MUSCLE TARGETING COMPLEXES AND USES THEREOF FOR TREATING DYSTROPHINOPATHIES

Abstract
Aspects of the disclosure relate to complexes comprising a muscle-targeting agent covalently linked to a molecular payload. In some embodiments, the muscle-targeting agent specifically binds to an internalizing cell surface receptor on muscle cells. In some embodiments, the molecular payload promotes the expression or activity of a functional dystrophin protein. In some embodiments, the molecular payload is an oligonucleotide, such as an antisense oligonucleotide, e.g., an oligonucleotide that causes exon skipping in a mRNA expressed from a mutant DMD allele.
Description
FIELD OF THE INVENTION

The present application relates to targeting complexes for delivering molecular payloads (e.g., oligonucleotides) to cells and uses thereof, particularly uses relating to treatment of disease.


REFERENCE TO AN ELECTRONIC SEQUENCE LISTING

The contents of the electronic sequence listing (D082470065WO00-SEQ-COB.xml; Size: 2,801,833 bytes; and Date of Creation: Jul. 7, 2022) is herein incorporated by reference in its entirety.


BACKGROUND OF INVENTION

Dystrophinopathies are a group of distinct neuromuscular diseases that result from mutations in the gene encoding dystrophin. Dystrophinopathies include Duchenne muscular dystrophy, Becker muscular dystrophy, and X-linked dilated cardiomyopathy. The DMD gene (“DMD”), which encodes dystrophin, is a large gene, containing 79 exons and about 2.6 million total base pairs. Numerous mutations in DMD, including exonic frameshift, deletion, substitution, and duplicative mutations, are able to diminish the expression of functional dystrophin, leading to dystrophinopathies. Several agents that target exons of human DMD have been approved by the U.S. Food and Drug Administration (FDA), including casimersen, viltolarsen, golodirsen, and eteplirsen.


SUMMARY OF INVENTION

According to some aspects, the disclosure provides complexes that target muscle cells for purposes of delivering molecular payloads to those cells, as well as molecular payloads that can be used therein. In some embodiments, complexes provided herein are particularly useful for delivering molecular payloads that increase or restore expression or activity of functional dystrophin protein. In some embodiments, complexes comprise oligonucleotide based molecular payloads that promote expression of functional dystrophin protein through an in-frame exon skipping mechanism or suppression of stop codons, such as by facilitating skipping of DMD exon 55. In some embodiments, molecular payloads provided herein are useful for facilitating exon skipping in a DMD sequence, such as skipping of DMD exon 55. Accordingly, in some embodiments, complexes provided herein comprise muscle-targeting agents (e.g., muscle targeting antibodies) that specifically bind to receptors on the surface of muscle cells for purposes of delivering molecular payloads to the muscle cells. In some embodiments, the complexes are taken up into the cells via a receptor mediated internalization, following which the molecular payload may be released to perform a function inside the cells. For example, complexes engineered to deliver oligonucleotides may release the oligonucleotides such that the oligonucleotides can promote expression of functional dystrophin protein (e.g., through an exon skipping mechanism, such as by facilitating skipping of DMD exon 55) in the muscle cells. In some embodiments, the oligonucleotides are released by endosomal cleavage of covalent linkers connecting oligonucleotides and muscle-targeting agents of the complexes. Complexes and molecular payloads provided herein can be used for treating subjects having a mutated DMD gene, such as a mutated DMD gene that is amenable to exon 55 skipping.


According to some aspects, complexes comprising an anti-transferrin receptor 1 (TfR1) antibody covalently linked to an oligonucleotide configured for inducing skipping of exon 55 in a DMD pre-mRNA are provided herein, wherein the oligonucleotide comprises a region of complementarity that is complementary with at least 8 consecutive nucleotides of any one of SEQ ID NOs: 160-779.


In some embodiments, the anti-TfR1 antibody comprises:

    • (i) a heavy chain complementarity determining region 1 (CDR-H1) of SEQ ID NO: 33, a heavy chain complementarity determining region 2 (CDR-H2) of SEQ ID NO: 34, a heavy chain complementarity determining region 3 (CDR-H3) of SEQ ID NO: 35, a light chain complementarity determining region 1 (CDR-L1) of SEQ ID NO: 36, a light chain complementarity determining region 2 (CDR-L2) of SEQ ID NO: 37, and a light chain complementarity determining region 3 (CDR-L3) of SEQ ID NO: 32;
    • (ii) a CDR-H1 of SEQ ID NO: 7, a CDR-H2 of SEQ ID NO: 8, a CDR-H3 of SEQ ID NO: 9, a CDR-L1 of SEQ ID NO: 10, a CDR-L2 of SEQ ID NO: 11, and a CDR-L3 of SEQ ID NO: 6;
    • (iii) a CDR-H1 of SEQ ID NO: 7, a CDR-H2 of SEQ ID NO: 20, a CDR-H3 of SEQ ID NO: 9, a CDR-L1 of SEQ ID NO: 10, a CDR-L2 of SEQ ID NO: 11, and a CDR-L3 of SEQ ID NO: 6;
    • (iv) a CDR-H1 of SEQ ID NO: 7, a CDR-H2 of SEQ ID NO: 24, a CDR-H3 of SEQ ID NO: 9, a CDR-L1 of SEQ ID NO: 10, a CDR-L2 of SEQ ID NO: 11, and a CDR-L3 of SEQ ID NO: 6;
    • (v) a CDR-H1 of SEQ ID NO: 51, a CDR-H2 of SEQ ID NO: 52, a CDR-H3 of SEQ ID NO: 53, a CDR-L1 of SEQ ID NO: 54, a CDR-L2 of SEQ ID NO: 55, and a CDR-L3 of SEQ ID NO: 50;
    • (vi) a CDR-H1 of SEQ ID NO: 64, a CDR-H2 of SEQ ID NO: 52, a CDR-H3 of SEQ ID NO: 53, a CDR-L1 of SEQ ID NO: 54, a CDR-L2 of SEQ ID NO: 55, and a CDR-L3 of SEQ ID NO: 50; or
    • (vii) a CDR-H1 of SEQ ID NO: 67, a CDR-H2 of SEQ ID NO: 52, a CDR-H3 of SEQ ID NO: 53, a CDR-L1 of SEQ ID NO: 54, a CDR-L2 of SEQ ID NO: 55, and a CDR-L3 of SEQ ID NO: 50.


In some embodiments, the anti-TfR1 antibody comprises:

    • (i) a heavy chain variable region (VH) comprising an amino acid sequence at least 85% identical to SEQ ID NO: 76; and/or a light chain variable region (VL) comprising an amino acid sequence at least 85% identical to SEQ ID NO: 75;
    • (ii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 69; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 70;
    • (iii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 71; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 70;
    • (iv) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 72; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 70;
    • (v) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 73; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 74;
    • (vi) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 73; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 75;
    • (vii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 76; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 74;
    • (viii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 77; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 78;
    • (ix) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 79; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 80; or
    • (x) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 77; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 80.


In some embodiments, the anti-TfR1 antibody comprises:

    • (i) a VH comprising the amino acid sequence of SEQ ID NO: 76 and a VL comprising the amino acid sequence of SEQ ID NO: 75;
    • (ii) a VH comprising the amino acid sequence of SEQ ID NO: 69 and a VL comprising the amino acid sequence of SEQ ID NO: 70;
    • (iii) a VH comprising the amino acid sequence of SEQ ID NO: 71 and a VL comprising the amino acid sequence of SEQ ID NO: 70;
    • (iv) a VH comprising the amino acid sequence of SEQ ID NO: 72 and a VL comprising the amino acid sequence of SEQ ID NO: 70;
    • (v) a VH comprising the amino acid sequence of SEQ ID NO: 73 and a VL comprising the amino acid sequence of SEQ ID NO: 74;
    • (vi) a VH comprising the amino acid sequence of SEQ ID NO: 73 and a VL comprising the amino acid sequence of SEQ ID NO: 75;
    • (vii) a VH comprising the amino acid sequence of SEQ ID NO: 76 and a VL comprising the amino acid sequence of SEQ ID NO: 74;
    • (viii) a VH comprising the amino acid sequence of SEQ ID NO: 77 and a VL comprising the amino acid sequence of SEQ ID NO: 78;
    • (ix) a VH comprising the amino acid sequence of SEQ ID NO: 79 and a VL comprising the amino acid sequence of SEQ ID NO: 80; or
    • (x) a VH comprising the amino acid sequence of SEQ ID NO: 77 and a VL comprising the amino acid sequence of SEQ ID NO: 80.


In some embodiments, the anti-TfR1 antibody is a Fab fragment, a Fab′ fragment, a F(ab′)2 fragment, an scFv, an Fv, or a full-length IgG.


In some embodiments, the anti-TfR1 antibody is a Fab fragment.


In some embodiments, the anti-TfR1 antibody comprises:

    • (i) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 101; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 90;
    • (ii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 97; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 85;
    • (iii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 98; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 85;
    • (iv) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 99; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 85;
    • (v) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 100; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 89;
    • (vi) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 100; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 90;
    • (vii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 101; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 89;
    • (viii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 102; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 93;
    • (ix) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 103; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 95; or
    • (x) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 102; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 95.


In some embodiments, the anti-TfR1 antibody comprises:

    • (i) a heavy chain comprising the amino acid sequence of SEQ ID NO: 101; and a light chain comprising the amino acid sequence of SEQ ID NO: 90;
    • (ii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 97; and a light chain comprising the amino acid sequence of SEQ ID NO: 85;
    • (iii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 98; and a light chain comprising the amino acid sequence of SEQ ID NO: 85;
    • (iv) a heavy chain comprising the amino acid sequence of SEQ ID NO: 99; and a light chain comprising the amino acid sequence of SEQ ID NO: 85;
    • (v) a heavy chain comprising the amino acid sequence of SEQ ID NO: 100; and a light chain comprising the amino acid sequence of SEQ ID NO: 89;
    • (vi) a heavy chain comprising the amino acid sequence of SEQ ID NO: 100; and a light chain comprising the amino acid sequence of SEQ ID NO: 90;
    • (vii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 101; and a light chain comprising the amino acid sequence of SEQ ID NO: 89;
    • (viii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 102; and a light chain comprising the amino acid sequence of SEQ ID NO: 93;
    • (ix) a heavy chain comprising the amino acid sequence of SEQ ID NO: 103; and a light chain comprising the amino acid sequence of SEQ ID NO: 95; or
    • (x) a heavy chain comprising the amino acid sequence of SEQ ID NO: 102; and a light chain comprising the amino acid sequence of SEQ ID NO: 95.


In some embodiments, the anti-TfR1 antibody does not specifically bind to the transferrin binding site of the transferrin receptor 1 and/or the anti-TfR1 antibody does not inhibit binding of transferrin to the transferrin receptor 1.


In some embodiments, the oligonucleotide comprises a region of complementarity to at least 4 consecutive nucleotides of a splicing feature of the DMD pre-mRNA.


In some embodiments, the splicing feature is an exonic splicing enhancer (ESE) in exon 55 of the DMD pre-mRNA, optionally wherein the ESE comprises a sequence of any one of SEQ ID NOs: 2031-2061.


In some embodiments, the splicing feature is a branch point, a splice donor site, or a splice acceptor site, optionally wherein the splicing feature is across the junction of exon 54 and intron 54, in intron 54, across the junction of intron 54 and exon 55, across the junction of exon 55 and intron 55, in intron 55, or across the junction of intron 55 and exon 56 of the DMD pre-mRNA, and further optionally wherein the splicing feature comprises a sequence of any one of SEQ ID NOs: 2028-2030, 2062, and 2063.


In some embodiments, the oligonucleotide comprises a sequence complementary to any one of SEQ ID NOs: 160-779 or comprises a sequence of any one of SEQ ID NOs: 780-2019, wherein each thymine base (T) may independently and optionally be replaced with a uracil base (U), and each U may independently and optionally be replaced with a T.


In some embodiments, the oligonucleotide comprises a sequence of any one of SEQ ID NOs: 1400, 1402-1406, 1408, 1409, 1413, 1418-1420, 1483-1491, 1493, 1495, 1496, 1502-1506, 1508, 1510-1512, 1514, 1522-1524, 1529-1531, 1534, 1535, 1559, 1583, 1587, 1591, 1596, 1597, 1598, 1604, 1606, 1607, 1638, 1641, 1693-1695, 1702, 1703, 1766, 1813, 1988, and 1995, wherein each thymine base (T) may independently and optionally be replaced with a uracil base (U), and each U may independently and optionally be replaced with a T.


In some embodiments, the oligonucleotide comprises one or more phosphorodiamidate morpholinos, optionally wherein the oligonucleotide is a phosphorodiamidate morpholino oligomer (PMO).


In some embodiments, the anti-TfR1 antibody is covalently linked to the oligonucleotide via a cleavable linker, optionally wherein the cleavable linker comprises a valine-citrulline sequence.


In some embodiments, the anti-TfR1 antibody is covalently linked to the oligonucleotide via conjugation to a lysine residue or a cysteine residue of the antibody.


According to some aspects, oligonucleotides that target DMD are provided herein, wherein the oligonucleotide comprises a region of complementarity to any one of SEQ ID NOs: 160-779, optionally wherein the region of complementarity comprises at least 15 consecutive nucleosides complementary to any one of SEQ ID NOs: 160-779.


In some embodiments, the oligonucleotide comprises at least 15 consecutive nucleosides of any one of SEQ ID NOs: 780-2019, optionally wherein the oligonucleotide comprises a sequence of any one of SEQ ID NOs: 780-2019, wherein each thymine base (T) may independently and optionally be replaced with a uracil base (U), and each U may independently and optionally be replaced with a T.


According to some aspects, methods of delivering an oligonucleotide to a cell are provided herein, the method comprising contacting the cell with a complex disclosed herein or with an oligonucleotide disclosed herein.


According to some aspects, methods of promoting the expression or activity of a dystrophin protein in a cell are provided herein, the method comprising contacting the cell with a complex disclosed herein or with an oligonucleotide disclosed herein in an amount effective for promoting internalization of the oligonucleotide to the cell, optionally wherein the cell is a muscle cell.


In some embodiments, the cell comprises a DMD gene that is amenable to skipping of exon 55.


In some embodiments, the dystrophin protein is a truncated dystrophin protein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows data illustrating that conjugates containing anti-TfR1 Fab (3M12 VH4/Vκ3) conjugated to a DMD exon-skipping oligonucleotide resulted in enhanced exon skipping compared to the naked DMD exon skipping oligo in Duchenne muscular dystrophy patient myotubes.





DETAILED DESCRIPTION OF INVENTION

Aspects of the disclosure relate to a recognition that while certain molecular payloads (e.g., oligonucleotides, peptides, small molecules) can have beneficial effects in muscle cells, it has proven challenging to effectively target such cells. Accordingly, as described herein, the present disclosure provides complexes comprising muscle-targeting agents covalently linked to molecular payloads in order to overcome such challenges. In some embodiments, the complexes are particularly useful for delivering molecular payloads that modulate (e.g., promote) the expression or activity of dystrophin protein (e.g., a truncated dystrophin protein) or DMD (e.g., a mutated DMD allele). In some embodiments, complexes provided herein may comprise oligonucleotides that promote expression and activity of dystrophin protein or DMD, such as by facilitating in-frame exon skipping and/or suppression of premature stop codons. For example, complexes may comprise oligonucleotides that induce skipping of exon(s) of DMD RNA (e.g., pre-mRNA), such as oligonucleotides that induce skipping of exon 55. In some embodiments, synthetic nucleic acid payloads (e.g., DNA or RNA payloads) may be used that express one or more proteins that promote normal expression and activity of dystrophin protein or DMD.


Duchenne muscular dystrophy is an X-linked muscular disorder caused by one or more mutations in the DMD gene located on Xp21. Dystrophin protein typically forms the dystrophin-associated glycoprotein complex (DGC) at the sarcolemma, which links the muscle sarcomeric structure to the extracellular matrix and protects the sarcolemma from contraction-induced injury. In patients with Duchenne muscular dystrophy, the dystrophin protein is generally absent and muscle fibers typically become damaged due to mechanical overextension. Mutations in the DMD gene are associated with two types of muscular dystrophy, Duchenne muscular dystrophy and Becker muscular dystrophy, depending on whether the translational reading frame is lost or maintained. Becker muscular dystrophy is a clinically milder form of Duchenne muscular dystrophy, and is characterized by features similar to Duchenne muscular dystrophy. In some embodiments, exon skipping induced by oligonucleotides (e.g., delivered using complexes provided herein) can be used to restore the reading frame of a mutated DMD allele resulting in production of a truncated dystrophin protein that is sufficiently functional to improve muscle function. In some embodiments, such exon skipping converts a Duchenne muscular dystrophy phenotype into a milder Becker muscular dystrophy phenotype.


Further aspects of the disclosure, including a description of defined terms, are provided below.


I. Definitions

Administering: As used herein, the terms “administering” or “administration” means to provide a complex to a subject in a manner that is physiologically and/or (e.g., and) pharmacologically useful (e.g., to treat a condition in the subject).


Approximately: As used herein, the term “approximately” or “about,” as applied to one or more values of interest, refers to a value that is similar to a stated reference value. In certain embodiments, the term “approximately” or “about” refers to a range of values that fall within 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value).


Antibody: As used herein, the term “antibody” refers to a polypeptide that includes at least one immunoglobulin variable domain or at least one antigenic determinant, e.g., paratope that specifically binds to an antigen. In some embodiments, an antibody is a full-length antibody. In some embodiments, an antibody is a chimeric antibody. In some embodiments, an antibody is a humanized antibody. However, in some embodiments, an antibody is a Fab fragment, a Fab′ fragment, a F(ab′)2 fragment, a Fv fragment or a scFv fragment. In some embodiments, an antibody is a nanobody derived from a camelid antibody or a nanobody derived from shark antibody. In some embodiments, an antibody is a diabody. In some embodiments, an antibody comprises a framework having a human germline sequence. In another embodiment, an antibody comprises a heavy chain constant domain selected from the group consisting of IgG, IgG1, IgG2, IgG2A, IgG2B, IgG2C, IgG3, IgG4, IgA1, IgA2, IgD, IgM, and IgE constant domains. In some embodiments, an antibody comprises a heavy (H) chain variable region (abbreviated herein as VH), and/or (e.g., and) a light (L) chain variable region (abbreviated herein as VL). In some embodiments, an antibody comprises a constant domain, e.g., an Fc region. An immunoglobulin constant domain refers to a heavy or light chain constant domain. Human IgG heavy chain and light chain constant domain amino acid sequences and their functional variations are known. With respect to the heavy chain, in some embodiments, the heavy chain of an antibody described herein can be an alpha (α), delta (Δ), epsilon (ε), gamma (γ) or mu (μ) heavy chain. In some embodiments, the heavy chain of an antibody described herein can comprise a human alpha (α), delta (Δ), epsilon (ε), gamma (γ) or mu (μ) heavy chain. In a particular embodiment, an antibody described herein comprises a human gamma 1 CH1, CH2, and/or (e.g., and) CH3 domain. In some embodiments, the amino acid sequence of the VH domain comprises the amino acid sequence of a human gamma (γ) heavy chain constant region, such as any known in the art. Non-limiting examples of human constant region sequences have been described in the art, e.g., see U.S. Pat. No. 5,693,780 and Kabat E A et al., (1991) supra. In some embodiments, the VH domain comprises an amino acid sequence that is at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or at least 99% identical to any of the variable chain constant regions provided herein. In some embodiments, an antibody is modified, e.g., modified via glycosylation, phosphorylation, sumoylation, and/or (e.g., and) methylation. In some embodiments, an antibody is a glycosylated antibody, which is conjugated to one or more sugar or carbohydrate molecules. In some embodiments, the one or more sugar or carbohydrate molecule are conjugated to the antibody via N-glycosylation, O-glycosylation, C-glycosylation, glypiation (GPI anchor attachment), and/or (e.g., and) phosphoglycosylation. In some embodiments, the one or more sugar or carbohydrate molecule are monosaccharides, disaccharides, oligosaccharides, or glycans. In some embodiments, the one or more sugar or carbohydrate molecule is a branched oligosaccharide or a branched glycan. In some embodiments, the one or more sugar or carbohydrate molecule includes a mannose unit, a glucose unit, an N-acetylglucosamine unit, an N-acetylgalactosamine unit, a galactose unit, a fucose unit, or a phospholipid unit. In some embodiments, an antibody is a construct that comprises a polypeptide comprising one or more antigen binding fragments of the disclosure linked to a linker polypeptide or an immunoglobulin constant domain. Linker polypeptides comprise two or more amino acid residues joined by peptide bonds and are used to link one or more antigen binding portions. Examples of linker polypeptides have been reported (see e.g., Holliger, P., et al. (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poljak, R. J., et al. (1994) Structure 2:1121-1123). Still further, an antibody may be part of a larger immunoadhesion molecule, formed by covalent or noncovalent association of the antibody or antibody portion with one or more other proteins or peptides. Examples of such immunoadhesion molecules include use of the streptavidin core region to make a tetrameric scFv molecule (Kipriyanov, S. M., et al. (1995) Human Antibodies and Hybridomas 6:93-101) and use of a cysteine residue, a marker peptide and a C-terminal polyhistidine tag to make bivalent and biotinylated scFv molecules (Kipriyanov, S. M., et al. (1994) Mol. Immunol. 31:1047-1058).


Branch point: As used herein, the term “branch point” or “branch site” refers to a nucleic acid sequence motif within an intron of a gene or pre-mRNA that is involved in splicing of pre-mRNA into mRNA (i.e., removing introns from the pre-mRNA), and can be referred to as a splicing feature. A branch point is typically located 18 to 40 nucleotides from the 3′ end of an intron, and contains an adenine but is otherwise relatively unrestricted in sequence. Common sequence motifs for branch points are YNYYRAY, YTRAC, and YNYTRAY, where Y is a pyrimidine, N is any nucleotide, R is any purine, and A is adenine. During splicing, the pre-mRNA is cleaved at the 5′ end of the intron, which then attaches to the branch point region downstream through transesterification bonding between guanines and adenines from the 5′ end and the branch point, respectively, to form a looped lariat structure.


CDR: As used herein, the term “CDR” refers to the complementarity determining region within antibody variable sequences. A typical antibody molecule comprises a heavy chain variable region (VH) and a light chain variable region (VL), which are usually involved in antigen binding. The VH and VL regions can be further subdivided into regions of hypervariability, also known as “complementarity determining regions” (“CDR”), interspersed with regions that are more conserved, which are known as “framework regions” (“FR”). Each VH and VL is typically composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. The extent of the framework region and CDRs can be precisely identified using methodology known in the art, for example, by the Kabat definition, the IMGT definition, the Chothia definition, the AbM definition, and/or (e.g., and) the contact definition, all of which are well known in the art. See, e.g., Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242; IMGT®, the international ImMunoGeneTics information System® www.imgt.org, Lefranc, M.-P. et al., Nucleic Acids Res., 27:209-212 (1999); Ruiz, M. et al., Nucleic Acids Res., 28:219-221 (2000); Lefranc, M.-P., Nucleic Acids Res., 29:207-209 (2001); Lefranc, M.-P., Nucleic Acids Res., 31:307-310 (2003); Lefranc, M.-P. et al., In Silico Biol., 5, 0006 (2004) [Epub], 5:45-60 (2005); Lefranc, M.-P. et al., Nucleic Acids Res., 33:D593-597 (2005); Lefranc, M.-P. et al., Nucleic Acids Res., 37:D1006-1012 (2009); Lefranc, M.-P. et al., Nucleic Acids Res., 43:D413-422 (2015); Chothia et al., (1989) Nature 342:877; Chothia, C. et al. (1987) J. Mol. Biol. 196:901-917, Al-lazikani et al (1997) J. Molec. Biol. 273:927-948; and Almagro, J. Mol. Recognit. 17:132-143 (2004). See also bioinf.org.uk/abs. As used herein, a CDR may refer to the CDR defined by any method known in the art. Two antibodies having the same CDR means that the two antibodies have the same amino acid sequence of that CDR as determined by the same method, for example, the IMGT definition.


There are three CDRs in each of the variable regions of the heavy chain and the light chain, which are designated CDR1, CDR2 and CDR3, for each of the variable regions. The term “CDR set” as used herein refers to a group of three CDRs that occur in a single variable region capable of binding the antigen. The exact boundaries of these CDRs have been defined differently according to different systems. The system described by Kabat (Kabat et al., Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, Md. (1987) and (1991)) not only provides an unambiguous residue numbering system applicable to any variable region of an antibody, but also provides precise residue boundaries defining the three CDRs. These CDRs may be referred to as Kabat CDRs. Sub-portions of CDRs may be designated as L1, L2 and L3 or H1, H2 and H3 where the “L” and the “H” designates the light chain and the heavy chains regions, respectively. These regions may be referred to as Chothia CDRs, which have boundaries that overlap with Kabat CDRs. Other boundaries defining CDRs overlapping with the Kabat CDRs have been described by Padlan (FASEB J. 9:133-139 (1995)) and MacCallum (J Mol Biol 262(5):732-45 (1996)). Still other CDR boundary definitions may not strictly follow one of the above systems, but will nonetheless overlap with the Kabat CDRs, although they may be shortened or lengthened in light of prediction or experimental findings that particular residues or groups of residues or even entire CDRs do not significantly impact antigen binding. The methods used herein may utilize CDRs defined according to any of these systems. Examples of CDR definition systems are provided in Table 1.









TABLE 1







CDR Definitions











IMGT1
Kabat2
Chothia3
















CDR-H1
27-38
31-35
26-32



CDR-H2
56-65
50-65
53-55



CDR-H3
105-116/117
95-102
96-101



CDR-L1
27-38
24-34
26-32



CDR-L2
56-65
50-56
50-52



CDR-L3
105-116/117
89-97
91-96








1IMGT ®, the international ImMunoGeneTics information system ®, imgt.org, Lefranc, M.-P. et al., Nucleic Acids Res., 27: 209-212 (1999)





2Kabat et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242





3Chothia et al., J. Mol. Biol. 196: 901-917 (1987))







CDR-grafted antibody: The term “CDR-grafted antibody” refers to antibodies which comprise heavy and light chain variable region sequences from one species but in which the sequences of one or more of the CDR regions of VH and/or (e.g., and) VL are replaced with CDR sequences of another species, such as antibodies having murine heavy and light chain variable regions in which one or more of the murine CDRs (e.g., CDR3) has been replaced with human CDR sequences.


Chimeric antibody: The term “chimeric antibody” refers to antibodies which comprise heavy and light chain variable region sequences from one species and constant region sequences from another species, such as antibodies having murine heavy and light chain variable regions linked to human constant regions.


Complementary: As used herein, the term “complementary” refers to the capacity for precise pairing between two nucleosides or two sets of nucleosides. In particular, complementary is a term that characterizes an extent of hydrogen bond pairing that brings about binding between two nucleosides or two sets of nucleosides. For example, if a base at one position of an oligonucleotide is capable of hydrogen bonding with a base at the corresponding position of a target nucleic acid (e.g., an mRNA), then the bases are considered to be complementary to each other at that position. Base pairings may include both canonical Watson-Crick base pairing and non-Watson-Crick base pairing (e.g., Wobble base pairing and Hoogsteen base pairing). For example, in some embodiments, for complementary base pairings, adenosine-type bases (A) are complementary to thymidine-type bases (T) or uracil-type bases (U), that cytosine-type bases (C) are complementary to guanosine-type bases (G), and that universal bases such as 3-nitropyrrole or 5-nitroindole can hybridize to and are considered complementary to any A, C, U, or T. Inosine (I) has also been considered in the art to be a universal base and is considered complementary to any A, C, U or T.


Conservative amino acid substitution: As used herein, a “conservative amino acid substitution” refers to an amino acid substitution that does not alter the relative charge or size characteristics of the protein in which the amino acid substitution is made. Variants can be prepared according to methods for altering polypeptide sequence known to one of ordinary skill in the art such as are found in references which compile such methods, e.g. Molecular Cloning: A Laboratory Manual, J. Sambrook, et al., eds., Fourth Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2012, or Current Protocols in Molecular Biology, F. M. Ausubel, et al., eds., John Wiley & Sons, Inc., New York. Conservative substitutions of amino acids include substitutions made amongst amino acids within the following groups: (a) M, I, L, V; (b) F, Y, W; (c) K, R, H; (d) A, G; (e) S, T; (f) Q, N; and (g) E, D.


Covalently linked: As used herein, the term “covalently linked” refers to a characteristic of two or more molecules being linked together via at least one covalent bond. In some embodiments, two molecules can be covalently linked together by a single bond, e.g., a disulfide bond or disulfide bridge, that serves as a linker between the molecules. However, in some embodiments, two or more molecules can be covalently linked together via a molecule that serves as a linker that joins the two or more molecules together through multiple covalent bonds. In some embodiments, a linker may be a cleavable linker. However, in some embodiments, a linker may be a non-cleavable linker.


Cross-reactive: As used herein and in the context of a targeting agent (e.g., antibody), the term “cross-reactive,” refers to a property of the agent being capable of specifically binding to more than one antigen of a similar type or class (e.g., antigens of multiple homologs, paralogs, or orthologs) with similar affinity or avidity. For example, in some embodiments, an antibody that is cross-reactive against human and non-human primate antigens of a similar type or class (e.g., a human transferrin receptor and non-human primate transferrin receptor) is capable of binding to the human antigen and non-human primate antigens with a similar affinity or avidity. In some embodiments, an antibody is cross-reactive against a human antigen and a rodent antigen of a similar type or class. In some embodiments, an antibody is cross-reactive against a rodent antigen and a non-human primate antigen of a similar type or class. In some embodiments, an antibody is cross-reactive against a human antigen, a non-human primate antigen, and a rodent antigen of a similar type or class.


DMD: As used herein, the term “DMD” refers to a gene that encodes dystrophin protein, a key component of the dystrophin-glycoprotein complex, which bridges the inner cytoskeleton and the extracellular matrix in muscle cells, particularly muscle fibers. Deletions, duplications, and point mutations in DMD may cause dystrophinopathies, such as Duchenne muscular dystrophy, Becker muscular dystrophy, or cardiomyopathy. Alternative promoter usage and alternative splicing result in numerous distinct transcript variants and protein isoforms for this gene. In some embodiments, a dystrophin gene (DMD or DMD gene) may be a human (Gene ID: 1756), non-human primate (e.g., Gene ID: 465559), or rodent gene (e.g., Gene ID: 13405; Gene ID: 24907). In addition, multiple human transcript variants (e.g., as annotated under GenBank RefSeq Accession Numbers: NM_000109.3, NM_004006.2, NM_004009.3, NM_004010.3 and NM_004011.3) have been characterized that encode different protein isoforms.


DMD allele: As used herein, the term “DMD allele” refers to any one of alternative forms (e.g., wild-type or mutant forms) of a DMD gene. In some embodiments, a DMD allele may encode for dystrophin that retains its normal and typical functions. In some embodiments, a DMD allele may comprise one or more mutations that results in muscular dystrophy. Common mutations that lead to Duchenne muscular dystrophy involve frameshift, deletion, substitution, and duplicative mutations of one or more of 79 exons present in a dystrophin allele, e.g., exon 8, exon 23, exon 41, exon 44, exon 45, exon 50, exon 51, exon 52, exon 53, or exon 55. Further examples of DMD mutations are disclosed, for example, in Flanigan K M, et al., Mutational spectrum of DMD mutations in dystrophinopathy patients: application of modern diagnostic techniques to a large cohort. Hum Mutat. 2009 December; 30 (12):1657-66, the contents of which are incorporated herein by reference in its entirety.


Dystrophinopathy: As used herein, the term “dystrophinopathy” refers to a muscle disease results from one or more mutated DMD alleles. Dystrophinopathies include a spectrum of conditions (ranging from mild to severe) that includes Duchenne muscular dystrophy, Becker muscular dystrophy, and DMD-associated dilated cardiomyopathy (DCM). In some embodiments, at one end of the spectrum, dystrophinopathy is phenotypically associated with an asymptomatic increase in serum concentration of creatine phosphokinase (CK) and/or (e.g., and) muscle cramps with myoglobinuria. In some embodiments, at the other end of the spectrum, dystrophinopathy is phenotypically associated with progressive muscle diseases that are generally classified as Duchenne or Becker muscular dystrophy when skeletal muscle is primarily affected and as DMD-associated dilated cardiomyopathy (DCM) when the heart is primarily affected. Symptoms of Duchenne muscular dystrophy include muscle loss or degeneration, diminished muscle function, pseudohypertrophy of the tongue and calf muscles, higher risk of neurological abnormalities, and a shortened lifespan. Duchenne muscular dystrophy is associated with Online Mendelian Inheritance in Man (OMIM) Entry #310200. Becker muscular dystrophy is associated with OMIM Entry #300376. Dilated cardiomyopathy is associated with OMIM Entry X #302045.


Exonic splicing enhancer (ESE): As used herein, the term “exonic splicing enhancer” or “ESE” refers to a nucleic acid sequence motif within an exon of a gene, pre-mRNA, or mRNA that directs or enhances splicing of pre-mRNA into mRNA, e.g., as described in Blencowe et al., Trends Biochem Sci 25, 106-10. (2000), incorporated herein by reference. ESEs can be referred to as splicing features. ESEs may direct or enhance splicing, for example, to remove one or more introns and/or one or more exons from a gene transcript. ESE motifs are typically 6-8 nucleobases in length. SR proteins (e.g., proteins encoded by the gene SRSF1, SRSF2, SRSF3, SRSF4, SRSF5, SRSF6, SRSF7, SRSF8, SRSF9, SRSF10, SRSF11, SRSF12, TRA2A or TRA2B) bind to ESEs through their RNA recognition motif region to facilitate splicing. ESE motifs can be identified through a number of methods, including those described in Cartegni et al., Nucleic Acids Research, 2003, Vol. 31, No. 13, 3568-3571, incorporated herein by reference.


Framework: As used herein, the term “framework” or “framework sequence” refers to the remaining sequences of a variable region minus the CDRs. Because the exact definition of a CDR sequence can be determined by different systems, the meaning of a framework sequence is subject to correspondingly different interpretations. The six CDRs (CDR-L1, CDR-L2, and CDR-L3 of light chain and CDR-H1, CDR-H2, and CDR-H3 of heavy chain) also divide the framework regions on the light chain and the heavy chain into four sub-regions (FR1, FR2, FR3 and FR4) on each chain, in which CDR1 is positioned between FR1 and FR2, CDR2 between FR2 and FR3, and CDR3 between FR3 and FR4. Without specifying the particular sub-regions as FR1, FR2, FR3 or FR4, a framework region, as referred by others, represents the combined FRs within the variable region of a single, naturally occurring immunoglobulin chain. As used herein, a FR represents one of the four sub-regions, and FRs represents two or more of the four sub-regions constituting a framework region. Human heavy chain and light chain acceptor sequences are known in the art. In one embodiment, the acceptor sequences known in the art may be used in the antibodies disclosed herein.


Human antibody: The term “human antibody”, as used herein, is intended to include antibodies having variable and constant regions derived from human germline immunoglobulin sequences. The human antibodies of the disclosure may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs and in particular CDR3. However, the term “human antibody”, as used herein, is not intended to include antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.


Humanized antibody: The term “humanized antibody” refers to antibodies which comprise heavy and light chain variable region sequences from a non-human species (e.g., a mouse) but in which at least a portion of the VH and/or (e.g., and) VL sequence has been altered to be more “human-like”, i.e., more similar to human germline variable sequences. One type of humanized antibody is a CDR-grafted antibody, in which human CDR sequences are introduced into non-human VH and VL sequences to replace the corresponding non-human CDR sequences. In one embodiment, humanized anti-TfR1 antibodies and antigen binding portions are provided. Such antibodies may be generated by obtaining murine anti-TfR1 monoclonal antibodies using traditional hybridoma technology followed by humanization using in vitro genetic engineering, such as those disclosed in Kasaian et al PCT publication No. WO 2005/123126 A2.


Internalizing cell surface receptor: As used herein, the term, “internalizing cell surface receptor” refers to a cell surface receptor that is internalized by cells, e.g., upon external stimulation, e.g., ligand binding to the receptor. In some embodiments, an internalizing cell surface receptor is internalized by endocytosis. In some embodiments, an internalizing cell surface receptor is internalized by clathrin-mediated endocytosis. However, in some embodiments, an internalizing cell surface receptor is internalized by a clathrin-independent pathway, such as, for example, phagocytosis, macropinocytosis, caveolae- and raft-mediated uptake or constitutive clathrin-independent endocytosis. In some embodiments, the internalizing cell surface receptor comprises an intracellular domain, a transmembrane domain, and/or (e.g., and) an extracellular domain, which may optionally further comprise a ligand-binding domain. In some embodiments, a cell surface receptor becomes internalized by a cell after ligand binding. In some embodiments, a ligand may be a muscle-targeting agent or a muscle-targeting antibody. In some embodiments, an internalizing cell surface receptor is a transferrin receptor.


Isolated antibody: An “isolated antibody”, as used herein, is intended to refer to an antibody that is substantially free of other antibodies having different antigenic specificities (e.g., an isolated antibody that specifically binds transferrin receptor is substantially free of antibodies that specifically bind antigens other than transferrin receptor). An isolated antibody that specifically binds transferrin receptor complex may, however, have cross-reactivity to other antigens, such as transferrin receptor molecules from other species. Moreover, an isolated antibody may be substantially free of other cellular material and/or (e.g., and) chemicals.


Kabat numbering: The terms “Kabat numbering”, “Kabat definitions and “Kabat labeling” are used interchangeably herein. These terms, which are recognized in the art, refer to a system of numbering amino acid residues which are more variable (i.e. hypervariable) than other amino acid residues in the heavy and light chain variable regions of an antibody, or an antigen binding portion thereof (Kabat et al. (1971) Ann. NY Acad. Sci. 190:382-391 and, Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242). For the heavy chain variable region, the hypervariable region ranges from amino acid positions 31 to 35 for CDR1, amino acid positions 50 to 65 for CDR2, and amino acid positions 95 to 102 for CDR3. For the light chain variable region, the hypervariable region ranges from amino acid positions 24 to 34 for CDR1, amino acid positions 50 to 56 for CDR2, and amino acid positions 89 to 97 for CDR3.


Molecular payload: As used herein, the term “molecular payload” refers to a molecule or species that functions to modulate a biological outcome. In some embodiments, a molecular payload is linked to, or otherwise associated with a muscle-targeting agent. In some embodiments, the molecular payload is a small molecule, a protein, a peptide, a nucleic acid, or an oligonucleotide. In some embodiments, the molecular payload functions to modulate the transcription of a DNA sequence, to modulate the expression of a protein, or to modulate the activity of a protein. In some embodiments, the molecular payload is an oligonucleotide that comprises a strand having a region of complementarity to a target gene.


Muscle-targeting agent: As used herein, the term, “muscle-targeting agent,” refers to a molecule that specifically binds to an antigen expressed on muscle cells. The antigen in or on muscle cells may be a membrane protein, for example an integral membrane protein or a peripheral membrane protein. Typically, a muscle-targeting agent specifically binds to an antigen on muscle cells that facilitates internalization of the muscle-targeting agent (and any associated molecular payload) into the muscle cells. In some embodiments, a muscle-targeting agent specifically binds to an internalizing, cell surface receptor on muscles and is capable of being internalized into muscle cells through receptor mediated internalization. In some embodiments, the muscle-targeting agent is a small molecule, a protein, a peptide, a nucleic acid (e.g., an aptamer), or an antibody. In some embodiments, the muscle-targeting agent is linked to a molecular payload.


Muscle-targeting antibody: As used herein, the term, “muscle-targeting antibody,” refers to a muscle-targeting agent that is an antibody that specifically binds to an antigen found in or on muscle cells. In some embodiments, a muscle-targeting antibody specifically binds to an antigen on muscle cells that facilitates internalization of the muscle-targeting antibody (and any associated molecular payment) into the muscle cells. In some embodiments, the muscle-targeting antibody specifically binds to an internalizing, cell surface receptor present on muscle cells. In some embodiments, the muscle-targeting antibody is an antibody that specifically binds to a transferrin receptor.


Oligonucleotide: As used herein, the term “oligonucleotide” refers to an oligomeric nucleic acid compound of up to 200 nucleotides in length. Examples of oligonucleotides include, but are not limited to, RNAi oligonucleotides (e.g., siRNAs, shRNAs), microRNAs, gapmers, mixmers, phosphorodiamidate morpholinos, peptide nucleic acids, aptamers, guide nucleic acids (e.g., Cas9 guide RNAs), etc. Oligonucleotides may be single-stranded or double-stranded. In some embodiments, an oligonucleotide may comprise one or more modified nucleosides (e.g., 2′-O-methyl sugar modifications, purine or pyrimidine modifications). In some embodiments, an oligonucleotide may comprise one or more modified internucleoside linkages. In some embodiments, an oligonucleotide may comprise one or more phosphorothioate linkages, which may be in the Rp or Sp stereochemical conformation.


Recombinant antibody: The term “recombinant human antibody”, as used herein, is intended to include all human antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies expressed using a recombinant expression vector transfected into a host cell (described in more details in this disclosure), antibodies isolated from a recombinant, combinatorial human antibody library (Hoogenboom H. R., (1997) TIB Tech. 15:62-70; Azzazy H., and Highsmith W. E., (2002) Clin. Biochem. 35:425-445; Gavilondo J. V., and Larrick J. W. (2002) BioTechniques 29:128-145; Hoogenboom H., and Chames P. (2000) Immunology Today 21:371-378), antibodies isolated from an animal (e.g., a mouse) that is transgenic for human immunoglobulin genes (see e.g., Taylor, L. D., et al. (1992) Nucl. Acids Res. 20:6287-6295; Kellermann S-A., and Green L. L. (2002) Current Opinion in Biotechnology 13:593-597; Little M. et al (2000) Immunology Today 21:364-370) or antibodies prepared, expressed, created or isolated by any other means that involves splicing of human immunoglobulin gene sequences to other DNA sequences. Such recombinant human antibodies have variable and constant regions derived from human germline immunoglobulin sequences. In certain embodiments, however, such recombinant human antibodies are subjected to in vitro mutagenesis (or, when an animal transgenic for human Ig sequences is used, in vivo somatic mutagenesis) and thus the amino acid sequences of the VH and VL regions of the recombinant antibodies are sequences that, while derived from and related to human germline VH and VL sequences, may not naturally exist within the human antibody germline repertoire in vivo. One embodiment of the disclosure provides fully human antibodies capable of binding human transferrin receptor which can be generated using techniques well known in the art, such as, but not limited to, using human Ig phage libraries such as those disclosed in Jermutus et al., PCT publication No. WO 2005/007699 A2.


Region of complementarity: As used herein, the term “region of complementarity” refers to a nucleotide sequence, e.g., of an oligonucleotide, that is sufficiently complementary to a cognate nucleotide sequence, e.g., of a target nucleic acid, such that the two nucleotide sequences are capable of annealing to one another under physiological conditions (e.g., in a cell). In some embodiments, a region of complementarity is fully complementary to a cognate nucleotide sequence of target nucleic acid. However, in some embodiments, a region of complementarity is partially complementary to a cognate nucleotide sequence of target nucleic acid (e.g., at least 80%, 90%, 95% or 99% complementarity). In some embodiments, a region of complementarity contains 1, 2, 3, or 4 mismatches compared with a cognate nucleotide sequence of a target nucleic acid.


Specifically binds: As used herein, the term “specifically binds” refers to the ability of a molecule to bind to a binding partner with a degree of affinity or avidity that enables the molecule to be used to distinguish the binding partner from an appropriate control in a binding assay or other binding context. With respect to an antibody, the term, “specifically binds”, refers to the ability of the antibody to bind to a specific antigen with a degree of affinity or avidity, compared with an appropriate reference antigen or antigens, that enables the antibody to be used to distinguish the specific antigen from others, e.g., to an extent that permits preferential targeting to certain cells, e.g., muscle cells, through binding to the antigen, as described herein. In some embodiments, an antibody specifically binds to a target if the antibody has a KD for binding the target of at least about 10−4 M, 10−5 M, 10−6 M, 10−7 M, 10−8 M, 10−9 M, 10−10 M, 10−11 M, 10−12 M, 10−13 M, or less. In some embodiments, an antibody specifically binds to the transferrin receptor, e.g., an epitope of the apical domain of transferrin receptor.


Splice acceptor site: As used herein, the term “splice acceptor site” or “splice acceptor” refers to a nucleic acid sequence motif at the 3′ end of an intron or across an intron/exon junction of a gene or pre-mRNA that is involved in splicing of pre-mRNA into mRNA (i.e., removing introns from the pre-mRNA), and can be referred to as a splicing feature. A splice acceptor site includes a terminal AG sequence at the 3′ end of an intron, which is typically preceded (5′-ward) by a region high in pyrimidines (C/U). Upstream from the splice acceptor site is the branch point. Formation of a lariat loop intermediate structure by a transesterification reaction between the branch point and the splice donor site releases a 3′-OH of the 5′ exon, which subsequently reacts with the first nucleotide of the 3′ exon, thereby joining the exons and releasing the intron lariat. The AG sequence at the 3′ end of the intron in the splice acceptor site is known to be critical for proper splicing, as changing one of these nucleotides results in inhibition of splicing. Rarely, alternative splice acceptor sites have an AC at the 3′ end of the intron, instead of the more common AG. A common splice acceptor site motif has a sequence of or similar to [Y-rich region]-NCAGG or YxNYAGG, in which Y represents a pyrimidine, N represents any nucleotide, and x is a number from 4 to 20. The cut site follows the AG, which represent the 3′-terminal nucleotides of the excised intron.


Splice donor site: As used herein, the term “splice donor site” or “splice donor” refers to a nucleic acid sequence motif at the 5′ end of an intron or across an exon/intron junction of a gene or pre-mRNA that is involved in splicing of pre-mRNA into mRNA (i.e., removing introns from the pre-mRNA), and can be referred to as a splicing feature. A splice donor site includes a terminal GU sequence at the 5′ end of the intron, within a larger and fairly unconstrained sequence. During splicing, the 2′-OH of a nucleotide within the branch point initiates a transesterification reaction via a nucleophilic attack on the 5′ G of the intron within the splice donor site. The G is thereby cleaved from the pre-mRNA and bonds instead to the branch point nucleotide, forming a loop lariat structure. The 3′ nucleotide of the upstream exon subsequently binds the splice acceptor site, joining the exons and excising the intron. A typical splice donor site has a sequence of or similar to GGGURAGU or AGGURNG, in which R represents a purine and N represents any nucleotide. The cut site precedes the first GU (i.e., GG/GURAGU or AG/GURNG), which represent the 5′-terminal nucleotides of the excised intron.


Subject: As used herein, the term “subject” refers to a mammal. In some embodiments, a subject is non-human primate, or rodent. In some embodiments, a subject is a human. In some embodiments, a subject is a patient, e.g., a human patient that has or is suspected of having a disease. In some embodiments, the subject is a human patient who has or is suspected of having a disease resulting from a mutated DMD gene sequence, e.g., a mutation in an exon of a DMD gene sequence. In some embodiments, a subject has a dystrophinopathy, e.g., Duchenne muscular dystrophy. In some embodiments, a subject is a patient that has a mutation of the DMD gene that is amenable to exon 55 skipping.


Transferrin receptor: As used herein, the term, “transferrin receptor” (also known as TFRC, CD71, p90, or TFR1) refers to an internalizing cell surface receptor that binds transferrin to facilitate iron uptake by endocytosis. In some embodiments, a transferrin receptor may be of human (NCBI Gene ID 7037), non-human primate (e.g., NCBI Gene ID 711568 or NCBI Gene ID 102136007), or rodent (e.g., NCBI Gene ID 22042) origin. In addition, multiple human transcript variants have been characterized that encoded different isoforms of the receptor (e.g., as annotated under GenBank RefSeq Accession Numbers: NP_001121620.1, NP_003225.2, NP_001300894.1, and NP_001300895.1).


2′-modified nucleoside: As used herein, the terms “2′-modified nucleoside” and “2′-modified ribonucleoside” are used interchangeably and refer to a nucleoside having a sugar moiety modified at the 2′ position. In some embodiments, the 2′-modified nucleoside is a 2′-4′ bicyclic nucleoside, where the 2′ and 4′ positions of the sugar are bridged (e.g., via a methylene, an ethylene, or a (S)-constrained ethyl bridge). In some embodiments, the 2′-modified nucleoside is a non-bicyclic 2′-modified nucleoside, e.g., where the 2′ position of the sugar moiety is substituted. Non-limiting examples of 2′-modified nucleosides include: 2′-deoxy, 2′-fluoro (2′-F), 2′-O-methyl (2′-O-Me), 2′-O-methoxyethyl (2′-MOE), 2′-O-aminopropyl (2′-O-AP), 2′-O-dimethylaminoethyl (2′-O-DMAOE), 2′-O-dimethylaminopropyl (2′-O-DMAP), 2′-0-dimethylaminoethyloxyethyl (2′-O-DMAEOE), 2′-O—N-methylacetamido (2′-O-NMA), locked nucleic acid (LNA, methylene-bridged nucleic acid), ethylene-bridged nucleic acid (ENA), and (S)-constrained ethyl-bridged nucleic acid (cEt). In some embodiments, the 2′-modified nucleosides described herein are high-affinity modified nucleosides and oligonucleotides comprising the 2′-modified nucleosides have increased affinity to a target sequences, relative to an unmodified oligonucleotide. Examples of structures of 2′-modified nucleosides are provided below:




embedded image


These examples are shown with phosphate groups, but any internucleoside linkages are contemplated between 2′-modified nucleosides.


II. Complexes

Provided herein are complexes that comprise a targeting agent, e.g. an antibody, covalently linked to a molecular payload. In some embodiments, a complex comprises a muscle-targeting antibody covalently linked to an oligonucleotide. A complex may comprise an antibody that specifically binds a single antigenic site or that binds to at least two antigenic sites that may exist on the same or different antigens.


A complex may be used to modulate the activity or function of at least one gene, protein, and/or (e.g., and) nucleic acid. In some embodiments, the molecular payload present within a complex is responsible for the modulation of a gene, protein, and/or (e.g., and) nucleic acids. A molecular payload may be a small molecule, protein, nucleic acid, oligonucleotide, or any molecular entity capable of modulating the activity or function of a gene, protein, and/or (e.g., and) nucleic acid in a cell.


In some embodiments, a complex comprises a muscle-targeting agent, e.g., an anti-transferrin receptor antibody, covalently linked to a molecular payload, e.g., an antisense oligonucleotide that targets DMD to promote exon skipping, e.g., in a transcript encoded from a mutated DMD allele. In some embodiments, the complex targets a DMD pre-mRNA to promote skipping of exon 55 in the DMD pre-mRNA.


A. Muscle-Targeting Agents

Some aspects of the disclosure provide muscle-targeting agents, e.g., for delivering a molecular payload to a muscle cell. In some embodiments, such muscle-targeting agents are capable of binding to a muscle cell, e.g., via specifically binding to an antigen on the muscle cell, and delivering an associated molecular payload to the muscle cell. In some embodiments, the molecular payload is bound (e.g., covalently bound) to the muscle targeting agent and is internalized into the muscle cell upon binding of the muscle targeting agent to an antigen on the muscle cell, e.g., via endocytosis. It should be appreciated that various types of muscle-targeting agents may be used in accordance with the disclosure, and that any muscle targets (e.g., muscle surface proteins) can be targeted by any type of muscle-targeting agent described herein. For example, the muscle-targeting agent may comprise, or consist of, a small molecule, a nucleic acid (e.g., DNA or RNA), a peptide (e.g., an antibody), a lipid (e.g., a microvesicle), or a sugar moiety (e.g., a polysaccharide). Exemplary muscle-targeting agents are described in further detail herein, however, it should be appreciated that the exemplary muscle-targeting agents provided herein are not meant to be limiting.


Some aspects of the disclosure provide muscle-targeting agents that specifically bind to an antigen on muscle, such as skeletal muscle, smooth muscle, or cardiac muscle. In some embodiments, any of the muscle-targeting agents provided herein bind to (e.g., specifically bind to) an antigen on a skeletal muscle cell, a smooth muscle cell, and/or (e.g., and) a cardiac muscle cell.


