCTTCCTGAATTGCCAACATGTACA


AAACCAGATTGGGGTTTTTTAGTTGTTCATGGAACTATCATTTATTGGGTAGCTCCTGTAGAAGCAAGATACAGAAA


CTCTAATTAGGAATAAGACAGTCCCTGTACTTCAAAGAGCTCTCAGGGGAGGCACACAAGTAAACAAGCAATTATTA


TCATACGTTAGGATAATACCGTCATGGTGATAACCACTGAGTGATAGCCAAACACATGGAAGAGGTACCCAAGTCTA


ACTTGGGGTAGTCAGAGACTGCTTTCAAGGATATCCGAGTAAGTGTTAGCTAAGACATGATACGTATTTCTAGGAGG


GAAATTTTCAAGGCAAGGTGGAGATTGTGCAGTGACGCCCAGAGCCTGGATTATTTTGGTGACTGCTAGTATTTCAG


AATGACTTCAGCAAAAGTTGTAGAGAAGATAGAAGACAACAAAGTATAAGCAGAGGCCAGATAATGAGGACCTGGAA


CAGTGGTTTGCTGGTAAATGTTTAACAAGAGGCTCTTGGCGGGGAGAGAGAGTGTCTGATTTGCAGCATTTGGCAAA


TTTTGTTGCACAAATGCTCCAGCATAGCCAATTTCAAGCTACCAGTGTGACGTCATTGAATGCAGAATTGGAAAGAA


ACGGGCAGTAGCACAGCATTGTATAGTTATTTTCATTACCCAGATATAATAGATAAAATATCCAGATGGTATTTAAT


AGATATGGATGCAAAATTTAAATATATGTACATTCATGTGCTTCATGTTACTGAATGCGCACAACATTCATTATCCA


TTCATTCACGTGTTAATTTAACAAACATTTCTGAGCCTCTGCTCTGTGCCAAACGCAGTTCTAGCTGCTGGAATTAC


AGCACTGAAAAAAAAAATTTGTCCTCACTGAGGTAAGACAAACATTATTATGCCCATTTTACAGCTGAGAAATTAAG


ACATATGAGGATTAAGCAGTATAGTTAAAATCACACAATTGGTACATGAAGGAATCAAAGAGGAAATCAGCTCTCAG


ATTTTAAATCCAGGGACTCGTTTCTGCTATACCATACTACCTACCTAGTTGAGCTGGATTTTATCATGGTTTCCCTA


TTTTTATCACCATGTGGTTGGATAAGTAAAATAAATATATGTGACCTTTCAAATAAATTTGGGTCATTTTTCTTGGA


AGCTCATCTGGTGTGAACTTTAAAATACTGCAATTAATAATGATTATAATACCCTGGAACTCTGTAGCAACCTCTTT


TGAAGAACTCCAAGGAGCCTCTAAATGTATCAAACTAAGTTCTTCAAGTGAATTAGTTATCATCTGAGAGTAATATA


GACTTTTAAAAATGCATTAATTGTATTAACCCTTTCAGGCCCATAGACTTAAGTGTTTCTTTCTCCAAATAAAAATA


GTAATCTCTGTCCATTTTCTTTAGAGAATAATGAAGTAATTTTCATTGAATATGTAGTCAACATAATTACTTCAATT


CAATCGTGAAGGATTTTAAAAATTATTTATGTCTACTAACTTAAAGACATGCATAGATTTCAAGAACTTAAAAATGC


ATATTGCCTCTTTGCCCTATGCCTCATAAAACAAAATTATGATAACGTTGTGTGTTACAGAAAAACGCACTGATTGT


AATGAAGGGTGCTTCAAAGGCCATGAACTTGGAAAGCAACTTATTTACAGAGACCCCCAGCAATAGCAGCTAAAAGA


TTGACTGACTCCCTTTATTTTCAGTTATCCTTCAGACACTTTTGACCTCTTCCTGTGCCTTTCTAGTCATGTGCAAT


CTTGTGGATATCTCTTCCTTCCTCTTGTTATTTTCTATTTCCTCTGTTTCTATTTGTTTCTAAAAATAATCATGTTT


GAATATAGGATTAGCTTCCTTCCCATCTCCCCATTACCAATCTCTCACTATACCGCTATGTTATTAATCTTCCTGAG


AAATATATCAGGTTCATTACATTAGTTACCAGCTCAAAACGTATCAGTGGCTTTCTAGTCCTCACAGGCTCAAGTTA


ATCTGCATATTCTGACTTTCATATTCTGGGTTCATGCAAACTTTTCAACTTTCCCTCTTATACCTACTTAGGAGGAC


CCTCAGGTTCCATCATGCTCATGTTTCAAGCCAGAAGTTCTCCTGCCTCTTCCTCTATGTAGACTCCACATAGACTA


TGATATCCTGCTTCTCTTTTAATCCTCCATCTTCAGCTCACAGCCACACTCCTCTGTGAACAGTTAAATGATTCTCC


CACCTCTTACCTCCTATAGCACTTATTTTTCATGCAGCATTTTTGAGACTTAATTAAATCTACAGTTTTAAAAAATG


TTTTTCTACCACAGTCTCTTATTCATACTAAAACTTTCAAGTCTATCCATTTTGCTTATACAACCACACCGTTAGGT


CTTTTAGGTCCAAGAATACAAGAGAATGGCAAAGCACGTTGTTTACATCCACACATACTGTGTAAATTCAGGTAATT


TTTTTTAATCCTATGATCCTCAATTACCTCACCTGTAAAATAGGTACTACTCATACTGCAGAACTCTTGTTGGAATT


AAATAAATGAGTGTATTAAAAATGCTCAACAAGATTTGGCACAAAATCGGTACTCAGTAAATGCTAATCATTATTCC


CTTTCTCTTCAAAGCTCCACAATTCTGTATTCATATCACCCTCTTTATATCATTTGCAAAAATGTATCCTATTCCAA


CTCTTTCCACCTAGCCTCAACATTTACAAACACTCCTGGTGGGAAGGGAAAGCTTTTGAGGAGAGCACATCTATACT


CATTTACTTCTCAGGGATGCAAGCTGCCCTGCTTACTGAGGGCATATGTTCATAGTCACACCGGAGCCCACTGTCCC


CTTATACTCTCAAATGGGCAGTAGCAAATCATCTTGATCGGTAGTAATGACCTGTCTCTAAATTTTCACATGCATCA


GATAATTTCTTTTTTAGTAAGTGTTATCTTACATATATGCCAAAATATCACCATTATATGGAACACTAGCTGAAAGA


AAAATTATTCAGTAGTCTTAATTTTCTAGCTAACATAAATTCTCTCCATTTTCATCATCCATTTAGATTAAAGACTT


TACTGTTAGCTGAATATTCAGAGACTTTATTCTGATTTTTAAAATTTATGAGGTTCATAATGTTAAGACTTCAAGGG


TGAGCTGTTTGTGTCATTTATAATGCGTGACTAGACAGTAACTAGAAAATGGATTGTTGACTTTACAAGATTTCTCC


CCACCACGTCCCCCCAAACCTGTGCTGCTGTGTATTTGGCCTGAAATCTTTACTTCTAGTCAATCTTTGGACCTAAA


GCCTACCAGCTTTTAGCATCCTTTAAGATTGACGTGTCTCTGGGAGACCAATAGATGCTAAACCAAATTTCGTATGC


ACTTGGCAATATAGGATAATAACAACCATACTCCCTGCAATTGTTTCCTAACACAGATGTAACAAATTACCACAAGC


TGGGTGGCTTAATAGACATTTATTCTCTCACAAATCTGGAAGCTAGGTGTCCAAAATCAAGGTCAATTATCCCTCTG


AAGGCTCTGGGGAAGAATTCTTCCTTGCCTCTTCCAGCTTCTGGTAGCCCCAGGTGTTCCTTGATTTCAAGCAGCAC


AAGTTCAACATCTGCTCCTGACCTCACATAACCCTCTTCTTTGTGTGTCTTTCTGTGTCCACTCTTTTCTTTATTAT


TATTATTATTATTATTATTATTATTATTATACTTTAAGTTTTAGGGTACATGTGCACAATGTGCAGGTTAGTTACAT


ATGTATGCATGTGCCATGCTGGTGTGCTGCACCCATTAGCTCATCATTTAGCATTAGGTATATCTCCTAATGCTATC


CCTCCCCCCCTCCCCCCACCCCACAACAGTCCCCAGAGTGTGATGTTCCCATTCCTGTGTCCATGTGTTCTCATTGT


TCAATTCCCACCTGTGAGTGAGAGTATGCAGTGTTTGGTTTTTTGTTCTTGCGATAGTTTACTGAGAATGATGATTT


CCAATTTCATCCATGTCTCTACAAAGAACATGAACTCATCATTTTTTTATGGCTGCATAGTATTCCATGGTGTATAT


GTGCCACATTTTCTTAATCCAGTCTATCATTGTTGGACATTTGGGTTGGTTCCAAGTCTTTGCTATTGTGAATAGTG


CCGCAAAAGGACACCAGTCTTTGGATTTAGAGCCCACCCTAAATTCATGGTGATGTCATTTTGAAATTCTTAACTAA


TTACATCTTCAAAGACCCTATTTCCAAATCTGGTGACATTCAAGGTTTCAGGGACATGTGACTATTCAGGGGAAACT


ATTCATCCCACCACATCCCCCTTGAAAATTCTGGAAAATGTAGTAATAAAGGCTTCTGATAAATTAGTGTGGAAAGT


ATTCACGGTTATAAATTACTAAAAAGTCTCACTGTGAGCTCTTAATCAAAAGGCCCTATAAAACATTTATTTGCTTG


ATTAAAACTACACATCCGATATTTTGGTTTTGGATTTATTATTATTTTTAGACTTGGAATAACTATTTTATGTGAAA


TAGATTCCATAACTGAAGCAGCATACCTCTCAATTTCCCAACATTTATTTTATTATTTTTTGTCTTCACACTACTTA


ATAACTGAGGAAAAATCATTTAGACCAAAGTTCACCTTGGTTGACACCATCCAGACAGCTACAGGAAATAACAATGG


AAACTAAATCTCTAAGAAAAAGAGTCTTTCATGTGAAATATTGCAGAGTTGATTCTAGATATATAGCTGTTGGAAGA


ATGGATACTATTACATAGATATGGCAGAGTGGTATCCAGCACCTTTCAACAAAGATCTTTCAGAGTCAGTCTTATTA


TGTCTGGAGAATTTACCCAGGGCTTAGGTGCTTTTACTGACAATCTAACCACCTGCACCCCACCCACCGTCTAAAGC


TAAAGTTTATTGGAAGACTTAGGAAATCAGTCTTCGGAATGTTTCTGAGACTGGTACACCCACCACTTCATTAAAGT


GCTTCACTTCACTTCATTAGACAAGAAGTAAAATACTTGTCAGGAAATTATTTATAGTACCATGTATATGGGTATCT


TATTTAATACTACTTAATGATGGTACTACAAGTTATATAAAATGGAGAAATAAGTCATCAAGTTTGACAATAATGAT


ATTTGATATTATCATTATCTTTTTTATTCGTTCCCACAGAAGTACTCTGTTATTGGTTTAGAAAAATGATATTTGAT


ATAATAAAGAAGGAAAAGGTGGTAATATTCTTTATTTTTTGTATCTTTATACCCCAGCTCTTTCACCAATCTCCCCC


ATCTCTGTAGTTCTCCTCTGGTGTCCCCAGGCAGTGAACTATTCCCAGTGGTTAGGGAACATCTCATTGAGTAAGTT


ACATCAACATTTCTTCACATTTCAGGACAACAGGAACAGTGCCAAATCCTAGCCCATTGTTCAACTCTCAAGCCTTA


TTATCCTAATAACACATCCATCCCAAGAAAGAATTCATCAAGATCAGAGAGGAATACGTATAATTTTTTATAGTACA


GTATTTAAAATGAAACAGCTTTTGGCCCGCGTGGTCTCAGTGGGCTCAAGGGGGAAATTCAGGATGCTAGCTCATCT


CACACCAAGTTTAATAAAGGGTGTCCTATAAAAAGCTAATTTCTTGCTGGTAAATTGCTTTTTAAGTAATCCTTGCT


GTTGCAAGAGACCCATTCATAGCGCTGACACTGGGAGCCATGTTGGAAAGGCTAGATATGCTCTGGGAGATAAGGTA


AGATCCAGGTGGAATCTTCTCTTTACAGAATGACAATGTATATAGCTAATATTGTCCTTTGAGGCTAGTTTGCATGC


AGTTGCTGGTATGGCACTGCTCAGCAGCCTGCTGCAGATAAGAATGAGTGATGATGCCCTAGATTTTAATGGAACTT


TTAGAGTGCATGCAGCAGTGGGGTGCAGTCTTCAGCAAAGAAAAACGAGCTGACTTGCAGGCATGAGAGATCATCAA


GAAAGATAAAGAAATAGGACATCCACTCTAGGTTAGGCAAGGCTTTTTAGAGGATATTATGGAAATGAGCAAGAACC


AATTTAATTTTTATAATGCCACTCCATTTAACTTTAAAATACAAGGTCAAGGTACTGTGTTTTTCATAATGATTAAA


GATTTGGAGCACTCTTTCTGTTGAAACATACTGCATCTGTTTGGCAGAAAAAAAAAGTGACAAAGAATAAAACTGGG


ATCAGAGAACAACAAAAACATATTCTGTCACTTGCCTAACACAAGTTAAAAAGCAAAGGAAAAAGAGACAACTCTGA


TGGACATGTTCATCCTTATCCCAACAGAAGGATTTATTTACCTAAGGTCCTATTATTTCAAGTTACTTTGATCCCAG


GATGGTAACATAAAATGTACATTTTAAAATAAAATGGAAGTATAAGATCAATAAAAACCACATATCTGTGGATAAAA


CAGCAGATTCAATCTTGTGGCTGAAAGTTTGCTTTAACCCAACATTTGGTAAACTATTCACTCTGTAATTTATTAAA


AGACATACTGTTATTATAAAACTATCTCAGTTTGCATCTTGTTGGTTCTGTCAAAATTTCATCCTGCTAATTCTCAA


CTTGTAATATCTCTGATATACATGATTAATCTATTTTAGGAATAAAACAAAAACTACCTTTATCTTACGCATTTCTA


GGAAGTGTTTTTAGATGTAAAGTAGGGGTAATTGTAGTATAGTGGAAAGGATTTTGAACTTGAAGCCAGAACATATG


TCTCTGCCAAAAACTAGGTGTGTGACCTTAAATAAGTTACTTAGCTTCCTGAATCTTAGTTTGTTTAGCTTTTTTCT


ATAAAGTGGCACACCTATCCACATCACAGTTTTGTTGTCAAAATTAAATAAAATACTATATTAGAAAGAAACTTTTA


GAAAGAAATTTATAAACTGAAATGTACTATACAAGTTTAAATCATTCTCATTATTTTCTTACCCTAAAATTTTGACC


TTATTTTTCTTAGCAAATGGCTGAATCTGTAAAATTTAACCCCCACGCAGCATCTGGATTCAAGAGAACTACGGTCA


TTTCTTTATACAGAATACTAATTATACACATATAGCAAAACACAAGTTTTTTCCAACTACTCTGTGTTTTTAAAGAT


TCAGTGTGGGCAGAAGGAATTTTATCAACTATGTTAGGGGAAAAAAGTCTGAAGAAATGAAAATAATGAGAAAAAGC


ACTGTTGATTTAAGTGCAGGAACATAAAACTTCAAGGCAAATGTGAGGCCAACTGAGTTCATATATATCCTCACAAA


ATGATTTAGTTAATTTAAAAACTTTTCTAATAAGCAACACAGGTAATCCCAAATTCTATCTTTTATAGCTCTAAGAG


TCCCCATAATTTATTCAGCAATTATTTACCACCCACTTATTATAAGAAAAGCCCTGGGATAAGTCTTGAGAAGAAAC


TAACAAAAACAAAACTTGATTGTTTGCTCTCAAAAAGCTGGGTCTAAAATAGGCAAGGTAAGATTTTGTTTTGAGGA


GCCCGTATTTTCCAGCACTGTCCATTGTAACATTAAAATAGTTTGCCAAAATCCTCACTCTGTGGGTGTATTTGCCT


AGGGTGCTAAAATTGCTTAAAAACTTTGTTATTTGGCTAACTAAAATCACTGAATAGTAAACAGTAGCATTAGAGAT


GGCAGAGACATTAGGTGTCATGCAGTTCAACTGCTTCACCTAGCAGACAAAGACATTAAGTTCCATTTCTTAAATTT


AACTATCTGGTTGAGGATACACAGTAGCAGAGCTAAATCAAGAACCTCTTGGGGTTAGAGTTTTTGTTTATGCATTA


CTTTGTTTTGGAATTAAAAACAGTGCCTGTTTGCTAAGTTAAATTGAAAATATGCTCTGAAGGAGAAAAACAGCTAT


AAAAATAGACTTAACTTCCAAACTATGGATCACAATAAACTAAAGAAATAATTTCTGTAGCAATAAACTCCAACACT


TTCCATAGGACCAGAAAGGCTTGAGAAAGAGGAGAACAAAAAAATGCTTTGGGGCTTACCATATATATGGAGAAAGC


TAAATGAATAAACCAGTTGAAAGACAGCGAGTTATACTAGTAACAATATTACTGATATCGGAGCTCTCACTTATAAA


TTGTATATTATGATCATAGTGACTAGGTACTTTATATCTGCTTTCTCATTCCTTCCTCACATTAATTCACATGTAGG


ACAGATTACCTCTTCTGTTTCTATCCAGAGGCCTAGAGCTCAGGCCCTCATCGAAGACAGACAGAGCTATCATCCTT


ATTCTAAAAAAAAACTAAGACCCCAGACATAGCTGTGCTACTTATAGACTAGAATGTGAGAGAAAAAGACAAGCTTT


CATCATGGGCTTAACAAACTGAAACACTTCTTCAATTTTGAGATTGAGAAACTTAGCTAATGCTAGGTGTAAAGATG


ATATGCTACCTTCATAACCTTGGTGAGGAGAAATTAGCATTTCTCTCAGTCCTAGAAGGAGGATGACCATGAAGGTC


TTCATTCTCTTGAGAAGATAATCAAATGCTTCACTGCCCTGTTAACGGTTTACTCAATATTCACCAAGAAAAGTAGA


TGGGATTATTTTTGCAGACACTTATACGGGTAATTTATTCTGATAAGCAGAGACATACCTTTAGTGCATAAATTGTT


CCCTTTGTGCTCTTTGTAATAAACATCACCATAGAGAACAAACACGAAGTAATGACATTGAATTAAAAGACACCATA


GAGGCAACAGCGACTGGAATTTGTGAAAGTAAAAGGATAGTGCAAACAGTTGTGCGTTGCATTCTGCTCTGAAGATT


AACAAGCTGGGTCAGGCTTTGACCATCATGATGAGCAGGAGATTTTTCTAATGGAAATCCCCAATCAAGTTCCTGCT


GCACCCAGAAAGGAACGGCTTACAGAAATCTTACATTTCTTTGCACATACCAAATTGCTTGGCATATTCTATCACAA


GGTTTACTTTCCAGGGAATGTGATCAAGAAATCATGATCCTAATTCCTAGTTAACCCTCAAAGTTTCTCAGAACAGT


CAGTGCATCACTGTCAACTTTTGTGCAATGTGGAAATCAGAATTGGTCACACGTTTTTCCGGCCACTGTTTTAGATT


CATATAATATTAGTGAAATCATGTCAGACTGGTATAGCCATGAATTTATACTTCATGAATAGGCACTCAATAAATAG


TGGATTAAATCGACCGATTTGATTTTTACCTCCAATAATTTCAAAAATATCATTGAAGACAAGGTTGTTGAAGCTGT


CACTTTTCTTGCTGAACCTTTGTTGTGCCAGGAGGAACAGATGGTAAAATCAAAAGTGATTAGAGAATCAGTGGGGT


GGGGGTGAGATTGGAGGGGAGAGGTCTTCCCAGTGAGACCCGCTAGCGTCTTCCCTGAGCAGTATGTTAACCCAAGA


CAATTTTAGAAATCTGTGCCCCTAAGTTGCTTGACATCCAAAGCACACTTGATGCATCCTACATTTCTAAATATTTT


TATTGTTGTTTCTCGGTAGTAATCATCTGGTTTAGTCACTCTAAAAGTCAAGGATGAAATTTTAAAATGCAAATAAA


AGTGCCTACTTTCTCTCTTTCCAATTCCTTTTTGTTTTATTGAGGTATAATTTACATGCACAAAAAAATCGCCTTTT


TAAAGTGTACAGTTTGATGAGTTTTGACAAACATATGCAGTCCTACAACCACGTCCGTGATCAGAATAGGAAATATT


TTTATCACTTCAAAAAGTTTCCTTGTACTCCCGTTGCAGTCAGTCTCCTGCCCCACCCCAGCCCCTGGAAACCACTG


ATAGGTAAAAGCACTTTTAATCTGAAAGGTATTTAATGTATGGCAGTGTCAGTGGTAATAATAACAAGATTTATTCA


TTGGTTCACTGTATTTTTGAGCACTTATATGTGCCCGTTGTATGCAACCCATTATGCTCAACCCCTGCCCTCCTCAC


CAGGGATAAACTAGTGGCAGAGATAGACAAAGAAGCCGTCTCTCTATCACCCCTATCTTATAGAACATTCTTCAATG


TTAGAAATGCAGTATAATGTGGCCATTGAGAACTTGAAATGTGCTTAGTGGGAATGAAGAACTGAAGTTTTAACTTT


ATTTAATTTCAATTAATTTAAATTTATATAGCCACATGTGGCTAATGACTATCCCACTGGAAAGTACAGCTTCTATA


CAATATGATAATATGATACATTATAACGCAGGAGTTTAACCAAGTGCTAAAGCTTTACTATCACCAGGGTCACTGGT


GTTATGTGAAAAGAAAACTTACAATAGAAAAATAAATCCTTTAAATAGTCACAGACCTGAGAAAGTTTCCTTCTCAA


GGGAACACACATTGGCTCATTCAAAGGAGGTTAAAAACTAGCATTTAAGGTAATTTCATGAAGCTTTCCTTTGGATT


TCTCATGCTTATTGTATACATAAATAGGCAATTTTCGATGGGACCTAATAAATCACTGTTTTTTATTTGAACATTTT


AACAAAATTATCAAACAGCATTGCATTTATGTTCAACCTATTTGTTCTGAGAAAGACAACGATTAAGTAGAAGTCAT


CAAAGTTACCAGAACAATTTTTGTTCTTATGTTTTAGAAGGCATTGAAGGTGTTTAAAATGTACACTTATAGAGTCA


GAGTACTATGCAACTGTGGCCCTTATAGTTTATCCGTCATGCATCTAAAGCCATTGTTACATCTGTTTCTAATTGTG


CATGGATTGTCCAAGATACACAATTGGAAATTCCATTTTATTTATCAATTTGAAGAGGTTTCACCCATGTGGTCACT


ATGATCACTATGGAGTCACATTAAATTGAGAAGTCTCCAGAAGTTGCAGTATTTATTTAAAATTCTAACTTTCTTCA


GAGGAACAAATTCTCCATTTCTGGATTCTGAATCCTCATTAGCCATAAGGTTGTTGTAAGAATTTGCAGCTAATAGG


AACACATCCTGGGGAGAGACCAGTTGAAAAGTAACTTGGTTCTGAGTGAAATTATACAGAGACAGTTTCTACTTCAG


GTGGTGTTGCTAATGAAGCTATCATGGTAATTTTAGCCCATATGATCCCTAAACGACTTCAGAACCACTTTTCATCC


ACTAAGAACCCACTTCAACCACTGCCACGTTCACTACCACAGTATAATATGGAACACCCTCTGGAATTCAGTAAGTA


ACTTCTTAACTCATTGGCTATAGAGCTTTGCCTTTGTAAATTCTTTCCTTTTGCAGTAAAAGAGATTGTTTCAAAGT


AATCCAATTAGTCCCTAGGCATGTCTAGAAAGGTAGAGTCAACAACAGTAAGGTAATAGTCCTTATAAGATATGTAA


GAAATTATCAGTCATTTACTTTAAAATAATTTGTACACTTTTCCTTTTATATGGTTCTTCTATGTTGAAGCCAGTGG


TCATCCAGTGATTAAGATTAGCCAAACTCAAAAGGCTAAAACTAAATTCAAATGGTATTATTTTGCTTTAATTTTAT


GCAATGCTATGTATTTAAATTTCATGAAAGTTTCGTATGGCATTGCTATCAATTTCAGTCAGGATAAATTTCCCGTG


AAATAATCCACAATTTTCAACTGTACGTTGGGTACAGGTAAGGAAACACCCTTAAGAGCTTATCCAGTTATTAGCTG


GTATTATAAATTTCAAGTAATTCAATGTTCAATTAATAAACAGTTACTTTAAATGGGAAAGTATGAGTCAAGAGTTA


GTACAAAGGAGAATCTTAAAAGATGAACATCAAAGAATCTTACTATTGATTTGTTGGTGCCTTTGCTTGCACTTCTC


CAAATTGACTTGACGTTTTAAATTTGTACTGATAATCATCAGAGTCAAATCTGCTTTTAGGCAAAAAGTATCCGCTA


GTTATTCCCCTACTATGAAAGTGATGAGATGAATTGATCATGTCTCCAGTGTATGGATGGATGTCTTTGAGGAAGAC


CTACTGACCTTATGTTTATCTTCTGTCAGCATGGTGTGACTATGTGGAGAGACAGTGCTATTTGCTAAATACTTTGT


TTTTCAAATAAAAAGATTTCACAGATTATGCATTGTAGAATTTATAAGTATTCTTTTATGTCTTTGAATGTGCCAAT


ACAATTTTTATGAAGTTGGAACTATTTTATCTATTTTAATGAAATTGTAAGCCTTCTGTGAATTCTTTTATTAATTT


TATTCTGAAGAAAATCTGACCAGGTTAGGGAAATCAGGTCAGGTTACGACGTGATCCCAGTGGAAAAGCTGAACTGT


GGACTGTGATTTAAAATAGGGAAGAGGTACTGAAGTGTTGTTTTTATTTTTGTTTACAAATCAGCCTTTCTAACTAT


TATGTACTCCCATCCTTCTATCTTTTTCTCCACCAGAACGTATTAACAGGCATGCATATAATTAATGCTTTTCTTGA


GATAATATTAAAATTAACTTCATCTGTCAGGCCGTCTGGGCTAAAAGTACACAGTCAGATCTGGGTAACATTTGAGT


TGATGTAAATATGCCCACACATACTGACAATGCTTACCATTTATTGTGTGAATGAAAAGCAGTGTAAATATTGTTTG


TTCTACTAGGGAAGCTCCACATTTTAATCAAACTTTGACCGTATTTCTAAAATGCCAGAGCATCTGGAATTGTTAAA


GGAACTGATAGTTTTTGTGTTTTTAACTGTTAGGATACTTGAAATCCAAAGGGTAAAGAAACTCAGCTGATTTATAC


GTTTCTTCCTCTTTATTTTAATGTGATAAAATGTAGTTTTTGTCATGGGCTGACAAACAGTGGTAGACTACACTAAC


TCTGCGTTTGCTGGGTTTAATCTTACCCTCTCAAGGCATGGAATGGGAGCTCACTTCAGACCCAGCCATGCTTCACT


GTCCACTGCCTTCTCATGGATATAGTGTGAACATTAATTAGATGAATTCCATAAAGTGCTTTAAGCTCTTTGGAGAA


AGATACTCGCTGCATAATTATTCTTAACTCCCATACGCTCTTATGATATAAACCATTCTGCCAGGAAATCCTTTTTA


GGGATTATCACTTAAAATGAAATTTTCATTATTAAAAGCAGGAAGAATATACATCTACTGACAGACGAAAATGTGCT


TAAGGCGACTGCTTTTAAATAGGCAGAAATCCTGAACTATGGAGCCATCCATGCCTGAAAATACTGAGTAATAATGA


AAACTGGTAGCAAATTTGGAATATTAATCATCACATTAAGTTGCAAAGAAAAAAAAATACAAGCCACATGCCCTTTA


AAAATACGTGCACAAATCTTTATTCTAGAAATATATAACTTTAGGCCTAAAAAAGTACAAAAAGTAAATTATTTTAT


GGCTCTGAAAGTATCCTTAATTTACTCAGGTGACAACAATTAGTGTTTAAAGAGTTAGTTTTCAATCTTAGCTACAA


GTTGGAATTACTCTGGAAGCTCTAAAAAAACAAAAAACAAAAAAAAATAGAGATGCCTAGTTCCCACCTGCAGAAAT


TCTGATTTGATTTTTCTGGTGCGAGACCTGAGAATAGGAATTTTTTTAAAGCTTCCCTAGTGATTCTAGTGTGCCAC


CTAGGTTGCCTTAAGGTAAACCTCATATTATGCAGAACCTAGCAATCACCTATCCTGATTTTATAGACGAAGATCAT


AAGACCCAAGAGGGCAAATTGATTTATTCAAGATTGAATATACAAATGATAGAAGATTCACATAAGATGCAGTATAC


AGAGTGGCTTGTGGATTCTTGCCAATGCAGGCAGCAGAATTTTCTTTAGGGTTCACCCAGTTCAGGCACCTCTTTGC


AGCAGCACTTGACTAAGGTTCTTCTGATTGGATCATTATATGGGCAAAAAGAAAAAGCTTAATTGAAAAGAGCTGAA


CCCACATTGTGGAATGGAAGATATACAGTTTACACGTTATAAATGATTAATATTCATGAAAGCATACTGCCCTTTCC


TCTTCCCTTCCCATAGATGACATCATTGCATTGGTGTAGTTAGGTTGGTGGTTTCTTGTTGTTGATCTTGGTTCTGA


CACAGTTCATCACTTATTATCCTGGCTTATTATCTACTTCTACATTCATTGTTCACTCACTCACTAATTAATTCAAC


ATGGTTTTTATTGTTTTGGACCGGTTATATGCCTGCAACGCTACGTAAGGCTGAGGATATTACAATGAACAGGAAAC


AACCCTGAAGTTTAAGGTATCAAGCCTTTGAGTTACTGTCTTTTATCATAGCTGATATAAAATTGAAGCCCCACTTT


TTTTGTTTTCAATTACTGAAAATTCAGTGCTAAAAAAATGTGGATTTTTATTCAACTAGATAAAGTACTACAATTAG


GTTTCCACTGACCTTGGCTGTTTTTGTTCCCAGTTGCCATTACATAAATCTGTGCCACTCACAACTTAGGAAGGGTG


TAACATTCTCTGTAATAGTTTGCCTTTCGAATAGTGTTTGGATTCATTACTGTCCCTCGCAGTTTGGAATAATGACC


ACTGAATAATCAGTGTTTGGAGACTAAATTAGTGCTGCAAAATTCCCTCAAATTACCTACTGTTCTTTTCCCTGTCG


ATGTATCCTCATATTCACTATGATTACCCTGAGAAGAAAGATATTGTTGAGAACCACTTTACCTACTCGAAGTTTTG


GTATTTCAAAGATTCATACTTATGTCATGTTGATTACATTAGCACTAATACTATTGGCAGAATTCTAATTCACGTTA


TTTTCTTTTTTTCCAATTTCTCTCCATGCCTATGTGTTGTCCCTTCGCAGCTATAAAGCCATGGCCGATTCATGGGT


GCTTTTGTTAAGGCGTTCAGCAGTCACGTTTGTAGATTTTTGAATGGGACTTAGAGCCCTTTTTTGTTCTTTATGTA