By interacting with muscle-specific cell surface recognition elements (e.g., cell membrane proteins), both tissue localization and selective uptake into muscle cells can be achieved. In some embodiments, molecules that are substrates for muscle uptake transporters are useful for delivering a molecular payload into muscle tissue. Binding to muscle surface recognition elements followed by endocytosis can allow even large molecules such as antibodies to enter muscle cells. As another example molecular payloads conjugated to transferrin or anti-TfR1 antibodies can be taken up by muscle cells via binding to transferrin receptor, which may then be endocytosed, e.g., via clathrin-mediated endocytosis.


The use of muscle-targeting agents may be useful for concentrating a molecular payload (e.g., oligonucleotide) in muscle while reducing toxicity associated with effects in other tissues. In some embodiments, the muscle-targeting agent concentrates a bound molecular payload in muscle cells as compared to another cell type within a subject. In some embodiments, the muscle-targeting agent concentrates a bound molecular payload in muscle cells (e.g., skeletal, smooth, or cardiac muscle cells) in an amount that is at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, or 100 times greater than an amount in non-muscle cells (e.g., liver, neuronal, blood, or fat cells). In some embodiments, a toxicity of the molecular payload in a subject is reduced by at least 1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 90%, or 95% when it is delivered to the subject when bound to the muscle-targeting agent.


In some embodiments, to achieve muscle selectivity, a muscle recognition element (e.g., a muscle cell antigen) may be required. As one example, a muscle-targeting agent may be a small molecule that is a substrate for a muscle-specific uptake transporter. As another example, a muscle-targeting agent may be an antibody that enters a muscle cell via transporter-mediated endocytosis. As another example, a muscle targeting agent may be a ligand that binds to cell surface receptor on a muscle cell. It should be appreciated that while transporter-based approaches provide a direct path for cellular entry, receptor-based targeting may involve stimulated endocytosis to reach the desired site of action.


i. Muscle-Targeting Antibodies


In some embodiments, the muscle-targeting agent is an antibody. Generally, the high specificity of antibodies for their target antigen provides the potential for selectively targeting muscle cells (e.g., skeletal, smooth, and/or (e.g., and) cardiac muscle cells). This specificity may also limit off-target toxicity. Examples of antibodies that are capable of targeting a surface antigen of muscle cells have been reported and are within the scope of the disclosure. For example, antibodies that target the surface of muscle cells are described in Arahata K., et al. “Immunostaining of skeletal and cardiac muscle surface membrane with antibody against Duchenne muscular dystrophy peptide” Nature 1988; 333: 861-3; Song K. S., et al. “Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins” J Biol Chem 1996; 271: 15160-5; and Weisbart R. H. et al., “Cell type specific targeted intracellular delivery into muscle of a monoclonal antibody that binds myosin IIb” Mol Immunol. 2003 March, 39(13):78309; the entire contents of each of which are incorporated herein by reference.


a. Anti-Transferrin Receptor (TfR) Antibodies


Some aspects of the disclosure are based on the recognition that agents binding to transferrin receptor, e.g., anti-transferrin-receptor antibodies, are capable of targeting muscle cell. Transferrin receptors are internalizing cell surface receptors that transport transferrin across the cellular membrane and participate in the regulation and homeostasis of intracellular iron levels. Some aspects of the disclosure provide transferrin receptor binding proteins, which are capable of binding to transferrin receptor. Accordingly, aspects of the disclosure provide binding proteins (e.g., antibodies) that bind to transferrin receptor. In some embodiments, binding proteins that bind to transferrin receptor are internalized, along with any bound molecular payload, into a muscle cell. As used herein, an antibody that binds to a transferrin receptor may be referred to interchangeably as an, transferrin receptor antibody, an anti-transferrin receptor antibody, or an anti-TfR1 antibody. Antibodies that bind, e.g. specifically bind, to a transferrin receptor may be internalized into the cell, e.g. through receptor-mediated endocytosis, upon binding to a transferrin receptor.


It should be appreciated that anti-TfR1 antibodies may be produced, synthesized, and/or (e.g., and) derivatized using several known methodologies, e.g. library design using phage display. Exemplary methodologies have been characterized in the art and are incorporated by reference (Diez, P. et al. “High-throughput phage-display screening in array format”, Enzyme and microbial technology, 2015, 79, 34-41.; Christoph M. H. and Stanley, J. R. “Antibody Phage Display: Technique and Applications” J Invest Dermatol. 2014, 134:2.; Engleman, Edgar (Ed.) “Human Hybridomas and Monoclonal Antibodies.” 1985, Springer.). In other embodiments, an anti-TfR1 antibody has been previously characterized or disclosed. Antibodies that specifically bind to transferrin receptor are known in the art (see, e.g. U.S. Pat. No. 4,364,934, filed Dec. 4, 1979, “Monoclonal antibody to a human early thymocyte antigen and methods for preparing same”; U.S. Pat. No. 8,409,573, filed Jun. 14, 2006, “Anti-CD71 monoclonal antibodies and uses thereof for treating malignant tumor cells”; U.S. Pat. No. 9,708,406, filed May 20, 2014, “Anti-transferrin receptor antibodies and methods of use”; U.S. Pat. No. 9,611,323, filed Dec. 19, 2014, “Low affinity blood brain barrier receptor antibodies and uses therefor”; WO 2015/098989, filed Dec. 24, 2014, “Novel anti-Transferrin receptor antibody that passes through blood-brain barrier”; Schneider C. et al. “Structural features of the cell surface receptor for transferrin that is recognized by the monoclonal antibody OKT9.” J Biol Chem. 1982, 257:14, 8516-8522.; Lee et al. “Targeting Rat Anti-Mouse Transferrin Receptor Monoclonal Antibodies through Blood-Brain Barrier in Mouse” 2000, J Pharmacol. Exp. Ther., 292: 1048-1052.).


In some embodiments, the anti-TfR1 antibody described herein binds to transferrin receptor with high specificity and affinity. In some embodiments, the anti-TfR1 antibody described herein specifically binds to any extracellular epitope of a transferrin receptor or an epitope that becomes exposed to an antibody. In some embodiments, anti-TfR1 antibodies provided herein bind specifically to transferrin receptor from human, non-human primates, mouse, rat, etc. In some embodiments, anti-TfR1 antibodies provided herein bind to human transferrin receptor. In some embodiments, the anti-TfR1 antibody described herein binds to an amino acid segment of a human or non-human primate transferrin receptor, as provided in SEQ ID NOs: 105-108. In some embodiments, the anti-TfR1 antibody described herein binds to an amino acid segment corresponding to amino acids 90-96 of a human transferrin receptor as set forth in SEQ ID NO: 105, which is not in the apical domain of the transferrin receptor.


In some embodiments, the anti-TfR1 antibodies described herein (e.g., Anti-TfR clone 8 in Table 2 below) bind an epitope in TfR1, wherein the epitope comprises residues in amino acids 214-241 and/or amino acids 354-381 of SEQ ID NO: 105. In some embodiments, the anti-TfR1 antibodies described herein bind an epitope comprising residues in amino acids 214-241 and amino acids 354-381 of SEQ ID NO: 105. In some embodiments, the anti-TfR1 antibodies described herein bind an epitope comprising one or more of residues Y222, T227, K231, H234, T367, S368, S370, T376, and S378 of human TfR1 as set forth in SEQ ID NO: 105. In some embodiments, the anti-TfR1 antibodies described herein bind an epitope comprising residues Y222, T227, K231, H234, T367, S368, S370, T376, and S378 of human TfR1 as set forth in SEQ ID NO: 105.


In some embodiments, the anti-TfR1 antibody described herein (e.g., 3M12 in Table 2 below and its variants) bind an epitope in TfR1, wherein the epitope comprises residues in amino acids 258-291 and/or amino acids 358-381 of SEQ ID NO: 105. In some embodiments, the anti-TfR1 antibodies (e.g., 3M12 in Table 2 below and its variants) described herein bind an epitope comprising residues in amino acids amino acids 258-291 and amino acids 358-381 of SEQ ID NO: 105. In some embodiments, the anti-TfR1 antibodies described herein (e.g., 3M12 in Table 2 below and its variants) bind an epitope comprising one or more of residues K261, S273, Y282, T362, S368, S370, and K371 of human TfR1 as set forth in SEQ ID NO: 105. In some embodiments, the anti-TfR1 antibodies described herein (e.g., 3M12 in Table 2 below and its variants) bind an epitope comprising residues K261, S273, Y282, T362, S368, S370, and K371 of human TfR1 as set forth in SEQ ID NO: 105.


An example human transferrin receptor amino acid sequence, corresponding to NCBI sequence NP_003225.2 (transferrin receptor protein 1 isoform 1, Homo sapiens) is as follows:









(SEQ ID NO: 105)


MMDQARSAFSNLFGGEPLSYTRFSLARQVDGDNSHVEMKLAVDEEENAD





NNTKANVTKPKRCSGSICYGTIAVIVFFLIGFMIGYLGYCKGVEPKTEC





ERLAGTESPVREEPGEDFPAARRLYWDDLKRKLSEKLDSTDFTGTIKLL





NENSYVPREAGSQKDENLALYVENQFREFKLSKVWRDQHFVKIQVKDSA





QNSVIIVDKNGRLVYLVENPGGYVAYSKAATVTGKLVHANFGTKKDFED





LYTPVNGSIVIVRAGKITFAEKVANAESLNAIGVLIYMDQTKFPIVNAE





LSFFGHAHLGTGDPYTPGFPSFNHTQFPPSRSSGLPNIPVQTISRAAAE





KLFGNMEGDCPSDWKTDSTCRMVTSESKNVKLTVSNVLKEIKILNIFGV





IKGFVEPDHYVVVGAQRDAWGPGAAKSGVGTALLLKLAQMFSDMVLKDG





FQPSRSIIFASWSAGDFGSVGATEWLEGYLSSLHLKAFTYINLDKAVLG





TSNFKVSASPLLYTLIEKTMQNVKHPVTGQFLYQDSNWASKVEKLTLDN





AAFPFLAYSGIPAVSFCFCEDTDYPYLGTTMDTYKELIERIPELNKVAR





AAAEVAGQFVIKLTHDVELNLDYERYNSQLLSFVRDLNQYRADIKEMGL





SLQWLYSARGDFFRATSRLTTDFGNAEKTDRFVMKKLNDRVMRVEYHFL





SPYVSPKESPFRHVFWGSGSHTLPALLENLKLRKQNNGAFNETLFRNQL





ALATWTIQGAANALSGDVWDIDNEF.






An example non-human primate transferrin receptor amino acid sequence, corresponding to NCBI sequence NP_001244232.1(transferrin receptor protein 1, Macaca mulatta) is as follows:









(SEQ ID NO: 106)


MMDQARSAFSNLFGGEPLSYTRFSLARQVDGDNSHVEMKLGVDEEENTD





NNTKPNGTKPKRCGGNICYGTIAVIIFFLIGFMIGYLGYCKGVEPKTEC





ERLAGTESPAREEPEEDFPAAPRLYWDDLKRKLSEKLDTTDFTSTIKLL





NENLYVPREAGSQKDENLALYIENQFREFKLSKVWRDQHFVKIQVKDSA





QNSVIIVDKNGGLVYLVENPGGYVAYSKAATVTGKLVHANFGTKKDFED





LDSPVNGSIVIVRAGKITFAEKVANAESLNAIGVLIYMDQTKFPIVKAD





LSFFGHAHLGTGDPYTPGFPSFNHTQFPPSQSSGLPNIPVQTISRAAAE





KLFGNMEGDCPSDWKTDSTCKMVTSENKSVKLTVSNVLKETKILNIFGV





IKGFVEPDHYVVVGAQRDAWGPGAAKSSVGTALLLKLAQMFSDMVLKDG





FQPSRSIIFASWSAGDFGSVGATEWLEGYLSSLHLKAFTYINLDKAVLG





TSNFKVSASPLLYTLIEKTMQDVKHPVTGRSLYQDSNWASKVEKLTLDN





AAFPFLAYSGIPAVSFCFCEDTDYPYLGTTMDTYKELVERIPELNKVAR





AAAEVAGQFVIKLTHDTELNLDYERYNSQLLLFLRDLNQYRADVKEMGL





SLQWLYSARGDFFRATSRLTTDFRNAEKRDKFVMKKLNDRVMRVEYYFL





SPYVSPKESPFRHVFWGSGSHTLSALLESLKLRRQNNSAFNETLFRNQL





ALATWTIQGAANALSGDVWDIDNEF






An example non-human primate transferrin receptor amino acid sequence, corresponding to NCBI sequence XP_005545315.1 (transferrin receptor protein 1, Macaca fascicularis) is as follows:









(SEQ ID NO: 107)


MMDQARSAFSNLFGGEPLSYTRFSLARQVDGDNSHVEMKLGVDEEENTDN





NTKANGTKPKRCGGNICYGTIAVIIFFLIGFMIGYLGYCKGVEPKTECER





LAGTESPAREEPEEDFPAAPRLYWDDLKRKLSEKLDTTDFTSTIKLLNEN





LYVPREAGSQKDENLALYIENQFREFKLSKVWRDQHFVKIQVKDSAQNSV





IIVDKNGGLVYLVENPGGYVAYSKAATVTGKLVHANFGTKKDFEDLDSPV





NGSIVIVRAGKITFAEKVANAESLNAIGVLIYMDQTKFPIVKADLSFFGH





AHLGTGDPYTPGFPSFNHTQFPPSQSSGLPNIPVQTISRAAAEKLFGNME





GDCPSDWKTDSTCKMVTSENKSVKLTVSNVLKETKILNIFGVIKGFVEPD





HYVVVGAQRDAWGPGAAKSSVGTALLLKLAQMFSDMVLKDGFQPSRSIIF





ASWSAGDFGSVGATEWLEGYLSSLHLKAFTYINLDKAVLGTSNFKVSASP





LLYTLIEKTMQDVKHPVTGRSLYQDSNWASKVEKLTLDNAAFPFLAYSGI





PAVSFCFCEDTDYPYLGTTMDTYKELVERIPELNKVARAAAEVAGQFVIK





LTHDTELNLDYERYNSQLLLFLRDLNQYRADVKEMGLSLQWLYSARGDFF





RATSRLTTDFRNAEKRDKFVMKKLNDRVMRVEYYFLSPYVSPKESPFRHV





FWGSGSHTLSALLESLKLRRQNNSAFNETLFRNQLALATWTIQGAANALS





GDVWDIDNEF.






An example mouse transferrin receptor amino acid sequence, corresponding to NCBI sequence NP_001344227.1 (transferrin receptor protein 1, Mus musculus) is as follows:









(SEQ ID NO: 108)


MMDQARSAFSNLFGGEPLSYTRFSLARQVDGDNSHVEMKLAADEEENADN





NMKASVRKPKRFNGRLCFAAIALVIFFLIGFMSGYLGYCKRVEQKEECVK





LAETEETDKSETMETEDVPTSSRLYWADLKTLLSEKLNSIEFADTIKQLS





QNTYTPREAGSQKDESLAYYIENQFHEFKFSKVWRDEHYVKIQVKSSIGQ





NMVTIVQSNGNLDPVESPEGYVAFSKPTEVSGKLVHANFGTKKDFEELSY





SVNGSLVIVRAGEITFAEKVANAQSFNAIGVLIYMDKNKFPVVEADLALF





GHAHLGTGDPYTPGFPSFNHTQFPPSQSSGLPNIPVQTISRAAAEKLFGK





MEGSCPARWNIDSSCKLELSQNQNVKLIVKNVLKERRILNIFGVIKGYEE





PDRYVVVGAQRDALGAGVAAKSSVGTGLLLKLAQVFSDMISKDGFRPSRS





IIFASWTAGDFGAVGATEWLEGYLSSLHLKAFTYINLDKVVLGTSNFKVS





ASPLLYTLMGKIMQDVKHPVDGKSLYRDSNWISKVEKLSFDNAAYPFLAY





SGIPAVSFCFCEDADYPYLGTRLDTYEALTQKVPQLNQMVRTAAEVAGQL





IIKLTHDVELNLDYEMYNSKLLSFMKDLNQFKTDIRDMGLSLQWLYSARG





DYFRATSRLTTDFHNAEKTNRFVMREINDRIMKVEYHFLSPYVSPRESPF





RHIFWGSGSHTLSALVENLKLRQKNITAFNETLFRNQLALATWTIQGVAN





ALSGDIWNIDNEF






In some embodiments, an anti-TfR1 antibody binds to an amino acid segment of the receptor as follows: FVKIQVKDSAQNSVIIVDKNGRLVYLVENPGGYVAYSKAATVTGKLVHANFGTKKDFE DLYTPVNGSIVIVRAGKITFAEKVANAESLNAIGVLIYMDQTKFPIVNAELSFFGHAHLG TGDPYTPGFPSFNHTQFPPSRSSGLPNIPVQTISRAAAEKLFGNMEGDCPSDWKTDSTCR MVTSESKNVKLTVSNVLKE (SEQ ID NO: 109) and does not inhibit the binding interactions between transferrin receptors and transferrin and/or (e.g., and) human hemochromatosis protein (also known as HFE). In some embodiments, the anti-TfR1 antibody described herein does not bind an epitope in SEQ ID NO: 109.


Appropriate methodologies may be used to obtain and/or (e.g., and) produce antibodies, antibody fragments, or antigen-binding agents, e.g., through the use of recombinant DNA protocols. In some embodiments, an antibody may also be produced through the generation of hybridomas (see, e.g., Kohler, G and Milstein, C. “Continuous cultures of fused cells secreting antibody of predefined specificity” Nature, 1975, 256: 495-497). The antigen-of-interest may be used as the immunogen in any form or entity, e.g., recombinant or a naturally occurring form or entity. Hybridomas are screened using standard methods, e.g. ELISA screening, to find at least one hybridoma that produces an antibody that targets a particular antigen. Antibodies may also be produced through screening of protein expression libraries that express antibodies, e.g., phage display libraries. Phage display library design may also be used, in some embodiments, (see, e.g. U.S. Pat. No. 5,223,409, filed Mar. 1, 1991, “Directed evolution of novel binding proteins”; WO 1992/18619, filed Apr. 10, 1992, “Heterodimeric receptor libraries using phagemids”; WO 1991/17271, filed May 1, 1991, “Recombinant library screening methods”; WO 1992/20791, filed May 15, 1992, “Methods for producing members of specific binding pairs”; WO 1992/15679, filed Feb. 28, 1992, and “Improved epitope displaying phage”). In some embodiments, an antigen-of-interest may be used to immunize a non-human animal, e.g., a rodent or a goat. In some embodiments, an antibody is then obtained from the non-human animal, and may be optionally modified using a number of methodologies, e.g., using recombinant DNA techniques. Additional examples of antibody production and methodologies are known in the art (see, e.g. Harlow et al. “Antibodies: A Laboratory Manual”, Cold Spring Harbor Laboratory, 1988.).


In some embodiments, an antibody is modified, e.g., modified via glycosylation, phosphorylation, sumoylation, and/or (e.g., and) methylation. In some embodiments, an antibody is a glycosylated antibody, which is conjugated to one or more sugar or carbohydrate molecules. In some embodiments, the one or more sugar or carbohydrate molecule are conjugated to the antibody via N-glycosylation, O-glycosylation, C-glycosylation, glypiation (GPI anchor attachment), and/or (e.g., and) phosphoglycosylation. In some embodiments, the one or more sugar or carbohydrate molecules are monosaccharides, disaccharides, oligosaccharides, or glycans. In some embodiments, the one or more sugar or carbohydrate molecule is a branched oligosaccharide or a branched glycan. In some embodiments, the one or more sugar or carbohydrate molecule includes a mannose unit, a glucose unit, an N-acetylglucosamine unit, an N-acetylgalactosamine unit, a galactose unit, a fucose unit, or a phospholipid unit. In some embodiments, there are about 1-10, about 1-5, about 5-10, about 1-4, about 1-3, or about 2 sugar molecules. In some embodiments, a glycosylated antibody is fully or partially glycosylated. In some embodiments, an antibody is glycosylated by chemical reactions or by enzymatic means. In some embodiments, an antibody is glycosylated in vitro or inside a cell, which may optionally be deficient in an enzyme in the N- or O-glycosylation pathway, e.g. a glycosyltransferase. In some embodiments, an antibody is functionalized with sugar or carbohydrate molecules as described in International Patent Application Publication WO2014065661, published on May 1, 2014, entitled, “Modified antibody, antibody-conjugate and process for the preparation thereof”.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VL domain and/or (e.g., and) a VH domain of any one of the anti-TfR1 antibodies selected from any one of Tables 2-7, and comprises a constant region comprising the amino acid sequences of the constant regions of an IgG, IgE, IgM, IgD, IgA or IgY immunoglobulin molecule, any class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2), or any subclass (e.g., IgG2a and IgG2b) of immunoglobulin molecule. Non-limiting examples of human constant regions are described in the art, e.g., see Kabat E A et al., (1991) supra.


In some embodiments, agents binding to transferrin receptor, e.g., anti-TfR1 antibodies, are capable of targeting muscle cell and/or (e.g., and) mediate the transportation of an agent across the blood brain barrier. Transferrin receptors are internalizing cell surface receptors that transport transferrin across the cellular membrane and participate in the regulation and homeostasis of intracellular iron levels. Some aspects of the disclosure provide transferrin receptor binding proteins, which are capable of binding to transferrin receptor. Antibodies that bind, e.g. specifically bind, to a transferrin receptor may be internalized into the cell, e.g. through receptor-mediated endocytosis, upon binding to a transferrin receptor.


Provided herein, in some aspects, are humanized antibodies that bind to transferrin receptor with high specificity and affinity. In some embodiments, the humanized anti-TfR1 antibody described herein specifically binds to any extracellular epitope of a transferrin receptor or an epitope that becomes exposed to an antibody. In some embodiments, the humanized anti-TfR1 antibodies provided herein bind specifically to transferrin receptor from human, non-human primates, mouse, rat, etc. In some embodiments, the humanized anti-TfR1 antibodies provided herein bind to human transferrin receptor. In some embodiments, the humanized anti-TfR1 antibody described herein binds to an amino acid segment of a human or non-human primate transferrin receptor, as provided in SEQ ID NOs: 105-108. In some embodiments, the humanized anti-TfR1 antibody described herein binds to an amino acid segment corresponding to amino acids 90-96 of a human transferrin receptor as set forth in SEQ ID NO: 105, which is not in the apical domain of the transferrin receptor. In some embodiments, the humanized anti-TfR1 antibodies described herein binds to TfR1 but does not bind to TfR2.


In some embodiments, an anti-TFR1 antibody specifically binds a TfR1 (e.g., a human or non-human primate TfR1) with binding affinity (e.g., as indicated by Kd) of at least about 10−4 M, 10−5 M, 10−6 M, 10−7 M, 10−8 M, 10−9 M, 10−10 M, 10−11 M, 10−12 M, 10−13 M, or less. In some embodiments, the anti-TfR1 antibodies described herein bind to TfR1 with a KD of sub-nanomolar range. In some embodiments, the anti-TfR1 antibodies described herein selectively bind to transferrin receptor 1 (TfR1) but do not bind to transferrin receptor 2 (TfR2). In some embodiments, the anti-TfR1 antibodies described herein bind to human TfR1 and cyno TfR1 (e.g., with a Kd of 10−7 M, 10−8 M, 10−9 M, 10−10 M, 10−11 M, 10−12 M, 10−13 M, or less), but do not bind to a mouse TfR1. The affinity and binding kinetics of the anti-TfR1 antibody can be tested using any suitable method including but not limited to biosensor technology (e.g., OCTET or BIACORE). In some embodiments, binding of any one of the anti-TfR1 antibodies described herein does not complete with or inhibit transferrin binding to the TfR1. In some embodiments, binding of any one of the anti-TfR1 antibodies described herein does not complete with or inhibit HFE-beta-2-microglobulin binding to the TfR1.


Non-limiting examples of anti-TfR1 antibodies are provided in Table 2.









TABLE 2







Examples of Anti-TfR1 Antibodies












No.





Ab
system
IMGT
Kabat
Chothia





3-A4
CDR-
GFNIKDDY (SEQ ID NO:
DDYMY (SEQ ID NO: 7)
GFNIKDD (SEQ ID NO: 12)



H1
1)





CDR-
IDPENGDT (SEQ ID NO:
WIDPENGDTEYASKFQD
ENG (SEQ ID NO: 13)



H2
2)
(SEQ ID NO: 8)




CDR-
TLWLRRGLDY (SEQ ID
WLRRGLDY (SEQ ID NO: 9)
LRRGLD (SEQ ID NO: 14)



H3
NO: 3)





CDR-
KSLLHSNGYTY (SEQ ID
RSSKSLLHSNGYTYLF (SEQ
SKSLLHSNGYTY (SEQ ID



L1
NO: 4)
ID NO: 10)
NO: 15)



CDR-
RMS (SEQ ID NO: 5)
RMSNLAS (SEQ ID NO: 11)
RMS (SEQ ID NO: 5)



L2






CDR-
MQHLEYPFT (SEQ ID
MQHLEYPFT (SEQ ID NO: 6)
HLEYPF (SEQ ID NO: 16)



L3
NO: 6)












VH
EVQLQQSGAELVRPGASVKLSCTASGFNIKDDYMYWVKQRPEQGLEWIGWIDPENGDT




EYASKFQDKATVTADTSSNTAYLQLSSLTSEDTAVYYCTLWLRRGLDYWGQGTSVTVS




S (SEQ ID NO: 17)



VL
DIVMTQAAPSVPVTPGESVSISCRSSKSLLHSNGYTYLFWFLQRPGQSPQLLIYRMSNLA




SGVPDRFSGSGSGTAFTLRISRVEAEDVGVYYCMQHLEYPFTFGGGTKLEIK (SEQ ID




NO: 18)














3-A4
CDR-
GFNIKDDY (SEQ ID NO:
DDYMY (SEQ ID NO: 7)
GFNIKDD (SEQ ID NO: 12)


N54T*
H1
1)





CDR-
IDPETGDT (SEQ ID NO:
WIDPETGDTEYASKFQD
ETG (SEQ ID NO: 21)



H2
19)
(SEQ ID NO: 20)




CDR-
TLWLRRGLDY (SEQ ID
WLRRGLDY (SEQ ID NO: 9)
LRRGLD (SEQ ID NO: 14)



H3
NO: 3)





CDR-
KSLLHSNGYTY (SEQ ID
RSSKSLLHSNGYTYLF (SEQ
SKSLLHSNGYTY (SEQ ID



L1
NO: 4)
ID NO: 10)
NO: 15)



CDR-
RMS (SEQ ID NO: 5)
RMSNLAS (SEQ ID NO: 11)
RMS(SEQ ID NO: 5)



L2






CDR-
MQHLEYPFT (SEQ ID
MQHLEYPFT (SEQ ID NO: 6)
HLEYPF (SEQ ID NO: 16)



L3
NO: 6)












VH
EVQLQQSGAELVRPGASVKLSCTASGFNIKDDYMYWVKQRPEQGLEWIGWIDPETGDT




EYASKFQDKATVTADTSSNTAYLQLSSLTSEDTAVYYCTLWLRRGLDYWGQGTSVTVS




S (SEQ ID NO: 22)



VL
DIVMTQAAPSVPVTPGESVSISCRSSKSLLHSNGYTYLFWFLQRPGQSPQLLIYRMSNLA




SGVPDRFSGSGSGTAFTLRISRVEAEDVGVYYCMQHLEYPFTFGGGTKLEIK (SEQ ID




NO: 18)














3-A4
CDR-
GFNIKDDY (SEQ ID NO:
DDYMY (SEQ ID NO: 7)
GFNIKDD (SEQ ID NO: 12)


N54S*
H1
1)





CDR-
IDPESGDT (SEQ ID NO:
WIDPESGDTEYASKFQD
ESG (SEQ ID NO: 25)



H2
23)
(SEQ ID NO: 24)




CDR-
TLWLRRGLDY (SEQ ID
WLRRGLDY (SEQ ID NO: 9)
LRRGLD (SEQ ID NO: 14)



H3
NO: 3)





CDR-
KSLLHSNGYTY (SEQ ID
RSSKSLLHSNGYTYLF (SEQ
SKSLLHSNGYTY (SEQ ID



L1
NO: 4)
ID NO: 10)
NO: 15)



CDR-
RMS (SEQ ID NO: 5)
RMSNLAS (SEQ ID NO: 11)
RMS (SEQ ID NO: 5)



L2






CDR-
MQHLEYPFT (SEQ ID
MQHLEYPFT (SEQ ID NO: 6)
HLEYPF (SEQ ID NO: 16)



L3
NO: 6)












VH
EVQLQQSGAELVRPGASVKLSCTASGFNIKDDYMYWVKQRPEQGLEWIGWIDPESGDT




EYASKFQDKATVTADTSSNTAYLQLSSLTSEDTAVYYCTLWLRRGLDYWGQGTSVTVS




S (SEQ ID NO: 26)



VL
DIVMTQAAPSVPVTPGESVSISCRSSKSLLHSNGYTYLFWFLQRPGQSPQLLIYRMSNLA




SGVPDRFSGSGSGTAFTLRISRVEAEDVGVYYCMQHLEYPFTFGGGTKLEIK (SEQ ID




NO: 18)














3-M12
CDR-
GYSITSGYY (SEQ ID
SGYYWN (SEQ ID NO: 33)
GYSITSGY (SEQ ID NO:



H1
NO: 27)

38)



CDR-
ITFDGAN (SEQ ID NO:
YITFDGANNYNPSLKN (SEQ
FDG (SEQ ID NO: 39)



H2
28)
ID NO: 34)




CDR-
TRSSYDYDVLDY (SEQ
SSYDYDVLDY (SEQ ID NO:
SYDYDVLD (SEQ ID NO:



H3
ID NO: 29)
35)
40)



CDR-
QDISNF (SEQ ID NO: 30)
RASQDISNFLN (SEQ ID NO:
SQDISNF (SEQ ID NO: 41)



L1

36)




CDR-
YTS (SEQ ID NO: 31)
YTSRLHS (SEQ ID NO: 37)
YTS (SEQ ID NO: 31)



L2






CDR-
QQGHTLPYT (SEQ ID
QQGHTLPYT (SEQ ID NO: 32)
GHTLPY (SEQ ID NO: 42)



L3
NO: 32)












VH
DVQLQESGPGLVKPSQSLSLTCSVTGYSITSGYYWNWIRQFPGNKLEWMGYITFDGAN




NYNPSLKNRISITRDTSKNQFFLKLTSVTTEDTATYYCTRSSYDYDVLDYWGQGTTLTV




SS (SEQ ID NO: 43)



VL
DIQMTQTTSSLSASLGDRVTISCRASQDISNFLNWYQQRPDGTVKLLIYYTSRLHSGVPS




RFSGSGSGTDFSLTVSNLEQEDIATYFCQQGHTLPYTFGGGTKLEIK (SEQ ID NO: 44)














5-H12
CDR-
GYSFTDYC (SEQ ID NO:
DYCIN (SEQ ID NO: 51)
GYSFTDY (SEQ ID NO: 56)



H1
45)





CDR-
IYPGSGNT (SEQ ID NO:
WIYPGSGNTRYSERFKG
GSG (SEQ ID NO: 57)



H2
46)
(SEQ ID NO: 52)




CDR-
AREDYYPYHGMDY
EDYYPYHGMDY (SEQ ID
DYYPYHGMD (SEQ ID



H3
(SEQ ID NO: 47)
NO: 53)
NO: 58)



CDR-
ESVDGYDNSF (SEQ ID
RASESVDGYDNSFMH (SEQ
SESVDGYDNSF (SEQ ID



L1
NO: 48)
ID NO: 54)
NO: 59)



CDR-
RAS (SEQ ID NO: 49)
RASNLES (SEQ ID NO: 55)
RAS (SEQ ID NO: 49)



L2






CDR-
QQSSEDPWT (SEQ ID
QQSSEDPWT (SEQ ID NO: 50)
SSEDPW (SEQ ID NO: 60)



L3
NO: 50)












VH
QIQLQQSGPELVRPGASVKISCKASGYSFTDYCINWVNQRPGQGLEWIGWIYPGSGNTR




YSERFKGKATLTVDTSSNTAYMQLSSLTSEDSAVYFCAREDYYPYHGMDYWGQGTSV




TVSS (SEQ ID NO: 61)



VL
DIVLTQSPTSLAVSLGQRATISCRASESVDGYDNSFMHWYQQKPGQPPKLLIFRASNLES




GIPARFSGSGSRTDFTLTINPVEAADVATYYCQQSSEDPWTFGGGTKLEIK (SEQ ID NO:




62)














5-H12
CDR-
GYSFTDYY (SEQ ID
DYYIN (SEQ ID NO: 64)
GYSFTDY (SEQ ID NO: 56)


C33Y*
H1
NO: 63)





CDR-
IYPGSGNT (SEQ ID NO:
WIYPGSGNTRYSERFKG
GSG (SEQ ID NO: 57)



H2
46)
(SEQ ID NO: 52)




CDR-
AREDYYPYHGMDY
EDYYPYHGMDY (SEQ ID
DYYPYHGMD (SEQ ID



H3
(SEQ ID NO: 47)
NO: 53)
NO: 58)



CDR-
ESVDGYDNSF (SEQ ID
RASESVDGYDNSFMH (SEQ
SESVDGYDNSF (SEQ ID



L1
NO: 48)
ID NO: 54)
NO: 59)



CDR-
RAS (SEQ ID NO: 49)
RASNLES (SEQ ID NO: 55)
RAS (SEQ ID NO: 49)



L2






CDR-
QQSSEDPWT (SEQ ID
QQSSEDPWT (SEQ ID NO: 50)
SSEDPW (SEQ ID NO: 60)



L3
NO: 50)












VH
QIQLQQSGPELVRPGASVKISCKASGYSFTDYYINWVNQRPGQGLEWIGWIYPGSGNTR




YSERFKGKATLTVDTSSNTAYMQLSSLTSEDSAVYFCAREDYYPYHGMDYWGQGTSV




TVSS (SEQ ID NO: 65)



VL
DIVLTQSPTSLAVSLGQRATISCRASESVDGYDNSFMHWYQQKPGQPPKLLIFRASNLES




GIPARFSGSGSRTDFTLTINPVEAADVATYYCQQSSEDPWTFGGGTKLEIK (SEQ ID NO:




62)














5-H12
CDR-
GYSFTDYD (SEQ ID
DYDIN (SEQ ID NO: 67)
GYSFTDY (SEQ ID NO: 56)


C33D*
H1
NO: 66)





CDR-
IYPGSGNT (SEQ ID NO:
WIYPGSGNTRYSERFKG
GSG (SEQ ID NO: 57)



H2
46)
(SEQ ID NO: 52)




CDR-
AREDYYPYHGMDY
EDYYPYHGMDY (SEQ ID
DYYPYHGMD (SEQ ID



H3
(SEQ ID NO: 47)
NO: 53)
NO: 58)



CDR-
ESVDGYDNSF (SEQ ID
RASESVDGYDNSFMH (SEQ
SESVDGYDNSF (SEQ ID



L1
NO: 48)
ID NO: 54)
NO: 59)



CDR-
RAS (SEQ ID NO: 49)
RASNLES (SEQ ID NO: 55)
RAS (SEQ ID NO: 49)



L2






CDR-
QQSSEDPWT (SEQ ID
QQSSEDPWT (SEQ ID NO: 50)
SSEDPW (SEQ ID NO: 60)



L3
NO: 50)












VH
QIQLQQSGPELVRPGASVKISCKASGYSFTDYDINWVNQRPGQGLEWIGWIYPGSGNTRY




SERFKGKATLTVDTSSNTAYMQLSSLTSEDSAVYFCAREDYYPYHGMDYWGQGTSVTV




SS (SEQ ID NO: 68)



VL
DIVLTQSPTSLAVSLGQRATISCRASESVDGYDNSFMHWYQQKPGQPPKLLIFRASNLES




GIPARFSGSGSRTDFTLTINPVEAADVATYYCQQSSEDPWTFGGGTKLEIK (SEQ ID NO:




62)














Anti-
CDR-
GYSFTSYW (SEQ ID
SYWIG (SEQ ID NO: 144)
GYSFTSY (SEQ ID NO:


TfR
H1
NO: 138)

149)


clone 8
CDR-
IYPGDSDT (SEQ ID NO:
IIYPGDSDTRYSPSFQGQ
GDS (SEQ ID NO: 150)



H2
139)
(SEQ ID NO: 145)




CDR-
ARFPYDSSGYYSFDY
FPYDSSGYYSFDY (SEQ ID
PYDSSGYYSFD (SEQ ID



H3
(SEQ ID NO: 140)
NO: 146)
NO: 151)



CDR-
QSISSY (SEQ ID NO:
RASQSISSYLN (SEQ ID NO:
SQSISSY (SEQ ID NO: 152)



L1
141)
147)




CDR-
AAS (SEQ ID NO: 142)
AASSLQS (SEQ ID NO: 148)
AAS (SEQ ID NO: 142)



L2






CDR-
QQSYSTPLT (SEQ ID
QQSYSTPLT (SEQ ID NO:
SYSTPL (SEQ ID NO: 153)



L3
NO: 143)
143)





*mutation positions are according to Kabat numbering of the respective VH sequences containing the mutations






In some embodiments, the anti-TfR1 antibody of the present disclosure is a humanized variant of any one of the anti-TfR1 antibodies provided in Table 2. In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a CDR-H1, a CDR-H2, a CDR-H3, a CDR-L1, a CDR-L2, and a CDR-L3 that are the same as the CDR-H1, CDR-H2, and CDR-H3 in any one of the anti-TfR1 antibodies provided in Table 2, and comprises a humanized heavy chain variable region and/or (e.g., and) a humanized light chain variable region.


Examples of amino acid sequences of anti-TfR1 antibodies described herein are provided in Table 3.









TABLE 3







Variable Regions of Anti-TfR1 Antibodies








Antibody
Variable Region Amino Acid Sequence**





3A4
VH:


VH3 (N54T*)/Vκ4
EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDP




ETGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLD





YWGQGTLVTVSS (SEQ ID NO: 69)




VL:



DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLIYR




MSNLASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTK




VEIK (SEQ ID NO: 70)





3A4
VH:


VH3 (N54S*)/Vκ4
EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDP




ESGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLD





YWGQGTLVTVSS (SEQ ID NO: 71)




VL:



DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLIYR




MSNLASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTK




VEIK (SEQ ID NO: 70)





3A4
VH:


VH3 /Vκ4
EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDP




ENGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLD





YWGQGTLVTVSS (SEQ ID NO: 72)




VL:



DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLIYR




MSNLASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTK




VEIK (SEQ ID NO: 70)





3M12
VH:


VH3/Vκ2
QVQLQESGPGLVKPSQTLSLTCSVTGYSITSGYYWNWIRQPPGKGLEWMGYITF




DGANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDY




WGQGTTVTVSS (SEQ ID NO: 73)



VL:



DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLH




SGVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQGHTLPYTFGQGTKLEIK (SEQ




ID NO: 74)





3M12
VH:


VH3/Vκ3
QVQLQESGPGLVKPSQTLSLTCSVTGYSITSGYYWNWIRQPPGKGLEWMGYITF




DGANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDY




WGQGTTVTVSS (SEQ ID NO: 73)



VL:



DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLH




SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPYTFGQGTKLEIK (SEQ




ID NO: 75)





3M12
VH:


VH4/Vκ2
QVQLQESGPGLVKPSQTLSLTCTVTGYSITSGYYWNWIRQPPGKGLEWIGYITFD




GANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDYW




GQGTTVTVSS (SEQ ID NO: 76)



VL:



DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLH




SGVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQGHTLPYTFGQGTKLEIK (SEQ




ID NO: 74)





3M12
VH:


VH4/Vκ3
QVQLQESGPGLVKPSQTLSLTCTVTGYSITSGYYWNWIRQPPGKGLEWIGYITFD




GANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDYW




GQGTTVTVSS (SEQ ID NO: 76)



VL:



DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLH




SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPYTFGQGTKLEIK (SEQ




ID NO: 75)





5H12
VH:


VH5 (C33Y*)/Vκ3
QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYYINWVRQAPGQGLEWMGWIY




PGSGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYH





GMDYWGQGTLVTVSS (SEQ ID NO: 77)




VL:



DIVLTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFR




ASNLESGVPDRFSGSGSRTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGTKL




EIK (SEQ ID NO: 78)





5H12
VH:


VH5 (C33D*)/Vκ4
QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYDINWVRQAPGQGLEWMGWIY




PGSGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYH





GMDYWGQGTLVTVSS (SEQ ID NO: 79)




VL:



DIVMTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFR




ASNLESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGTKL




EIK (SEQ ID NO: 80)





5H12
VH:


VH5 (C33Y*)/Vκ4
QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYYINWVRQAPGQGLEWMGWIY




PGSGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYH





GMDYWGQGTLVTVSS (SEQ ID NO: 77)




VL:



DIVMTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFR




ASNLESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGTKL




EIK (SEQ ID NO: 80)





Anti-TfR clone 8
VH:



QVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYP




GDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARFPYDSSGYY





SFDYWGQGTLVTVSS (SEQ ID NO: 154)




VL:



DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQ




SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIK (SEQ




ID NO: 155)





*mutation positions are according to Kabat numbering of the respective VH sequences containing the mutations


**CDRs according to the Kabat numbering system are bolded






In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the CDR-H1, CDR-H2, and CDR-H3 of any one of the anti-TfR1 antibodies provided in Table 3 and comprises one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) amino acid variations in the framework regions as compared with the respective VH provided in Table 3. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a VL comprising the CDR-L1, CDR-L2, and CDR-L3 of any one of the anti-TfR1 antibodies provided in Table 3 and comprises one or more (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) amino acid variations in the framework regions as compared with the respective VL provided in Table 3. In some embodiments, the VH of the anti-TfR1 antibody is a humanized VH, and/or the VL of the anti-TfR1 antibody is a humanized VL.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the CDR-H1, CDR-H2, and CDR-H3 of any one of the anti-TfR1 antibodies provided in Table 3 and comprising an amino acid sequence that is at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) identical in the framework regions as compared with the respective VH provided in Table 3. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a VL comprising the CDR-L1, CDR-L2, and CDR-L3 of any one of the anti-TfR1 antibodies provided in Table 3 and comprising an amino acid sequence that is at least 70% (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%) identical in the framework regions as compared with the respective VL provided in Table 3. In some embodiments, the VH of the anti-TfR1 antibody is a humanized VH, and/or the VL of the anti-TfR1 antibody is a humanized VL.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 69 and a VL comprising the amino acid sequence of SEQ ID NO: 70.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 71 and a VL comprising the amino acid sequence of SEQ ID NO: 70.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 72 and a VL comprising the amino acid sequence of SEQ ID NO: 70.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 73 and a VL comprising the amino acid sequence of SEQ ID NO: 74.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 73 and a VL comprising the amino acid sequence of SEQ ID NO: 75.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 76 and a VL comprising the amino acid sequence of SEQ ID NO: 74.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 76 and a VL comprising the amino acid sequence of SEQ ID NO: 75.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 77 and a VL comprising the amino acid sequence of SEQ ID NO: 78.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 79 and a VL comprising the amino acid sequence of SEQ ID NO: 80.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 77 and a VL comprising the amino acid sequence of SEQ ID NO: 80.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 154 and a VL comprising the amino acid sequence of SEQ ID NO: 155.


In some embodiments, the anti-TfR1 antibody described herein is a full-length IgG, which can include a heavy constant region and a light constant region from a human antibody. In some embodiments, the heavy chain of any of the anti-TfR1 antibodies as described herein may comprise a heavy chain constant region (CH) or a portion thereof (e.g., CH1, CH2, CH3, or a combination thereof). The heavy chain constant region can be of any suitable origin, e.g., human, mouse, rat, or rabbit. In one specific example, the heavy chain constant region is from a human IgG (a gamma heavy chain), e.g., IgG1, IgG2, or IgG4. An example of a human IgG1 constant region is given below:









(SEQ ID NO: 81)


ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGV





HTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP





KSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS





HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK





EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTC





LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRW





QQGNVFSCSVMHEALHNHYTQKSLSLSPGK






In some embodiments, the heavy chain of any of the anti-TfR1 antibodies described herein comprises a mutant human IgG1 constant region. For example, the introduction of LALA mutations (a mutant derived from mAb b12 that has been mutated to replace the lower hinge residues Leu234 Leu235 with Ala234 and Ala235) in the CH2 domain of human IgG1 is known to reduce Fcγ receptor binding (Bruhns, P., et al. (2009) and Xu, D. et al. (2000)). The mutant human IgG1 constant region is provided below (mutations bonded and underlined):









(SEQ ID NO: 82)


ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGV





HTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP





KSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS





HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK





EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTC





LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRW





QQGNVFSCSVMHEALHNHYTQKSLSLSPGK






In some embodiments, the light chain of any of the anti-TfR1 antibodies described herein may further comprise a light chain constant region (CL), which can be any CL known in the art. In some examples, the CL is a kappa light chain. In other examples, the CL is a lambda light chain. In some embodiments, the CL is a kappa light chain, the sequence of which is provided below:









(SEQ ID NO: 83)


RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSG





NSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTK





SFNRGEC






Other antibody heavy and light chain constant regions are well known in the art, e.g., those provided in the IMGT database (www.imgt.org) or at www.vbase2.org/vbstat.php, both of which are incorporated by reference herein.


In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising any one of the VH as listed in Table 3 or any variants thereof and a heavy chain constant region that is at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to SEQ ID NO: 81 or SEQ ID NO: 82. In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising any one of the VH as listed in Table 3 or any variants thereof and a heavy chain constant region that contains no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with SEQ ID NO: 81 or SEQ ID NO: 82. In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising any one of the VH as listed in Table 3 or any variants thereof and a heavy chain constant region as set forth in SEQ ID NO: 81. In some embodiments, the anti-TfR1 antibody described herein comprises heavy chain comprising any one of the VH as listed in Table 3 or any variants thereof and a heavy chain constant region as set forth in SEQ ID NO: 82.


In some embodiments, the anti-TfR1 antibody described herein comprises a light chain comprising any one of the VL as listed in Table 3 or any variants thereof and a light chain constant region that is at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to SEQ ID NO: 83. In some embodiments, the anti-TfR1 antibody described herein comprises a light chain comprising any one of the VL as listed in Table 3 or any variants thereof and a light chain constant region contains no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with SEQ ID NO: 83. In some embodiments, the anti-TfR1 antibody described herein comprises a light chain comprising any one of the VL as listed in Table 3 or any variants thereof and a light chain constant region set forth in SEQ ID NO: 83.


Examples of IgG heavy chain and light chain amino acid sequences of the anti-TfR1 antibodies described are provided in Table 4 below.









TABLE 4







Heavy chain and light chain sequences of examples of anti-TfR1 IgGs








Antibody
IgG Heavy Chain/Light Chain Sequences**





3A4
Heavy Chain (with wild type human IgG1 constant region)


VH3 (N54T*)/Vκ4

EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDPE






TGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLDYW






GQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGAL




TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKS



CDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN



WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP



APIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQ



PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGK (SEQ ID NO: 84)



Light Chain (with kappa light chain constant region)




DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLIYRMS






NLASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTKVEIK





RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ



ID NO: 85)





3A4
Heavy Chain (with wild type human IgG1 constant region)


VH3 (N54S*)/Vκ4

EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDPE






SGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLDYW






GQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGAL




TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKS



CDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN



WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP



APIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQ



PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGK (SEQ ID NO: 86)



Light Chain (with kappa light chain constant region)



DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLIYRMS



NLASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTKVEIK



RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ



ID NO: 85)





3A4
Heavy Chain (with wild type human IgG1 constant region)


VH3 /Vκ4

EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDPE






NGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLDYW






GQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGAL




TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKS



CDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN



WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP



APIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQ



PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGK (SEQ ID NO: 87)



Light Chain (with kappa light chain constant region)




DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQORPGQSPRLLIYRMS






NLASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTKVEIK





RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ



ID NO: 85)





3M12
Heavy Chain (with wild type human IgG1 constant region)


VH3/Vκ2

QVQLQESGPGLVKPSQTLSLTCSVTGYSITSGYYWNWIRQPPGKGLEWMGYITFD






GANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDYWG






QGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALT




SGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC



DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN



WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP



APIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQ



PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGK (SEQ ID NO: 88)



Light Chain (with kappa light chain constant region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLHS





GVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQGHTLPYTFGQGTKLEIKRTVAAP




SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSK



DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 89)





3M12
Heavy Chain (with wild type human IgG1 constant region)


VH3/Vκ3

QVQLQESGPGLVKPSQTLSLTCSVTGYSITSGYYWNWIRQPPGKGLEWMGYITFD






GANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDYWG






QGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALT




SGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC



DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFN



WYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP



APIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQ



PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL



SLSPGK (SEQ ID NO: 88)



Light Chain (with kappa light chain constant region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLHS





GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPYTFGQGTKLEIKRTVAA




PSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDS



KDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO:



90)





3M12
Heavy Chain (with wild type human IgG1 constant region)


VH4/Vκ2

QVQLQESGPGLVKPSQTLSLTCTVTGYSITSGYYWNWIRQPPGKGLEWIGYITFDG






ANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDYWGQ






GTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTS




GVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD



KTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW



YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA



PIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQP



ENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLS



LSPGK (SEQ ID NO: 91)



Light Chain (with kappa light chain constant region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLHS





GVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQGHTLPYTFGQGTKLEIKRTVAAP




SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSK



DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 89)





3M12
Heavy Chain (with wild type human IgG1 constant region)


VH4/Vκ3

QVQLQESGPGLVKPSQTLSLTCTVTGYSITSGYYWNWIRQPPGKGLEWIGYITFDG






ANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDYWGQ






GTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTS




GVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD



KTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNW



YVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPA



PIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQP



ENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLS



LSPGK (SEQ ID NO: 91)



Light Chain (with kappa light chain constant region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLHS





GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPYTFGQGTKLEIKRTVAA




PSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDS



KDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO:



90)





5H12
Heavy Chain (with wild type human IgG1 constant region)


VH5 (C33Y*)/Vκ3

QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYYINWVRQAPGQGLEWMGWIYP






GSGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYHGM







DYWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV



EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE



VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN



KALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWE



SNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT



QKSLSLSPGK (SEQ ID NO: 92)



Light Chain (with kappa light chain constant region)




DIVLTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFRAS






NLESGVPDRESGSGSRTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGTKLEIK
R




TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVT



EQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID



NO: 93)





5H12
Heavy Chain (with wild type human IgG1 constant region)


VH5 (C33D*)/Vκ4

QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYDINWVRQAPGQGLEWMGWIYP






GSGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYHGM







DYWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV



EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE



VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN



KALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWE



SNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT



QKSLSLSPGK (SEQ ID NO: 94)



Light Chain (with kappa light chain constant region)




DIVMTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFRA






SNLESGVPDRESGSGSGTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGTKLEIK





RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ



ID NO: 95)





5H12
Heavy Chain (with wild type human IgG1 constant region)


VH5 (C33Y*)/Vκ4

QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYYINWVRQAPGQGLEWMGWIYP






GSGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYHGM







DYWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV



EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE



VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN



KALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWE



SNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT



QKSLSLSPGK (SEQ ID NO: 92)



Light Chain (with kappa light chain constant region)




DIVMTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFRA






SNLESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGTKLEIK





RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ



ID NO: 95)





Anti-TfR clone 8
VH:




QVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPG






DSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARFPYDSSGYYSF







DYWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV



EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE



VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSN



KALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWE



SNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYT



QKSLSLSPGK (SEQ ID NO: 156)



VL:




DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS





GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKRTVAAP




SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSK



DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO:



157)





*mutation positions are according to Kabat numbering of the respective VH sequences containing the mutations


**CDRs according to the Kabat numbering system are bolded; VH/VL sequences underlined






In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain containing no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with the heavy chain as set forth in any one of SEQ ID NOs: 84, 86, 87, 88, 91, 92, 94, and 156. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a light chain containing no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with the light chain as set forth in any one of SEQ ID NOs: 85, 89, 90, 93, 95, and 157.


In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising an amino acid sequence that is at least 75% (e.g., 75%, 80%, 85%, 90%, 95%, 98%, or 99%) identical to any one of SEQ ID NOs: 84, 86, 87, 88, 91, 92, 94, and 156. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody described herein comprises a light chain comprising an amino acid sequence that is at least 75% (e.g., 75%, 80%, 85%, 90%, 95%, 98%, or 99%) identical to any one of SEQ ID NOs: 85, 89, 90, 93, 95, and 157. In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising the amino acid sequence of any one of SEQ ID NOs: 84, 86, 87, 88, 91, 92, 94, and 156. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody described herein comprises a light chain comprising the amino acid sequence of any one of SEQ ID NOs: 85, 89, 90, 93, 95 and 157.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 84 and a light chain comprising the amino acid sequence of SEQ ID NO: 85.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 86 and a light chain comprising the amino acid sequence of SEQ ID NO: 85.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 87 and a light chain comprising the amino acid sequence of SEQ ID NO: 85.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 88 and a light chain comprising the amino acid sequence of SEQ ID NO: 89.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 88 and a light chain comprising the amino acid sequence of SEQ ID NO: 90.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 91 and a light chain comprising the amino acid sequence of SEQ ID NO: 89.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 91 and a light chain comprising the amino acid sequence of SEQ ID NO: 90.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 92 and a light chain comprising the amino acid sequence of SEQ ID NO: 93.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 94 and a light chain comprising the amino acid sequence of SEQ ID NO: 95.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 92 and a light chain comprising the amino acid sequence of SEQ ID NO: 95.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 156 and a light chain comprising the amino acid sequence of SEQ ID NO: 157.


In some embodiments, the anti-TfR1 antibody is a Fab fragment, Fab′ fragment, or F(ab′)2 fragment of an intact antibody (full-length antibody). Antigen binding fragment of an intact antibody (full-length antibody) can be prepared via routine methods (e.g., recombinantly or by digesting the heavy chain constant region of a full-length IgG using an enzyme such as papain). For example, F(ab′)2 fragments can be produced by pepsin or papain digestion of an antibody molecule, and Fab fragments that can be generated by reducing the disulfide bridges of F(ab′)2 fragments. In some embodiments, a heavy chain constant region in a Fab fragment of the anti-TfR1 antibody described herein comprises the amino acid sequence of:









(SEQ ID NO: 96)


ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGV





HTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP





KSCDKTHT






In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising any one of the VH as listed in Table 3 or any variants thereof and a heavy chain constant region that is at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to SEQ ID NO: 96. In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising any one of the VH as listed in Table 3 or any variants thereof and a heavy chain constant region that contains no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with SEQ ID NO: 96. In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising any one of the VH as listed in Table 3 or any variants thereof and a heavy chain constant region as set forth in SEQ ID NO: 96.


In some embodiments, the anti-TfR1 antibody described herein comprises a light chain comprising any one of the VL as listed in Table 3 or any variants thereof and a light chain constant region that is at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical to SEQ ID NO: 83. In some embodiments, the anti-TfR1 antibody described herein comprises a light chain comprising any one of the VL as listed in Table 3 or any variants thereof and a light chain constant region contains no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with SEQ ID NO: 83. In some embodiments, the anti-TfR1 antibody described herein comprises a light chain comprising any one of the VL as listed in Table 3 or any variants thereof and a light chain constant region set forth in SEQ ID NO: 83.


Examples of Fab heavy chain and light chain amino acid sequences of the anti-TfR1 antibodies described are provided in Table 5 below.









TABLE 5







Heavy chain and light chain sequences of examples of anti-TfR1 Fabs








Antibody
Fab Heavy Chain/Light Chain Sequences**





3A4
Heavy Chain (with partial human IgG1 constant region)


VH3 (N54T*)/Vκ4

EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDPE






TGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLDYW






GQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGAL




TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKS



CDKTHT (SEQ ID NO: 97)



Light Chain (with kappa light chain constant region)




DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLIYRMS






NLASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTKVEIK





RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ



ID NO: 85)





3A4
Heavy Chain (with partial human IgG1 constant region)


VH3 (N54S*)/Vκ4

EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDPE






SGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLDYW






GQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGAL




TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKS



CDKTHT (SEQ ID NO: 98)



Light Chain (with kappa light chain constant region)




DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLIYRMS






NLASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTKVEIK





RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ



ID NO: 85)





3A4
Heavy Chain (with partial human IgG1 constant region)


VH3 /Vκ4

EVQLVQSGSELKKPGASVKVSCTASGFNIKDDYMYWVRQPPGKGLEWIGWIDPE






NGDTEYASKFQDRVTVTADTSTNTAYMELSSLRSEDTAVYYCTLWLRRGLDYW






GQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGAL




TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKS



CDKTHT (SEQ ID NO: 99)



Light Chain (with kappa light chain constant region)




DIVMTQSPLSLPVTPGEPASISCRSSKSLLHSNGYTYLFWFQQRPGQSPRLLIYRMS






NLASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQHLEYPFTFGGGTKVEIK





RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ



ID NO: 85)





3M12
Heavy Chain (with partial human IgG1 constant region)


VH3/Vκ2

QVQLQESGPGLVKPSQTLSLTCSVTGYSITSGYYWNWIRQPPGKGLEWMGYITFD






GANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDYWG






QGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALT




SGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC



DKTHT (SEQ ID NO: 100)



Light Chain (with kappa light chain constant region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLHS





GVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQGHTLPYTFGQGTKLEIKRTVAAP




SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSK



DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 89)





3M12
Heavy Chain (with partial human IgG1 constant region)


VH3/Vκ3

QVQLQESGPGLVKPSQTLSLTCSVTGYSITSGYYWNWIRQPPGKGLEWMGYITFD






GANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDYWG






QGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALT




SGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC



DKTHT (SEQ ID NO: 100)



Light Chain (with kappa light chain constant region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLHS





GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPYTFGQGTKLEIKRTVAA




PSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDS



KDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO:



90)





3M12
Heavy Chain (with partial human IgG1 constant region)


VH4/Vκ2

QVQLQESGPGLVKPSQTLSLTCTVTGYSITSGYYWNWIRQPPGKGLEWIGYITFDG






ANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDYWGQ






GTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTS




GVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD



KTHT (SEQ ID NO: 101)



Light Chain (with kappa light chain constant region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLHS





GVPSRFSGSGSGTDFTLTISSLQPEDFATYFCQQGHTLPYTFGQGTKLEIKRTVAAP




SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSK



DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 89)





3M12
Heavy Chain (with partial human IgG1 constant region)


VH4/Vκ3

QVQLQESGPGLVKPSQTLSLTCTVTGYSITSGYYWNWIRQPPGKGLEWIGYITFDG






ANNYNPSLKNRVSISRDTSKNQFSLKLSSVTAEDTATYYCTRSSYDYDVLDYWGQ






GTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTS




GVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCD



KTHT (SEQ ID NO: 101)



Light Chain (with kappa light chain constant region)




DIQMTQSPSSLSASVGDRVTITCRASQDISNFLNWYQQKPGQPVKLLIYYTSRLHS





GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGHTLPYTFGQGTKLEIKRTVAA




PSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDS



KDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO:



90)





5H12
Heavy Chain (with partial human IgG1 constant region)


VH5 (C33Y*)/Vκ3

QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYYINWVRQAPGQGLEWMGWIYP






GSGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYHGM







DYWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV



EPKSCDKTHT (SEQ ID NO: 102)



Light Chain (with kappa light chain constant region)




DIVLTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFRAS






NLESGVPDRFSGSGSRTDFTLTISSLQAEDVAVYYCOQSSEDPWTFGQGTKLEIK
R




TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVT



EQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID



NO: 93)





5H12
Heavy Chain (with partial human IgG1 constant region)


VH5 (C33D*)/Vκ4

QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYDINWVRQAPGQGLEWMGWIYP






GSGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYHGM







DYWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV



EPKSCDKTHT (SEQ ID NO: 103)



Light Chain (with kappa light chain constant region)




DIVMTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFRA






SNLESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQOSSEDPWTFGQGTKLEIK





RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ



ID NO: 95)





5H12
Heavy Chain (with partial human IgG1 constant region)


VH5 (C33Y*)/Vκ4

QVQLVQSGAEVKKPGASVKVSCKASGYSFTDYYINWVRQAPGQGLEWMGWIYP






GSGNTRYSERFKGRVTITRDTSASTAYMELSSLRSEDTAVYYCAREDYYPYHGM







DYWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV



EPKSCDKTHT (SEQ ID NO: 102)



Light Chain (with kappa light chain constant region)




DIVMTQSPDSLAVSLGERATINCRASESVDGYDNSFMHWYQQKPGQPPKLLIFRA






SNLESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCQQSSEDPWTFGQGTKLEIK





RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ



ID NO: 95)





Anti-TfR clone 8
VH:


Version 1

QVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPG






DSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARFPYDSSGYYSF







DYWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV



EPKSCDKTHTCP (SEQ ID NO: 158)



VL:




DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS





GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKRTVAAP




SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSK



DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO:



157)





Anti-TfR clone 8
VH:


Version 2

QVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPG






DSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARFPYDSSGYYSF







DYWGQGTLVTVSS
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWN




SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV



EPKSCDKTHT (SEQ ID NO: 159)



VL:




DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQS





GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKRTVAAP




SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSK



DSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO:



157)





*mutation positions are according to Kabat numbering of the respective VH sequences containing the mutations


**CDRs according to the Kabat numbering system are bolded; VH/VL sequences underlined






In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain containing no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with the heavy chain as set forth in any one of SEQ ID NOs: 97-103, 158 and 159. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a light chain containing no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with the light chain as set forth in any one of SEQ ID NOs: 85, 89, 90, 93, 95, and 157.


In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising an amino acid sequence that is at least 75% (e.g., 75%, 80%, 85%, 90%, 95%, 98%, or 99%) identical to any one of SEQ ID NOs: 97-103, 158 and 159. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody described herein comprises a light chain comprising an amino acid sequence that is at least 75% (e.g., 75%, 80%, 85%, 90%, 95%, 98%, or 99%) identical to any one of SEQ ID NOs: 85, 89, 90, 93, 95, and 157. In some embodiments, the anti-TfR1 antibody described herein comprises a heavy chain comprising the amino acid sequence of any one of SEQ ID NOs: 97-103, 158 and 159. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody described herein comprises a light chain comprising the amino acid sequence of any one of SEQ ID NOs: 85, 89, 90, 93, 95, and 157.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 97 and a light chain comprising the amino acid sequence of SEQ ID NO: 85.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 98 and a light chain comprising the amino acid sequence of SEQ ID NO: 85.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 99 and a light chain comprising the amino acid sequence of SEQ ID NO: 85.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 100 and a light chain comprising the amino acid sequence of SEQ ID NO: 89.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 100 and a light chain comprising the amino acid sequence of SEQ ID NO: 90.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 101 and a light chain comprising the amino acid sequence of SEQ ID NO: 89.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 101 and a light chain comprising the amino acid sequence of SEQ ID NO: 90.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 102 and a light chain comprising the amino acid sequence of SEQ ID NO: 93.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 103 and a light chain comprising the amino acid sequence of SEQ ID NO: 95.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 102 and a light chain comprising the amino acid sequence of SEQ ID NO: 95.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 158 and a light chain comprising the amino acid sequence of SEQ ID NO: 157.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 159 and a light chain comprising the amino acid sequence of SEQ ID NO: 157.


Other Known Anti-TfR1 Antibodies

Any other appropriate anti-TfR1 antibodies known in the art may be used as the muscle-targeting agent in the complexes disclosed herein. Examples of known anti-TfR1 antibodies, including associated references and binding epitopes, are listed in Table 6. In some embodiments, the anti-TfR1 antibody comprises the complementarity determining regions (CDR-H1, CDR-H2, CDR-H3, CDR-L1, CDR-L2, and CDR-L3) of any of the anti-TfR1 antibodies provided herein, e.g., anti-TfR1 antibodies listed in Table 6.









TABLE 6





List of anti-TfR1 antibody clones, including associated


references and binding epitope information.

















Antibody Clone




Name
Reference(s)
Epitope/Notes





OKT9
U.S. Pat. No. 4,364,934, filed Dec. 4, 1979,
Apical domain of TfR1



entitled “MONOCLONAL ANTIBODY TO
(residues 305-366 of



A HUMAN EARLY THYMOCYTE
human TfR1 sequence



ANTIGEN AND METHODS FOR
XM_052730.3, available



PREPARING SAME”
in GenBank)



Schneider C. et al. “Structural features of the



cell surface receptor for transferrin that is



recognized by the monoclonal antibody



OKT9.” J Biol Chem. 1982, 257: 14, 8516-



8522.


(From JCR)
WO 2015/098989, filed Dec. 24, 2014,
Apical domain (residues


Clone M11
“Novel anti-Transferrin receptor antibody
230-244 and 326-347 of


Clone M23
that passes through blood-brain barrier”
TfR1) and protease-like


Clone M27
U.S. Pat. No. 9,994,641, filed
domain (residues 461-


Clone B84
Dec. 24, 2014, “Novel anti-Transferrin
473)



receptor antibody that passes through



blood-brain barrier”


(From
WO 2016/081643, filed May 26, 2016,
Apical domain and non-


Genentech)
entitled “ANTI-TRANSFERRIN
apical regions


7A4, 8A2, 15D2,
RECEPTOR ANTIBODIES AND


10D11, 7B10,
METHODS OF USE”


15G11, 16G5,
U.S. Pat. No. 9,708,406, filed


13C3, 16G4,
May 20, 2014, “Anti-transferrin receptor


16F6, 7G7, 4C2,
antibodies and methods of use”


1B12, and 13D4


(From Armagen)
Lee et al. “Targeting Rat Anti-Mouse


8D3
Transferrin Receptor Monoclonal Antibodies



through Blood-Brain Barrier in Mouse”



2000, J Pharmacol. Exp. Ther., 292: 1048-



1052.



US Patent App. 2010/077498, filed



Sep. 11, 2008, entitled “COMPOSITIONS AND



METHODS FOR BLOOD-BRAIN



BARRIER DELIVERY IN THE MOUSE”


OX26
Haobam, B. et al. 2014. Rab17-



mediated recycling endosomes contribute to



autophagosome formation in response to



Group A Streptococcus invasion. Cellular



microbiology. 16: 1806-21.


DF1513
Ortiz-Zapater E et al. Trafficking of



the human transferrin receptor in plant cells:



effects of tyrphostin A23 and brefeldin A.



Plant J 48: 757-70 (2006).


1A1B2, 66IG10,
Commercially available anti-
Novus Biologicals


MEM-189,
transferrin receptor antibodies.
8100 Southpark Way, A-


JF0956, 29806,

8 Littleton CO 80120


1A1B2,


TFRC/1818,


1E6, 66Ig10,


TFRC/1059,


Q1/71, 23D10,


13E4,


TFRC/1149, ER-


MP21,


YTA74.4, BU54,


2B6, RI7 217


(From INSERM)
US Patent App. 2011/0311544A1,
Does not compete with


BA120g
filed Jun. 15, 2005, entitled “ANTI-CD71
OKT9



MONOCLONAL ANTIBODIES AND



USES THEREOF FOR TREATING



MALIGNANT TUMOR CELLS”


LUCA31
U.S. Pat. No. 7,572,895, filed
“LUCA31 epitope”



Jun. 7, 2004, entitled “TRANSFERRIN



RECEPTOR ANTIBODIES”


(Salk Institute)
Trowbridge, I. S. et al. “Anti-transferrin


B3/25
receptor monoclonal antibody and toxin-


T58/30
antibody conjugates affect growth of



human tumour cells.” Nature, 1981,



volume 294, pages 171-173


R17 217.1.3,
Commercially available anti-
BioXcell


5E9C11,
transferrin receptor antibodies.
10 Technology Dr., Suite


OKT9 (BE0023

2B


clone)

West Lebanon, NH




03784-1671 USA


BK19.9, B3/25,
Gatter, K. C. et al. “Transferrin receptors


T56/14 and
in human tissues: their distribution and


T58/1
possible clinical relevance.” J Clin



Pathol. 1983 May; 36(5): 539-45.












Additional Anti-TfR1 antibody SEQ ID NOs












Anto-TfR1 antibody

VH/VL
CDR1
CDR2
CDR3





CDRH1 (SEQ ID NO: 2179)
VH1
2194
2187
2188
2181


CDRH2 (SEQ ID NO: 2180)
VH2
2195
2187
2189
2181


CDRH3 (SEQ ID NO: 2181)
VH3
2196
2187
2190
2181


CDRL1 (SEQ ID NO: 2182)
VH4
2197
2187
2189
2181


CDRL2 (SEQ ID NO: 2183)
VL1
2198
2182
2183
115


CDRL3 (SEQ ID NO: 2184)
VL2
2199
2182
2183
115


VH (SEQ ID NO: 2185)
VL3
2200
2182
2191
2184


VL (SEQ ID NO: 2186)
VL4
2201
2182
2193
2184









In some embodiments, anti-TfR1 antibodies of the present disclosure include one or more of the CDR-H (e.g., CDR-H1, CDR-H-2, and CDR-H3) amino acid sequences from any one of the anti-TfR1 antibodies selected from Table 6. In some embodiments, anti-TfR1 antibodies include the CDR-L1, CDR-L2, and CDR-L3 as provided for any one of the anti-TfR1 antibodies selected from Table 6. In some embodiments, anti-TfR1 antibodies include the CDR-H1, CDR-H2, CDR-H-3, CDR-L1, CDR-L2, and CDR-L3 as provided for any one of the anti-TfR1 antibodies selected from Table 6.


In some embodiments, anti-TfR1 antibodies of the disclosure include any antibody that includes a heavy chain variable domain and/or (e.g., and) a light chain variable domain of any anti-TfR1 antibody, such as any one of the anti-TfR1 antibodies selected from Table 6. In some embodiments, anti-TfR1 antibodies of the disclosure include any antibody that includes the heavy chain variable and light chain variable pairs of any anti-TfR1 antibody, such as any one of the anti-TfR1 antibodies selected from Table 6.


Aspects of the disclosure provide anti-TfR1 antibodies having a heavy chain variable (VH) and/or (e.g., and) a light chain variable (VL) domain amino acid sequence homologous to any of those described herein. In some embodiments, the anti-TfR1 antibody comprises a heavy chain variable sequence or a light chain variable sequence that is at least 75% (e.g., 80%, 85%, 90%, 95%, 98%, or 99%) identical to the heavy chain variable sequence and/or any light chain variable sequence of any anti-TfR1 antibody, such as any one of the anti-TfR1 antibodies selected from Table 6. In some embodiments, the homologous heavy chain variable and/or (e.g., and) a light chain variable amino acid sequences do not vary within any of the CDR sequences provided herein. For example, in some embodiments, the degree of sequence variation (e.g., 75%, 80%, 85%, 90%, 95%, 98%, or 99%) may occur within a heavy chain variable and/or (e.g., and) a light chain variable sequence excluding any of the CDR sequences provided herein. In some embodiments, any of the anti-TfR1 antibodies provided herein comprise a heavy chain variable sequence and a light chain variable sequence that comprises a framework sequence that is at least 75%, 80%, 85%, 90%, 95%, 98%, or 99% identical to the framework sequence of any anti-TfR1 antibody, such as any one of the anti-TfR1 antibodies selected from Table 6.


An example of a transferrin receptor antibody that may be used in accordance with the present disclosure is described in International Application Publication WO 2016/081643, incorporated herein by reference. The amino acid sequences of this antibody are provided in Table 7.









TABLE 7





Heavy chain and light chain CDRs of an example of a known anti-TfR1 antibody


















Sequence Type
Kabat
Chothia
Contact





CDR-H1
SYWMH (SEQ ID
GYTFTSY (SEQ ID NO: 116)
TSYWMH (SEQ ID NO: 118)



NO: 110)







CDR-H2
EINPTNGRTNYIE
NPTNGR (SEQ ID NO: 117)
WIGEINPTNGRTN (SEQ ID



KFKS (SEQ ID

NO: 119)



NO: 111)







CDR-H3
GTRAYHY (SEQ
GTRAYHY (SEQ ID NO:
ARGTRA (SEQ ID NO: 120)



ID NO: 112)
112)






CDR-L1
RASDNLYSNLA
RASDNLYSNLA (SEQ ID
YSNLAWY (SEQ ID NO: 121)



(SEQ ID NO: 113)
NO: 113)






CDR-L2
DATNLAD (SEQ
DATNLAD (SEQ ID NO:
LLVYDATNLA (SEQ ID NO:



ID NO: 114)
114)
122)





CDR-L3
QHFWGTPLT
QHFWGTPLT (SEQ ID NO:
QHFWGTPL (SEQ ID NO:



(SEQ ID NO: 115)
115)
123)











Murine VH
QVQLQQPGAELVKPGASVKLSCKASGYTFTSYWMHWVKQRPGQGLEWIGEINP



TNGRTNYIEKFKSKATLTVDKSSSTAYMQLSSLTSEDSAVYYCARGTRAYHYW



GQGTSVTVSS (SEQ ID NO: 124)





Murine VL
DIQMTQSPASLSVSVGETVTITCRASDNLYSNLAWYQQKQGKSPQLLVYDATNL



ADGVPSRFSGSGSGTQYSLKINSLQSEDFGTYYCQHFWGTPLTFGAGTKLELK



(SEQ ID NO: 125)





Humanized VH
EVQLVQSGAEVKKPGASVKVSCKASGYTFTSYWMHWVRQAPGQRLEWIGEIN



PTNGRTNYIEKFKSRATLTVDKSASTAYMELSSLRSEDTAVYYCARGTRAYHY



WGQGTMVTVSS (SEQ ID NO: 128)





Humanized VL
DIQMTQSPSSLSASVGDRVTITCRASDNLYSNLAWYQQKPGKSPKLLVYDATNL



ADGVPSRFSGSGSGTDYTLTISSLQPEDFATYYCQHFWGTPLTFGQGTKVEIK



(SEQ ID NO: 129)





HC of chimeric
QVQLQQPGAELVKPGASVKLSCKASGYTFTSYWMHWVKQRPGQGLEWIGEINP


full-length IgG1
TNGRTNYIEKFKSKATLTVDKSSSTAYMQLSSLTSEDSAVYYCARGTRAYHYW



GQGTSVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSG



ALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVE



PKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPE



VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKV



SNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAV



EWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEAL



HNHYTQKSLSLSPGK (SEQ ID NO: 132)





LC of chimeric
DIQMTQSPASLSVSVGETVTITCRASDNLYSNLAWYQQKQGKSPQLLVYDATNL


full-length IgG1
ADGVPSRFSGSGSGTQYSLKINSLQSEDFGTYYCQHFWGTPLTFGAGTKLELKR



TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES



VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC



(SEQ ID NO: 133)





HC of fully human
EVQLVQSGAEVKKPGASVKVSCKASGYTFTSYWMHWVRQAPGQRLEWIGEIN


full-length IgG1
PTNGRTNYIEKFKSRATLTVDKSASTAYMELSSLRSEDTAVYYCARGTRAYHY



WGQGTMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS



GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV



EPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDP



EVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCK



VSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIA



VEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA



LHNHYTQKSLSLSPGK (SEQ ID NO: 134)





LC of fully human
DIQMTQSPSSLSASVGDRVTITCRASDNLYSNLAWYQQKPGKSPKLLVYDATNL


full-length IgG1
ADGVPSRFSGSGSGTDYTLTISSLQPEDFATYYCQHFWGTPLTFGQGTKVEIKRT



VAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESV



TEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC



(SEQ ID NO: 135)





HC of chimeric
QVQLQQPGAELVKPGASVKLSCKASGYTFTSYWMHWVKQRPGQGLEWIGEINP


Fab
TNGRTNYIEKFKSKATLTVDKSSSTAYMQLSSLTSEDSAVYYCARGTRAYHYW



GQGTSVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSG



ALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVE



PKSCDKTHTCP (SEQ ID NO: 136)





HC of fully human
EVQLVQSGAEVKKPGASVKVSCKASGYTFTSYWMHWVRQAPGQRLEWIGEIN


Fab
PTNGRTNYIEKFKSRATLTVDKSASTAYMELSSLRSEDTAVYYCARGTRAYHY



WGQGTMVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNS



GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV



EPKSCDKTHTCP (SEQ ID NO: 137)









In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a CDR-H1, a CDR-H2, and a CDR-H3 that are the same as the CDR-H1, CDR-H2, and CDR-H3 shown in Table 7. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a CDR-L1, a CDR-L2, and a CDR-L3 that are the same as the CDR-L1, CDR-L2, and CDR-L3 shown in Table 7.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a CDR-L3, which contains no more than 3 amino acid variations (e.g., no more than 3, 2, or 1 amino acid variation) as compared with the CDR-L3 as shown in Table 7. In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a CDR-L3 containing one amino acid variation as compared with the CDR-L3 as shown in Table 7. In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a CDR-L3 of QHFAGTPLT (SEQ ID NO: 126) (according to the Kabat and Chothia definition system) or QHFAGTPL (SEQ ID NO: 127) (according to the Contact definition system). In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a CDR-H1, a CDR-H2, a CDR-H3, a CDR-L1 and a CDR-L2 that are the same as the CDR-H1, CDR-H2, and CDR-H3 shown in Table 7, and comprises a CDR-L3 of QHFAGTPLT (SEQ ID NO: 126) (according to the Kabat and Chothia definition system) or QHFAGTPL (SEQ ID NO: 127) (according to the Contact definition system).


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises heavy chain CDRs that collectively are at least 80% (e.g., 80%, 85%, 90%, 95%, or 98%) identical to the heavy chain CDRs as shown in Table 7. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises light chain CDRs that collectively are at least 80% (e.g., 80%, 85%, 90%, 95%, or 98%) identical to the light chain CDRs as shown in Table 7.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 124. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a VL comprising the amino acid sequence of SEQ ID NO: 125.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH comprising the amino acid sequence of SEQ ID NO: 128. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a VL comprising the amino acid sequence of SEQ ID NO: 129.


In some embodiments, the anti-TfR1 antibody of the present disclosure comprises a VH containing no more than 25 amino acid variations (e.g., no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with the VH as set forth in SEQ ID NO: 128. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody of the present disclosure comprises a VL containing no more than 15 amino acid variations (e.g., no more than 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 9, 8, 7, 6, 5, 4, 3, 2, or 1 amino acid variation) as compared with the VL as set forth in SEQ ID NO: 129.


In some embodiments, the anti-TfR1 antibody of the present disclosure is a full-length IgG1 antibody, which can include a heavy constant region and a light constant region from a human antibody. In some embodiments, the heavy chain of any of the anti-TfR1 antibodies as described herein may comprises a heavy chain constant region (CH) or a portion thereof (e.g., CH1, CH2, CH3, or a combination thereof). The heavy chain constant region can of any suitable origin, e.g., human, mouse, rat, or rabbit. In one specific example, the heavy chain constant region is from a human IgG (a gamma heavy chain), e.g., IgG1, IgG2, or IgG4. An example of human IgG1 constant region is given below:









(SEQ ID NO: 81)


ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGV





HTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEP





KSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS





HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGK





EYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTC





LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR





WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK






In some embodiments, the light chain of any of the anti-TfR1 antibodies described herein may further comprise a light chain constant region (CL), which can be any CL known in the art. In some examples, the CL is a kappa light chain. In other examples, the CL is a lambda light chain. In some embodiments, the CL is a kappa light chain, the sequence of which is provided below:









(SEQ ID NO: 83)


RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSG





NSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTK





SFNRGEC






In some embodiments, the anti-TfR1 antibody described herein is a chimeric antibody that comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 132. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody described herein comprises a light chain comprising the amino acid sequence of SEQ ID NO: 133.


In some embodiments, the anti-TfR1 antibody described herein is a fully human antibody that comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 134. Alternatively or in addition (e.g., in addition), the anti-TfR1 antibody described herein comprises a light chain comprising the amino acid sequence of SEQ ID NO: 135.


In some embodiments, the anti-TfR1 antibody is an antigen binding fragment (Fab) of an intact antibody (full-length antibody). In some embodiments, the anti-TfR1 Fab described herein comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 136. Alternatively or in addition (e.g., in addition), the anti-TfR1 Fab described herein comprises a light chain comprising the amino acid sequence of SEQ ID NO: 133. In some embodiments, the anti-TfR1 Fab described herein comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 137. Alternatively or in addition (e.g., in addition), the anti-TfR1 Fab described herein comprises a light chain comprising the amino acid sequence of SEQ ID NO: 135.


The anti-TfR1 antibodies described herein can be in any antibody form, including, but not limited to, intact (i.e., full-length) antibodies, antigen-binding fragments thereof (such as Fab, Fab′, F(ab′)2, Fv), single chain antibodies, bi-specific antibodies, or nanobodies. In some embodiments, the anti-TfR1 antibody described herein is an scFv. In some embodiments, the anti-TfR1 antibody described herein is an scFv-Fab (e.g., scFv fused to a portion of a constant region). In some embodiments, the anti-TfR1 antibody described herein is an scFv fused to a constant region (e.g., human IgG1 constant region as set forth in SEQ ID NO: 81).


In some embodiments, conservative mutations can be introduced into antibody sequences (e.g., CDRs or framework sequences) at positions where the residues are not likely to be involved in interacting with a target antigen (e.g., transferrin receptor), for example, as determined based on a crystal structure. In some embodiments, one, two or more mutations (e.g., amino acid substitutions) are introduced into the Fc region of an anti-TfR1 antibody described herein (e.g., in a CH2 domain (residues 231-340 of human IgG1) and/or (e.g., and) CH3 domain (residues 341-447 of human IgG1) and/or (e.g., and) the hinge region, with numbering according to the Kabat numbering system (e.g., the EU index in Kabat)) to alter one or more functional properties of the antibody, such as serum half-life, complement fixation, Fc receptor binding and/or (e.g., and) antigen-dependent cellular cytotoxicity.


In some embodiments, one, two or more mutations (e.g., amino acid substitutions) are introduced into the hinge region of the Fc region (CH1 domain) such that the number of cysteine residues in the hinge region are altered (e.g., increased or decreased) as described in, e.g., U.S. Pat. No. 5,677,425. The number of cysteine residues in the hinge region of the CH1 domain can be altered to, e.g., facilitate assembly of the light and heavy chains, or to alter (e.g., increase or decrease) the stability of the antibody or to facilitate linker conjugation.


In some embodiments, one, two or more mutations (e.g., amino acid substitutions) are introduced into the Fc region of a muscle-targeting antibody described herein (e.g., in a CH2 domain (residues 231-340 of human IgG1) and/or (e.g., and) CH3 domain (residues 341-447 of human IgG1) and/or (e.g., and) the hinge region, with numbering according to the Kabat numbering system (e.g., the EU index in Kabat)) to increase or decrease the affinity of the antibody for an Fc receptor (e.g., an activated Fc receptor) on the surface of an effector cell. Mutations in the Fc region of an antibody that decrease or increase the affinity of an antibody for an Fc receptor and techniques for introducing such mutations into the Fc receptor or fragment thereof are known to one of skill in the art. Examples of mutations in the Fc receptor of an antibody that can be made to alter the affinity of the antibody for an Fc receptor are described in, e.g., Smith P et al., (2012) PNAS 109: 6181-6186, U.S. Pat. No. 6,737,056, and International Publication Nos. WO 02/060919; WO 98/23289; and WO 97/34631, which are incorporated herein by reference.


In some embodiments, one, two or more amino acid mutations (i.e., substitutions, insertions or deletions) are introduced into an IgG constant domain, or FcRn-binding fragment thereof (preferably an Fc or hinge-Fc domain fragment) to alter (e.g., decrease or increase) half-life of the antibody in vivo. See, e.g., International Publication Nos. WO 02/060919; WO 98/23289; and WO 97/34631; and U.S. Pat. Nos. 5,869,046, 6,121,022, 6,277,375 and 6,165,745 for examples of mutations that will alter (e.g., decrease or increase) the half-life of an antibody in vivo.


In some embodiments, one, two or more amino acid mutations (i.e., substitutions, insertions or deletions) are introduced into an IgG constant domain, or FcRn-binding fragment thereof (preferably an Fc or hinge-Fc domain fragment) to decrease the half-life of the anti-TfR1 antibody in vivo. In some embodiments, one, two or more amino acid mutations (i.e., substitutions, insertions or deletions) are introduced into an IgG constant domain, or FcRn-binding fragment thereof (preferably an Fc or hinge-Fc domain fragment) to increase the half-life of the antibody in vivo. In some embodiments, the antibodies can have one or more amino acid mutations (e.g., substitutions) in the second constant (CH2) domain (residues 231-340 of human IgG1) and/or (e.g., and) the third constant (CH3) domain (residues 341-447 of human IgG1), with numbering according to the EU index in Kabat (Kabat E A et al., (1991) supra). In some embodiments, the constant region of the IgG1 of an antibody described herein comprises a methionine (M) to tyrosine (Y) substitution in position 252, a serine (S) to threonine (T) substitution in position 254, and a threonine (T) to glutamic acid (E) substitution in position 256, numbered according to the EU index as in Kabat. See U.S. Pat. No. 7,658,921, which is incorporated herein by reference. This type of mutant IgG, referred to as “YTE mutant” has been shown to display fourfold increased half-life as compared to wild-type versions of the same antibody (see Dall′Acqua W F et al., (2006) J Biol Chem 281: 23514-24). In some embodiments, an antibody comprises an IgG constant domain comprising one, two, three or more amino acid substitutions of amino acid residues at positions 251-257, 285-290, 308-314, 385-389, and 428-436, numbered according to the EU index as in Kabat.


In some embodiments, one, two or more amino acid substitutions are introduced into an IgG constant domain Fc region to alter the effector function(s) of the anti-TfR1 antibody. The effector ligand to which affinity is altered can be, for example, an Fc receptor or the C1 component of complement. This approach is described in further detail in U.S. Pat. Nos. 5,624,821 and 5,648,260. In some embodiments, the deletion or inactivation (through point mutations or other means) of a constant region domain can reduce Fc receptor binding of the circulating antibody thereby increasing tumor localization. See, e.g., U.S. Pat. Nos. 5,585,097 and 8,591,886 for a description of mutations that delete or inactivate the constant domain and thereby increase tumor localization. In some embodiments, one or more amino acid substitutions may be introduced into the Fc region of an antibody described herein to remove potential glycosylation sites on Fc region, which may reduce Fc receptor binding (see, e.g., Shields R L et al., (2001) J Biol Chem 276: 6591-604).


In some embodiments, one or more amino in the constant region of an anti-TfR1 antibody described herein can be replaced with a different amino acid residue such that the antibody has altered C1q binding and/or (e.g., and) reduced or abolished complement dependent cytotoxicity (CDC). This approach is described in further detail in U.S. Pat. No. 6,194,551 (Idusogie et al). In some embodiments, one or more amino acid residues in the N-terminal region of the CH2 domain of an antibody described herein are altered to thereby alter the ability of the antibody to fix complement. This approach is described further in International Publication No. WO 94/29351. In some embodiments, the Fc region of an antibody described herein is modified to increase the ability of the antibody to mediate antibody dependent cellular cytotoxicity (ADCC) and/or (e.g., and) to increase the affinity of the antibody for an Fcγ receptor. This approach is described further in International Publication No. WO 00/42072.


In some embodiments, the heavy and/or (e.g., and) light chain variable domain(s) sequence(s) of the antibodies provided herein can be used to generate, for example, CDR-grafted, chimeric, humanized, or composite human antibodies or antigen-binding fragments, as described elsewhere herein. As understood by one of ordinary skill in the art, any variant, CDR-grafted, chimeric, humanized, or composite antibodies derived from any of the antibodies provided herein may be useful in the compositions and methods described herein and will maintain the ability to specifically bind transferrin receptor, such that the variant, CDR-grafted, chimeric, humanized, or composite antibody has at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95% or more binding to transferrin receptor relative to the original antibody from which it is derived.


In some embodiments, the antibodies provided herein comprise mutations that confer desirable properties to the antibodies. For example, to avoid potential complications due to Fab-arm exchange, which is known to occur with native IgG4 mAbs, the antibodies provided herein may comprise a stabilizing ‘Adair’ mutation (Angal S., et al., “A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibody,” Mol Immunol 30, 105-108; 1993), where serine 228 (EU numbering; residue 241 Kabat numbering) is converted to proline resulting in an IgG1-like hinge sequence. Accordingly, any of the antibodies may include a stabilizing ‘Adair’ mutation.


In some embodiments, an antibody is modified, e.g., modified via glycosylation, phosphorylation, sumoylation, and/or (e.g., and) methylation. In some embodiments, an antibody is a glycosylated antibody, which is conjugated to one or more sugar or carbohydrate molecules. In some embodiments, the one or more sugar or carbohydrate molecule are conjugated to the antibody via N-glycosylation, O-glycosylation, C-glycosylation, glypiation (GPI anchor attachment), and/or (e.g., and) phosphoglycosylation. In some embodiments, the one or more sugar or carbohydrate molecules are monosaccharides, disaccharides, oligosaccharides, or glycans. In some embodiments, the one or more sugar or carbohydrate molecule is a branched oligosaccharide or a branched glycan. In some embodiments, the one or more sugar or carbohydrate molecule includes a mannose unit, a glucose unit, an N-acetylglucosamine unit, an N-acetylgalactosamine unit, a galactose unit, a fucose unit, or a phospholipid unit. In some embodiments, there are about 1-10, about 1-5, about 5-10, about 1-4, about 1-3, or about 2 sugar molecules. In some embodiments, a glycosylated antibody is fully or partially glycosylated. In some embodiments, an antibody is glycosylated by chemical reactions or by enzymatic means. In some embodiments, an antibody is glycosylated in vitro or inside a cell, which may optionally be deficient in an enzyme in the N- or O-glycosylation pathway, e.g. a glycosyltransferase. In some embodiments, an antibody is functionalized with sugar or carbohydrate molecules as described in International Patent Application Publication WO2014065661, published on May 1, 2014, entitled, “Modified antibody, antibody-conjugate and process for the preparation thereof”.


In some embodiments, any one of the anti-TfR1 antibodies described herein may comprise a signal peptide in the heavy and/or (e.g., and) light chain sequence (e.g., a N-terminal signal peptide). In some embodiments, the anti-TfR1 antibody described herein comprises any one of the VH and VL sequences, any one of the IgG heavy chain and light chain sequences, or any one of the F(ab′) heavy chain and light chain sequences described herein, and further comprises a signal peptide (e.g., a N-terminal signal peptide). In some embodiments, the signal peptide comprises the amino acid sequence of MGWSCIILFLVATATGVHS (SEQ ID NO: 104).


In some embodiments, an antibody provided herein may have one or more post-translational modifications. In some embodiments, N-terminal cyclization, also called pyroglutamate formation (pyro-Glu), may occur in the antibody at N-terminal Glutamate (Glu) and/or Glutamine (Gln) residues during production. As such, it should be appreciated that an antibody specified as having a sequence comprising an N-terminal glutamate or glutamine residue encompasses antibodies that have undergone pyroglutamate formation resulting from a post-translational modification. In some embodiments, pyroglutamate formation occurs in a heavy chain sequence. In some embodiments, pyroglutamate formation occurs in a light chain sequence.


b. Other Muscle-Targeting Antibodies


In some embodiments, the muscle-targeting antibody is an antibody that specifically binds hemojuvelin, caveolin-3, Duchenne muscular dystrophy peptide, myosin IIb or CD63. In some embodiments, the muscle-targeting antibody is an antibody that specifically binds a myogenic precursor protein. Exemplary myogenic precursor proteins include, without limitation, ABCG2, M-Cadherin/Cadherin-15, Caveolin-1, CD34, FoxK1, Integrin alpha 7, Integrin alpha 7 beta 1, MYF-5, MyoD, Myogenin, NCAM-1/CD56, Pax3, Pax7, and Pax9. In some embodiments, the muscle-targeting antibody is an antibody that specifically binds a skeletal muscle protein. Exemplary skeletal muscle proteins include, without limitation, alpha-Sarcoglycan, beta-Sarcoglycan, Calpain Inhibitors, Creatine Kinase MM/CKMM, eIF5A, Enolase 2/Neuron-specific Enolase, epsilon-Sarcoglycan, FABP3/H-FABP, GDF-8/Myostatin, GDF-11/GDF-8, Integrin alpha 7, Integrin alpha 7 beta 1, Integrin beta 1/CD29, MCAM/CD146, MyoD, Myogenin, Myosin Light Chain Kinase Inhibitors, NCAM-1/CD56, and Troponin I. In some embodiments, the muscle-targeting antibody is an antibody that specifically binds a smooth muscle protein. Exemplary smooth muscle proteins include, without limitation, alpha-Smooth Muscle Actin, VE-Cadherin, Caldesmon/CALD1, Calponin 1, Desmin, Histamine H2 R, Motilin R/GPR38, Transgelin/TAGLN, and Vimentin. However, it should be appreciated that antibodies to additional targets are within the scope of this disclosure and the exemplary lists of targets provided herein are not meant to be limiting.


c. Antibody Features/Alterations


In some embodiments, conservative mutations can be introduced into antibody sequences (e.g., CDRs or framework sequences) at positions where the residues are not likely to be involved in interacting with a target antigen (e.g., transferrin receptor), for example, as determined based on a crystal structure. In some embodiments, one, two or more mutations (e.g., amino acid substitutions) are introduced into the Fc region of a muscle-targeting antibody described herein (e.g., in a CH2 domain (residues 231-340 of human IgG1) and/or (e.g., and) CH3 domain (residues 341-447 of human IgG1) and/or (e.g., and) the hinge region, with numbering according to the Kabat numbering system (e.g., the EU index in Kabat)) to alter one or more functional properties of the antibody, such as serum half-life, complement fixation, Fc receptor binding and/or (e.g., and) antigen-dependent cellular cytotoxicity.


In some embodiments, one, two or more mutations (e.g., amino acid substitutions) are introduced into the hinge region of the Fc region (CH1 domain) such that the number of cysteine residues in the hinge region are altered (e.g., increased or decreased) as described in, e.g., U.S. Pat. No. 5,677,425. The number of cysteine residues in the hinge region of the CH1 domain can be altered to, e.g., facilitate assembly of the light and heavy chains, or to alter (e.g., increase or decrease) the stability of the antibody or to facilitate linker conjugation.


In some embodiments, one, two or more mutations (e.g., amino acid substitutions) are introduced into the Fc region of a muscle-targeting antibody described herein (e.g., in a CH2 domain (residues 231-340 of human IgG1) and/or (e.g., and) CH3 domain (residues 341-447 of human IgG1) and/or (e.g., and) the hinge region, with numbering according to the Kabat numbering system (e.g., the EU index in Kabat)) to increase or decrease the affinity of the antibody for an Fc receptor (e.g., an activated Fc receptor) on the surface of an effector cell. Mutations in the Fc region of an antibody that decrease or increase the affinity of an antibody for an Fc receptor and techniques for introducing such mutations into the Fc receptor or fragment thereof are known to one of skill in the art. Examples of mutations in the Fc receptor of an antibody that can be made to alter the affinity of the antibody for an Fc receptor are described in, e.g., Smith P et al., (2012) PNAS 109: 6181-6186, U.S. Pat. No. 6,737,056, and International Publication Nos. WO 02/060919; WO 98/23289; and WO 97/34631, which are incorporated herein by reference.


In some embodiments, one, two or more amino acid mutations (i.e., substitutions, insertions or deletions) are introduced into an IgG constant domain, or FcRn-binding fragment thereof (preferably an Fc or hinge-Fc domain fragment) to alter (e.g., decrease or increase) half-life of the antibody in vivo. See, e.g., International Publication Nos. WO 02/060919; WO 98/23289; and WO 97/34631; and U.S. Pat. Nos. 5,869,046, 6,121,022, 6,277,375 and 6,165,745 for examples of mutations that will alter (e.g., decrease or increase) the half-life of an antibody in vivo.


In some embodiments, one, two or more amino acid mutations (i.e., substitutions, insertions or deletions) are introduced into an IgG constant domain, or FcRn-binding fragment thereof (preferably an Fc or hinge-Fc domain fragment) to decrease the half-life of the anti-transferrin receptor antibody in vivo. In some embodiments, one, two or more amino acid mutations (i.e., substitutions, insertions or deletions) are introduced into an IgG constant domain, or FcRn-binding fragment thereof (preferably an Fc or hinge-Fc domain fragment) to increase the half-life of the antibody in vivo. In some embodiments, the antibodies can have one or more amino acid mutations (e.g., substitutions) in the second constant (CH2) domain (residues 231-340 of human IgG1) and/or (e.g., and) the third constant (CH3) domain (residues 341-447 of human IgG1), with numbering according to the EU index in Kabat (Kabat E A et al., (1991) supra). In some embodiments, the constant region of the IgG1 of an antibody described herein comprises a methionine (M) to tyrosine (Y) substitution in position 252, a serine (S) to threonine (T) substitution in position 254, and a threonine (T) to glutamic acid (E) substitution in position 256, numbered according to the EU index as in Kabat. See U.S. Pat. No. 7,658,921, which is incorporated herein by reference. This type of mutant IgG, referred to as “YTE mutant” has been shown to display fourfold increased half-life as compared to wild-type versions of the same antibody (see Dall′Acqua W F et al., (2006) J Biol Chem 281: 23514-24). In some embodiments, an antibody comprises an IgG constant domain comprising one, two, three or more amino acid substitutions of amino acid residues at positions 251-257, 285-290, 308-314, 385-389, and 428-436, numbered according to the EU index as in Kabat.


In some embodiments, one, two or more amino acid substitutions are introduced into an IgG constant domain Fc region to alter the effector function(s) of the anti-transferrin receptor antibody. The effector ligand to which affinity is altered can be, for example, an Fc receptor or the C1 component of complement. This approach is described in further detail in U.S. Pat. Nos. 5,624,821 and 5,648,260. In some embodiments, the deletion or inactivation (through point mutations or other means) of a constant region domain can reduce Fc receptor binding of the circulating antibody thereby increasing tumor localization. See, e.g., U.S. Pat. Nos. 5,585,097 and 8,591,886 for a description of mutations that delete or inactivate the constant domain and thereby increase tumor localization. In some embodiments, one or more amino acid substitutions may be introduced into the Fc region of an antibody described herein to remove potential glycosylation sites on Fc region, which may reduce Fc receptor binding (see, e.g., Shields R L et al., (2001) J Biol Chem 276: 6591-604).


In some embodiments, one or more amino in the constant region of a muscle-targeting antibody described herein can be replaced with a different amino acid residue such that the antibody has altered C1q binding and/or (e.g., and) reduced or abolished complement dependent cytotoxicity (CDC). This approach is described in further detail in U.S. Pat. No. 6,194,551 (Idusogie et al). In some embodiments, one or more amino acid residues in the N-terminal region of the CH2 domain of an antibody described herein are altered to thereby alter the ability of the antibody to fix complement. This approach is described further in International Publication No. WO 94/29351. In some embodiments, the Fc region of an antibody described herein is modified to increase the ability of the antibody to mediate antibody dependent cellular cytotoxicity (ADCC) and/or (e.g., and) to increase the affinity of the antibody for an Fcγ receptor. This approach is described further in International Publication No. WO 00/42072.


In some embodiments, the heavy and/or (e.g., and) light chain variable domain(s) sequence(s) of the antibodies provided herein can be used to generate, for example, CDR-grafted, chimeric, humanized, or composite human antibodies or antigen-binding fragments, as described elsewhere herein. As understood by one of ordinary skill in the art, any variant, CDR-grafted, chimeric, humanized, or composite antibodies derived from any of the antibodies provided herein may be useful in the compositions and methods described herein and will maintain the ability to specifically bind transferrin receptor, such that the variant, CDR-grafted, chimeric, humanized, or composite antibody has at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95% or more binding to transferrin receptor relative to the original antibody from which it is derived.


In some embodiments, the antibodies provided herein comprise mutations that confer desirable properties to the antibodies. For example, to avoid potential complications due to Fab-arm exchange, which is known to occur with native IgG4 mAbs, the antibodies provided herein may comprise a stabilizing ‘Adair’ mutation (Angal S., et al., “A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibody,” Mol Immunol 30, 105-108; 1993), where serine 228 (EU numbering; residue 241 Kabat numbering) is converted to proline resulting in an IgG1-like hinge sequence. Accordingly, any of the antibodies may include a stabilizing ‘Adair’ mutation.


As provided herein, antibodies of this disclosure may optionally comprise constant regions or parts thereof. For example, a VL domain may be attached at its C-terminal end to a light chain constant domain like Cκ or Cλ. Similarly, a VH domain or portion thereof may be attached to all or part of a heavy chain like IgA, IgD, IgE, IgG, and IgM, and any isotype subclass. Antibodies may include suitable constant regions (see, for example, Kabat et al., Sequences of Proteins of Immunological Interest, No. 91-3242, National Institutes of Health Publications, Bethesda, Md. (1991)). Therefore, antibodies within the scope of this may disclosure include VH and VL domains, or an antigen binding portion thereof, combined with any suitable constant regions.


ii. Muscle-Targeting Peptides


Some aspects of the disclosure provide muscle-targeting peptides as muscle-targeting agents. Short peptide sequences (e.g., peptide sequences of 5-20 amino acids in length) that bind to specific cell types have been described. For example, cell-targeting peptides have been described in Vines e., et al., A. “Cell-penetrating and cell-targeting peptides in drug delivery” Biochim Biophys Acta 2008, 1786: 126-38; Jarver P., et al., “In vivo biodistribution and efficacy of peptide mediated delivery” Trends Pharmacol Sci 2010; 31: 528-35; Samoylova T. I., et al., “Elucidation of muscle-binding peptides by phage display screening” Muscle Nerve 1999; 22: 460-6; U.S. Pat. No. 6,329,501, issued on Dec. 11, 2001, entitled “METHODS AND COMPOSITIONS FOR TARGETING COMPOUNDS TO MUSCLE”; and Samoylov A. M., et al., “Recognition of cell-specific binding of phage display derived peptides using an acoustic wave sensor.” Biomol Eng 2002; 18: 269-72; the entire contents of each of which are incorporated herein by reference. By designing peptides to interact with specific cell surface antigens (e.g., receptors), selectivity for a desired tissue, e.g., muscle, can be achieved. Skeletal muscle-targeting has been investigated and a range of molecular payloads are able to be delivered. These approaches may have high selectivity for muscle tissue without many of the practical disadvantages of a large antibody or viral particle. Accordingly, in some embodiments, the muscle-targeting agent is a muscle-targeting peptide that is from 4 to 50 amino acids in length. In some embodiments, the muscle-targeting peptide is 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 amino acids in length. Muscle-targeting peptides can be generated using any of several methods, such as phage display.


In some embodiments, a muscle-targeting peptide may bind to an internalizing cell surface receptor that is overexpressed or relatively highly expressed in muscle cells, e.g. a transferrin receptor, compared with certain other cells. In some embodiments, a muscle-targeting peptide may target, e.g., bind to, a transferrin receptor. In some embodiments, a peptide that targets a transferrin receptor may comprise a segment of a naturally occurring ligand, e.g., transferrin. In some embodiments, a peptide that targets a transferrin receptor is as described in U.S. Pat. No. 6,743,893, filed Nov. 30, 2000, “RECEPTOR-MEDIATED UPTAKE OF PEPTIDES THAT BIND THE HUMAN TRANSFERRIN RECEPTOR”. In some embodiments, a peptide that targets a transferrin receptor is as described in Kawamoto, M. et al, “A novel transferrin receptor-targeted hybrid peptide disintegrates cancer cell membrane to induce rapid killing of cancer cells.” BMC Cancer. 2011 Aug. 18; 11:359. In some embodiments, a peptide that targets a transferrin receptor is as described in U.S. Pat. No. 8,399,653, filed May 20, 2011, “TRANSFERRIN/TRANSFERRIN RECEPTOR-MEDIATED SIRNA DELIVERY”.


As discussed above, examples of muscle targeting peptides have been reported. For example, muscle-specific peptides were identified using phage display library presenting surface heptapeptides. As one example a peptide having the amino acid sequence ASSLNIA (SEQ ID NO: 2170) bound to C2C12 murine myotubes in vitro, and bound to mouse muscle tissue in vivo. Accordingly, in some embodiments, the muscle-targeting agent comprises the amino acid sequence ASSLNIA (SEQ ID NO: 2170). This peptide displayed improved specificity for binding to heart and skeletal muscle tissue after intravenous injection in mice with reduced binding to liver, kidney, and brain. Additional muscle-specific peptides have been identified using phage display. For example, a 12 amino acid peptide was identified by phage display library for muscle targeting in the context of treatment for Duchenne muscular dystrophy. See, Yoshida D., et al., “Targeting of salicylate to skin and muscle following topical injections in rats.” Int J Pharm 2002; 231: 177-84; the entire contents of which are hereby incorporated by reference. Here, a 12 amino acid peptide having the sequence SKTFNTHPQSTP (SEQ ID NO: 2171) was identified and this muscle-targeting peptide showed improved binding to C2C12 cells relative to the ASSLNIA (SEQ ID NO: 2170) peptide.