TTTCTCTATTTCTCAGCAAAGGAAATGCAGACATGCAAGAAATAGTGATCAAATGTCCTGTGTACTATTGTGGGTGT


CATTAATGGTATAGGGAGAAATAGAAAATAGTTGCAAAGATGCATTTAACAAATAAACGAGGTCTTGAGATTCACCA


TGAATGTGGCCCCTTCTATGAAAAGTAGTTAACATCCAACTGCAAAGTTGTACTGGATCAGTTTGACTTTAACCTTT


AGCTAATATGAAAATATGGAATTGTGTGGTGGTGCTCACAAAAAAGAAAACTCATTTTTCTTAATTATCATCAATTA


ACATGTACTGACTACCCATGAGGGAAAGTTAATTTGCTCTTGAGTGGAACCAGTTATTTGCCCTATTATTTCTCCCT


TGCTTATTCCCCTCTCCCTCCCTCCTCCCTTTCCATTCAACAAAGAAAAATAGATAAAGCAATTTCTGATTAGCCAG


TGAAAGCCTCTAACATAAAATTTCCAAAGATGTGCCATAAATTATCCACAAAATGTAAAACTTTTCAATTTTGGTTT


GCATTTTCTTTTTTCTTATTATAAAGGTAATAAGTGCTCATTATAGAATTTGAAAAATATAGGAAGTTGCACGGAAG


ACGAATAAAATCAGCCATAATCCTACAAACCTATTGACACTTGTACATATGTTTGTTATCTCTAATGCATTCATTAT


GATAATGCATCTTTTCAACCAATAGAGTAATCACTGGTGACTTTCAAATTTGCCTACTCATTTTTCACTCTGTGGAC


TTACTTTACTACCTCTTGCCCTTTTTCAGTAAATGAATAAATATTTAAGTAAGTAAATACAAATGTAATAACTTATG


CGCTCAAGCACACAGATACACACAGAGAGAATTTGGAACTTCGGAAATGCCATCCTCTCCCTAGGGCCGCAAGTGAG


TTGATAAGCACGTAAGGAAGGATAATCAGGGGAGCCTTCTCGTATTGCCCAGATGGCTCAAAATTCGTCATCTCTAC


CAAACAACTATTTGGAGCTTTGAAGAAATATCCATGACCCCTTTGAATTCTTCAGTTTCTTTCGCGTTCACTTTGAG


AACCAAGTGACAAGTGAATTTCCTGACTTGGTCTTTTAAACCTGTTAGCGCAGTTCCATTGAGATTTTGTGGGCACA


AGATTGCAATGAAGAGATCAACAGGGAGAAATTCATTTCCCTATATATGTGCGATTAATCCGGAGTGCTAAGGGCAG


ATATAAAGCAGGTGCCTACTCCTGTATAACTTGGAATAAAACCATTTCCAAAGGCTGATGATCCTCAAGTCTTGTTC


TGCAAATGACTGATGTATAACTTCAGGCCAATTTTTCTCCAGTTAGTCTGTGTCACTGGGAGTCCCATTTCTCGGGG


AGCAGCCCCATGCTTTGTCAGGTGCGGAGCCCACAGAAGGTTAATGCGAAAAGAAGGCCTCTTGCCAGACTGTTTTC


CAGATGATACGTAGGGTTATTAGTTTGAGCTCCTTAAGAAGATTTTTCTCACCTGTCCTACCAACTTATGTTTATTT


CATTGGTGTTAGAGGGTTTCAGTGGCGGAAGTAAAATATTTAGCGGGGAAGGGACAGCGTTCATGGGAATTTTGCCT


AACTTAATTTTGTATCTTTAGCTCATTCGTAGTCATTGTACTTTGTGTTTTGTCAACTGAATTTTGTTTGCATACAA


AGGCACAAAATGTTTGCTTCAGACCTGTCACTCTTATTTTTAGCATGGTTAGACAAAAACTGAGATGCTTTAATTGT


CTAACTTATCCCAGTTTAAGTGCTGCAAAATCTCCCAGGCAATGTCATGGGCAACTAAGGGATAAAATCAGAGATTT


AAAGGTGCCAGGTTTCCCACGCTTCTAACAGTTGGCGTTTTGGGTGTATACAATCCCTCAGCTTTCTTCTTTAGTTT


ATGGAGTCTTGTGGAGGGAATAGCAGGTTTTTAGCTAAAATTATCATGCTGTCGAGTTGGGTCTCTAGTGCATCCTG


AAGAGCTTGCATTATTTACAGAGGCTGGGCTATCATTTTAAATCCTGATGCTTCAATGCCCGTTATCATTCTTGACA


AACTCTTCCAGCCCGTGGTCTGTTTTCCTCTGTTTGCTTCCATTTACTTTCCTGAGCAACCAGCTGAGCAAAGATTT


ACATAACTTTTGTTTAAACAAACCCTGTACAGTTCACTCTTTCAGCCAGTATGTAAACACTTTTGAGACACAGTTAC


ATTTTTCTATTTTAGTCCCAGATTCTGTTTATTTGCTACATTTTTTGTGCCCACATTTTTGTCTTTGTTAAGTCTCT


TACAGATTCACATGAAAAACCAGAAACCGTGGCTGCTCAAAAGTCATTAATAATGAGATTTTTAGCTACTGTTTCTG


CTTGTAAATTCTTCATTTCACATAATACAGTCTCAAAAGGCCACAGAGAATTCAGCCTCGCTTATCTCTGTGTTGCA


GATGATGGCTTCTAGCCTTACCCAATCCCAGTGCAGCTTGCTTGCCATCCAGGAGTCGAATTTGTTTCCATCTGACA


TTAGCGTATTAAAAAGATTGGAGATCAACAAGCAACAATGTTCTTGTAGAAAGGTAATCAAGGTTTAGAGCCTGTGT


GTCATGAGACTCCTAGCATTTGAAACCGCTAAGGGGTTGACCACCATTGTCCCAAGCACCTGTTTAAGATTCTTTCC


TATGATAAGGGACCTAAAGTGATTAGCATACTGATAAGATTTTCCTAGAATAACCTATTTATTTCAGTATTATTCTT


TCAAATCTTAATTACCATCTTTTCCTTTACCCAGGGTCTTCTTTCTACCTCTACGACACATTTAATTACCTATATTC


CCCAACCTGTACCATATTAAATTTTGAATGGAAGTTTTATAGGGTAATTTATTGGAAGGATGGCCTTGAGTGTCATT


ATGTTCAATGAATGCCCTATTTTGACAAAGAGATGACTAAATGTTATTGAAATCTTTTTAATCCACCACGCTTCTGC


TTAGATGTAAATGCAAATCTGTTCTTTACATTTGTGATTGAATTGAACTTGAAAAGTACCGCCATATTGATTCCTTC


TGCAAATAAAATATAATTACATTTCCCTAAACTTTCTACACTCTCCCAAGAGATTGGCTGGCTTTGTATTGTAGATT


TTTGGTGATCACAGAGGACAATGCATTATCATAAGACCAATAAGATTTATTTTTACCTTGGTAAAGAATTTTAATTT


ATTTCTAGTTTCATTTTCATTTATATCCATCTCTTCTCACCCTCTGCTCTACAAAAGTATATATGACTATATAAATT


GAAAAAAATATCAAGTGCAAAATTACAGAAATAAATAATTAGGTTATTTTAGTGGAGGAAGGTTTGTTGTGGGTGGA


GGAGGAGAGGAGTGAGCCAAGAAAAACGAGGGACCATACGTGATCATATTTTTGCAGCTATTTTAAATTGTTTGTGT


ATATACTTTAAAATATTATAAAATAAAATTTTAAGTGCAATGCATATTTGGAGCCAATGATGAGGGATAACTTCAGA


AACGTAGCATCATCATCTAGTGCTTTCATAGTCCTTTCAACATTTCCAGATAGTTTTAATGGCCTGCTCATGGAGGC


AATGCCCTAATTTTAACATATCTCTTCACAACTCTGATTTCTTGCTTCCTAACATTAAATGTCTTCAAAGCTTCTTT


CACCACTAATTCCTTATCAAGAGGATAAGCCAGTTTATTCTTTAAGAAAAACTAGCTACACAAAACCGTAAGTCATT


CCAACATAAATCCTTCACTATCCTCTCTCTATAGATTTGGTTTTGATTCCTCCTGCTGAAATTCAACCTTCTTTCTT


CAGCTATCCACACGTCTTACCCTCTAACTTCCCTCAGGAGTGTCTATTAGCTCCCATTACAGTGACCACAGTAATAT


AGTAATCCCCTGCTGTTCTCACTCTCCACTTCCTTACACTGCGTTTTAAGTCTCTTCATATTCTTTATCACCTTGTA


TCATGCATCGGTTTTCTTAGTTGTTTATTTTATGTTGCCTTCATAAATTCCATGAGAGCTCACTGCCGTATCTTTAG


AACATGGAACAGTGCTTGGAACATAATGGGCATTCCTTAAATAGCTGTAGAATAAACTTTCAAAATCAACAATAATG


TATTTGCCAAATCCATTGGCTTCTCTGCCATTTTATCTTGTTCAATACCACTGCGATATTCCCCTTCCTTTTTTTTT


TTTTTTAAAGTCTGTAACCCTTTAGCTTCTGTAATATTCCTAGTTTTTTATTCCTCTCATGTGTCAAAATCATCAGT


TGAGGCTTATTGTTTTCTCTTTCTCACTCTGACCTCACCTTTGTTTACATCTCATCTTCTGGCTTTGGCTATCCTGT


TTTTTATCTCTGTTCCAACCTGTATTTCTAGCCCTACTACCTGGACATGACATGTGGATATCTCCGTATGACCGCAG


TTTCCATATGACTTTGCAAATTCATCCCTGCTCTCCCCTCCAAAGTCATCCCCACAATTGACTTCCTGTTCCTTCCA


ACCTATTAAGGTTCAAACCCACTTTTGCTCCTCCTTTGCAGGCTACACTTTTCCTTCTCAGTACCTCTTTTTTTTCC


AAGTTCTTAGATAAAAGTCATAGTACCTTACGTTGTAATTGCCACTGGTCTGGTCTTTCTGCCTGCTTTCCTTTCCA


TTTGTAATCACATTATCCATTCCAATCCATTTATAATACTGTGATCAGCCATAAAAATAACATTTATCATATCGTTT


GTCTCCTTAAAACCTGTAGTAGATCCCCTCTATTTACAAGATCTGGTATAAAATCACCCTTCCTGATATTCAATGCC


TGTTTTAATATAATCTCAATATTATGCGTCATAAATCCCCCTGTGTTCTTGCACTTTTTATTTCTTATACATCTCAT


CAACCATGTCTTATCAACTCTCAAAACCTGTATTGGTTTTCAGGAAAACTCATAAATTATTCTTTTGTAGACCTTTT


GTTTGTCATCTTTGAAGATCTCTCTCTGAACTACAATATTTTGTCTGTATAATCAATTTGGAAATTCATCAGGTATT


GAAATATGACATGTCTTCTATTGTCTTGAACATTAATTAAAACTTTATTTGACTTTTTATATGCTTACATCTTGTTT


CCTCACGGAGTGTTAACCTACTAGAAAGTAATAGTTTAATCTTATATTTATTTTAATTCAGATTTAGTAGCATACTT


TACACGTGGTAGGATGTGTAACTGCCTTACACCTTGCTTACGTGAGTTATTAATGTTTTCGTATATTTAATCTGAGG


ATGTACTAGCAATGTTAAAACTGTACCGCATGAAATTGAGTAATTGAACTATTTGTTTTAAATGTGTTGCTTAACTT


ATTGTACCATTTTCTCATAATCACAGCTCAAGTTAACTTTGTGGTTGTACGTATTATTTCTTGTGAAATGCCAACAA


ACTTAGAGCAAGGAAAATAACAGGTATAATCATACTATAAAGGCAACCTTAACACTAGCATAGTCTCTTAGCTCATA


TGGTAACTACAATAATGTACAGTGACAAAGAGAATATTGTACTTTCTTAGCACACACTTTCCTACTACTCTACTGTT


GTGGATAAAAACAGACATACTTTAGGAGAAACTATGTTATTTCCAAATAATGCCTTAAAGGTTACTCCAGGAAAAGG


CATTTACATAAACTATCTAGGAAAAGAACCTTTTAAATAATATAAAGAGCTCACCCAAAAGGACTGAAGTGTTTAGT


TGAAAAAAAGTAAAAATGTCGAAGACTTTGAAAAATAGTTTCTTGCAGTATATTTTCATCGCTTCCACTTACGTTAT


GAAGACATTAAGCGCTAGTTTATCAAAAACTATTTTTGTACATGTCTTCTAATGACAGAACAATGTCAACATGATTT


TCATCATTGAGAATGCGTAAAGAAACCCTTTGTACAGTTTTTTCTATGAATGTTCCCCTAAGATTAAAGCAAATTTC


CAACACGAATTAGGCACTCCGAAAGGAGGAGGGGAGGGAGGGGAGCAAGTGCTGCAAAACTTCCTGTTGGGTACTAT


GTTCACTATCTGGGTGATGGAATCAACAGAAGCCCAAACCTCAGCATCACGCAGTATACCCTTGTAACAAACCAACA


CATGTACCCCTGAGTCTACATTAAAAATAGAGATTAAAAAAAGGAAATCAGTATATAATCTAATAAATACCTCTCAA


GCTTTCTCATTTTTAAAATAAAATTTTAGATTATTATTTTAGGAATAAAATAGGCTCTTCATTGTATATAAGTTCAT


TTCTGAGTTGCAAAAATCCTCTCTTTATGTTTTTTTCCCCGTATTAGCATGTTTTTCTCCTGTTTTTCCCCACTCAA


CTTGGCTGCCACAATCAGAAAGCACAAAGACAATTTTTTCTTGCGCTTGTAAATCAAAACCTTAGCATCAGACAAAA


TAACTGCTCCAGGTCTGTCAAATAGATTCATTTGAGCTTTCTTCATGCATTGAATACGGCAGAATTTCTGACCTGAA


GAAATCTAGCCTTTTCCAAATTTGCTTTAAGAACATTTTGCAATAAATTTAATATAATAAAAGGAAAAAACACATCA


GGCTAGAATTTGGAACCGATTGTTATTAAAAATCTCAAGTCTATCAATTTAACTTCAACAAATTACTTAATTTCTGT


GATGGTTAATTTCATGTGTCAACTTGGCTGGGCCGCAGGGTACCGAGACATTTGGTCAAACATTATTCTGGGTGTGT


TTATGAGGCTGTTTCTGGAGAGATTCACATTTGAATCAGTAGAGGGAGCAAAGCCGATTGTTCTCCCTTGTGTGGGT


GGGTCTGATCCAATCAATTGAGGACCTAAGTCCAATCGATTGAAGACCTAATCAAAAAGCCTGATTAAAAGGAACTC


CTGCCTGATAGCTAAAGCTGGAACACCCATCTTTTCCTGCCTTTGAGCTTGAATTGAAACCTTGGGTCTTCTTGAGT


CTTAAGCCTCCAGTTCTGGGGCTGGAACTTAACGTCATTGGCTTTCTTGGTTCTCATGCCTTTGGACTCAGACAGGA


ACTACATCATTGGCTTTCCTGGGTCTCCAGCTTGCTGACTGTAAATCTTGGGACTTCTCCAGATTCGTAATGAGCCA


ATTTATTACAATAAGTCTCTCCCTCTCTGGTTTCGAGAGAGAGAGAGAGAGAGACAGAGAGAGAAATGAGAGCACAA


GAACGTGAGTGTGAGAGTGCCCTAATATAATTTCTCTAAATATCACTGGTTACTCTTCAAAGTTATAAAATTGGTAT


AAAAGGTGACCTCAATTTTTCATGGAGTTAATGTATGAAAGTCACAATTAAAAAGGAAGAATTAGTTCTGGTGTCCT


GAAAGTTATTTGAATAAATTAATATGCTATGGAGGCTTTAAAATACTATGAAAATTTAATATTGTATTATTCTTAGT


GTTGCTATTTTTAAATAGCACTTTTTCTTTTCCTTTTTTTTTTTTTTTTTTTTTTTTTTTGAGATGGAGTCTCACTC


TGTTGCCCAGGCTGGAGTGCAGTGGCATGATCTCGGCTCACTGCAAGCTCCACTGCCCGGGTTCACGCCATTCTCCT


GCCTCAGCCTCCCAAGTAGCTGGGACTACAGGCGGCCGCCACCACGTCCGGGTAATTTTTTGTATTTTTTTAGTAGA


GACGGAGTTTCACCGTGTTAGCCAGGTTGTTCTCGATCTCCTGACCTCATGATCCACCCACCTTGGCCTCCCAAAGT


GCTGGGATTACAGGCATGAGCCACCATGCCCGGCTTAAATAGCACTTTTTCTTGTGAGTCACTTTTTAAATATTTGT


GCAAACCTTGTTGCCATTCTACTCAAGCTAATATCCTAAACCGAGGACATTATAACATTTCAGGAGTCAAAACTTCA


GACACTTAACATAGTATCCTCAGGTTCATCCATGTTGTCATAAATGACAGGATTTTATTCTTTTATATGACTCAATA


ATATCCCATTGCATATATATGCAATATTTTCTTTATTCATCCATTATTAAACACTTAAGTTGATTCTATATCTTGGC


TATTGTGAATAATGCTGCAATAAACATGGGAATGCAGATATCTCTATGACATACTGATTTTATTTGCTTTGTCTCTG


TCCCCAGTAGTGGAATTGCTGTATCGTATGGTAGTTCTATTTTTAAGTTTTCGAGGAACCTCCATACCGTCCTCCAT


AATGGATGTACTCATTTACATTCCCACCAACAGTGCATAAGGGTTCCCTTTTCTCCATATTCTTGCCAACACTTTTT


ATCTTTTGTATTTTGATAATAGCCATTCTAACTGGAATGAGATGATATCTCATTGTGGTTTTGATTTGCATTTTCCT


GATAGTGATGTTGAACATTTTTTCATATGTTGTATTAACTAAGCCAAACACAGAAAGACAAATGCAGCTTGTTCTCA


TTCATATGCACAATCTAAAAACATCGATCTCATAGAAGCAGTAAATGGACGGTGGTCACCAAAGAATGGGGGAAGTA


GGGGAAAAGCGAGAATGGGGAGAGGATTGTCAATGGGTACAAAGTCACGATTAGAAAGGAAGAATTAGTTCTGGTGT


CCTGTTGCATAGTATGGAGACTATTGTCAACAGTAAGGTATTGCGTATCTCAAAACGGCTAGAAGAGAGGGTTTTGA


AGGTTTCTACCCCAAATAAATGGTAAATGTTTGAGGTGATATGCTAATTTTCTTGATTTGATCAAGTAAAGGTCTTA


ATTGTTTGGCAATTAAGACTCATGAATACAAATAAAGGTCTTAATTATTTGGCAAAGCATGCTGAGTTTTGTAAACA


ATTCAGTAGTGATTTTTGAGAATAGGTCAATAGCAAATATTAATTAAAATGTCTTCTATTTATGACCTACAGCTAGA


TGGTAAACAGATAGATGATAGATAGATAACTGATAGATAACTAATAGATGACAGATAAATGATAAATAGATAAATAT


AGATAATCGAGAGAGAATACCTTTCCCTTCACACACGTGCATATAGGCACACTCCATTTCTATCATAGTTACCAGGA


TTCAGACATTTTGTCTCACTATTTTTCTCAATGTGAACATGCATATAGGAATATTATAGTTTTTGTTCTGTGCCCAT


TTTAGTTCGTTTTTTAATATTTCAGGACAAAGGCAATATGGCGGTTTCACTTTGTTTTTCATTTTTGCTTATACTTT


TTAAAGCTCAGTGTAGAAAAGTTTGAAAATACACAAAAGTATTAAATTAAGACAGCTGGGCACAGTGGCTCACGCCT


GTAATCCCAGCACTTCGGGAGGCCAAGGTGGGTGGATCACGAGGTCAAGAGATCGACACCATCCTGGCCAACATGGT


GAATCCCGTCTCTACTAAAAATACAAAAATTAGCTGAGCATGGTGGTGTGTGCCTGTAGTCCCAGCTACTCGGGAGG


CTGAGGCAGGAGAATCGCTTGAACCCGGGAGGCAGAGGTTGCAGTGAGCCGGGATCACACCACTGTATTCCAGCCTG


GTGACAGAGCGAGACTCTGTCTCAGAAAAAAAACAAAACAAACAAACAAAAAAGCACCTATAGTCTTTCTCCCATAG


GTTGCCTTCTTAATGGGTTTTACACCTTTTGATGTTTTCTTGAGTTCTGTCCCATTAGCAAGTAGTATTGTACAAAA


AAAATTTTATCATCTTTTATTTAATATTTTATTGATGTTTAATAATTAGAATTATTTTAAATTTTATATGTCATTTT


AAAATGCAATACAATATAGTAAACTCCCAGATGTGATTGTAAATAATTAATTATTCTCCCATTATTGGGCATTGGGA


CTGCTTCCACATTTTGGTCACTGCAGTGAACATCCTTGTACATGAATCTGTATGTTGAAGTTGATTTCATTCCACAC


TCCCCTTCATTCAAGGGGCTCCAACCATTCTCGTTTTCTTTCAGCTTCTTTATATCCAGGCATATAAAGTTCCTTCC


TGACTCGGGAGCGTCATACATGCTGTTTTCTCCATCTGGATAAGTAGTTAATTCTGTTCTTCTTTGTGCATCTCCCG


TTTCAGTAACTTCATCTCCAAAGCCTTTCCAGGTCACTTTATCTAAAGTTACACCATAATCTTGCAAATCCTCAACT


ATTGAGCATTATTAGTCTCCGTTATCATTATTCTCCATTATTCTCTGTGAAAGCATCCCGTGATTTTCTTTTGTCCC


TATTACCACAATATGTGTTTATTCCGTGTATGTACATCTTTGTTTGTTTATTGTTTGTCTATACCTGCAATGAAATG


CCTAAGGTCAGGAACTGTCTGATGCAGGATGCAATGCGCTCAATAAATATTTACTGAACAAATTAATTCATTTGCTC


AGTCTTGCAGGCAAATGGTACTTCTGTATATTTAAATATCTAAAATGAAAGCGTTACTCGTTACTGTTGGTTGTCAA


TCAAAATTTAAATGTCGATGTTTAAGCGTGAAAGACCTCTGTCAAGTTAATCTGTACTTACCCAAAGGCTATTATGT


AGAAGCGACATAAATATTTTCCTAAATGTTGATTTTCATATTTTAAGAAGACAATGAATGTTTCAAAGCATTTTCTT


CTACACAGCTATTTATTCTGGAGAGTGGGGCATATGTTTCTTAATATTGTTAAAATTGGCAAGGGGATACTGTTGCT


ATATACAAAGAACACCTAATCATCATGCAGACGTTTTGTTTCTGGCTCTCAGTTATGAAAAGCAGAGATTTTAAAAA


GTTACCTTTATATGCTAAATTAGGAATGGCAGAAGGTAATATTCTAATGTTTATAAGTGGTTCTTCTCTGAGTCCTT


GGTTTCTATGTTTATGAATTCTCTTTTTGAAAGAAATTATAGTTATTATTACCAGGTCTATTCTTTTACATTGTTTC


TAATTCTATGGTGATCTTCAAAATAGAGTATCAATTTTAAATACTTGGGAATGAAATTATTCTTCCCATATCATTTC


TTTGTATGGCATACATTGTGATTTGTTGTCCCATCATTGTTTCAGTATGACCTGTTACTGCAAAAACATATTGAGAT


AAATCATCCCACATACTCTCGGCCAGGACAGACATCACACTGTTGCAGCAACACTTCAGATGAGCCCCATTCAACCT


TGTGTTTTTATAGAGAAGGATGCCACATGTTTATATTCATTTCTGAAGATTGGCTCATATTATTTATTGAAACATAC


TAGTTTAAAAATCTGTCCATTTATATAACACCTGGTCTATCTACATAACTTGAATTACATAAATATAAAACTAAACT


TCCCCTCTTCTCCAGTGTATAGCTTGCAAGCAAGTGCATGTGAAATAAATTAAAGCCTTGTTTGTGTTTTTTTCATC


ATGTGAGTACAAGACTTTTCAATAAAAATGAATTACTTTTGAACATATTTGTTTGGACAACAAACAAGAGAAAAGAT


CTATTTGATTGATAGTGGACAGAATTTTCATTAAGTTCAACAGCAGAAATACCACAATTGCATCATTCACCTTCGTG


TATCAAAAGAAAACAGAAAATTAGATGTGATGAACTCTACACAAATGTTCACTATGCATACTTTACCCATTAAATAC


ATTATCAAGAATCATGTCAGCATGACATTCTAATATAGCAGCTTTACAAAAACATGTAATCTAATCTAGGGATGCTG


TTGTCCTCTTTAAATCAGCTTCAAACATATTCTGGGTTGATATTTCTCATTCTTTTTTGATCCACATTGTTTATTCA


CATAATGATTATATTTAACTGAAGATAACAGCATTATCAAAGTGAAAGACAAAATAGATGTTTAATAGGAAAGTGAG


TATCGAATCATCTTTTTTCTACCAAAAACATCTATAATTATGAAGTATTTGGTTAATTATTTTCACAATAATTTAAA


AGTGTACAACTTGCCGATTTTTTTGTACTTTCTACTTTTCATGTCTCGCATATATCTCTTTAATATCTAAGTATTTG


AGTCAGAAAAGAGCCAGTACCGAATAATGGGAATCTCACTGAAATGTGATAACAATCTGGGGCCTGGTCCTGGGACC


TTTATCTGCAGGACAACTTGGACAAATATTTAGACCCCCAATTCCTCGTCTTTACCCTAGGAATAATAACACATTTT


TCTGACCTCATACTTCACGTGGATCTCAAATGGAACAATCATCTGATAGCACTTTATGAAGTATATGAAAGCAATAA


ATTATCACAATAAGATAATTGCAATTATTCTTTGGCATAGTATTAGTGATGTCTTTATCTGTCTGACAAAATCAACA


TTTCTGTATGGTAACTGCCTTTCCTTGTTTTAACAGAAGATCATGCCAGAAAAGATGAGTAGGTAGATACTTAACTT


GTTGTTCCTGAATCTGGAATGTATTGCAGATGTCCCAGACTGATCTTTGTTCTTTTTTTTCCTTACAAATTTCTTTT


CACATTGACAGTGTGATATTTCTTTAAATGTGCAATACATAGCTAACCTTATTTGTTTGTGTTTACTAATTAAAATA


TCTAAACTGCTTAAAGGAGAAAATTCAGTTTTAAGTTTTATTGATTTATACCCTTCTTCAATCCACATAGGATTAGG


GTAGTATGTAACAAAATTTCAAACTATAAATGAAATATTGAGTTTTGTATTAAGGCCAAGGATGAGGAAAAAAAAAG


TAAGTATATATGGAAAAAGAATGGTATTGAATGGGAGTTTTGATGGAGCATGTTGACATCATGATAATACCTATTAT


CTTTATATTCTGAATGTCAGAACAAAATTAGAGCAATTTTCCCTTATTTCCCTACAATACGTCTGTCTTAATAATTC


TAAGCTTTCCTGATTTCAGTAGTAATCTGTATTTTGCAAAAGGCAGCATGTTTATAAGATATCAAGTAAACTAAGTT


TATGGAACTTGTAACAGCATTTTTAACAACATTTCTCCCTAGATAGTTCATGGTAGACATGAATTTATTCAAAACTA


GTATGTAGAAAAATACCATTAACAAAAGCTCTGAAATTATATTAGAGGAGCTGAATAATGTTACTTGAGAAAGAATA


AAATGTTATTTATGATTTTTGGTATCTTTTACCCACTATATATGGCCATATCTCTGAAAAACTTTAGTAATATGTAC


TAATGCAAATATGGTAGTAAATTATGTCTACAGGTGCTGATACCATAGTAGATAAAGTATGATAACTTTATTTTAAA


ATATCATATTTAAATAATTAATATACAGTACTGGGAAAGACTATTTTATCTATTCTCTCACTCTTGAATAAAAAAAT


CCAGAAAAAAATACCTTGTTTTGGTAAGATTATATCAATTTATTTCCCAAATGGGTAGAGGGTTATTTTTTTCTGAT


CATAAACGTATGTCTCTTCATTATAAAAATCCACTAAAAGTGATAGAAGAAAACCAAAAGAATAAATGTAAACAATG


ATGCCATTTTCCAAAAATCACCTTCGACATTTTTCTGGATATTGATACAGTCTAAATCTCTTTTCGGAAGACTCCCT


CCTGTGTAGGTTCCCCAACTACTCTGCAATCTTATTTCCTCTTGTTCTGTTCTTGTAGAAAGGAGACCCATTGTCAC


CATGTCAAATAACACAAAATGGTGCACGTATAAGATCATTGTCTCTGTCCATTATTTGCCAGAGGACCTCAAACTTT


TTCAGGTGGTGGGCAACTGGATGTCATGCTGCTCCTTGTACAACAGAACACAATTCATTATTTATATGGTTATTTCA


TTTTAAGAAAATTTAACTTTCATTAGCTGGAAAAAAAAAGAAGTGGTTTTTAAGTTGTTTAGAAATGTGAAATTCAA


TTTTCATACTGCAAAAGAGATTCAACTGCAAACACAGGCACACATGTCTGGTGTAAGAACGAGTTGTCATACAAACC


CAAATTAGCTGCCTCCACGTTGTCTTTGTTAACAAGTGTTTGTTTGCTCCTTGTTCCATCATTCAGAAATGCTCTTT


AGCAGGAATTGATGGAACACAGTCGCAGTGACCTCTTCCTGTCTTTAAAAATCGAGATGACATTTGCCCATCTGCAG


TGTTAACATAGTTCCTCAAAGACCACTGACAGTGGGGTAGGACTGTATTGCGCAAGTTCTCTCATTTCCCTAGAATA


TAATTGGTCCAGGGCCAGAGATTTTAGCTCATTTAGAGCAGCAAGGTGCTCTTTTAAAATTCCCTCACCTATTTTGG


GCTTCATTTCCCTTATACGGTTATGCCTTTTCCAGTCTGATGAACATTCTCCTTGACAGAGCAGACAAGCAAAAGGA


GCTGCACACTGCTGCTTTCTGTGTCGTCTCTATCCCTAACCTTCTCCCTTCTGCCCCAATCAGTGAACCTTCGTCTT


TCTGGTTCTTCTTCCTCCAAATGGAAGTAAAAAGGCCCTGAATGTTGTCTTTACCATTATCACGAGCCTCAATTCAT


TCCAAGCTCAGCTTTTCCTCACTGTTTATACAGTTCTATATTGTTCTTCTAATATTTGCCCTCAGTTCTCTGTCCCT


CGTTTCTTCCCATGTTCATACTCTATTAGAATCTGAGCACCTTTGAGGTTGTCCATACAGTGGCACACATCTTTGTT


TTATACTCACTGGGATGATTTGCCATTATATTGTCAAAATTTTATTCTAAAGAGCTTTTACAGGCTTTCTTGAGCCA


TTTTCTCTTGAAATTCAAGATCGTTGAATCTCTACGCTTTTTCCTTCTTAATCTAATAAACATACACCCCCACATAC


ACACGTGTGTTCCTGAAAGACAGATGCCACTTGACTCGTCTTATAGATTGTCTAAATTGATCATTGTGTGTGGGGAT


AAAAGGGTGAATTGTATAATATCCCTGATGGTTCACGAAGTCTGTTCCTGTATAACCTGATTAGTCTTCTGAACTCT


TTTAAATTCTGTCTGCAAATGACTGAGGTTTGGCAATCAGCCTATTTCAGTTAGTTGTTTTCTTGCATAAGAAGGGT


CCATATGTACTGTGTGAAGTAAGAGAGAGAAAGTACTTAGATTTGCTGGATGCCCTGATTGTTAGCATGGCTAAGGT


ATTGTGTAAGTAAGGAGAGCAGTTAAAAATGATATTGTTTTTATTTCTTAATTGAGGTAAAATTTTATATAAGATGA


AACAGACTTATTTGGGAGAGGAGGAAGAGTTTGTTCTTACATAACATTTCAACCTGTCATATTTAGTTGAGAACTTC


AATCTGTCAAGATACTTTGTATAATATTCAGATTCTGCCATCTAATATATTTTCCACGCTTTCTTACTGGGTGTGAC


AGTAACTTATACTGTGGCAGGTGTATAAGTTAGTAAAGATATTAAATGCTCAATCTGTTAACTTTTGTGAAGTGGTC


CCACTGATAAAGTGACACCTCAATAAAATAAAAATTTCCATTACCTCAGAAAGCTTTTTCATGCTACCTTCCAGTCA


ATTCCCAGCCCCAATAGGCACCTATTCTTCTGATTTATATCACCATAGATTAGTTTTGTCTTTTTAAAAATTTGTAT


AAATGAAATCATACAAAATGTACTATTTTGATCAGCATACTACTTTTGAGATTCATCCATGTAAGTGTATCAGCTGT


TCATTCCTTTATTGATGATTAATATTCTATTGTATAGATATACCACAATTTATTTATCTATTCTCCTTTTGATGGAC


ATTCAGGTGGTTTTCAGTTTTTGGCTGTTATGAATAAGATGCTGTGGACATTTGTGTACAAGCCATTTGTGAGCATA


TGTTTTCATTTAGTTTGAGTAACTCTGTAGAAGTGGAATGGCTGGGTGAAATGTTTAAATTTATGAGATATTGTCAA


ACAGCACCTAAACAGTTTTCTAAAGTGGTTGTGCCATTTTGCAATGCCACCAGTGATGATGGAGAGTTCCAGTTACT


CTACATCTTTGTCAATATTTGGTCTTGTCAGTCATTTTAATTTTTGCTATCTTACAGAATATGTAGGTATATTGTTG


TGGTTTTAACTTATATTCCTCTGATTACTAGCACTATTAAGCATCTTTTCATGGATTTATTGGACATTCATATAGAT


TATGTGTGTTGAAGATTATTACCTTTATGATTATTGGGTGAAAATAGTATCATTTTGAGGTCATTCATATAACTTGA


AGACTGGGAATGACAGACATTTTCCTGTTTTGTTTCTTTTCTTTTTACTTTATCTGAAGAGTCTACTAGAATGCAGT


GTTGCTGCCTGAGCAGCAGGGCATTAGCTTTGTAAAAGCTCTGTTCCTTGGCAACCCCACCACTAATATGAAGTGCA


GAACATTTGAATTGTCTTTGACCAGCTTCAGCATCAGCACTATTTTTTTTTTTTGCTAGACCCCTAGTAGGTATTTA


AAAGTACAGAAATAGAATTTAATCATGCTTTTTACCAAATGTGCTATGCTCTTAGAGATTCTTTCAACGTGCATAAA


AATTCTGCAGTTTCACCACATACCAGTAAAAGAAACTCAGTCACTCATTTAGCCATTTAGTAAAAAGAACAAATTAA


CTGATGAGCATAGTGGAGACCTCAAAGGTAAAGAAGACAATGTCCCTGAAATAAAGACAATCATAAATTTTCAATCA


AAATAATGAAATTTAGGCTGGGCATGGTGGCTCATGCCTATGATCCTAGCACTTTGGAAGGCTAAGGTGGGAGGATT


GTTTGAGGCCAGGAGTTCAAGACCAGCCTCAGCAAAAAAGTGAGACCCTGTCTCCACAAAAAAATTTTAAAAATTAT


CTGGGTGTGGTGGTATGCACCGGTGGTCTCAGCTACTCAAGAGGCTGAGGTGGAGGATCACCAGAGCTCAGGGGTTG


GAGACTACAGTGAGCTATGATTGTACCACTGCACTCAAACTTGCATGACAGAATGAGTCCTTGTCTCTAATAATAAC


AAAATTTAATTTTTATAGACTGTGAAAAACCATTATGTAGATACAGTTCAAGTACAGTATGATTTTATAGGATAGAT


AACTTTTGCTTGAAAATGTATTCCCAATTTATAGGATAGATAACTTTTGCTTGAAAATGTATTCACAATAGAGTTAG


TATTTGGGGCACACCTTTATCCATTTAACAAACATGTTTTGAGCACTGCCAGGTAGCAACACGTTACTAGGCACTAG


AGTGAGAAAAGATTACAGTTCCTGCTCTCATGGATCTCATGGTCTAGTCAACTGGAATGAAAGGATTACATAAGTAG


AGGTAAAGACACACATGATGGAGGATGGAGAATAGTCAAAGGTCTGGAGAATGACCAGGACGTCACTGTGAGTTGTC


TAATTGCACTGAAGCATGGATGAAGAATTGGAAAGTCATTGTAAGAAGCCTAAAAAGGTATCTCTCAGGGATGCTAT


GAGGTTCTGAATGTTATGTACGCTATTTGGGCTTCAACAGGCAGGCACTGAGTATTCAGTATAAATTTTTGAGCAGG


GAATCCACCAGAAGAACTATGCATCTGGAGGATTAATCTGGAAAGATTGTGTAGAATGTTATGCAGTGAAAGAGTCT


GAGATGAAACAGTTAGGAGGGTGTATTAATAACATAGGTGAAGTGTAATGAATAACCAGGCTGGAGGAAAAGCAATA


ACGATGGAATCAACCGGGCAAGAAGTATAACAATTAGGATCAGTAAAATAGAATTTGGATTGGAGGAATGAAAAAAA


AAGGGACAAAACAAAGTTGAACTGCTGGTATCCATACTGGAAAATACAGATGTCATTCAAATAAATAATGTAATGAA


TATAAGAAACCAGTTTTAGGAGTGAAGTGGATGTTGGCTTGAAAATATTTCCTTTGAGGTTTCAGTCAAATGAAAAG


GTCCTGAAATGCTACGTGGTAGCCTAAGAAGGAAGCGTTCCTAGAGAGAAAAAAATTAGAAAAGATTTACATTTGAT


AATTTAATCTTTTCCTTCATACAAGCTAAATTGATAAGAAAGTAAAACCTATAGTTTTCACCACTCTTTTACAAATA


TCCCTAACCTTTTAGATATTCACATGAATAATTGAGAAAAATCTAACAGATGACTTGCTTATGTCATTTGTCTGCTT


TATCCTTAGGTTCCTCTGGCTTATATATTGTTCAATAAAATACAGATCATTGATATTGTACAATGTACTGATAATGG


GGAGTGAATCCATGCTTGTGCATTCTTTTTTTTTTTTTTTTTTGATTTGCAGAGGGCGTGCCCAGTCAACAAGAGAG


GCACAATTGTTTTTATCATCACCTCTTCTCATCTAATTCCATGAAGGAGAGTAGTATTACCATACAACAGATAATGA


GTTGGAAAACAAGAAACCTAACCTCAGAACTTAAGGCTTGGGGAAAAATAAAAGAGTAATTTGTGTTTAATGCCTGT


ATAACTTGGCAAGAGGGACATATAAGGCTTAGTGATGCCCAACATGTGCTTAGATGTGGATTGTTAGTTGATGTCTT


GGGGGTTCTGTAATCTAAGCTAAATGCTCAAAATCAATTAATTGATGTTAGACACAGAGATCTGCTTTGATCCCTCT


TTATCGTATTTCTAGGCCTTCCCATTCTCAAGAGCCTGAGAAACGACAGCTTTCCTTAATAACTTGTTATTTGTGGT


AGGAGATGAAACTTTGATAAAAACACAATTATTTTTAAATGTCTCTTTTTCACTCTAGGCTGTTGTATGTATTTCAA


AAAGTTACTTTTGACCCTTTCCAGAATGAGAAAGCAATCAAGAAGATTATAATATCTTGCTTAGTTTTCTGCTCAAT


TTATCAACAAATATTTCTTAAGCAATTATTAAGCTGAGCAGTGCTCAGCGCTGTACTTGGTGATATAGGAAATGGGG


AAAAGACTGTCTTTAAGGCCTTTATAATAGTAATTACCTCAACTTGTCTGTTTCTTTTCCTTACCATTTCGCCAAAT


TCATTGATCTATCTTGTTCTCAAAGCAATCGCCATAGTTATATTGTAACACAGCATTTTCTAGGGTGTCCCCATTAA


GTTGAGAGTGTTGACAAGAAAATACAAGCTTATTTATCATTGTAAAACTTGAGACACCTAGTAGTTACCCTAAATTA


AATATTTGTTGGAGTCAGTCACACTAAAGAGAACACTTACTGCATTGAACAATTTACCTACATTAGACAGCATTTAA


AGACTATGCCACAGCAAAGGCCCATGGAATTCTTGTGAACACAGAATAGAAGTGTATTAAGGAACAAGCTTAATTCT


GTTCTCTTAAAGCACAACACTTTCTCAAAACATATTTTGAAATCACCTTTGACCATTTTTTTTAACTAATAGGTGGG


TGGGAGTTAGGGTAGGAAAACACAAGCAGCTTCATCAAAACGATATTCTATTTTCTTCAAATTTGTGGGGAATCATA


CGGCCTCTCAATTTTCTACATTATGCTAATTATGATATTAATCTCTCTGCCAGCAAATGAAAATAATACATATTAGA


TGTAGCAAATGTCAATAATGACAAAATTAGTCATCATGCAGATACTCAGGGATTCCCAAAATATGTTTGGATTATGA


TTGCTAGCTTTGAGTTTGCCCAGAATCGTTTCAATAAAAATAAGGGACTCAAACACATTTGGAGCAAAACTCACATC


ATAAATTTTAGACATAGCTCTGCCAATAATGCTCTCAGTTATATTTTCAGTCCTAATATTTCCTCTGAGTTCCAGAC


CAGTATCTTCAACTGTCTGATTGATACTCTCTCCTTCATTTCTGTCTCCAATGCATTAAGTCCTGTGTATTTACTTT


CCAAATGCCACTTGGTTCCATGCACTTCTCTCCATTTCTGCCACTGACTCCTCCTCAATCCAAGCGACCATCTTTCC


TCACTTTAACTACCATGATATCTCCTGCTTGGTCTCCTTACTTCTATTCCCGGGCTCCTCCAATCCATTCATCCTCC


AGCAGAGAATGATGACTAGCACCTTCCACAGTGTCTGGCTAATAGGAGGTATCCAATCAATAATTGACTTACAGAGT


GAAAATATAGGCATGGCAAATACCAGTAGAGAACTACAGGGTTTTAGAACCAATGACATTAGATACTTCCATCAAAT


ATTTACAGTGTATAATCAAGTTGACTTGCACATTGTCTTATTTTTGAAAAACAATTTTGTTGGCTTTTTCTATATGC


ACACATACATATTGTATCACCCTCTACCCGCCAAATGGCTTTTGAAGAAGTATTTATGTGGCTCCAAATTGATAATA


CCTCTAGAGAGAAGAGAAATTAGAAATTTTAAAATGACCTATGCTTCCTTTCGAATATCACGTCCTGAGACAGTGTT


TTTTGAGTTACGTGCAATATGTTCCACGATGAAACATTTAATGTGTTCAGAGGCATGCTAGTAATCATGTAGAAAGA


ATTTTATGCCTGAAGTCACATGTTCTATAACCAGGATCACTTAATAAGAAAACAAGTACAGCTGTGGACAAGATGCC


TTTTTATCAGGGAAAGGCCAATTTGTTTTCTTTGCAAATCTAAGTAAATGGAGAGAAAAACACAGCCCTTAAATGTT


TTCTATTTGTCCTGAAGTTCTCATGAATGAGTTAGAAGGCGAGAAGGATTAAATAAATCCTTGAACGTAGAGAGAGC


TAACATTTATTTTAGCAAACTAAAACCTATTCGCTTTGCAAAGTTCTGTTCTGTACTTTGTAACAACAGTTTTCTTT


AAAACAAGAGCCACCAATTCAAATGCCTTTACAGAATGATTGAATGCTTTCATGCCCCACCTAAAGGCATTCAAATC


ATTAATCAAACAAAGTTCTAACGCCAAAACATGTCTGGGACCAGATTTAAAATGTAGCCCTCAGTTTCAGAGGGCAA


AAACTTAACATATTTATATTTTCCTCACTTTAGGTAACACTGTATTGAATCTCTGCTTGAAATTGAGGAGCACGTGA


TTTTTTCTTTTTGGCCCAGGGCAGCATTTCTTGGAAGAGAAAGAAAAACAACCCAAGATACCCTTACAAAACATGTA


GTACTTAAAGCTCTTTATGATGAATTAATTTTGGTATACACATTAATAGCAGTGATAATAACAAATCTATATATATA


TATATAATTGATATGAATAAGATAAATACATCAAAAGGAAATTTCATTACAATTTGATATTAGGTAAATGTCCCATT


AAAATAAATTGCTACTGTACATAATTTTCCTTCAGTTCATTGGCAGGATGTTTGCTTTGGAAAATAAACAGTCTATT


TCTAGTTTTAGAAGGAATTCTCATTATTCTTTTATAGCAACCATTATCAGGAGCAGATGGGAAATTGTACCAAGAGC


ATATCTACTATTATACCTCACAGGAAAAAGAGAGTATTAAATGAAATCTAACAAGGCCTGCTCCTGACTCTAGTTCC


TGTAACAAATGAACACACACATTTGTATGGTTTCAGCATTTGTATTAGTAAGGTACAATAAATGTTTACTGAAATTG


AAAAAAAAAAAGATAACAGGAGAAAGAAGAGGCTAAAAAGGTGCATTTTATTTCTGATCGTTCATTGTAAAGACTGC


TCCTTTTTAAAATAATCAAATTTTATTTTATATACAGAGGGTACATGTACAGGCTTGTCACAGGGGAATAGCGCATG


ATGCTGAGGTTTGGGGTACAGATCTCATCACCCAAACAGTGAGCATAGTACCTACCTGATGAGTAGTTTTTCAACCA


ATGCGCACCCTCCCTCCTTCCCACATCTACTAGTCCGCGGTATCTGTTGTTCGCATATTTACGTCCATATATGCTCT


ATGTTTAGCTCCCACTTATAAGTGAGAACATATAGTGTTTGTTTTTCCTGTTCCTGCGTTAATTTGCTTATGATTAT


GGCCTCCAACTGCATCCGTGCTTCCGCAAAGGACATGATTTCATTCTTTTTATGACTATGTAGTATTTCATGGTGTA


TATGTACCACATTTTCTTTATCCAATCTACCATTGTTTCACAACTAGATGGATTCCATGTCTTTGCTATTGTGAATA


GCACAAGACAGGACCTTTTTATTTGACTGAGTTCCTTGCAAATTACTAATAAAAGATCTGGAGGTCCTTAGTTAAAA


GTTGAATCTGTAGTGCCGTTCAAATTTAGAGATGTATTTTCTGTTCAAGAGAAGAAAGCCCTCATTCGGTCATGCTT


AATATTCAGCTGTAAAGTCCAAAACATATGAGAATGACACAAATGGAAACATTTTATAAATACCTATACAAAGGAGG


GGCACTTAGTTCCCCTAGGCCTCTTAAAAGTCCTCTAGAAAGAGGGTACTTTTATGCTAACTATTAAAGATGAGTAA


CGAATTTGTCCTATACAACTTAACAGTATCGTCAAGGAAGTAGAAAGTTACTCAGTTTTACTGGGCATTGGAGCTAA


GCTTGAAAGTGAGGAGGAGAAGCGGCAGGAGACGGAGCCGAGAAGGCAGTGGGGAGAAGAGGAGGATGGTCCTTTCC


ATGCTCCCTGTTGTACTAACATGTTTGGATATTATCTTATACTTCATATATGGACTGGATTCTTGTCCTTCTCATTC


TGAGCTCTCCTTGACCTTGATTCTTACCTCCTATAACTTTCATTCTTTCTTTACTCAAAAAAAGGCCATTTATTTCA


GCCATTTTTCACTGTTTTCTTATCCTTCCTAGTTGCTTTTCTATACTATTTTTCCACTCTTTTTTTTTTCTATACTA


TTTTGCCCTTCTCTCCATTTTCCTAACTGCTAGATTTCCCCAATTTTAGCCATCTTTCAATTGTTCTGACTATCCTC


AGGTGCTCCCACAAGGTTATCAGACCTTCCACCAAGACGGAATCCCTCAGTCTATGGACAGGCTAAGTTGAATGGGT


CCTGGTGCTGTGCTTAGCATATGCCTTGAGTATTTGTGCATTTATTTTGCTTCTTTACAAAAATCCATCATCCGATA


GAAGTTGAAAGAAACTTGCTGAAGCACATTAAAATCTCTGAAAACAGTATTGGCTATATTTTCTAATAATTAGCATG


ACTGGTTAACTTGCTTTATTTATCATTGAAAAAAGTATCAGAAACTGTATATCAAACTCCTGAATTCTTGGCACTGA


CGAAGAGACACAATGAGAATGACCTTAGGATAAAAAAACAAGATAAAGCACCATATTTGTAGGAAATTGCACCATAA


AAGTCTGTTTCACAACTCTCCCAAATTTCATTTTATTACATCTTTTCTCTTGACCAATCAGTAAACTCGGTTAATGA


TTTACCTGTCTCAAAATAATTCATGAACAAAATTACAAGTAAATCTCAGTATTGGATTCTTGAAACATCTCCTTGTT


CAATGAAGTTTCCTTTTTCTTCCCTCTATTTCCCTGTATTTATCTTTTCTTCCAGTTGCATTTTATCTCTTCTGTTT


TTTTATCTTGCTCCCTAGTTTGTGATTTTTTGCCAATTTTTTATTTCCTACATAATTCATCCAATCTGTCATTGTAC


AATTTCTTATAACTGCTTCTTAGCTTATTCCTTTTCTTCATTTGTCACATTCTATTTTTCATCTATTGTGTTTTCAT


GCAGTTTTGGAAAGTTTTACAAATAGACTTTTAAAAAAATGTACGTAATGTTTTCATAGAAAAGGTAGTGGTTTCTT


TTTCTTATATCCTTCCCTGTATAAAAATAAAAATGTAGCAGTTCTTTCTTTGCCTATGTTTCCTCTTTCCTTCCCCC


AATTTGACCAGACTTGAAGGACTTAGATATGTAACAGTGTTATTTTCTATAATTTAGGAACAGCTTTTGACTTAAAA


AGCAGAAGAGAAGTTGAAAATAATATAGTAATTCTACATGTCCTTCCTGCTTCCCAACTCTCTGCACATGTTTGTAA


CCTCCCCTTTCTTTTTTAGTGTATCTCTTTCATATACCTTTGTCCCCAGAAATTCTGATTCAGTAGACTTAGAATGG


AATTCTGGGCTTTTATATTTTGAAAAGCTCCCCACGGGAGTTAGATATGCACTTCTTATTAAGAATGAATGCTTAAT


ATTGGAATCAAAACACAATAAGCTTTCTAACTATGATGAATAATCCAACAGATTTAATTATGATTTTCTTTTTGTCC


AGAACCAAGACTAGATGTTAATTGCCAGAGAAATAGATAAGAATGCCTATGACAGCAGTACATTAATATGATATCAA


AGCTTGGAAATTTTATTGGTAATGAATAATTCAGTACTTAAAATATTTAGAAGCTATAGAATTAAAATTAATTAATG


TTGTTCACTGTGTGAATAAAGTTGATTGAGATTTTACATTTAATTTTGTAAACCCAGTGTTATCTTTTCCAGCTCAG


AAAACACCACATACAAGCTACTACTTTCTGTTTTGATCCCTTATTTTTCTTTCTTATGCTTTATCACTGAAAACTCT


CCTTGAGCAGGCCATGCACTGTAAATATTTCTCCTGGTTGCAAAACCTTCTCATACAAATGCAGTAGACTGTGTAAT


GAGCTCTTCTTTCACAAAATTAAAAAAACCTGAAAGCCCTGATTTGCGATTCTATACAAATGAGATTTAGATCTAAC


AATTTTAAATTATTGCTTCACTCTTAGCTGTTCAATTCTATCTCTTATTTGGGAAACCGAAATAATAAAACCATTGC


TGATTCCACAATTAGGTTGTAAAAGTCACCGTAGCCATCAGCCATGAAGCAAAAGTGCCAAGATCAAAACTACAAAG


CAAAGAGGCTGAGATAAAAATGCTGCAGCATTAGTTTATAGCATTATAAGCAGCAATAAGAATTCCTTGATTGCTTA


ACAAAGACTCAAAAGGCATTTACTCCATTACCTTACAACTCAAAGAGGTATTCCTGGACCAGCAGTATTGGCATTTT


TTTGAAGTTTGTAGGAAATGCAGAATTTTGGTGCCTCCACGGACCTAATGCAGCAGAACTTGCAGTTTAGTAAGATC


TCCAGGAGATTTGTATGCGCATTAAAGTCTAGGAAGCACCGCTATGGTATACATCTGATGTGTGCCCATGCATTTTT


TAAAAGTATGAAGTAATAGTTGTAAGTATTGGACACTCTTGAAGGAACAAATAAGAGCCATGGTCTTTACTCTCTAA


ATACCTCCCTGACATCTATGTTTTAGGCAAAATTTTTTTCCCATTTCAGTAGTCACTGATGCTTGCACGATGCAGTT


TATTCCAAAACAATGGTGATTCTCATGTAATAGTTCATGTTGCCTTAATAATTTACGTTGCCTCAAGTTCTCTGCCC


AGGCCCCAATATACACCGAGGGCTGTACTCCTCCCCTAACGCCTGCTCTCATACAGTGGCATAGAGCCCAGTTTTAT


GCTCTTGGTCACATCATGGAGATTGCACACCACAGGCTTTAACTTCTGCCGTACTCTCACTGCCTCTAACCCTCCAT


ATGCCTAAGTTCTACGATTCTTTAAATTCCAAATTGACCCAGAAGTCTCCTCCGCTCATCCTTTTCACTGAGATCAT


CCCTCTTCTGGCCTACCATTTGTTGATCACCTTGCTTTTTTTTTATCCTACTGTATGTAGTATAACAAATTATCACT


TGCAACTGTGTCTTATTTTTTCAACTAGATTATGTACTGCCTAAGACCTAGAAAATTGTGCTTATTTATTTGAATCT


CTAGGAGGATCAGTAATGGGTATTAATACTAATGACTCCATGGTGATGATGAGCCTGAACTTCCTCCCTTCCTTTCT


TTCTACCTCTCTCCTTTCCTCCCTTCTTTTCTTCCTCCATTCCTTCCTCTCTTCCTCCCTCCGCTTCTTCCCCACTT


CCCTTATTCATAGATTCATGCGTTCACTCAGCAAATGCTTACTGAAACCTTCCATGCATCAGACATTGTACTAAACA


ATAGGAAACTATCATGAATAAGACACAATATCTGACCTCAAAGAATTTATGATATAAAAGTAATGGCATAAACCGTG


ATTACTTTTGCACCAACCTAATATATAGACACAGTTTGTTATGACTGGTGTCTCTATTACTAAGCAATGACTGTCAC


ATGCAACGCTGATCTGAACAGGTGGTAAAGAGTGAGATGTAAGCAATGGAGCAAAGCCAACTAGTTACAAGGAAATA


TCACATGTTTACTAGAGCACATCTCATGGGCATTCAAGAGAGTATGGCCAGGACAGCTTGTGAATAGTTCAGTAACT


GTGCATAGTTTTATATTCATTGTGAGGCACCGTGTCACCGGTTTGCTGATTTACAGAGTATTTTAATTGCTAACTGT


ATGCTACCAAAATTTCCAGTATTCGAAAATAATTTTGCTTGAATGTAGAAAAAGAAAAAAGCCAAGAAATGTATGTG


AAACGAGAGTCTAAGGGAGCTTTACCTCAGTCTCAGAAAACATGCATTCCTTCCTTCATTTAGGAAGCATGTACTGG


GGTCTACTGTCAGCTTGCTATTGTGTCAAGGAGTAGGAGAATACAAAAATATTAGAGAATATGAATCACATCTATTA


GGAGAGTTTTCTACATACGCACATTATTCTGTCAGTGACATAAGGATTTGAGTCATTCAGATTTAAATACGGTAGGT


ACCTCAAGTTCTCAGATATTATTTCATTTTCTAAGGTTCGTATTTAGTTAATATGTTATTTTAATGGCCTTACAAAT


TCTAGATTATCTTTTTTAAAAAGTTAAATAGAACGTAATTGCCATTTTTATTTAATGGTAAAAAGCATTTTTGTTTT


TGTGTGTACTTGGTTGTAATATTCTCCTTTTCAATTGAGCTATTTTTCTGATACTTTACTCTTAAAATTTCATTCAG


GAAAAAAGTAAACAATATTTAAGCTTGACAATCATAAAAATGCTCTGGTGACTATAGATTATTTTAAAATTTATTAC


TGTAGCTTAGGGATATCTTGATGGGATGCTCCTGAAAGCAATTAATTCTCAGTTTTTTGTGGCTTCTAATGCAAAAT


ACATTGACGCAGACAGAATTTGAAATGAATTTTCTTCTAATATAGCAATTAATTTTATTTAAATATCTCTAGAGTTT


TTTTTTAATACTGTGACTAACCTATGTTTGTTCTTTTTCACCTCTCGTATCCACGATCACTAAGAAACCCAAATACT


TTGTTCATGTTTAAATTTTACAACATTTCATAGACTATTAAACATGGAACATCCTTGTGGGGACAAGAAATCGAATT


TGCTCTTGAAAAGGTTTCCAACTAATTGATTTGTAGGACATTATAACATCCTCTAGCTGACAAGCTTACAAAAATAA


AAACTGGAGCTAACCGAGAGGGTGCTTTTTTCCCTGACACATAAAAGGTGTCTTTCTGTCTTGTATCCTTTGGATAT


GGGCATGTCAGTTTCATAGGGAAATTTTCACATGGAGCTTTTGTATTTCTTTCTTTGCCAGTACAACTGCATGTGGT


AGCACACTGTTTAATCTTTTCTCAAATAAAAAGACATGGGGCTTCATTTTTGTTTTGCCTTTTTGGTATCTTACAG


(SEQ ID NO: 958)






Homo sapiens dystrophin (DMD), intron 44 target sequence 1 (nucleotide



positions 1127695-1127744 of NCBI Reference Sequence: NG_012232.1)


GTAAGTCTTTGATTTGTTTTTTCGAAATTGTATTTATCTTCAGCACATCT (SEQ ID NO: 959)






Homo sapiens dystrophin (DMD), intron 44 target sequence 2 (nucleotide



positions 1375846-1376095 of NCBI Reference Sequence: NG_012232.1)


TGACAAGCTTACAAAAATAAAAACTGGAGCTAACCGAGAGGGTGCTTTTTTCCCTGACACATAAAAGGTGTCTTTCT


GTCTTGTATCCTTTGGATATGGGCATGTCAGTTTCATAGGGAAATTTTCACATGGAGCTTTTGTATTTCTTTCTTTG


CCAGTACAACTGCATGTGGTAGCACACTGTTTAATCTTTTCTCAAATAAAAAGACATGGGGCTTCATTTTTGTTTTG


CCTTTTTGGTATCTTACAG (SEQ ID NO: 960)






Homo sapiens dystrophin (DMD), intron 44 target sequence 3 (nucleotide



positions 1375985-1376035 of NCBI Reference Sequence: NG_012232.1)


GTATTTCTTTCTTTGCCAGTACAACTGCATGTGGTAGCACACTGTTTAATC (SEQ ID NO: 961)






Homo sapiens dystrophin (DMD), intron 44 target sequence 4 (nucleotide



positions 1376035-1376075 of NCBI Reference Sequence: NG_012232.1)


CTTTTCTCAAATAAAAAGACATGGGGCTTCATTTTTGTTTT (SEQ ID NO: 962)






Homo sapiens dystrophin (DMD) intron 44/exon 45 junction (nucleotide



positions 1376066-1376125 of NCBI Reference Sequence: NG_012232.1)


TTTTTGTTTTGCCTTTTTGGTATCTTACAGGAACTCCAGGATGGCATTGGGCAGCGGCAA (SEQ ID NO: 963)






Homo sapiens dystrophin (DMD), transcript variant Dp427m, exon 45



(nucleotide positions 6683-6858 of NCBI Reference Sequence: NM_004006.2; nucleotide


positions 1376096-1376271 of NCBI Reference Sequence: NG_012232.1)


GAACTCCAGGATGGCATTGGGCAGCGGCAAACTGTTGTCAGAACATTGAATGCAACTGGGGAAGAAATAATTCAGCA


ATCCTCAAAAACAGATGCCAGTATTCTACAGGAAAAATTGGGAAGCCTGAATCTGCGGTGGCAGGAGGTCTGCAAAC


AGCTGTCAGACAGAAAAAAGAG (SEQ ID NO: 131)






Homo sapiens dystrophin (DMD), exon 45 target sequence 1 (nucleotide



positions 1376124-1376176 of NCBI Reference Sequence: NG_012232.1)


AAACTGTTGTCAGAACATTGAATGCAACTGGGGAAGAAATAATTCAGCAATCC (SEQ ID NO: 964)






Homo sapiens dystrophin (DMD), exon 45 target sequence 2 (nucleotide



positions 1376154-1376220 of NCBI Reference Sequence: NG_012232.1)


GGGAAGAAATAATTCAGCAATCCTCAAAAACAGATGCCAGTATTCTACAGGAAAAATTGGGAAGCCT (SEQ ID NO:


965)






Homo sapiens dystrophin (DMD) exon 45/intron 45 junction (nucleotide



positions 1376242-1376301 of NCBI Reference Sequence: NG_012232.1)


CTGCAAACAGCTGTCAGACAGAAAAAAGAGGTAGGGCGACAGATCTAATAGGAATGAAAA (SEQ ID NO: 966)






Homo sapiens dystrophin (DMD), intron 45 (nucleotide positions 1376272-



1412382 of NCBI Reference Sequence: NG_012232.1)