An additional method for identifying peptides selective for muscle (e.g., skeletal muscle) over other cell types includes in vitro selection, which has been described in Ghosh D., et al., “Selection of muscle-binding peptides from context-specific peptide-presenting phage libraries for adenoviral vector targeting” J Virol 2005; 79: 13667-72; the entire contents of which are incorporated herein by reference. By pre-incubating a random 12-mer peptide phage display library with a mixture of non-muscle cell types, non-specific cell binders were selected out. Following rounds of selection the 12 amino acid peptide TARGEHKEEELI (SEQ ID NO: 2172) appeared most frequently. Accordingly, in some embodiments, the muscle-targeting agent comprises the amino acid sequence TARGEHKEEELI (SEQ ID NO: 2172).


A muscle-targeting agent may an amino acid-containing molecule or peptide. A muscle-targeting peptide may correspond to a sequence of a protein that preferentially binds to a protein receptor found in muscle cells. In some embodiments, a muscle-targeting peptide contains a high propensity of hydrophobic amino acids, e.g. valine, such that the peptide preferentially targets muscle cells. In some embodiments, a muscle-targeting peptide has not been previously characterized or disclosed. These peptides may be conceived of, produced, synthesized, and/or (e.g., and) derivatized using any of several methodologies, e.g. phage displayed peptide libraries, one-bead one-compound peptide libraries, or positional scanning synthetic peptide combinatorial libraries. Exemplary methodologies have been characterized in the art and are incorporated by reference (Gray, B. P. and Brown, K. C. “Combinatorial Peptide Libraries: Mining for Cell-Binding Peptides” Chem Rev. 2014, 114:2, 1020-1081.; Samoylova, T. I. and Smith, B. F. “Elucidation of muscle-binding peptides by phage display screening.” Muscle Nerve, 1999, 22:4. 460-6.). In some embodiments, a muscle-targeting peptide has been previously disclosed (see, e.g. Writer M. J. et al. “Targeted gene delivery to human airway epithelial cells with synthetic vectors incorporating novel targeting peptides selected by phage display.” J. Drug Targeting. 2004; 12:185; Cai, D. “BDNF-mediated enhancement of inflammation and injury in the aging heart.” Physiol Genomics. 2006, 24:3, 191-7.; Zhang, L. “Molecular profiling of heart endothelial cells.” Circulation, 2005, 112:11, 1601-11.; McGuire, M. J. et al. “In vitro selection of a peptide with high selectivity for cardiomyocytes in vivo.” J Mol Biol. 2004, 342:1, 171-82.). Exemplary muscle-targeting peptides comprise an amino acid sequence of the following group: CQAQGQLVC (SEQ ID NO: 2173), CSERSMNFC (SEQ ID NO: 2174), CPKTRRVPC (SEQ ID NO: 2175), WLSEAGPVVTVRALRGTGSW (SEQ ID NO: 2176), ASSLNIA (SEQ ID NO: 2170), CMQHSMRVC (SEQ ID NO: 2177), and DDTRHWG (SEQ ID NO: 2178). In some embodiments, a muscle-targeting peptide may comprise about 2-25 amino acids, about 2-20 amino acids, about 2-15 amino acids, about 2-10 amino acids, or about 2-5 amino acids. Muscle-targeting peptides may comprise naturally-occurring amino acids, e.g. cysteine, alanine, or non-naturally-occurring or modified amino acids. Non-naturally occurring amino acids include β-amino acids, homo-amino acids, proline derivatives, 3-substituted alanine derivatives, linear core amino acids, N-methyl amino acids, and others known in the art. In some embodiments, a muscle-targeting peptide may be linear; in other embodiments, a muscle-targeting peptide may be cyclic, e.g. bicyclic (see, e.g. Silvana, M. G. et al. Mol. Therapy, 2018, 26:1, 132-147.).


iii. Muscle-Targeting Receptor Ligands


A muscle-targeting agent may be a ligand, e.g. a ligand that binds to a receptor protein. A muscle-targeting ligand may be a protein, e.g. transferrin, which binds to an internalizing cell surface receptor expressed by a muscle cell. Accordingly, in some embodiments, the muscle-targeting agent is transferrin, or a derivative thereof that binds to a transferrin receptor. A muscle-targeting ligand may alternatively be a small molecule, e.g. a lipophilic small molecule that preferentially targets muscle cells relative to other cell types. Exemplary lipophilic small molecules that may target muscle cells include compounds comprising cholesterol, cholesteryl, stearic acid, palmitic acid, oleic acid, oleyl, linolene, linoleic acid, myristic acid, sterols, dihydrotestosterone, testosterone derivatives, glycerine, alkyl chains, trityl groups, and alkoxy acids.


iv. Muscle-Targeting Aptamers


A muscle-targeting agent may be an aptamer, e.g. an RNA aptamer, which preferentially targets muscle cells relative to other cell types. In some embodiments, a muscle-targeting aptamer has not been previously characterized or disclosed. These aptamers may be conceived of, produced, synthesized, and/or (e.g., and) derivatized using any of several methodologies, e.g. Systematic Evolution of Ligands by Exponential Enrichment. Exemplary methodologies have been characterized in the art and are incorporated by reference (Yan, A. C. and Levy, M. “Aptamers and aptamer targeted delivery” RNA biology, 2009, 6:3, 316-20.; Germer, K. et al. “RNA aptamers and their therapeutic and diagnostic applications.” Int. J. Biochem. Mol. Biol. 2013; 4: 27-40.). In some embodiments, a muscle-targeting aptamer has been previously disclosed (see, e.g. Phillippou, S. et al. “Selection and Identification of Skeletal-Muscle-Targeted RNA Aptamers.” Mol Ther Nucleic Acids. 2018, 10:199-214.; Thiel, W. H. et al. “Smooth Muscle Cell-targeted RNA Aptamer Inhibits Neointimal Formation.” Mol Ther. 2016, 24:4, 779-87.). Exemplary muscle-targeting aptamers include the A01B RNA aptamer and RNA Apt 14. In some embodiments, an aptamer is a nucleic acid-based aptamer, an oligonucleotide aptamer or a peptide aptamer. In some embodiments, an aptamer may be about 5-15 kDa, about 5-10 kDa, about 10−15 kDa, about 1-5 Da, about 1-3 kDa, or smaller.


v. Other Muscle-Targeting Agents


One strategy for targeting a muscle cell (e.g., a skeletal muscle cell) is to use a substrate of a muscle transporter protein, such as a transporter protein expressed on the sarcolemma. In some embodiments, the muscle-targeting agent is a substrate of an influx transporter that is specific to muscle tissue. In some embodiments, the influx transporter is specific to skeletal muscle tissue. Two main classes of transporters are expressed on the skeletal muscle sarcolemma, (1) the adenosine triphosphate (ATP) binding cassette (ABC) superfamily, which facilitate efflux from skeletal muscle tissue and (2) the solute carrier (SLC) superfamily, which can facilitate the influx of substrates into skeletal muscle. In some embodiments, the muscle-targeting agent is a substrate that binds to an ABC superfamily or an SLC superfamily of transporters. In some embodiments, the substrate that binds to the ABC or SLC superfamily of transporters is a naturally-occurring substrate. In some embodiments, the substrate that binds to the ABC or SLC superfamily of transporters is a non-naturally occurring substrate, for example, a synthetic derivative thereof that binds to the ABC or SLC superfamily of transporters.


In some embodiments, the muscle-targeting agent is any muscle targeting agent described herein (e.g., antibodies, nucleic acids, small molecules, peptides, aptamers, lipids, sugar moieties) that target SLC superfamily of transporters. In some embodiments, the muscle-targeting agent is a substrate of an SLC superfamily of transporters. SLC transporters are either equilibrative or use proton or sodium ion gradients created across the membrane to drive transport of substrates. Exemplary SLC transporters that have high skeletal muscle expression include, without limitation, the SATT transporter (ASCT1; SLC1A4), GLUT4 transporter (SLC2A4), GLUT7 transporter (GLUT7; SLC2A7), ATRC2 transporter (CAT-2; SLC7A2), LAT3 transporter (KIAA0245; SLC7A6), PHT1 transporter (PTR4; SLC15A4), OATP-J transporter (OATP5A1; SLC21A15), OCT3 transporter (EMT; SLC22A3), OCTN2 transporter (FLJ46769; SLC22A5), ENT transporters (ENT1; SLC29A1 and ENT2; SLC29A2), PAT2 transporter (SLC36A2), and SAT2 transporter (KIAA1382; SLC38A2). These transporters can facilitate the influx of substrates into skeletal muscle, providing opportunities for muscle targeting.


In some embodiments, the muscle-targeting agent is a substrate of an equilibrative nucleoside transporter 2 (ENT2) transporter. Relative to other transporters, ENT2 has one of the highest mRNA expressions in skeletal muscle. While human ENT2 (hENT2) is expressed in most body organs such as brain, heart, placenta, thymus, pancreas, prostate, and kidney, it is especially abundant in skeletal muscle. Human ENT2 facilitates the uptake of its substrates depending on their concentration gradient. ENT2 plays a role in maintaining nucleoside homeostasis by transporting a wide range of purine and pyrimidine nucleobases. The hENT2 transporter has a low affinity for all nucleosides (adenosine, guanosine, uridine, thymidine, and cytidine) except for inosine. Accordingly, in some embodiments, the muscle-targeting agent is an ENT2 substrate. Exemplary ENT2 substrates include, without limitation, inosine, 2′,3′-dideoxyinosine, and calofarabine. In some embodiments, any of the muscle-targeting agents provided herein are associated with a molecular payload (e.g., oligonucleotide payload). In some embodiments, the muscle-targeting agent is covalently linked to the molecular payload. In some embodiments, the muscle-targeting agent is non-covalently linked to the molecular payload.


In some embodiments, the muscle-targeting agent is a substrate of an organic cation/carnitine transporter (OCTN2), which is a sodium ion-dependent, high affinity carnitine transporter. In some embodiments, the muscle-targeting agent is carnitine, mildronate, acetylcarnitine, or any derivative thereof that binds to OCTN2. In some embodiments, the carnitine, mildronate, acetylcarnitine, or derivative thereof is covalently linked to the molecular payload (e.g., oligonucleotide payload).


A muscle-targeting agent may be a protein that is protein that exists in at least one soluble form that targets muscle cells. In some embodiments, a muscle-targeting protein may be hemojuvelin (also known as repulsive guidance molecule C or hemochromatosis type 2 protein), a protein involved in iron overload and homeostasis. In some embodiments, hemojuvelin may be full length or a fragment, or a mutant with at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 98% or at least 99% sequence identity to a functional hemojuvelin protein. In some embodiments, a hemojuvelin mutant may be a soluble fragment, may lack a N-terminal signaling, and/or (e.g., and) lack a C-terminal anchoring domain. In some embodiments, hemojuvelin may be annotated under GenBank RefSeq Accession Numbers NM_001316767.1, NM_145277.4, NM_202004.3, NM_213652.3, or NM_213653.3. It should be appreciated that a hemojuvelin may be of human, non-human primate, or rodent origin.


B. Molecular Payloads

Some aspects of the disclosure provide molecular payloads, e.g., for modulating a biological outcome, e.g., the transcription of a DNA sequence, the splicing and processing of an RNA sequence, the expression of a protein, or the activity of a protein. In some embodiments, a molecular payload is linked to, or otherwise associated with a muscle-targeting agent. In some embodiments, such molecular payloads are capable of targeting to a muscle cell, e.g., via specifically binding to a nucleic acid or protein in the muscle cell following delivery to the muscle cell by an associated muscle-targeting agent. It should be appreciated that various types of molecular payloads may be used in accordance with the disclosure. For example, the molecular payload may comprise, or consist of, an oligonucleotide (e.g., antisense oligonucleotide), a peptide (e.g., a peptide that binds a nucleic acid or protein associated with disease in a muscle cell), a protein (e.g., a protein that binds a nucleic acid or protein associated with disease in a muscle cell), or a small molecule (e.g., a small molecule that modulates the function of a nucleic acid or protein associated with disease in a muscle cell). In some embodiments, the molecular payload is an oligonucleotide that comprises a strand having a region of complementarity to a mutated DMD allele. Exemplary molecular payloads are described in further detail herein, however, it should be appreciated that the exemplary molecular payloads provided herein are not meant to be limiting.


i. Oligonucleotides


Aspects of the disclosure relate to oligonucleotides configured to modulate (e.g., increase) expression of dystrophin, e.g., from a DMD allele. In some embodiments, oligonucleotides provided herein are configured to alter splicing of DMD pre-mRNA to promote expression of dystrophin protein (e.g., a functional truncated dystrophin protein). In some embodiments, oligonucleotides provided herein are configured to promote skipping of one or more exons in DMD, e.g., in a mutated DMD allele, in order to restore the reading frame. In some embodiments, the oligonucleotides allow for functional dystrophin protein expression (e.g., as described in Watanabe N, Nagata T, Satou Y, et al. NS-065/NCNP-01: an antisense oligonucleotide for potential treatment of exon 53 skipping in Duchenne muscular dystrophy. Mol Ther Nucleic Acids. 2018; 13:442-449). In some embodiments, oligonucleotides provided are configured to promote skipping of exon 55 to produce a shorter but functional version of dystrophin (e.g., containing an in-frame deletion). In some embodiments, oligonucleotides are provided that promote exon 55 skipping (e.g., which may be relevant in a substantial number of patients, including, for example, patients amenable to exon 55 skipping, such as those having deletions in DMD exons 3-54, 4-54, 5-54, 6-54, 9-54, 10-54, 11-54, 13-54, 14-54, 15-54, 16-54, 17-54, 19-54, 21-54, 23-54, 24-54, 25-54, 26-54, 27-54, 28-54, 29-54, 30-54, 31-54, 32-54, 33-54, 34-54, 35-54, 36-54, 37-54, 38-54, 39-54, 40-54, 41-54, 42-54, 43-54, 45-54, 47-54, 48-54, 49-54, 50-54, 52-54, 54, 56, 56-62, 56-65, 56-68, 56-70, 56-71, 56-72, 56-73, or 56-74).


Table 8 provides non-limiting examples of sequences of oligonucleotides that are useful for targeting DMD, e.g., for exon skipping, and for target sequences within DMD. In some embodiments, an oligonucleotide may comprise any antisense sequence provided in Table 8 or a sequence complementary to a target sequence provided in Table 8.









TABLE 8







Oligonucleotide sequences for targeting DMD.