GTAGGGCGACAGATCTAATAGGAATGAAAACATTTTAGCAGACTTTTTAAGCTTTCTTTAGAAGAATATTTCATGAG


AGATTATAAGCAGGGTGAAAGGCACTAACATTAAAGAACCTATCAACCATTAATCAACAGCAGTAAAGAAATTTTTT


ATTTCTTTTTTTCATATACTAAAATATATACTTGTGGCTAGTTAGTGGTTTTCTGCTATTTTAAACTTGAAGTTTGC


TTTAAAAATCACCCATGATTGCTTAAAGGTGAATATCTTCAATATATTTTAACTTCAACAAGCTGAATCTCAGTTGT


TTTTCAAGAAGATTTTAGAAAGCAATTATAAATGATTGTTTTGTAGGAAAGACAGATCTTTGCTTAGTTTTAAAAAT


AGCTATGAATATGACTATGAAGCTAAAAAAAGTGATAGTGTCACTTACCTCTAGTTTCACCACATTTGTGAATACAT


TCTTGAAGGGGAACTTGAGCCAAAGAGGTACAAGTTTAATGGGGAAAACAAAACCTCAAAAAGGTTACTGTCAAATT


CAATCATCATTTAAATTTCCCTTGGAATGTATTGAAGGCACAGAAAGCCAAATGCGTGCTGCTGCAGTTGGAAAGCC


TAGAGAGTTTATAAATGGGATTTTGTATTATGCTTCCAGTTGTTGATGTTAATGTGTCTTGTTTCGTAAAGGAAGAC


TTGGCCTTTATTTACCAAATGAGACTATTGTTATGAACAATGAAAACTTCGTTCTTTTGCCAAGCTCTTGCATCCCA


CCCATCATCCACATAATAGGTGGATTTTAATATTCAGGAAGCTAGAACAACTCATTGATGAATATCTTTCGTTAAGA


TGTATTAAAAAGAAGATTTTGGAATTATGTCAGTTGTCTTTGCCCACCTCCTCTTTCCCTCTTTATTCATGTTACAT


TATTCAGAAAGTAGATACAATTCATATTTTGTACAAAATAAACACATTAGTTGACCTAAACACACACACACACACAC


ACACACACACACACACACACACACACACACACACACACACCCCTTGCCAAAGTTAAAGAATTATAGCCTCATCAAAA


GATATTTTGAATAATTAAGTCTTGGTTTTGAAAATCTTCTTGATTATAGATAGATAAAATAAAGAACTAAACTTTGT


AGTTAAACTACTTCCTTAGGTAAGTCATATACTTTTTTCCCAGATTGAAATTCTTCTCTTAATCATACAAGTATTTT


ATTATTTAGATAACTGATGTGCTTATACTATGAACAGGTATAAACCTGTATAATGTCATTTCTGAACTAGGCTCAAT


CTAATCCAAATTAAGATGGTAAGAAATGAGAAAATTAAAAAAATTGAATACCATACTATAAATATATATATACGGAG


AGAATTCATAAAGTGGATTAAATCGACTGGAAGATTATTTTTCTATAATATATAAAGTATTGTTTCCTATTTTAAAT


GTCTTACTCATATAGTATTTGAATAGAGTGTATTAACATTCCCTCTGATAACTCTAATTCACCTGAATTTTCAAAAT


CTTGTTATCTGTTATTGGGCTCTAAAGGCACATTATAATTTATAAACAAAGATGTAGCAATATGCCTGTTTCACCAA


ATAAGCTCTAAAATTTTAGATCTTTCTAATTTTATAAGAAAGTGGTATATGCTGACTCTGTTGTGAAATAGTATACA


AATTTTAAGTTAATTACAGCTAGGGATTTGGCTGTAATTAGGAAAAAAATTTTCCCATTTAAACATGTTGACCTACA


TTAAATATTGCACTTCAGTGCTTTAAAAAGTCAAGTTCAGCTTCCTTGAGTTTTTTTTTTAAGCTGAGCTTTTAAAG


TTGTCTATTTCACGCTACATTTTAAAAATAAATGTTAACATATTTAAATTTCCACTGAGACCACTTTTGTGGCATAC


TTCCTCAGGATTTTTATATCACTTAAATTTTATGAAATGTAAAAATGTAATAAAATATAAGTACTGGTTCTACCAAT


ATACTCATAGCTATTTCTAAGCATCCAGTAGCAAATCAAGTAAAAATTAATAAAATAATATTTTATGAATAATATGT


TAACCTAACAATTAATTATAGAAGGGCTGTAATCACGAACCTATTGCTAATCAATAGTGTACTCTCAGTGCAACGCA


AGCAGATGTTAGAAGGGAATAGAAGTTATTTATTGCACCGGTGAAAAATATATAAGATGCCTATTCAACTTAACAAC


AGTAGTCTTCGTTTGTAATGGACTTTAAGTACAGCGGTTAGAAATATTTAACATTTTTTAGTCCAGGGACATCAATG


AAAGAAAGTGTATAAATTCAAGCTAGATGTCTATATGGAGCCCTGTAGTTGCAAAACTTTAAGTCTTCTGAAATTTT


AAGATATTAGAAATAGGAAAAAAAATCTCAAAAGTTCAAATAATAGTGGACATCCAAGAAGGTTAGTCTATGTTGGA


AGCAAATGAAGTGTGAAATGTAGTCAGTTAGCGATGCAGTTTAAGATAGACAATTCACTACAGCTTCAATTATGTAA


CAGAAGAACTGGATACATCTATAGGCTTAAGCATGATAATAATGAGTTTAATGATGGCGTAGCCACCAAAACTGTCT


TTGTACACGAAGGAGGTGCAAATAAAAACCTATCATCGGCTGTAAGGGGAAGTCATAGGTTGATACAAAGCAAGCCT


GTGTACAAGTCTTTAAGCAAGCGTCCATGAATAGCAAGGGGCGCCATGCTCTTCACTGGAGAAGAAAATTACCTATT


TGTCTTTACTAACCTCTAACTGAAATTAAGCATTCCTTTTCATTTTGAAAGTAGGCAAAAAAATCACAGTAGTACAA


TCAGTACCTATGAAGTCACAGATATGTACACATCTCATTACAGTTATAATAAATATATCAAAATATCATTTATGCTT


ATCACTACTTCAAAACTGCAGTACTTATTATATGTGCTACAGGGTCTTATTGTTGGGCTTTAAAACATTATTCTGAG


GAATGTCAGGCTTCAACAGATTGCCAAAGAAGTCCAAGGCATAAAAAAATGATCCTAGCCAGCTGTCTGTTTATCTG


CCCAGAATCTCATCCTAATTTACTATGGTTTCAGTCATTTTAATGTGCAGTCACTATCTTCATACACTCCTTTTCTT


CTGGAGTATTCTAGGAGAAGACATACCAGTCGAGGGGTTCTGGGGAGCCAGGCCTTCAAGCAATGGATTGCTGACAA


CATAATGAAGAGGATTTTACTTAGAATAATGTCAGTTGATAAAAGTTTGAATGGGAGACGGAAGCAAGGCAGTGGGA


AGTGGAATTCCTAAATTGAGGAACCTCTGAATCATAATCCTTAGCAATAATAATTAAGATTTCAAAACATTATAATT


CTTTCTTCTTTTAGACAAGTCTGATATTGCTTATCCCATATCACAGATAAGGCAATTATTCTACTAATATGCATTAA


GGAATAGTGGTTTTAATTTAAGTGTTACCTTAATGAAAATAATTTTGAATTTTTTCCTTCCCCAAGTCTTTTTGTGA


AAAATTTCAAACATATAGAAAAATTGAAACAATTGCAAAACATATGCCCATTTACACTGTTTTCCTCCCCCTAAATT


CTTAGAGTCAACAATTGTTAACATTTTGCCATATATGCTTTTTTTCTCTCGCTTTCTCTACCCTCTTTCTGTATCTC


TCATATATAGGGCATCACACACACACACACACACACACACACACACTTTTTAACATTTTTGCAAATAAGTTATAAAT


ACCATTATATTTTACCCCTAAATAATTCAGCATGTGTCGCTTTGAAATACAGACATGCCATATATAACCATGCCTGT


TTATTATGCTCTCCTCCAAATTAAATATAATACTGCATTATTGTTAATATCCATTCCATATTCATATTTCCTTAATA


GTTCAAAAATGTCTTTTATATTTTGCAGGGGAGTTAGTACCAATATCTTATCATGGCTCATGCATTACATTTGGTTA


TTATTATTTTTCATCCTTCTTAGTCTAAAATAGCCCTTCCACATTTTTTTCACCGATATTGAAATTTGAAAATGTCC


AGGACGCTAGCCTCAAAAAATGTCTCATCTTTCAGGATTTGTTTTATTTTTTTTCCCCTGATGGGATGATTTAACTT


GTTCTGTAGTCTCTGAATTTCTAGTAAACTGGAAGTTAGGTCTAAATAAGACTTCAAGAGATGCATGTCAAACATGT


TTGGCGAGAATACTTCATATGAGATGCTGTGTATTTTGTATTACGTCACATCAGGAGGTGCATCATATGAAGTAGTC


TCACTAAATGCTGCAAAGTTTTATTACTTGCTTCAGGTGGTGACTGACAGATCTTGCATTATAATGTCACATTTTTT


CTTCGCAATTAATAAATCATCTAATGGCTTTAGTATCCATTGATGATCCTTCCCTAACTCAGTTATTACACTGGGGC


TTGCAAAATGGAGGTTTTCCTAATCTGACATGATCTTAACATTTACCAGCTGGCTTTCTTCTGTTTGAAAAAAAAAA


AAAAAAAAGGTTTTTCCTCTATATTTATGTCAAAATGGACTCATAAATTTTTATTTATTCAATATATTATTATGAAT


TACAGTTATTATTCTTGCCCAGAGCTTCCTGCTCAATTGTCCCAGGCTCACCTTGGACTTTGCCTATCCCAGATTTA


GAATTACCCATTTTTTTCAAGGAACTCTGGTTACTTTTAGAGGTGAATAGTACGTAGAAACGTACATCTGGGTAGTA


GCCCCTTCTCAATGGAATGTGTGCACCTTTCTGGCAAGCAGTCCCAAAGGAGATAATATTTTCAGATTACCTTGGAA


ATGATTCTTGACAAATCTCTTTCAGAATACATGGAAGTTAAAAGTAAGTCTAGACATGTTAAAAAGCCCTTCTTGTG


TGAGACTTCATGTACGGTCATTAAGTTACTACTCCTTTAAACCTCTCTACTTCTGAATTCTTAAACCAAAATGTACT


AGTATATAATCTATGCTGGTTTGCCATGCAAATTAATGGTGTAAATAAGATAATGGGAGGCATTCGTAAATGTACTT


AAAGGAAGAAATTATTGTTTAAAGACCTTAGCTCATTGTTTGCATGCAAATACACGCTGTTGATTAGAAATGAGCCT


TATCTAATTCATTAAAGTAGGCCTGGTTGGTCCTCTTCTTGAAAGTCTCCATTAGCAATTCATATTGCTCTATGCGC


TTCCTTGTAAGACAACTGTTGTCTCTTAAGTTTTCTTTAACTTTGGCTTCTTACAAATTCAGACCCCACCCCCAACC


AAATAGCTTTCAACCAAATAGCTTTTCAGCATCTTATTTCCTACAAATTAAAAGCGAATATTTTAATGACTCAAATG


GCTCTTTACAGTGTGTGCAATATGTTAAATGTACCCAGTATATCCGTGTGAACCAGTGCTACAAGCCTGCTCACACA


TTCACATTTTGCCCCCAGGATCTGTCCCGTCCGCTTGCTCTGTACTCAAACTTCCTTTTTTTCTCATTGCCAGTTTA


GACCTTGACTCTCCATCCAGCCCAGAGTTTGGAAACTGAGTACCCACAGGCTGAATCCTGAATGCATGCAGTATTTT


TGCATAGCCACTGTTTTTAAATAATTGACAACTTTTAAAAATTGAGAGACCTCATTTTTTAAAAAAATATGGATTTC


TGTCTTCTTTTGAAAATTTAGATCTGGCTACTAGGCACTCATTACTATATTTTCTCTTGGCACCATCACCTACAACT


GAGTAACAGATGTTTCATTTTCTTGCTACTCAAAGTGTGGTCTCTGGTCCAGAGCACAGACATCACCTGGGAGTTGC


TAAGAAATGCAGAATCTAATAAATAACAGTCAGCATTTTTAATAAGATTTCCAAGTTTCCAAGTGATTCATGGGCAC


ATTAAAGTTTGAGAAGCATTGCCTGGGGTAAGCAAGCTTTGTCCTCAGTTTGCAGCACCTGTCCCACTTTGCTCATT


TATATTAATTGCTTTTCCATAGATATTTGATTTTATAGTACCTCATGCAGACCTTTGTATGATGATGACGGTTAGGG


TGGTGATGGAAGTGATGGTGATAACACTTAATATTGCCATGCACTGTTCCAAGTGTTTTACGTAGCTCAATACTTAT


AACAACTCTATGAAATAGTTGCTATTCTCCTTTTAATTTTACAGGAGGGCAACGAAGGCACAGACTGATAAAACTCT


TTGCCCAAGATTGCACAGCCAGCAAGTATTTGAACCAGGATGCAGTCCCGCAGTCTGCCTCCGGAGTCCTTACTCTA


GATCAGATTTTGCATTATTTATCCCAGTTTTGTCCATCAGGATTCTCTGGTATACACTTGCAATTTCTTCCTACCAA


CCTTCTCCTTACCTTTGATGGCCACACGTAGTAGCAAAAGAATTGAACATAGAATCTGTTCTGACCTATCTTTCCAA


CCCTGTTTTTCATAATTTCCACTATTTCTGTTTATGTCTGAAGCTTTGAATGACCTGAAGTTTTCTGTTCTTCAGCT


TTTGCAAAAAAAAAAAAACAAAGAACAAAAAACAAGACAAAAAAAAAAAAAAACCGCTTCCTTTGGTTGAATTCTCT


TTCCCCTTATTTTTTTTCCCAAAATCTTACACATCCCTTAAGACTCATCTTAACTGCTATTACCTCAATGAATTGTG


ACCTGCTCTTCTCAAACATAAGCAGTTTATTCTCTTAAGGTTTTCTTGCCCCTTTTTATAACACTCATGTAATATTG


TATGTATATATCATGTATCATACCTATTTACATATGCTTTTCCCCCAGCAAGATTAAAAGCTTCATGAGGGCAGAGG


ACTCTCTTATTGTTATCTCTATAACCCACAGTACTTACCAGAAAGCCTGATATATTGTAGATGGCCAGTAAGTACTT


TCTTAATTTAAATCGTAAGAATTTTATTCACATTCAGATTAAACTGAAGATTTAAATCTTTACACTTGACATTATTA


TATAGATTAAAAATAGATCTAAAGAGCCAGACCAATTTTTCTGTTTTTATCATGTTATCACATTTCCATGGATACGT


TTGCAATTCTAGAAATTGACCTTGATCCCTTCTAGTCTTAAAAAAATGGAAGGAGTTTGGTTAATAATATTTTAGGT


ATTCTTCAGAATTTAGTACATTTAAGAGACAAGTAACTTCAATTTATTTAGCTAGTTATGGCAAAAAGCAGCTCTTT


GATTCAAACATTTTGTACATTTGTTTATCCTACTCTCACTGTATCTCAACTAATACCTTTTAAGTGAATTAAGCAGG


AATTAGCCCTGAAACTGAATGTTTTAGCCTCATCCTACATATAGCCACAAGATGTTTTAGATGCAATCCATATCACC


AAAGAGCTATTTTTAGATTGATCAGAGAGAATCATACAGATATTATTATTCACAGGTGTCAATGGAAAAGCTGGTCT


CTTCCCATCTGTTCTCTGATGACTCTTGAAAAGCTTTCAAGGGCATTCATAATTCTTCATCAAAAGACTATGAAAAA


TCAGCTTCATAGTTAATTGTTTTATGTCATATTTTATTTTTTCAACTTGGCTAGTTCTAGTGAAACAGACTAGCTGG


CACCAAATATGTTGTTGCATTGGCTGGTAATGATGATACCACTGTGTGGAGATATACAAGTGAATGTACTTTATTTG


TGGCCTTCCATGAACTTTATGTGCCTGGGAAAGTAGGAGTTAGGGAGAGTTTGTTAGGGAACGTGATCTCTGGGATG


GGTCTTAAAGGATGAGAAGAGGCAAATGAAGAGTAAATGGACATGCCAGAGAGAAAAAGTGACAGGAGCAAAATCAC


TGAAGCAAGAAAAAATGGCCTACATTGAAGGACTATACACAGTTCAGTATAAAAAGGCTCTGTTAAGCAAGCACCAT


TGACTTACCCTAAACTCTTCATTTTCTACATATAAACTGCCCAATTCCCACTCCAAACCTATTGATGGATATTAGTA


ACCTATTGATGTTTTTGAAAGGTGTTCAAGTATCCTTTCTGGTACCATGTACCTTGGCTCCCACCATTTGAGAGTAT


GTTCTCCAAGAGGCAACAGTCTGTGGTTCCTGACCTGGCTATGCAAGTTATTCTTATTATTAAAATTGTCCTATTTA


ATTAAATATCATGAAAACTAATGAAATAGAAATGAAAAGATAAGAGAATTGTGGTTTCTATGAATACTAAATTGAAT


GCTTTGGAAGACTTGATAAAGGTGATTAGAAAAAAAAAAAAGGCCAGATGCGGTGGCTCACACCTATAATCCCAGCA


CTTTGGGAGGCCGAGATGGGTGGATCACCTGAGGTCAGGATTTCGAGACCAGCCTGGCCAACATGGCGAAACCACAT


CGCTACTAAGAAAATACAAAACTTAGCCAGACGTGGGCCTGTAGTCCCAGCTACATGGGAGTCTGAGGTGGGAGAGT


TGCTCGAACCCGGGAGGCGGAGGTTGCAGTGAGACAAGATCATGCCATTGCACTCCAGCCTGGGTGACAGAGTGAGG


AAAAAAAAAAAAAAAAAAAAAACCACGGTGCTGTTGAATTAGATGTAGGTAAGACAACTGTTTAAGATTGGGTATGA


GGGATAGAATCCCCAAAAAATGGAGGTATTTTGCATTGAGATTATTTTCAGCATCTCCAAATCTGACTGTAATTCAA


AGAAACCAAACTAAAAGTCACAGATTATGAAATGTAGAAGTGTTTTATGCAAAAAGTAATATGCTTAACTTCAACCT


GTGGGCTTTTACTCCAGGAAAAGTCTCGGACCCCATACCAAATGAGAAGTAAATGAGTGACCACTTGTATATTCTAA


GAAAAATAAAATGTTTGAAGATGTGTAAACACATTTATATAATCCCTCCAATTTTACAATATTTTTCCAAAAACCGC


CTATCCACTTACCCTAATCAAGTTTGATAAGGGGACTTCCTTTTATATGTAGGAAGGCTGAAAAATGACGCCATGAC


AAATGAAATTGTCAAGATGGACCAGGTCATGGAAGATTTGAAATCTCAAAGAATTTTTTCCAGGGTAGAATATAAGG


ATGTTGGGACGTTTTTATATGCTTTAGATTTGCATCCTCATATGTCCCTTTGACAGTTGAGCTCAGAGTGAAAAAAA


GAGAGTGAAACTAGTGGCAGGGTGACTCAAGTTAGAGACAATGAGTAAGCAGAATAGAACTTTAAAAACCTGACAGA


TTCAAGAAATACTTGATGAAAGTGGAACAATTTAGTCGTTAAGTAGATGGGATGATGAGGGGAATGAAGGGACAATT


CTAGGATGATCCCTTTTCCAGGTTTTTTGCTTGGGGGAACTGGCTGCATGGAAGGCTGTTAGTCAGGATAGGAAATA


CAAAGGAGAGTAACTGAATGGAAAGAGGAAAGCAAATCAGACATACAGAGCTCAACTTGGGATATAATAGTCTTAAG


GAGCTCTTGGAACATTGAAAATAAGGTGATCAGAAAACACGCATTTGAATAGGTAAGTCTGAACATCAGGAGGAAGA


CAAGGGCTGAAGACACTGAGCCATTTTGCTGTCAATGTAGAGATGGTGGCAATCTCCATTGAACTAACTGCTTCTCA


ATAAGGTACCTTTCTCAAGTCATTAATTTGCTAACCAGTAAACAAACCAGAATTCCCAGAGTACACATTAACCATTA


AGCACTGCTGTGGAAAAGGAGTTCAGGTGTCAGGAAGCCAACGTGGCAGATGAGCACTAGTGGTGACAAATGAACCA


AAGTGATATGGGTGATCTTTATGGGGCCACAGAGTACCACTGTAAACTATCACAAATCAGAAGGGTTGACAAACAAA


ATATTGGGGATAAATCAGGGAAAACCTACCACAACATACAGGAAAATAAGTTCAAAGATTTCATCCTACAGATTGCA


GATAAGAAATGAGCCCTTTTTATTTGGGGCACCCTAGGGAAAGAGTAGATGCCCATATGTATATTTAAAGTATGAAT


ACAGCATTTATTTGAATATACTGCAAATGGTCAATACAAGGGTAGCTACAGAGCCCATAACATGAAAAGGAAACACA


AAGAAATACATGCCCCAGTCAGACTCCTTACTTGGGTTGCTGTAAATTCTCTCTCCCTTTAAGGTTATTGCATTTAA


AGTCTATCTGTTGATTGGACCCAACAGCAGCTGCACCAAGACTGTACCATTTTTAAAAAAAAAAAAAAAAAAAAAAA


ACAGGCCAAATGGCATTCTGCATTTATTTTCCTTGTTGCTGAAGAAACTTGAATTGTCTACCCTCAAAGCCTGTCCT


TTGAGACACATTTTATAATTAGAAACACTTATTTACAAAGTTCTTTTTATGTTAGAATCACAAATCATAACACTCCA


AAAAAGGAATACACTATCCTCAGGTGAGTGTCCTACCTTTGTTTACAAAAGAAAACCCAAAGTCCTAAGAGAAAAAT


GTGTTGATCATTTTATTGATTCCTTACCTTGGTTTAATATAGTTAATGGATGTCTTAGATATGTATAATAAGTCTAT


TATCATGTTCCCTTTAAAATTCTCTTTTGTTTTACTAATTATATGTTGTCATAGTTTGACCATTAATATAAGTCTAA


ATTTATTATAATGTGATTTTTTCTACAAAGGTTAATTTGAATTAAAATATTTTATTTTATCTCTCTCTACTATGATA


AATGTTTTTAAAAATCGTTTGTAAAATGAAAGTACTATATTTGTGTAAGCTGCCAATCTAACAATTTATCATTTACC


ATTATGATGGTGAATGTATAACAATCCTTATATTCAGCAGAAAGCCTTATCTCTCATTTCAGAGGAATCTTGCCCCG


GTTAATTATTCTGTCTCTTGAATGCACACAAACACAAGCATATCTTTACCCTTTTTCTGCTGCCTCACTATCCCTGA


TCAGGTGAATGTTTTTAGCTCCTAGATTACAATATAAATATATTCAGACATTCCTTTCCAAATGCATTCATTCCACT


GTACTTGTCAGAGTTCATAGCTGTGAATAACAGAACCCAGTTTTTGTTGATAGAAGCGGAAACGGACTTTAGGAGAA


AGATACAGACCTGTTCCCATTCCTAAACAAAGGGATAGAAAACCAGCTCAAAATGGGCAGAACTCAAAAAAGAGGCT


CAGCTCCAAGAACTATAGTCCAAATCATACCCTAGATTGGATCTCGAACTCTTGGACTCAAGCGATCCACTCATCTT


AGCCTCCCACAGTGCTGGGATTACAGGCATGTGCCACGACGTCTGGCCCCCATACACTAGATGTAAACGTTGCCATG


CACCACTCTACCACTGCAGACACTGGGTGAAGAATGTCATTGCTACTGGAAAGAATTCTAGATAGTGCCTTATAATT


CTGTCACTCATTCCAGATTCAAAAACTGAACTTCCCCCATCAGATTCCATTTGTATTTGGGGATTTTGTTCGACATA


ATCAGGGCATTCAGATTCTGGGCAACCAAAGTTAACAAATGTCTCTTACTTCCCCTTTCTTGTTATTATTCCCATTT


GAATCTTCTTCATAGTTAGTCACTGTTACTTAAACACACATTCTCTATTATCACATTTCCCTCTCCTCTCTTTTGCT


GTTTGCTTTTGATCCAAACCACTGCTCAGAAACCATTATTGCCAATAACAACAATGATTTCTTGTAGTTAAATCCAC


TGGACATATCTTAGTCCTATTATCCGTAGGCCATGTGCCATTAACTGAACACTTTCCGTATTAGCACTTGGTCCTAT


CTTATCTTCCAAGTCACTAATCTTATCTGAATTTATTCTTACCTCTCTATGTAATTCCTTACTATATTGATGACACT


CCTTGCTTTACCTGCCCCTTACATCCTGATGTTTCTCTAGGACATGTTCTGAACCCTCCCTTCTTCTCATTCTATAC


GGTTTCCCTGATTGTTATCCATAGCAACAAATGTAGCTTTCACTGTATCAATTAGAATAATATCTAGGGAGATTAAA


AAAGAATTATAGTAACTGAAACAAAGTAGAAATATATTCATCTTCTTGTAGAAGGAATCTGCCAGTAGGTAGTCCGA


GGTTGGTATCATTGCTCTATGATGTTGAAGATCCAGATCCCTTCTGTCTCACAGATCTGCCATCCTTTGGTGAGGTC


CTTACACTCATGGATCAAGATGACTATCAGCTCTCTATCTATCACAACTGCTTTTCAAAGGCTGCAAGGTGTAGGAA


GTGGACAAAAAAGGGATACCTCTACCCTTTTAAAGGGACTTCATGGAAGATCTACACAACACTTTAGCTTGTATGTC


ATTGGCCAGAATTTATTCTCATGACAATGCCAAACTGCAATGGGCATTCAAAATGTAGTGGAATGGATCATGGGCTA


AGCAGCTAAGCAGTCTCTACCAAAGTCACCGATTTCATTTTATGGCCTAAGTCTAATATTTGGCCCAATATATAGTT


TCAGATTAGACCTACATATGTAGCTTCAAATGGACCATTTCCTCTTCTATGTCTCAAAGCCATCTCAAAGTCAGTAT


ATCCAAAACTCAACATGTTATATTCCTCTCCCAAAATCTACTGTGGGTGATATCACTATCTATTCATGTACCCAAAC


TATAAATTTGGAAGTTACAAGAGCTAGTATTAATGACACTAAGTTTTGTGCATTTACTCTATGAACAGGACTTTGAT


AAGAGTTTTACAAATGTTTCCCACTTAATTGTCGCAATATCTCAGTTATAGAGATTTTATACGTCCATCATCTCACC


TGACTCTTCGAGATCATAAGCAAAGCATGGCAGCATTCTTATGTCCATTTTACAAATTACCACATTAAGCACAAGAA


AAAACAAGATATATGTCCAAGGCTAACCAAAGTTATAGAAGGATCGAGAACTAAAAGTCAGTGATTTAGACCCAGAT


CTGTGCCTTTTCCCTTATTGTTACATATGACCATATCTAGCTATGTGAACAAAGCAGCTAATAGTGACGACAGGGTA


GAACAAATAAGAAAGTGAATATTCCCCACTACATTTATGATTATTTGCCAGTTTAACAGCTTCAAGCCTGTGTCTTC


TCAGATATGTGCTTCCTCTTATGTCTAAGGAAAAGTACTATATTTGATATGCTTTTATGAACTTTCTTTTTTGAGAT


GGGGTTCTGGCTCTGTCACTCAGGCTGGAATGCAGTGGCATGATCACAGTTCACTGCAGCCTTGATCTCCCAGGTTC


AAGCGATCCTCCAACCTCAGCCTCCTGAGTAGCTGGGACCACAGACACGGGCTACTACACCCAGCTATTTCTTTTTT


TTTTTTTTTTTTTTGGTAGAGGCAGGATTTCACTGTGTTGCCCACCTGGTCTCAAACTCCTGAGGTCAAGTGATCCA


CCCACCTCAGCCTCCCAAAGTGCGGGGATTACAGGCATGAGCCAATGTGATTGGCCTGAATTTTTTAAATTTAATTT


TATTGAGGTAAAATATACCTCTATATAAATAAAAGTAAATATACCTTTACCATTTTTAAGTATACAGTTCAGTGGTA


ATAAGTAAATTTATGTTATTTTTCCCCTTTGTCCCCTCTCCCTACTCCTATTTCTGATCTCTGGTAACCACCAAGGT


AGTGTCTACTTTCATGAGATCCATGTTTTTAGCTCCCACATGTGAGTGACAACACATAATATTTGTCTTTCTGTGCC


TGGTTTACCTTACTTAAAATAATTACCTCCAGTTCTATCCACGTTGCTGCAAATGACAGGATTTCACCCTTTGTATG


GCTGAATAATATCCCATGGTGCATATATATATATCACATTTTCTTTATCCATTCATCCTATAAATTTTAAATGGTGT


GGAATTTGGAGAATACTTAAGGAAAAATGACGATTGTGTAAAAGGAAAGTATCTACAAAAGCAAGGTTTATCTACCC


CATAAAGATAACAAGAGAATCTGTGAATGTGGATACGGTTTCTGGAGTGTTTCAGAGGTTGAAAGATTGTGAAGAAC


TGGATGGGTATAAAAAAAAGTGAGGAGGAGAAGAAATGAAAGTTCTGGAATGTTCTGTAAATTGTAGATGAGTTCCC


TATATTAATTTTAAAATGTAAATTGAGATTATAATTATTTTTTGATGATCTATTTTTGCTGGGCTGATTCTCTGTTG


GTGTAACTCTTTAACGAATATGGGTCACGTGGGACCCTGGATTTTATTAGAATTACATGTGCGAATCAAATTCTAAC


TTTATGAGCCAATATAATGATTGTTTTTTTAATGATTAGAGTCTATCCATGACAAAAACAGCTTGTTTCTCCTACTG


ACTTATTTGGTGTTTTCTTGCTAATTAGCCTTTATACTAGGCAGTAGTAAATCAGAGTACTTGGACTTCAGGTTGGC


CATTACATAAACCTGGCAACTAAATGCTGGGTAATAATCACCTATCTTCCCACCTGTGTTTATTACCTTTGGAAGTA


TGTAACATGGTATCTTTGCGTTTATATTTTTAATTTGTTCTTTTTTCTCTTGCACCAGCTACTTAAATTATCTGAGC


TTCCTTTTACTAATCCAAAAATAAAGATAATAGTACATATTTATAGAGATGTTGTAAGAGTAAGAGGTAATGTAAAT


AAATTGGCTAGCTCTATGCCCAGCACATGAGTAGGTGCTTAGAAGTTAGTGTCTGGGTACATGACTTCTGGGGATGA


TAAAGTGAGTAGCTCGATAAATCTCCCCAAGAATCAGTAAAATGGGACACACTGGAGAAAACATCTTATGACCCTGG


ATATCAACCAACGGCATATGCTAAATTAAAAAGTGATTATTTATAAAAAGTACTAAACTTTGTATATGAACAATATG


AATTTGTGGTGTATTTGCCTGTATTGCCCCCAGTCCCCACTCCCAGCTTGGTCAAGCATAATAGTTCTATCAAGGTA


GAACAAGCCATGGAAATAAGCAGCTTCATCACCACAGGGACTGATTTTATTTGAAGCAGAAGTTTAAAACTCCATGT


CCAGAAGCATTGTCAGTAACGGTGGAGACCTAGGCGGCAAACAAAAAGGCAGAATAGCAACTCAGCTGGCCTAAAGT


TGCAGTCTTGATTGGAACAAGTAACTGACTGGCAGACTGGCCAGAAATTTAATTTAACCAGCATATCTGCAAAATGA


GGCAGCCGTAATAGGCCTCAGTAAGGACTCCTTGTGTCTCCTTCATGAAAACTTAAAATGTGCCTGCATGTTGAATA


TACCCTTTAACACATATAAAGAACCTTTAGCAAAACTTGGAAGTCTTACTGGCTTGAGGTATTTAAGATCAACTGCT


GGCCAACTATTGACTAATGCAAATTAAGCTATGCTTACCTCTAGGAAACTAGGCATACAGTTTGTTTCTGTTGTTTG


ACAGAGAAAGAATATCAACAGCCACACACTGTGGGGAAACAGATTCCACAGATTTCATCTAGGCAAGTTATTAAAAC


TTCAATTTAAAAAACGCTGGGCATAAGAAGGAACATCAGAATTTGGGGCTCCTTTAATATGTTATTTAAAATGTCAA


ATTTTCAAGAAAAATTTACGATACGTTCAACTGTGACCCATTCTCATGGGGAAAAGCAGTCAACAAAAGTTGTCTCT


GAATTGGCCCAGGTATTGGCAGATAGAGACTTAAAGGCTCCTACTATAAATACCTTCAAACAACTGAAGAAAAGCAT


GTTTAAATAATTAAATGAAAGTATGGTAACAATAACTACAAATAGAGAATCTCAACTAAAAGATACACACTATATAA


AAGAACCAAATGAAAATTCTAGAATTGGAAAGTAGAATAACCAAAATTTAAAAAAATCACTAATGGGGCTCAAGAGC


AGATAGTAAGACAGAAAAAAAAAAAAATCAGTAAATTTGAAAATAGATAAATAAAAATTATCCAATCTGAATGTCAG


AGGTAAAACAGTATAAAAAACGAACATGAGTCATAGCTTTGTGTCAAAACATTGAGCATATCAATGTAGATGTTACA


AGAGTTCCAGAAAAAAAGAGAATGTTGTTAAAGAGGCAGAAAAATTATTTGAAGAAATAATGGCCAAACACTTCACA


AATACGGTTAAGCTCAACAAACCCCAAATAGAATAAACACGAAGAGATCAATACCCTAAAACATAAGAGTCAAACTA


TTGAAATAGTTTCATTTGAAATTATTGAAAGACAAATGGGAAAGTCTTTAAAACAACCAGAAAAAAATGACTCCTCA


TGTACAGGGATCACATGATTGATAGTTAATTTCTCATCATAAACAATAGAGGCCAGAGGTATTGAAATGACATATTC


AGAGTTCTCAGAGAACACAAAATTGCCAACCAAGAATTCCGCATAAAACAAAACTATCCTTCAAAAATATAGGTAAA


ATAAATATATTACCAAGTTGAGAATGAGAATATTTCTTGCTAGCTGACCTGACTTACAAGAAAAAACTAAATAAAGT


CATTCAGGCTGAAAAGAAGTGATATTCAGTAACTCGAACCCAAATGAAGAGATAAAGAATCACAGAACTGATAAATA


TGTAGATACATATAAAAGACTGTACAAATATAGATATATGTTTTTCTTCTTTTAACTTCTTTAAAAGACCTAAGATT


GCATAAAAATTATAACATTGTGTTATTGTGTTTATAAGCAGGAGGAGCAAAAATGGAGCTTAGCAGAGAAAAATATC


TAAATTTTACTGTGTTAAATTAGTTTGAACTTAAGTAAATTATGATCAATTAAGATGCATATGTAATCTTTAGAGCA


AGCACTAAGAAAATAAATAGTTAAAAACAAAATTTAAAATTACACACTAAAAATAACTAACAAGACAGTGCAGTAAA


GGAGAAACAGGAACAAAAAAGACATGAATAAGATGTGAAAAAATACAATATGGCACATGTAATTGCAACTAAAAGTT


GAGAATTCCCATTAAAAAAATCTGAAATTTGAAATGCTCTAAAATGTGAAACTTTCTGAAGGTTGATATAATACCAC


AAGTGGAAAATTTCACACCTGACCTGTAATGAGTCACAGTCAAAACACAGCCAAAACTTTGTTTCATGCAAAAAATT


ATTTAAGATACTTTATAAAATTACCTCCAGGTTATATGTATAAGATATCTATTAAGATATATATATATACATATATA


TATATATACATATATATATATATACACATATATATATATATATATGTATATATATAGTATGTGTGTTTAAACTTAGG


TCCTATCTCCAAGATATTAGGTATATGCAAATATTACAAAATCTAAAGAAATCCAAAATCCAAAACACTTCCAATCC


CAAGCATTTTGGATATGGGATACTCAACCTACATATCAATAGTTATAGTAAATGGGAGTGAACTAAGCATTCCAATT


ATAGGCAGAGATTTCAGACAGGATTATTTAAAATATCCAACCATAGTTTGTTTAAAAGAGAAATGTATTAGAGCCAA


AACCATATAATTTCAAAGAAAAAAGAGGTACTATGCAAATTGTTTACATATAAAAAATGAAGTGACAATACTAATGT


CAGACAAAATAGACTTTATGACAAAATATGTAACAAGAGAAAAAGACATTTTTAATTATATAAGGGGTCAATTAAGC


AGAAAATATAACAATTATAAACGTATATAATTAATAGGAAAGTCCCAAATTCTATGATGCAGAAATTGACAGAATTC


AAAGGAGAACTAGACAATTCAACAATTATTATTGGAGACTTCAAACCCTACTCTCAATAGCTGGCAGGCCAATTAGA


CAGAAAAATAGCAACAATATAGAAGAATTCACCAACACTATCAACCAGCTTGACCTAACTAACATTTATAGGAGACG


CCACCAAATGAAAGCAGAATACATATTATTTTAAAGTGCACATGAAATTTTCTCTGGGATAGATTCTATGCTAGGTC


AAAAAACAAATCTCAATACACTCAACAGGCTTGAATTCATAAAAATTATGTTCTCTTAATATGTCAGAATTAAATTG


GAATTCAACAGAAGGAAATTTGGAAGATATCAAAATATTTTGAAATTCAACAACTTCTAAATCCATTGGTTAAAAAC


TAAATCACATAGGAAATTATAAAATATTTTGAACTGAATAAAAATAAAAGCACAACATGTCAAGATTTATAGGATGT


AACTAAAGCAGTGCTTACAGGGAAACTTCTAGTTTTAAATACCTATTTTAGAAAAGAATAAAATTCTTAAATCATTA


ACTCAAGCTTTCGCCATAAGAAACTAGAAAAAGAAGAACACAGTAAGCTCGAAGGAAGCATAAGGAAGGAAATAACG


GGGGTTAGAGCAGAAGTCAATAAAATAGAAGAAGAAGAAAGAAAAATCAATGAAACCATACATTAATCTTTGAAAAT


ATTTTTTACATGGAGAAGCTTTAGCTAGACTGACCAAAAAAAAAAGAATTACCAAAATCATAAAGGAAAAAGGGGTA


ATTACTACCAACCCTACAGAAATTAGAAAGACTAGAATGTAATAACATGAACAACATTGTCAACAATTTCTGCAAAA


CATATTAAATGAAAAAATTCTTAGAAAGACATAAATTAACAAAACTGATTCAAGAAAAAAATAGACATATGAATAGA


CCTAACACAAACACAGAAACTGAATTAGTAATTTAAAATTTTCCAACAAAAAAACCCAGGTCCAGGAGAAAGATAGG


AATCCGAGGCATCCACAGTATAGAAGAAGAAATGAAACTCTCTTTATTCACAGACAATACAATCCTGTATGTAGAAA


AATCTGATATCCACAAAATAACTGCTAGATCTGATAAGTTCATGAAGCTTGCAAGATAATCAATATACAAGAATAAA


TTACATTCCTGTGTACTAGCAATAAAAAATTGAAAATGATACTAAGAAAATAATTTCATTCTTTGTAGCATAAAATA


GATTAAATGGTCATAAATTTGAAAATATAAGTACTAAACCTGTACTCTGAAAACTGTAATACATTGCTGAGAGAAAT


TAAAAATCTAAATAAATGGGACCATATTCCATGTTCATGAATTGGAAGACTCAATACTGATAAGGTAGTGATTCTCC


CCAACTTGTTCTATAGATTTAATGCAATCTCCATCGACATCTTAGCAGATGTTGGCACAAATTGAAAAATTGCACAA


TCTTGGCACAAATTGAAAAATTGATCCCACAATTTATATATAGCAATTCAAATGTACCAAATAGCCAAAACAATTGT


GAAAAAGAAGAAAAAAGTTAGAGGACTTTGAAATCAGGACATTACCTGATTTCAAATCTTGATGTAAATCTGCAATG


ATGAAGACAGTGTGGTACTGTCATAAGGACAGGCTTATAGATCACCTGTAGGTTTAGGAAACAAACCTATTCATATT


TTTTTCTTAAATCTACTAACTGCACTCCTAATGTTGACAATGGAAGAGACTCGATAGTCCAGCAATAAACTCTTATA


TTTATGGTCAATCAATATATGACAAAGGTGACAAGATAATCCAATAGAAGAAAAGCTTATTATTGGGTAGCTTATTG


TTAGTGTACAGAAACAGAGCTGATTGTTAATACAACTCAACAGGAAAAAGGCAAATAACTTGATTTTTAAAATATTT