SEQ

SEQ
Antisense
SEQ
Antisense



ID
Target sequence†
ID
Sequence†
ID
Sequence†



NO
(5′ to 3′)
NO
(5′ to 3′)
NO
(5′ to 3′)
Target Site
















160
GGAAGAAACUCAU
780
UGCAGUAAUCUAU
1400
TGCAGTAATCTAT
Exon 55



AGAUUACUGCA

GAGUUUCUUCC

GAGTTTCTTCC






161
GAAACAACUGCCA
781
GUAGGACAUUGGC
1401
GTAGGACATTGGC
Exon 55



AUGUCCUAC

AGUUGUUUC

AGTTGTTTC






162
GAAACAACUGCCA
782
UGUAGGACAUUGG
1402
TGTAGGACATTGG
Exon 55



AUGUCCUACA

CAGUUGUUUC

CAGTTGTTTC






163
GAAACAACUGCCA
783
CUGUAGGACAUUG
1403
CTGTAGGACATTG
Exon 55



AUGUCCUACAG

GCAGUUGUUUC

GCAGTTGTTTC






164
GAAACAACUGCCA
784
CCUGUAGGACAUU
1404
CCTGTAGGACATT
Exon 55



AUGUCCUACAGG

GGCAGUUGUUUC

GGCAGTTGTTTC






165
AAACAACUGCCAA
785
CCUGUAGGACAUU
1405
CCTGTAGGACATT
Exon 55



UGUCCUACAGG

GGCAGUUGUUU

GGCAGTTGTTT






166
AAACAACUGCCAA
786
UCCUGUAGGACAU
1406
TCCTGTAGGACAT
Exon 55



UGUCCUACAGGA

UGGCAGUUGUUU

TGGCAGTTGTTT






167
AACAACUGCCAAU
787
CUGUAGGACAUUG
1407
CTGTAGGACATTG
Exon 55



GUCCUACAG

GCAGUUGUU

GCAGTTGTT






168
AACAACUGCCAAU
788
CCUGUAGGACAUU
1408
CCTGTAGGACATT
Exon 55



GUCCUACAGG

GGCAGUUGUU

GGCAGTTGTT






169
AACAACUGCCAAU
789
UCCUGUAGGACAU
1409
TCCTGTAGGACAT
Exon 55



GUCCUACAGGA

UGGCAGUUGUU

TGGCAGTTGTT






170
ACAACUGCCAAUG
790
UGUAGGACAUUGG
1410
TGTAGGACATTGG
Exon 55



UCCUACA

CAGUUGU

CAGTTGT






171
ACAACUGCCAAUG
791
CUGUAGGACAUUG
1411
CTGTAGGACATTG
Exon 55



UCCUACAG

GCAGUUGU

GCAGTTGT






172
ACAACUGCCAAUG
792
CCUGUAGGACAUU
1412
CCTGTAGGACATT
Exon 55



UCCUACAGG

GGCAGUUGU

GGCAGTTGT






173
ACAACUGCCAAUG
793
UCCUGUAGGACAU
1413
TCCTGTAGGACAT
Exon 55



UCCUACAGGA

UGGCAGUUGU

TGGCAGTTGT






174
CAACUGCCAAUGU
794
CCUGUAGGACAUU
1414
CCTGTAGGACATT
Exon 55



CCUACAGG

GGCAGUUG

GGCAGTTG






175
CAACUGCCAAUGU
795
UCCUGUAGGACAU
1415
TCCTGTAGGACAT
Exon 55



CCUACAGGA

UGGCAGUUG

TGGCAGTTG






176
AACUGCCAAUGUC
796
UCCUGUAGGACAU
1416
TCCTGTAGGACAT
Exon 55



CUACAGGA

UGGCAGUU

TGGCAGTT






177
ACUGCCAAUGUCC
797
UCCUGUAGGACAU
1417
TCCTGTAGGACAT
Exon 55



UACAGGA

UGGCAGU

TGGCAGT






178
AGAAACUCAUAGA
798
UGUUGCAGUAAUC
1418
TGTTGCAGTAATC
Exon 55



UUACUGCAACA

UAUGAGUUUCU

TATGAGTTTCT






179
AGAAACUCAUAGA
799
CUGUUGCAGUAAU
1419
CTGTTGCAGTAAT
Exon 55



UUACUGCAACAG

CUAUGAGUUUCU

CTATGAGTTTCT






180
GAAACUCAUAGAU
800
CUGUUGCAGUAAU
1420
CTGTTGCAGTAAT
Exon 55



UACUGCAACAG

CUAUGAGUUUC

CTATGAGTTTC






181
GAUGAUACCAGAA
801
AUGUGGACUUUUC
1421
ATGTGGACTTTTC
Exon 54



AAGUCCACAU

UGGUAUCAUC

TGGTATCATC






182
GAUGAUACCAGAA
802
UCAUGUGGACUUU
1422
TCATGTGGACTTT
Exon 54



AAGUCCACAUGA

UCUGGUAUCAUC

TCTGGTATCATC






183
AUGAUACCAGAAA
803
UCAUGUGGACUUU
1423
TCATGTGGACTTT
Exon 54



AGUCCACAUGA

UCUGGUAUCAU

TCTGGTATCAT






184
AUGAUACCAGAAA
804
AUCAUGUGGACUU
1424
ATCATGTGGACTT
Exon 54



AGUCCACAUGAU

UUCUGGUAUCAU

TTCTGGTATCAT






185
UGAUACCAGAAAA
805
UCAUGUGGACUUU
1425
TCATGTGGACTTT
Exon 54



GUCCACAUGA

UCUGGUAUCA

TCTGGTATCA






186
UGAUACCAGAAAA
806
AUCAUGUGGACUU
1426
ATCATGTGGACTT
Exon 54



GUCCACAUGAU

UUCUGGUAUCA

TTCTGGTATCA






187
GAUACCAGAAAAG
807
UCAUGUGGACUUU
1427
TCATGTGGACTTT
Exon 54



UCCACAUGA

UCUGGUAUC

TCTGGTATC






188
GAUACCAGAAAAG
808
AUCAUGUGGACUU
1428
ATCATGTGGACTT
Exon 54



UCCACAUGAU

UUCUGGUAUC

TTCTGGTATC






189
GAUACCAGAAAAG
809
UUAUCAUGUGGAC
1429
TTATCATGTGGAC
Exon 54



UCCACAUGAUAA

UUUUCUGGUAUC

TTTTCTGGTATC






190
AUACCAGAAAAGU
810
UCAUGUGGACUUU
1430
TCATGTGGACTTT
Exon 54



CCACAUGA

UCUGGUAU

TCTGGTAT






191
AUACCAGAAAAGU
811
AUCAUGUGGACUU
1431
ATCATGTGGACTT
Exon 54



CCACAUGAU

UUCUGGUAU

TTCTGGTAT






192
AUACCAGAAAAGU
812
GUUAUCAUGUGGA
1432
GTTATCATGTGGA
Exon 54



CCACAUGAUAAC

CUUUUCUGGUAU

CTTTTCTGGTAT






193
UACCAGAAAAGUC
813
UCAUGUGGACUUU
1433
TCATGTGGACTTT
Exon 54



CACAUGA

UCUGGUA

TCTGGTA






194
UACCAGAAAAGUC
814
AUCAUGUGGACUU
1434
ATCATGTGGACTT
Exon 54



CACAUGAU

UUCUGGUA

TTCTGGTA






195
UACCAGAAAAGUC
815
UUAUCAUGUGGAC
1435
TTATCATGTGGAC
Exon 54



CACAUGAUAA

UUUUCUGGUA

TTTTCTGGTA






196
UACCAGAAAAGUC
816
GUUAUCAUGUGGA
1436
GTTATCATGTGGA
Exon 54



CACAUGAUAAC

CUUUUCUGGUA

CTTTTCTGGTA






197
UACCAGAAAAGUC
817
UGUUAUCAUGUGG
1437
TGTTATCATGTGG
Exon 54



CACAUGAUAACA

ACUUUUCUGGUA

ACTTTTCTGGTA






198
ACCAGAAAAGUCC
818
AUCAUGUGGACUU
1438
ATCATGTGGACTT
Exon 54



ACAUGAU

UUCUGGU

TTCTGGT






199
ACCAGAAAAGUCC
819
UUAUCAUGUGGAC
1439
TTATCATGTGGAC
Exon 54



ACAUGAUAA

UUUUCUGGU

TTTTCTGGT






200
ACCAGAAAAGUCC
820
GUUAUCAUGUGGA
1440
GTTATCATGTGGA
Exon 54



ACAUGAUAAC

CUUUUCUGGU

CTTTTCTGGT






201
ACCAGAAAAGUCC
821
UGUUAUCAUGUGG
1441
TGTTATCATGTGG
Exon 54



ACAUGAUAACA

ACUUUUCUGGU

ACTTTTCTGGT






202
ACCAGAAAAGUCC
822
CUGUUAUCAUGUG
1442
CTGTTATCATGTG
Exon 54



ACAUGAUAACAG

GACUUUUCUGGU

GACTTTTCTGGT






203
CCAGAAAAGUCCA
823
UUAUCAUGUGGAC
1443
TTATCATGTGGAC
Exon 54



CAUGAUAA

UUUUCUGG

TTTTCTGG






204
CCAGAAAAGUCCA
824
GUUAUCAUGUGGA
1444
GTTATCATGTGGA
Exon 54



CAUGAUAAC

CUUUUCUGG

CTTTTCTGG






205
CCAGAAAAGUCCA
825
UGUUAUCAUGUGG
1445
TGTTATCATGTGG
Exon 54



CAUGAUAACA

ACUUUUCUGG

ACTTTTCTGG






206
CCAGAAAAGUCCA
826
CUGUUAUCAUGUG
1446
CTGTTATCATGTG
Exon 54



CAUGAUAACAG

GACUUUUCUGG

GACTTTTCTGG






207
CCAGAAAAGUCCA
827
UCUGUUAUCAUGU
1447
TCTGTTATCATGT
Exon 54



CAUGAUAACAGA

GGACUUUUCUGG

GGACTTTTCTGG






208
CAGAAAAGUCCAC
828
GUUAUCAUGUGGA
1448
GTTATCATGTGGA
Exon 54



AUGAUAAC

CUUUUCUG

CTTTTCTG






209
CAGAAAAGUCCAC
829
UGUUAUCAUGUGG
1449
TGTTATCATGTGG
Exon 54



AUGAUAACA

ACUUUUCUG

ACTTTTCTG






210
CAGAAAAGUCCAC
830
CUGUUAUCAUGUG
1450
CTGTTATCATGTG
Exon 54



AUGAUAACAG

GACUUUUCUG

GACTTTTCTG






211
CAGAAAAGUCCAC
831
UCUGUUAUCAUGU
1451
TCTGTTATCATGT
Exon 54



AUGAUAACAGA

GGACUUUUCUG

GGACTTTTCTG






212
CAGAAAAGUCCAC
832
CUCUGUUAUCAUG
1452
CTCTGTTATCATG
Exon 54



AUGAUAACAGAG

UGGACUUUUCUG

TGGACTTTTCTG






213
AGAAAAGUCCACA
833
UCUGUUAUCAUGU
1453
TCTGTTATCATGT
Exon 54



UGAUAACAGA

GGACUUUUCU

GGACTTTTCT






214
AGAAAAGUCCACA
834
CUCUGUUAUCAUG
1454
CTCTGTTATCATG
Exon 54



UGAUAACAGAG

UGGACUUUUCU

TGGACTTTTCT






215
AGAAAAGUCCACA
835
UCUCUGUUAUCAU
1455
TCTCTGTTATCAT
Exon 54



UGAUAACAGAGA

GUGGACUUUUCU

GTGGACTTTTCT






216
GAAAAGUCCACAU
836
CUGUUAUCAUGUG
1456
CTGTTATCATGTG
Exon 54



GAUAACAG

GACUUUUC

GACTTTTC






217
GAAAAGUCCACAU
837
UCUGUUAUCAUGU
1457
TCTGTTATCATGT
Exon 54



GAUAACAGA

GGACUUUUC

GGACTTTTC






218
GAAAAGUCCACAU
838
CUCUGUUAUCAUG
1458
CTCTGTTATCATG
Exon 54



GAUAACAGAG

UGGACUUUUC

TGGACTTTTC






219
GAAAAGUCCACAU
839
UCUCUGUUAUCAU
1459
TCTCTGTTATCAT
Exon 54



GAUAACAGAGA

GUGGACUUUUC

GTGGACTTTTC






220
GAAAAGUCCACAU
840
UUCUCUGUUAUCA
1460
TTCTCTGTTATCA
Exon 54



GAUAACAGAGAA

UGUGGACUUUUC

TGTGGACTTTTC






221
AAAAGUCCACAUG
841
CUCUGUUAUCAUG
1461
CTCTGTTATCATG
Exon 54



AUAACAGAG

UGGACUUUU

TGGACTTTT






222
AAAAGUCCACAUG
842
UCUCUGUUAUCAU
1462
TCTCTGTTATCAT
Exon 54



AUAACAGAGA

GUGGACUUUU

GTGGACTTTT






223
AAAAGUCCACAUG
843
UUCUCUGUUAUCA
1463
TTCTCTGTTATCA
Exon 54



AUAACAGAGAA

UGUGGACUUUU

TGTGGACTTTT






224
AAAAGUCCACAUG
844
AUUCUCUGUUAUC
1464
ATTCTCTGTTATC
Exon 54



AUAACAGAGAAU

AUGUGGACUUUU

ATGTGGACTTTT






225
AAAGUCCACAUGA
845
CUCUGUUAUCAUG
1465
CTCTGTTATCATG
Exon 54



UAACAGAG

UGGACUUU

TGGACTTT






226
AAAGUCCACAUGA
846
UCUCUGUUAUCAU
1466
TCTCTGTTATCAT
Exon 54



UAACAGAGA

GUGGACUUU

GTGGACTTT






227
AAAGUCCACAUGA
847
UUCUCUGUUAUCA
1467
TTCTCTGTTATCA
Exon 54



UAACAGAGAA

UGUGGACUUU

TGTGGACTTT






228
AAAGUCCACAUGA
848
AUUCUCUGUUAUC
1468
ATTCTCTGTTATC
Exon 54



UAACAGAGAAU

AUGUGGACUUU

ATGTGGACTTT






229
AAAGUCCACAUGA
849
UAUUCUCUGUUAU
1469
TATTCTCTGTTAT
Exon 54



UAACAGAGAAUA

CAUGUGGACUUU

CATGTGGACTTT






230
AAGUCCACAUGAU
850
CUCUGUUAUCAUG
1470
CTCTGTTATCATG
Exon 54



AACAGAG

UGGACUU

TGGACTT






231
AAGUCCACAUGAU
851
UCUCUGUUAUCAU
1471
TCTCTGTTATCAT
Exon 54



AACAGAGA

GUGGACUU

GTGGACTT






232
AAGUCCACAUGAU
852
UUCUCUGUUAUCA
1472
TTCTCTGTTATCA
Exon 54



AACAGAGAA

UGUGGACUU

TGTGGACTT






233
AAGUCCACAUGAU
853
AUUCUCUGUUAUC
1473
ATTCTCTGTTATC
Exon 54



AACAGAGAAU

AUGUGGACUU

ATGTGGACTT






234
AAGUCCACAUGAU
854
UAUUCUCUGUUAU
1474
TATTCTCTGTTAT
Exon 54



AACAGAGAAUA

CAUGUGGACUU

CATGTGGACTT






235
AAGUCCACAUGAU
855
AUAUUCUCUGUUA
1475
ATATTCTCTGTTA
Exon 54



AACAGAGAAUAU

UCAUGUGGACUU

TCATGTGGACTT






236
AGUCCACAUGAUA
856
UUCUCUGUUAUCA
1476
TTCTCTGTTATCA
Exon 54



ACAGAGAA

UGUGGACU

TGTGGACT






237
AGUCCACAUGAUA
857
AUUCUCUGUUAUC
1477
ATTCTCTGTTATC
Exon 54



ACAGAGAAU

AUGUGGACU

ATGTGGACT






238
AGUCCACAUGAUA
858
UAUUCUCUGUUAU
1478
TATTCTCTGTTAT
Exon 54



ACAGAGAAUA

CAUGUGGACU

CATGTGGACT






239
AGUCCACAUGAUA
859
AUAUUCUCUGUUA
1479
ATATTCTCTGTTA
Exon 54



ACAGAGAAUAU

UCAUGUGGACU

TCATGTGGACT






240
AGUCCACAUGAUA
860
GAUAUUCUCUGUU
1480
GATATTCTCTGTT
Exon 54



ACAGAGAAUAUC

AUCAUGUGGACU

ATCATGTGGACT






241
GUCCACAUGAUAA
861
GAUAUUCUCUGUU
1481
GATATTCTCTGTT
Exon 54



CAGAGAAUAUC

AUCAUGUGGAC

ATCATGTGGAC






242
GUCCACAUGAUAA
862
UGAUAUUCUCUGU
1482
TGATATTCTCTGT
Exon 54



CAGAGAAUAUCA

UAUCAUGUGGAC

TATCATGTGGAC






243
GGAAGAAACUCAU
863
UUGCAGUAAUCUA
1483
TTGCAGTAATCTA
Exon 55



AGAUUACUGCAA

UGAGUUUCUUCC

TGAGTTTCTTCC






244
GCUGAAACAACUG
864
UAGGACAUUGGCA
1484
TAGGACATTGGCA
Exon 55



CCAAUGUCCUA

GUUGUUUCAGC

GTTGTTTCAGC






245
GCUGAAACAACUG
865
GUAGGACAUUGGC
1485
GTAGGACATTGGC
Exon 55



CCAAUGUCCUAC

AGUUGUUUCAGC

AGTTGTTTCAGC






246
UGAAACAACUGCC
866
GUAGGACAUUGGC
1486
GTAGGACATTGGC
Exon 55



AAUGUCCUAC

AGUUGUUUCA

AGTTGTTTCA






247
UGAAACAACUGCC
867
UGUAGGACAUUGG
1487
TGTAGGACATTGG
Exon 55



AAUGUCCUACA

CAGUUGUUUCA

CAGTTGTTTCA






248
UGAAACAACUGCC
868
CUGUAGGACAUUG
1488
CTGTAGGACATTG
Exon 55



AAUGUCCUACAG

GCAGUUGUUUCA

GCAGTTGTTTCA






249
AACAACUGCCAAU
869
AUCCUGUAGGACA
1489
ATCCTGTAGGACA
Exon 55



GUCCUACAGGAU

UUGGCAGUUGUU

TTGGCAGTTGTT






250
ACAACUGCCAAUG
870
AUCCUGUAGGACA
1490
ATCCTGTAGGACA
Exon 55



UCCUACAGGAU

UUGGCAGUUGU

TTGGCAGTTGT






251
CAACUGCCAAUGU
871
AUCCUGUAGGACA
1491
ATCCTGTAGGACA
Exon 55



CCUACAGGAU

UUGGCAGUUG

TTGGCAGTTG






252
AACUGCCAAUGUC
872
AUCCUGUAGGACA
1492
ATCCTGTAGGACA
Exon 55



CUACAGGAU

UUGGCAGUU

TTGGCAGTT






253
AACUGCCAAUGUC
873
AGCAUCCUGUAGG
1493
AGCATCCTGTAGG
Exon 55



CUACAGGAUGCU

ACAUUGGCAGUU

ACATTGGCAGTT






254
ACUGCCAAUGUCC
874
AUCCUGUAGGACA
1494
ATCCTGTAGGACA
Exon 55



UACAGGAU

UUGGCAGU

TTGGCAGT






255
ACUGCCAAUGUCC
875
AGCAUCCUGUAGG
1495
AGCATCCTGTAGG
Exon 55



UACAGGAUGCU

ACAUUGGCAGU

ACATTGGCAGT






256
CUGCCAAUGUCCU
876
AGCAUCCUGUAGG
1496
AGCATCCTGTAGG
Exon 55



ACAGGAUGCU

ACAUUGGCAG

ACATTGGCAG






257
UGCCAAUGUCCUA
877
AGCAUCCUGUAGG
1497
AGCATCCTGTAGG
Exon 55



CAGGAUGCU

ACAUUGGCA

ACATTGGCA






258
GCCAAUGUCCUAC
878
AGCAUCCUGUAGG
1498
AGCATCCTGTAGG
Exon 55



AGGAUGCU

ACAUUGGC

ACATTGGC






259
AGAUGAUACCAGA
879
GGACUUUUCUGGU
1499
GGACTTTTCTGGT
Exon 54



AAAGUCC

AUCAUCU

ATCATCT






260
AGAUGAUACCAGA
880
UGUGGACUUUUCU
1500
TGTGGACTTTTCT
Exon 54



AAAGUCCACA

GGUAUCAUCU

GGTATCATCT






261
AGAUGAUACCAGA
881
AUGUGGACUUUUC
1501
ATGTGGACTTTTC
Exon 54



AAAGUCCACAU

UGGUAUCAUCU

TGGTATCATCT






262
CUGAAACAACUGC
882
GUAGGACAUUGGC
1502
GTAGGACATTGGC
Exon 55



CAAUGUCCUAC

AGUUGUUUCAG

AGTTGTTTCAG






263
CUGAAACAACUGC
883
UGUAGGACAUUGG
1503
TGTAGGACATTGG
Exon 55



CAAUGUCCUACA

CAGUUGUUUCAG

CAGTTGTTTCAG






264
ACAACUGCCAAUG
884
CAUCCUGUAGGAC
1504
CATCCTGTAGGAC
Exon 55



UCCUACAGGAUG

AUUGGCAGUUGU

ATTGGCAGTTGT






265
CAACUGCCAAUGU
885
CAUCCUGUAGGAC
1505
CATCCTGTAGGAC
Exon 55



CCUACAGGAUG

AUUGGCAGUUG

ATTGGCAGTTG






266
AACUGCCAAUGUC
886
CAUCCUGUAGGAC
1506
CATCCTGTAGGAC
Exon 55



CUACAGGAUG

AUUGGCAGUU

ATTGGCAGTT






267
ACUGCCAAUGUCC
887
CAUCCUGUAGGAC
1507
CATCCTGTAGGAC
Exon 55



UACAGGAUG

AUUGGCAGU

ATTGGCAGT






268
ACUGCCAAUGUCC
888
UAGCAUCCUGUAG
1508
TAGCATCCTGTAG
Exon 55



UACAGGAUGCUA

GACAUUGGCAGU

GACATTGGCAGT






269
CUGCCAAUGUCCU
889
CAUCCUGUAGGAC
1509
CATCCTGTAGGAC
Exon 55



ACAGGAUG

AUUGGCAG

ATTGGCAG






270
CUGCCAAUGUCCU
890
UAGCAUCCUGUAG
1510
TAGCATCCTGTAG
Exon 55



ACAGGAUGCUA

GACAUUGGCAG

GACATTGGCAG






271
UGCCAAUGUCCUA
891
UAGCAUCCUGUAG
1511
TAGCATCCTGTAG
Exon 55



CAGGAUGCUA

GACAUUGGCA

GACATTGGCA






272
UGCCAAUGUCCUA
892
GGUAGCAUCCUGU
1512
GGTAGCATCCTGT
Exon 55



CAGGAUGCUACC

AGGACAUUGGCA

AGGACATTGGCA






273
GCCAAUGUCCUAC
893
UAGCAUCCUGUAG
1513
TAGCATCCTGTAG
Exon 55



AGGAUGCUA

GACAUUGGC

GACATTGGC






274
GCCAAUGUCCUAC
894
GGUAGCAUCCUGU
1514
GGTAGCATCCTGT
Exon 55



AGGAUGCUACC

AGGACAUUGGC

AGGACATTGGC






275
CCAAGGGAGUAAA
895
UCAGCUCUUUUAC
1515
TCAGCTCTTTTAC
Exon 55



AGAGCUGA

UCCCUUGG

TCCCTTGG






276
CCAAGGGAGUAAA
896
AUCAGCUCUUUUA
1516
ATCAGCTCTTTTA
Exon 55



AGAGCUGAU

CUCCCUUGG

CTCCCTTGG






277
CCAAGGGAGUAAA
897
CAUCAGCUCUUUU
1517
CATCAGCTCTTTT
Exon 55



AGAGCUGAUG

ACUCCCUUGG

ACTCCCTTGG






278
CCAAGGGAGUAAA
898
UCAUCAGCUCUUU
1518
TCATCAGCTCTTT
Exon 55



AGAGCUGAUGA

UACUCCCUUGG

TACTCCCTTGG






279
CAAGGGAGUAAAA
899
UCAUCAGCUCUUU
1519
TCATCAGCTCTTT
Exon 55



GAGCUGAUGA

UACUCCCUUG

TACTCCCTTG






280
CAAGGGAGUAAAA
900
UUCAUCAGCUCUU
1520
TTCATCAGCTCTT
Exon 55



GAGCUGAUGAA

UUACUCCCUUG

TTACTCCCTTG






281
AGGGAGUAAAAGA
901
UUUCAUCAGCUCU
1521
TTTCATCAGCTCT
Exon 55



GCUGAUGAAA

UUUACUCCCU

TTTACTCCCT






282
CUGAUGAAACAAU
902
GACUUACUUGCCA
1522
GACTTACTTGCCA
Exon 55/intron 55



GGCAAGUAAGUC

UUGUUUCAUCAG

TTGTTTCATCAG
junction





283
UGAUGAAACAAUG
903
GACUUACUUGCCA
1523
GACTTACTTGCCA
Exon 55/intron 55



GCAAGUAAGUC

UUGUUUCAUCA

TTGTTTCATCA
junction





284
GAUGAAACAAUGG
904
GACUUACUUGCCA
1524
GACTTACTTGCCA
Exon 55/intron 55



CAAGUAAGUC

UUGUUUCAUC

TTGTTTCATC
junction





285
CCUGGAAGGUUCC
905
GCAUCAUCGGAAC
1525
GCATCATCGGAAC
Exon 56



GAUGAUGC

CUUCCAGG

CTTCCAGG






286
CCUGGAAGGUUCC
906
UGCAUCAUCGGAA
1526
TGCATCATCGGAA
Exon 56



GAUGAUGCA

CCUUCCAGG

CCTTCCAGG






287
CAGAUGAUACCAG
907
UGUGGACUUUUCU
1527
TGTGGACTTTTCT
Exon 54



AAAAGUCCACA

GGUAUCAUCUG

GGTATCATCTG






288
CAGAUGAUACCAG
908
AUGUGGACUUUUC
1528
ATGTGGACTTTTC
Exon 54



AAAAGUCCACAU

UGGUAUCAUCUG

TGGTATCATCTG






289
CUGCCAAUGUCCU
909
GUAGCAUCCUGUA
1529
GTAGCATCCTGTA
Exon 55



ACAGGAUGCUAC

GGACAUUGGCAG

GGACATTGGCAG






290
UGCCAAUGUCCUA
910
GUAGCAUCCUGUA
1530
GTAGCATCCTGTA
Exon 55



CAGGAUGCUAC

GGACAUUGGCA

GGACATTGGCA






291
GCCAAUGUCCUAC
911
GUAGCAUCCUGUA
1531
GTAGCATCCTGTA
Exon 55



AGGAUGCUAC

GGACAUUGGC

GGACATTGGC






292
CCAAUGUCCUACA
912
GUAGCAUCCUGUA
1532
GTAGCATCCTGTA
Exon 55



GGAUGCUAC

GGACAUUGG

GGACATTGG






293
AGGGAGUAAAAGA
913
GUUUCAUCAGCUC
1533
GTTTCATCAGCTC
Exon 55



GCUGAUGAAAC

UUUUACUCCCU

TTTTACTCCCT






294
UGAUGAAACAAUG
914
UGACUUACUUGCC
1534
TGACTTACTTGCC
Exon 55/intron 55



GCAAGUAAGUCA

AUUGUUUCAUCA

ATTGTTTCATCA
junction





295
GAUGAAACAAUGG
915
UGACUUACUUGCC
1535
TGACTTACTTGCC
Exon 55/intron 55



CAAGUAAGUCA

AUUGUUUCAUC

ATTGTTTCATC
junction





296
CCUGGAAGGUUCC
916
CUGCAUCAUCGGA
1536
CTGCATCATCGGA
Exon 56



GAUGAUGCAG

ACCUUCCAGG

ACCTTCCAGG






297
GGAAGGUUCCGAU
917
CUGCAUCAUCGGA
1537
CTGCATCATCGGA
Exon 56



GAUGCAG

ACCUUCC

ACCTTCC






298
GAUCCAAUUGAAC
918
UGCUGAGAAUUGU
1538
TGCTGAGAATTGT
Intron 55



AAUUCUCAGCA

UCAAUUGGAUC

TCAATTGGATC






299
AGGUUCCGAUGAU
919
ACAGGACUGCAUC
1539
ACAGGACTGCATC
Exon 56



GCAGUCCUGU

AUCGGAACCU

ATCGGAACCT






300
GGUUCCGAUGAUG
920
ACAGGACUGCAUC
1540
ACAGGACTGCATC
Exon 56



CAGUCCUGU

AUCGGAACC

ATCGGAACC






301
CCUGGAAGGUUCC
921
ACUGCAUCAUCGG
1541
ACTGCATCATCGG
Exon 56



GAUGAUGCAGU

AACCUUCCAGG

AACCTTCCAGG






302
CUGGAAGGUUCCG
922
ACUGCAUCAUCGG
1542
ACTGCATCATCGG
Exon 56



AUGAUGCAGU

AACCUUCCAG

AACCTTCCAG






303
GGAAGGUUCCGAU
923
ACUGCAUCAUCGG
1543
ACTGCATCATCGG
Exon 56



GAUGCAGU

AACCUUCC

AACCTTCC






304
GAAGGUUCCGAUG
924
ACAGGACUGCAUC
1544
ACAGGACTGCATC
Exon 56



AUGCAGUCCUGU

AUCGGAACCUUC

ATCGGAACCTTC






305
GGUUCCGAUGAUG
925
GUAACAGGACUGC
1545
GTAACAGGACTGC
Exon 56



CAGUCCUGUUAC

AUCAUCGGAACC

ATCATCGGAACC






306
GUUCCGAUGAUGC
926
GUAACAGGACUGC
1546
GTAACAGGACTGC
Exon 56



AGUCCUGUUAC

AUCAUCGGAAC

ATCATCGGAAC






307
GUGGAUCCAAUUG
927
GAGAAUUGUUCAA
1547
GAGAATTGTTCAA
Intron 55



AACAAUUCUC

UUGGAUCCAC

TTGGATCCAC






308
GGAUCCAAUUGAA
928
UGCUGAGAAUUGU
1548
TGCTGAGAATTGT
Intron 55



CAAUUCUCAGCA

UCAAUUGGAUCC

TCAATTGGATCC






309
GAUCCAAUUGAAC
929
AUGCUGAGAAUUG
1549
ATGCTGAGAATTG
Intron 55



AAUUCUCAGCAU

UUCAAUUGGAUC

TTCAATTGGATC






310
AAGGUUCCGAUGA
930
ACAGGACUGCAUC
1550
ACAGGACTGCATC
Exon 56



UGCAGUCCUGU

AUCGGAACCUU

ATCGGAACCTT






311
AGGUUCCGAUGAU
931
GGACUGCAUCAUC
1551
GGACTGCATCATC
Exon 56



GCAGUCC

GGAACCU

GGAACCT






312
GUGGAUCCAAUUG
932
UGAGAAUUGUUCA
1552
TGAGAATTGTTCA
Intron 55



AACAAUUCUCA

AUUGGAUCCAC

ATTGGATCCAC






313
AGGUUCCGAUGAU
933
UAACAGGACUGCA
1553
TAACAGGACTGCA
Exon 56



GCAGUCCUGUUA

UCAUCGGAACCU

TCATCGGAACCT






314
GGUUCCGAUGAUG
934
UAACAGGACUGCA
1554
TAACAGGACTGCA
Exon 56



CAGUCCUGUUA

UCAUCGGAACC

TCATCGGAACC






315
CUGGAAGGUUCCG
935
GGACUGCAUCAUC
1555
GGACTGCATCATC
Exon 56



AUGAUGCAGUCC

GGAACCUUCCAG

GGAACCTTCCAG






316
UGGAAGGUUCCGA
936
GGACUGCAUCAUC
1556
GGACTGCATCATC
Exon 56



UGAUGCAGUCC

GGAACCUUCCA

GGAACCTTCCA






317
GGAAGGUUCCGAU
937
GGACUGCAUCAUC
1557
GGACTGCATCATC
Exon 56



GAUGCAGUCC

GGAACCUUCC

GGAACCTTCC






318
UGUGGAUCCAAUU
938
GAGAAUUGUUCAA
1558
GAGAATTGTTCAA
Intron 55



GAACAAUUCUC

UUGGAUCCACA

TTGGATCCACA






319
UUGUGGAUCCAAU
939
GAGAAUUGUUCAA
1559
GAGAATTGTTCAA
Intron 55



UGAACAAUUCUC

UUGGAUCCACAA

TTGGATCCACAA






320
UGUGGAUCCAAUU
940
UGAGAAUUGUUCA
1560
TGAGAATTGTTCA
Intron 55



GAACAAUUCUCA

AUUGGAUCCACA

ATTGGATCCACA






321
GUUCCGAUGAUGC
941
ACAGGACUGCAUC
1561
ACAGGACTGCATC
Exon 56



AGUCCUGU

AUCGGAAC

ATCGGAAC






322
UCCGAUGAUGCAG
942
UAACAGGACUGCA
1562
TAACAGGACTGCA
Exon 56



UCCUGUUA

UCAUCGGA

TCATCGGA






323
UCCGAUGAUGCAG
943
GUAACAGGACUGC
1563
GTAACAGGACTGC
Exon 56



UCCUGUUAC

AUCAUCGGA

ATCATCGGA






324
GUUCCGAUGAUGC
944
UAACAGGACUGCA
1564
TAACAGGACTGCA
Exon 56



AGUCCUGUUA

UCAUCGGAAC

TCATCGGAAC






325
UUCCGAUGAUGCA
945
GUAACAGGACUGC
1565
GTAACAGGACTGC
Exon 56



GUCCUGUUAC

AUCAUCGGAA

ATCATCGGAA






326
CUCCAAAUUCACA
946
CAAGCGAUGAAUG
1566
CAAGCGATGAATG
Intron 55



UUCAUCGCUUG

UGAAUUUGGAG

TGAATTTGGAG






327
GAAGGUUCCGAUG
947
GGACUGCAUCAUC
1567
GGACTGCATCATC
Exon 56



AUGCAGUCC

GGAACCUUC

GGAACCTTC






328
AAGGUUCCGAUGA
948
GGACUGCAUCAUC
1568
GGACTGCATCATC
Exon 56



UGCAGUCC

GGAACCUU

GGAACCTT






329
GGAGCUUGGGAGG
949
UCGUCUUGAACCC
1569
TCGTCTTGAACCC
Intron 54



GUUCAAGACGA

UCCCAAGCUCC

TCCCAAGCTCC






330
GGAGCUUGGGAGG
950
AUCGUCUUGAACC
1570
ATCGTCTTGAACC
Intron 54



GUUCAAGACGAU

CUCCCAAGCUCC

CTCCCAAGCTCC






331
UGGCUGUAAUAAU
951
CACCACCCCAUUA
1571
CACCACCCCATTA
Intron 54



GGGGUGGUG

UUACAGCCA

TTACAGCCA






332
UGGCUGUAAUAAU
952
UCACCACCCCAUU
1572
TCACCACCCCATT
Intron 54



GGGGUGGUGA

AUUACAGCCA

ATTACAGCCA






333
GGCUGUAAUAAUG
953
UCACCACCCCAUU
1573
TCACCACCCCATT
Intron 54



GGGUGGUGA

AUUACAGCC

ATTACAGCC






334
GGGGUGGUGAAAC
954
CCAUCCAGUUUCA
1574
CCATCCAGTTTCA
Intron 54



UGGAUGG

CCACCCC

CCACCCC






335
UUGGCUGUAAUAA
955
UCACCACCCCAUU
1575
TCACCACCCCATT
Intron 54



UGGGGUGGUGA

AUUACAGCCAA

ATTACAGCCAA






336
GGGGUGGUGAAAC
956
UCCAUCCAGUUUC
1576
TCCATCCAGTTTC
Intron 54



UGGAUGGA

ACCACCCC

ACCACCCC






337
GCUGUAAUAAUGG
957
UCACCACCCCAUU
1577
TCACCACCCCATT
Intron 54



GGUGGUGA

AUUACAGC

ATTACAGC






338
UGGGGUGGUGAAA
958
CCAUCCAGUUUCA
1578
CCATCCAGTTTCA
Intron 54



CUGGAUGG

CCACCCCA

CCACCCCA






339
UGGCUGUAAUAAU
959
UUUCACCACCCCA
1579
TTTCACCACCCCA
Intron 54



GGGGUGGUGAAA

UUAUUACAGCCA

TTATTACAGCCA






340
GGCUGUAAUAAUG
960
UUUCACCACCCCA
1580
TTTCACCACCCCA
Intron 54



GGGUGGUGAAA

UUAUUACAGCC

TTATTACAGCC






341
UGGGGUGGUGAAA
961
CAUCCAGUUUCAC
1581
CATCCAGTTTCAC
Intron 54



CUGGAUG

CACCCCA

CACCCCA






342
UGGGGUGGUGAAA
962
UCCAUCCAGUUUC
1582
TCCATCCAGTTTC
Intron 54



CUGGAUGGA

ACCACCCCA

ACCACCCCA






343
AUGGCAAGUAAGU
963
GGAAAUGCCUGAC
1583
GGAAATGCCTGAC
Exon 55/intron 55



CAGGCAUUUCC

UUACUUGCCAU

TTACTTGCCAT
junction





344
GCUGUAAUAAUGG
964
AGUUUCACCACCC
1584
AGTTTCACCACCC
Intron 54



GGUGGUGAAACU

CAUUAUUACAGC

CATTATTACAGC






345
AUGGGGUGGUGAA
965
CAUCCAGUUUCAC
1585
CATCCAGTTTCAC
Intron 54



ACUGGAUG

CACCCCAU

CACCCCAT






346
AUGGGGUGGUGAA
966
CCAUCCAGUUUCA
1586
CCATCCAGTTTCA
Intron 54



ACUGGAUGG

CCACCCCAU

CCACCCCAT






347
GCAAGUAAGUCAG
967
GCGGAAAUGCCUG
1587
GCGGAAATGCCTG
Exon 55/intron 55



GCAUUUCCGC

ACUUACUUGC

ACTTACTTGC
junction





348
GGCUGUAAUAAUG
968
GUUUCACCACCCC
1588
GTTTCACCACCCC
Intron 54



GGGUGGUGAAAC

AUUAUUACAGCC

ATTATTACAGCC






349
AAUGGGGUGGUGA
969
CAUCCAGUUUCAC
1589
CATCCAGTTTCAC
Intron 54



AACUGGAUG

CACCCCAUU

CACCCCATT






350
AUGGGGUGGUGAA
970
UCCAUCCAGUUUC
1590
TCCATCCAGTTTC
Intron 54



ACUGGAUGGA

ACCACCCCAU

ACCACCCCAT






351
UGGCAAGUAAGUC
971
GCGGAAAUGCCUG
591
GCGGAAATGCCTG
Exon 55/intron 55



AGGCAUUUCCGC

ACUUACUUGCCA

ACTTACTTGCCA
junction





352
GCUGUAAUAAUGG
972
UUUCACCACCCCA
1592
TTTCACCACCCCA
Intron 54



GGUGGUGAAA

UUAUUACAGC

TTATTACAGC






353
UAAUGGGGUGGUG
973
CAUCCAGUUUCAC
1593
CATCCAGTTTCAC
Intron 54



AAACUGGAUG

CACCCCAUUA

CACCCCATTA






354
UAAUGGGGUGGUG
974
CCAUCCAGUUUCA
1594
CCATCCAGTTTCA
Intron 54



AAACUGGAUGG

CCACCCCAUUA

CCACCCCATTA






355
AAUGGGGUGGUGA
975
CCAUCCAGUUUCA
1595
CCATCCAGTTTCA
Intron 54



AACUGGAUGG

CCACCCCAUU

CCACCCCATT






356
AUGGCAAGUAAGU
976
GAAAUGCCUGACU
1596
GAAATGCCTGACT
Exon 55/intron 55



CAGGCAUUUC

UACUUGCCAU

TACTTGCCAT
junction





357
GGCAAGUAAGUCA
977
GCGGAAAUGCCUG
1597
GCGGAAATGCCTG
Exon 55/intron 55



GGCAUUUCCGC

ACUUACUUGCC

ACTTACTTGCC
junction





358
GGCAAGUAAGUCA
978
AGCGGAAAUGCCU
1598
AGCGGAAATGCCT
Exon 55/intron 55



GGCAUUUCCGCU

GACUUACUUGCC

GACTTACTTGCC
junction





359
AAUGGGGUGGUGA
979
UCCAUCCAGUUUC
1599
TCCATCCAGTTTC
Intron 54



AACUGGAUGGA

ACCACCCCAUU

ACCACCCCATT






360
GGGUGGUGAAACU
980
UCCAUCCAGUUUC
1600
TCCATCCAGTTTC
Intron 54



GGAUGGA

ACCACCC

ACCACCC






361
AUAAUGGGGUGGU
981
CAUCCAGUUUCAC
1601
CATCCAGTTTCAC
Intron 54



GAAACUGGAUG

CACCCCAUUAU

CACCCCATTAT






362
AUAAUGGGGUGGU
982
CCAUCCAGUUUCA
1602
CCATCCAGTTTCA
Intron 54



GAAACUGGAUGG

CCACCCCAUUAU

CCACCCCATTAT






363
UAAUGGGGUGGUG
983
UCCAUCCAGUUUC
1603
TCCATCCAGTTTC
Intron 54



AAACUGGAUGGA

ACCACCCCAUUA

ACCACCCCATTA






364
AAUGGCAAGUAAG
984
GAAAUGCCUGACU
1604
GAAATGCCTGACT
Exon 55/intron 55



UCAGGCAUUUC

UACUUGCCAUU

TACTTGCCATT
junction





365
AAUAAUGGGGUGG
985
CAUCCAGUUUCAC
1605
CATCCAGTTTCAC
Intron 54



UGAAACUGGAUG

CACCCCAUUAUU

CACCCCATTATT






366
AAUGGCAAGUAAG
986
GGAAAUGCCUGAC
1606
GGAAATGCCTGAC
Exon 55/intron 55



UCAGGCAUUUCC

UUACUUGCCAUU

TTACTTGCCATT
junction





367
UGGCAAGUAAGUC
987
GGAAAUGCCUGAC
1607
GGAAATGCCTGAC
Exon 55/intron 55



AGGCAUUUCC

UUACUUGCCA

TTACTTGCCA
junction





368
CCGAUGAUGCAGU
988
GUAACAGGACUGC
1608
GTAACAGGACTGC
Exon 56



CCUGUUAC

AUCAUCGG

ATCATCGG






369
UCCAAAUUCACAU
989
ACAAGCGAUGAAU
1609
ACAAGCGATGAAT
Intron 55



UCAUCGCUUGU

GUGAAUUUGGA

GTGAATTTGGA






370
GUAAUAAUGGGGU
990
GUUUCACCACCCC
1610
GTTTCACCACCCC
Intron 54



GGUGAAAC

AUUAUUAC

ATTATTAC






371
GCUGUAAUAAUGG
991
GUUUCACCACCCC
1611
GTTTCACCACCCC
Intron 54



GGUGGUGAAAC

AUUAUUACAGC

ATTATTACAGC






372
GCUUUGGAAGAAA
992
GUAAUCUAUGAGU
1612
GTAATCTATGAGT
Exon 55



CUCAUAGAUUAC

UUCUUCCAAAGC

TTCTTCCAAAGC






373
UUGGAAGAAACUC
993
GCAGUAAUCUAUG
1613
GCAGTAATCTATG
Exon 55



AUAGAUUACUGC

AGUUUCUUCCAA

AGTTTCTTCCAA






374
UGGAAGAAACUCA
994
GCAGUAAUCUAUG
1614
GCAGTAATCTATG
Exon 55



UAGAUUACUGC

AGUUUCUUCCA

AGTTTCTTCCA






375
UGGAAGAAACUCA
995
UGCAGUAAUCUAU
1615
TGCAGTAATCTAT
Exon 55



UAGAUUACUGCA

GAGUUUCUUCCA

GAGTTTCTTCCA






376
GGAAGAAACUCAU
996
GCAGUAAUCUAUG
1616
GCAGTAATCTATG
Exon 55



AGAUUACUGC

AGUUUCUUCC

AGTTTCTTCC






377
GAAGAAACUCAUA
997
UGCAGUAAUCUAU
1617
TGCAGTAATCTAT
Exon 55



GAUUACUGCA

GAGUUUCUUC

GAGTTTCTTC






378
AAACAACUGCCAA
998
UGUAGGACAUUGG
1618
TGTAGGACATTGG
Exon 55



UGUCCUACA

CAGUUGUUU

CAGTTGTTT






379
AAACAACUGCCAA
999
CUGUAGGACAUUG
1619
CTGTAGGACATTG
Exon 55



UGUCCUACAG

GCAGUUGUUU

GCAGTTGTTT






380
AACAACUGCCAAU
1000
GUAGGACAUUGGC
1620
GTAGGACATTGGC
Exon 55



GUCCUAC

AGUUGUU

AGTTGTT






381
AACAACUGCCAAU
1001
UGUAGGACAUUGG
1621
TGTAGGACATTGG
Exon 55



GUCCUACA

CAGUUGUU

CAGTTGTT






382
CAACUGCCAAUGU
1002
CUGUAGGACAUUG
1622
CTGTAGGACATTG
Exon 55



CCUACAG

GCAGUUG

GCAGTTG






383
AACUGCCAAUGUC
1003
CCUGUAGGACAUU
1623
CCTGTAGGACATT
Exon 55



CUACAGG

GGCAGUU

GGCAGTT






384
GAUGAAAACAGCC
1004
GGAUUUUUUGGCU
1624
GGATTTTTTGGCT
Exon 56



AAAAAAUCC

GUUUUCAUC

GTTTTCATC






385
GAUGAAAACAGCC
1005
AGGAUUUUUUGGC
1625
AGGATTTTTTGGC
Exon 56



AAAAAAUCCU

UGUUUUCAUC

TGTTTTCATC






386
GAUGAAAACAGCC
1006
CAGGAUUUUUUGG
1626
CAGGATTTTTTGG
Exon 56



AAAAAAUCCUG

CUGUUUUCAUC

CTGTTTTCATC






387
GAUGAAAACAGCC
1007
UCAGGAUUUUUUG
1627
TCAGGATTTTTTG
Exon 56



AAAAAAUCCUGA

GCUGUUUUCAUC

GCTGTTTTCATC






388
AUGAAAACAGCCA
1008
CUCAGGAUUUUUU
1628
CTCAGGATTTTTT
Exon 56



AAAAAUCCUGAG

GGCUGUUUUCAU

GGCTGTTTTCAT






389
UGAAAACAGCCAA
1009
CUCAGGAUUUUUU
1629
CTCAGGATTTTTT
Exon 56



AAAAUCCUGAG

GGCUGUUUUCA

GGCTGTTTTCA






390
UGAAAACAGCCAA
1010
UCUCAGGAUUUUU
1630
TCTCAGGATTTTT
Exon 56



AAAAUCCUGAGA

UGGCUGUUUUCA

TGGCTGTTTTCA






391
GAAAACAGCCAAA
1011
UCUCAGGAUUUUU
1631
TCTCAGGATTTTT
Exon 56



AAAUCCUGAGA

UGGCUGUUUUC

TGGCTGTTTTC






392
GAAAACAGCCAAA
1012
AUCUCAGGAUUUU
1632
ATCTCAGGATTTT
Exon 56



AAAUCCUGAGAU

UUGGCUGUUUUC

TTGGCTGTTTTC






393
AAACAGCCAAAAA
1013
GAUCUCAGGAUUU
1633
GATCTCAGGATTT
Exon 56



AUCCUGAGAUC

UUUGGCUGUUU

TTTGGCTGTTT






394
AAACAGCCAAAAA
1014
GGAUCUCAGGAUU
1634
GGATCTCAGGATT
Exon 56



AUCCUGAGAUCC

UUUUGGCUGUUU

TTTTGGCTGTTT






395
AACAGCCAAAAAA
1015
GGAUCUCAGGAUU
1635
GGATCTCAGGATT
Exon 56



UCCUGAGAUCC

UUUUGGCUGUU

TTTTGGCTGTT






396
AACAGCCAAAAAA
1016
GGGAUCUCAGGAU
1636
GGGATCTCAGGAT
Exon 56



UCCUGAGAUCCC

UUUUUGGCUGUU

TTTTTGGCTGTT






397
CCUGAGAUCCCUG
1017
GAACCUUCCAGGG
1637
GAACCTTCCAGGG
Exon 56



GAAGGUUC

AUCUCAGG

ATCTCAGG






398
GAAGAAACUCAUA
1018
GUUGCAGUAAUCU
1638
GTTGCAGTAATCT
Exon 55



GAUUACUGCAAC

AUGAGUUUCUUC

ATGAGTTTCTTC






399
AAGAAACUCAUAG
1019
GUUGCAGUAAUCU
1639
GTTGCAGTAATCT
Exon 55



AUUACUGCAAC

AUGAGUUUCUU

ATGAGTTTCTT






400
AAGAAACUCAUAG
1020
UGUUGCAGUAAUC
1640
TGTTGCAGTAATC
Exon 55



AUUACUGCAACA

UAUGAGUUUCUU

TATGAGTTTCTT






401
AGAAACUCAUAGA
1021
GUUGCAGUAAUCU
1641
GTTGCAGTAATCT
Exon 55



UUACUGCAAC

AUGAGUUUCU

ATGAGTTTCT






402
GAAACUCAUAGAU
1022
GUUGCAGUAAUCU
1642
GTTGCAGTAATCT
Exon 55



UACUGCAAC

AUGAGUUUC

ATGAGTTTC






403
GAAACUCAUAGAU
1023
UGUUGCAGUAAUC
1643
TGTTGCAGTAATC
Exon 55



UACUGCAACA

UAUGAGUUUC

TATGAGTTTC






404
AAACUCAUAGAUU
1024
CUGUUGCAGUAAU
1644
CTGTTGCAGTAAT
Exon 55



ACUGCAACAG

CUAUGAGUUU

CTATGAGTTT






405
AACUCAUAGAUUA
1025
GUUGCAGUAAUCU
1645
GTTGCAGTAATCT
Exon 55



CUGCAAC

AUGAGUU

ATGAGTT






406
AACUCAUAGAUUA
1026
UGUUGCAGUAAUC
1646
TGTTGCAGTAATC
Exon 55



CUGCAACA

UAUGAGUU

TATGAGTT






407
AACUCAUAGAUUA
1027
CUGUUGCAGUAAU
1647
CTGTTGCAGTAAT
Exon 55



CUGCAACAG

CUAUGAGUU

CTATGAGTT






408
ACUCAUAGAUUAC
1028
UGUUGCAGUAAUC
1648
TGTTGCAGTAATC
Exon 55



UGCAACA

UAUGAGU

TATGAGT






409
ACUCAUAGAUUAC
1029
CUGUUGCAGUAAU
1649
CTGTTGCAGTAAT
Exon 55



UGCAACAG

CUAUGAGU

CTATGAGT






410
GAUGAUACCAGAA
1030
UGGACUUUUCUGG
1650
TGGACTTTTCTGG
Exon 54



AAGUCCA

UAUCAUC

TATCATC






411
GAUGAUACCAGAA
1031
GUGGACUUUUCUG
1651
GTGGACTTTTCTG
Exon 54



AAGUCCAC

GUAUCAUC

GTATCATC






412
GAUGAUACCAGAA
1032
UGUGGACUUUUCU
1652
TGTGGACTTTTCT
Exon 54



AAGUCCACA

GGUAUCAUC

GGTATCATC






413
GAUGAUACCAGAA
1033
CAUGUGGACUUUU
1653
CATGTGGACTTTT
Exon 54



AAGUCCACAUG

CUGGUAUCAUC

CTGGTATCATC






414
AUGAUACCAGAAA
1034
AUGUGGACUUUUC
1654
ATGTGGACTTTTC
Exon 54



AGUCCACAU

UGGUAUCAU

TGGTATCAT






415
AUGAUACCAGAAA
1035
CAUGUGGACUUUU
1655
CATGTGGACTTTT
Exon 54



AGUCCACAUG

CUGGUAUCAU

CTGGTATCAT






416
UGAUACCAGAAAA
1036
UGUGGACUUUUCU
1656
TGTGGACTTTTCT
Exon 54



GUCCACA

GGUAUCA

GGTATCA






417
UGAUACCAGAAAA
1037
AUGUGGACUUUUC
1657
ATGTGGACTTTTC
Exon 54



GUCCACAU

UGGUAUCA

TGGTATCA






418
UGAUACCAGAAAA
1038
CAUGUGGACUUUU
1658
CATGTGGACTTTT
Exon 54



GUCCACAUG

CUGGUAUCA

CTGGTATCA






419
UGAUACCAGAAAA
1039
UAUCAUGUGGACU
1659
TATCATGTGGACT
Exon 54



GUCCACAUGAUA

UUUCUGGUAUCA

TTTCTGGTATCA






420
GAUACCAGAAAAG
1040
AUGUGGACUUUUC
1660
ATGTGGACTTTTC
Exon 54



UCCACAU

UGGUAUC

TGGTATC






421
GAUACCAGAAAAG
1041
CAUGUGGACUUUU
1661
CATGTGGACTTTT
Exon 54



UCCACAUG

CUGGUAUC

CTGGTATC






422
GAUACCAGAAAAG
1042
UAUCAUGUGGACU
1662
TATCATGTGGACT
Exon 54



UCCACAUGAUA

UUUCUGGUAUC

TTTCTGGTATC






423
AUACCAGAAAAGU
1043
CAUGUGGACUUUU
1663
CATGTGGACTTTT
Exon 54



CCACAUG

CUGGUAU

CTGGTAT






424
AUACCAGAAAAGU
1044
UAUCAUGUGGACU
1664
TATCATGTGGACT
Exon 54



CCACAUGAUA

UUUCUGGUAU

TTTCTGGTAT






425
AUACCAGAAAAGU
1045
UUAUCAUGUGGAC
1665
TTATCATGTGGAC
Exon 54



CCACAUGAUAA

UUUUCUGGUAU

TTTTCTGGTAT






426
UACCAGAAAAGUC
1046
UAUCAUGUGGACU
1666
TATCATGTGGACT
Exon 54



CACAUGAUA

UUUCUGGUA

TTTCTGGTA






427
ACCAGAAAAGUCC
1047
UAUCAUGUGGACU
1667
TATCATGTGGACT
Exon 54



ACAUGAUA

UUUCUGGU

TTTCTGGT






428
CCAGAAAAGUCCA
1048
UAUCAUGUGGACU
1668
TATCATGTGGACT
Exon 54



CAUGAUA

UUUCUGG

TTTCTGG






429
CAGAAAAGUCCAC
1049
UUAUCAUGUGGAC
1669
TTATCATGTGGAC
Exon 54



AUGAUAA

UUUUCUG

TTTTCTG






430
AGAAAAGUCCACA
1050
GUUAUCAUGUGGA
1670
GTTATCATGTGGA
Exon 54



UGAUAAC

CUUUUCU

CTTTTCT






431
AGAAAAGUCCACA
1051
UGUUAUCAUGUGG
1671
TGTTATCATGTGG
Exon 54



UGAUAACA

ACUUUUCU

ACTTTTCT






432
AGAAAAGUCCACA
1052
CUGUUAUCAUGUG
1672
CTGTTATCATGTG
Exon 54



UGAUAACAG

GACUUUUCU

GACTTTTCT






433
GAAAAGUCCACAU
1053
UGUUAUCAUGUGG
1673
TGTTATCATGTGG
Exon 54



GAUAACA

ACUUUUC

ACTTTTC






434
AAAAGUCCACAUG
1054
UCUGUUAUCAUGU
1674
TCTGTTATCATGT
Exon 54



AUAACAGA

GGACUUUU

GGACTTTT






435
AAAGUCCACAUGA
1055
UCUGUUAUCAUGU
1675
TCTGTTATCATGT
Exon 54



UAACAGA

GGACUUU

GGACTTT






436
AGUCCACAUGAUA
1056
UCUCUGUUAUCAU
1676
TCTCTGTTATCAT
Exon 54



ACAGAGA

GUGGACU

GTGGACT






437
GUCCACAUGAUAA
1057
UUCUCUGUUAUCA
1677
TTCTCTGTTATCA
Exon 54



CAGAGAA

UGUGGAC

TGTGGAC






438
GUCCACAUGAUAA
1058
AUUCUCUGUUAUC
1678
ATTCTCTGTTATC
Exon 54



CAGAGAAU

AUGUGGAC

ATGTGGAC






439
GUCCACAUGAUAA
1059
UAUUCUCUGUUAU
1679
TATTCTCTGTTAT
Exon 54



CAGAGAAUA

CAUGUGGAC

CATGTGGAC






440
GUCCACAUGAUAA
1060
AUAUUCUCUGUUA
1680
ATATTCTCTGTTA
Exon 54



CAGAGAAUAU

UCAUGUGGAC

TCATGTGGAC






441
CCACAUGAUAACA
1061
UAUUCUCUGUUAU
1681
TATTCTCTGTTAT
Exon 54



GAGAAUA

CAUGUGG

CATGTGG






442
GAAGAAACUCAUA
1062
UUGCAGUAAUCUA
1682
TTGCAGTAATCTA
Exon 55



GAUUACUGCAA

UGAGUUUCUUC

TGAGTTTCTTC






443
GAAGCUGAAACAA
1063
GGACAUUGGCAGU
1683
GGACATTGGCAGT
Exon 55



CUGCCAAUGUCC

UGUUUCAGCUUC

TGTTTCAGCTTC






444
AAGCUGAAACAAC
1064
GGACAUUGGCAGU
1684
GGACATTGGCAGT
Exon 55



UGCCAAUGUCC

UGUUUCAGCUU

TGTTTCAGCTT






445
AAGCUGAAACAAC
1065
AGGACAUUGGCAG
1685
AGGACATTGGCAG
Exon 55



UGCCAAUGUCCU

UUGUUUCAGCUU

TTGTTTCAGCTT






446
AGCUGAAACAACU
1066
GACAUUGGCAGUU
1686
GACATTGGCAGTT
Exon 55



GCCAAUGUC

GUUUCAGCU

GTTTCAGCT






447
AGCUGAAACAACU
1067
GGACAUUGGCAGU
1687
GGACATTGGCAGT
Exon 55



GCCAAUGUCC

UGUUUCAGCU

TGTTTCAGCT






448
AGCUGAAACAACU
1068
AGGACAUUGGCAG
1688
AGGACATTGGCAG
Exon 55



GCCAAUGUCCU

UUGUUUCAGCU

TTGTTTCAGCT






449
AGCUGAAACAACU
1069
UAGGACAUUGGCA
1689
TAGGACATTGGCA
Exon 55



GCCAAUGUCCUA

GUUGUUUCAGCU

GTTGTTTCAGCT






450
GCUGAAACAACUG
1070
GACAUUGGCAGUU
1690
GACATTGGCAGTT
Exon 55



CCAAUGUC

GUUUCAGC

GTTTCAGC






451
GCUGAAACAACUG
1071
GGACAUUGGCAGU
1691
GGACATTGGCAGT
Exon 55



CCAAUGUCC

UGUUUCAGC

TGTTTCAGC






452
GCUGAAACAACUG
1072
AGGACAUUGGCAG
1692
AGGACATTGGCAG
Exon 55



CCAAUGUCCU

UUGUUUCAGC

TTGTTTCAGC






453
CAACUGCCAAUGU
1073
GCAUCCUGUAGGA
1693
GCATCCTGTAGGA
Exon 55



CCUACAGGAUGC

CAUUGGCAGUUG

CATTGGCAGTTG






454
AACUGCCAAUGUC
1074
GCAUCCUGUAGGA
1694
GCATCCTGTAGGA
Exon 55



CUACAGGAUGC

CAUUGGCAGUU

CATTGGCAGTT






455
ACUGCCAAUGUCC
1075
GCAUCCUGUAGGA
1695
GCATCCTGTAGGA
Exon 55



UACAGGAUGC

CAUUGGCAGU

CATTGGCAGT






456
CUGCCAAUGUCCU
1076
AUCCUGUAGGACA
1696
ATCCTGTAGGACA
Exon 55



ACAGGAU

UUGGCAG

TTGGCAG






457
CUGCCAAUGUCCU
1077
GCAUCCUGUAGGA
1697
GCATCCTGTAGGA
Exon 55



ACAGGAUGC

CAUUGGCAG

CATTGGCAG






458
UGCCAAUGUCCUA
1078
GCAUCCUGUAGGA
1698
GCATCCTGTAGGA
Exon 55



CAGGAUGC

CAUUGGCA

CATTGGCA






459
GCCAAUGUCCUAC
1079
GCAUCCUGUAGGA
1699
GCATCCTGTAGGA
Exon 55



AGGAUGC

CAUUGGC

CATTGGC






460
CCAAUGUCCUACA
1080
AGCAUCCUGUAGG
1700
AGCATCCTGTAGG
Exon 55



GGAUGCU

ACAUUGG

ACATTGG






461
AGAGCUGAUGAAA
1081
CUUGCCAUUGUUU
1701
CTTGCCATTGTTT
Exon 55/intron 55



CAAUGGCAAG

CAUCAGCUCU

CATCAGCTCT
junction





462
AGAGCUGAUGAAA
1082
ACUUGCCAUUGUU
1702
ACTTGCCATTGTT
Exon 55/intron 55



CAAUGGCAAGU

UCAUCAGCUCU

TCATCAGCTCT
junction





463
AGAGCUGAUGAAA
1083
UACUUGCCAUUGU
1703
TACTTGCCATTGT
Exon 55/intron 55



CAAUGGCAAGUA

UUCAUCAGCUCU

TTCATCAGCTCT
junction





464
GAGCUGAUGAAAC
1084
ACUUGCCAUUGUU
1704
ACTTGCCATTGTT
Exon 55/intron 55



AAUGGCAAGU

UCAUCAGCUC

TCATCAGCTC
junction





465
GAGCUGAUGAAAC
1085
UACUUGCCAUUGU
1705
TACTTGCCATTGT
Exon 55/intron 55



AAUGGCAAGUA

UUCAUCAGCUC

TTCATCAGCTC
junction





466
GAGCUGAUGAAAC
1086
UUACUUGCCAUUG
1706
TTACTTGCCATTG
Exon 55/intron 55



AAUGGCAAGUAA

UUUCAUCAGCUC

TTTCATCAGCTC
junction





467
AGCUGAUGAAACA
1087
CUUACUUGCCAUU
1707
CTTACTTGCCATT
Exon 55/intron 55



AUGGCAAGUAAG

GUUUCAUCAGCU

GTTTCATCAGCT
junction





468
GCUGAUGAAACAA
1088
CUUACUUGCCAUU
1708
CTTACTTGCCATT
Exon 55/intron 55



UGGCAAGUAAG

GUUUCAUCAGC

GTTTCATCAGC
junction





469
GCUGAUGAAACAA
1089
ACUUACUUGCCAU
1709
ACTTACTTGCCAT
Exon 55/intron 55



UGGCAAGUAAGU

UGUUUCAUCAGC

TGTTTCATCAGC
junction





470
CUGAUGAAACAAU
1090
ACUUACUUGCCAU
1710
ACTTACTTGCCAT
Exon 55/intron 55



GGCAAGUAAGU

UGUUUCAUCAG

TGTTTCATCAG
junction





471
UAUCACAACCUGG
1091
GGCUGUUUUCAUC
1711
GGCTGTTTTCATC
Exon 56



AUGAAAACAGCC

CAGGUUGUGAUA

CAGGTTGTGATA






472
AUCACAACCUGGA
1092
GGCUGUUUUCAUC
1712
GGCTGTTTTCATC
Exon 56



UGAAAACAGCC

CAGGUUGUGAU

CAGGTTGTGAT






473
AUCACAACCUGGA
1093
UGGCUGUUUUCAU
1713
TGGCTGTTTTCAT
Exon 56



UGAAAACAGCCA

CCAGGUUGUGAU

CCAGGTTGTGAT






474
UCACAACCUGGAU
1094
GGCUGUUUUCAUC
1714
GGCTGTTTTCATC
Exon 56



GAAAACAGCC

CAGGUUGUGA

CAGGTTGTGA






475
UCACAACCUGGAU
1095
UGGCUGUUUUCAU
1715
TGGCTGTTTTCAT
Exon 56



GAAAACAGCCA

CCAGGUUGUGA

CCAGGTTGTGA






476
UCACAACCUGGAU
1096
UUGGCUGUUUUCA
1716
TTGGCTGTTTTCA
Exon 56



GAAAACAGCCAA

UCCAGGUUGUGA

TCCAGGTTGTGA






477
CACAACCUGGAUG
1097
UUUGGCUGUUUUC
1717
TTTGGCTGTTTTC
Exon 56



AAAACAGCCAAA

AUCCAGGUUGUG

ATCCAGGTTGTG