AAATATATATTTCTCCAAAGAAGACATAGAAATGGCCAACAGGTATGTGAAAAGGTGCTCAGCATCACTAGTCATCA


GGGAAATGCAAATCAAAACCTCTGTGAGATGAACACTATCATCTCACCCCTGTTAGGATGGCTACTATAAAAACAAA


CCAAAAACAAGAGATAAGAAATGTTGTTGAGGATGTGAGGAAATCGGAACGCTAGTACACCATAGGTGGTAATGGAA


AAATGATGCAGCTGCTATAGAACACAGTAGAAAGGTTCTTGAAAAAGTTAAAAATAGAACTACCATATGATCCAGCA


ACCTCACTCCTGGGTATATATCCCAAAGAATTAAAACCAGAATCTCAAAAAGATATCTGCACTCTCATCTTCTCTGA


AGCATTATTCACAGTAGCCAAGATATCAATACAGCATAGCTGTGCATGGAAGAATGCATGGATAAAGAAAATGTGGT


GTATTCATACAGGGAATATTATTTGGCCTTAAAAGGGAAGGACGTCCTGCCATATTTGACAATATGTATGAACCTGG


AAGGCATTATGCTAAGTGAAATAAGCCAGTCACCAAAGGGCAAATACTGAATGATTCCATTTATATGAGGTGTCTGA


GACAGTCAAACTCGTAGAACCAGAGAGTAGAATGATAGTAACCAGGGGCTGGGCGAAGGGGGAACTGGGAGTTGCTG


TTCAATGAGTATAAAGTTTCAGTTATATAATGTAAATAAGTTCTAAAGATCTGCTGTACAACATAGTGCCTGTACTG


TGCACTTAAATTATTATTAAGAGGATATGTCTTAAGTGTTCCTACCATAAGAAGAAGAAGAAGAAGGAGAAGGAGAA


AGTGAAGAAGAAGAAAGAAAAAATGAAGGGGGCATGAGCAAACTTTTGGAGTTGATGCATATACTTGGTTACCTTGA


TTATGGGGATGGTTTCATGGTTGTATGCTTATATCCCAATTCATCACATTGTATACAGATGCTCCTCACCTTAGGAT


GGGATTGTGTCCTGATAAACCCATCATAAATTGAAAATGTTATGAGTCAAAAGTACATTTTCAATTAATGATATTTT


CAACTTACAGTGAGTATATCCAGATATAACCCCATCCTCAGTCCAGGATTATACTAAATGTGTATCGCTTTTGCACC


ATGGTGAACTTCAAAATTGTAAGTCAAACCATCGTAGTCAGTCGGGGAAGATCTGTTTGTTAATTATGGACCCATCG


TGTACACCTTAAATACTTAATAAAGCTGTTAAATGAAAATTAAAAGTTGACTGGGCACATGGCTCATGCCTGTCATC


TCAGTGCTTTGGGAGGCCAAGGCAAGAGGATTGCTTGAGGCCAGGAGTTCAAGACCAGCTTGGGCACATAGCAACAT


TCCATCTCTACATAAAATTAAAAATGTAGCCGACTGTGGTGATGCAAGCCTGTAGTCCTAGATGCTCGGGAGGCTGA


GTTGGGAGAATTTCTTGAGCCCAGGAGTTGGAGGTTACAGTGAGCTATAATCATGCTACCACACCCCAGGAGACCCT


GTCTCAAAATAAATAAATAGAAGCTTTAAAAAATATTGGTATCTCAGTGTTCCTCATTATCCACTGTATTTAAGGTT


TAGCTACTTGTGCTTGATGCTTGACAAGGTAATCTTACTTTTCTCCCTGATATTGGTATGATGCAAATTTACTATAT


ATATGACACAAATTTATATATGCAATATTTTCTCGTTAATGGCCTTTTATTTTACTCTCATTTTCATTATGCTTTGC


CTTTTAAGTCATATAGCAAATAAATTATGTGGCATTTTCTTAGCAACTATTAATTCAGGAGAATGGGAACAGAATTC


TCTCATAGATTCAGCTGGAAGGTAATGATGGTCAGCTCCCAGTGGAGAAAAAAAAAAAAACTCCCTTCAGTTTTCGT


AAACATACAGAGAAATTTTCTCCTAAGTGCTATGTCAGTCTGCTGTATGTCCTATTGATCTGAGAACCAGAAAACAC


ATATTTTAGTTTACACTGCCTTGACTCTATTGTACATGGCTAGGTCTGTTTAAAAAAGAAATCCTTGAAGATACCCT


TTGGATTCTAGTATTTTAAAACGGATGCTTAGCTAAGTGAAGTGGTCTACTTCAAGGATCAAAACCAATCTTGAGTA


ATCTGTTAGGTAGACTCCCTAAGTTCATCTGTACCTTGTACCAAATTTTTAATGAATTTAGTAATTGACATGGATGT


AAAATAAATAATACACTAATAAAGTTCATGCAGAATCAAATTTTAATGCCCAGAGGTAATGTAGAAGATATTACCTG


TCCATTTCTCTGGACTTAGCTCCTGCAACTCTCCATTTTTCTCTCTAAACTTTAGCCACACTGAATTCCTAGTTTCA


ATTCCTCTGACTCGCTAAGTATTTCTTCTACCTTGATAAAAGCTAATTCCTTTGTCTTGTACCATCTGTATTCCGGC


TGATATTGACATAGTTTTCAGGGCTCAATTTCAATGTTACTTACTCAGAGGGACTCACTGTTACAACCACCACAGCC


TTTTCAATCTAAGTAAGATCCACTGCTCTTCTTAGAAACAGGTTATATTCCAAATGACTGTAAGTGCTTTTGTTCTT


AGAACATATGTCTCCATTCAAAAGACCGATAGATATTCAGTTAAGCCCTTTGAGAAAATTATAAATGTTGAGGACCT


TGATTATTATTGTTATTATTGCTTCTTTTCTATGTTTTCCCAGGACTCTCAACAAATTTGCTTTGCTTTTGTACTCA


TGGCACATAATGAGATTAATAATGTTTAGAAAACATTTCAAAAATACACACAGAGGAGACACATCTTAGTCTAAAGT


TAGACATGATACCAAAAACTATAATAACTATAGCTGACCAGTGACCCCATTTATTCATGGAAAGTAAAATTTGATGC


ATATTTGCCTTTAGGAGCAACATACCTATGAAAGTTCTGAAAGTGAAAGTTTGTAAAAAAGGAGTACTCTCCTAACA


ATCTTAATTTTTTTCTATATATATGTATGGTTTGCATTAAACTCTTTTGTATGATTAGTGGTTTAATGTTGATGTCA


CCCATGACACCATAAGCTACGTGTATGGACTGGCTCTGTTTTGTTCACTCCTGAATATCCAGCAAAAATAGTATAGT


GCCTGGCCCTTGGTAGATGTGTAATAAATGTTTGGTGAATGCATAGCTACACTTCAATGCTTATCGCATTTTAATCC


CAGCTACTCGGAGGCTGAGGCAGGAGAATCGTTTGAACCCAGGAGGTGGAGGTTGCTGTGAGCCAAGATCGCGCCAC


TGCACCCCAGCCTGGGTGACAGAGCGAGACTCCATCTCAAAAAATAAAAACAATAAAAAAAAGGAGACCCATTCATG


TATCTGTATCACTGACTAGCCTGTCAACATTTTGTTAACTACCTCATCAAGTAGCAAAATCAGTACCTGGTATGTGG


TAGATGCTCAAATATTTGTTGATAAAATACAGTAAGTTAATGACAGGCGAGCTTGCCTCAGTGAAATATAATCTGTA


AGTGAGCAGTGTGTATATCATTTGAAGGTGCCCTACTTAGCCTAGCATATCACAGAGATTCCCAGTAAATATTTAGG


CAGTTCATTAACTCTAAAAGTTGACCCTCATAGTCATTGGCCTACATTATTCACCTCCCTCTGTCTCTAATAAATTC


ATTGGCAAATTTCTGAACTCCAACTGGAATGTTTGTGGTGGATTTCTTCATACCTAATGGATTATTTCAATTTTCAT


TTTACATTGTATTATTTACTTGTCTGAGGTCTTTATAATGACAAACTCGGCATGCATGATAAGCTGTCATTACTTAT


GCCAGTTGACAAGGACATATTATTTTTCTACAAAAAAAATTATCTTGGCCAGGCGCGGTGCCTCACGCCTGTAATCC


CAGCACTCTGGGAGGCCGAGGCGGGCGGATCACGAGGTCAAGAGATCGAGACCATCCTGGTGAACATGGTGAAACCC


TGTCTCTGTTAAAAATACAAAAAAAAAAAAAAAAAAGCAGAACAAAACAAAACAAACAAACAGGAGTGGTGGCGGGC


GCCTGTAGTCCCAGCTACTCGGGAGGCTGAAGCAGAAGAATTGCTCGAACCCGGGAGGCAGAGGTTGCAGTGAGCCG


AGATCGCACCACTGCACTCCAGCCGGGCGACAGAGTGAGACTCCGTCTCAAAAAAAAAAAAAAAAGTGGTAATTGTT


CAAAATATTTACTTATTAATTCATTTTAAAATTGCATGTTGAAATAAAAAATAAATGTTTAGTTTTTAAACTATCTC


TTCTACAACAGAAACAATATAGTGAGAAGAGTGATCTTGTTTTACATTTTTGCAAATCTCTTTAAAAGTTAGCTTAA


GAGAAGGCAGCTGGTTCTTATATCTGTTTCTGCATTGAATGTGCTGTCATATCTCGCATCATGTAGCCTCTGAAAAA


CTCATAATAGAATGAGAGAGGAAAAAGTCAAATAACATCTTAGTATTATTACGAAAATAATTTGGACCTCACAGAAC


CACTGCATGGGTCTCAGGGACTCCCAGGGGTCCCCAGACCACATTTAAGGAAATACTGTTTCAGGGAATATAACTAT


TTTTGTACCTCCTGTGGCTATATTCTTTTAAAGAATAGTAACCTCTGTTTCTGAGGAACTTAGCTGCAATTATGTGC


AGAGTTTAAATAAGTGAAACGGAAATACCCTTTGCCTTTCTGCTCGAGTATGAAAGTGATGATCAAAATGTTCCCTT


TTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCACTCTCTGGGGAACTTCGGGTTTCCG


TCTCTATATAATGTATTCATATTCCACTGGAAACATACATAGTTTGAGAAAACAGATGACATTTTTTCTGGGGGTGG


AAAGAATTACTACCACGAGGAATTCAAAATACAGACACAGTAATAAAAATCACCATAAAGCCCAGAGGGGAAAAAAA


TTGAGTAACAAAATAGGAGGTGAAATTATAAAACTGAGTAACAAAAAAGAGGTGAAATTATAAAATAAATGATAAAG


TTGGTTGTGGGTTAGGAAGAAAGAGAAATATAAAGAAACTGGCATAATGTAAAAGCCAAGACAAGAAAAGTGAGGCA


GAGGCATAGGTCTTTTGACTATTTTCCATGTTTGATTCTAAGGTAAGTAGATATAGTTTCTCATAGTTGGAAATGTT


CGTGAATTTAAACAGAATTAATGTTTATAATCAGATGCAATGTCTAGTTTTTCTATTTGTCCTGTGAAATAATAATT


GTGTAAAGTGCTCATGATTGTTTCAAGGGGTGAGGAGTAGTTCTAATTATCATAGATATTTTCATGACTTCGCATAC


CACTGGTTTATAGAGATTATACAGATTTTCTTATATCAGAACTCTCGTATCTTTAATTCCCTAGTAGATGTCTAAGA


AGGAGATTTATCACATAGCAGATGGTGGTAAACTTGAGTAAAGTGCCAGATACTAAATGCCTTTGGCTTTGTGGGCC


ATTCAATCTTTGCTGCAACTACTCAACTCTGCTATTGTAGCATGAAAGTAACCATAGACAATATGTAAATGAATGAG


TGTAGCTCTGTTCCAGTAAAACTTTATTTACAAAAACAGGTGGTGAGCACAACTTGGTTCATGAGCCATAGTTTACA


AACACTTGCTGTATAGCTTTCCCTGGTTGAATTTCGTTAATTTTATACAGAACCTGCCTCCCATACACACACACTTT


GTTCTTCATGGAAAATCTCCCCAGACTACTATGAAATAATGTTATTACTTGGAGATATACAATTAAGATGATGTCAT


TAGGAGATTATTAATATAGGAACTAAGCAAATACTATATGCTAAGTACTGAGGATAGGGTGCGATCACAATAGATAG


AAAATCTGCAATAGTTTGATGAACATGGGAAATTACAGTATTTCCTGTGATGGAAACATTATGAGGGGCTGTGGGAC


TACATAACAGGACCTGTGACCTATACCTGGGTTGGGGATGTCTAATTAATCAAGGAAAGCTTTGTAGAGGAAGTGAT


GTCTAACCTGAGATTGGAAAGGTCAACCTGGAGCTACCTAGATGAAGATGTATGGAAGGACATCCCAGGCAGAGGGA


ACATTGTATGATGAATCCTGATATGGATATAGTGCTGGATTTTAAGGAAGAGTAAGTTGTTCCATGAACTATACAGT


GCAAAGAAAGATGAAGAAATAGAAGTAGAGACCAGATCACAAAGGGCTTTTTGACCATGTTAGAGAAGTTATATTTT


ATCCCATTGGCACTAGGATGTTGTTGAGTATATGAGGACATGATCAGCAACATATTTTAGAAAGATCTCTTATTCTG


AAGTGTAAAGAGTGGATAAGAAGGAGACAAGGTAGGAGGCACGAGCTAATTAGAAAGCAGTCTCAGAGAGGCTGTTA


GAAATCAGAACAGAATGGCTATTATTAAAAAGTCAAAAAACAACAGATGATGGTGAGGCTTCAGAGAAAAGGGAATG


CTTATACACTGTTTATGGGAATGTAAATGAGTTTAGGCACTGTGGAGAGCAGTTTGAAAATTTCTCAAAGAACTTAA


AAGAGAGCTGCCATTCAACCCAGCAATCTCATTACTTGGTATATATTTAAAAGAACACGAATCTTTCTACCAAAGAG


ACACATGTACTCACATGTTCGTCGCAGCACTATACAGTAACAAAGACATGGAATCAACCTAGGTGCCCACCAGTGGT


GGATTGAATGAAATAAACGTGGTATACATGCACCATGGAATACTACACAGTCATAAAAAGCATACAGTCACGCCTTT


TGTAGGAACATGGATGCAGCTGGAGGTCATTATCCTAAGTGAATTAATGCAGGAACAGAAAACCGAAGATAGTTAGA


AGCTAAACATTGGGTACTCATTATAAAGGTGAAAACAATAGACATTGGGGACTACTAGAAGGGGGAGGAAGGAGAGG


GGCAAGGGTTGAAAAACTACCTATCGGGTACTATGCTCACTACCTGTGTGTGGTGGGATCATTTTTACCCTAAACCT


TGGCATCACACAACATACTCAGGTAACAAACCTGTACGTATACTACCTGGATCAAAAATAAAAGTTGAAATCAGAAT


GAGAAGGAGCGAAGGAGACAGCGACAGGAGGATGGAGAGAAGTGGGCAGATTCAAGAGAGATTTCTCAAGTGGACTT


ATGAGGACATGCTTATTGATACGCTCTGGGAGTGAGGGAGAGAGAAGAATCAAGGATGACTTCTACACTTTCAGCTT


AAAAAACCGGGAGCTGGTGGAGTCATCCATTGAACTTGACAGAGGAGCACGTTTAGGCAGGAAGATGATGGTGTTTG


AATGTCTGCGAAGGGAAAAACTGAACTGGGATTCAAATCAGAAAAAACGGTTTGAAGTCATACCCTCTTAATTGCAT


TTTCTATCGGATGGTAATGGCTTTGTGACAGGCTTTACTGATAGGTGATGTAACTCTGCCTCTGACAGATGAAGATC


CAAAGCATCCTCAGATTTTCCCGAAGCCTGTTTCAGCAACTGTGTAGACAGCACACACAAAAATCTGGGGGGAAGTC


CTAGGGCTCAGTTAGTTGATTGGATCTATTAAAGTAGCATTGGAGAACACAGTTCAGTCTGAGATTTCCCAAACATA


TTGCTCTATAATTTATTTTTACCCAGAAACTGAATTCGATGTGGGATAGGGATTATAAAAGCCTTCAGATTCCAGAT


AGAATCTCTGAATAGAAGGCTTTTGGGCCACATCTAGTAATCTCCTTTCCTCACTCCATTTCTGAACTTCTTGTTCA


CTTCTTCGCTGTTTTTAGGACGTTCTTACTACACTCCTGCCTCAAGGCCTTTGTACTTGTTTTCTCTGCTTAGGGCG


TTCTTTCCCGCAATATTTGCATGGCCTCCTCCCTCGCTTCTTTATTTCTATATTACCTATCTTTATTAAAGCTGCTA


TAAAAAAAAAAAAGCCCACACCTCAGTGGCTTAACATAATAGAAACTTTCCGTTCATGCAAACTTTACAAAAATTTT


CTGGTCAACAAGTAGATTTCCTCCAAATGGTGGATCAGGGGGGCCCAGGGCACTTCGCTTTTGTGGCTCTGATGTCT


TTAACATACGGATTTCAAAATCACTGTGCTCTTGTACATAAGAATGAAAAAGAACAAGGAATATTACATATGTGGTG


GTGGTTATTGGAGGTGGGGTTATGAGCCAGGCTTCATATTCATGAGCATCACTTTTGCTCACACTCCATTGGCTCGA


ACTCAGTCATGTAGCCAAACTAATGGCAAGGGAGACTGGGAAATGACAGCTAGCTGCACAATTAAGAGAAATGAGTA


GACTTGTCTAATGAGCAGCTAGCCAGTCCCTACCACGAGGACTTTGCTCAAATGTCTCCTTCTCCATGGAACCTTCT


ATGATCACCCTTTATAAAATCACAACTGCTCCCCATCTTCCCCTCAATATTTCCATCCCTTTTCCATGCTTCATTTT


TTTCCTCTGTAACACTTACTGTATCACAATCTATAGATTTTATTTCTTTATCTTGTTTACTGTCTGCCTCCCCTTCC


TCCCAATCGGATGTAAGGTCCATGAGGCAGGGATTGCTGCCGATATTCACGGCCATATCAATGGACACTAGTAGACC


CTCAATAAATGGCTGTTGCATTGTGATTACATATATGCTTCACCTAGAAGTAGTCTCATCTGGTGGCACATTTACTC


ATAGATTGACATTAATTCTCTATTGTTTTTTCCCCAGCAAAATTTGTCAAGGTAGTTTGTCAGTAGGGAGAAATAAA


GTTGTCAGGTGGCTCATCAAAAGTTCAATTTTGAGTACTCCTCCTGTGTACTCATAATGTTTTATAAATACTTTTAT


CTATGTAAGCACGTGGGCTTAGACACAATTCTAGGATTAAAACAGAAAGCTCTGTATCCATATTTTCCCTTTTTTGT


ACCTCCTTTTATGTTCTCTACCATTTTTTTTGAGTGCTGTTAGTGAAGCACTAGGCTAAATCTTGGGTTTCTGCAAA


AAAAACTTTAATCCTCACAACACTCTAAAATGTTTATTGTTCTAATTTTAAGACGAGGAAACTGAGGGCTAAAGAGA


TTAAGGAACTCGCCCGTGTTCACGTACTCAGCTGATAACTGGCAGCATTTAGATTTGGACTTACTTTCCATACAGAT


ATTCGCATTGCTAACCTTCAGGTTTTTCCCTCATCGTTTTCCACATCTACTCAAAAGTTGCTAATCATTTCCTTAAT


AGTGAGGCATAAATGACTGAGAAATCTTGATATATTATCCCCCTCAGGAGCACTTCATTCCGACAAGACACAAACTT


TAGGGAAAATGAACAAATGTCTACTTGTACAACTCAAGCACCAACCAGGTATGGTAGACATGTTGGCTTAAAAATAA


AGTTGATGCTTGGGTTCTGATTCTGATAATGACCTACGGAGGGTATGGCCTGAGGAGGTTACTAGGTGTGTGTAGAA


ATCAATGTTTTGTTTTGGTTTTCCCTCGGGAAGGGTCAACTTATACTTGAATCCTTCTGAAGTTTCTCAAATTACAA


GATGGTCATTTATTTTACTTCAATCAAAACAACAAAGTACTGTCCGGGAAAGATGTATTGCCTTGACTTATTCTCAA


TTTATGCTTATTTTGGAGGCTTGTAGAAGTAAACCTGATAGAGGAGGGCAAAAACACACACACACAGACACACACAC


ACTGGGAGAAAATAAATTTAACACAGTTTAGGGATTGACTTTGGTTGTATGACATCACAATTGCAAGAGTTGGATGC


CATTGTAAACAAGCTATGGAAAGAATACTGTTAAAAGTAACTCATTAAGTGGTTACATGGTGTAGCTCATGGACATA


TGGCACAGAAAAAAGATAAAGCTGTCTTTACATAACATAAAACTGTATTCTGTTATGTAAATGTGTGCTTGTGGCTT


GCAGTAAAATTCCTAGTGAAACATTACCTCTAGATTCAGCAGTACTATACCTCAGGCCACATGGATGTAAGTAAAGA


TGATGCCCTCTGGAAAACTGAGTTAGGCAACAACAAGTGCATCCATGAGGATGCAAATTTCAATGTTGAAGGTGCCT


GTGAAGAATTTGAACAAAATTGTTGCATGAAATATGAATGAAGAAGTGTGATCTAATGACATAATATTTTGTACTAT


ATAATTTTAAAGTAGTACACACAATCAAATTAATGAATTAAACATTATATGTAAACAGGTGATCATTGTATCTCCAT


TTTCTAAAGTTTCTATGTTAAAGGTGATCAAAAAACTTGGAGAGAGGGACTTCTCATTTGGAAAATGGGATAGTCAC


CTTTGGGTATGTGATGTATCAATCTCTAGAACTTCAGTTTCTTCATTGAAAGCATATAAAAGGCAATCCAAAGGATG


TATGGAATATTAAAAGATTCCACTGTGAAACTATCTAGCACTTTACCTGAAACACTTGTTAGATCCCCTCACCAAAA


TCATGCCATGTGATTTGGCAGTCTATTCCTCTTAGCGTAAGAGTAGCCCGACAGAAAATGTTCATTAAGAGTTAATG


TTAAATTCATTGAATTTAGCAACACATGAGTAGCGCTTCCTTTCTGATTATGCAAATCTCTCACCATCGTAATACGT


GCTTCCTTTAATTTCATTGGGAACATTTGTAATGTAAATGGTAACAGAGCCAATATTTCAAACAGAAGCCATTCTTT


CTAAAAAAAGCTAAATGTCTAAATGTATTGAAATGCTTCTAAAAGTAAAATATTTAGCACTTATTTGCAGATGGGTA


ATGTTAAATATCTCACTCATTATTATTACTACCACTTGTCTGAATAAATCCTCCCATAAGCATTAAGCAAGTAGGTA


AACAAAGAAATAACACTTCATGTGATGAATGCCAATATGAAGCACGTTTAAACTGTTCTGTCAAGAGACAAGCCTGG


AAATGCTAACTGTGTTTCTTTGCTTTTCTGCAATCATCTGAATACATAAATTCAAATTGCAGCTTTTAAAACTTCAA


ATCGAGGCTTTTGAAATTTCAGAAAACACATGCGCTTGGAAAAGCAGATTATAACAAGGTCCCAACGGGATTTTGTC


ACCATCTTTTTTATATTTCAAAGTATAAAAAAAATCTAGATAAGAAATGACTACCAAATGTTTTCATATTTAAAAGA


TGCTGTTTTTTTAAAAAATTAAATCACTGGAAAAAAAGTTTTCCACAAATATCGTGTAAAAAGAAAGACAGCAAAAA


GCTTAGCCAAAGCTTTTACTGTTTAAGTGATGATTTATTCTGAGAGTTCTTAAGAGTTTTCTAAATTAGTATATGGT


TAATATCCATAAAATCATATGCAAGATGCTGTCTTTCAAATTGATGCTGAAGGTTAATTATAAAATGTACTTAATTA


TTTATAGTGTCCCATTGAGTCCCAGATACTCTGTGTCCAAGAACACTGTAAATACAGAAAGTTTAGCAGAATTATAT


TGGAAAGGCAGTAATTCTTCACAAATTAACTTATTGATATAATGCAATCCCATTTAAAAATTTTCAGCGAGAATTGT


TTTATAATTTGACTGAATGATACATTACATAAGTTAGAATAACTAAAGTGGGAGAGCGGGTTAACCTACCAGAAATT


AAACATATTTTAAAGCTGCAATAATTGACATAGTGCATTACTGTCACAAAAATCTACAGTAGATCAACAAGCAGAAA


CTTAAAATATCATGAAGAAAGCACCATAAATCAATTCAGAAGAGATGGTGCTGGGGGAAAAAATATCAGTTTCTGAA


AAACTCTTCAAGGTTAGAAACAACACTATATAAATTTAAGATGGATTAAATATTTGGTTGTTCTTTTTTAACAAATG


AAAGAGTAAAGGATCAAGAATAAATGAGAATATCTGAACAATGGTAAAATGGCCACAATTTTAAGGATACTATCAAT


GAACATAATATCAAAGAAATAAACTGTTAAATTTTATTTAGAAAAAACTACTAAAAGGCAAAAAGGAAGCTGGAAAC


GTAGTCTCAATTAATCTATGTTTCAGATAATGTGAAAAGAGCTCTTAAAAATAGGAAAACACAGGAAAAATGGGCAA


CAGACATTGCCGATAATTGACAGTGGAAACTAAATAAATGACAAACATGTACACACATACAACATTTTCAACTTTCC


TATTAGTAGAATACTTAAAATATCTATGGCAAGCTTTTTATTTGTTTTATTGGTATATCAATTATAATGCTCAATAG


TGGCAAAAGTGTAGTGAGACAAGTATTTTGTAACTGTTGGTGGGAGTTTACGAGTGTTCTGAGTACCAACCTTGACA


GAAATTCAACAATGTGTATCTAAATCCTTAGGATTCCCATTGTTAACTTTTCATTCTCATTCCAGCAGATACATGAT


TCAAAATGTATAAATAAATGTGTTTATTGTAGGGTTATTCATTATAATAAAAAATGAAAGCAAACAAAATTCCTAAT


AACACAATAATGGTGAAATATAGGGTACCCCTATATATCTTATTACTAGGATCTTAAAAAATCAAGTTTTTAAAGCG


TAATTAATGACCTACAGAGACACATAGTAGAATAATAAATGAAGAAAATAAGCATACAATATAGGGTTTGAACCCAG


TAATACATATAAATCTCAACTATGATGAATAAGCACAACATCTCTCCTCTGTACTGGATATTCTTGATAGAAAAAAA


TATGCTAGTAAATAATTTGAGACATATTTGAAAAGAGGGGAGTGTTTGATTTAGAATTTTCTAAACTTGAGGGTTAT


TATTATTTTTTTGGTTTGATATTACTTTTTCCTGCTCCTTAAATTTTTGTTTGTTTGGGGGGTTTGGGGTTTTCTTT


TCCTTAAACGTGTCTGCTTCTAGATGAAAGTTGAAAATGTTTAAAAGCCTTGCCAATGTGTCTAGGTTTTTCAAATG


TAATCAGATTTTAGCAAGATTTTACTTAACTAAAAGTATTCAGAACACTGTGCAAAATCATCTGGAGTCAAATAGTA


ATGGAGGCAATGATTTGCAGAGTAGAAACAGAGAGAGAGAAAAAGATGAGATAGACCCTCAAAATCTAGACCCAAGG


AATTAAATCTGCTTGGAACATTTAAACAAATAAAGGATGCCTGTACTATACTAGACGTTTTCTTCTTCCACAATTGA


TTCTAAGGTCAGAATCTGAGGGGAAATGGTGCTGTTCCACATTCTAAAACAAACTGCCAGCAATCGAGACCAGCCAC


TTCCCCATAGGGTTTACTCTAAAGCAACAGGGATTATTATCTCTATTCCAAGCAATTTCCAATCTCCTCTGTACTCC


GTGTCCCAGGCAAGATTAAAAAGACTCAGGTAGGAAGGGGTAGTAAGCTTTGTGGGGAGTGCAGTTTGTGGTAAGGG


ACAGTTCCTTCTCTTTCATCTCTCTGAGTCAGAAGTAGAGACTTCGAGAGAATCACTGAGAGTAAGTATGTAGACTC


CAAGAAGGAAAAAGCATCCTCTCACTTCAATGAATGTTTGGAATCTGCAGACCTCCTTCCCAGGTCTGTGTAGCTTT


TGGAGAGGCCAGAAGAGCACCGTAGGCATTCCTTTGGCTTTCCATGGCCAAGCACATAGAGTAGAAGAAGAGGAGGA


ACCGTAAGGTTAACCATACATAAGAAATCAACAAAAGGCTTTGAAATTGACTTTTCCTATTTTTCAATTTAAATAAG


AGAGAATTGTCAATGATTAAAATTCATAAAACGAAGAAAGAATGGACTCAGAAAATAGCAAACATGAAATGTTAATT


ATTAGTTCAAAAGTTAGTTTACCGTGTTTTCTCTGCCAACTGATTGCTAATGACTAAAGTCCTTATTTCCAGCTTTC


CTCTCTCCCCGAGCTCCAGATCTCTTGATTTATTAAACTAGTAGTTTCCCCAAAATATATGAGACAACAAAATATAC


TCTCAGCTGAAGTAAATAGCATTCATCTTCCCAGTCAGATAAGGCAGAAGTACTTCTAGATCAGATGTTATATTCGG


GATAGGTTAAAAACAGACCCTGCTCCCAGTGTCCCAGGAATGAACAGTGGATGTGCTTATTTCTCATTGCATGCGTG


TATCAAAATATCTCACGTACCCTACAAGTACATACACTTACTATGTCCCTACAAAAATTAAAAACAATAAATCATAA


ACATTTGTAAAAATAAGCGAATAAATGTATAAATGAATTTAAAAGAGAATAGACAGAGGGGAGAATGTAACTTTACG


TGTCCCAGAACAGACTTTGAACAGGCTCTTATCATATAGGAAAACTGAATGAATATATGCAAGCATAAGTCCAATAA


CCAGATTCTGATTTACAGAATGATCGCAACTGTAGTTCTCTCAAGGCCCTGTCTTTGAACAGGCTGTGTCTTATTCC


TGCAACATGCTGATCTATCTTCATGCTTCAAGACTCAGATCATTATCTTCTCTGGGATGTCTCCCAAGCACTGCCCC


AGAAATAACTTCTCCTCCTATAATACTTAATCATAATCCTTGGCTTACATGCTTGTTTCTTCTCATTGACTATGAAA


TCCTCAAGACAAGGTATATAACGTATATATCTTTAATCCTAATGCCCAATTGAGCTCTTAGAAGGTAGTAAGCTCCC


AATACACATTTGTTAATTTGAAGCAAAAAAAAAAAAATAGCTAATCATTCAAAAAACTGAATTATCACAAATGTCCA


TCTAAAGTACTATATTTACACAATTAAATGCTATACAGCCAGGTTAATGAACAGACTAAAATTATATGCAACATGGA


TTATCGTAAACATAATTTTGAATGAAAAAGGCGAGACACAAAGGAGTATAAAGCCATACAATTCCATTTTCATAATA


TTCAGTACCGGCAAAATAATCAAAGTTGACAGGGTACTGGTTATACTTGGAGGCAGTGACTGCAAAGGGATAAGAGG


AGATTTCTGAGATTCTGATAATATTCTATTTCCTTCTCTGGTTGTACAGTGTGTTCAATTTTTAAAACACTATTGGG


CTATACAGTTAAATTGTGCAGTGTCCTGTACGTATATTACACTTCAGTTAAAAGCTTCCATGGAAGCTACACATAGT


TCCCAAAAGACAACAAAACAAAAAATTTTCAATTATTTTAAGCACAAACAATTTTGTTCAGCTGTCTTACAATCGAA


TATGTAAGAATAAATTTATGGCTAATTAGCATAGAGTTATATGCATTTTCATAATTAAAACTTCCACGAGTACAACA


TATGTTAAGTATTTTAAATCAGTTTTTCTCTTTCCTCAAATAAGGTTGTGAGTCATAATTCGGAAAACAGTTTAGCA


TGTAATAATTTAGTGTTTTATTTTAAACCAAGCTGAAGCCACATAAAGCAGAACTGCTCAACTGAGCCCTATCCAAA


TCCTTGACCCACAGAATAAGAAGCAGATAAAATGGCTGCTACTTAAACAAAACAAAAACCTTGTTTATATTTTTGTC


CTCTCATTTTCCATAAGTATACTTTAATTAAACATTTTAAAACTTGTAACTTTAGGTTATATACTTACTTTAGTTGG


TTCTCAACCAGGGACAATTTTGTCCCCACCCCCAACCCCCCAGCATATTTGGCAGTGCCTTGAAACATATTTGGTTG


TCACAGCTCAGGGGCGAGGTGTTACTACTGGTATCCAGTGTGTTCAACAGGCCAGGGATACTGCTAAATACCCTACA


ATGCAGAGGATAGCTGCTCACAGCAAAGAATTTTCCAAACCTAAATGTTAGTAATGCTAAAGTTGAGAAACCTTGCT


CAGATATAATGACATAATGTTGTTAGAATTTTTATTTTATTCATTTTAATGTATGTATGTATGTATGTATGTACGTA


CGTATGTATGTATGTATTTGAGATGGAGTCTTTCTCTGTTGCCCGGGGTGGAGTGCAGTGGCACGATCTCGGCTTAC


TGCAGCCTCTGCCTTCCACGTTCAAGTGATTCTCCTGCCTCAGCCTCCCTAGTAGCTGGGATTACAGGCGCCTGCCA


CCAAACCTGGCAAATTTTTGTATTTTTAGTGTAGACGGGGTTTCACCATATTTGCCAGGCTGGTCGCAAACTCCTGA


CCTCAAGTGATCCGCCCACATCGGCCTCCCTAAGCGCTAGGGTTACAGGCATGAGCCACTGCGCCTGGCCAGGAATT


TTTGAATCAGAATTTTTCTTGTTCGATTTTAATCTCTTATCATTTAGAGATTCTTGAAATATTGAAATTACTTTGTT


CAAAGTGAATGAATTTTCTTAAATTATGTATGGTTAACATCTTTTAAATTGCTTATTTTTAAATTGCCATGTTTGTG


TCCCAGTTTGCATTAACAAATAGTTTGAGAACTATGTTGGAAAAAAAAATAACAATTTTATTCTTCTTTCTCCAG


(SEQ ID NO: 967)






Homo sapiens dystrophin (DMD), intron 45 target sequence 1 (nucleotide



positions 1376272-1376321 of NCBI Reference Sequence: NG_012232.1)


GTAGGGCGACAGATCTAATAGGAATGAAAACATTTTAGCAGACTTTTTAA (SEQ ID NO: 968)






Homo sapiens dystrophin (DMD), intron 45 target sequence 2 (nucleotide



positions 1376339-1376383 of NCBI Reference Sequence: NG_012232.1)


ATTTCATGAGAGATTATAAGCAGGGTGAAAGGCACTAACATTAAA (SEQ ID NO: 969)






Homo sapiens dystrophin (DMD), intron 45 target sequence 3 (nucleotide



positions 1412133-1412382 of NCBI Reference Sequence: NG_012232.1)


CACTGCGCCTGGCCAGGAATTTTTGAATCAGAATTTTTCTTGTTCGATTTTAATCTCTTATCATTTAGAGATTCTTG


AAATATTGAAATTACTTTGTTCAAAGTGAATGAATTTTCTTAAATTATGTATGGTTAACATCTTTTAAATTGCTTAT


TTTTAAATTGCCATGTTTGTGTCCCAGTTTGCATTAACAAATAGTTTGAGAACTATGTTGGAAAAAAAAATAACAAT


TTTATTCTTCTTTCTCCAG (SEQ ID NO: 970)






Homo sapiens dystrophin (DMD) intron 45/exon 46 junction (nucleotide



positions 1412353-1412412 of NCBI Reference Sequence: NG_012232.1)


AAAATAACAATTTTATTCTTCTTTCTCCAGGCTAGAAGAACAAAAGAATATCTTGTCAGA (SEQ ID NO: 971)






Homo sapiens dystrophin (DMD), transcript variant Dp427m, exon 46



(nucleotide positions 6859-7006 of NCBI Reference Sequence: NM_004006.2; nucleotide


positions 1412383-1412530 of NCBI Reference Sequence: NG_012232.1)


GCTAGAAGAACAAAAGAATATCTTGTCAGAATTTCAAAGAGATTTAAATGAATTTGTTTTATGGTTGGAGGAAGCAG


ATAACATTGCTAGTATCCCACTTGAACCTGGAAAAGAGCAGCAACTAAAAGAAAAGCTTGAGCAAGTCAAG (SEQ


ID NO: 972)






Homo sapiens dystrophin (DMD), exon 46 target sequence 1 (nucleotide



positions 1412383-1412432 of NCBI Reference Sequence: NG_012232.1)


GCTAGAAGAACAAAAGAATATCTTGTCAGAATTTCAAAGAGATTTAAATG (SEQ ID NO: 973)









In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a splicing feature in a DMD sequence (e.g., a DMD pre-mRNA). In some embodiments, a splicing feature in a DMD sequence is an exonic splicing enhancer (ESE), a branch point, a splice donor site, or a splice acceptor site in a DMD sequence. In some embodiments, an ESE is in exon 45 of a DMD sequence (e.g., a DMD pre-mRNA). In some embodiments, a branch point is in intron 44 or intron 45 of a DMD sequence (e.g., a DMD pre-mRNA). In some embodiments, a splice donor site is across the junction of exon 44 and intron 44, in intron 44, across the junction of exon 45 and intron 45, or in intron 45 of a DMD sequence (e.g., a DMD pre-mRNA). In some embodiments, a splice acceptor site is in intron 44, across the junction of intron 44 and exon 45, in intron 45, or across the junction of intron 45 and exon 46 of a DMD sequence (e.g., a DMD pre-mRNA). In some embodiments, the oligonucleotide useful for targeting DMD promotes skipping of exon 45, such as by targeting a splicing feature (e.g., an ESE, a branch point, a splice donor site, or a splice acceptor site) in a DMD sequence (e.g., a DMD pre-mRNA). Examples of ESEs, branch points, splice donor sites, and splice acceptor sites are provided in Table 9.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets an exonic splicing enhancer (ESE) in a DMD sequence. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets an ESE in DMD exon 45 (e.g., an ESE listed in Table 9).


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 45) comprises a region of complementarity to a target sequence comprising one or more full or partial ESEs of a DMD transcript (e.g., one or more full or partial ESEs listed in Table 9). In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising one or more full or partial ESEs of DMD exon 45. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising one or more full or partial ESEs as set forth in any one of SEQ ID NOs: 885-912. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of an ESE as set forth in any one of SEQ ID NOs: 885-912. In some embodiments, the oligonucleotide comprises at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of an ESE antisense sequence as set forth in any one of SEQ ID NOs: 922-949.


In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising at least 6 (e.g., 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more) nucleotides of one or more ESEs (e.g., 2, 3, 4, or more adjacent ESEs) of DMD exon 45. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising at least 6 (e.g., 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more) nucleotides of one or more ESEs (e.g., 2, 3, 4, or more adjacent ESEs) as set forth in any one of SEQ ID NOs: 885-912. In some embodiments, the oligonucleotide comprises at least 6 (e.g., 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more) nucleotides of one or more ESE antisense sequences (e.g., antisense sequences of 2, 3, 4, or more adjacent ESEs) as set forth in any one of SEQ ID NOs: 922-949.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 45) is 18-35 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of an ESE as set forth in any one of SEQ ID NOs: 885-912. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 45) is 20-30 (e.g., 20, 25, 30) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of an ESE as set forth in any one of SEQ ID NOs: 885-912. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 45) is 20-25 (i.e., 20, 21, 22, 23, 24, or 25) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of an ESE as set forth in any one of SEQ ID NOs: 885-912. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) is 30 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of an ESE as set forth in any one of SEQ ID NOs: 885-912.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a branch point in a DMD sequence. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a branch point in DMD intron 44 or intron 45 (e.g., a branch point listed in Table 9).


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 45) comprises a region of complementarity to a target sequence comprising a full or partial branch point of a DMD transcript (e.g., a full or partial branch point listed in Table 9). In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising a full or partial branch point of DMD intron 44 or intron 45. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising a full or partial branch point as set forth in any one of SEQ ID NOs: 881, 882, and 914. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a branch point as set forth in any one of SEQ ID NOs: 881, 882, and 914. In some embodiments, the oligonucleotide comprises at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a branch point antisense sequence as set forth in any one of SEQ ID NO: 918, 919, and 951.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 45) is 18-35 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a branch point as set forth in any one of SEQ ID NOs: 881, 882, and 914. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 45) is 20-30 (e.g., 20, 25, 30) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a branch point as set forth in any one of SEQ ID NOs: 881, 882, and 914. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 45) is 20-25 (i.e., 20, 21, 22, 23, 24, or 25) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a branch point as set forth in any one of SEQ ID NOs: 881, 882, and 914. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) is 30 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a branch point as set forth in any one of SEQ ID NOs: 881, 882, and 914.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a splice donor site in a DMD sequence. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a splice donor site across the junction of exon 44 and intron 44, in intron 44, across the junction of exon 45 and intron 45, or in intron 45 (e.g., a splice donor site listed in Table 9).


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 45) comprises a region of complementarity to a target sequence comprising a full or partial splice donor site of a DMD transcript (e.g., a full or partial splice donor site listed in Table 9). In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising a full or partial splice donor site across the junction of exon 44 and intron 44, in intron 44, across the junction of exon 45 and intron 45, or in intron 45 of DMD. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising a full or partial splice donor site as set forth in SEQ ID NO: 880 or 913. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a splice donor site as set forth in SEQ ID NO: 880 or 913. In some embodiments, the oligonucleotide comprises at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a splice donor site antisense sequence as set forth in SEQ ID NO: 917 or 950.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 45) is 18-35 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a splice donor site as set forth in SEQ ID NO: 880 or 913. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 45) is 20-30 (e.g., 20, 25, 30) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a splice donor site as set forth in SEQ ID NO: 880 or 913. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 45) is 20-25 (i.e., 20, 21, 22, 23, 24, or 25) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a splice donor site as set forth in SEQ ID NO: 880 or 913. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) is 30 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a splice donor site as set forth in SEQ ID NO: 880 or 913.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a splice acceptor site in a DMD sequence. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a splice acceptor site in intron 44, across the junction of intron 44 and exon 45, in intron 45, or across the junction of intron 45 and exon 46 (e.g., a splice acceptor site listed in Table 9).


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 45) comprises a region of complementarity to a target sequence comprising a full or partial splice acceptor site of a DMD transcript (e.g., a full or partial splice acceptor site listed in Table 9). In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising a full or partial splice acceptor site in intron 44, across the junction of intron 44 and exon 45, in intron 45, or across the junction of intron 45 and exon 46 of DMD. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising a full or partial splice acceptor site as set forth in any one of SEQ ID NOs: 883, 884, 915, and 916. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16) consecutive nucleotides of a splice acceptor site as set forth in any one of SEQ ID NOs: 883, 884, 915, and 916. In some embodiments, the oligonucleotide comprises at least 4 (e.g., 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16) consecutive nucleotides of a splice acceptor site antisense sequence as set forth in any one of SEQ ID NOs: 920, 921, 952, and 953.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 45) is 18-35 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16) consecutive nucleotides of a splice acceptor site as set forth in any one of SEQ ID NOs: 883, 884, 915, and 916. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 45) is 20-30 (e.g., 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16) consecutive nucleotides of a splice acceptor site as set forth in any one of SEQ ID NOs: 883, 884, 915, and 916. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 45) is 20-25 (i.e., 20, 21, 22, 23, 24, or 25) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16) consecutive nucleotides of a splice acceptor site as set forth in any one of SEQ ID NOs: 883, 884, 915, and 916. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) is 30 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16) consecutive nucleotides of a splice acceptor site as set forth in any one of SEQ ID NOs: 883, 884, 915, and 916.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to a junction of an exon and an intron of a DMD RNA (e.g., any one of the exon/intron junctions provided by SEQ ID NOs: 957, 963, 966, and 971). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to at least 10 (e.g., 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) consecutive nucleosides of a junction of an exon and an intron of a DMD RNA (e.g., any one of the exon/intron junctions provided by SEQ ID NOs: 957, 963, 966, and 971). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) is complementary to any one of SEQ ID NOs: 957, 963, 966, and 971.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to a target sequence of a DMD RNA (e.g., a target sequence provided by any one of SEQ ID NOs: 955, 956, 959-962, 964, 965, 968-970, and 973). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to at least 10 (e.g., 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) consecutive nucleosides of a target sequence of a DMD RNA (e.g., a target sequence provided by any one of SEQ ID NOs: 955, 956, 959-962, 964, 965, 968-970, and 973). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) is complementary to any one of SEQ ID NOs: 955, 956, 959-962, 964, 965, 968-970, and 973.









TABLE 9







Example target sequence motifs














SEQ

SEQ
Motif




ID
Motif
ID
Antisense


Location in DMD
Type
NO:
Sequence
NO:
Sequence





Across exon 44/
Splice Donor
880
AGGTAAG
917
CTTACCT


intron 45 junction










Intron 44
Branch Point
881
CCCTGAC
918
GTCAGGG





Intron 44
Branch Point
882
GTCAG
919
CTGAC





Intron 44
Splice Acceptor
883
ATCTTACAG
920
CTGTAAGAT





Exon 45
Splice Acceptor
884
AACTCCAGG
921
CCTGGAGTT





Exon 45
ESE
885
GAACTCCA
922
TGGAGTTC





Exon 45
ESE
886
AACTCCAG
923
CTGGAGTT





Exon 45
ESE
887
CTCCAGG
924
CCTGGAG





Exon 45
ESE
888
CAGCGGC
925
GCCGCTG





Exon 45
ESE
889
AGCGGC
926
GCCGCT





Exon 45
ESE
890
TCAGAAC
927
GTTCTGA





Exon 45
ESE
891
GAACATTG
928
CAATGTTC





Exon 45
ESE
892
TGAATGC
929
GCATTCA





Exon 45
ESE
893
GAATGCAA
930
TTGCATTC





Exon 45
ESE
894
TGCAAC
931
GTTGCA





Exon 45
ESE
895
CAACTGG
932
CCAGTTG





Exon 45
ESE
896
CTGGGGA
933
TCCCCAG





Exon 45
ESE
897
ATTCAGC
934
GCTGAAT





Exon 45
ESE
898
TGCCAGTA
935
TACTGGCA





Exon 45
ESE
899
GTATTCTA
936
TAGAATAC





Exon 45
ESE
900
CTACAGG
937
CCTGTAG





Exon 45
ESE
901
TACAGGA
938
TCCTGTA





Exon 45
ESE
902
TGAATC
939
GATTCA





Exon 45
ESE
903
CTGCGGT
940
ACCGCAG





Exon 45
ESE
904
TGCGGT
941
ACCGCA





Exon 45
ESE
905
CGGTGGC
942
GCCACCG





Exon 45
ESE
906
TGGCAGG
943
CCTGCCA





Exon 45
ESE
907
GGCAGGA
944
TCCTGCC





Exon 45
ESE
908
AGGAGGT
945
ACCTCCT





Exon 45
ESE
909
GGTCTGCA
946
TGCAGACC





Exon 45
ESE
910
GTCTGCAA
947
TTGCAGAC





Exon 45
ESE
911
CAGCTGT
948
ACAGCTG





Exon 45
ESE
912
CAGACAG
949
CTGTCTG





Across exon 45/
Splice Donor
913
AGGTAGG
950
CCTACCT


intron 45 junction










Intron 45
Branch Point
914
CATTAAC
951
GTTAATG





Across intron 45/
Splice Acceptor
915
TTCTCCAGG
952
CCTGGAGAA


exon 46 junction










Across intron 45/
Splice Acceptor
916
TTCTTCTTTCTCC
953
CCTGGAGAAA


exon 46 junction


AGG

GAAGAA






Each thymine base (T) in any one of the sequences provided in Table 9 may independently and optionally be replaced with a uracil base (U). Motif sequences and antisense sequences listed in Table 9 contain T's, but binding of a motif sequence in RNA and/or DNA is contemplated.







In some embodiments, any one of the oligonucleotides useful for targeting DMD (e.g., for exon skipping) is a phosphorodiamidate morpholino oligomer (PMO).


In some embodiments, the oligonucleotide may have region of complementarity to a mutant DMD allele, for example, a DMD allele with at least one mutation in any of exons 1-79 of DMD in humans that leads to a frameshift and improper RNA splicing/processing.


In some embodiments, any one of the oligonucleotides can be in salt form, e.g., as sodium, potassium, or magnesium salts.


In some embodiments, the 5′ or 3′ nucleoside (e.g., terminal nucleoside) of any one of the oligonucleotides described herein is conjugated to an amine group, optionally via a spacer. In some embodiments, the spacer comprises an aliphatic moiety. In some embodiments, the spacer comprises a polyethylene glycol moiety. In some embodiments, a phosphodiester linkage is present between the spacer and the 5′ or 3′ nucleoside of the oligonucleotide. In some embodiments, the 5′ or 3′ nucleoside (e.g., terminal nucleoside) of any of the oligonucleotides described herein is conjugated to a spacer that is a substituted or unsubstituted aliphatic, substituted or unsubstituted heteroaliphatic, substituted or unsubstituted carbocyclylene, substituted or unsubstituted heterocyclylene, substituted or unsubstituted arylene, substituted or unsubstituted heteroarylene, —O—, —N(RA)—, —S—, —C(═O)—, —C(═O)O—, —C(═O)NRA—, —NRAC(═O)—, —NRAC(═O)RA—, —C(═O)RA—, —NRAC(═O)O—, —NRAC(═O)N(RA)—, —OC(═O)—, —OC(═O)O—, —OC(═O)N(RA)—, —S(O)2NRA—, —NRAS(O)2—, or a combination thereof; each RA is independently hydrogen or substituted or unsubstituted alkyl. In certain embodiments, the spacer is a substituted or unsubstituted alkylene, substituted or unsubstituted heterocyclylene, substituted or unsubstituted heteroarylene, —O—, —N(RA)—, or —C(═O)N(RA)2, or a combination thereof.


In some embodiments, the 5′ or 3′ nucleoside of any one of the oligonucleotides described herein is conjugated to a compound of the formula —NH2—(CH2)n—, wherein n is an integer from 1 to 12. In some embodiments, n is 6, 7, 8, 9, 10, 11, or 12. In some embodiments, a phosphodiester linkage is present between the compound of the formula NH2—(CH2)n— and the 5′ or 3′ nucleoside of the oligonucleotide. In some embodiments, a compound of the formula NH2—(CH2)6— is conjugated to the oligonucleotide via a reaction between 6-amino-1-hexanol (NH2—(CH2)6—OH) and the 5′ phosphate of the oligonucleotide.


In some embodiments, the oligonucleotide is conjugated to a targeting agent, e.g., a muscle targeting agent such as an anti-TfR1 antibody, e.g., via the amine group.


a. Oligonucleotide Size/Sequence

Oligonucleotides may be of a variety of different lengths, e.g., depending on the format. In some embodiments, an oligonucleotide is 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75, or more nucleotides in length. In some embodiments, the oligonucleotide is 8 to 50 nucleotides in length, 8 to 40 nucleotides in length, 8 to 30 nucleotides in length, 10 to 15 nucleotides in length, 10 to 20 nucleotides in length, 15 to 25 nucleotides in length, 21 to 23 nucleotides in lengths, 20 to 25 nucleotides in length, etc.


In some embodiments, a nucleic acid sequence of an oligonucleotide for purposes of the present disclosure is “complementary” to a target nucleic acid when it is specifically hybridizable to the target nucleic acid. In some embodiments, an oligonucleotide hybridizing to a target nucleic acid (e.g., an mRNA or pre-mRNA molecule) results in modulation of activity or expression of the target (e.g., decreased mRNA translation, altered pre-mRNA splicing, exon skipping, target mRNA degradation, etc.). In some embodiments, a nucleic acid sequence of an oligonucleotide has a sufficient degree of complementarity to its target nucleic acid such that it does not hybridize non-target sequences under conditions in which avoidance of non-specific binding is desired, e.g., under physiological conditions. Thus, in some embodiments, an oligonucleotide may be at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% complementary to the consecutive nucleotides of a target nucleic acid. In some embodiments a complementary nucleotide sequence need not be 100% complementary to that of its target to be specifically hybridizable or specific for a target nucleic acid. In certain embodiments, oligonucleotides comprise one or more mismatched nucleobases relative to the target nucleic acid. In certain embodiments, activity relating to the target is reduced by such mismatch, but activity relating to a non-target is reduced by a greater amount (i.e., selectivity for the target nucleic acid is increased and off-target effects are decreased).


In some embodiments, an oligonucleotide comprises region of complementarity to a target nucleic acid that is in the range of 8 to 15, 8 to 30, 8 to 40, or 10 to 50, or 5 to 50, 15 to 20, 20 to 25, or 5 to 40 nucleotides in length. In some embodiments, a region of complementarity of an oligonucleotide to a target nucleic acid is 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides in length. In some embodiments, the region of complementarity is complementary with at least 8 consecutive nucleotides of a target nucleic acid. In some embodiments, an oligonucleotide may contain 1, 2 or 3 base mismatches compared to the portion of the consecutive nucleotides of target nucleic acid. In some embodiments the oligonucleotide may have up to 3 mismatches over 15 bases, or up to 2 mismatches over 10 bases.


In some embodiments, the oligonucleotide is complementary (e.g., at least 85% at least 90%, at least 95%, or 100%) to a target sequence of the any one of the oligonucleotides described herein (e.g., the oligonucleotides listed in Table 8). In some embodiments, the oligonucleotide is complementary (e.g., at least 85% at least 90%, at least 95%, or 100%) to a target sequence of the any one of the oligonucleotides provided by SEQ ID NO: 400-879. In some embodiments, such target sequence is 100% complementary to an oligonucleotide listed in Table 8. In some embodiments, such target sequence is 100% complementary to an oligonucleotide provided by SEQ ID NO: 400-879. In some embodiments, the oligonucleotide is complementary (e.g., at least 85% at least 90%, at least 95%, or 100%) to a target sequence provided herein (e.g., a target sequence listed in Table 8). In some embodiments, the oligonucleotide is complementary (e.g., at least 85% at least 90%, at least 95%, or 100%) to any one of SEQ ID NO: 160-399.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to a target sequence of a DMD RNA (e.g., a target sequence provided by any one of SEQ ID NOs: 160-399). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to at least 8 (e.g., 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) consecutive nucleosides of a target sequence of a DMD RNA (e.g., a target sequence provided by any one of SEQ ID NOs: 160-399). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) is complementary to any one of SEQ ID NOs: 160-399.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a sequence comprising at least 8 (e.g., 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) consecutive nucleobases of a DMD-targeting sequence provided herein (e.g., an antisense sequence listed in Table 8). In some embodiments, the oligonucleotide comprises a sequence comprising at least 8 (e.g., 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) consecutive nucleobases of any one of SEQ ID NOs: 400-897. In some embodiments, the oligonucleotide comprises the sequence of any one of SEQ ID NOs: 400-897.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to a target sequence of a DMD RNA (e.g., a target sequence provided by any one of SEQ ID NOs: 240, 236, 280, 211, 197, 212, 208, 217, 213, and 195). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to at least 8 (e.g., 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) consecutive nucleosides of a target sequence of a DMD RNA (e.g., a target sequence provided by any one of SEQ ID NOs: 240, 236, 280, 211, 197, 212, 208, 217, 213, and 195). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) is complementary to any one of SEQ ID NOs: 240, 236, 280, 211, 197, 212, 208, 217, 213, and 195.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a sequence comprising at least 8 (e.g., 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) contiguous nucleobases of a DMD-targeting sequence provided herein (e.g., a sequence of any one of SEQ ID NOs: 720, 716, 760, 691, 677, 692, 688, 697, 693, and 675). In some embodiments, the oligonucleotide comprises at least 8 (e.g., 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) consecutive nucleosides of a DMD-targeting sequence provided herein (e.g., a sequence of any one of SEQ ID NOs: 720, 716, 760, 691, 677, 692, 688, 697, 693, and 675). In some embodiments, the oligonucleotide comprises the sequence of any one of SEQ ID NOs: 720, 716, 760, 691, 677, 692, 688, 697, 693, and 675.


In some embodiments, it should be appreciated that methylation of the nucleobase uracil at the C5 position forms thymine. Thus, in some embodiments, a nucleotide or nucleoside having a C5 methylated uracil (or 5-methyl-uracil) may be equivalently identified as a thymine nucleotide or nucleoside.


In some embodiments, any one or more of the thymine bases (T's) in any one of the oligonucleotides provided herein (e.g., the oligonucleotides listed in Table 8) may independently and optionally be uracil bases (U's), and/or any one or more of the U's in the oligonucleotides provided herein may independently and optionally be T's. In some embodiments, any one or more of the thymine bases (T's) in any one of the oligonucleotides provided by SEQ ID NOs: 640-879 or in an oligonucleotide complementary to any one of SEQ ID NOs: 160-399 may optionally be uracil bases (U's), and/or any one or more of the U's in the oligonucleotides may optionally be T's. In some embodiments, any one or more of the uracil bases (U's) in any one of the oligonucleotides provided by SEQ ID NOs: 400-639 or in an oligonucleotide complementary to any one of SEQ ID NOs: 160-399 may optionally be thymine bases (T's), and/or any one or more of the T's in the oligonucleotides may optionally be U's.


b. Oligonucleotide Modifications

The oligonucleotides described herein may be modified, e.g., comprise a modified sugar moiety, a modified internucleoside linkage, a modified nucleotide or nucleoside and/or (e.g., and) combinations thereof. In addition, in some embodiments, oligonucleotides may exhibit one or more of the following properties: do not mediate alternative splicing; are not immune stimulatory; are nuclease resistant; have improved cell uptake compared to unmodified oligonucleotides; are not toxic to cells or mammals; have improved endosomal exit internally in a cell; minimizes TLR stimulation; or avoid pattern recognition receptors. Any of the modified chemistries or formats of oligonucleotides described herein can be combined with each other. For example, one, two, three, four, five, or more different types of modifications can be included within the same oligonucleotide.


In some embodiments, certain nucleotide or nucleoside modifications may be used that make an oligonucleotide into which they are incorporated more resistant to nuclease digestion than the native oligodeoxynucleotide or oligoribonucleotide molecules; these modified oligonucleotides survive intact for a longer time than unmodified oligonucleotides. Specific examples of modified oligonucleotides include those comprising modified backbones, for example, modified internucleoside linkages such as phosphorothioates, phosphotriesters, methyl phosphonates, short chain alkyl or cycloalkyl intersugar linkages or short chain heteroatomic or heterocyclic intersugar linkages. Accordingly, oligonucleotides of the disclosure can be stabilized against nucleolytic degradation such as by the incorporation of a modification, e.g., a nucleotide or nucleoside modification.


In some embodiments, an oligonucleotide may be of up to 50 or up to 100 nucleotides in length in which 2 to 10, 2 to 15, 2 to 16, 2 to 17, 2 to 18, 2 to 19, 2 to 20, 2 to 25, 2 to 30, 2 to 40, 2 to 45, or more nucleotides or nucleosides of the oligonucleotide are modified nucleotides/nucleosides. The oligonucleotide may be of 8 to 30 nucleotides in length in which 2 to 10, 2 to 15, 2 to 16, 2 to 17, 2 to 18, 2 to 19, 2 to 20, 2 to 25, 2 to 30 nucleotides or nucleosides of the oligonucleotide are modified nucleotides/nucleosides. The oligonucleotide may be of 8 to 15 nucleotides in length in which 2 to 4, 2 to 5, 2 to 6, 2 to 7, 2 to 8, 2 to 9, 2 to 10, 2 to 11, 2 to 12, 2 to 13, 2 to 14 nucleotides or nucleosides of the oligonucleotide are modified nucleotides/nucleosides. Optionally, the oligonucleotides may have every nucleotide or nucleoside except 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides/nucleosides modified. Oligonucleotide modifications are described further herein.


c. Modified Nucleosides

In some embodiments, the oligonucleotide described herein comprises at least one nucleoside modified at the 2′ position of the sugar. In some embodiments, an oligonucleotide comprises at least one 2′-modified nucleoside. In some embodiments, all of the nucleosides in the oligonucleotide are 2′-modified nucleosides.


In some embodiments, the oligonucleotide described herein comprises one or more non-bicyclic 2′-modified nucleosides, e.g., 2′-deoxy, 2′-fluoro (2′-F), 2′-O-methyl (2′-O-Mc), 2′-O-methoxyethyl (2′-MOE), 2′-O-aminopropyl (2′-O-AP), 2′-O-dimethylaminoethyl (2′-O-DMAOE), 2′-O-dimethylaminopropyl (2′-O-DMAP), 2′-O-dimethylaminoethyloxyethyl (2′-O-DMAEOE), or 2′-O—N-methylacetamido (2′-O-NMA) modified nucleoside.


In some embodiments, the oligonucleotide described herein comprises one or more 2′-4′ bicyclic nucleosides in which the ribose ring comprises a bridge moiety connecting two atoms in the ring, e.g., connecting the 2′-O atom to the 4′-C atom via a methylene (LNA) bridge, an ethylene (ENA) bridge, or a (S)-constrained ethyl (cEt) bridge. Examples of LNAs are described in International Patent Application Publication WO/2008/043753, published on Apr. 17, 2008, and entitled “RNA Antagonist Compounds For The Modulation Of PCSK9”, the contents of which are incorporated herein by reference in its entirety. Examples of ENAs are provided in International Patent Publication No. WO 2005/042777, published on May 12, 2005, and entitled “APP/ENA Antisense”; Morita et al., Nucleic Acid Res., Suppl 1:241-242, 2001; Surono et al., Hum. Gene Ther., 15:749-757, 2004; Koizumi, Curr. Opin. Mol. Ther., 8:144-149, 2006 and Horie et al., Nucleic Acids Symp. Ser (Oxf), 49:171-172, 2005; the disclosures of which are incorporated herein by reference in their entireties. Examples of cEt are provided in U.S. Pat. Nos. 7,101,993; 7,399,845 and 7,569,686, each of which is herein incorporated by reference in its entirety.


In some embodiments, the oligonucleotide comprises a modified nucleoside disclosed in one of the following United States Patent or Patent Application Publications: U.S. Pat. No. 7,399,845, issued on Jul. 15, 2008, and entitled “6-Modified Bicyclic Nucleic Acid Analogs”; U.S. Pat. No. 7,741,457, issued on Jun. 22, 2010, and entitled “6-Modified Bicyclic Nucleic Acid Analogs”; U.S. Pat. No. 8,022,193, issued on Sep. 20, 2011, and entitled “6-Modified Bicyclic Nucleic Acid Analogs”; U.S. Pat. No. 7,569,686, issued on Aug. 4, 2009, and entitled “Compounds And Methods For Synthesis Of Bicyclic Nucleic Acid Analogs”; U.S. Pat. No. 7,335,765, issued on Feb. 26, 2008, and entitled “Novel Nucleoside And Oligonucleotide Analogues”; U.S. Pat. No. 7,314,923, issued on Jan. 1, 2008, and entitled “Novel Nucleoside And Oligonucleotide Analogues”; U.S. Pat. No. 7,816,333, issued on Oct. 19, 2010, and entitled “Oligonucleotide Analogues And Methods Utilizing The Same” and US Publication Number 2011/0009471 now U.S. Pat. No. 8,957,201, issued on Feb. 17, 2015, and entitled “Oligonucleotide Analogues And Methods Utilizing The Same”, the entire contents of each of which are incorporated herein by reference for all purposes.


In some embodiments, the oligonucleotide comprises at least one modified nucleoside that results in an increase in Tm of the oligonucleotide in a range of 1ºC. 2° C., 3° ° C., 4° C., or 5° C. compared with an oligonucleotide that does not have the at least one modified nucleoside. The oligonucleotide may have a plurality of modified nucleosides that result in a total increase in Tm of the oligonucleotide in a range of 2° C. 3° C., 4° C., 5° C., 6° C., 7° C., 8° C., 9° ° C. 10° C. 15° ° C., 20° C., 25° C., 30° C., 35° C., 40° C., 45° C. or more compared with an oligonucleotide that does not have the modified nucleoside.


The oligonucleotide may comprise a mix of nucleosides of different kinds. For example, an oligonucleotide may comprise a mix of 2′-deoxyribonucleosides or ribonucleosides and 2′-fluoro modified nucleosides. An oligonucleotide may comprise a mix of deoxyribonucleosides or ribonucleosides and 2′-O-Me modified nucleosides. An oligonucleotide may comprise a mix of 2′-fluoro modified nucleosides and 2′-O-Me modified nucleosides. An oligonucleotide may comprise a mix of 2′-4′ bicyclic nucleosides and 2′-MOE, 2′-fluoro, or 2′-O-Me modified nucleosides. An oligonucleotide may comprise a mix of non-bicyclic 2′-modified nucleosides (e.g., 2′-MOE, 2′-fluoro, or 2′-O-Me) and 2′-4′ bicyclic nucleosides (e.g., LNA, ENA, cEt).


The oligonucleotide may comprise alternating nucleosides of different kinds. For example, an oligonucleotide may comprise alternating 2′-deoxyribonucleosides or ribonucleosides and 2′-fluoro modified nucleosides. An oligonucleotide may comprise alternating deoxyribonucleosides or ribonucleosides and 2′-O-Me modified nucleosides. An oligonucleotide may comprise alternating 2′-fluoro modified nucleosides and 2′-O-Me modified nucleosides. An oligonucleotide may comprise alternating 2′-4′ bicyclic nucleosides and 2′-MOE, 2′-fluoro, or 2′-O-Me modified nucleosides. An oligonucleotide may comprise alternating non-bicyclic 2′-modified nucleosides (e.g., 2′-MOE, 2′-fluoro, or 2′-O-Me) and 2′-4′ bicyclic nucleosides (e.g., LNA, ENA, cEt).


In some embodiments, an oligonucleotide described herein comprises a 5′-vinylphosphonate modification, one or more abasic residues, and/or one or more inverted abasic residues.


d. Internucleoside Linkages/Backbones

In some embodiments, oligonucleotide may contain a phosphorothioate or other modified internucleoside linkage. In some embodiments, the oligonucleotide comprises phosphorothioate internucleoside linkages. In some embodiments, the oligonucleotide comprises phosphorothioate internucleoside linkages between at least two nucleosides. In some embodiments, the oligonucleotide comprises phosphorothioate internucleoside linkages between all nucleosides. For example, in some embodiments, oligonucleotides comprise modified internucleoside linkages at the first, second, and/or (e.g., and) third internucleoside linkage at the 5′ or 3′ end of the nucleotide sequence.


Phosphorus-containing linkages that may be used include, but are not limited to, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates comprising 3′alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates comprising 3′-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3′-5′ linkages, 2′-5′ linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3′-5′ to 5′-3′ or 2′-5′ to 5′-2′; sec U.S. Pat. Nos. 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455, 233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563, 253; 5,571,799; 5,587,361; and 5,625,050.


In some embodiments, oligonucleotides may have heteroatom backbones, such as methylene(methylimino) or MMI backbones; amide backbones (see De Mesmacker et al. Acc. Chem. Res. 1995, 28:366-374); morpholino backbones (see Summerton and Weller, U.S. Pat. No. 5,034,506); or peptide nucleic acid (PNA) backbones (wherein the phosphodiester backbone of the oligonucleotide is replaced with a polyamide backbone, the nucleotides being bound directly or indirectly to the aza nitrogen atoms of the polyamide backbone, see Nielsen et al., Science 1991, 254, 1497).


e. Stereospecific Oligonucleotides

In some embodiments, internucleotidic phosphorus atoms of oligonucleotides are chiral, and the properties of the oligonucleotides by adjusted based on the configuration of the chiral phosphorus atoms. In some embodiments, appropriate methods may be used to synthesize P-chiral oligonucleotide analogs in a stereocontrolled manner (e.g., as described in Oka N, Wada T, Stercocontrolled synthesis of oligonucleotide analogs containing chiral internucleotidic phosphorus atoms. Chem Soc Rev. 2011 December; 40(12):5829-43.) In some embodiments, phosphorothioate containing oligonucleotides comprise nucleoside units that are joined together by cither substantially all Sp or substantially all Rp phosphorothioate intersugar linkages are provided. In some embodiments, such phosphorothioate oligonucleotides having substantially chirally pure intersugar linkages are prepared by enzymatic or chemical synthesis, as described, for example, in U.S. Pat. No. 5,587,261, issued on Dec. 12, 1996, the contents of which are incorporated herein by reference in their entirety. In some embodiments, chirally controlled oligonucleotides provide selective cleavage patterns of a target nucleic acid. For example, in some embodiments, a chirally controlled oligonucleotide provides single site cleavage within a complementary sequence of a nucleic acid, as described, for example, in US Patent Application Publication 20170037399 A1, published on Feb. 2, 2017, entitled “CHIRAL DESIGN”, the contents of which are incorporated herein by reference in their entirety.


f. Morpholinos

In some embodiments, the oligonucleotide may be a morpholino-based compounds. Morpholino-based oligomeric compounds are described in Dwaine A. Braasch and David R. Corey, Biochemistry, 2002, 41(14), 4503-4510); Genesis, volume 30, issue 3, 2001; Heasman, J., Dev. Biol., 2002, 243, 209-214; Nasevicius et al., Nat. Genet., 2000, 26, 216-220; Lacerra et al., Proc. Natl. Acad. Sci., 2000, 97, 9591-9596; and U.S. Pat. No. 5,034,506, issued Jul. 23, 1991. In some embodiments, the morpholino-based oligomeric compound is a phosphorodiamidate morpholino oligomer (PMO) (e.g., as described in Iverson, Curr. Opin. Mol. Ther., 3:235-238, 2001; and Wang et al., J. Gene Med., 12:354-364, 2010; the disclosures of which are incorporated herein by reference in their entireties).


g. Peptide Nucleic Acids (PNAs)

In some embodiments, both a sugar and an internucleoside linkage (the backbone) of the nucleotide units of an oligonucleotide are replaced with novel groups. In some embodiments, the base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, for example, an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative publication that report the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., Science, 1991, 254, 1497-1500.


h. Mixmers

In some embodiments, an oligonucleotide described herein may be a mixmer or comprise a mixmer sequence pattern. In general, mixmers are oligonucleotides that comprise both naturally and non-naturally occurring nucleosides or comprise two different types of non-naturally occurring nucleosides typically in an alternating pattern. Mixmers generally have higher binding affinity than unmodified oligonucleotides and may be used to specifically bind a target molecule, e.g., to block a binding site on the target molecule. Generally, mixmers do not recruit an RNase to the target molecule and thus do not promote cleavage of the target molecule. Such oligonucleotides that are incapable of recruiting RNase H have been described, for example, see WO2007/112754 or WO2007/112753.


In some embodiments, the mixmer comprises or consists of a repeating pattern of nucleoside analogues and naturally occurring nucleosides, or one type of nucleoside analogue and a second type of nucleoside analogue. However, a mixmer need not comprise a repeating pattern and may instead comprise any arrangement of modified nucleoside s and naturally occurring nucleoside s or any arrangement of one type of modified nucleoside and a second type of modified nucleoside. The repeating pattern, may, for instance be every second or every third nucleoside is a modified nucleoside, such as LNA, and the remaining nucleoside s are naturally occurring nucleosides, such as DNA, or are a 2′ substituted nucleoside analogue such as 2′-MOE or 2′ fluoro analogues, or any other modified nucleoside described herein. It is recognized that the repeating pattern of modified nucleoside, such as LNA units, may be combined with modified nucleoside at fixed positions—e.g. at the 5′ or 3′ termini.


In some embodiments, a mixmer does not comprise a region of more than 5, more than 4, more than 3, or more than 2 consecutive naturally occurring nucleosides, such as DNA nucleosides. In some embodiments, the mixmer comprises at least a region consisting of at least two consecutive modified nucleosides, such as at least two consecutive LNAs. In some embodiments, the mixmer comprises at least a region consisting of at least three consecutive modified nucleoside units, such as at least three consecutive LNAs.