478
ACAACCUGGAUGA
1098
UUUUGGCUGUUUU
1718
TTTTGGCTGTTTT
Exon 56



AAACAGCCAAAA

CAUCCAGGUUGU

CATCCAGGTTGT






479
GGAUGAAAACAGC
1099
GAUUUUUUGGCUG
1719
GATTTTTTGGCTG
Exon 56



CAAAAAAUC

UUUUCAUCC

TTTTCATCC






480
GGAUGAAAACAGC
1100
GGAUUUUUUGGCU
1720
GGATTTTTTGGCT
Exon 56



CAAAAAAUCC

GUUUUCAUCC

GTTTTCATCC






481
GGAUGAAAACAGC
1101
AGGAUUUUUUGGC
1721
AGGATTTTTTGGC
Exon 56



CAAAAAAUCCU

UGUUUUCAUCC

TGTTTTCATCC






482
GGAUGAAAACAGC
1102
CAGGAUUUUUUGG
1722
CAGGATTTTTTGG
Exon 56



CAAAAAAUCCUG

CUGUUUUCAUCC

CTGTTTTCATCC






483
ACAGCCAAAAAAU
1103
GGAUCUCAGGAUU
1723
GGATCTCAGGATT
Exon 56



CCUGAGAUCC

UUUUGGCUGU

TTTTGGCTGT






484
ACAGCCAAAAAAU
1104
GGGAUCUCAGGAU
1724
GGGATCTCAGGAT
Exon 56



CCUGAGAUCCC

UUUUUGGCUGU

TTTTTGGCTGT






485
CCUGAGAUCCCUG
1105
UCGGAACCUUCCA
1725
TCGGAACCTTCCA
Exon 56



GAAGGUUCCGA

GGGAUCUCAGG

GGGATCTCAGG






486
CCUGAGAUCCCUG
1106
AUCGGAACCUUCC
1726
ATCGGAACCTTCC
Exon 56



GAAGGUUCCGAU

AGGGAUCUCAGG

AGGGATCTCAGG






487
CUGAGAUCCCUGG
1107
UCGGAACCUUCCA
1727
TCGGAACCTTCCA
Exon 56



AAGGUUCCGA

GGGAUCUCAG

GGGATCTCAG






488
CUGAGAUCCCUGG
1108
AUCGGAACCUUCC
1728
ATCGGAACCTTCC
Exon 56



AAGGUUCCGAU

AGGGAUCUCAG

AGGGATCTCAG






489
CUGAGAUCCCUGG
1109
CAUCGGAACCUUC
1729
CATCGGAACCTTC
Exon 56



AAGGUUCCGAUG

CAGGGAUCUCAG

CAGGGATCTCAG






490
UGAGAUCCCUGGA
1110
UCGGAACCUUCCA
1730
TCGGAACCTTCCA
Exon 56



AGGUUCCGA

GGGAUCUCA

GGGATCTCA






491
UGAGAUCCCUGGA
1111
AUCGGAACCUUCC
1731
ATCGGAACCTTCC
Exon 56



AGGUUCCGAU

AGGGAUCUCA

AGGGATCTCA






492
UGAGAUCCCUGGA
1112
CAUCGGAACCUUC
1732
CATCGGAACCTTC
Exon 56



AGGUUCCGAUG

CAGGGAUCUCA

CAGGGATCTCA






493
UGAGAUCCCUGGA
1113
UCAUCGGAACCUU
1733
TCATCGGAACCTT
Exon 56



AGGUUCCGAUGA

CCAGGGAUCUCA

CCAGGGATCTCA






494
GAGAUCCCUGGAA
1114
UCGGAACCUUCCA
1734
TCGGAACCTTCCA
Exon 56



GGUUCCGA

GGGAUCUC

GGGATCTC






495
GAGAUCCCUGGAA
1115
AUCGGAACCUUCC
1735
ATCGGAACCTTCC
Exon 56



GGUUCCGAU

AGGGAUCUC

AGGGATCTC






496
GAGAUCCCUGGAA
1116
CAUCGGAACCUUC
1736
CATCGGAACCTTC
Exon 56



GGUUCCGAUG

CAGGGAUCUC

CAGGGATCTC






497
GAGAUCCCUGGAA
1117
UCAUCGGAACCUU
1737
TCATCGGAACCTT
Exon 56



GGUUCCGAUGA

CCAGGGAUCUC

CCAGGGATCTC






498
AGAUCCCUGGAAG
1118
CAUCGGAACCUUC
1738
CATCGGAACCTTC
Exon 56



GUUCCGAUG

CAGGGAUCU

CAGGGATCT






499
AGAUCCCUGGAAG
1119
UCAUCGGAACCUU
1739
TCATCGGAACCTT
Exon 56



GUUCCGAUGA

CCAGGGAUCU

CCAGGGATCT






500
GAUCCCUGGAAGG
1120
AUCGGAACCUUCC
1740
ATCGGAACCTTCC
Exon 56



UUCCGAU

AGGGAUC

AGGGATC






501
GAUCCCUGGAAGG
1121
CAUCGGAACCUUC
1741
CATCGGAACCTTC
Exon 56



UUCCGAUG

CAGGGAUC

CAGGGATC






502
GAUCCCUGGAAGG
1122
UCAUCGGAACCUU
1742
TCATCGGAACCTT
Exon 56



UUCCGAUGA

CCAGGGAUC

CCAGGGATC






503
AUCCCUGGAAGGU
1123
UCAUCGGAACCUU
1743
TCATCGGAACCTT
Exon 56



UCCGAUGA

CCAGGGAU

CCAGGGAT






504
UCCCUGGAAGGUU
1124
UCAUCGGAACCUU
1744
TCATCGGAACCTT
Exon 56



CCGAUGA

CCAGGGA

CCAGGGA






505
AGAUGAUACCAGA
1125
UGGACUUUUCUGG
1745
TGGACTTTTCTGG
Exon 54



AAAGUCCA

UAUCAUCU

TATCATCT






506
AGAUGAUACCAGA
1126
GUGGACUUUUCUG
1746
GTGGACTTTTCTG
Exon 54



AAAGUCCAC

GUAUCAUCU

GTATCATCT






507
AGAUGAUACCAGA
1127
CAUGUGGACUUUU
1747
CATGTGGACTTTT
Exon 54



AAAGUCCACAUG

CUGGUAUCAUCU

CTGGTATCATCT






508
UCCACAUGAUAAC
1128
GAUAUUCUCUGUU
1748
GATATTCTCTGTT
Exon 54



AGAGAAUAUC

AUCAUGUGGA

ATCATGTGGA






509
CUGAAACAACUGC
1129
GGACAUUGGCAGU
1749
GGACATTGGCAGT
Exon 55



CAAUGUCC

UGUUUCAG

TGTTTCAG






510
CUGAAACAACUGC
1130
AGGACAUUGGCAG
1750
AGGACATTGGCAG
Exon 55



CAAUGUCCU

UUGUUUCAG

TTGTTTCAG






511
CUGAAACAACUGC
1131
UAGGACAUUGGCA
1751
TAGGACATTGGCA
Exon 55



CAAUGUCCUA

GUUGUUUCAG

GTTGTTTCAG






512
UGCCAAUGUCCUA
1132
CAUCCUGUAGGAC
1752
CATCCTGTAGGAC
Exon 55



CAGGAUG

AUUGGCA

ATTGGCA






513
CCAAUGUCCUACA
1133
UAGCAUCCUGUAG
1753
TAGCATCCTGTAG
Exon 55



GGAUGCUA

GACAUUGG

GACATTGG






514
CCAAUGUCCUACA
1134
GGUAGCAUCCUGU
1754
GGTAGCATCCTGT
Exon 55



GGAUGCUACC

AGGACAUUGG

AGGACATTGG






515
CUCCAAGGGAGUA
1135
AUCAGCUCUUUUA
1755
ATCAGCTCTTTTA
Exon 55



AAAGAGCUGAU

CUCCCUUGGAG

CTCCCTTGGAG






516
UCCAAGGGAGUAA
1136
UCAGCUCUUUUAC
1756
TCAGCTCTTTTAC
Exon 55



AAGAGCUGA

UCCCUUGGA

TCCCTTGGA






517
UCCAAGGGAGUAA
1137
AUCAGCUCUUUUA
1757
ATCAGCTCTTTTA
Exon 55



AAGAGCUGAU

CUCCCUUGGA

CTCCCTTGGA






518
CCAAGGGAGUAAA
1138
CAGCUCUUUUACU
1758
CAGCTCTTTTACT
Exon 55



AGAGCUG

CCCUUGG

CCCTTGG






519
CCAAGGGAGUAAA
1139
UUCAUCAGCUCUU
1759
TTCATCAGCTCTT
Exon 55



AGAGCUGAUGAA

UUACUCCCUUGG

TTACTCCCTTGG






520
CAAGGGAGUAAAA
1140
CAUCAGCUCUUUU
1760
CATCAGCTCTTTT
Exon 55



GAGCUGAUG

ACUCCCUUG

ACTCCCTTG






521
CAAGGGAGUAAAA
1141
UUUCAUCAGCUCU
1761
TTTCATCAGCTCT
Exon 55



GAGCUGAUGAAA

UUUACUCCCUUG

TTTACTCCCTTG






522
AGGGAGUAAAAGA
1142
UCAUCAGCUCUUU
1762
TCATCAGCTCTTT
Exon 55



GCUGAUGA

UACUCCCU

TACTCCCT






523
AGGGAGUAAAAGA
1143
UUCAUCAGCUCUU
1763
TTCATCAGCTCTT
Exon 55



GCUGAUGAA

UUACUCCCU

TTACTCCCT






524
AAGAGCUGAUGAA
1144
UUGCCAUUGUUUC
1764
TTGCCATTGTTTC
Exon 55



ACAAUGGCAA

AUCAGCUCUU

ATCAGCTCTT






525
AAGAGCUGAUGAA
1145
CUUGCCAUUGUUU
1765
CTTGCCATTGTTT
Exon 55/intron 55



ACAAUGGCAAG

CAUCAGCUCUU

CATCAGCTCTT
junction





526
AAGAGCUGAUGAA
1146
ACUUGCCAUUGUU
1766
ACTTGCCATTGTT
Exon 55/intron 55



ACAAUGGCAAGU

UCAUCAGCUCUU

TCATCAGCTCTT
junction





527
AUGAAACAAUGGC
1147
GACUUACUUGCCA
1767
GACTTACTTGCCA
Exon 55/intron 55



AAGUAAGUC

UUGUUUCAU

TTGTTTCAT
junction





528
UCCAAGGUGAAAU
1148
GUGUGAGCUUCAA
1768
GTGTGAGCTTCAA
Exon 56



UGAAGCUCACAC

UUUCACCUUGGA

TTTCACCTTGGA






529
CCAAGGUGAAAUU
1149
GUGUGAGCUUCAA
1769
GTGTGAGCTTCAA
Exon 56



GAAGCUCACAC

UUUCACCUUGG

TTTCACCTTGG






530
CCAAGGUGAAAUU
1150
UGUGUGAGCUUCA
1770
TGTGTGAGCTTCA
Exon 56



GAAGCUCACACA

AUUUCACCUUGG

ATTTCACCTTGG






531
CAAGGUGAAAUUG
1151
CUGUGUGAGCUUC
1771
CTGTGTGAGCTTC
Exon 56



AAGCUCACACAG

AAUUUCACCUUG

AATTTCACCTTG






532
AAGGUGAAAUUGA
1152
UCUGUGUGAGCUU
1772
TCTGTGTGAGCTT
Exon 56



AGCUCACACAGA

CAAUUUCACCUU

CAATTTCACCTT






533
AGGUGAAAUUGAA
1153
UCUGUGUGAGCUU
1773
TCTGTGTGAGCTT
Exon 56



GCUCACACAGA

CAAUUUCACCU

CAATTTCACCT






534
AGGUGAAAUUGAA
1154
AUCUGUGUGAGCU
1774
ATCTGTGTGAGCT
Exon 56



GCUCACACAGAU

UCAAUUUCACCU

TCAATTTCACCT






535
UUAUCACAACCUG
1155
GCUGUUUUCAUCC
1775
GCTGTTTTCATCC
Exon 56



GAUGAAAACAGC

AGGUUGUGAUAA

AGGTTGTGATAA






536
UGGAUGAAAACAG
1156
GGAUUUUUUGGCU
1776
GGATTTTTTGGCT
Exon 56



CCAAAAAAUCC

GUUUUCAUCCA

GTTTTCATCCA






537
UGGAUGAAAACAG
1157
AGGAUUUUUUGGC
1777
AGGATTTTTTGGC
Exon 56



CCAAAAAAUCCU

UGUUUUCAUCCA

TGTTTTCATCCA






538
CCUGAGAUCCCUG
1158
CGGAACCUUCCAG
1778
CGGAACCTTCCAG
Exon 56



GAAGGUUCCG

GGAUCUCAGG

GGATCTCAGG






539
CUGAGAUCCCUGG
1159
CGGAACCUUCCAG
1779
CGGAACCTTCCAG
Exon 56



AAGGUUCCG

GGAUCUCAG

GGATCTCAG






540
GAGAUCCCUGGAA
1160
AUCAUCGGAACCU
1780
ATCATCGGAACCT
Exon 56



GGUUCCGAUGAU

UCCAGGGAUCUC

TCCAGGGATCTC






541
AGAUCCCUGGAAG
1161
AUCAUCGGAACCU
1781
ATCATCGGAACCT
Exon 56



GUUCCGAUGAU

UCCAGGGAUCU

TCCAGGGATCT






542
GAUCCCUGGAAGG
1162
AUCAUCGGAACCU
1782
ATCATCGGAACCT
Exon 56



UUCCGAUGAU

UCCAGGGAUC

TCCAGGGATC






543
GAUCCCUGGAAGG
1163
GCAUCAUCGGAAC
1783
GCATCATCGGAAC
Exon 56



UUCCGAUGAUGC

CUUCCAGGGAUC

CTTCCAGGGATC






544
AUCCCUGGAAGGU
1164
AUCAUCGGAACCU
1784
ATCATCGGAACCT
Exon 56



UCCGAUGAU

UCCAGGGAU

TCCAGGGAT






545
AUCCCUGGAAGGU
1165
GCAUCAUCGGAAC
1785
GCATCATCGGAAC
Exon 56



UCCGAUGAUGC

CUUCCAGGGAU

CTTCCAGGGAT






546
AUCCCUGGAAGGU
1166
UGCAUCAUCGGAA
1786
TGCATCATCGGAA
Exon 56



UCCGAUGAUGCA

CCUUCCAGGGAU

CCTTCCAGGGAT






547
UCCCUGGAAGGUU
1167
AUCAUCGGAACCU
1787
ATCATCGGAACCT
Exon 56



CCGAUGAU

UCCAGGGA

TCCAGGGA






548
UCCCUGGAAGGUU
1168
GCAUCAUCGGAAC
1788
GCATCATCGGAAC
Exon 56



CCGAUGAUGC

CUUCCAGGGA

CTTCCAGGGA






549
UCCCUGGAAGGUU
1169
UGCAUCAUCGGAA
1789
TGCATCATCGGAA
Exon 56



CCGAUGAUGCA

CCUUCCAGGGA

CCTTCCAGGGA






550
CCCUGGAAGGUUC
1170
GCAUCAUCGGAAC
1790
GCATCATCGGAAC
Exon 56



CGAUGAUGC

CUUCCAGGG

CTTCCAGGG






551
CCCUGGAAGGUUC
1171
UGCAUCAUCGGAA
1791
TGCATCATCGGAA
Exon 56



CGAUGAUGCA

CCUUCCAGGG

CCTTCCAGGG






552
CUGGAAGGUUCCG
1172
GCAUCAUCGGAAC
1792
GCATCATCGGAAC
Exon 56



AUGAUGC

CUUCCAG

CTTCCAG






553
CUGGAAGGUUCCG
1173
UGCAUCAUCGGAA
1793
TGCATCATCGGAA
Exon 56



AUGAUGCA

CCUUCCAG

CCTTCCAG






554
UGGAAGGUUCCGA
1174
UGCAUCAUCGGAA
1794
TGCATCATCGGAA
Exon 56



UGAUGCA

CCUUCCA

CCTTCCA






555
GGCUUACAGAAGC
1175
GCAGUUGUUUCAG
1795
GCAGTTGTTTCAG
Exon 55



UGAAACAACUGC

CUUCUGUAAGCC

CTTCTGTAAGCC






556
GGGAGUAAAAGAG
1176
UUUCAUCAGCUCU
1796
TTTCATCAGCTCT
Exon 55



CUGAUGAAA

UUUACUCCC

TTTACTCCC






557
GGGAGUAAAAGAG
1177
GUUUCAUCAGCUC
1797
GTTTCATCAGCTC
Exon 55



CUGAUGAAAC

UUUUACUCCC

TTTTACTCCC






558
AAAAGAGCUGAUG
1178
UUGCCAUUGUUUC
1798
TTGCCATTGTTTC
Exon 55



AAACAAUGGCAA

AUCAGCUCUUUU

ATCAGCTCTTTT






559
AGGUUCCGAUGAU
1179
AGGACUGCAUCAU
1799
AGGACTGCATCAT
Exon 56



GCAGUCCU

CGGAACCU

CGGAACCT






560
AGGUUCCGAUGAU
1180
CAGGACUGCAUCA
1800
CAGGACTGCATCA
Exon 56



GCAGUCCUG

UCGGAACCU

TCGGAACCT






561
GGUUCCGAUGAUG
1181
AGGACUGCAUCAU
1801
AGGACTGCATCAT
Exon 56



CAGUCCU

CGGAACC

CGGAACC






562
GGUUCCGAUGAUG
1182
CAGGACUGCAUCA
1802
CAGGACTGCATCA
Exon 56



CAGUCCUG

UCGGAACC

TCGGAACC






563
CAGAUGAUACCAG
1183
GGACUUUUCUGGU
1803
GGACTTTTCTGGT
Exon 54



AAAAGUCC

AUCAUCUG

ATCATCTG






564
CAGAUGAUACCAG
1184
UGGACUUUUCUGG
1804
TGGACTTTTCTGG
Exon 54



AAAAGUCCA

UAUCAUCUG

TATCATCTG






565
CAGAUGAUACCAG
1185
GUGGACUUUUCUG
1805
GTGGACTTTTCTG
Exon 54



AAAAGUCCAC

GUAUCAUCUG

GTATCATCTG






566
CAAUGUCCUACAG
1186
GUAGCAUCCUGUA
1806
GTAGCATCCTGTA
Exon 55



GAUGCUAC

GGACAUUG

GGACATTG






567
AAGGGAGUAAAAG
1187
UCAUCAGCUCUUU
1807
TCATCAGCTCTTT
Exon 55



AGCUGAUGA

UACUCCCUU

TACTCCCTT






568
AAGGGAGUAAAAG
1188
UUCAUCAGCUCUU
1808
TTCATCAGCTCTT
Exon 55



AGCUGAUGAA

UUACUCCCUU

TTACTCCCTT






569
AAGGGAGUAAAAG
1189
UUUCAUCAGCUCU
1809
TTTCATCAGCTCT
Exon 55



AGCUGAUGAAA

UUUACUCCCUU

TTTACTCCCTT






570
AAGGGAGUAAAAG
1190
GUUUCAUCAGCUC
1810
GTTTCATCAGCTC
Exon 55



AGCUGAUGAAAC

UUUUACUCCCUU

TTTTACTCCCTT






571
AAAGAGCUGAUGA
1191
UGCCAUUGUUUCA
1811
TGCCATTGTTTCA
Exon 55



AACAAUGGCA

UCAGCUCUUU

TCAGCTCTTT






572
AAAGAGCUGAUGA
1192
UUGCCAUUGUUUC
1812
TTGCCATTGTTTC
Exon 55



AACAAUGGCAA

AUCAGCUCUUU

ATCAGCTCTTT






573
AAAGAGCUGAUGA
1193
CUUGCCAUUGUUU
1813
CTTGCCATTGTTT
Exon 55/intron 55



AACAAUGGCAAG

CAUCAGCUCUUU

CATCAGCTCTTT
junction





574
AUGAAACAAUGGC
1194
UGACUUACUUGCC
1814
TGACTTACTTGCC
Exon 55/intron 55



AAGUAAGUCA

AUUGUUUCAU

ATTGTTTCAT
junction





575
CCAGGGACAAAAC
1195
GCAACUAUUUUGU
1815
GCAACTATTTTGT
Intron 55



AAAAUAGUUGC

UUUGUCCCUGG

TTTGTCCCTGG






576
GCAAUUCUCCAAA
1196
GAAUGUGAAUUUG
1816
GAATGTGAATTTG
Intron 55



UUCACAUUC

GAGAAUUGC

GAGAATTGC






577
CAAUUCUCCAAAU
1197
UGAAUGUGAAUUU
1817
TGAATGTGAATTT
Intron 55



UCACAUUCA

GGAGAAUUG

GGAGAATTG






578
AUUCUCCAAAUUC
1198
GAUGAAUGUGAAU
1818
GATGAATGTGAAT
Intron 55



ACAUUCAUC

UUGGAGAAU

TTGGAGAAT






579
GGUGAAAUUGAAG
1199
CAUCUGUGUGAGC
1819
CATCTGTGTGAGC
Exon 56



CUCACACAGAUG

UUCAAUUUCACC

TTCAATTTCACC






580
CUCACACAGAUGU
1200
AGGUUGUGAUAAA
1820
AGGTTGTGATAAA
Exon 56



UUAUCACAACCU

CAUCUGUGUGAG

CATCTGTGTGAG






581
ACAACCUGGAUGA
1201
GGCUGUUUUCAUC
1821
GGCTGTTTTCATC
Exon 56



AAACAGCC

CAGGUUGU

CAGGTTGT






582
ACAACCUGGAUGA
1202
UGGCUGUUUUCAU
1822
TGGCTGTTTTCAT
Exon 56



AAACAGCCA

CCAGGUUGU

CCAGGTTGT






583
ACAACCUGGAUGA
1203
UUGGCUGUUUUCA
1823
TTGGCTGTTTTCA
Exon 56



AAACAGCCAA

UCCAGGUUGU

TCCAGGTTGT






584
CUGGAUGAAAACA
1204
GGAUUUUUUGGCU
1824
GGATTTTTTGGCT
Exon 56



GCCAAAAAAUCC

GUUUUCAUCCAG

GTTTTCATCCAG






585
AGAUCCCUGGAAG
1205
CAUCAUCGGAACC
1825
CATCATCGGAACC
Exon 56



GUUCCGAUGAUG

UUCCAGGGAUCU

TTCCAGGGATCT






586
GAUCCCUGGAAGG
1206
CAUCAUCGGAACC
1826
CATCATCGGAACC
Exon 56



UUCCGAUGAUG

UUCCAGGGAUC

TTCCAGGGATC






587
AUCCCUGGAAGGU
1207
CAUCAUCGGAACC
1827
CATCATCGGAACC
Exon 56



UCCGAUGAUG

UUCCAGGGAU

TTCCAGGGAT






588
UCCCUGGAAGGUU
1208
CAUCAUCGGAACC
1828
CATCATCGGAACC
Exon 56



CCGAUGAUG

UUCCAGGGA

TTCCAGGGA






589
UCCCUGGAAGGUU
1209
CUGCAUCAUCGGA
1829
CTGCATCATCGGA
Exon 56



CCGAUGAUGCAG

ACCUUCCAGGGA

ACCTTCCAGGGA






590
CCCUGGAAGGUUC
1210
CAUCAUCGGAACC
1830
CATCATCGGAACC
Exon 56



CGAUGAUG

UUCCAGGG

TTCCAGGG






591
CCCUGGAAGGUUC
1211
CUGCAUCAUCGGA
1831
CTGCATCATCGGA
Exon 56



CGAUGAUGCAG

ACCUUCCAGGG

ACCTTCCAGGG






592
CUGGAAGGUUCCG
1212
CUGCAUCAUCGGA
1832
CTGCATCATCGGA
Exon 56



AUGAUGCAG

ACCUUCCAG

ACCTTCCAG






593
UGGAAGGUUCCGA
1213
CUGCAUCAUCGGA
1833
CTGCATCATCGGA
Exon 56



UGAUGCAG

ACCUUCCA

ACCTTCCA






594
GAUGAUGCAGUCC
1214
GUCUUUGUAACAG
1834
GTCTTTGTAACAG
Exon 56



UGUUACAAAGAC

GACUGCAUCAUC

GACTGCATCATC






595
GCUUACAGAAGCU
1215
GGCAGUUGUUUCA
1835
GGCAGTTGTTTCA
Exon 55



GAAACAACUGCC

GCUUCUGUAAGC

GCTTCTGTAAGC






596
GGGAGUAAAAGAG
1216
UGUUUCAUCAGCU
1836
TGTTTCATCAGCT
Exon 55



CUGAUGAAACA

CUUUUACUCCC

CTTTTACTCCC






597
GAGUAAAAGAGCU
1217
CAUUGUUUCAUCA
1837
CATTGTTTCATCA
Exon 55



GAUGAAACAAUG

GCUCUUUUACUC

GCTCTTTTACTC






598
UAAAAGAGCUGAU
1218
GCCAUUGUUUCAU
1838
GCCATTGTTTCAT
Exon 55



GAAACAAUGGC

CAGCUCUUUUA

CAGCTCTTTTA






599
GAUCCAAUUGAAC
1219
GCUGAGAAUUGUU
1839
GCTGAGAATTGTT
Intron 55



AAUUCUCAGC

CAAUUGGAUC

CAATTGGATC






600
AAGGUUCCGAUGA
1220
CAGGACUGCAUCA
1840
CAGGACTGCATCA
Exon 56



UGCAGUCCUG

UCGGAACCUU

TCGGAACCTT






601
CAAGGGAGUAAAA
1221
UCAGCUCUUUUAC
1841
TCAGCTCTTTTAC
Exon 55



GAGCUGA

UCCCUUG

TCCCTTG






602
AGGGAGUAAAAGA
1222
UGUUUCAUCAGCU
1842
TGTTTCATCAGCT
Exon 55



GCUGAUGAAACA

CUUUUACUCCCU

CTTTTACTCCCT






603
GCCAGGGACAAAA
1223
GCAACUAUUUUGU
1843
GCAACTATTTTGT
Intron 55



CAAAAUAGUUGC

UUUGUCCCUGGC

TTTGTCCCTGGC






604
UGCAAUUCUCCAA
1224
GAAUGUGAAUUUG
1844
GAATGTGAATTTG
Intron 55



AUUCACAUUC

GAGAAUUGCA

GAGAATTGCA






605
GCAAUUCUCCAAA
1225
UGAAUGUGAAUUU
1843
TGAATGTGAATTT
Intron 55



UUCACAUUCA

GGAGAAUUGC

GGAGAATTGC






606
AAUUCUCCAAAUU
1226
GAUGAAUGUGAAU
1846
GATGAATGTGAAT
Intron 55



CACAUUCAUC

UUGGAGAAUU

TTGGAGAATT






607
AUUCUCCAAAUUC
1227
CGAUGAAUGUGAA
1847
CGATGAATGTGAA
Intron 55



ACAUUCAUCG

UUUGGAGAAU

TTTGGAGAAT






608
UUCUCCAAAUUCA
1228
CGAUGAAUGUGAA
1848
CGATGAATGTGAA
Intron 55



CAUUCAUCG

UUUGGAGAA

TTTGGAGAA






609
UCUCCAAAUUCAC
1229
CGAUGAAUGUGAA
1849
CGATGAATGTGAA
Intron 55



AUUCAUCG

UUUGGAGA

TTTGGAGA






610
GGUAAUUCUGCAC
1230
GAAGAAGAAUAUG
1850
GAAGAAGAATATG
Intron 55



AUAUUCUUCUUC

UGCAGAAUUACC

TGCAGAATTACC






611
GCUCACACAGAUG
1231
GGUUGUGAUAAAC
1851
GGTTGTGATAAAC
Exon 56



UUUAUCACAACC

AUCUGUGUGAGC

ATCTGTGTGAGC






612
UCACAACCUGGAU
1232
CUGUUUUCAUCCA
1852
CTGTTTTCATCCA
Exon 56



GAAAACAG

GGUUGUGA

GGTTGTGA






613
CACAACCUGGAUG
1233
GGCUGUUUUCAUC
1853
GGCTGTTTTCATC
Exon 56



AAAACAGCC

CAGGUUGUG

CAGGTTGTG






614
CACAACCUGGAUG
1234
UGGCUGUUUUCAU
1854
TGGCTGTTTTCAT
Exon 56



AAAACAGCCA

CCAGGUUGUG

CCAGGTTGTG






615
CACAACCUGGAUG
1235
UUGGCUGUUUUCA
1855
TTGGCTGTTTTCA
Exon 56



AAAACAGCCAA

UCCAGGUUGUG

TCCAGGTTGTG






616
ACAACCUGGAUGA
1236
UUUGGCUGUUUUC
1856
TTTGGCTGTTTTC
Exon 56



AAACAGCCAAA

AUCCAGGUUGU

ATCCAGGTTGT






617
CCUGGAUGAAAAC
1237
GAUUUUUUGGCUG
1857
GATTTTTTGGCTG
Exon 56



AGCCAAAAAAUC

UUUUCAUCCAGG

TTTTCATCCAGG






618
CCCUGGAAGGUUC
1238
ACUGCAUCAUCGG
1858
ACTGCATCATCGG
Exon 56



CGAUGAUGCAGU

AACCUUCCAGGG

AACCTTCCAGGG






619
UGGAAGGUUCCGA
1239
ACUGCAUCAUCGG
1859
ACTGCATCATCGG
Exon 56



UGAUGCAGU

AACCUUCCA

AACCTTCCA






620
UGGAAGGUUCCGA
1240
AGGACUGCAUCAU
1860
AGGACTGCATCAT
Exon 56



UGAUGCAGUCCU

CGGAACCUUCCA

CGGAACCTTCCA






621
GGAAGGUUCCGAU
1241
AGGACUGCAUCAU
1861
AGGACTGCATCAT
Exon 56



GAUGCAGUCCU

CGGAACCUUCC

CGGAACCTTCC






622
GGAAGGUUCCGAU
1242
CAGGACUGCAUCA
1862
CAGGACTGCATCA
Exon 56



GAUGCAGUCCUG

UCGGAACCUUCC

TCGGAACCTTCC






623
GAAGGUUCCGAUG
1243
ACUGCAUCAUCGG
1863
ACTGCATCATCGG
Exon 56



AUGCAGU

AACCUUC

AACCTTC






624
GUUCCGAUGAUGC
1244
UGUAACAGGACUG
1864
TGTAACAGGACTG
Exon 56



AGUCCUGUUACA

CAUCAUCGGAAC

CATCATCGGAAC






625
GGGAGUAAAAGAG
1245
UUGUUUCAUCAGC
1865
TTGTTTCATCAGC
Exon 55



CUGAUGAAACAA

UCUUUUACUCCC

TCTTTTACTCCC






626
GGAUCCAAUUGAA
1246
GCUGAGAAUUGUU
1866
GCTGAGAATTGTT
Intron 55



CAAUUCUCAGC

CAAUUGGAUCC

CAATTGGATCC






627
GAAGGUUCCGAUG
1247
CAGGACUGCAUCA
1867
CAGGACTGCATCA
Exon 56



AUGCAGUCCUG

UCGGAACCUUC

TCGGAACCTTC






628
AGGUUCCGAUGAU
1248
AACAGGACUGCAU
1868
AACAGGACTGCAT
Exon 56



GCAGUCCUGUU

CAUCGGAACCU

CATCGGAACCT






629
GGUUCCGAUGAUG
1249
AACAGGACUGCAU
1869
AACAGGACTGCAT
Exon 56



CAGUCCUGUU

CAUCGGAACC

CATCGGAACC






630
CAAGGGAGUAAAA
1250
AUCAGCUCUUUUA
1870
ATCAGCTCTTTTA
Exon 55



GAGCUGAU

CUCCCUUG

CTCCCTTG






631
AGCACUCUUGUGG
1251
GUUCAAUUGGAUC
1871
GTTCAATTGGATC
Intron 55



AUCCAAUUGAAC

CACAAGAGUGCU

CACAAGAGTGCT






632
GCCAGGGACAAAA
1252
CUAUUUUGUUUUG
1872
CTATTTTGTTTTG
Intron 55



CAAAAUAG

UCCCUGGC

TCCCTGGC






633
UUGCAAUUCUCCA
1253
GAAUGUGAAUUUG
1873
GAATGTGAATTTG
Intron 55



AAUUCACAUUC

GAGAAUUGCAA

GAGAATTGCAA






634
UGCAAUUCUCCAA
1254
UGAAUGUGAAUUU
1874
TGAATGTGAATTT
Intron 55



AUUCACAUUCA

GGAGAAUUGCA

GGAGAATTGCA






635
GCAAUUCUCCAAA
1255
AUGAAUGUGAAUU
1875
ATGAATGTGAATT
Intron 55



UUCACAUUCAU

UGGAGAAUUGC

TGGAGAATTGC






636
CAAUUCUCCAAAU
1256
GAUGAAUGUGAAU
1876
GATGAATGTGAAT
Intron 55



UCACAUUCAUC

UUGGAGAAUUG

TTGGAGAATTG






637
AAUUCUCCAAAUU
1257
CGAUGAAUGUGAA
1877
CGATGAATGTGAA
Intron 55



CACAUUCAUCG

UUUGGAGAAUU

TTTGGAGAATT






638
AUUCUCCAAAUUC
1258
GCGAUGAAUGUGA
1878
GCGATGAATGTGA
Intron 55



ACAUUCAUCGC

AUUUGGAGAAU

ATTTGGAGAAT






639
UUCUCCAAAUUCA
1259
GCGAUGAAUGUGA
1879
GCGATGAATGTGA
Intron 55



CAUUCAUCGC

AUUUGGAGAA

ATTTGGAGAA






640
UCUCCAAAUUCAC
1260
GCGAUGAAUGUGA
1880
GCGATGAATGTGA
Intron 55



AUUCAUCGC

AUUUGGAGA

ATTTGGAGA






641
GUGAAAUUGAAGC
1261
ACAUCUGUGUGAG
1881
ACATCTGTGTGAG
Exon 56



UCACACAGAUGU

CUUCAAUUUCAC

CTTCAATTTCAC






642
UAUCACAACCUGG
1262
CUGUUUUCAUCCA
1882
CTGTTTTCATCCA
Exon 56



AUGAAAACAG

GGUUGUGAUA

GGTTGTGATA






643
AUCACAACCUGGA
1263
CUGUUUUCAUCCA
1883
CTGTTTTCATCCA
Exon 56



UGAAAACAG

GGUUGUGAU

GGTTGTGAT






644
CCUGGAAGGUUCC
1264
GACUGCAUCAUCG
1884
GACTGCATCATCG
Exon 56



GAUGAUGCAGUC

GAACCUUCCAGG

GAACCTTCCAGG






645
CUGGAAGGUUCCG
1265
GACUGCAUCAUCG
1885
GACTGCATCATCG
Exon 56



AUGAUGCAGUC

GAACCUUCCAG

GAACCTTCCAG






646
UGGAAGGUUCCGA
1266
GACUGCAUCAUCG
1886
GACTGCATCATCG
Exon 56



UGAUGCAGUC

GAACCUUCCA

GAACCTTCCA






647
GGAAGGUUCCGAU
1267
GACUGCAUCAUCG
1887
GACTGCATCATCG
Exon 56



GAUGCAGUC

GAACCUUCC

GAACCTTCC






648
GGAGUAAAAGAGC
1268
AUUGUUUCAUCAG
1888
ATTGTTTCATCAG
Exon 55



UGAUGAAACAAU

CUCUUUUACUCC

CTCTTTTACTCC






649
UGUGGAUCCAAUU
1269
GAAUUGUUCAAUU
1889
GAATTGTTCAATT
Intron 55



GAACAAUUC

GGAUCCACA

GGATCCACA






650
AAGGUUCCGAUGA
1270
AACAGGACUGCAU
1890
AACAGGACTGCAT
Exon 56



UGCAGUCCUGUU

CAUCGGAACCUU

CATCGGAACCTT






651
AUAAUGGGGUGGU
1271
CAGUUUCACCACC
1891
CAGTTTCACCACC
Intron 54



GAAACUG

CCAUUAU

CCATTAT






652
GCACUCUUGUGGA
1272
UGUUCAAUUGGAU
1892
TGTTCAATTGGAT
Intron 55



UCCAAUUGAACA

CCACAAGAGUGC

CCACAAGAGTGC






653
GGAUCCAAUUGAA
1273
CUGAGAAUUGUUC
1893
CTGAGAATTGTTC
Intron 55



CAAUUCUCAG

AAUUGGAUCC

AATTGGATCC






654
GCCAGGGACAAAA
1274
ACUAUUUUGUUUU
1894
ACTATTTTGTTTT
Intron 55



CAAAAUAGU

GUCCCUGGC

GTCCCTGGC






655
UUUGCAAUUCUCC
1275
GAAUGUGAAUUUG
1895
GAATGTGAATTTG
Intron 55



AAAUUCACAUUC

GAGAAUUGCAAA

GAGAATTGCAAA






656
UUGCAAUUCUCCA
1276
UGAAUGUGAAUUU
1896
TGAATGTGAATTT
Intron 55



AAUUCACAUUCA

GGAGAAUUGCAA

GGAGAATTGCAA






657
UGCAAUUCUCCAA
1277
AUGAAUGUGAAUU
1897
ATGAATGTGAATT
Intron 55



AUUCACAUUCAU

UGGAGAAUUGCA

TGGAGAATTGCA






658
GCAAUUCUCCAAA
1278
GAUGAAUGUGAAU
1898
GATGAATGTGAAT
Intron 55



UUCACAUUCAUC

UUGGAGAAUUGC

TTGGAGAATTGC






659
CAAUUCUCCAAAU
1279
CGAUGAAUGUGAA
1899
CGATGAATGTGAA
Intron 55



UCACAUUCAUCG

UUUGGAGAAUUG

TTTGGAGAATTG






660
AAUUCUCCAAAUU
1280
GCGAUGAAUGUGA
1900
GCGATGAATGTGA
Intron 55



CACAUUCAUCGC

AUUUGGAGAAUU

ATTTGGAGAATT






661
AUUCUCCAAAUUC
1281
AGCGAUGAAUGUG
1901
AGCGATGAATGTG
Intron 55



ACAUUCAUCGCU

AAUUUGGAGAAU

AATTTGGAGAAT






662
UCUCCAAAUUCAC
1282
AGCGAUGAAUGUG
1902
AGCGATGAATGTG
Intron 55



AUUCAUCGCU

AAUUUGGAGA

AATTTGGAGA






663
UCCAAAUUCACAU
1283
GCGAUGAAUGUGA
1903
GCGATGAATGTGA
Intron 55



UCAUCGC

AUUUGGA

ATTTGGA






664
UUAUCACAACCUG
1284
CUGUUUUCAUCCA
1904
CTGTTTTCATCCA
Exon 56



GAUGAAAACAG

GGUUGUGAUAA

GGTTGTGATAA






665
UAUCACAACCUGG
1285
GCUGUUUUCAUCC
1905
GCTGTTTTCATCC
Exon 56



AUGAAAACAGC

AGGUUGUGAUA

AGGTTGTGATA






666
UGUGGAUCCAAUU
1286
AGAAUUGUUCAAU
1906
AGAATTGTTCAAT
Intron 55



GAACAAUUCU

UGGAUCCACA

TGGATCCACA






667
GUGGAUCCAAUUG
1287
GAAUUGUUCAAUU
1907
GAATTGTTCAATT
Intron 55



AACAAUUC

GGAUCCAC

GGATCCAC






668
UCCAAUUGAACAA
1288
AUGCUGAGAAUUG
1908
ATGCTGAGAATTG
Intron 55



UUCUCAGCAU

UUCAAUUGGA

TTCAATTGGA






669
CCAGGGACAAAAC
1289
ACUAUUUUGUUUU
1909
ACTATTTTGTTTT
Intron 55



AAAAUAGU

GUCCCUGG

GTCCCTGG






670
AAUAAUGGGGUGG
1290
CAGUUUCACCACC
1910
CAGTTTCACCACC
Intron 54



UGAAACUG

CCAUUAUU

CCATTATT






671
UGGAUCCAAUUGA
1291
CUGAGAAUUGUUC
1911
CTGAGAATTGTTC
Intron 55



ACAAUUCUCAG

AAUUGGAUCCA

AATTGGATCCA






672
AGCCAGGGACAAA
1292
ACUAUUUUGUUUU
1912
ACTATTTTGTTTT
Intron 55



ACAAAAUAGU

GUCCCUGGCU

GTCCCTGGCT






673
GCCAGGGACAAAA
1293
AACUAUUUUGUUU
1913
AACTATTTTGTTT
Intron 55



CAAAAUAGUU

UGUCCCUGGC

TGTCCCTGGC






674
UUCUCCAAAUUCA
1294
AGCGAUGAAUGUG
1914
AGCGATGAATGTG
Intron 55



CAUUCAUCGCU

AAUUUGGAGAA

AATTTGGAGAA






675
UCUCCAAAUUCAC
1295
AAGCGAUGAAUGU
1915
AAGCGATGAATGT
Intron 55



AUUCAUCGCUU

GAAUUUGGAGA

GAATTTGGAGA






676
CUCCAAAUUCACA
1296
GCGAUGAAUGUGA
1916
GCGATGAATGTGA
Intron 55



UUCAUCGC

AUUUGGAG

ATTTGGAG






677
UCCAAAUUCACAU
1297
AGCGAUGAAUGUG
1917
AGCGATGAATGTG
Intron 55



UCAUCGCU

AAUUUGGA

AATTTGGA






678
GUAAUUCUGCACA
1298
GGAAGAAGAAUAU
1918
GGAAGAAGAATAT
Intron 55



UAUUCUUCUUCC

GUGCAGAAUUAC

GTGCAGAATTAC






679
UUUAUCACAACCU
1299
CUGUUUUCAUCCA
1919
CTGTTTTCATCCA
Exon 56



GGAUGAAAACAG

GGUUGUGAUAAA

GGTTGTGATAAA






680
GUGGAUCCAAUUG
1300
AGAAUUGUUCAAU
1920
AGAATTGTTCAAT
Intron 55



AACAAUUCU

UGGAUCCAC

TGGATCCAC






681
UCCAAUUGAACAA
1301
AAUGCUGAGAAUU
1921
AATGCTGAGAATT
Intron 55



UUCUCAGCAUU

GUUCAAUUGGA

GTTCAATTGGA






682
CCAGGGACAAAAC
1302
AACUAUUUUGUUU
1922
AACTATTTTGTTT
Intron 55



AAAAUAGUU

UGUCCCUGG

TGTCCCTGG






683
UCCAAAUUCACAU
1303
AAGCGAUGAAUGU
1923
AAGCGATGAATGT
Intron 55



UCAUCGCUU

GAAUUUGGA

GAATTTGGA






684
CCAAAUUCACAUU
1304
CAAGCGAUGAAUG
1924
CAAGCGATGAATG
Intron 55



CAUCGCUUG

UGAAUUUGG

TGAATTTGG






685
UGGUAAUUCUGCA
1305
GAAGAAUAUGUGC
1925
GAAGAATATGTGC
Intron 55



CAUAUUCUUC

AGAAUUACCA

AGAATTACCA






686
GUGGAUCCAAUUG
1306
CUGAGAAUUGUUC
1926
CTGAGAATTGTTC
Intron 55



AACAAUUCUCAG

AAUUGGAUCCAC

AATTGGATCCAC






687
UGGAUCCAAUUGA
1307
GCUGAGAAUUGUU
1927
GCTGAGAATTGTT
Intron 55



ACAAUUCUCAGC

CAAUUGGAUCCA

CAATTGGATCCA






688
GGAUCCAAUUGAA
1308
GAGAAUUGUUCAA
1928
GAGAATTGTTCAA
Intron 55



CAAUUCUC

UUGGAUCC

TTGGATCC






689
CAAGCCAGGGACA
1309
CUAUUUUGUUUUG
1929
CTATTTTGTTTTG
Intron 55



AAACAAAAUAG

UCCCUGGCUUG

TCCCTGGCTTG






690
AAGCCAGGGACAA
1310
ACUAUUUUGUUUU
1930
ACTATTTTGTTTT
Intron 55



AACAAAAUAGU

GUCCCUGGCUU

GTCCCTGGCTT






691
AGCCAGGGACAAA
1311
AACUAUUUUGUUU
1931
AACTATTTTGTTT
Intron 55



ACAAAAUAGUU

UGUCCCUGGCU

TGTCCCTGGCT






692
GCCAGGGACAAAA
1312
CAACUAUUUUGUU
1932
CAACTATTTTGTT
Intron 55



CAAAAUAGUUG

UUGUCCCUGGC

TTGTCCCTGGC






693
UUCUCCAAAUUCA
1313
AAGCGAUGAAUGU
1933
AAGCGATGAATGT
Intron 55



CAUUCAUCGCUU

GAAUUUGGAGAA

GAATTTGGAGAA






694
UCUCCAAAUUCAC
1314
CAAGCGAUGAAUG
1934
CAAGCGATGAATG
Intron 55



AUUCAUCGCUUG

UGAAUUUGGAGA

TGAATTTGGAGA






695
CUCCAAAUUCACA
1315
AGCGAUGAAUGUG
1935
AGCGATGAATGTG
Intron 55



UUCAUCGCU

AAUUUGGAG

AATTTGGAG






696
GUUCCGAUGAUGC
1316
CAGGACUGCAUCA
1936
CAGGACTGCATCA
Exon 56



AGUCCUG

UCGGAAC

TCGGAAC






697
UUCCGAUGAUGCA
1317
ACAGGACUGCAUC
1937
ACAGGACTGCATC
Exon 56



GUCCUGU

AUCGGAA

ATCGGAA






698
UCCGAUGAUGCAG
1318
AACAGGACUGCAU
1938
AACAGGACTGCAT
Exon 56



UCCUGUU

CAUCGGA

CATCGGA






699
UCCGAUGAUGCAG
1319
UUGUAACAGGACU
1939
TTGTAACAGGACT
Exon 56



UCCUGUUACAA

GCAUCAUCGGA

GCATCATCGGA






700
UCCGAUGAUGCAG
1320
UUUGUAACAGGAC
1940
TTTGTAACAGGAC
Exon 56



UCCUGUUACAAA

UGCAUCAUCGGA

TGCATCATCGGA






701
UCCAAUUGAACAA
1321
AAAUGCUGAGAAU
1941
AAATGCTGAGAAT
Intron 55



UUCUCAGCAUUU

UGUUCAAUUGGA

TGTTCAATTGGA






702
CCAGGGACAAAAC
1322
CAACUAUUUUGUU
1942
CAACTATTTTGTT
Intron 55



AAAAUAGUUG

UUGUCCCUGG

TTGTCCCTGG






703
CUCCAAAUUCACA
1323
AAGCGAUGAAUGU
1943
AAGCGATGAATGT
Intron 55



UUCAUCGCUU

GAAUUUGGAG

GAATTTGGAG






704
UCCAAAUUCACAU
1324
CAAGCGAUGAAUG
1944
CAAGCGATGAATG
Intron 55



UCAUCGCUUG

UGAAUUUGGA

TGAATTTGGA






705
UUGGUAAUUCUGC
1325
GAAGAAUAUGUGC
1945
GAAGAATATGTGC
Intron 55



ACAUAUUCUUC

AGAAUUACCAA

AGAATTACCAA






706
UGGUAAUUCUGCA
1326
AGAAGAAUAUGUG
1946
AGAAGAATATGTG
Intron 55



CAUAUUCUUCU

CAGAAUUACCA

CAGAATTACCA






707
UAAUAAUGGGGUG
1327
GUUUCACCACCCC
1947
GTTTCACCACCCC
Intron 54



GUGAAAC

AUUAUUA

ATTATTA






708
UGGAUCCAAUUGA
1328
GAGAAUUGUUCAA
1948
GAGAATTGTTCAA
Intron 55



ACAAUUCUC

UUGGAUCCA

TTGGATCCA






709
CAAGCCAGGGACA
1329
ACUAUUUUGUUUU
1949
ACTATTTTGTTTT
Intron 55



AAACAAAAUAGU

GUCCCUGGCUUG

GTCCCTGGCTTG






710
AGCCAGGGACAAA
1330
CAACUAUUUUGUU
1950
CAACTATTTTGTT
Intron 55



ACAAAAUAGUUG

UUGUCCCUGGCU

TTGTCCCTGGCT






711
UUCCGAUGAUGCA
1331
AACAGGACUGCAU
1951
AACAGGACTGCAT
Exon 56



GUCCUGUU

CAUCGGAA

CATCGGAA






712
UUUGGUAAUUCUG
1332
GAAGAAUAUGUGC
1952
GAAGAATATGTGC
Intron 55



CACAUAUUCUUC

AGAAUUACCAAA

AGAATTACCAAA






713
UUGGUAAUUCUGC
1333
AGAAGAAUAUGUG
1953
AGAAGAATATGTG
Intron 55



ACAUAUUCUUCU

CAGAAUUACCAA

CAGAATTACCAA






714
UGGUAAUUCUGCA
1334
AAGAAGAAUAUGU
1954
AAGAAGAATATGT
Intron 55



CAUAUUCUUCUU

GCAGAAUUACCA

GCAGAATTACCA






715
UGGAUCCAAUUGA
1335
UGAGAAUUGUUCA
1955
TGAGAATTGTTCA
Intron 55



ACAAUUCUCA

AUUGGAUCCA

ATTGGATCCA






716
GUUCCGAUGAUGC
1336
AACAGGACUGCAU
1956
AACAGGACTGCAT
Exon 56



AGUCCUGUU

CAUCGGAAC

CATCGGAAC






717
UUCCGAUGAUGCA
1337
UAACAGGACUGCA
1957
TAACAGGACTGCA
Exon 56



GUCCUGUUA

UCAUCGGAA

TCATCGGAA






718
GGUAAUUCUGCAC
1338
GAAGAAUAUGUGC
1958
GAAGAATATGTGC
Intron 55



AUAUUCUUC

AGAAUUACC

AGAATTACC






719
UCCGAUGAUGCAG
1339
UGUAACAGGACUG
1959
TGTAACAGGACTG
Exon 56



UCCUGUUACA

CAUCAUCGGA

CATCATCGGA






720
GGUAAUUCUGCAC
1340
AGAAGAAUAUGUG
1960
AGAAGAATATGTG
Intron 55



AUAUUCUUCU

CAGAAUUACC

CAGAATTACC






721
UUCCGAUGAUGCA
1341
UGUAACAGGACUG
1961
TGTAACAGGACTG
Exon 56



GUCCUGUUACA

CAUCAUCGGAA

CATCATCGGAA






722
GUAAUUCUGCACA
1342
GAAGAAGAAUAUG
1962
GAAGAAGAATATG
Intron 55



UAUUCUUCUUC

UGCAGAAUUAC

TGCAGAATTAC






723
AUUGAACAAUUCU
1343
GUACAAAUGCUGA
1963
GTACAAATGCTGA
Intron 55



CAGCAUUUGUAC

GAAUUGUUCAAU

GAATTGTTCAAT






724
AUCACAACCUGGA
1344
GCUGUUUUCAUCC
1964
GCTGTTTTCATCC
Exon 56



UGAAAACAGC

AGGUUGUGAU

AGGTTGTGAT






725
UCACAACCUGGAU
1345
GCUGUUUUCAUCC
1965
GCTGTTTTCATCC
Exon 56



GAAAACAGC

AGGUUGUGA

AGGTTGTGA






726
CACAACCUGGAUG
1346
GCUGUUUUCAUCC
196
GCTGTTTTCATCC
Exon 56



AAAACAGC

AGGUUGUG

AGGTTGTG






727
GAAGGUUCCGAUG
1347
GACUGCAUCAUCG
1967
GACTGCATCATCG
Exon 56



AUGCAGUC

GAACCUUC

GAACCTTC






728
GAAGGUUCCGAUG
1348
AGGACUGCAUCAU
1968
AGGACTGCATCAT
Exon 56



AUGCAGUCCU

CGGAACCUUC

CGGAACCTTC






729
AAGGUUCCGAUGA
1349
GACUGCAUCAUCG
1969
GACTGCATCATCG
Exon 56



UGCAGUC

GAACCUU

GAACCTT






730
AAGGUUCCGAUGA
1350
AGGACUGCAUCAU
1970
AGGACTGCATCAT
Exon 56



UGCAGUCCU

CGGAACCUU

CGGAACCTT






731
GGAGCUUGGGAGG
1351
CGUCUUGAACCCU
1971
CGTCTTGAACCCT
Intron 54



GUUCAAGACG

CCCAAGCUCC

CCCAAGCTCC






732
CCUGAGAUCCCUG
1352
GGAACCUUCCAGG
1972
GGAACCTTCCAGG
Exon 56



GAAGGUUCC

GAUCUCAGG

GATCTCAGG






733
UGGCUGUAAUAAU
1353
ACCACCCCAUUAU
1973
ACCACCCCATTAT
Intron 54



GGGGUGGU

UACAGCCA

TACAGCCA






734
GGCUGUAAUAAUG
1354
ACCACCCCAUUAU
1974
ACCACCCCATTAT
Intron 54



GGGUGGU

UACAGCC

TACAGCC






735
GGCUGUAAUAAUG
1355
CACCACCCCAUUA
1975
CACCACCCCATTA
Intron 54



GGGUGGUG

UUACAGCC

TTACAGCC






736
UUGGCUGUAAUAA
1356
ACCACCCCAUUAU
1976
ACCACCCCATTAT
Intron 54



UGGGGUGGU

UACAGCCAA

TACAGCCAA






737
UUGGCUGUAAUAA
1357
CACCACCCCAUUA
1977
CACCACCCCATTA
Intron 54



UGGGGUGGUG

UUACAGCCAA

TTACAGCCAA






738
AUGGCAAGUAAGU
1358
AUGCCUGACUUAC
1978
ATGCCTGACTTAC
Exon 55/intron 55



CAGGCAU

UUGCCAU

TTGCCAT
junction





739
UGGCUGUAAUAAU
1359
UUCACCACCCCAU
1979
TTCACCACCCCAT
Intron 54



GGGGUGGUGAA

UAUUACAGCCA

TATTACAGCCA






740
GGCUGUAAUAAUG
1360
UUCACCACCCCAU
1980
TTCACCACCCCAT
Intron 54



GGGUGGUGAA

UAUUACAGCC

TATTACAGCC






741
GCUGUAAUAAUGG
1361
CACCACCCCAUUA
1981
CACCACCCCATTA
Intron 54



GGUGGUG

UUACAGC

TTACAGC






742
GGAGCUUGGGAGG
1362
GUCUUGAACCCUC
1982
GTCTTGAACCCTC
Intron 54



GUUCAAGAC

CCAAGCUCC

CCAAGCTCC






743
AUGGAGUUCACUA
1363
GUGCACCUAGUGA
1983
GTGCACCTAGTGA
Intron 54



GGUGCAC

ACUCCAU

ACTCCAT






744
AAUGGCAAGUAAG
1364
AUGCCUGACUUAC
1984
ATGCCTGACTTAC
Exon 55/intron 55



UCAGGCAU

UUGCCAUU

TTGCCATT
junction





745
AUGGCAAGUAAGU
1365
AAUGCCUGACUUA
1985
AATGCCTGACTTA
Exon 55/intron 55



CAGGCAUU

CUUGCCAU

CTTGCCAT
junction





746
UUGGCUGUAAUAA
1366
UUCACCACCCCAU
1986
TTCACCACCCCAT
Intron 54



UGGGGUGGUGAA

UAUUACAGCCAA

TATTACAGCCAA






747
UAAUGGGGUGGUG
1367
CCAGUUUCACCAC
1987
CCAGTTTCACCAC
Intron 54



AAACUGG

CCCAUUA

CCCATTA






748
UGGCAAGUAAGUC
1368
CGGAAAUGCCUGA
1988
CGGAAATGCCTGA
Exon 55/intron 55



AGGCAUUUCCG

CUUACUUGCCA

CTTACTTGCCA
junction





749
GCUGUAAUAAUGG
1369
UUCACCACCCCAU
1989
TTCACCACCCCAT
Intron 54



GGUGGUGAA

UAUUACAGC

TATTACAGC






750
AAUGGCAAGUAAG
1370
AAUGCCUGACUUA
1990
AATGCCTGACTTA
Exon 55/intron 55



UCAGGCAUU

CUUGCCAUU

CTTGCCATT
junction





751
AUGGCAAGUAAGU
1371
AAAUGCCUGACUU
1991
AAATGCCTGACTT
Exon 55/intron 55



CAGGCAUUU

ACUUGCCAU

ACTTGCCAT
junction





752
GCAAGUAAGUCAG
1372
AGCGGAAAUGCCU
1992
AGCGGAAATGCCT
Exon 55/intron 55



GCAUUUCCGCU

GACUUACUUGC

GACTTACTTGC
junction





753
AUAAUGGGGUGGU
1373
CCAGUUUCACCAC
1993
CCAGTTTCACCAC
Intron 54



GAAACUGG

CCCAUUAU

CCCATTAT






754
AAUGGCAAGUAAG
1374
UGCCUGACUUACU
1994
TGCCTGACTTACT
Exon 55/intron 55



UCAGGCA

UGCCAUU

TGCCATT
junction





755
AUGGCAAGUAAGU
1375
CGGAAAUGCCUGA
1995
CGGAAATGCCTGA
Exon 55/intron 55



CAGGCAUUUCCG

CUUACUUGCCAU

CTTACTTGCCAT
junction





756
CGAUGAUGCAGUC
1376
UCUUUGUAACAGG
1996
TCTTTGTAACAGG
Exon 56



CUGUUACAAAGA

ACUGCAUCAUCG

ACTGCATCATCG






757
AAUGGCAAGUAAG
1377
AAAUGCCUGACUU
1997
AAATGCCTGACTT
Exon 55/intron 55



UCAGGCAUUU

ACUUGCCAUU

ACTTGCCATT
junction





758
GCAAGUAAGUCAG
1378
GGAAAUGCCUGAC
1998
GGAAATGCCTGAC
Exon 55/intron 55



GCAUUUCC

UUACUUGC

TTACTTGC
junction





759
GCAAGUAAGUCAG
1379
AAGCGGAAAUGCC
1999
AAGCGGAAATGCC
Exon 55/intron 55



GCAUUUCCGCUU

UGACUUACUUGC

TGACTTACTTGC
junction





760
CAAGUAAGUCAGG
1380
AGCGGAAAUGCCU
2000
AGCGGAAATGCCT
Exon 55/intron 55



CAUUUCCGCU

GACUUACUUG

GACTTACTTG
junction





761
AAUAAUGGGGUGG
1381
CCAGUUUCACCAC
2001
CCAGTTTCACCAC
Intron 54



UGAAACUGG

CCCAUUAUU

CCCATTATT






762
GGCAAGUAAGUCA
1382
GAAAUGCCUGACU
2002
GAAATGCCTGACT
Exon 55/intron 55



GGCAUUUC

UACUUGCC

TACTTGCC
junction





763
CCGAUGAUGCAGU
1383
CUUUGUAACAGGA
2003
CTTTGTAACAGGA
Exon 56



CCUGUUACAAAG

CUGCAUCAUCGG

CTGCATCATCGG






764
GCAAGUAAGUCAG
1384
CGGAAAUGCCUGA
2004
CGGAAATGCCTGA
Exon 55/intron 55



GCAUUUCCG

CUUACUUGC

CTTACTTGC
junction





765
CAAGUAAGUCAGG
1385
GCGGAAAUGCCUG
2005
GCGGAAATGCCTG
Exon 55/intron 55



CAUUUCCGC

ACUUACUUG

ACTTACTTG
junction





766
GUUUGGUAAUUCU
1386
GAAUAUGUGCAGA
2006
GAATATGTGCAGA
Intron 55



GCACAUAUUC

AUUACCAAAC

ATTACCAAAC






767
UAAUAAUGGGGUG
1387
CCAGUUUCACCAC
2007
CCAGTTTCACCAC
Intron 54



GUGAAACUGG

CCCAUUAUUA

CCCATTATTA






768
UGGCAAGUAAGUC
1388
GAAAUGCCUGACU
2008
GAAATGCCTGACT
Exon 55/intron 55



AGGCAUUUC

UACUUGCCA

TACTTGCCA
junction





769
GGCAAGUAAGUCA
1389
GGAAAUGCCUGAC
2009
GGAAATGCCTGAC
Exon 55/intron 55



GGCAUUUCC

UUACUUGCC

TTACTTGCC
junction





770
CCGAUGAUGCAGU
1390
UAACAGGACUGCA
2010
TAACAGGACTGCA
Exon 56



CCUGUUA

UCAUCGG

TCATCGG






771
CGAUGAUGCAGUC
1391
GUAACAGGACUGC
2011
GTAACAGGACTGC
Exon 56



CUGUUAC

AUCAUCG

ATCATCG






772
CCAAAUUCACAUU
1392
ACAAGCGAUGAAU
2012
ACAAGCGATGAAT
Intron 55



CAUCGCUUGU

GUGAAUUUGG

GTGAATTTGG






773
GUUUGGUAAUUCU
1393
AGAAUAUGUGCAG
2013
AGAATATGTGCAG
Intron 55



GCACAUAUUCU

AAUUACCAAAC

AATTACCAAAC






774
GUAAUAAUGGGGU
1394
UUUCACCACCCCA
2014
TTTCACCACCCCA
Intron 54



GGUGAAA

UUAUUAC

TTATTAC






775
GUAAUAAUGGGGU
1395
CAGUUUCACCACC
2015
CAGTTTCACCACC
Intron 54



GGUGAAACUG

CCAUUAUUAC

CCATTATTAC






776
GGCAAGUAAGUCA
1396
CGGAAAUGCCUGA
2016
CGGAAATGCCTGA
Exon 55/intron 55



GGCAUUUCCG

CUUACUUGCC

CTTACTTGCC
junction





777
CCGAUGAUGCAGU
1397
UGUAACAGGACUG
2017
TGTAACAGGACTG
Exon 56



CCUGUUACA

CAUCAUCGG

CATCATCGG






778
GUAAUAAUGGGGU
1398
AGUUUCACCACCC
2018
AGTTTCACCACCC
Intron 54



GGUGAAACU

CAUUAUUAC

CATTATTAC






779
CUCCAAAUUCACA
1399
ACAAGCGAUGAAU
2019
ACAAGCGATGAAT
Intron 55



UUCAUCGCUUGU

GUGAAUUUGGAG

GTGAATTTGGAG





†Each thymine base (T) in any one of the oligonucleotides and/or target sequences provided in Table 8 may independently and optionally be replaced with a uracil base (U), and/or each U may independently and optionally be replaced with a T. Target sequences listed in Table 8 contain U's, but binding of a DMD-targeting oligonucleotide to RNA and/or DNA is contemplated.






In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a region of a DMD sequence. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a region of a DMD RNA (e.g., the Dp427m transcript of SEQ ID NO: 130). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to a DMD RNA (e.g., the Dp427m transcript of SEQ ID NO: 130). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to an exon of a DMD RNA (e.g., SEQ ID NO: 2142, 2152, or 2165). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to an intron of a DMD RNA (e.g., SEQ ID NO: 2145 or 2157). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to a portion of a DMD sequence (e.g., a sequence provided by any one of SEQ ID NOs: 2143, 2144, 2146-2151, 2153-2156, 2158-2164, and 2166-2169). Examples of DMD sequences are provided below. Each of the DMD sequences provided below include thymine nucleotides (T's), but it should be understood that each sequence can represent a DNA sequence or an RNA sequence in which any or all of the T's would be replaced with uracil nucleotides (U's).











Homo sapiens dystrophin (DMD), transcript variant Dp427m, mRNA (NCBI




Reference Sequence: NM_004006.2)


(SEQ ID NO: 130)