In some embodiments, the mixmer does not comprise a region of more than 7, more than 6, more than 5, more than 4, more than 3, or more than 2 consecutive nucleoside analogues, such as LNAs. In some embodiments, LNA units may be replaced with other nucleoside analogues, such as those referred to herein.


Mixmers may be designed to comprise a mixture of affinity enhancing modified nucleosides, such as in non-limiting example LNA nucleosides and 2′-O-Me nucleosides. In some embodiments, a mixmer comprises modified internucleoside linkages (e.g., phosphorothioate internucleoside linkages or other linkages) between at least two, at least three, at least four, at least five or more nucleosides.


A mixmer may be produced using any suitable method. Representative U.S. patents, U.S. patent publications, and PCT publications that teach the preparation of mixmers include U.S. patent publication Nos. US20060128646, US20090209748, US20090298916, US20110077288, and US20120322851, and U.S. Pat. No. 7,687,617.


In some embodiments, a mixmer comprises one or more morpholino nucleosides. For example, in some embodiments, a mixmer may comprise morpholino nucleosides mixed (e.g., in an alternating manner) with one or more other nucleosides (e.g., DNA, RNA nucleosides) or modified nucleosides (e.g., LNA, 2′-O-Me nucleosides).


In some embodiments, mixmers are useful for splice correcting or exon skipping, for example, as reported in Touznik A., et al., LNA/DNA mixmer-based antisense oligonucleotides correct alternative splicing of the SMN2 gene and restore SMN protein expression in type I SMA fibroblasts Scientific Reports, volume 7, Article number: 3672 (2017), Chen S. et al., Synthesis of a Morpholino Nucleic Acid (MNA)-Uridine Phosphoramidite, and Exon Skipping Using MNA/2′-O-Methyl Mixmer Antisense Oligonucleotide, Molecules 2016, 21, 1582, the contents of each which are incorporated herein by reference.


i. Multimers

In some embodiments, molecular payloads may comprise multimers (e.g., concatemers) of 2 or more oligonucleotides connected by a linker. In this way, in some embodiments, the oligonucleotide loading of a complex can be increased beyond the available linking sites on a targeting agent (e.g., available thiol sites on an antibody) or otherwise tuned to achieve a particular payload loading content. Oligonucleotides in a multimer can be the same or different (e.g., targeting different genes or different sites on the same gene or products thereof).


In some embodiments, multimers comprise 2 or more oligonucleotides linked together by a cleavable linker. However, in some embodiments, multimers comprise 2 or more oligonucleotides linked together by a non-cleavable linker. In some embodiments, a multimer comprises 2, 3, 4, 5, 6, 7, 8, 9, 10 or more oligonucleotides linked together. In some embodiments, a multimer comprises 2 to 5, 2 to 10 or 4 to 20 oligonucleotides linked together.


In some embodiments, a multimer comprises 2 or more oligonucleotides linked end-to-end (in a linear arrangement). In some embodiments, a multimer comprises 2 or more oligonucleotides linked end-to-end via an oligonucleotide based linker (e.g., poly-dT linker, an abasic linker). In some embodiments, a multimer comprises a 5′ end of one oligonucleotide linked to a 3′ end of another oligonucleotide. In some embodiments, a multimer comprises a 3′ end of one oligonucleotide linked to a 3′ end of another oligonucleotide. In some embodiments, a multimer comprises a 5′ end of one oligonucleotide linked to a 5′ end of another oligonucleotide. Still, in some embodiments, multimers can comprise a branched structure comprising multiple oligonucleotides linked together by a branching linker.


Further examples of multimers that may be used in the complexes provided herein are disclosed, for example, in US Patent Application Number 2015/0315588 A1, entitled Methods of delivering multiple targeting oligonucleotides to a cell using cleavable linkers, which was published on Nov. 5, 2015; US Patent Application Number 2015/0247141 A1, entitled Multimeric Oligonucleotide Compounds, which was published on Sep. 3, 2015, US Patent Application Number US 2011/0158937 A1, entitled Immunostimulatory Oligonucleotide Multimers, which was published on Jun. 30, 2011; and U.S. Pat. No. 5,693,773, entitled Triplex-Forming Antisense Oligonucleotides Having Abasic Linkers Targeting Nucleic Acids Comprising Mixed Sequences Of Purines And Pyrimidines, which issued on Dec. 2, 1997, the contents of each of which are incorporated herein by reference in their entireties.


C. Linkers

Complexes described herein generally comprise a linker that covalently links any one of the anti-TfR1 antibodies described herein to a molecular payload. A linker comprises at least one covalent bond. In some embodiments, a linker may be a single bond, e.g., a disulfide bond or disulfide bridge, that covalently links an anti-TfR1 antibody to a molecular payload. However, in some embodiments, a linker may covalently link any one of the anti-TfR1 antibodies described herein to a molecular payload through multiple covalent bonds. In some embodiments, a linker may be a cleavable linker. However, in some embodiments, a linker may be a non-cleavable linker. A linker is typically stable in vitro and in vivo, and may be stable in certain cellular environments. Additionally, typically a linker does not negatively impact the functional properties of either the anti-TfR1 antibody or the molecular payload. Examples and methods of synthesis of linkers are known in the art (see, e.g. Kline, T. et al. “Methods to Make Homogenous Antibody Drug Conjugates.” Pharmaceutical Research, 2015, 32:11, 3480-3493; Jain, N. et al. “Current ADC Linker Chemistry” Pharm Res. 2015, 32:11, 3526-3540; McCombs, J. R. and Owen, S. C. “Antibody Drug Conjugates: Design and Selection of Linker, Payload and Conjugation Chemistry” AAPS J. 2015, 17:2, 339-351).


A linker typically will contain two different reactive species that allow for attachment to both the anti-TfR1 antibody and a molecular payload. In some embodiments, the two different reactive species may be a nucleophile and/or an electrophile. In some embodiments, a linker contains two different electrophiles or nucleophiles that are specific for two different nucleophiles or electrophiles. In some embodiments, a linker is covalently linked to an anti-TfR1 antibody via conjugation to a lysine residue or a cysteine residue of the anti-TfR1 antibody. In some embodiments, a linker is covalently linked to a cysteine residue of an anti-TfR1 antibody via a maleimide-containing linker, wherein optionally the maleimide-containing linker comprises a maleimidocaproyl or maleimidomethyl cyclohexane-1-carboxylate group. In some embodiments, a linker is covalently linked to a cysteine residue of an anti-TfR1 antibody or thiol functionalized molecular payload via a 3-arylpropionitrile functional group. In some embodiments, a linker is covalently linked to a lysine residue of an anti-TfR1 antibody. In some embodiments, a linker is covalently linked to an anti-TfR1 antibody and/or (e.g., and) a molecular payload, independently, via an amide bond, a carbamate bond, a hydrazide, a triazole, a thioether, and/or a disulfide bond.


i. Cleavable Linkers


A cleavable linker may be a protease-sensitive linker, a pH-sensitive linker, or a glutathione-sensitive linker. These linkers are typically cleavable only intracellularly and are preferably stable in extracellular environments, e.g., extracellular to a muscle cell.


Protease-sensitive linkers are cleavable by protease enzymatic activity. These linkers typically comprise peptide sequences and may be 2-10 amino acids, about 2-5 amino acids, about 5-10 amino acids, about 10 amino acids, about 5 amino acids, about 3 amino acids, or about 2 amino acids in length. In some embodiments, a peptide sequence may comprise naturally-occurring amino acids, e.g. cysteine, alanine, or non-naturally-occurring or modified amino acids. Non-naturally occurring amino acids include ß-amino acids, homo-amino acids, proline derivatives, 3-substituted alanine derivatives, linear core amino acids, N-methyl amino acids, and others known in the art. In some embodiments, a protease-sensitive linker comprises a valine-citrulline or alanine-citrulline sequence. In some embodiments, a protease-sensitive linker can be cleaved by a lysosomal protease, e.g. cathepsin B, and/or (e.g., and) an endosomal protease.


A pH-sensitive linker is a covalent linkage that readily degrades in high or low pH environments. In some embodiments, a pH-sensitive linker may be cleaved at a pH in a range of 4 to 6. In some embodiments, a pH-sensitive linker comprises a hydrazone or cyclic acetal. In some embodiments, a pH-sensitive linker is cleaved within an endosome or a lysosome.


In some embodiments, a glutathione-sensitive linker comprises a disulfide moiety. In some embodiments, a glutathione-sensitive linker is cleaved by a disulfide exchange reaction with a glutathione species inside a cell. In some embodiments, the disulfide moiety further comprises at least one amino acid, e.g., a cysteine residue.


In some embodiments, a linker comprises a valine-citrulline sequence (e.g., as described in U.S. Pat. No. 6,214,345, incorporated herein by reference). In some embodiments, before conjugation, a linker comprises a structure of:




embedded image


In some embodiments, after conjugation, a linker comprises a structure of:




embedded image


In some embodiments, before conjugation, a linker comprises a structure of:




embedded image




    • wherein n is any number from 0-10. In some embodiments, n is 3.





In some embodiments, a linker comprises a structure of:




embedded image




    • wherein n is any number from 0-10, wherein m is any number from 0-10. In some embodiments, n is 3 and/or (e.g., and) m is 4.





In some embodiments, a linker comprises a structure of:




embedded image




    • wherein n is any number from 0-10, wherein m is any number from 0-10. In some embodiments, n is 3 and/or (e.g., and) m is 4.


      ii. Non-Cleavable Linkers





In some embodiments, non-cleavable linkers may be used. Generally, a non-cleavable linker cannot be readily degraded in a cellular or physiological environment. In some embodiments, a non-cleavable linker comprises an optionally substituted alkyl group, wherein the substitutions may include halogens, hydroxyl groups, oxygen species, and other common substitutions. In some embodiments, a linker may comprise an optionally substituted alkyl, an optionally substituted alkylene, an optionally substituted arylene, a heteroarylene, a peptide sequence comprising at least one non-natural amino acid, a truncated glycan, a sugar or sugars that cannot be enzymatically degraded, an azide, an alkyne-azide, a peptide sequence comprising a LPXT sequence, a thioether, a biotin, a biphenyl, repeating units of polyethylene glycol or equivalent compounds, acid esters, acid amides, sulfamides, and/or an alkoxy-amine linker. In some embodiments, sortase-mediated ligation can be utilized to covalently link an anti-TfR1 antibody comprising a LPXT sequence to a molecular payload comprising a (G), sequence (see, e.g. Proft T. Sortase-mediated protein ligation: an emerging biotechnology tool for protein modification and immobilization. Biotechnol Lett. 2010, 32(1):1-10).


In some embodiments, a linker may comprise a substituted alkylene, an optionally substituted alkenylene, an optionally substituted alkynylene, an optionally substituted cycloalkylene, an optionally substituted cycloalkenylene, an optionally substituted arylene, an optionally substituted heteroarylene further comprising at least one heteroatom selected from N. O, and S; an optionally substituted heterocyclylene further comprising at least one heteroatom selected from N, O, and S, an imino, an optionally substituted nitrogen species, an optionally substituted oxygen species O, an optionally substituted sulfur species, or a poly(alkylene oxide), e.g. polyethylene oxide or polypropylene oxide. In some embodiments, a linker may be a non-cleavable N-gamma-maleimidobutyryl-oxysuccinimide ester (GMBS) linker.


iii. Linker Conjugation


In some embodiments, a linker is covalently linked to an anti-TfR1 antibody and/or (e.g., and) molecular payload via a phosphate, thioether, ether, carbon-carbon, carbamate, or amide bond. In some embodiments, a linker is covalently linked to an oligonucleotide through a phosphate or phosphorothioate group, e.g. a terminal phosphate of an oligonucleotide backbone. In some embodiments, a linker is covalently linked to an anti-TfR1 antibody, through a lysine or cysteine residue present on the anti-TfR1 antibody.


In some embodiments, a linker, or a portion thereof is covalently linked to an anti-TfR1 antibody and/or (e.g., and) molecular payload by a cycloaddition reaction between an azide and an alkyne to form a triazole, wherein the azide or the alkyne may be located on the anti-TfR1 antibody, molecular payload, or the linker. In some embodiments, an alkyne may be a cyclic alkyne, e.g., a cyclooctyne. In some embodiments, an alkyne may be bicyclononyne (also known as bicyclo[6.1.0]nonyne or BCN) or substituted bicyclononyne. In some embodiments, a cyclooctyne is as described in International Patent Application Publication WO2011136645, published on Nov. 3, 2011, entitled, “Fused Cyclooctyne Compounds And Their Use In Metal-free Click Reactions”. In some embodiments, an azide may be a sugar or carbohydrate molecule that comprises an azide. In some embodiments, an azide may be 6-azido-6-deoxygalactose or 6-azido-N-acetylgalactosamine. In some embodiments, a sugar or carbohydrate molecule that comprises an azide is as described in International Patent Application Publication WO2016170186, published on Oct. 27, 2016, entitled, “Process For The Modification Of A Glycoprotein Using A Glycosyltransferase That Is Or Is Derived From A β(1,4)-N-Acetylgalactosaminyltransferase”. In some embodiments, a cycloaddition reaction between an azide and an alkyne to form a triazole, wherein the azide or the alkyne may be located on the anti-TfR1 antibody, molecular payload, or the linker is as described in International Patent Application Publication WO2014065661, published on May 1, 2014, entitled, “Modified antibody, antibody-conjugate and process for the preparation thereof”; or International Patent Application Publication WO2016170186, published on Oct. 27, 2016, entitled, “Process For The Modification Of A Glycoprotein Using A Glycosyltransferase That Is Or Is Derived From A β(1,4)-N-Acetylgalactosaminyltransferase”.


In some embodiments, a linker comprises a spacer, e.g., a polyethylene glycol spacer or an acyl/carbomoyl sulfamide spacer, e.g., a HydraSpace™ spacer. In some embodiments, a spacer is as described in Verkade, J. M. M. et al., “A Polar Sulfamide Spacer Significantly Enhances the Manufacturability, Stability, and Therapeutic Index of Antibody-Drug Conjugates”, Antibodies, 2018, 7, 12.


In some embodiments, a linker is covalently linked to an anti-TfR1 antibody and/or (e.g., and) molecular payload by the Diels-Alder reaction between a dienophile and a diene/hetero-diene, wherein the dienophile or the diene/hetero-diene may be located on the anti-TfR1 antibody, molecular payload, or the linker. In some embodiments a linker is covalently linked to an anti-TfR1 antibody and/or (e.g., and) molecular payload by other pericyclic reactions such as an ene reaction. In some embodiments, a linker is covalently linked to an anti-TfR1 antibody and/or (e.g., and) molecular payload by an amide, thioamide, or sulfonamide bond reaction. In some embodiments, a linker is covalently linked to an anti-TfR1 antibody and/or (e.g., and) molecular payload by a condensation reaction to form an oxime, hydrazone, or semicarbazide group existing between the linker and the anti-TfR1 antibody and/or (e.g., and) molecular payload.


In some embodiments, a linker is covalently linked to an anti-TfR1 antibody and/or (e.g., and) molecular payload by a conjugate addition reaction between a nucleophile, e.g. an amine or a hydroxyl group, and an electrophile, e.g. a carboxylic acid, carbonate, or an aldehyde. In some embodiments, a nucleophile may exist on a linker and an electrophile may exist on an anti-TfR1 antibody or molecular payload prior to a reaction between a linker and an anti-TfR1 antibody or molecular payload. In some embodiments, an electrophile may exist on a linker and a nucleophile may exist on an anti-TfR1 antibody or molecular payload prior to a reaction between a linker and an anti-TfR1 antibody or molecular payload. In some embodiments, an electrophile may be an azide, pentafluorophenyl, a silicon centers, a carbonyl, a carboxylic acid, an anhydride, an isocyanate, a thioisocyanate, a succinimidyl ester, a sulfosuccinimidyl ester, a maleimide, an alkyl halide, an alkyl pseudohalide, an epoxide, an episulfide, an aziridine, an aryl, an activated phosphorus center, and/or an activated sulfur center. In some embodiments, a nucleophile may be an optionally substituted alkene, an optionally substituted alkyne, an optionally substituted aryl, an optionally substituted heterocyclyl, a hydroxyl group, an amino group, an alkylamino group, an anilido group, and/or a thiol group.


In some embodiments, a linker comprises a valine-citrulline sequence covalently linked to a reactive chemical moiety (e.g., an azide moiety or a BCN moiety for click chemistry). In some embodiments, a linker comprising a valine-citrulline sequence covalently linked to a reactive chemical moiety (e.g., an azide moiety for click chemistry) comprises a structure of:




embedded image




    • wherein n is any number from 0-10. In some embodiments, n is 3.





In some embodiments, a linker comprising the structure of Formula (A) is covalently linked (e.g., optionally via additional chemical moieties) to a molecular payload (e.g., an oligonucleotide). In some embodiments, a linker comprising the structure of Formula (A) is covalently linked to an oligonucleotide, e.g., through a nucleophilic substitution with amine-L1-oligonucleotides forming a carbamate bond, yielding a compound comprising a structure of:




embedded image




    • wherein n is any number from 0-10. In some embodiments, n is 3.





In some embodiments, the compound of Formula (B) is further covalently linked via a triazole to additional moieties, wherein the triazole is formed by a click reaction between the azide of Formula (A) or Formula (B) and an alkyne provided on a bicyclononyne. In some embodiments, a compound comprising a bicyclononyne comprises a structure of:




embedded image




    • wherein m is any number from 0-10. In some embodiments, m is 4.





In some embodiments, the azide of the compound of structure (B) forms a triazole via a click reaction with the alkyne of the compound of structure (C), forming a compound comprising a structure of:




embedded image




    • wherein n is any number from 0-10, and wherein m is any number from 0-10. In some embodiments, n is 3 and m is 4.





In some embodiments, the compound of structure (D) is further covalently linked to a lysine of the anti-TfR1 antibody, forming a complex comprising a structure of:




embedded image




    • wherein n is any number from 0-10, wherein m is any number from 0-10. In some embodiments, n is 3 and/or (e.g., and) m is 4. It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (E) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.





In some embodiments, the compound of Formula (C) is further covalently linked to a lysine of the anti-TfR1 antibody, forming a compound comprising a structure of:




embedded image




    • wherein m is 0-15 (e.g., 4). It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (F) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.





In some embodiments, the azide of the compound of structure (B) forms a triazole via a click reaction with the alkyne of the compound of structure (F), forming a complex comprising a structure of:




embedded image




    • wherein n is any number from 0-10, wherein m is any number from 0-10. In some embodiments, n is 3 and/or (e.g., and) m is 4. It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (E) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.





In some embodiments, the azide of the compound of structure (A) forms a triazole via a click reaction with the alkyne of the compound of structure (F), forming a compound comprising a structure of:




embedded image




    • wherein n is any number from 0-10, wherein m is any number from 0-10. In some embodiments, n is 3 and/or (e.g., and) m is 4. In some embodiments, an oligonucleotide is covalently linked to a compound comprising a structure of formula (G), thereby forming a complex comprising a structure of formula (E). It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (G) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.





In some embodiments, in any one of the complexes described herein, the anti-TfR1 antibody is covalently linked via a lysine of the anti-TfR1 antibody to a molecular payload (e.g., an oligonucleotide) via a linker comprising a structure of:




embedded image




    • wherein n is any number from 0-10, wherein m is any number from 0-10. In some embodiments, n is 3 and/or (e.g., and) m is 4.





In some embodiments, in any one of the complexes described herein, the anti-TfR1 antibody is covalently linked via a lysine of the anti-TfR1 antibody to a molecular payload (e.g., an oligonucleotide) via a linker comprising a structure of:




embedded image




    • wherein n is any number from 0-10, wherein m is any number from 0-10. In some embodiments, n is 3 and/or (e.g., and) m is 4.





In some embodiments, in formulae (B), (D), (E), and (I), L1 is a spacer that is a substituted or unsubstituted aliphatic, substituted or unsubstituted heteroaliphatic, substituted or unsubstituted carbocyclylene, substituted or unsubstituted heterocyclylene, substituted or unsubstituted arylene, substituted or unsubstituted heteroarylene, —O—, —N(RA)—, —S—, —C(═O)—, —C(═O)O—, —C(═O)NRA—, —NRAC(═O)—, —NRAC(═O)RA—, —C(═O)RA—, —NRAC(═O)O—, —NRAC(═O)N(RA)—, —OC(═O)—, —OC(═O)O—, —OC(═O)N(RA)—, —S(O)2NRA—, —NRAS(O)2—, or a combination thereof, wherein each RA is independently hydrogen or substituted or unsubstituted alkyl. In some embodiments, L1 is




embedded image


wherein L2 is




embedded image


wherein a labels the site directly linked to the carbamate moiety of formulae (B), (D), (E), and (I); and b labels the site covalently linked (directly or via additional chemical moieties) to the oligonucleotide.


In some embodiments, L1 is:




embedded image




    • wherein a labels the site directly linked to the carbamate moiety of formulae (B), (D), (E), and (I); and b labels the site covalently linked (directly or via additional chemical moieties) to the oligonucleotide.





In some embodiments, L1 is




embedded image


In some embodiments, L1 is linked to a 5′ phosphate of the oligonucleotide. In some embodiments, the phosphate is a phosphodiester. In some embodiments, L1 is linked to a 5′ phosphorothioate of the oligonucleotide. In some embodiments, L1 is linked to a 5′ phosphonoamidate of the oligonucleotide. In some embodiments, L1 is linked via a phosphorodiamidate linkage to the 5′ end of the oligonucleotide.


In some embodiments, L1 is optional (e.g., need not be present).


In some embodiments, any one of the complexes described herein has a structure of:




embedded image




    • wherein n is 0-15 (e.g., 3) and m is 0-15 (e.g., 4). It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (J) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.





In some embodiments, any one of the complexes described herein has a structure of:




embedded image




    • wherein n is 0-15 (e.g., 3) and m is 0-15 (e.g., 4).





In some embodiments, the oligonucleotide is modified to comprise an amine group at the 5′ end, the 3′ end, or internally (e.g., as an amine functionalized nucleobase), prior to linking to a compound, e.g., a compound of formula (A) or formula (G).


Although linker conjugation is described in the context of anti-TfR1 antibodies and oligonucleotide molecular payloads, it should be understood that use of such linker conjugation on other muscle-targeting agents, such as other muscle-targeting antibodies, and/or on other molecular payloads is contemplated.


D. Examples of Antibody-Molecular Payload Complexes

Further provided herein are non-limiting examples of complexes comprising any one the anti-TfR1 antibodies described herein covalently linked to any of the molecular payloads (e.g., an oligonucleotide) described herein. In some embodiments, the anti-TfR1 antibody (e.g., any one of the anti-TfR1 antibodies provided in Tables 2-7) is covalently linked to a molecular payload (e.g., an oligonucleotide such as the oligonucleotides provided in Table 8) via a linker. Any of the linkers described herein may be used. In some embodiments, if the molecular payload is an oligonucleotide, the linker is linked to the 5′ end of the oligonucleotide, the 3′ end of the oligonucleotide, or to an internal site of the oligonucleotide. In some embodiments, the linker is linked to the anti-TfR1 antibody via a thiol-reactive linkage (e.g., via a cysteine in the anti-TfR1 antibody). In some embodiments, the linker (e.g., a linker comprising a valine-citrulline sequence) is linked to the antibody (e.g., an anti-TfR1 antibody described herein) via an amine group (e.g., via a lysine in the antibody). In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399).


An example of a structure of a complex comprising an anti-TfR1 antibody covalently linked to a molecular payload via a linker is provided below:




embedded image




    • wherein the linker is linked to the antibody via a thiol-reactive linkage (e.g., via a cysteine in the antibody). In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399).





Another example of a structure of a complex comprising an anti-TfR1 antibody covalently linked to a molecular payload via a linker is provided below:




embedded image




    • wherein n is a number between 0-10, wherein m is a number between 0-10, wherein the linker is linked to the antibody via an amine group (e.g., on a lysine residue), and/or (e.g., and) wherein the linker is linked to the oligonucleotide (e.g., at the 5′ end, 3′ end, or internally). In some embodiments, the linker is linked to the antibody via a lysine, the linker is linked to the oligonucleotide at the 5′ end, n is 3, and m is 4. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399). It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (E) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.





It should be appreciated that antibodies can be linked to molecular payloads with different stoichiometries, a property that may be referred to as a drug to antibody ratios (DAR) with the “drug” being the molecular payload. In some embodiments, one molecular payload is linked to an antibody (DAR=1). In some embodiments, two molecular payloads are linked to an antibody (DAR=2). In some embodiments, three molecular payloads are linked to an antibody (DAR=3). In some embodiments, four molecular payloads are linked to an antibody (DAR=4). In some embodiments, a mixture of different complexes, each having a different DAR, is provided. In some embodiments, an average DAR of complexes in such a mixture may be in a range of 1 to 3, 1 to 4, 1 to 5 or more. An average DAR of complexes in a mixture need not be an integer value. DAR may be increased by conjugating molecular payloads to different sites on an antibody and/or (e.g., and) by conjugating multimers to one or more sites on antibody. For example, a DAR of 2 may be achieved by conjugating a single molecular payload to two different sites on an antibody or by conjugating a dimer molecular payload to a single site of an antibody.


In some embodiments, the complex described herein comprises an anti-TfR1 antibody described herein (e.g., the antibodies provided in Tables 2-7) covalently linked to a molecular payload. In some embodiments, the complex described herein comprises an anti-TfR1 antibody described herein (e.g., the antibodies provided in Tables 2-7) covalently linked to molecular payload via a linker (e.g., a linker comprising a valine-citrulline sequence). In some embodiments, the linker (e.g., a linker comprising a valine-citrulline sequence) is linked to the antibody (e.g., an anti-TfR1 antibody described herein) via a thiol-reactive linkage (e.g., via a cysteine in the antibody). In some embodiments, the linker (e.g., a linker comprising a valine-citrulline sequence) is linked to the antibody (e.g., an anti-TfR1 antibody described herein) via an amine group (e.g., via a lysine in the antibody). In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a CDR-H1, a CDR-H2, a CDR-H3, a CDR-L1, a CDR-L2, and a CDR-L3 of any one of the antibodies listed in Table 2. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a VH comprising the amino acid sequence of SEQ ID NO: 69, SEQ ID NO: 71, or SEQ ID NO: 72, and a VL comprising the amino acid sequence of SEQ ID NO: 70. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a VH comprising the amino acid sequence of SEQ ID NO: 73 or SEQ ID NO: 76, and a VL comprising the amino acid sequence of SEQ ID NO: 74. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a VH comprising the amino acid sequence of SEQ ID NO: 73 or SEQ ID NO: 76, and a VL comprising the amino acid sequence of SEQ ID NO: 75. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a VH comprising the amino acid sequence of SEQ ID NO: 77, and a VL comprising the amino acid sequence of SEQ ID NO: 78. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a VH comprising the amino acid sequence of SEQ ID NO: 77 or SEQ ID NO: 79, and a VL comprising the amino acid sequence of SEQ ID NO: 80. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a VH comprising the amino acid sequence of SEQ ID NO: 154, and a VL comprising the amino acid sequence of SEQ ID NO: 155. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 84, SEQ ID NO: 86 or SEQ ID NO: 87 and a light chain comprising the amino acid sequence of SEQ ID NO: 85. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 88 or SEQ ID NO: 91, and a light chain comprising the amino acid sequence of SEQ ID NO: 89. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 88 or SEQ ID NO: 91, and a light chain comprising the amino acid sequence of SEQ ID NO: 90. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 92 or SEQ ID NO: 94, and a light chain comprising the amino acid sequence of SEQ ID NO: 95. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 92, and a light chain comprising the amino acid sequence of SEQ ID NO: 93. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 156, and a light chain comprising the amino acid sequence of SEQ ID NO: 157. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 97, SEQ ID NO: 98, or SEQ ID NO: 99 and a light chain comprising the amino acid sequence of SEQ ID NO: 85. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 100 or SEQ ID NO: 101 and a light chain comprising the amino acid sequence of SEQ ID NO: 89. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 100 or SEQ ID NO: 101 and a light chain comprising the amino acid sequence of SEQ ID NO: 90. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 102 and a light chain comprising the amino acid sequence of SEQ ID NO: 93. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 102 or SEQ ID NO: 103 and a light chain comprising the amino acid sequence of SEQ ID NO: 95. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 158 or SEQ ID NO: 159 and a light chain comprising the amino acid sequence of SEQ ID NO: 157. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399).


In any of the example complexes described herein, in some embodiments, the anti-TfR1 antibody is covalently linked to the molecular payload via a linker comprising a structure of:




embedded image




    • wherein n is 3, m is 4.





In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to the 5′ end of a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399) via a lysine in the anti-TfR1 antibody, wherein the anti-TfR1 antibody comprises a CDR-H1, a CDR-H2, a CDR-H3, a CDR-L1, a CDR-L2, and a CDR-L3 of any one of the antibodies listed in Table 2, wherein the complex has a structure of:




embedded image




    • wherein n is 3 and m is 4. It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (E) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.





In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to the 5′ end of a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399) via a lysine in the anti-TfR1 antibody, wherein the anti-TfR1 antibody comprises a VH and VL of any one of the antibodies listed in Table 3, wherein the complex has a structure of:




embedded image




    • wherein n is 3 and m is 4. It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (E) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.





In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to the 5′ end of a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399) via a lysine in the anti-TfR1 antibody, wherein the anti-TfR1 antibody comprises a heavy chain and light chain of any one of the antibodies listed in Table 4, wherein the complex has a structure of:




embedded image




    • wherein n is 3 and m is 4. It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (E) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.





In some embodiments, the complex described herein comprises an anti-TfR1 Fab covalently linked to the 5′ end of a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 400-879, or complementary to any one of SEQ ID NO: 160-399) via a lysine in the anti-TfR1 antibody, wherein the anti-TfR1 Fab comprises a heavy chain and light chain of any one of the antibodies listed in Table 5, wherein the complex has a structure of:




embedded image




    • wherein n is 3 and m is 4. It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (E) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.





In some embodiments, in any one of the examples of complexes described herein, L1 is:




embedded image


wherein L2 is




embedded image


wherein a labels the site directly linked to the carbamate moiety of formulae (B), (D), (E), and (I); and b labels the site covalently linked (directly or via additional chemical moieties) to the oligonucleotide. In some embodiments, L1 is:




embedded image




    • wherein a labels the site directly linked to the carbamate moiety of formulae (B), (D), (E), and (I); and b labels the site covalently linked (directly or via additional chemical moieties) to the oligonucleotide.





In some embodiments. L1 is linked to a 5′ phosphate of the oligonucleotide. In some embodiments, the phosphate is a phosphodiester. In some embodiments, L1 is linked to a 5′ phosphorothioate of the oligonucleotide. In some embodiments. L1 is linked to a 5′ phosphonoamidate of the oligonucleotide. In some embodiments, L1 is linked via a phosphorodiamidate linkage to the 5′ end of the oligonucleotide.


In some embodiments, L1 is optional (e.g., need not be present).


III. Formulations

Complexes provided herein may be formulated in any suitable manner. Generally, complexes provided herein are formulated in a manner suitable for pharmaceutical use. For example, complexes can be delivered to a subject using a formulation that minimizes degradation, facilitates delivery and/or (e.g., and) uptake, or provides another beneficial property to the complexes in the formulation. In some embodiments, provided herein are compositions comprising complexes and pharmaceutically acceptable carriers. Such compositions can be suitably formulated such that when administered to a subject, either into the immediate environment of a target cell or systemically, a sufficient amount of the complexes enter target muscle cells. In some embodiments, complexes are formulated in buffer solutions such as phosphate-buffered saline solutions, liposomes, micellar structures, and capsids.


It should be appreciated that, in some embodiments, compositions may include separately one or more components of complexes provided herein (e.g., muscle-targeting agents, linkers, molecular payloads, or precursor molecules of any one of them).


In some embodiments, complexes are formulated in water or in an aqueous solution (e.g., water with pH adjustments). In some embodiments, complexes are formulated in basic buffered aqueous solutions (e.g., PBS). In some embodiments, formulations as disclosed herein comprise an excipient. In some embodiments, an excipient confers to a composition improved stability, improved absorption, improved solubility and/or (e.g., and) therapeutic enhancement of the active ingredient. In some embodiments, an excipient is a buffering agent (e.g., sodium citrate, sodium phosphate, a tris base, or sodium hydroxide) or a vehicle (e.g., a buffered solution, petrolatum, dimethyl sulfoxide, or mineral oil).


In some embodiments, a complex or component thereof (e.g., oligonucleotide or antibody) is lyophilized for extending its shelf-life and then made into a solution before use (e.g., administration to a subject). Accordingly, an excipient in a composition comprising a complex, or component thereof, described herein may be a lyoprotectant (e.g., mannitol, lactose, polyethylene glycol, or polyvinyl pyrolidone), or a collapse temperature modifier (e.g., dextran, ficoll, or gelatin).


In some embodiments, a pharmaceutical composition is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, administration. Typically, the route of administration is intravenous or subcutaneous.


Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. In some embodiments, formulations include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, and sodium chloride in the composition. Sterile injectable solutions can be prepared by incorporating the complexes in a required amount in a selected solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.


In some embodiments, a composition may contain at least about 0.1% of the complex, or component thereof, or more, although the percentage of the active ingredient(s) may be between about 1% and about 80% or more of the weight or volume of the total composition. Factors such as solubility, bioavailability, biological half-life, route of administration, product shelf life, as well as other pharmacological considerations will be contemplated by one skilled in the art of preparing such pharmaceutical formulations, and as such, a variety of dosages and treatment regimens may be desirable.


IV. Methods of Use/Treatment

Complexes comprising a muscle-targeting agent covalently linked to a molecular payload as described herein are effective in treating a subject having a dystrophinopathy, e.g., Duchenne muscular dystrophy. In some embodiments, complexes comprise a molecular payload that is an oligonucleotide, e.g., an antisense oligonucleotide that facilitates exon skipping of a pre-mRNA expressed from a mutated DMD allele.


In some embodiments, a subject may be a human subject, a non-human primate subject, a rodent subject, or any suitable mammalian subject. In some embodiments, a subject may have Duchenne muscular dystrophy or other dystrophinopathy. In some embodiments, a subject has a mutated DMD allele, which may optionally comprise at least one mutation in a DMD exon that causes a frameshift mutation and leads to improper RNA splicing/processing. In some embodiments, a subject is suffering from symptoms of a severe dystrophinopathy, e.g. muscle atrophy or muscle loss. In some embodiments, a subject has an asymptomatic increase in serum concentration of creatine phosphokinase (CK) and/or (e.g., and) muscle cramps with myoglobinuria. In some embodiments, a subject has a progressive muscle disease, such as Duchenne or Becker muscular dystrophy or DMD-associated dilated cardiomyopathy (DCM). In some embodiments, a subject is not suffering from symptoms of a dystrophinopathy.


In some embodiments, a subject has a mutation in a DMD gene that is amenable to exon 45 skipping. In some embodiments, a complex comprising a muscle-targeting agent covalently linked to a molecular payload as described herein is effective in treating a subject having a mutation in a DMD gene that is amenable to exon 45 skipping. In some embodiments, a complex comprises a molecular payload that is an oligonucleotide, e.g., an antisense oligonucleotide that facilitates skipping of exon 45 of a pre-mRNA, such as in a pre-mRNA encoded from a mutated DMD gene (e.g., a mutated DMD gene that is amenable to exon 45 skipping).


An aspect of the disclosure includes methods involving administering to a subject an effective amount of a complex as described herein. In some embodiments, an effective amount of a pharmaceutical composition that comprises a complex comprising a muscle-targeting agent covalently linked to a molecular payload can be administered to a subject in need of treatment. In some embodiments, a pharmaceutical composition comprising a complex as described herein may be administered by a suitable route, which may include intravenous administration, e.g., as a bolus or by continuous infusion over a period of time. In some embodiments, administration may be performed by intramuscular, intraperitoneal, intracerebrospinal, subcutaneous, intra-articular, intrasynovial, or intrathecal routes. In some embodiments, a pharmaceutical composition may be in solid form, aqueous form, or a liquid form. In some embodiments, an aqueous or liquid form may be nebulized or lyophilized. In some embodiments, a nebulized or lyophilized form may be reconstituted with an aqueous or liquid solution.


Compositions for intravenous administration may contain various carriers such as vegetable oils, dimethylactamide, dimethyformamide, ethyl lactate, ethyl carbonate, isopropyl myristate, ethanol, and polyols (glycerol, propylene glycol, liquid polyethylene glycol, and the like). For intravenous injection, water soluble antibodies can be administered by the drip method, whereby a pharmaceutical formulation containing the antibody and a physiologically acceptable excipients is infused. Physiologically acceptable excipients may include, for example, 5% dextrose, 0.9% saline, Ringer's solution or other suitable excipients. Intramuscular preparations, e.g., a sterile formulation of a suitable soluble salt form of the antibody, can be dissolved and administered in a pharmaceutical excipient such as Water-for-Injection, 0.9% saline, or 5% glucose solution.


In some embodiments, a pharmaceutical composition that comprises a complex comprising a muscle-targeting agent covalently linked to a molecular payload is administered via site-specific or local delivery techniques. Examples of these techniques include implantable depot sources of the complex, local delivery catheters, site specific carriers, direct injection, or direct application.


In some embodiments, a pharmaceutical composition that comprises a complex comprising a muscle-targeting agent covalently linked to a molecular payload is administered at an effective concentration that confers therapeutic effect on a subject. Effective amounts vary, as recognized by those skilled in the art, depending on the severity of the disease, unique characteristics of the subject being treated, e.g., age, physical conditions, health, or weight, the duration of the treatment, the nature of any concurrent therapies, the route of administration and related factors. These related factors are known to those in the art and may be addressed with no more than routine experimentation. In some embodiments, an effective concentration is the maximum dose that is considered to be safe for the patient. In some embodiments, an effective concentration will be the lowest possible concentration that provides maximum efficacy.


Empirical considerations, e.g., the half-life of the complex in a subject, generally will contribute to determination of the concentration of pharmaceutical composition that is used for treatment. The frequency of administration may be empirically determined and adjusted to maximize the efficacy of the treatment.


The efficacy of treatment may be assessed using any suitable methods. In some embodiments, the efficacy of treatment may be assessed by evaluation of observation of symptoms associated with a dystrophinopathy, e.g., muscle atrophy or muscle weakness, through measures of a subject's self-reported outcomes, e.g., mobility, self-care, usual activities, pain/discomfort, and anxiety/depression, or by quality-of-life indicators, e.g., lifespan.


In some embodiments, a pharmaceutical composition that comprises a complex comprising a muscle-targeting agent covalently linked to a molecular payload described herein is administered to a subject at an effective concentration sufficient to modulate activity or expression of a target gene by at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90% or at least 95% relative to a control, e.g. baseline level of gene expression prior to treatment.


Additional Embodiments

1. A complex comprising an anti-transferrin receptor 1 (TfR1) antibody covalently linked to a molecular payload configured for inducing skipping of exon 45 in a DMD pre-mRNA, wherein the anti-TfR1 antibody is an antibody identified in any one of Tables 2-7.


2. The complex of embodiment 1, wherein the anti-TfR1 antibody comprises:

    • (i) a heavy chain complementarity determining region 1 (CDR-H1) of SEQ ID NO: 33, a heavy chain complementarity determining region 2 (CDR-H2) of SEQ ID NO: 34, a heavy chain complementarity determining region 3 (CDR-H3) of SEQ ID NO: 35, a light chain complementarity determining region 1 (CDR-L1) of SEQ ID NO: 36, a light chain complementarity determining region 2 (CDR-L2) of SEQ ID NO: 37, and a light chain complementarity determining region 3 (CDR-L3) of SEQ ID NO: 32;
    • (ii) a CDR-H1 of SEQ ID NO: 7, a CDR-H2 of SEQ ID NO: 8, a CDR-H3 of SEQ ID NO: 9, a CDR-L1 of SEQ ID NO: 10, a CDR-L2 of SEQ ID NO: 11, and a CDR-L3 of SEQ ID NO: 6;
    • (iii) a CDR-H1 of SEQ ID NO: 7, a CDR-H2 of SEQ ID NO: 20, a CDR-H3 of SEQ ID NO: 9, a CDR-L1 of SEQ ID NO: 10, a CDR-L2 of SEQ ID NO: 11, and a CDR-L3 of SEQ ID NO: 6;
    • (iv) a CDR-H1 of SEQ ID NO: 7, a CDR-H2 of SEQ ID NO: 24, a CDR-H3 of SEQ ID NO: 9, a CDR-L1 of SEQ ID NO: 10, a CDR-L2 of SEQ ID NO: 11, and a CDR-L3 of SEQ ID NO: 6;
    • (v) a CDR-H1 of SEQ ID NO: 51, a CDR-H2 of SEQ ID NO: 52, a CDR-H3 of SEQ ID NO: 53, a CDR-L1 of SEQ ID NO: 54, a CDR-L2 of SEQ ID NO: 55, and a CDR-L3 of SEQ ID NO: 50;
    • (vi) a CDR-H1 of SEQ ID NO: 64, a CDR-H2 of SEQ ID NO: 52, a CDR-H3 of SEQ ID NO: 53, a CDR-L1 of SEQ ID NO: 54, a CDR-L2 of SEQ ID NO: 55, and a CDR-L3 of SEQ ID NO: 50; or
    • (vii) a CDR-H1 of SEQ ID NO: 67, a CDR-H2 of SEQ ID NO: 52, a CDR-H3 of SEQ ID NO: 53, a CDR-L1 of SEQ ID NO: 54, a CDR-L2 of SEQ ID NO: 55, and a CDR-L3 of SEQ ID NO: 50.


3. The complex of embodiment 1 or embodiment 2, wherein the anti-TfR1 antibody comprises:

    • (i) a heavy chain variable region (VH) comprising an amino acid sequence at least 85% identical to SEQ ID NO: 76; and/or a light chain variable region (VL) comprising an amino acid sequence at least 85% identical to SEQ ID NO: 75;
    • (ii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 69; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 70;
    • (iii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 71; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 70;
    • (iv) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 72; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 70;
    • (v) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 73; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 74;
    • (vi) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 73; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 75;
    • (vii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 76; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 74;
    • (viii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 77; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 78;
    • (ix) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 79; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 80; or
    • (x) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 77; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 80.


4. The complex of any one of embodiments 1 to 3, wherein the anti-TfR1 antibody comprises:

    • (i) a VH comprising the amino acid sequence of SEQ ID NO: 76 and a VL comprising the amino acid sequence of SEQ ID NO: 75;
    • (ii) a VH comprising the amino acid sequence of SEQ ID NO: 69 and a VL comprising the amino acid sequence of SEQ ID NO: 70;
    • (iii) a VH comprising the amino acid sequence of SEQ ID NO: 71 and a VL comprising the amino acid sequence of SEQ ID NO: 70;
    • (iv) a VH comprising the amino acid sequence of SEQ ID NO: 72 and a VL comprising the amino acid sequence of SEQ ID NO: 70;
    • (v) a VH comprising the amino acid sequence of SEQ ID NO: 73 and a VL comprising the amino acid sequence of SEQ ID NO: 74;
    • (vi) a VH comprising the amino acid sequence of SEQ ID NO: 73 and a VL comprising the amino acid sequence of SEQ ID NO: 75;
    • (vii) a VH comprising the amino acid sequence of SEQ ID NO: 76 and a VL comprising the amino acid sequence of SEQ ID NO: 74;
    • (viii) a VH comprising the amino acid sequence of SEQ ID NO: 77 and a VL comprising the amino acid sequence of SEQ ID NO: 78;
    • (ix) a VH comprising the amino acid sequence of SEQ ID NO: 79 and a VL comprising the amino acid sequence of SEQ ID NO: 80; or
    • (x) a VH comprising the amino acid sequence of SEQ ID NO: 77 and a VL comprising the amino acid sequence of SEQ ID NO: 80.


5. The complex of any one of embodiments 1 to 4, wherein the anti-TfR1 antibody is a Fab fragment, a Fab′ fragment, a F(ab′)2 fragment, an scFv, an Fv, or a full-length IgG.


6. The complex of embodiment 5, wherein the anti-TfR1 antibody is a Fab fragment.


7. The complex of embodiment 6, wherein the anti-TfR1 antibody comprises:

    • (i) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 101; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 90;
    • (ii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 97; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 85;
    • (iii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 98; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 85;
    • (iv) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 99; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 85;
    • (v) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 100; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 89;
    • (vi) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 100; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 90;
    • (vii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 101; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 89;
    • (viii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 102; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 93;
    • (ix) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 103; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 95; or
    • (x) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 102; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 95.


8. The complex of embodiment 6 or embodiment 7, wherein the anti-TfR1 antibody comprises:

    • (i) a heavy chain comprising the amino acid sequence of SEQ ID NO: 101; and a light chain comprising the amino acid sequence of SEQ ID NO: 90;
    • (ii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 97; and a light chain comprising the amino acid sequence of SEQ ID NO: 85;
    • (iii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 98; and a light chain comprising the amino acid sequence of SEQ ID NO: 85;
    • (iv) a heavy chain comprising the amino acid sequence of SEQ ID NO: 99; and a light chain comprising the amino acid sequence of SEQ ID NO: 85;
    • (v) a heavy chain comprising the amino acid sequence of SEQ ID NO: 100; and a light chain comprising the amino acid sequence of SEQ ID NO: 89;
    • (vi) a heavy chain comprising the amino acid sequence of SEQ ID NO: 100; and a light chain comprising the amino acid sequence of SEQ ID NO: 90;
    • (vii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 101; and a light chain comprising the amino acid sequence of SEQ ID NO: 89;
    • (viii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 102; and a light chain comprising the amino acid sequence of SEQ ID NO: 93;
    • (ix) a heavy chain comprising the amino acid sequence of SEQ ID NO: 103; and a light chain comprising the amino acid sequence of SEQ ID NO: 95; or
    • (x) a heavy chain comprising the amino acid sequence of SEQ ID NO: 102; and a light chain comprising the amino acid sequence of SEQ ID NO: 95.


9. The complex of any one of embodiments 1 to 8, wherein the anti-TfR1 antibody does not specifically bind to the transferrin binding site of the transferrin receptor 1 and/or wherein the anti-TfR1 antibody does not inhibit binding of transferrin to the transferrin receptor 1.


10. The complex of any one of embodiments 1 to 9, wherein the molecular payload comprises an oligonucleotide.


11. The complex of embodiment 10, wherein the oligonucleotide promotes antisense-mediated exon skipping in the DMD pre-RNA.


12. The complex of embodiment 10 or 11, wherein the oligonucleotide comprises a region of complementarity to a splicing feature of the DMD pre-mRNA.


13. The complex of embodiment 12, wherein the splicing feature is an exonic splicing enhancer (ESE) of the DMD pre-mRNA.


14. The complex of embodiment 13, wherein the splicing feature is in exon 45 of the DMD pre-mRNA, optionally wherein the ESE comprises a sequence of any one of SEQ ID NOs: 885-912.


15. The complex of embodiment 12, wherein the splicing feature is a branch point, a splice donor site, or a splice acceptor site.


16. The complex of embodiment 15, wherein the splicing feature is across the junction of exon 44 and intron 44, in intron 44, across the junction of intron 44 and exon 45, across the junction of exon 45 and intron 45, in intron 45, or across the junction of intron 45 and exon 46 of the DMD pre-mRNA, optionally wherein the splicing feature comprises a sequence of any one of SEQ ID NOs: 880-884 and 913-916.


17. The complex of any one of embodiments 12 to 16, wherein the region of complementarity comprises at least 4 consecutive nucleosides complementary to the splicing feature.


18. The complex of any one of embodiments 1 to 9, wherein the molecular payload comprises an oligonucleotide comprising a sequence complementary to any one of SEQ ID NOs: 160-399 or comprising a sequence of any one of SEQ ID NOs: 400-879, wherein each thymine base (T) may independently and optionally be replaced with a uracil base (U), and each U may independently and optionally be replaced with a T.


19. The complex of any one of embodiments 10 to 18, wherein the oligonucleotide comprises at least one modified internucleoside linkage.


20. The complex of embodiment 19, wherein the at least one modified internucleoside linkage is a phosphorothioate linkage.


21. The complex of any one of embodiments 10 to 20, wherein the oligonucleotide comprises one or more modified nucleosides.


22. The complex of embodiment 21, wherein the one or more modified nucleosides are 2′-modified nucleosides.


23. The complex of any one of embodiments 10 to 18, wherein the oligonucleotide comprises one or more phosphorodiamidate morpholinos, optionally wherein the oligonucleotide is a phosphorodiamidate morpholino oligomer (PMO).


24. The complex of any one of embodiments 1 to 23, wherein the anti-TfR1 antibody is covalently linked to the molecular payload via a cleavable linker.


25. The complex of embodiment 24, wherein the cleavable linker comprises a valine-citrulline sequence.


26 The complex of any one of embodiments 1 to 25, wherein the anti-TfR1 antibody is covalently linked to the molecular payload via conjugation to a lysine residue or a cysteine residue of the antibody.


27. A complex comprising an anti-TfR1 antibody covalently linked to an oligonucleotide configured for inducing skipping of exon 45 in a DMD pre-mRNA, wherein the oligonucleotide comprises a region of complementarity to any one of SEQ ID NOs: 160-399.


28. The complex of embodiment 27, wherein the anti-TfR1 antibody is an antibody identified in any one of Tables 2-7.


29. A complex comprising an anti-TfR1 antibody covalently linked to an oligonucleotide configured for inducing skipping of exon 45 in a DMD pre-mRNA, wherein the oligonucleotide comprises a region of complementarity to a splicing feature of the DMD pre-mRNA.


30. An oligonucleotide that targets DMD, wherein the oligonucleotide comprises a region of complementarity to any one of SEQ ID NOs: 160-399.


31. The oligonucleotide of embodiment 30, wherein the region of complementarity comprises at least 15 consecutive nucleosides complementary to any one of SEQ ID NOs: 160-399.


32. The oligonucleotide of embodiment 30 or 31, wherein the oligonucleotide comprises at least 15 consecutive nucleosides of any one of SEQ ID NOs: 400-879, optionally wherein the oligonucleotide comprises a sequence of any one of SEQ ID NOs: 400-879, wherein each thymine base (T) may independently and optionally be replaced with a uracil base (U), and each U may independently and optionally be replaced with a T.


33. A method of delivering a molecular payload to a cell, the method comprising contacting the cell with the complex of any one of embodiments 1 to 26.


34. A method of delivering an oligonucleotide to a cell, the method comprising contacting the cell with the complex of any one of embodiments 27 to 29.


35. A method of promoting the expression or activity of a dystrophin protein in a cell, the method comprising contacting the cell with the complex of any one of embodiments 1 to 26 in an amount effective for promoting internalization of the molecular payload to the cell, optionally wherein the cell is a muscle cell.


36. A method of promoting the expression or activity of a dystrophin protein in a cell, the method comprising contacting the cell with the complex of any one of embodiments 27 to 29 in an amount effective for promoting internalization of the oligonucleotide to the cell, optionally wherein the cell is a muscle cell.


37. The method of embodiment 35 or 36, wherein the cell is in vitro.


38 The method of embodiment 35 or 36, wherein the cell is in a subject.


39. The method of embodiment 38, wherein the subject is a human.


40. The method of embodiment 39, wherein the subject has a DMD gene that is amenable to skipping of exon 45.


41. The method of any one of embodiments 35 to 40, wherein the dystrophin protein is a truncated dystrophin protein.


42. A method of treating a subject having a mutated DMD allele that is associated with a dystrophinopathy, the method comprising administering to the subject an effective amount of the complex of any one of embodiments 1 to 29.


43. A method of promoting skipping of exon 45 of a DMD pre-mRNA transcript in a cell, the method comprising contacting the cell with an effective amount of the complex of any one of embodiments 1 to 29.


44. A method of treating a subject having a mutated DMD allele that is associated with a dystrophinopathy, the method comprising administering to the subject an effective amount of the complex of any one of embodiments 1 to 29.


EXAMPLES
Example 1. Exon-Skipping Activity of Anti-TfR1 Antibody Conjugates in Duchenne Muscular Dystrophy Patient Myotubes

In this study, the exon-skipping activities of anti-TfR1 antibody conjugates comprising an anti-TfR1 Fab (3M12 VH4/VK3) covalently linked to a DMD exon 51-skipping antisense oligonucleotide (ASO) were evaluated. The DMD exon 51-skipping ASO is a phosphorodiamidate morpholino oligomer (PMO) of 30 nucleotides in length and targets an ESE in DMD exon 51 having the sequence TGGAGGT (SEQ ID NO: 974). Immortalized human myoblasts bearing an exon 52 deletion in the DMD gene were thawed and seeded at a density of 1e6 cell/flask in Promocell Skeletal Cell Growth Media (with 5% FBS and 1× Pen-Strep) and allowed to grow to confluency. Once confluent, cells were trypsinized and pelleted via centrifugation and resuspended in fresh Promocell Skeletal Cell Growth Media. The cell number was counted and cells were seeded into Matrigel-coated 96-well plates at a density of 50,000 cells/well. Cells were allowed to recover for 24 hours. Cells were induced to differentiate into myotubes by aspirating the growth media and replacing with differentiation media with no serum. Cells were then treated with the DMD exon 51-skipping oligonucleotide (not covalently linked to an antibody—“naked”) at 10 UM ASO or the anti-TfR1 Fab (3M12 VH4/VK3) covalently linked to the DMD exon 51-skipping oligonucleotide at 10 UM ASO equivalent. Cells were incubated with test articles for ten days then total RNA was harvested from the 96 well plates. cDNA synthesis was performed on 75 ng of total RNA, and mutation specific PCRs were performed to evaluate the degree of exon 51 skipping in the cells. Mutation-specific PCR products were run on a 4% agarose gel and visualized using SYBR gold. Densitometry was used to calculate the relative amounts of the skipped and unskipped amplicon and exon skipping was determined as a ratio of the Exon 51 skipped amplicon divided by the total amount of amplicon present:







%


Exon


Skipping

=



Skipped


Amplicon


(


Skipped


Amplicon

+

Unskipped


Amplicon


)


*
1

0


0
.






The results demonstrate that the conjugate resulted in enhanced exon skipping compared to the naked DMD exon 51-skipping oligonucleotide in patient myotubes (FIG. 1). This indicates that anti-TfR1 Fab 3M12 VH4/VK3 enabled cellular internalization of the conjugate into muscle cells resulting in activity of the exon 51-skipping oligonucleotide in the muscle cells. Similarly, an anti-TfR1 antibody (e.g., anti-TfR1 Fab 3M12 VH4/VK3) can enable internalization of a conjugate comprising the anti-TfR1 antibody covalently linked to other exon skipping oligonucleotides (e.g., an exon skipping oligonucleotide provided herein, such as an exon 45 skipping oligonucleotide) into muscle cells and facilitate activity of the exon skipping oligonucleotide in the muscle cells.


Example 2. Exon Skipping Activity of Anti-TfR1 Fab-ASO Conjugate In Vivo in Cynomolgus Monkeys

Anti-TfR1 Fab 3M12 VH4/VK3 was covalently linked to the DMD exon 51-skipping antisense oligonucleotide (ASO) that was used in Example 1. The exon skipping activity of the conjugate was tested in vivo in healthy non-human primates. Naïve male cynomolgus monkeys (n=4-5 per group) were administered two doses of vehicle, 30 mg/kg naked ASO (i.e., not covalently linked to an antibody), or 122 mg/kg anti-TfR1 Fab (3M12 VH4/VK3) covalently linked to the DMD exon 51-skipping oligonucleotide (30 mg/kg ASO equivalent) via intravenous infusion on days 1 and 8. Animals were sacrificed and tissues harvested either 2 weeks or 4 weeks after the first dose was administered. Total RNA was collected from tissue samples using a Promega Maxwell® RSC instrument and cDNA synthesis was performed using qScript cDNA SuperMix. Assessment of exon 51 skipping was performed using end-point PCR.


Capillary electrophoresis of the PCR products was used to assess exon skipping, and % exon 51 skipping was calculated using the following formula:







%


Exon


Skipping

=



Molarity


of


Skipped


Band



Molarity


of


Skipped


Band

+

Molarity


of


Unskipped


Band



*
1

0


0
.








    • Calculated exon 51 skipping results are shown in Table 10.












TABLE 10







Exon 51 skipping of DMD mRNA in cynomolgus monkey









Time










2 weeks
4 weeks









Group














Naked

Naked




Vehicle
ASOa
Conjugate
ASOa
Conjugate
















Conjugate doseb
0
n/a
122 
n/a
122 


ASO Dosec
0
30
30
30
30


Quadriceps d
0.00
1.216
4.906
0.840
1.708



(0.00)
(1.083)
(3.131)
(1.169)
(1.395)


Diaphragm d
0.00
1.891
7.315
0.717
9.225



(0.00)
(2.911)
(1.532)
(1.315)
(4.696)


Heart d
0.00
0.043
3.42
0.00
4.525



(0.00)
(0.096)
(1.192)
(0.00)
(1.400)


Biceps d
0.00
0.607
3.129
1.214
4.863



(0.00)
(0.615)
(0.912)
(1.441)
(3.881)


Tibialis anterior d
0.00
0.699
1.042
0.384
0.816



(0.00)
(0.997)
(0.685)
(0.615)
(0.915)


Gastrocnemius d
0.00
0.388
2.424
0.00
5.393



(0.00)
(0.573)
(2.329)
(0.00)
(2.695)






aASO = antisense oligonucleotide.




bConjugate doses are listed as mg/kg of anti-TfR1 Fab 3M12 VH4/Vκ3-ASO conjugate.




cASO doses are listed as mg/kg ASO or ASO equivalent of the anti-TfR1 Fab 3M12 VH4/Vκ3-ASO dose.




d Exon skipping values are mean % exon 51 skipping with standard deviations (n = 5) in parentheses.







Tissue ASO accumulation was also quantified using a hybridization ELISA with a probe complementary to the ASO sequence. A standard curve was generated and ASO levels (in ng/g) were derived from a linear regression of the standard curve. The ASO was distributed to all tissues evaluated at a higher level following the administration of the anti-TfR1 Fab VH4/VK3-ASO conjugate as compared to the administration of naked ASO. Intravenous administration of naked ASO resulted in levels of ASO that were close to background levels in all tissues evaluated at 2 and 4 weeks after the first does was administered. Administration of anti-TfR1 Fab VH4/VK3-ASO conjugate resulted in distribution of ASO through the tissues evaluated with a rank order of heart>diaphragm>bicep>quadriceps>gastrocnemius>tibialis anterior 2 weeks after first dosing. The duration of tissue concentration was also assessed. Concentrations of the ASO in quadriceps, bicep and diaphragm decreased by less than 50% over the time period evaluated (2 to 4 weeks), while levels of ASO in the heart, tibialis anterior, and gastrocnemius remained virtually unchanged (Table 11). This indicates that anti-TfR1 Fab 3M12 VH4/VK3 enabled cellular internalization of the conjugate into muscle cells in vivo, resulting in activity of the exon skipping oligonucleotide in the muscle cells. Similarly, an anti-TfR1 antibody (e.g., anti-TfR1 Fab 3M12 VH4/VK3) in vivo can enable internalization of a conjugate comprising the anti-TfR1 antibody covalently linked to other exon skipping oligonucleotides (e.g., an exon skipping oligonucleotide provided herein, such as an exon 45 skipping oligonucleotide) into muscle cells and facilitate activity of the exon skipping oligonucleotide in the muscle cells.









TABLE 11







Tissue distribution of DMD exon 51


skipping ASO in cynomolgus monkeys









Time










2 weeks
4 weeks









Group














Naked
Con-
Naked
Con-



Vehicle
ASOa
jugate
ASOa
jugate
















Conjugate Doseb
0
n/a
122 
n/a
122 


ASO Dosec
0
30
30
30
30


Quadriceps d
0
696.8
2436
197
682



(59.05)
(868.15)
(954.0)
(134)
(281)


Diaphragm d

580.02
6750
60
3131



(144.3)
(360.11)
(2256)
(120)
(1618)


Heart d
0
1449
27138
943
30410



(396.03)
(1337)
(6315)
(1803)
(9247)


Biceps d
0
615.63
2840
130
1326



(69.58)
(335.17)
(980.31)
(80)
(623)


Tibialis anterior d
0
564.71
1591
169
1087



(76.31)
(327.88)
(253.50)
(110)
(514)


Gastrocnemius d
0
705.47
2096
170
1265



(41.15)
(863.75)
(474.04)
(69)
(272)






aASO = Antisense oligonucleotide.




bConjugate doses are listed as mg/kg of anti-TfR1 Fab 3M12 VH4/Vκ3-ASO conjugate.




cASO doses are listed as mg/kg ASO or ASO equivalent of the anti-TfR1 Fab 3M12 VH4/Vκ3-ASO conjugate dose.




d ASO values are mean concentrations of ASO in tissue as ng/g with standard deviations (n = 5) in parentheses.







Example 3. Exon 45 Skipping Activity of Antisense Oligonucleotides

Immortalized human myoblasts were thawed and seeded at a density of 1e6 cell/flask in Promocell Skeletal Cell Growth Media (with 5% FBS and 1× Pen-Strep) and allowed to grow to confluency. Once confluent, cells were trypsinized and pelleted via centrifugation and resuspended in fresh Promocell Skeletal Cell Growth Media. The cell number was counted and cells were seeded into Matrigel-coated 96-well plates at a density of 50,000 cells/well. Cells were allowed to recover for 24 hours. Cells were induced to differentiate into myotubes by aspirating the growth media and replacing with differentiation media with no serum. Cells were then treated with DMD exon 45-skipping oligonucleotides (ASOs; not covalently linked to an antibody—“naked”) comprising the nucleobase sequences provided in Table 12 at 10 μM ASO. The exon 45-skipping ASOs are phosphorodiamidate morpholino oligomers (PMOs). Cells were incubated with test articles for ten days then total RNA was harvested from the 96 well plates. cDNA synthesis was performed on 75 ng of total RNA, and PCRs were performed to evaluate the degree of exon 45 skipping in the cells. PCR products were measured using capillary electrophoresis with UV detection. Molarity was calculated and relative amounts of the skipped and unskipped amplicon were determined. Exon skipping was determined as a ratio of the Exon 45 skipped amplicon divided by the total amount of amplicon present, according to the following formula:







%


Exon


Skipping

=



Skipped


Amplicon


(


Skipped


Amplicon

+

Unskipped


Amplicon


)


*
1

0


0
.













TABLE 12







Exon 45 skipping activity of ASOs










SEQ ID 
% Exon


ASO Sequence
NO:
45 Skipping





TTATTTCTTCCCCAGTTGCATTCA
720
100





TTATTTCTTCCCCAGTTGCATTCAA
716
100





TACTGGCATCTGTTTTTGAGGA
760
 81.97831





CTGCCCAATGCCATCCTGGAGTTCC
691
 99.59011





CCCAATGCCATCCTGGAGTTCCTGT
677
 98.68205





CCAATGCCATCCTGGAGTTC
692
 98.51852





CCAATGCCATCCTGGAGTTCC
688
 98.14503





GCTGCCCAATGCCATCCTGGAGTTC
697
 98.06374





CCCAATGCCATCCTGGAGTTC
693
 96.36427





AATGCCATCCTGGAGTTCCTGT
675
 95.96277









EQUIVALENTS AND TERMINOLOGY

The disclosure illustratively described herein suitably can be practiced in the absence of any element or elements, limitation or limitations that are not specifically disclosed herein. Thus, for example, in each instance herein any of the terms “comprising”, “consisting essentially of”, and “consisting of” may be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the disclosure. Thus, it should be understood that although the present disclosure has been specifically disclosed by preferred embodiments, optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this disclosure.


In addition, where features or aspects of the disclosure are described in terms of Markush groups or other grouping of alternatives, those skilled in the art will recognize that the disclosure is also thereby described in terms of any individual member or subgroup of members of the Markush group or other group.


It should be appreciated that, in some embodiments, sequences presented in the sequence listing may be referred to in describing the structure of an oligonucleotide or other nucleic acid. In such embodiments, the actual oligonucleotide or other nucleic acid may have one or more alternative nucleotides or nucleosides (e.g., an RNA counterpart of a DNA nucleoside or a DNA counterpart of an RNA nucleoside) and/or (e.g., and) one or more modified nucleotides/nucleosides and/or (e.g., and) one or more modified internucleoside linkages and/or (e.g., and) one or more other modification compared with the specified sequence while retaining essentially same or similar complementary properties as the specified sequence.


The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising.” “having.” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.


Embodiments of this invention are described herein. Variations of those embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description.


The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.


Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

Claims
  • 1. A complex comprising an anti-transferrin receptor 1 (TfR1) antibody covalently linked to an oligonucleotide configured for inducing skipping of exon 45 in a DMD pre-mRNA, wherein the oligonucleotide comprises a region of complementarity that is complementary with at least 8 consecutive nucleotides of any one of SEQ ID NOs: 240, 236, 280, 211, 197, 212, 208, 217, 213, 195, 160-194, 196, 198-207, 209, 210, 214-216, 218-235, 237-239, 241-279, and 281-399.
  • 2.-4. (canceled)
  • 5. The complex of claim 1, wherein the anti-TfR1 antibody is a Fab fragment, a Fab′ fragment, a F(ab′)2 fragment, an scFv, an Fv, or a full-length IgG.
  • 6. The complex of claim 5, wherein the anti-TfR1 antibody is a Fab fragment.
  • 7.-8. (canceled)
  • 9. The complex of claim 1, wherein the anti-TfR1 antibody does not specifically bind to the transferrin binding site of the transferrin receptor 1 and/or wherein the anti-TfR1 antibody does not inhibit binding of transferrin to the transferrin receptor 1.
  • 10. The complex of claim 1, wherein the oligonucleotide comprises a region of complementarity to at least 4 consecutive nucleotides of a splicing feature of the DMD pre-mRNA.
  • 11. The complex of claim 10, wherein the splicing feature is an exonic splicing enhancer (ESE) in exon 45 of the DMD pre-mRNA, optionally wherein the ESE comprises a sequence of any one of SEQ ID NOs: 885-912.
  • 12. The complex of claim 10, wherein the splicing feature is a branch point, a splice donor site, or a splice acceptor site, optionally wherein the splicing feature is across the junction of exon 44 and intron 44, in intron 44, across the junction of intron 44 and exon 45, across the junction of exon 45 and intron 45, in intron 45, or across the junction of intron 45 and exon 46 of the DMD pre-mRNA, and further optionally wherein the splicing feature comprises a sequence of any one of SEQ ID NOs: 880-884 and 913-916.
  • 13. The complex of claim 1, wherein the oligonucleotide comprises a sequence complementary to any one of SEQ ID NOs: 160-399 or comprises a sequence of any one of SEQ ID NOs: 400-879, wherein each thymine base (T) may independently and optionally be replaced with a uracil base (U), and each U may independently and optionally be replaced with a T.
  • 14. The complex of claim 1, wherein the oligonucleotide comprises a sequence of any one of SEQ ID NOs: 720, 712, 760, 691, 677, 692, 688, 697, 693, and 675, wherein each thymine base (T) may independently and optionally be replaced with a uracil base (U), and each U may independently and optionally be replaced with a T.
  • 15. The complex of claim 1, wherein the oligonucleotide comprises one or more phosphorodiamidate morpholinos, optionally wherein the oligonucleotide is a phosphorodiamidate morpholino oligomer (PMO).
  • 16. The complex of claim 1, wherein the anti-TfR1 antibody is covalently linked to the oligonucleotide via a cleavable linker, optionally wherein the cleavable linker comprises a valine-citrulline sequence.
  • 17. The complex of claim 1, wherein the anti-TfR1 antibody is covalently linked to the oligonucleotide via conjugation to a lysine residue or a cysteine residue of the antibody.
  • 18. An oligonucleotide that targets DMD, wherein the oligonucleotide comprises a region of complementarity to any one of SEQ ID NOs: 160-399, optionally wherein the region of complementarity comprises at least 15 consecutive nucleosides complementary to any one of SEQ ID NOs: 160-399.
  • 19. The oligonucleotide of claim 18, wherein the oligonucleotide comprises at least 15 consecutive nucleosides of any one of SEQ ID NOs: 400-879, optionally wherein the oligonucleotide comprises a sequence of any one of SEQ ID NOs: 400-879, wherein each thymine base (T) may independently and optionally be replaced with a uracil base (U), and each U may independently and optionally be replaced with a T.
  • 20. A method of delivering an oligonucleotide to a cell, the method comprising contacting the cell with the complex of claim 1.
  • 21. A method of promoting the expression or activity of a dystrophin protein in a cell, the method comprising contacting the cell with the complex of claim 1 in an amount effective for promoting internalization of the oligonucleotide to the cell, optionally wherein the cell is a muscle cell.
RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(c) to U.S. Provisional Application Ser. No. 63/219,977, entitled “MUSCLE TARGETING COMPLEXES AND USES THEREOF FOR TREATING DYSTROPHINOPATHIES”, filed on Jul. 9, 2021, the contents of which are incorporated herein by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US22/73528 7/8/2022 WO
Provisional Applications (1)
Number Date Country
63219977 Jul 2021 US