TCCTGGCATCAGTTACTGTGTTGACTCACTCAGTGTTGGGATCACTCACTTTCCCCCTACAGGACTCAGATCTGGGA






GGCAATTACCTTCGGAGAAAAACGAATAGGAAAAACTGAAGTGTTACTTTTTTTAAAGCTGCTGAAGTTTGTTGGTT





TCTCATTGTTTTTAAGCCTACTGGAGCAATAAAGTTTGAAGAACTTTTACCAGGTTTTTTTTATCGCTGCCTTGATA





TACACTTTTCAAAATGCTTTGGTGGGAAGAAGTAGAGGACTGTTATGAAAGAGAAGATGTTCAAAAGAAAACATTCA





CAAAATGGGTAAATGCACAATTTTCTAAGTTTGGGAAGCAGCATATTGAGAACCTCTTCAGTGACCTACAGGATGGG





AGGCGCCTCCTAGACCTCCTCGAAGGCCTGACAGGGCAAAAACTGCCAAAAGAAAAAGGATCCACAAGAGTTCATGC





CCTGAACAATGTCAACAAGGCACTGCGGGTTTTGCAGAACAATAATGTTGATTTAGTGAATATTGGAAGTACTGACA





TCGTAGATGGAAATCATAAACTGACTCTTGGTTTGATTTGGAATATAATCCTCCACTGGCAGGTCAAAAATGTAATG





AAAAATATCATGGCTGGATTGCAACAAACCAACAGTGAAAAGATTCTCCTGAGCTGGGTCCGACAATCAACTCGTAA





TTATCCACAGGTTAATGTAATCAACTTCACCACCAGCTGGTCTGATGGCCTGGCTTTGAATGCTCTCATCCATAGTC





ATAGGCCAGACCTATTTGACTGGAATAGTGTGGTTTGCCAGCAGTCAGCCACACAACGACTGGAACATGCATTCAAC





ATCGCCAGATATCAATTAGGCATAGAGAAACTACTCGATCCTGAAGATGTTGATACCACCTATCCAGATAAGAAGTC





CATCTTAATGTACATCACATCACTCTTCCAAGTTTTGCCTCAACAAGTGAGCATTGAAGCCATCCAGGAAGTGGAAA





TGTTGCCAAGGCCACCTAAAGTGACTAAAGAAGAACATTTTCAGTTACATCATCAAATGCACTATTCTCAACAGATC





ACGGTCAGTCTAGCACAGGGATATGAGAGAACTTCTTCCCCTAAGCCTCGATTCAAGAGCTATGCCTACACACAGGC





TGCTTATGTCACCACCTCTGACCCTACACGGAGCCCATTTCCTTCACAGCATTTGGAAGCTCCTGAAGACAAGTCAT





TTGGCAGTTCATTGATGGAGAGTGAAGTAAACCTGGACCGTTATCAAACAGCTTTAGAAGAAGTATTATCGTGGCTT





CTTTCTGCTGAGGACACATTGCAAGCACAAGGAGAGATTTCTAATGATGTGGAAGTGGTGAAAGACCAGTTTCATAC





TCATGAGGGGTACATGATGGATTTGACAGCCCATCAGGGCCGGGTTGGTAATATTCTACAATTGGGAAGTAAGCTGA





TTGGAACAGGAAAATTATCAGAAGATGAAGAAACTGAAGTACAAGAGCAGATGAATCTCCTAAATTCAAGATGGGAA





TGCCTCAGGGTAGCTAGCATGGAAAAACAAAGCAATTTACATAGAGTTTTAATGGATCTCCAGAATCAGAAACTGAA





AGAGTTGAATGACTGGCTAACAAAAACAGAAGAAAGAACAAGGAAAATGGAGGAAGAGCCTCTTGGACCTGATCTTG





AAGACCTAAAACGCCAAGTACAACAACATAAGGTGCTTCAAGAAGATCTAGAACAAGAACAAGTCAGGGTCAATTCT





CTCACTCACATGGTGGTGGTAGTTGATGAATCTAGTGGAGATCACGCAACTGCTGCTTTGGAAGAACAACTTAAGGT





ATTGGGAGATCGATGGGCAAACATCTGTAGATGGACAGAAGACCGCTGGGTTCTTTTACAAGACATCCTTCTCAAAT





GGCAACGTCTTACTGAAGAACAGTGCCTTTTTAGTGCATGGCTTTCAGAAAAAGAAGATGCAGTGAACAAGATTCAC





ACAACTGGCTTTAAAGATCAAAATGAAATGTTATCAAGTCTTCAAAAACTGGCCGTTTTAAAAGCGGATCTAGAAAA





GAAAAAGCAATCCATGGGCAAACTGTATTCACTCAAACAAGATCTTCTTTCAACACTGAAGAATAAGTCAGTGACCC





AGAAGACGGAAGCATGGCTGGATAACTTTGCCCGGTGTTGGGATAATTTAGTCCAAAAACTTGAAAAGAGTACAGCA





CAGATTTCACAGGCTGTCACCACCACTCAGCCATCACTAACACAGACAACTGTAATGGAAACAGTAACTACGGTGAC





CACAAGGGAACAGATCCTGGTAAAGCATGCTCAAGAGGAACTTCCACCACCACCTCCCCAAAAGAAGAGGCAGATTA





CTGTGGATTCTGAAATTAGGAAAAGGTTGGATGTTGATATAACTGAACTTCACAGCTGGATTACTCGCTCAGAAGCT





GTGTTGCAGAGTCCTGAATTTGCAATCTTTCGGAAGGAAGGCAACTTCTCAGACTTAAAAGAAAAAGTCAATGCCAT





AGAGCGAGAAAAAGCTGAGAAGTTCAGAAAACTGCAAGATGCCAGCAGATCAGCTCAGGCCCTGGTGGAACAGATGG





TGAATGAGGGTGTTAATGCAGATAGCATCAAACAAGCCTCAGAACAACTGAACAGCCGGTGGATCGAATTCTGCCAG





TTGCTAAGTGAGAGACTTAACTGGCTGGAGTATCAGAACAACATCATCGCTTTCTATAATCAGCTACAACAATTGGA





GCAGATGACAACTACTGCTGAAAACTGGTTGAAAATCCAACCCACCACCCCATCAGAGCCAACAGCAATTAAAAGTC





AGTTAAAAATTTGTAAGGATGAAGTCAACCGGCTATCAGGTCTTCAACCTCAAATTGAACGATTAAAAATTCAAAGC





ATAGCCCTGAAAGAGAAAGGACAAGGACCCATGTTCCTGGATGCAGACTTTGTGGCCTTTACAAATCATTTTAAGCA





AGTCTTTTCTGATGTGCAGGCCAGAGAGAAAGAGCTACAGACAATTTTTGACACTTTGCCACCAATGCGCTATCAGG





AGACCATGAGTGCCATCAGGACATGGGTCCAGCAGTCAGAAACCAAACTCTCCATACCTCAACTTAGTGTCACCGAC





TATGAAATCATGGAGCAGAGACTCGGGGAATTGCAGGCTTTACAAAGTTCTCTGCAAGAGCAACAAAGTGGCCTATA





CTATCTCAGCACCACTGTGAAAGAGATGTCGAAGAAAGCGCCCTCTGAAATTAGCCGGAAATATCAATCAGAATTTG





AAGAAATTGAGGGACGCTGGAAGAAGCTCTCCTCCCAGCTGGTTGAGCATTGTCAAAAGCTAGAGGAGCAAATGAAT





AAACTCCGAAAAATTCAGAATCACATACAAACCCTGAAGAAATGGATGGCTGAAGTTGATGTTTTTCTGAAGGAGGA





ATGGCCTGCCCTTGGGGATTCAGAAATTCTAAAAAAGCAGCTGAAACAGTGCAGACTTTTAGTCAGTGATATTCAGA





CAATTCAGCCCAGTCTAAACAGTGTCAATGAAGGTGGGCAGAAGATAAAGAATGAAGCAGAGCCAGAGTTTGCTTCG





AGACTTGAGACAGAACTCAAAGAACTTAACACTCAGTGGGATCACATGTGCCAACAGGTCTATGCCAGAAAGGAGGC





CTTGAAGGGAGGTTTGGAGAAAACTGTAAGCCTCCAGAAAGATCTATCAGAGATGCACGAATGGATGACACAAGCTG





AAGAAGAGTATCTTGAGAGAGATTTTGAATATAAAACTCCAGATGAATTACAGAAAGCAGTTGAAGAGATGAAGAGA





GCTAAAGAAGAGGCCCAACAAAAAGAAGCGAAAGTGAAACTCCTTACTGAGTCTGTAAATAGTGTCATAGCTCAAGC





TCCACCTGTAGCACAAGAGGCCTTAAAAAAGGAACTTGAAACTCTAACCACCAACTACCAGTGGCTCTGCACTAGGC





TGAATGGGAAATGCAAGACTTTGGAAGAAGTTTGGGCATGTTGGCATGAGTTATTGTCATACTTGGAGAAAGCAAAC





AAGTGGCTAAATGAAGTAGAATTTAAACTTAAAACCACTGAAAACATTCCTGGCGGAGCTGAGGAAATCTCTGAGGT





GCTAGATTCACTTGAAAATTTGATGCGACATTCAGAGGATAACCCAAATCAGATTCGCATATTGGCACAGACCCTAA





CAGATGGCGGAGTCATGGATGAGCTAATCAATGAGGAACTTGAGACATTTAATTCTCGTTGGAGGGAACTACATGAA





GAGGCTGTAAGGAGGCAAAAGTTGCTTGAACAGAGCATCCAGTCTGCCCAGGAGACTGAAAAATCCTTACACTTAAT





CCAGGAGTCCCTCACATTCATTGACAAGCAGTTGGCAGCTTATATTGCAGACAAGGTGGACGCAGCTCAAATGCCTC





AGGAAGCCCAGAAAATCCAATCTGATTTGACAAGTCATGAGATCAGTTTAGAAGAAATGAAGAAACATAATCAGGGG





AAGGAGGCTGCCCAAAGAGTCCTGTCTCAGATTGATGTTGCACAGAAAAAATTACAAGATGTCTCCATGAAGTTTCG





ATTATTCCAGAAACCAGCCAATTTTGAGCAGCGTCTACAAGAAAGTAAGATGATTTTAGATGAAGTGAAGATGCACT





TGCCTGCATTGGAAACAAAGAGTGTGGAACAGGAAGTAGTACAGTCACAGCTAAATCATTGTGTGAACTTGTATAAA





AGTCTGAGTGAAGTGAAGTCTGAAGTGGAAATGGTGATAAAGACTGGACGTCAGATTGTACAGAAAAAGCAGACGGA





AAATCCCAAAGAACTTGATGAAAGAGTAACAGCTTTGAAATTGCATTATAATGAGCTGGGAGCAAAGGTAACAGAAA





GAAAGCAACAGTTGGAGAAATGCTTGAAATTGTCCCGTAAGATGCGAAAGGAAATGAATGTCTTGACAGAATGGCTG





GCAGCTACAGATATGGAATTGACAAAGAGATCAGCAGTTGAAGGAATGCCTAGTAATTTGGATTCTGAAGTTGCCTG





GGGAAAGGCTACTCAAAAAGAGATTGAGAAACAGAAGGTGCACCTGAAGAGTATCACAGAGGTAGGAGAGGCCTTGA





AAACAGTTTTGGGCAAGAAGGAGACGTTGGTGGAAGATAAACTCAGTCTTCTGAATAGTAACTGGATAGCTGTCACC





TCCCGAGCAGAAGAGTGGTTAAATCTTTTGTTGGAATACCAGAAACACATGGAAACTTTTGACCAGAATGTGGACCA





CATCACAAAGTGGATCATTCAGGCTGACACACTTTTGGATGAATCAGAGAAAAAGAAACCCCAGCAAAAAGAAGACG





TGCTTAAGCGTTTAAAGGCAGAACTGAATGACATACGCCCAAAGGTGGACTCTACACGTGACCAAGCAGCAAACTTG





ATGGCAAACCGCGGTGACCACTGCAGGAAATTAGTAGAGCCCCAAATCTCAGAGCTCAACCATCGATTTGCAGCCAT





TTCACACAGAATTAAGACTGGAAAGGCCTCCATTCCTTTGAAGGAATTGGAGCAGTTTAACTCAGATATACAAAAAT





TGCTTGAACCACTGGAGGCTGAAATTCAGCAGGGGGTGAATCTGAAAGAGGAAGACTTCAATAAAGATATGAATGAA





GACAATGAGGGTACTGTAAAAGAATTGTTGCAAAGAGGAGACAACTTACAACAAAGAATCACAGATGAGAGAAAGCG





AGAGGAAATAAAGATAAAACAGCAGCTGTTACAGACAAAACATAATGCTCTCAAGGATTTGAGGTCTCAAAGAAGAA





AAAAGGCTCTAGAAATTTCTCATCAGTGGTATCAGTACAAGAGGCAGGCTGATGATCTCCTGAAATGCTTGGATGAC





ATTGAAAAAAAATTAGCCAGCCTACCTGAGCCCAGAGATGAAAGGAAAATAAAGGAAATTGATCGGGAATTGCAGAA





GAAGAAAGAGGAGCTGAATGCAGTGCGTAGGCAAGCTGAGGGCTTGTCTGAGGATGGGGCCGCAATGGCAGTGGAGC





CAACTCAGATCCAGCTCAGCAAGCGCTGGCGGGAAATTGAGAGCAAATTTGCTCAGTTTCGAAGACTCAACTTTGCA





CAAATTCACACTGTCCGTGAAGAAACGATGATGGTGATGACTGAAGACATGCCTTTGGAAATTTCTTATGTGCCTTC





TACTTATTTGACTGAAATCACTCATGTCTCACAAGCCCTATTAGAAGTGGAACAACTTCTCAATGCTCCTGACCTCT





GTGCTAAGGACTTTGAAGATCTCTTTAAGCAAGAGGAGTCTCTGAAGAATATAAAAGATAGTCTACAACAAAGCTCA





GGTCGGATTGACATTATTCATAGCAAGAAGACAGCAGCATTGCAAAGTGCAACGCCTGTGGAAAGGGTGAAGCTACA





GGAAGCTCTCTCCCAGCTTGATTTCCAATGGGAAAAAGTTAACAAAATGTACAAGGACCGACAAGGGCGATTTGACA





GATCTGTTGAGAAATGGCGGCGTTTTCATTATGATATAAAGATATTTAATCAGTGGCTAACAGAAGCTGAACAGTTT





CTCAGAAAGACACAAATTCCTGAGAATTGGGAACATGCTAAATACAAATGGTATCTTAAGGAACTCCAGGATGGCAT





TGGGCAGCGGCAAACTGTTGTCAGAACATTGAATGCAACTGGGGAAGAAATAATTCAGCAATCCTCAAAAACAGATG





CCAGTATTCTACAGGAAAAATTGGGAAGCCTGAATCTGCGGTGGCAGGAGGTCTGCAAACAGCTGTCAGACAGAAAA





AAGAGGCTAGAAGAACAAAAGAATATCTTGTCAGAATTTCAAAGAGATTTAAATGAATTTGTTTTATGGTTGGAGGA





AGCAGATAACATTGCTAGTATCCCACTTGAACCTGGAAAAGAGCAGCAACTAAAAGAAAAGCTTGAGCAAGTCAAGT





TACTGGTGGAAGAGTTGCCCCTGCGCCAGGGAATTCTCAAACAATTAAATGAAACTGGAGGACCCGTGCTTGTAAGT





GCTCCCATAAGCCCAGAAGAGCAAGATAAACTTGAAAATAAGCTCAAGCAGACAAATCTCCAGTGGATAAAGGTTTC





CAGAGCTTTACCTGAGAAACAAGGAGAAATTGAAGCTCAAATAAAAGACCTTGGGCAGCTTGAAAAAAAGCTTGAAG





ACCTTGAAGAGCAGTTAAATCATCTGCTGCTGTGGTTATCTCCTATTAGGAATCAGTTGGAAATTTATAACCAACCA





AACCAAGAAGGACCATTTGACGTTCAGGAAACTGAAATAGCAGTTCAAGCTAAACAACCGGATGTGGAAGAGATTTT





GTCTAAAGGGCAGCATTTGTACAAGGAAAAACCAGCCACTCAGCCAGTGAAGAGGAAGTTAGAAGATCTGAGCTCTG





AGTGGAAGGCGGTAAACCGTTTACTTCAAGAGCTGAGGGCAAAGCAGCCTGACCTAGCTCCTGGACTGACCACTATT





GGAGCCTCTCCTACTCAGACTGTTACTCTGGTGACACAACCTGTGGTTACTAAGGAAACTGCCATCTCCAAACTAGA





AATGCCATCTTCCTTGATGTTGGAGGTACCTGCTCTGGCAGATTTCAACCGGGCTTGGACAGAACTTACCGACTGGC





TTTCTCTGCTTGATCAAGTTATAAAATCACAGAGGGTGATGGTGGGTGACCTTGAGGATATCAACGAGATGATCATC





AAGCAGAAGGCAACAATGCAGGATTTGGAACAGAGGCGTCCCCAGTTGGAAGAACTCATTACCGCTGCCCAAAATTT





GAAAAACAAGACCAGCAATCAAGAGGCTAGAACAATCATTACGGATCGAATTGAAAGAATTCAGAATCAGTGGGATG





AAGTACAAGAACACCTTCAGAACCGGAGGCAACAGTTGAATGAAATGTTAAAGGATTCAACACAATGGCTGGAAGCT





AAGGAAGAAGCTGAGCAGGTCTTAGGACAGGCCAGAGCCAAGCTTGAGTCATGGAAGGAGGGTCCCTATACAGTAGA





TGCAATCCAAAAGAAAATCACAGAAACCAAGCAGTTGGCCAAAGACCTCCGCCAGTGGCAGACAAATGTAGATGTGG





CAAATGACTTGGCCCTGAAACTTCTCCGGGATTATTCTGCAGATGATACCAGAAAAGTCCACATGATAACAGAGAAT





ATCAATGCCTCTTGGAGAAGCATTCATAAAAGGGTGAGTGAGCGAGAGGCTGCTTTGGAAGAAACTCATAGATTACT





GCAACAGTTCCCCCTGGACCTGGAAAAGTTTCTTGCCTGGCTTACAGAAGCTGAAACAACTGCCAATGTCCTACAGG





ATGCTACCCGTAAGGAAAGGCTCCTAGAAGACTCCAAGGGAGTAAAAGAGCTGATGAAACAATGGCAAGACCTCCAA





GGTGAAATTGAAGCTCACACAGATGTTTATCACAACCTGGATGAAAACAGCCAAAAAATCCTGAGATCCCTGGAAGG





TTCCGATGATGCAGTCCTGTTACAAAGACGTTTGGATAACATGAACTTCAAGTGGAGTGAACTTCGGAAAAAGTCTC





TCAACATTAGGTCCCATTTGGAAGCCAGTTCTGACCAGTGGAAGCGTCTGCACCTTTCTCTGCAGGAACTTCTGGTG





TGGCTACAGCTGAAAGATGATGAATTAAGCCGGCAGGCACCTATTGGAGGCGACTTTCCAGCAGTTCAGAAGCAGAA





CGATGTACATAGGGCCTTCAAGAGGGAATTGAAAACTAAAGAACCTGTAATCATGAGTACTCTTGAGACTGTACGAA





TATTTCTGACAGAGCAGCCTTTGGAAGGACTAGAGAAACTCTACCAGGAGCCCAGAGAGCTGCCTCCTGAGGAGAGA





GCCCAGAATGTCACTCGGCTTCTACGAAAGCAGGCTGAGGAGGTCAATACTGAGTGGGAAAAATTGAACCTGCACTC





CGCTGACTGGCAGAGAAAAATAGATGAGACCCTTGAAAGACTCCAGGAACTTCAAGAGGCCACGGATGAGCTGGACC





TCAAGCTGCGCCAAGCTGAGGTGATCAAGGGATCCTGGCAGCCCGTGGGCGATCTCCTCATTGACTCTCTCCAAGAT





CACCTCGAGAAAGTCAAGGCACTTCGAGGAGAAATTGCGCCTCTGAAAGAGAACGTGAGCCACGTCAATGACCTTGC





TCGCCAGCTTACCACTTTGGGCATTCAGCTCTCACCGTATAACCTCAGCACTCTGGAAGACCTGAACACCAGATGGA





AGCTTCTGCAGGTGGCCGTCGAGGACCGAGTCAGGCAGCTGCATGAAGCCCACAGGGACTTTGGTCCAGCATCTCAG





CACTTTCTTTCCACGTCTGTCCAGGGTCCCTGGGAGAGAGCCATCTCGCCAAACAAAGTGCCCTACTATATCAACCA





CGAGACTCAAACAACTTGCTGGGACCATCCCAAAATGACAGAGCTCTACCAGTCTTTAGCTGACCTGAATAATGTCA





GATTCTCAGCTTATAGGACTGCCATGAAACTCCGAAGACTGCAGAAGGCCCTTTGCTTGGATCTCTTGAGCCTGTCA





GCTGCATGTGATGCCTTGGACCAGCACAACCTCAAGCAAAATGACCAGCCCATGGATATCCTGCAGATTATTAATTG





TTTGACCACTATTTATGACCGCCTGGAGCAAGAGCACAACAATTTGGTCAACGTCCCTCTCTGCGTGGATATGTGTC





TGAACTGGCTGCTGAATGTTTATGATACGGGACGAACAGGGAGGATCCGTGTCCTGTCTTTTAAAACTGGCATCATT





TCCCTGTGTAAAGCACATTTGGAAGACAAGTACAGATACCTTTTCAAGCAAGTGGCAAGTTCAACAGGATTTTGTGA





CCAGCGCAGGCTGGGCCTCCTTCTGCATGATTCTATCCAAATTCCAAGACAGTTGGGTGAAGTTGCATCCTTTGGGG





GCAGTAACATTGAGCCAAGTGTCCGGAGCTGCTTCCAATTTGCTAATAATAAGCCAGAGATCGAAGCGGCCCTCTTC





CTAGACTGGATGAGACTGGAACCCCAGTCCATGGTGTGGCTGCCCGTCCTGCACAGAGTGGCTGCTGCAGAAACTGC





CAAGCATCAGGCCAAATGTAACATCTGCAAAGAGTGTCCAATCATTGGATTCAGGTACAGGAGTCTAAAGCACTTTA





ATTATGACATCTGCCAAAGCTGCTTTTTTTCTGGTCGAGTTGCAAAAGGCCATAAAATGCACTATCCCATGGTGGAA





TATTGCACTCCGACTACATCAGGAGAAGATGTTCGAGACTTTGCCAAGGTACTAAAAAACAAATTTCGAACCAAAAG





GTATTTTGCGAAGCATCCCCGAATGGGCTACCTGCCAGTGCAGACTGTCTTAGAGGGGGACAACATGGAAACTCCCG





TTACTCTGATCAACTTCTGGCCAGTAGATTCTGCGCCTGCCTCGTCCCCTCAGCTTTCACACGATGATACTCATTCA





CGCATTGAACATTATGCTAGCAGGCTAGCAGAAATGGAAAACAGCAATGGATCTTATCTAAATGATAGCATCTCTCC





TAATGAGAGCATAGATGATGAACATTTGTTAATCCAGCATTACTGCCAAAGTTTGAACCAGGACTCCCCCCTGAGCC





AGCCTCGTAGTCCTGCCCAGATCTTGATTTCCTTAGAGAGTGAGGAAAGAGGGGAGCTAGAGAGAATCCTAGCAGAT





CTTGAGGAAGAAAACAGGAATCTGCAAGCAGAATATGACCGTCTAAAGCAGCAGCACGAACATAAAGGCCTGTCCCC





ACTGCCGTCCCCTCCTGAAATGATGCCCACCTCTCCCCAGAGTCCCCGGGATGCTGAGCTCATTGCTGAGGCCAAGC





TACTGCGTCAACACAAAGGCCGCCTGGAAGCCAGGATGCAAATCCTGGAAGACCACAATAAACAGCTGGAGTCACAG





TTACACAGGCTAAGGCAGCTGCTGGAGCAACCCCAGGCAGAGGCCAAAGTGAATGGCACAACGGTGTCCTCTCCTTC





TACCTCTCTACAGAGGTCCGACAGCAGTCAGCCTATGCTGCTCCGAGTGGTTGGCAGTCAAACTTCGGACTCCATGG





GTGAGGAAGATCTTCTCAGTCCTCCCCAGGACACAAGCACAGGGTTAGAGGAGGTGATGGAGCAACTCAACAACTCC





TTCCCTAGTTCAAGAGGAAGAAATACCCCTGGAAAGCCAATGAGAGAGGACACAATGTAGGAAGTCTTTTCCACATG





GCAGATGATTTGGGCAGAGCGATGGAGTCCTTAGTATCAGTCATGACAGATGAAGAAGGAGCAGAATAAATGTTTTA





CAACTCCTGATTCCCGCATGGTTTTTATAATATTCATACAACAAAGAGGATTAGACAGTAAGAGTTTACAAGAAATA





AATCTATATTTTTGTGAAGGGTAGTGGTATTATACTGTAGATTTCAGTAGTTTCTAAGTCTGTTATTGTTTTGTTAA





CAATGGCAGGTTTTACACGTCTATGCAATTGTACAAAAAAGTTATAAGAAAACTACATGTAAAATCTTGATAGCTAA





ATAACTTGCCATTTCTTTATATGGAACGCATTTTGGGTTGTTTAAAAATTTATAACAGTTATAAAGAAAGATTGTAA





ACTAAAGTGTGCTTTATAAAAAAAAGTTGTTTATAAAAACCCCTAAAAACAAAACAAACACACACACACACACATAC





ACACACACACACAAAACTTTGAGGCAGCGCATTGTTTTGCATCCTTTTGGCGTGATATCCATATGAAATTCATGGCT





TTTTCTTTTTTTGCATATTAAAGATAAGACTTCCTCTACCACCACACCAAATGACTACTACACACTGCTCATTTGAG





AACTGTCAGCTGAGTGGGGCAGGCTTGAGTTTTCATTTCATATATCTATATGTCTATAAGTATATAAATACTATAGT





TATATAGATAAAGAGATACGAATTTCTATAGACTGACTTTTTCCATTTTTTAAATGTTCATGTCACATCCTAATAGA





AAGAAATTACTTCTAGTCAGTCATCCAGGCTTACCTGCTTGGTCTAGAATGGATTTTTCCCGGAGCCGGAAGCCAGG





AGGAAACTACACCACACTAAAACATTGTCTACAGCTCCAGATGTTTCTCATTTTAAACAACTTTCCACTGACAACGA





AAGTAAAGTAAAGTATTGGATTTTTTTAAAGGGAACATGTGAATGAATACACAGGACTTATTATATCAGAGTGAGTA





ATCGGTTGGTTGGTTGATTGATTGATTGATTGATACATTCAGCTTCCTGCTGCTAGCAATGCCACGATTTAGATTTA





ATGATGCTTCAGTGGAAATCAATCAGAAGGTATTCTGACCTTGTGAACATCAGAAGGTATTTTTTAACTCCCAAGCA





GTAGCAGGACGATGATAGGGCTGGAGGGCTATGGATTCCCAGCCCATCCCTGTGAAGGAGTAGGCCACTCTTTAAGT





GAAGGATTGGATGATTGTTCATAATACATAAAGTTCTCTGTAATTACAACTAAATTATTATGCCCTCTTCTCACAGT





CAAAAGGAACTGGGTGGTTTGGTTTTTGTTGCTTTTTTAGATTTATTGTCCCATGTGGGATGAGTTTTTAAATGCCA





CAAGACATAATTTAAAATAAATAAACTTTGGGAAAAGGTGTAAAACAGTAGCCCCATCACATTTGTGATACTGACAG





GTATCAACCCAGAAGCCCATGAACTGTGTTTCCATCCTTTGCATTTCTCTGCGAGTAGTTCCACACAGGTTTGTAAG





TAAGTAAGAAAGAAGGCAAATTGATTCAAATGTTACAAAAAAACCCTTCTTGGTGGATTAGACAGGTTAAATATATA





AACAAACAAACAAAAATTGCTCAAAAAAGAGGAGAAAAGCTCAAGAGGAAAAGCTAAGGACTGGTAGGAAAAAGCTT





TACTCTTTCATGCCATTTTATTTCTTTTTGATTTTTAAATCATTCATTCAATAGATACCACCGTGTGACCTATAATT





TTGCAAATCTGTTACCTCTGACATCAAGTGTAATTAGCTTTTGGAGAGTGGGCTGACATCAAGTGTAATTAGCTTTT





GGAGAGTGGGTTTTGTCCATTATTAATAATTAATTAATTAACATCAAACACGGCTTCTCATGCTATTTCTACCTCAC





TTTGGTTTTGGGGTGTTCCTGATAATTGTGCACACCTGAGTTCACAGCTTCACCACTTGTCCATTGCGTTATTTTCT





TTTTCCTTTATAATTCTTTCTTTTTCCTTCATAATTTTCAAAAGAAAACCCAAAGCTCTAAGGTAACAAATTACCAA





ATTACATGAAGATTTGGTTTTTGTCTTGCATTTTTTTCCTTTATGTGACGCTGGACCTTTTCTTTACCCAAGGATTT





TTAAAACTCAGATTTAAAACAAGGGGTTACTTTACATCCTACTAAGAAGTTTAAGTAAGTAAGTTTCATTCTAAAAT





CAGAGGTAAATAGAGTGCATAAATAATTTTGTTTTAATCTTTTTGTTTTTCTTTTAGACACATTAGCTCTGGAGTGA





GTCTGTCATAATATTTGAACAAAAATTGAGAGCTTTATTGCTGCATTTTAAGCATAATTAATTTGGACATTATTTCG





TGTTGTGTTCTTTATAACCACCAAGTATTAAACTGTAAATCATAATGTAACTGAAGCATAAACATCACATGGCATGT





TTTGTCATTGTTTTCAGGTACTGAGTTCTTACTTGAGTATCATAATATATTGTGTTTTAACACCAACACTGTAACAT





TTACGAATTATTTTTTTAAACTTCAGTTTTACTGCATTTTCACAACATATCAGACTTCACCAAATATATGCCTTACT





ATTGTATTATAGTACTGCTTTACTGTGTATCTCAATAAAGCACGCAGTTATGTTAC







Homo sapiens dystrophin (DMD), transcript variant Dp427m, exon 54 (nucleotide positions 8117-8271 of NCBI Reference Sequence: NM_004006.2; nucleotide positions 1686466-1686620 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 2142)


CAGTTGGCCAAAGACCTCCGCCAGTGGCAGACAAATGTAGATGTGGCAA





ATGACTTGGCCCTGAAACTTCTCCGGGATTATTCTGCAGATGATACCAG





AAAAGTCCACATGATAACAGAGAATATCAATGCCTCTTGGAGAAGCATT





CATAAAAG







Homo sapiens dystrophin (DMD), exon 54 target sequence 1 (nucleotide positions 1686541-1686602 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 2143)


GATTATTCTGCAGATGATACCAGAAAAGTCCACATGATAACAGAGAATA


TCAATGCCTCTTG







Homo sapiens dystrophin (DMD) exon 54/intron 54 junction (nucleotide positions 1686591 to 1686650 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 2144)


CAATGCCTCTTGGAGAAGCATTCATAAAAGGTATGAATTACATTATTTC


TAAAACTACTG







Homo sapiens dystrophin (DMD), intron 54 (nucleotide positions 1686621-1716747 of NCBI Reference Sequence: NG_012232.1)










(SEQ ID NO: 2145)



GTATGAATTACATTATTTCTAAAACTACTGTTGGCTGTAATAATGGGGTGGTGAAACTGGATGGACCATGAGGATTT






GTTTTTCCAATCCAGCTAAACTGGAGCTTGGGAGGGTTCAAGACGATAAATACCAACTAAACTCACGGACTTGGCTC





AGACTTCTATTTTAAAAACGAGGAACATAAGATCTCATTTGCCCGCTGTCACAAAAGTAGTGACATAACCAAGAGAT





TAAACAAAAAGCAAAATACTGATTTATAGCTAGAAGAGCCATTTATCAGTCTACTTTGATAACTCTATCCAAAGGAA





TATCTTTCTATCTCATCATGGCGCACACTGCCTTACCTGTTATCTGATAAATAAGTCACTTTGGGATTCATGATAGA





GTTATAGCTGTACATGGTCTCATCCTAGTATCTCACTCCACACACCCAATGGGAAAATTTGTGGAGGGCAATATGAC





TCGTCACTTCATTTCCCATTATATATGAATGGAAATTAACAGCGCTTATAGACAGTATCTCCTCAAACTAAGCCTTG





TATCCTTATTATACCTCTCTTGATCTCTAGTGCTTTTTTCACTAGCATTTATTCCAATCATAAATAAAAATATAAAT





TATGTAACTAATTGTTAAATATTTGTCCTTTAAATTAATCTAAATGCCATGAGGGCAGAGATTTTGTCTTTCTCATT





TGATACATCCCCAGGTCCTGAACCACGTGATATAATAGGGAGCTAGTAAATGTTTTTTGAATGATGACTCCCTTTGC





AGAATGTACAATTACCTTGTGCAAGCTGAAAAAATAGCACCTGTACAATATGAGGAAGACCACGGTGAAAAATAATT





GAGTTCCAAAATATGACATCAATTACTGAAAAAATAAGCTCGGTGATTTTTAACAAGAAGTAAAAGTCACCACTGGG





GCCAAAACAGATTTTGAACTAAGAGTAGGAAGTCTTAGGAGAAATGAGATAATGATATATGGAAATTAAGCGGCCAA





CTAAATTTTGAAACTGAGCTAGACATTAGAGAGTAAAAACTCCTGTGAAGCTGAATTTAAGCTGGTCACCCTGGGGA





ATAGAGCAACTCTAATCCTGAATTCCAGACAGTAGGTGTATAGATGGAAAAGACCATGGAAAAGAAGATTCAACCTA





AAGTTGGGAAGTTTTAATTGGAGCCCTATGAAAAAGACCCTGGTGGAGAAAGGGCAAACTTGAATATGGAGCTGATA





TTTGGAAAAATTCTCATAGTAACTACTTTTTCTCAATGGCAAGGCTTGGACTTTCTTCTCAAAATACAGATCTTATA





TGTGTTCAATTAAACAGGGACAGATTAGGTTCAGGAAGAATTATTCACATGGAATCAATTGGTATCAGAGAGTCAAC





CATTAGATCTTAGTGGGAAATATCTGCTTCTCAAAGAGAAGTCTTTTGGGGAAAGCAAATTAAAGTCAGAGATTAAT





TTGATGAGTTTAGGTAATATAAACTAAGGGGCCAAGAAAAAAGCTTGCTCATGGTATGAAACTAGAGCTTGAGGACA





CTGATCTAGTCTATCTATACTACTCTTTCTGACAGACCCCTCTCTTCATTCTCATGCTCCTTGATGGCCCAAGCCAC





TCTCTCAGTTTTTTAAAAAATTGTTTTATCAAGGTCTCTGGATTCTTCATGGGAATGACTTCCAGTTTATATTTTTT





GGCTTGGTTCCAAAAAGCTATCAGCTAAGGAATGCATATACTTACTTCCCCTATGGGTAAAGTAAATGAGAATTTTA





GAAGCCAACTCACATTTTTAGCCTGTACAGAATCTGCAATTCACCAAGCTACTTCTGACTCATGTCTATAAAGTTCT





TCCCTGTTCTTTTCTCACTTCACATGTACTCTTTGCAAGAATTCATCCACTTGTGTAGTTTCAGTCTGTTGATGACT





ACCCATCTATAATTCCAGCTGAGAATGATCTTTTGAGTTTTAGACATGTAGATCCTGCTGCTTTCTTTCGATGTTAA





TGTCCCACAGGAACTTCACATTGAAGAGGTCCAAAGCTAAACTCATCTTTGCCTTCTTCCAATCTCTTTCTCCAAAT





GCAACCTACTTCTGTTGTCCTTGTCTTAGTCCTTTTCGTGCTTCCGTAACAAAATACCACAGACTGGGTAATTTATA





ATGAACAGGGATTTGTTGGCTCATAGTTCTGGAGGCTGCGAAGTCCAAGATCAAGGGGCTGGAATCTGGTAAGGGCC





TTCTTGTTGTGTCATGATTCCATGATGGAAGGTGGAAGACCAAAAGAGAGAAAAAATGGGGCCAAACTTGTCCTTAT





ATGAAACTCACTCCCACAATAATGATGCTAATCCGTTCATGAAGGCAGAGCCTTCATGTCCTAATCACCTCTTCAAG





GTCACATTTACTACTGTTGCAATGGCAATTAAATTTTACCATAAGTTTGGGAAGGGAAAAACATTAAACCATAGCAT





TCTGCCCCCTTTTCCCCAAAATTCTTGTTCTTCTCAAAGACAAAATACATTCATTTCATCCCCAAAGCCCCAAAAAT





CTTATTTCAGCATAAACTCAAAAGTGCAATCTAATATAAATTAGATATGGGTGAGACTCAAGGCACAATTCATCGTG





AGGCAAATTCCCTTCCATCTCTGAGCCTGCAAAATCGAATCAAGTTCATCCCCTCACCCCCTACCCTTCCCAGCATC





AGGTAACCACCAATCACAGAAAGTTTTACTGATAGTCCTGCTCTAGATCATCTTTGTCTATGTTCACTTTAGCTATT





TATCCTAGTGTTCCATTATTGGAATACTAAGCATGTGGGAATTATTTATATTCTACTGTTCAAGGTCCTCACCAAGG





TCTGATTGCAAAAATTCAAAAAATTGCAACCTTAGGCATAAATGGGTTAAGCAGTTTAGGGTACATTTATAATAATT





ATTTACTGTGCTACTTCAAAAATCTTATTGCCTCTATTTATAAATAAAAAGTGTTGTCTCTACACAGTGGCTTGTTG





TAATGCATTTACTTGTTTCTGCCTGATTTTTTCTATTTATACATTTTCTTTTTTATTTTTATTTTTATTTTTTCACT





TTTAAGTTCAGGGGTACATGTGCAGGTTTGTTACATAGGTAAACTTGTGTCATGGGGGTCTGTTGTACAGATTATTT





CATCACCTAGGTATTAATCCTGGTACCCGTTAGTTGACTTTCCTGATCCTCTCGCTCCTCCCACCCTCCACACTCTA





ATAGTCCCTAGCATGTGTTGTTCCCCTCTACGTGTCCATGTGTTCTCATCATTTAGCTCCCACTTATAAATGAGAAC





ATGGGGTATTTGGTTTTTTGTTCCTGTATTAGTTTGATAAGGACAATGGCCTCCAGATCCATCTATGTCCCTGCAAA





GGACATGATCTCATTCTTTTTTTATGGCTACGTAGTATTCCATGGTATTTGTGTTGGTCTCAAAAACTACAACTATG





ACAGGATGGCATTTTCACTTTTGTTGTTATATTAAACTCATCTTAAAAAGGAAAGATTAATAATGTCAATATTTGGG





TTATGGAGAAAAAGTATCTCATATCTTTGAAAAAGTTCTGTAACTATAGCTTTTTAGGTAGGAGGGATTCTGTGGAA





AGTTTTCTGATTACATCATTTCTCACAGTTCAGGTTAGACACCATTTTACTATGAAACACTAATGCATTGCCTGCAC





TGAGACTTTCAGTCACATGGAGAAACCTAGGCAAAATTTTTGTACACTTGGAAGAATATTTAAATTAGTAATAAAAT





CTTTAGTTTTAAACTGTTGAATGTTAAATAAGATATAAAATGTACTTGAAAGAAATTTGCTTTGATATCAGACACTG





CCATGTTGCAGTTTCAAGACATAATAAAAAAGTAAACTAATGTTTATATTTTGCTGTTTAAGTTTATTAATACATCA





GATGAGTCTTCAAATTCTACAGTGGCTTTTGATATGATCATTTTTACTTGCCATTTTATATAGAATAAATATAAATA





GGCATTTATGCTTAAAAGGAACTAATCTATCTATGGAAAAAAGAGAAGGCTGCTTCTCAACTAAATTGTACAGTTTA





GAAACCCAGATCTGAACATAGATTATTGTTGTGACCTATGTAGGAAAATATGTTGTTTTCCTTATCGTAGTCCTTAC





AGAGTCCATGATAACATATAAAGCCAGAAATGTGAGCCTCTGCAAGTTCATTTCTTTGTCTTCAATCTCTGTGAATA





GATATGAGTTTGTGAATAAGATAATATTAGATGTGATATTACAAATTATTGTGAGAAGCCTCTAAGGATTAGATTTC





AAGGACTGCCATCTGGCTGATGACTTTATGATGACACTGTCATGAGATTTCATTTCCTTATTTCTGTTCCAGGATCA





CTCTTTAAACAAGAAATAAGCATTAACTCTGAATTGTCTGCTTGTAGCTGTATGAGGGCTTCCACAACTGCCAACTA





GCCAGGTACAAACTCATCAAGCAGAGGAGATGGTCCTTGCATCAGAGGGTTAAACATGCCTAGAAGTTCCTTAGCTA





AGCTCCCAGATACTAAAAAATCCCTCTAGGTTCTAAGAAAGATTCAGCATGTACATGTGTGTACATGTATGTGTGTA





CATATATACATATACGTGTATATGCATATGCATGCATATACATACAAACACATTTTCTTCCATAACATCTCAGTATT





CTCTGTTCTTTATAATACTGTTTTGTATTTTAATGATCAAAATTAATAGITGATCATCTGAAAACATTTTGACCTGT





TTTCTCCGTCTTTGACAACCTTGAAGGCACTTGTAAGTCACTCTTTGCTTCTCTATTCCTAGGTCCTTTCTCATCTT





CATTGCAACAAGAAAAGAGAAAACAATTGAGCCCTATTTTGTGTGTAGCAAGGAGCTACTCTAGTTAAACACTAGAT





CTCTTTTACATTCTCCAACATGTTGTTTTAGTAATTATTCTACTTTCCTTTTTTTGGGATATTCAATTTCTTCTTTC





TTTTTGCTCCTCCCCTTTAGCAGGCCAACATACTCAAGTCTCCCTCATCCTAAGAGAACTTTTTTAGTATATCATTT





TTTTTCTATCCAGCTGTACTTGCTTCTGCTTACTATATCATTTTTAAGCAGTAGTTGGCATTACTGTTTCCTGTTCT





TTAGCTACTAGTTGTACTTTGACCCACTCCAGTCTCACTTCCCCAGCACCACCACTTTATGAAAACAAGGACTTACT





AAGATCATCAGTGACTTTGTAATAGCTAATTAGTGTATTTTAATTCGTCCATCTTCTTGACTATATTTTAACATTGA





TCCTGTTGGTCAACTCTGCTAATCAAAACTTTATCCTCCTTGGTTCCCAGAACAATATTATCTTGAATATCTCATTT





CTCTAATCATATAATAATTGTGAGGTGCTTGGCACAATGCCTAGTGCGTAGTAAGAACTCAGTAAAATATCATCTGC





CATCGACACCATAAAAATTAATTTACTTACTCAACAAATACTTTTGTATGAAGTTTGTGCTAGGTAGGCCCAGTAAT





TGGTACTTGGTATAGAGCAATGAAAAGCCCTACCCTCATAAAGCTTATATTCTTGGAAGCAGAAGTTGGAAGACAGA





CATTGACAAATAAAAATTAAATACATGATGTGTCAGATGGTCATACACACAGTGTGGAAGAACAAAGAGGAAAACAA





GTGGAGAGAGAGAGGGAGGTGGAAGAGGAGTGCTGCCATGAAAATGTGGTAATCAAAAAAGGTCTTACTGAAAAGGT





GGCATTTAAGCAAATTCTAAAAGACCTGAGGATGTGGGCCATATGTATAATTGGGGGGGAAAAAGTAGTCCAGGAGA





GTCCTAATAAGTTAAAATGCCCCAAAGCAGGAATATTCTTGGCATGTTGAAGGAACCTTAAAAGGGAGATCAGTTAG





GCAGAAAAGGATCAAGCGAGCAGGAAGGTAGTTGACAATAAATTTAGAGGGGTAACTGGCATCTGATTATATTGGCC





TTTTAGGCCTGTGGACTTTAGCTTTTAATCTGAATGAGATGGGAGTTATTGGAGGGTTTTGAATGGAGGAGTGACAT





GTTTTGTCTTATCTGGCTCCTCTGTTACAATAGACTAAACAGAAGTAGTGAGACCATTAGGAAACTGTTGTCATAAT





TCAGTCAAGAGATGACTGTGGCTGGGATCAGAATGGGAGAGGTGAATGTGGTGAGGAGTGGTTGGATTCTACTATAT





TTTGGGTACAGAGCACAACAGATTTTATAATGGAATAAATTTAGGTGTGAGAGAAAGAGTCAAGAAGACTCAAGAAT





TTTTAGCCTGAGCAACGGAAAGATGGGGTCATCATTTACTGAGATGGGGAAGGCTCCAGGAGTAACATATTTTGGGA





GGAAGATGTGGATATGTTACATTTGAAATGCCTATTATACATCTAGGAGATGTGTGGAGTAGATAGCTGGATATATG





AATCTTAAGTTATGGGGAGTAGCTCAAGATACAAAGTTGGGAGTTGTAACAATGATCAGTGCAAGTTCTCTGTCTTC





AATGCAATTTTAAATGTTGATGTTCCATTCTTAATTGTCTCTCTTCTTTCTCTCTGCACATTTTGAGTAGCTTTGTC





TGTTGGCTTCAGTTAACATTAAGACTCCTCAGTGTCAACTTCCATCTTACACTCTTCTCCTGATCTCCAGAACTGTA





CTTTCTGCCACCTAACCTACATTACCACCTGGATATGCTACAGGCTGCAAAATGTGTCAAGTAGAATGCATTATCTT





GCCCCTAAAAGAAAGTTAAATTTTCTGTGTTTTCAGTGTAGTGTAATTGTCTAACTTAATTGTCTCTAAAACTGGAA





ACCTAAGAATTACCTTCTACCTTTCTCTTGATCTCTCTTTCCCAATCTACTGACACATGTATTAAACTGGCTTCCAA





ATTCTGTGAATTCTACTTCAAAAATTGCTCTAGAAACAATTCCCTCTCTTTATCCCTATTGTCACCTCATCCTAAAG





CCTCTTCATCCTTTGTAGATTTCTGGGAGATTGTAACCAACTTTTCTCTATTCTGCCAGTTATCAAGTCTTTACGCT





CATTTGACATTCACAACAGCCTTGGATCTGTCTTCCTTGAAATGAATCTTCTTGCTTCCCTTTGATTCCAGTGCTTT





TTTTTTACCCTCCTGAGACTTGATGCATGATATTTACATGTATGACATGTTTCCAAAAGCATTCTCAAATTTTTCTG





AAAGTAAAAACAAATGAAAAAGTAAAACATTTTCCTGGGAAGAAAAGCAAATAGTGTTATACATTTTTGCTTGTTCA





TTTGTTTGTTTATTTAGGAGAGGGACAAGCATTAGAACTTCATAAGAGTCTTATATGCTGTATCTACAAATACCGTC





CCTTGGCAATATAATTTTAGAGTTCCTTTTCTGGAACTACTTAAGGACTGTTTTATGATCCTCAGCAGACTGTTATA





TTATTTTATAGCCATACCTTTTATTTGCTGAGTAATTGTACTCAATAATTGTTTGTAATTGAATGAAACAATTCATC





AGATGTTGGGCACTGAATGGCTTTGGATTATTTCCAAAAATTTAAAGGATAAAGATTTGCTGCCTTCAAAGCTATGT





ACAAAAATATGATAGAATGCTAGCGGGATATTTGTTTAAAATACAACCTTTATTACATTGGGGCCTGCTCATAATAT





ATATGTGGCACATTTTATTTAAAATATTAAAGTTCCTGGTGGGACATGTCCCCATAATCCCAGCACTTTGGGAGGCC





GAGGTGGGGGTGGGAGGATCACTAGAGGCCAAGAGTTTGAGACCAGCCTGGGCAACATAGTGAGATACCATTTCTAC





AAAACATAAAAAAAAAAAAAAAAAAGCCAAGTTTGTAGTCCCAGCTACTTGGGAAGCTGAGGCAAGAGGATTTCTTG





AACCTAGGAGTTCAGTTCAAGGCTGCAGTGAGCTATGATCATGCCAGTGTACTCCAGCCTGGGTGACGTAGTGAGAC





TCCATCTCTTAAAATTAAATTAAATTTAAAGCTACAAATGACCCCAAAGCCACCAGTTCAACCCTCTCAATTTTGAA





TACCCTATTTTAAATTCCTCTTATGCGAAATGTACCTTGTAGTCCATTTTAAGGACTGAGAGGATTTGGTATGTTAA





AAAATTCAATCCATTATCAACTCCTTTAGGTACACTTAGCAGTATGAAAATGTGTCTTTCGGCTCTTCAGGAGAGAG





TCATATGTATAGTTACAAGACAATCCCATTTTTATATTGCTGAGACCCAAATCTTCCCAACTGATTATGAAGCATAA





GAACTCTTCGGAGGTTTAAGTGAGCTGAGATTGTGCCACTGCACTACAGCCTGGGCGACAGAGCAAGACTTTGTCTC





AAAAAAAAAAAAAAATTCTCTGCATTCTACAGTAGGGTAATATAACATCTATGATGTGAAATCTTGGGGCTCCGGGC





CAGAGAGTGTCATGATCCATATGGATCTAAAAGGTTCATAGTGGTAACAGCCTGCTTCATTTTATGTCATCTCCTTT





CAAGTAATTAGAATGTTTCTAGCTTGCAGGGATTGCACACAAAGGGAGACATTTGGAACCATGTCATTGGTGATTTA





CTGGTGTGGAAAATTACCTGGTGATGTAGCCAAGTAGCCATTTTCATTCTAACCCAGTCCTACAGTCCTGAACTGGG





CTGAACCAACGCACCAAAATATATGCTTAGAAATGCTCCTATGTATCAGTTTTCCCAGGAAAAACAATAGTATTATC





GAAAACTTACCATTGTTTCCTAATAAAAAATTATAGGATACCAACAGACTGTTTTTTGTTCATAAATTTAATATTAC





AGTATCAAATATTAAAGCAAATGGGAGAAAGTTTTTCTTATTTGGTTTAATTGAACCATTAATGTTAGCTACAATAC





CCATCATGTTACTTTTCAATTATATTTATATTTTCATTTTATTTCTATCTGTATCATTCTCAGAAAGACTTCTTTAA





AACATTCAATAAAAATAGAATTTAGGTAGATTTATTTTTAGAAAGTTGAGTTTTTTTAATAAATGAATATAATCATC





ACTTGACTTAATTTTTTTCTGCACAATTCTAGAAATCTTATAGTTTTGGGATCCTTTGGCTTTATTCAGTATGTAAC





AGGGATCTGTTTCCTTTCTCTAAATCATTAATTCAAATGATTTCTTATATTAAAAATGTTTGGACATATAGGTATTA





ATGAGTTTTATGAAATCTAATCTTTCCAATTTCCCCCTAAAAAGGGATGTCATTTAATCAGTTCTAGGTTGTGATCA





ATAGCAGATTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGCAGCTCCCTTTCACCCCGTAG





GGAAACCTGATATCATCCTTGACTAATTGCAGCAAAGAGCCTGGCTCAGGTCCTTTGTCTTATACCGAGTGTTTATA





GATTCTTGAGCCCAGCAGAATCTGAACTCCTGGCTACTGCTACCTACTTCCCAGCCCAGGCCCCAAAAGCCCTATGT





CTGCAGCCCCGTGCACCACTGTGTGTTTTTGTGGCATTTCTGAAACACAGAGCTACTTAACTTGTTTCTAAGCCCAG





ATTGTGCCTTTTTGATTTTCTATTTTGGTATTTTATCTACCATTTTTCTGTGTTTGGATGTTTCTTCTATATTTTGA





AATAACTTCTTTCCTTTAGTACAAGTGATTCTTATTGTAGAAACTATCAAAAATTTACAAATAAAGAATCATTCTCA





ACATTCTTAGCAATTCCTTCTATCATATTTTTGCAAATATATTTTTGCCTATTTTTATTTTACTTACTCCCTGTTTA





TTAACAGTTAAAAGCATTTTCAGATAGTTTTATTTTTTCATTTAAAAAAATCTTACCACATTTTTATTAGGAAGGAA





ATGGACAGGTGTTTATCTTTTCAATAAAAAACATGGGGGAAATAATTTCTTGAAGTACATAGTGACATTCTTCCAGC





CAATGTTTTATGCTGTGGTCATTCCGTCTGTCATCAGTATTCATAGAAAGAGATGAAAATTATTTAAATTAACTAGG





AAATCAATTCCCCATTCAAAGCAGTAGTTGTGTGTTTCAAATATCTTCTAATAGTCAGTTTCACACTTAGCTTTATC





AAATTCCTAATTATGATACTCATTACATCACTCTGTGTCCAGTCAGTGTGTTTATGCCACAGAGCAATTAAAGCAAA





TCAGGTGAACCAAATTCAATCACCTTTGTAGATAATAACCTACGTTGCTTAAACTTATGGCCGCTCATACAATTACT





GATGGATTGCCTTTTTCTTTTATATTGCCAGTATTTTAAATGTCCTAGTGAAGTTGGGGTAGCTGTTGAACTTCAAC





TTTATCACAACCTCTTTTTTAAAATGTGTAAACGAAAAAACCCTCCATGAAATGACCAAATACAGTTTTCATGCTGG





GACAAATTAGATGAATAATAATCATAAATTCATAATGATTATTTATGATTTTATGTTTTTATAGTGAGATATGTTTT





GTTGAAATGTGTTATATAAGTGATACTTAAGTTTCCTATTAAAATAGAAATGCTAAAATGGCATTGTTCTCTTTAGC





TGTGAGTCTAGCTTTTGACCTCTGCTTAAACGGAACTGTTGTTCCATCCCAAATCTGCAACTCTGAGGCCTATGCTC





CCTTCACTGCTGTCTAATGGATACCTATCAATTTGGAAGGAGGTTTCAGGCAGCTATTCCCGGTAATCTAATCTCAG





CTCTGTCCTTTTCAATATTTTCATCAGTGGCTTGGATGAAGACATAGATAACATTCTTATCAAATCAATGCCACAAA





GCAGGGAGAAATAGCAAATATAGCAGACAAGAGTATCAGGAGCCAAAAAGTTTTCAACAAGTTGGACTGGTAGGCTG





AATACTGAAAGATGTAATGTAAATGCAAGGTGCTACATGTGGGTTCAAAAGAAACATGAAACAAAAAACCCATCTAA





CTTAGACTGGGCTCCCTGGAAATAGACTAAGATAGAGAGTTGTGTGCATAAGGTTTGTTGAGGAGTGTTCCCATGAG





ATACATGTGTAAGGTTGTAAGATAGGCAAGATTGCACAGACGAAGAAGTGCAGTGAAGCCTGCAGTGCGTTGCGGCC





TCATCAGATTTTCAGGGGAGTTCTGGAAATTGCATGGCCCTTTAGAGACACGCTGAATTGAAGCAAGGGATCTGGAC





CTTTGAACCCAATACTAGAGAGTTAATGGTCCTGGGTCACCCCATGGGAAAGAGCAGACTGGAGTAAGATTGTTACC





TACAGCTGAAGGCAATTTCCAGGGAGGGAGGCAGCTGTGAGCTGTTAGTAGTCAATATTCCAACCAGCTAGGGCATG





AGGTCTTGGCAGAGCAACAGTGTACCCAAGACCGCAGTGTTACCCAAAGTATGGTCCTCTGACTGGCAGCATTGGTA





TCACCTATGAGCTCACTAGAAATTTAAATTTGTAGGTCCTACCCCATCCAACTAAATCAGAATCTCIGGGGATGGGA





CTTGGGGAACTITTAACAAGCTTTCAGGCCTCCAAGTTATTTCTATGCATATTAAAATTTGAGAACCACTGCCTACA





CCAACCAAAAACATTCCAAATATGGAGATAACATAGAGTTTTTAGCAACAATAATCTCCTTCTGTTTCACTTCTCTC





TTTACACACACACACACACACACACACACACAACACACAACACACAATGTGATAGAACAGTGGGAAAGGAAAGCCAA





AGGGGATCTTAGGCCGAATAAATTTAAGCATATAACCTAGTCCTAAGAACGTATATTTCAGCTTAATAGAGAGAGGA





ATATTGTTATAAAGCTGTCCAAAGATGGAACAGGCTGCCTTGTAAAGTTGTAGAAGTATTCAGGAACAGGTTGGTGA





TACCTTGGTGGTTGTATGGTATAACATCCTGATCTTCACATACTCATCATCTAGAGTGGGAGTTTTCTTTTTCCAAA





TGGGGTTTTGGCAGAACTAGTTCCACTGTATCTTAATAAGTAATAACTCAAGAAAGGGTTCTATGGATGAAAAAATG





ATTAGGTAATATCAAGTTAAATCAAAGCGAACAGACTTCTTTCCCATAGGAGTAATCAGACCCTTATTACAGTGCAT





GCTTGGTGAATCAACAAAGTATGTGTATTTATGAAAGTATGGGGGGAAGGGATAATCTATACAGTATGCATCCCTTC





TAAAAGTTTGACCATGAAAACAATTTCTCAAGAATCTTATACAACACTACAGTATCTGGTCCAATACTATGCATAGA





ACATGCACTCAGTAAGTGTTTGTAAGATAGATAGCATAGCATATAGGCCAGGCCACTGAAGGGAAATCATCTCACCG





TGAGTTACCTGAATAGTATTCTCTAGTGCCATTAGCTCAATTCTTCACGTAGGCATAAGCCTATACATTTGCCATGC





TAACCAAGGGAATTTGTGTTACGTGAATTTTGACTCTATTCAGACATTTTTTTCTATGACTCCTCCAAGGCTGTTAT





TCTTACCTCATATTCTGGTAGAAGTTTAAGGACTTTTTTCTGGGAATATTGATTAATTAGCTAGCTAGCTAGAGACA





GAGAGAGGATAGAGATTGATTCTCTGGCAGAGCCTATTTGAATCATATTGAATCTTTTTTTTTCCTGAGACTTCCCA





CAAGGAGGATGGAGGAGAAATTTTTTAGAAATCCACCGAAGTAATCAGGGATATCTTCAGTAAAAGAAGCTATACTT





AATAAAGTCTCTATTTTAGCAGATGGCAATCAACAATAGAGGCAATAGACAATAGAGTCTATTAAAATTGCTGGGAT





CTGCTAATAACGTTTTTCTTTTCCCTGAAACAAATGCCATTAACCCTCCTTGACACTCTGTCTTCATCAACATTCTA





ATAGAATGGAAGTAACTCATAATTTTGAGGATTTTTTTCCCACACAAAACCTATAAACCACACCACGCTAGTGATTA





CTTTTAGCCTAGTTGCTAGGTTGCTGCTGGTAACAGTAAAACTTATCCTGACAGGTAGGCAATTCCAGAAGCCCAGC





CAAGCACTTGGTGTGTGTGAGTAAACCCCCATACACTTCTCATGTAGAGTAACCCTGGCCAACCCATAACTCTTAGC





AACTATTCCTGGTGGACGGACCTGGTCTACTCTAAGAAGAGGCCAAGGTTCTTTAATAGTGCAGTTGCAAGAACCAG





AATTGAAAGTCAAAGTTCTAGCAAGATTTTGCAGACTCCTTGGCAAACCAGTGGCTTGGGACTCATTCTTGACTTCA





AGCCCTTAATTGATAATGGTAGGACAGCTTGCTTGCGCTGGGTTCTGCTCCCTGGGATATGCACTGTTTGCCAAATG





AGTAGCAGGTGGACAGACATCTTTACAATTTGCTGTCCCATATTCTAAATGAACGTGACATTCTATAGGTCTGAGTT





AACCTATGAAGTCACCAATTTCAATATCAAAATATTTATGACAGAGAAAAGGATACTGAGGCACAGAGAGTCTGTGA





CTTTCCTAAGCTCAAAACACCAGTTTGTGTTAATTCTGACACAGAAATTCTTGTATTTGCTATCAGTCTCCTTTTTC





TGTGTGTGTGTGTGTTTTTACATTGCAGCATCACCTATATGATGTTAGGTTCTGTAACTTTTTGAGAATTTTCTCAC





ATACAGTGATGTGTTACTTTTTGATATTTCAAATAGTTCTAGTAAGTCTTTTCTACTTTTATTAGCGTATTAACATA





CTGGCTCTAAGAGGGCATCTCACCACATCTTTGCCATTCTTCCTGGAAAGGCAAGTTTCTCTCCATCTTCTTTTTTG





TATTCCAAAGTTTTGCCAAAGTTTGCTTTTGAAAATGGGTTACCTGGCAGAGCTTTATTATTCTAACTTTGAAAGTA





CAAGTCAGAATCAGACAGTGGCAGTTATATATGCACTACTGTGATTACTATATAATGAAAGTATCTATGGTGAAAAT





ACTGATACTGACATATATTTGCCATTTTCTAATTAAGTGCTTCAGTAAAAATTAAGCACTCACTCTTTGCCAGATAC





TGCAATAGATATTGAGCACATTGAACAAAATTCTCCATATACATATATATGAGTCCACATTCTATGAAAGTATAATG





TTTTTCTGAGAAAAGGCATAATATTCTATTAATATCAGCTTTTGCTTCTTCCACCATATATTGAAAGAATTCTGAAT





ACTGTTATAATTTAATGGGAGAATCTAGAGAATTCTGTATTTGCTTTCACTGCATTGATGAACTAAGATTTTTAAAA





AATGTATTCTTCATAGAACTACTTTTCCATATTTACCTAATATTATTCTTATATCATTTGAGCACATATTTCACTAA





CAAAACAAATGTGCAATGTTATTAGTTCTAACATCAAAATTACACTGATACTTTAATTTTTATCCTATTATTTTTCA





TGCAGATTAAAATAATTATAGCTACATCACATGTTGCAAGTTTTAAGAGCTACTTTAAAAATATATGCTTCAGGAAA





GACATGATTAGATGGGGAAATGGATGATGTTCATATTTTCAAATGAAAAGTTTTAAAAAAGTGCCTATCACAAACAC





TAAATTTTTACATAAATTATCAACTACTAATATATCTACAAGAAATACCATTTTTCCCTACAAAAACTCTTAACAAT





AATTGTTAAACTTAGTCCTGGAACCTGCTAATATAATCGGACAAATGTTGTCAATAAGAAGGTGAAAAAGAAAGCAT





ATATAGTTTATCAAACTATAAAATATAGTTTATCAAAACCAATTTTTCCTATTGACATTTATTCAGGAAGGAAAATG





GATGAGTGAAATGAACAATGGTCTCTAAGAGAGGTGGGAGATAGCAATAAATTCAGACCACGTTTCCTGTCATTACA





GCAGGGAAGTAAAAGAGCTACAGTCAACTCTCGAAAGTACTTGGGGGAACTAATGATTCCCTGTAGACCTGTGATGT





TTTTGAAATTTAATTCAACAATTTGATATACACCGCAAAGCGAACAGATAGTCAGATCAAAATCGGAAGAACGATTG





TCTGAATGGCATCCATTTTTCCTAGATGTGCTGTCCCATCCTGTGTCAATTAAACTTTCAGGTGATCTTCAAACATA





TTTCCAAGTAAAAGGTATTGCAGTTATCCTATAAACTGGCCTCTTCCCCAGCACTGCTTTTGCTGTGGTCAACTTTA





TTTCTTTGGGCTCACAAAACTGATAGAGCAAAATAAGGAAAACGGAACATTGGATTAAAATAAATTAATTCCCATTC





TGTGACTCACTAAAAAAAAAATGATAACTATGCTTCTGTGAGCATTAATAAGGAAATGAATAAGGAAATGACCAAAT





TGTTCAGTGGACAACTTGTATGGGATTTTTAAGTATTGTGTCATCATCAATGTTGTCAATTAGCATATACTTTGAAA





TCAACTAAAGCAAATCAGTTGACTAATCATTAAGGGTCTTTTTAAATGACAACATCTAAACAGCAAATGTTTTATTT





TGGAAAATCATGACAGCACAAGAATGAGCCAGATGTTTTACAACATGATATCCATAATTTAAAGTATGTAGTAGTCA





CTCAAAGGATTTCTATTTCAGTTTCCTTATGATTTGGCTAAGCTAGAATTTGGAAAAACACTTTAAGGTAATGTGAG





AAACAGCAAAATTCAACATGTGGATTTTTTCACTAAAGCTTATTTCTGATTATTTTTTACAAACTTTACTAGGTATA





TGTTAACTTCATGACACTTATAGCAGTGGACCGTAGTTTTAATAAAATGTGAATGTATACTCTTTTCTCAATAATAT





TAAAGAATGTTGACTTTCGTGAGGATATTTTTATTTTTCTCAACATTAAGAACTGTCAAAGATTTAATTCTACAACA





GAAGACGTGAATTTTGTTTTCTAAAGGAGAACAGAATCTATAGAAGAAGTGTTGCTCATAGTACTCAGATTGTTGAC





CAATCTTAAAGGAGAAACCGTCAATTAATTTACCGAGAAGTAATAACATTATCTTTTTCTTCAATTATGCACATCCA





CAAAGATTTGGGGCAAAATCCACTTAAATGATATTATACATAATAGATGAGTATTCATATGTTGTAAGAGTCCTGGC





TTCTTTCCTGCAAAATGATTAAAACTTGGATCAGAAACCAATTAAAAATCCATTCTAATTCCCAAATGTATGTAACT





GTACTATAAGAAAAATAAATATTTCTTCTTGAGGGATATCCATTAGTTAAGGATATTCATAACATGGTGTCTTGTAG





GAAATGTTAATCTTTGGGTGAATAGGGATGTTTGGGAATAACAAGACTCAAAGAGATGTTGCACTTACTCACTTTTC





TCTGAGTTGTTATTTCTGTCATTTCCCCAGTGCGCCTGTCCTCAACTTTGCCTCTCTCCTTATTCCTTTTTTTTTTT





TTTTTTTTTTGAGACGGAGTCTCGCTCTCTTGCCCAGGCTGTAGTGCAGTGGTGCGATCTTGGCTCACTGCAACCTC





TCCCTCCTGGGTTCAAGCAATTCTCTGTCTCAGCCTCCCGAGTGGCTGGGATTACAGGCACCCACCACCACGCCCTG





CTAATTTTTTTTGTATTTTTAGTAGAGACAGGGTTTCACCATCTTGGCCAGGCTGGTCTTGAACTCCTGACCTCGTG





ATCCACCCACCTTGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCATGGCCGATCCCTCCTTATTTCTTTT





TATCTCTACCTCTGCCTCAATGGTATTTCTCTATTACTGTTAGCATTTGCTTTCTGTGAGCTCTTGCACACTGTCAG





CTTATATACATGTTCCTGTTCACATGTTTTCCTGTCCCCAGTGGTTACAACATGTCTTCTATCTCAGCCCACTCTAG





AATTGTCTTACTTTTCCAGGTCTCCTGCTCCTCAGTATTTTTCCCACTTTTCTAGATTCATGTTTTCCCATCTGCAT





ATTTCTCTTCCATGTCTGCACTGTCATCCGCTTAGAAGACAGCGCATAAGGACACTGTTATCTGAGCAAATCTTCAG





CACAGCCACCATGAAGCATGGTTACCTTGTCACTTTCCATTTTTCCCATAGTGTGTGCAAACTGCCCTGATCTGCAT





AGAAAGGTATCATAATTGAGGAAACAAAATGCACAAAAATGTCCTTGGTTATTCCACCCCTCAGAAATATAGGAGAG





AAGTAATTTACAGAATTACACAGAATAACGCTATGTCACATGGACATGGAGTTATCGGGTTAGCATATAATTGGAAA





ATATTTCCTAGGACCTTGACATTTACTCACTTTTTGTTTTCAAATTACATGTCCCTATCTATTAGTTGCAAATTATT





TTAATGCACCGTTTACCAAAGAAAGGCTGTTTCTTCTGAAAGCTTTCATTTGACAAGTAACTTGTAAAAATATTCAC





ATTGTGTATCTGTTTTCCCCTTCTAGTCCAAACTCTAGTTATCTTAAACTTTGCGCAGTTATAAAAAATCATAACAA





AAAAAGCTTCCTCGTTGTCATTCTTGTCAAAACAGGTTTACCAGACTTAGGTAAACTTAAAATAGTTAGTGTAAAAG





TTAAAAAGCTGATTTGCTCCTTCCAGCGTGTTTGTTGCCTTTTTGCCACAGCAAAATTGTAAATGTAAACGTATTCC





CTAGGAGATGAGCTGGGCTGCAATTTTCAGCTAATTGGGAGAAGCAGCCCTGAGTTGAGCACTGTCAGGCTGATTTG





AGTCTTAAGATATGATGATGATTATTGTGTCAAATGTAATCAAGAACGTGGGCTCTGAACTGACTCAAGGGCTGGCT





GTTTTTAATTCAGGTTCGTATATGAAGTAGACCTCCGGTTCACCGATAGTCACAGCTGGTTGTAGAAGAGAGCAATT





TTTAAAATGCTATTTCATTCTCTATGGAGCTCTAGGGATCAGAGATTGGATGCACAGGGAGGGGACACATCCTCATT





CTCTCCTGAAAAATTCTATTAATTTTCAGTATAATAAACTTTCTCTTGAGATTCCCCAGTGGCTCTGTATCGGTGGT





TTTCAAACTTCTCAGACCCAATGCCACCCCTCTTTTCTTTTTTAAATAACAAATACTTTGTAATACCTTCTTTACGA





TTATAAGCCAAAATATGTAGACAACATACCCTACTTATACAGGCAATAGTTTAAATGATGCCGTAACTCTATTTTAA





AGAGAAATAAGAGTCATTTATAATAAAATAATATGTGTTGTAGTATGCAGTTATTCAGGCAGGATCACACTGGAACA





CAAGTGAAGTTTTTAGATCACGAGACTATCAATGCAGTATAAACAAATGCAGAATGACACCATTGTGTTGTATGGAG





ACTCAAATACCATGAGGGGCATTGGTCATCCATAGCGTAATTTTCCAAAATGCTGAACAACTCTTGGCAAAATTCCT





AACACCATGAAATAAATTTTTTCTTGGATCGTTATGGCAGTTAGTTGCATGGCTGAAAAATTCAATGTCTTAAAATC





ATGAGGAAAATATCTTATGTTTACGTGTAAAATTGAGTTACGTTCCAGGTTTAGGTGTTTATAAACAGGGTTTCCAC





ATACATGCATGTCCAGTGGGATATTCCAAAGTGCTGTCAGACTTGGGAGAGTTCTTTGTTGTATAAGAAGTCTACCA





TCTTCATTCCCTCTCCACAGAATGCTATTATAGTAACACTCTTCAATCACTGTGATAGTCAAATGTCCTCCCTCAAT





TTCTAGGATGCCTCTTTTTTTTGTGGTCTGTATAATTTGGTTAAATATCTTTCCAGACAAATACTGATTTGTGAATT





AATGAAATAGCAGTATTTTCGGAGCACCTAACCTATTTCTGAGTGATACAGTTGCCATTTTTACAAGACTAAATGAA





ATTACCATTTCAGACCTGCCAGATTGTCTAGCCCAGTCTTTTACAATTCTGTGATTATCACTGCAATTATAATCTAT





TTTCACCACTTGAATGGCATGATCTCTATAAAAGGGTGGTGATAACACTCATCTATTCTCCTTCCCCTCACATAGCT





ATATCAATCGCCCCCTAACCAGTTGTTGATAAATGCAGITGAATTTTATGTAAAAATTATAAGAGATATTATTGTAG





CTGTCCAAGACATTTAAAATGCTAAATGCAACTTACGTGGAGGCTATAAGAGAAATATGAACCCATTTATTGAAGAG





ATTAGCTAATTTAGTAAAACAACACAGATATACCTGCATACAGGGATAAATCCCTATTGTCTAAATTATTGAGATAA





AATAATGTTTTACAATGAAAAACTTTTAGACAAGTAGGTAAGTAAAATGCAGCAGTCTATTTGCATTTCATCTGGGC





ATTTGACAAAGTCTTTCGTTATACTCTTGTGAATAAGTTGGAGAAATACTGGCTAGATGCAAGATAAATTGGATGGC





TTAGAAGCCACTTCATGATTTTACGCAAAGGATGTCGATTAATAGACCAGTGTCAGGTGGTGATGGAAGATCTCTGG





TGCTATGTCACAAGCTTCTGTTCTCAACCCTGACACACTGGATGTTTTTGACAGAACATGAGTAGAACTACAGAGAG





GAGGCCCATCAAACTTATGGGTGATAAAAAGCAGGGAGGGCAGGAGTATTTTGGGTGACAGAAGCCAAATGGGTGTC





TGGACAGGATGCGTTTTAAGGCACTTTTGGTACTTGATGTCTGAAGACCAGGATCAAACTTATAGGCAATCTGAACA





TTTGCCAAAATAACAGGTTAATTTTGACAGAAGTTATTATTTGTATGCTGTCTATTTCTTTAATACACCTAGAAAGT





ATTGAAATAACATTTTTTGCAGACACTCATTTTGAAAATTCAGAAAAAAAATTGTTAACTTTCGTGGAAGAGTAACA





GAAACTCAGTCATTGACAGCTAAATACAATGTGTTGCCCAGTAAAATAGTCCACCCCTTCACTTTCATGGCTAATAT





AAAATTTGATGAAAGATACAAATTCCAAAGATTGAATATCTGTACATTTGCAAAGCAAAACACAATTTTGGGCACAG





AATTGCTCATTCTCATTTTTAAACATCTTGGTTATAACTGAACAATAGTTTTTTATAACAAAGATAATATTTTCAAA





TTATTATGAGGTTCAACTGAAATAATTTATGTGAAAGCAATGTCTAAACTCTAAAATTCTATATAAATATAAATTAT





TATTCAATAAATTCACATCAAGAAAATTTTAAGTTTTTTAAGAACAAGAGCCTATGGCCTTGTTTTTAGAAGCTGTA





TACCTTATCGGTAGTAGGTTTATTGACTTTAATTAAATTTATTGAGTATCTATTAAATTGCCAGGAACTGTGGTGTG





AATCTTTGCCCTCAAATAATTTACAGTAAGTIGTGGTTGATGAATGGTGATGACGATGATGAATATCCAGACTATAG





TAAGTGGTATATTCATAAGTCAGAGGATTCTTAAAACCAGATGCACCCTCAGATTCATTCCTTTCATGTTGTACTTC





TAATTGAAAAAAATAAATCCTAAATTATGACTGTTCTTTATAAATTTTAATTGATCTTATAAAAGGCCATCAATACA





TTTCAAAGTATCTAGGTCTTTTAAATGCAATTTTTCACCCTGGTAATTAAAAGTACGAAAGCAAGAAACTTTAAATC





TTTATTTTGATAAGTTTTAATTAGCTCAAGCTACTTGTAATCCCACATCTTGTCTTGTAAATCATATCTGAGCCATT





AAAATAGGTTTACAATTAGAAGGGCAATTCTTTTAGAATCTACTTAAACTAAGTCACTTCGACAAATTAATTCATCG





TTCAGTTGGTTTTATTAAAATGTATTTATTTCACTGTAAAATGTCTAGTAAAGCAATGTATGAAGTATTTTATTTTC





ATGTTAGAAATTTTATGTAAAAGATATCCCAAAATACATAGACATTCAGATACTCTCTGTATCATTAACCAACATTT





ACTAACTTATCATTTAGAGAAGGCCAAAATTGTATGTACTATAACTTTGTATAATTTCATAAGAATTAAAATATTCG





ATTAATGCCTGTAATGCCTTCTTTCTAAATCAAATCCTCAAGCTTACCTCGAGTTCAAAGTTCAGTATTTATTGTAA





CACATCTCATAGATGACGGATGAAGATGGTAAGCAAAGGAATAATAATTTCTTTTCTCTTTTCACACATATATACAC





ACATACCCCATAATCCTAATTCATATAATAATAACAGAAAACAAAGGGCTTTTGAGAATAGTGACATATTAATATCC





ATTATATTTACTTCACAGGGAGACTGGCAAGTCTACCTTGAGAGGTAATGTCTTATAGTACAGTGGACTAGATTGTT





TCAAGATTTGTCATTTATTTTGGCAACTCACCCAGCTTCCCTGAAAGTTAAGTTCCTCATCTATAAACTGTTCATGA





TAATTACAACCTGCCTCATTAGCCTCATCAAGCTATTTAAAATATGAAAGGAGGTGCTATCTGTGGATCCTGTCAAA





GGAGCTTGAAAACTGCAGAACATTATTTTAGTGTAAAATACTATAACAATACATGTTGAATATAAAATGGCTTTTTC





TTAACTTTTATTTTAAGTTCAGGAGCACGTGTGCAGGTTTGTTATATAGGTAAACTCATGTCATGGGGGTTTGTTGT





ACCGATTATTTTGTTACCCAGGTATTAAGCGTAGTACACATTAGATATTTTTCTTGATCCTCTCCCTCCTCCCACCC





TCCCCACTCCAGTAGGCTTCCACGTCTGTTGTTCCTCTCTGTGTCCATGTGTTCTCATCATTTAGCTCCCACTAATA





AGTGAGAACATGCAGTATTTGGTTTTCTGTTCCTGCATTAGTTTGCTAAGGACAATGGCCTGCAGCTCCATCCATGA





TCTCTGAAGAATCTCCACACTGGTTTTCACAATGACTGAAATAACATACACTATAACCAACAGTTTATAAGCAATGC





TTTTTCTCCAGAACCTGTTATTTTTGACTATTTAGTGATAGCCATTCTGACTGGTATGTGATGGTATCTCCTTGTGG





TTTTGATTTGCATTTCTCCAATGATCAGTGATGTTGAGCTTTTTTTCATATGCTTGTTGGTCGCATGTATGTTTTCT





TTTAAAAAGTGTCTGTTCATGTGCTTTGCTAAAAGGGCCCTTTCAAATGTGTATTATTAACCACAAGAGAGTACTGA





GTAAGAGACTAGGTAATAAAAGTCACAAATATTTCGATATCATAATTCAGAATTTAGATCAGCGGTTATGAAATTGT





TCGTATTTCCAAATTCCACTGACAGGACTCTACTATAAGTTTATTTCATCTGTTGATATGTTTTTAGCCACTTCTTT





CTTTTAAAGTGAATCTGTTGTGTGTTTGCCATTTGATATTAGAAAACTGAACCTGCCTGCTTTGCTGTCTTCTGAAT





ATTATGTATCAACAACTAACAAGCTACAGTTAGTTGTTTTGTTCTGTTTTTCTCTAAGTTATTGTGGATGAGGATAT





ATATAACTGCACAGTCTTATCAGGTTTGTAAGAGATGATCTTAGGCTCATCTTTTAAATTGGTTTTTATACTATTTT





AAACAAATCCTTTTAGGAGAGAAGAAAAGCTGCTTAGTCTATCAACATTAGGAAATATATCTTTAAAGAGTTTATCA





CTGCAAGTAACCAAAGCCAACTTAAAAATTCGCATTATACAAATCATTGAGAATTTATTTAGAACAGAAATGTGTCC





AACTATAGGTCAACACCAATTTTAAGTGTGTAATTATCTGGGAAGTAGTGTTAACTGCATTTTTTTCTAAAGATCCC





TTACAGTTGTATAAATGCCCAAAAGGATATTTTGAGTCTCTGTATATTAACCAAACCAAATGTAATTCATTACTCCC





AACATTATATTTCAACCTCTCCAAATAGTACCTTTTCGTATTGTATCAGCAGAAAAATATAAAATGCAGATCTTAAA





GAGTATCAATCTCTTTAAAAATTCAAGAAAGAAAAAAATATGTGTGTATAGAGACGTGTATTTCATCTGCTCATAAC





ACTGTGTACATTTCTTTATCAACTAATTTTTTTCAGTGATTTATGAGTTGAAATACAAATCAAATGAAACGGGTAAT





GCAAAGTAAAGTAGAAAACACATTTTCTACTGCTGTCTCCTAATGCAGGTCTTTTCAGGAAAGTACTAATGGTTTTA





GGGAAAGTGTATAATTATGGTTGTTTCCCTAATGATAAATTCGCAAATCTCTATTTTAAAAACATTCATAAGGTTAA





AAAAATGAGAGATGAAATGTGTCTTTCAAAATTCCTTACGTGATTGATAATGCCTATACTCTCTTACTATCTAAAGT





CTAGGTGATATGTATATTTTTTTTAAAAAATAAAATGTCTGTATCAGTGAAGGAAGTTTACACAGATAGCTTCAAAG





CTGTGGTTTATCTTTGGAGGATTAATCTATTTCTCATGCCAGTGTGTTGCTACTGCACATGTTAAAAAGTCATCCTG





TGGTGTCTGGGGTGACAAAAGATGGGAATGAGTTTTCTGAGAACTAATCAGCAATACTTTGGGAACATTTAGGTCAT





GGTTTCCAATTAACTCTGGAGAGTTTGAGTAATTTAGTACCAGACCTCAAGAGAGAGGGGATGAAAACCTCGTTAAT





TCATATGTTGGTGAACGGCAAACCAGCAAATTTGCATTAAAAATGGATTTTTATTTTAAAGCAAAGAGCAGCCAGAT





CTTTTCTGCAATAGTTTGGGTAGGAGAATATCTTTGTATGTATGTGTTCCCTTATGTGTAGGTATTTGTATGTTTCA





ACGACCCTGCATATGGCAATAACAGAAAATTAAATTTGTGCTCTAAAATGAAGACCAGGATTCAGTGACATAATCTT





CCTTGTGCCTTTCTTTCTTTTAGTACAATGAATATATCAGAGAGGAGTGTATTCCAATATCTGTCTTCAGAGTTACA





AAAACTTCTTTTCTAGAATGCAAGACTTGGGCTATACCCCCAGCTCTGCCACTTAACTTGTATACAACCTTGGGAAC





ATCATTACAATTCTCTCAGAATCAATCTCTCCAGCCCTAAAATGAAACCAGCAAAAGCCTGTACTGTATATCTAAAA





GGTTTTTTATTTTTATGAAAATTAGTTAGGCAAACTTTTGTTAAGCATCCATCACTCTATTTTGAGATAAAGCCTTG





CTGGATGATCTCCACCTCTTTTGATGGAAAGAGTAAAACATGTTTAAGATACATTTATCACTTGTTTGGCAAATTGA





GATAGAAGTTTATGAAAGCAGATTGATATATGTTACATTTGAGCTACTGGGAAGGACTCCAGATGGTTTATAGCCTT





AATTACATTGTAACTCTAGTTAAATGTTTACCTATCTGTACCCTCTGTTAAACTTGAATATGTTAAATACCAAAGTC





CATGTATTATTGGATTTTCTGTCACCATCATCAGGCACAGATCCTGGTACACAATAGGTACGGAATGGATGCATGGA





TGAATTATTGAATTAGATGTTGGTAGGCATGTGGAAATAAGAATGAGGTTCAGAATTAAAGATAATCTGTATCGAGT





GTAAAGCCATTGGCAGAGAATGAAATATCCAGCTGAGTATACATAGAAAAAGAAGGTAGGTAGAAAAATGGAAAATA





TCTTATGAAGTGATGATAGAATAACTCTGAATATGTTTGAAAACATATAAAGAGTTATGTGGATGTTAGCTTTAAAA





ATTATCTTCCATGCTGTACATTAGATCTGCCATTCTTCATGCTGTGGATGAAAAGCAAGCATCAGAAGTTAAATTAA





AATGATGTCATATATTCCTCGCCTTACAGTTTCATAACAGAGGAGAAAAGAGAAACATTCTCTCATTGCCACCACCC





TTCTCCAGTCATATTTCTAGGTAGATGTTGCCCAAAAACAGATAAAACCACAGAGTTGGTTTTGCTAGGAATGGACT





ACTAATCCAGGCAATGTTGACAGCTTTTGCTTCTCATTAGTGCACGTTACTAATAGAATTGCTAGAGATTAAAAGGA





ATCCTTTCTACAAAGTGCTGTATATCCATAGGTGACAAAATTCTAGCTTCCCCTCACAAGTACAATATAAAGTTATG





TTTTAAAATCAAAATGCAATTTACTAGCAAACTAGTAGGAACTGTTATGGTTACAGGAAATTTGAATTTCAGATTAA





CTCTGGTTCTATGAGTAGCGGTTGATATGGCAAGAATCATTTTGATCTTACATCCAGGTGCTACTAAGGTCTCTCTG





ACCTATATCTCACCAAAAAAAGGAACAAAATAATGATCCTTTAATCTTTCTCCTAAAATATCATAGGAAATGATAGT





GGCTAAATTGCAAATAAACTAGGAAGGAAAGATTCAGAGTATTTTATGTGATTACTCTATAACAATGCCAGGCCATA





GTGAAAGTGTTATTTAGCAGAAGACTGAGTTCTTTGAATGTTCCTAATTTATCACATTTTAAAAATAACCTGGGCAA





AATAACCTTTCATATCAGATTGAGCCTTTTTCTAAAAATACTCAATATGTTTCTGTAATTATACCTACACACTTACA





ATTCCACAGTATAATGCACCGATAAAGTATTTTTCATCCATATATCTAATAGTAGAATGGTGTGTATACAATAATTA





AGCTCTTTAGGCTTACCCCGGAAAGCAACAAGTTTCCCTTCCTTTTTCCTTTTTATGTATTATGTTGGCCATAAGAA





ATTGATGATATTCAACTCAATGCAGTCTTAGAGATTTATTCAGAAATACCATGGTGTGTGTGTGTGGCGGGAGTAGG





GTTCTAATGACAGGTCAGAACTTACTTATTTGATTTCTTCATTGATAATCAGGTCTTAAAAAGAAAATGGGTATGCT





GAAAACATGCCTTCTGTGATTCTTTACCTTCATGTGCAGTTGTCTCTGGATAAACACTTTCTTTGGCACGTATAGGG





TTGCACTAAGCTTTATAGCTCCAACACTCCGCCCCTTCAGTAGATTCTTGCTTGTAACTGATGATAATGCAAACCTG





TATTATCTATAGGTCTCCTTAAAGGGCAACCAAAAGTTCAGTAGCAATTCAGGCACAATTACTGCATGTGAGAATCC





TCCATCTTGTTCCCTTTGGAGACCACATATATTTCTTAGGCAAGTATATTTTTAAAATCCTTGTTCAGCATGACAAT





TCAGGAGGTCAAGTTCTCCCAGAAAGCAGATTCTGAGAAAGTGATTAGCATGAAGGAATTTTATTGGAGAGTGCTCT





CAGGATTAACACCTGTGAGCGGAGGAAAGGAAAGGGAGCAGGATTGGGCAGAAGGAGAAGCTGGGCTACCATACAGT





CACAACTACAACACAATCAACCCTCCGCCTCTCCTTCCTAGCCTTCCCCAGGAGGATCTCTGAAGTCTGAAGGTAGA





ATAGCCCTTCAGAATTGTCCTGAGTTGCAGCAAGGGACCCAGGATTTTATACCCCACAACTCTCCCATCAACCAATA





CGTGCAGCCCGTCTCGGGGACATAGTGGGTAACTTTGGGCTAGGCACCTCTCTTTAGCTGAGTCCAGCTCTCAGACA





GGAATAACAGCTGAGGACTGTCAGCCAGTAGCACTACCAGCAGCTGGGGTCAGAAGTATTTCAGTCCTGAAAAGGGG





TCCGGGCAGCCCAGCTTAGCATCTACTATGCCAGTCGTTCTCAAATCTGGTTCCTGGCAACTGTGATTCTCAAGCTT





TAGCATATATTGGAAGGCTTGTTAAAACACAGCTTGCCGGATTTTACCCACAGAGTCTCTGATTCAGTAGAGCTAGG





CTGAGGCCTGGGAATTTGCATTTCTAATAACTTCTCAGACGTTGCTGGTGCTGCTGGTCCATGGACTATGAGAACAC





TGTTTCATGCTGCCCTTATTTACATACTGAGAATGGTACACAGTGCTCTTATGAATAGAATGAAAACCTTTTGAAAT





CACATTATTCCTTACTCCATCAAATTCTCAGCTATTTTTGTGCACCATAAAGCTGGAATAGCTGATTATAAAACTTT





GTTATGTAAAAAAGTACTTAACCAATACAGTAGATTCTGTTTGCAAAGCATTATTACAGTTTCTAATATCTGGTCAT





TGTTACTTGTAAAATTCAGCCAAATTTTCTCCAGGGCCTGTAGTTTGATAACTTGGACAAAGGAATTTAAAAAAAAA





TCTAATTCAAGACCTTTGGTTTTTTTTCTGAACATATCTTTTTTTTCTTTATGATTCTTATTTTTACATTTTACTTA





TCATATAAGCCACTTAAACCCATATGGTTCCGGAAAATTTAAAACTATATGATACATTTAGAGCATGTTGAATGCAC





AGATATGGAAATTAAGTATTCTTGACTCATTCTAGACTAGACCTGGCACAATTAAAATTTAGGGATTCAACGTACAC





ACACATAGATTCCGAGAGAAATGTTGAAGCCGTAAAACCCCCACACAAGCAGGAAACAACAGTCTTACCTATTATTC





AAGAGGCACGTAAAGGAGCTCATTTGAGGAGATTTTCTGCTGTTATTGCCATCGAATTTTTAACGTATTTTCCAAAT





TAGAAAATATTCAGCCTGATGTTGTCAATATTTCAGACCACAAGGGTATCATTTAGGAAAATGGTTTCTTACTGTCC





TGAAAGAGTTACTGTTCTTCCCTAAGGGCCTAATTTACAAAGCAGCAAACTTGCTGGTAGGATTTGGCTGAAAATCA





CATTGTCTCGGTAGAACTCTTTCATCTGATTTATGTGCATTGCATTTTGCAAATAACTCTTGGAAAGTTATTTACTA





GTTACTTTCTCTGGAAGCAGAGGGTAAGCGGCATTTCTAGTTTAAGGATAGAGGAGCTAAGATGCATCAAGCGCAGC





TCATCATGAAGCTGATGCTGATAAAATGCACAATATTACATTCTCTAAGTTTCACTCTGCCATGGGAGAATTTCATA





TTTTTAAATTTTGTTTGAAATTGGACTACATTAGAAAATATGTCAAATGTCTAACCCTGCATTTATATTCTGGAATG





TGACAGCTTATTTCTGTTCCAAATTTTGCACTGGAGATGGAGTAAGTCTTAATGCAAACTGCATGAAACTGCCACTT





TTATAGGTCACACCCAGTCAATTGTCAGCAGTTACACATGGTTCAAACTGTAAGGTGTATGCCCAATTGTAGCATTG





AGATTCGTGGAGTTGTTGCAGTGGTTCTGAATTTTTCAAGCATGATACATAAAAAGATAAATGACTCTTTTGATATT





TCTCCTTGCATTGATAGTTTGCCTGAAAACTAGATAAGCAGGGAGCCGGCAGTCCACGTTAGCCCTTGAACTACATG





AGGTTTAATTTATTTGCCCAACCAGAACCCTACACTACCTTTCAGCTGTGCAGTATTAAAGTTTATTTAGGAGTTGA





TAAATAGCTTAGTGCAATGCTTCCTTTTTTCCAGTAGCTACATCCTCATAAACCTATTCTACCCTCCACCAGTTAAT





GCAGACAGAAGATTTTTATCCAGTATGAGCACTGAAACTCCACTGTGGAAGACTGTGTGCTCAGCAAAAACCTCACC





CATGATGAATAAACAGCTCTTCCGGGGGCTTTGCTGCCGCTGGCTCGGCAGGAGTTGTTTATTGCCTGGTTTGCACA





TCCCATGATAAAGTTGCTGCTGAAATAAATTGCAGTTTTGCATAATTATTGACAATCACATCTTAACAAGCAATGTG





TATCATATTCAAGTGTTCAATTTTTTAAAATCCATTTTTAGCTTATGTTTAATCCCAGAAAGTGTTTGTGTAGTAAT





AGAAGGCAAATAAGACATTTAAATAGAGTACTAATTTCCTCATTGCAGACAAAGTTTACCTGAATCTTTTTCCATAG





GACTGTTACTGCCTAAGGCAATTTTCCTTTCTAAGCTATTATTATATAGATATTTGCTGAGGGCATATGTGTGTGTA





TCCACAATACATGCATTTTATATATATATATATATATATATATATGATCAAAAATATGAATACATTTTTAGAGTTTT





TGTCATGAAAGAGTTTGTTTCATCTTTTTAAAATATTACAGGAATGGGGAAATGGGATATGGGTAGAAGGAACTAAT





GTTTTTGAGTAACTGTAATGTATAACTGTATAACGTGGGGCACTCAACTTCACAGGAATTTTTTATTTTAATTCTCA





TCACAGCAATAGATATTGCAGATGAGAAACTGAGAATCAGAGAGGGAACTTGCCATATCACGTAAGTGGTAAAGAAC





ACTGGGAATTGAACTCAGATCTGCCTAGTTTTTAAAACTCTACTCTTTTTCATTACACATAACATTTTTATTTTGGA





AAATGTTCTCAGTTGTATGATCAAGTAGTTAAATATGAAACTAACACAATAATTATAACTGATGTCATGCAAAATGA





TAGTTTGCACAAAATGATAGTTTCTATGAAATGTTATTTCTTTACTTGTTAAGTCTTTCTTCCTTTGCCCTCCAATC





CCCTTCTTTTTGTCTTTTCCTCTAGTCTTTTCCTTTTGATTCTAGGTTTGTATTTTCTTGACTTTTCTCCTTGCATA





TCAAATCCTTGTTTTCTGCCTCAGAGCAGCATCAAAGACAAGCATGGTACAGGGATTTTAGGGTTTTAACTATAAAG





GTTTGTCTCAAATTTGGCAGTATATTAAAAATAAGCTTTCAAAATTGACCAACAAAAACTACAAAATTGAAAAAAAG





GTACTTTGAACTTTCACATGTTCAAATATATGTATATATATTTCACATATATATATGAAACCTCCTCTGTGGAGAGG





GGTTTATAGAAATCTGTAATTGTCATTCTTGCATGCCTTCCCCCATACAAACGCCTTTAAGTTAAATAAAAATGAAA





GTAAATAGACTGCACAATATTATAGTTGTTGCTTAAAGGAAGAGCTGTAGCAACAACTCACCCCATTGTTGGTATAT





TACAATTTAGTTCCTCCATCTTTCTCTTTTTATGGAGTTCACTAGGTGCACCATTCTGATATTTAATAATTGCATCT





GAACATTTGGTCCTTTGCAG







Homo sapiens dystrophin (DMD), intron 54 target sequence 1 (nucleotide positions 1686621-1686670 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 2146)


GTATGAATTACATTATTTCTAAAACTACTGTTGGCTGTAATAATGGGGTG







Homo sapiens dystrophin (DMD), intron 54 target sequence 2 (nucleotide positions 1686641-1686695 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 2147)


AAAACTACTGTTGGCTGTAATAATGGGGTGGTGAAACTGGATGGACCAT


GAGGAT







Homo sapiens dystrophin (DMD), intron 54 target sequence 3 (nucleotide positions 1686710-1686754 of NCBI Reference Sequence: NG_012232.1)











(SEQ ID NO: 2148)



CAGCTAAACTGGAGCTTGGGAGGGTTCAAGACGATAAATACCAAC







Homo sapiens dystrophin (DMD), intron 54 target sequence 4 (nucleotide positions 1716672-1716711 of NCBI Reference Sequence: NG_012232.1)











(SEQ ID NO: 2149)



TTCTCTTTTTATGGAGTTCACTAGGTGCACCATTCTGATA







Homo sapiens dystrophin (DMD), intron 54 target sequence 5 (nucleotide positions 1716498-1716747 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 2150)


GTTTATAGAAATCTGTAATTGTCATTCTTGCATGCCTTCCCCCATACAA





ACGCCTTTAAGTTAAATAAAAATGAAAGTAAATAGACTGCACAATATTA





TAGTTGTTGCTTAAAGGAAGAGCTGTAGCAACAACTCACCCCATTGTTG





GTATATTACAATTTAGTTCCTCCATCTTTCTCTTTTTATGGAGTTCACT





AGGTGCACCATTCTGATATTTAATAATTGCATCTGAACATTTGGTCCTT





TGCAG







Homo sapiens dystrophin (DMD) intron 54/exon 55 junction (nucleotide positions 1716718-1716777 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 2151)


AATTGCATCTGAACATTTGGTCCTTTGCAGGGTGAGTGAGCGAGAGGCT


GCTTTGGAAGA







Homo sapiens dystrophin (DMD), transcript variant Dp427m, exon 55 (nucleotide positions 8272-8461 of NCBI Reference Sequence: NM_004006.2; nucleotide positions 1716748-1716937 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 2152)


GGTGAGTGAGCGAGAGGCTGCTTTGGAAGAAACTCATAGATTACTGCAA





CAGTTCCCCCTGGACCTGGAAAAGTTTCTTGCCTGGCTTACAGAAGCTG





AAACAACTGCCAATGTCCTACAGGATGCTACCCGTAAGGAAAGGCTCCT





AGAAGACTCCAAGGGAGTAAAAGAGCTGATGAAACAATGGCAA







Homo sapiens dystrophin (DMD), exon 55 target sequence 1 (nucleotide positions 1716757-1716809 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 2153)


GCGAGAGGCTGCTTTGGAAGAAACTCATAGATTACTGCAACAGTTCCCC


CTGG







Homo sapiens dystrophin (DMD), exon 55 target sequence 2 (nucleotide positions 1716821-1716887 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 2154)


TTTCTTGCCTGGCTTACAGAAGCTGAAACAACTGCCAATGTCCTACAGG


ATGCTACCCGTAAGGAAA







Homo sapiens dystrophin (DMD), exon 55 target sequence 3 (nucleotide positions 1716891-1716937 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 2155)


TCCTAGAAGACTCCAAGGGAGTAAAAGAGCTGATGAAACAATGGCAA







Homo sapiens dystrophin (DMD) exon 55/intron 55 junction (nucleotide positions 1716908-1716967 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 2156)


GGAGTAAAAGAGCTGATGAAACAATGGCAAGTAAGTCAGGCATTTCCGC


TTTAGCACTCT







Homo sapiens dystrophin (DMD), intron 55 (nucleotide positions 1716938-1837156 of NCBI Reference Sequence: NG_012232.1)










(SEQ ID NO: 2157)



GTAAGTCAGGCATTTCCGCTTTAGCACTCTTGTGGATCCAATTGAACAATTCTCAGCATTTGTACTTGTA






ACTGACAAGCCAGGGACAAAACAAAATAGTTGCTTTTATACAGCCTGATGTATTTCGGTATTTGGACAAG





GAGGAGAGAGGCAGAGGGAGAAGGAAACATCATTTATAATTCCACTTAACACCCTCGTCTTAGAAAAAGT





ACATGCTCTGACCAGGAAAACATTTGCATATAAAACCAGAGCTTCGGTCAAGGAGAAACTTTGCTCAGAG





AAATAACTTAGGGATTGGTTTATTAAATTTTAAAAGTTGACATTTTTGAGTGTTTATTTAATATTTTACA





GGGAAAGCATCTGTATGAATTGTCTGTTTTATTTAGCGTTGCTAACTGAATCAGTTTCCCTTCATTACTT





TCAAATATGTTTTGAAATGTTAATCTGGCATTTTGTAGCTTTCTTCCTAACATGATCTGTGAAAATAAGA





ATGAGATGGCTGAATTTGTCGTAGTTAATGATCAAACAATTTTCAGACAATTGTTTTTCCTAGAAACAAA





AATTATTTCCATAAAGTTCCATATGCATAAACAGTGAAAACAGAACGTGGGGTAGTTTTGTTTAAATGAA





GTCTTGGTGAGAATCATATTCTGTAGTACAAGGAGGCTCTTAAAGTTTATTCTCAATACCTGATATAATT





TTCCTGAACTATTATGGAGTTTTGTTATGTATAGTTGGTTTTTCTGACTTGATATAATAACTTTACTAGT





CTCTCAAATACAATTTGGATATAAATCATTATAATAAGATGATTGATTTTTTAGACTAACTTTATTTTTT





GATATTTTTAAACTATTATGAAAAACTATTATGAAACTATTATGATATTTTTAAACTATTATGAAAAGTA





TATTCTAGTTTGAATAATTCCAGAATCAAATCATAATAAGCAGAAGTTCTTCTCCTCTCCCTCCTATCGT





TCTCCTTCTCCTGTTTTTCTTTTTTGATATGATAGTTGATCTACTTTGCTGCTCTGTTGCATAGAGTACG





TAACAGTGGCAATGTATGGCTCCTGAATTTATCGTTCTTGCTTCATCATCCTGCTTTGACCCCACTTTCT





CCTCCAAAATGCGTGTTGAGTTAGTTTGATCATTTGGAGGTAATTTGTTTGGAACAGTATCAGACTTTAT





AGATATCTCCCATGGCTTGTGATAGAATATAAGGGCAATGCAAATGTAGAGTTTTTTGCTCACTCTTCGA





TGTATGGTTAGACAATGTACCACTGTAATATATTTGGCTTAGGCTATTTCATAAATAAAATTTTATTATA





AAATATTATAAATGCTGATAAAGCTACTCCAGAATTTTAATAGATATGTGGGTTTCCCGGCCAGATGCGG





TGGCTCATGCCTGTAACCCCAGCACTTTGGGAGGCCGAGGTGGGTGGATCACCTGAAGTCAGGAGTTCGA





GACCAGCCTGGCCAACATGGCGAAACCCCATCTCTACTAAAAATACAAAAATTAGCTGGGTATGGTGACC





TGCGCCTGTAATCCTAGCTACTTGGGAGGCTGAGGTGGGAGAATCGCTTGAACCCAGGAGGCAGAGGTTG





CAGTGAGCCGAGGTGGCGCCACTGCACTCCAGCCTGGGTGACAAAGTGAGACTTCATCTCAAAACAAATA





AATAAATAAATAAAAATACATGGGTTTACATTTTACCCATCAGCTATGGTAGGTAAATAATAAGCTTTGA





TTAAGTCTATTTTAGTCTATTTTTAGCAGATTACTTTGAAAAATAAAGAATAACCCAATGACTAAAAAAT





TATTTTATGTCAGGGATTTAATAAAACATATCTTTAAATCTAGTTGAGGGCAAAAATACGTCTATTTTCT





ACTATACAATTTGTATTTATATCTGCTGTATTATATAATGAAAATTTATCTCTATTTCTAATCTCAAGAA





ACTGCAAGCTTCTGAATCATTAAAGGGAAGATTCACCATGTGTCCTAACTATATTTACTATGGAAGCATG





GAAAATAAATATTTTATGTTTAGATTTCTGATCTCTCTTTCAAAAGCAGTTGGAAATTATGCTGAGAAAA





TGTCTTAGCTTATCCCATGTTACTCAAGAAAATGTATTTATTCGTTTTTGTCCAGTGGCTTAACCAAACC





ACAGTTTATTTGTTGCTCACATAAAGTCCAGTGTCGATCAGGCTACTCTTTTCCATCTTTGAGCTAAGGC





ACATATTACACATAACTTTCAGTGTACCCGAGGTAGAAAAAGAGAGAGCTTGGGAATAAGGCAGGGGCTT





TTTACTGTCTCAACCCCAAAGTGATAAACTACATTTATTCTCAAAATCCAGATAAAACTCCCATAGAGCC





TCTGAAAACCTCAACATTTGCGTCTTAACTATAATAAGGTTAACTAAGATTCCAAAATTATTTTAAAACA





GAGACAGTTTCCCTCTTCCCTGGCAGCTAATATTGTATTTTCTATAAATCCACTTGCCCAAGGTTTAAAC





TACATTTTATGGATTGAAATGACATTTATAGCCAACTCCTGATTTTTAGTTAGATGGTTGGATAATGATC





TTTTGATGAAAGACTCGGAGATGTCATGGTAAAACGGTGAACTACTGAAACTATTGATTATTGTTAATGG





CACATTTCAGCTGATTGAATTGAGTCAAGAAACTGGTGTTGAAGAGCAACAAATGGAAATGCCGAGCTTG





AAAATAAATAAAGCAGCATACCTTAAGAGATTACATGCAATTTCAGTATTTCAGCTAAATGGAAGTGTTT





GCTTTTTTTCCTCTATGAATTTTTATTTTGAACAAAAGGAATTTTCTATAATATGTAGGTAGGAGAAAAG





TGAAATGGCATGCTTTTTCACTTCATTTGAAGAAGCTGGTAGCATTGTATTCATAGATTCATGCTGTATA





GCAATCATAGTTCTCATATATTAAAAAAAAAGGAAATTTGAAATGCCTAGCCAAAGCAACAGCTCTGCCA





ACAGATTTTGATATATCTGTCTACCCCAAAAGTAGTGATGATTTACTTCATACAAATGCTAGTGAATGAA





GAGAGAGGGTGAAAACCTTCACAAAATGTGTTTTTCTCTAAGACTGTCAATCCGTTTTTCTATATATGGA





GACTCCAGCTCTTGCTAGACTACCTATCACTTTCGTCTATCAGCCACTTCGTAAGATATTTATTCTCTCA





GCAATAATCATAATTCATAGATTCTTTAAACATACATGTAATATAAAGCATATACATTCTGAATGGAATT





AACATGATTAATTCTTCTCTGAAAGACATTAGAATTTCCTCCCGTATTATAAAAAGGTGTAACTCACTTT





CCTTACTAAAATCAAGAACTTTACCGTCGTCCTTGTACTTCAGGATAAGGGGGTGTTTCTTATAAATATT





GTTATTTCTGATATGCTAACTGGAATTTTTAAGCAAATGTATTTTTATAGAACGCCATACAAAGCCTTTA





GGGGTGAAAGTTTCAGGATTTTTAAATTGCAGATTTATCCTTTAAATAAAAAAACTATATTCGTAATTGA





ATCGGATTATTTCTCTATCCAAAACATTTTCTGCTTTGGGCCTAAGAAGAGTTGACAAAGCTGTTCATGG





TTCAAAGTACTACCATAAAACCCTGGGTAACTAACTGAAAATGGAAAGACTCTGTCTTTCTGAATATTTC





ACAAGAGTTTCACAAATATTAAGTGGTTCTCTAAGTACCCCTGAGAGATCATTGTAATATTAGCTTGTAA





AGACAATGTGGGGGTGTGGGTATGTGGTGACCTTTATGATGTTCATAAAGGTGGTGTAATTAACATATTT





TTCTCAGCAAGACAAACTAAGGAGCAATAAATATATGAGATACCTTCATCTGTGATCTGGGTCATGTCTC





AGGCCATATCTTTCAAATCACTCCCTTCCCTAATCTCGTGTTTTACCTACGTCTCCTCTCAATCCCCCCA





TTATAAAAATTGTCTTCTGATGAATAAAACATTTCCAGAGAGACAAGTTTCATAAAGTTTGAATTGTACA





TCTGAGTACACCTATGAATTAAGATATCTTTGATTTCTAATATGTTATTAAAATTGGGTGTGGTGGCTCA





CGCCTGTAATCCCAGCACTTTGGGAGGCAGAGGCGGGCGGATCACGAGGTCAAGAGATCGAGACCATCCT





GGCCACAAGGTGAAACCCCCGTCTCTACTAAAAATACAAAAATTAGCCGGGTGTGGTGGAGTACGCCTGT





AGTCCCAGCTACTCAGGAGGCTGAGGCAGGAGAATTGCTTGAACCCAGGAGGTGGAGGTTGCAGTGAGCC





GAGATGGCGCCACTGCACTCCAGCCTGGTGAAAGAGCAGACTCTGTCTCAAAAAAATAAATTAAAATAAA





ATAAAATAAAATTGGAGAAGTTTCTCACCAAAATTTTGGCGCACGGATTAATTCTGAAGAAAGAAGAAAG





AATGCAATCTTAGTAGCACAATTAGTACCTTGAATAAATTGGAGTATCGTATTTCTTGGACTATCTGAGA





ATGCAGAGGCAATTTAAGGATCCCTAATTCTAAGGAGAAGAAACCTTTAGTGTATTCCTTCCTGTTGCTT





TAGTTTGAATTGAGTTTTATATGTATTTTTTAATCTTTCTATTTTGATTGTTGTCTAAAGAGTGTGAAAG





TGAATTTTGATATTTTTATTTTGCCTGGCGATGAATGCCTTCTGCTCTGGATATTTAAAAATTATATACA





CATATATGTGTGTGTGTGTGTGTGTGTGTGTGTGTATATATATATATATATATATATATATATATAAAAT





TTTTCTGAGAACTTTTATTAATTCAGCGTATCTTTGCTAAACACCTGCCATGTGTCGTGGTGTTAGGTCT





GGTGATACAAACATGTTCAGAGAGATGATTTTCTTTCTTTTTTGGGGGGTGGGTAAGGGAAAGAAGGCTT





ATACAACAGAATCTTATTTCTCACAGTTCTGGAGGCTGGGATTCCAAGATCAGGGCCTGGTGAGGGCCCC





TCTTCCTGGTTTGCAGATGGCTTCCTTCTCTCTGTGTCCTAACATAGCAAAGAGAGACAGAGCTCTGATG





ACACTTCCTCTTGTTATAAGGGAACTAATTCCATCATAAGGGCCCCAAGAAAGGTGCTTTTCAAAAACAG





TTCAGTAAAAGTACTGGGTTGTATAATCACTTTAATGAGTATCAATCCATATTTTTAAGATAGAAATGAA





TGAAATTAGTAAAATAGAATAGAAATAAGGAGTCCATCACTTTTAAGTAAGTTTCAATATTGTTCGTAAA





ACTTTGGTTCGGTGGTTTGTGTGTGTGTGTATTTGTGTGTGTGTGTGTGTGTGTCTGTCGGTGTGGAAAT





ACTGGATCACTTTGTAACATATATTCAAAAGCCTCTGTATTTTAACATTATTTCTGCCTTTGAGAGGTTC





ACATTCCAGAGGTGAAGACATACATCCTAAGACAAAATTATAATAGCATTATGAGAATTACAGTAGAGAG





CTGGACAGGGTCTAGCAAAAACAGAAGACTAGGCTAAACCTTCCAAAGAGGCCAGGAAACTCACCTAGAA





CGGTGGATTTTAACCTTGCTTATGCACTGGGGGAGATTTTAAAAATATCTCTGCCCACAATAGATACCAA





CTGAATTGAGCATAGCATGTCCTACCCATGAATCTATTGTCCAGTGAGAACCTCTGTTTAGAGAAAGTCA





CCTTAGAAGAATTGTTAGGAGTTATTTAGGTTCATGGGGTTGAAAAGAGCATTCGTGATAGAGGAAACAC





CATATCCAAAGGCTTAGTCAGTGTGGTAGTGTGAGAATCTGAAGGAACTTGGCTGGGGTATGGTTGCTAC





AAGAAATGAAATTAGATCAACTGGGGCTAAATTATGTGGAAAGACAGCATGATGTAGCAGCTAGAGTATG





GACCTTGTAAGCAGGAAGACCCCTTATTTAGCACTTACTAGCTTATTGTCTGACCTCTGAGTCCCAATTT





TACTCTTCTATACAATGAGTACATCACAGGATTTTATCAGGTTTAAATGATAAGATATATGTAAAATGCA





TACCAGAGAGGCAGACTATTGGACTCGAAGGGCTCAGTAAGTGTAAGCTGGCTCTCTCTGCCCCTTGCCA





CCTATTTTTCAGACTCTGGACTTTTATCACTTTAAGTCATAGCCTAGTTCTAAGCAAGGAAATGGACTAA





TCAGACATGTTTTTAAAAGATCATTCTGGTAGTGGTTAGGAGAATGAATTGGAAAGATATGAGACCCATG





CAGGGACAACAGTTAGGACATTATTTCTGTAATAAGCCAAGCAAGAATTGATGATCAAAGTGGTGAGGTT





GAACAAACAAAACAGATACGTGAGCTATTTGGAGATAAAATCAACACTGTCATATGTTTTGTGGGAGGTG





GAGGTGAGCAGAAAATGTGAGGTAAAATGAGAAATCAGTGCCTGCTTACCACTTGGCATGATTGACTGAA





GGTAGTGTCTTCACTCAATCATGAGTTGCAGAATTCAAGATGGCAAACAGTTGTGAGGAGCAAAGTCAAG





AACGTGTTTGATTTTGAGGTATCTGTAAGTGAAAAATCAGAGGTGAAAACCTTACCTCTCTTGAAGCAGT





TGTGAATGTAAATCTAAGGTTTGGAAAAAGATCTGGGTTAAAGATTTAAAATTGAAGGACATCAACATGG





AAGCCATAGAAATAAATTATATTACACACAAATTTATGTCGTTATTTGAATTTCTCCATGGTCCACTCAG





AAATATATCTAAATGTCACCAAAATGTTACTTACTGTAGTACAGAATTGGTATTAAGTGATACTATTGTC





CATGTTATTCAAAAAGACAGTTATAGGGACCCTCTTAATAAACTAATTGTGAAAAAGGCAAAGAATTAGC





AAAGCTTTGGCATAAAATTCATATCATGGGCCAGGCGTGGTGGCTCATGCATATAATCCCAGCACTTTGG





GAGGCTGAGGTGGGCAGATCACCTGAGGTCGGGAGTTCGAGACCAGCCTGACCAACATGGCGAAACCCCG





TCTCTACTAAAAATACAAAAATTAGCCAGGTGTGGTGGCACACGCCTGTAATCCCAACTACTCGGGAGGC





AGAGGCAGGAGAATCGCTTGAACGTAGGAGGCAGAGGATGCAGTGAGCTGAGATCGTGCCATTGCACTCC





AGCCTGGGTGACACAGTGAGACTCCATCTCAAAAAAAAAAAAAAAAAATTATGTCATGGAAAAAGTAAAA





GTCTTTGCATAATGTATCCAAGATCATGAAAAACTCTTTTCAATAAGATAATTAGTTCCTTTTCTTATAT





AAACATGGAAATTTTCATTTTTCCTTTTATTCTCATATTGATACTATAAAAACCCCATCCTCATTCACAA





TACTACTGTCTCTACCCTCGATAGATACCAGTTCAATTGAACGTAGCATGTTCTACCCATGAATCTATTG





TTCAGTGAGAACCTCTGACTATAATGCTCAGGAATACTCAAGACTCACATGATTGTCTTCTTGCTATATT





TAGTTACTTTATTATTTTCCATTTTGGGACCCTGAATTCCTGTAGATCTCAGAGAAAATCCGAAATGAAA





TAATGAAAATAATTAAAAGTTTAGAAAAGGGAGTCAATGGGGACAAATGTTCAGGACTGGTCTTTTATCT





CCTGCAGGAAGAAAGACTGAATGCAGAAAATTAGAATCCATTTTTCATCCAGTCACCCCAATTTAATGCA





ATATGAGTTTAGCTATTTGATTTTAAGTGTTGTACCGTTTTGGACCATGTTACCATGGTAACATGAACCA





TGTCTCATTCATACGTAAACATGTTAATTGTATTAAAACCTTTAAAACCTACTTCTGGATGTTGCCATTA





CATTAAACAATTATCTAGAATGATACAAAGTAATGACTAAATTGAATAACTTTGTAAATTAACTATTGGA





TTTTGTAATTTTATATCTATAAACCAAAAGAAAAGCCCACATTGGTAAGAAGACACTGTGCATACTGAAA





AGTCAATTTTGTTAGCCTCCAATAACCATTGTGTTTTATTCCTCGCAGAGCTTTTGTGAGGATCTTATAA





GGGAATAAATATGAAAGCACTTTGAAAAAGCTTTCAAGTGAAAGGTCCTTATTAATTTTATGAATTACCA





TTAAACAAAAGTCAAACTGAAGATGTAAATCTAATAGGATGCTCTTAAAAGTCAATGGATCAAAGTTATA





TTAATTAATAAAGAATAATAACTAAATATTTTATGTTTCATAATTGGCAAAGTATCTTTACTGTCATTTT





CTAATTTGATCCTTAGTGAAAACCTGTGATGTTGGTACTCCTATTATTTCCATTTTCATTTGAGAAGAAT





AAAATTGGAGAGGTTAAGTAATTTATCTATTGCTACTTGTTAAAATAACTACTAAATTTTATTACTCCCA





GTTAGGAGGGCAATTATATAAACTAAAAGCTTGTCACAATAAATGTTTACTTTTCTGGGATTAAAGTCAT





CATGTATTTTTCAATTATTAAGGGGGGTAATAATAATAATAGCTACCTTTTTAAAATAGTTACTATGTGC





CAAGGTGTGTACTAAGTGCTTTGCTTGCATGATGTAATACCATCGTATATTTAGTACAGAGGAAAAACTG





AGAGGCTGGGTAACTTCTACTAAGGTAACACACAAGTACTGGTTGAGTATCCCTTATCCAAAACACTTGG





GACCACAAGTGTTATGGATATCAATTTTTTTCTGATTCTTTTTTTGGATTTCAGATTTTTTCAGATTTTG





GATTACTTGCTTTATAATTATGGGTTAAGCATCCCAAACCCCAAAATTCAAAATTGGAAATACTCCAATG





AGCATTTACTTTGAGAATCATGTCGGCGCTCAAAAATTTTCAGCTTTTAGAGTTTTTTGGATTTTGGATT





TTCAGATTTGGGATGCTCAACCCGAATATATAGAAAAGTCAGCATTTGAACCTAAGTTTGACTTTCTGAT





CTTCTACCAACTCTACTGTCCTACCCATTACTCTACATTGACTCAGCATTACAGGGAAAGACCCAAGATC





ACCAAAAGCAAGCTTCAAATCACTCATCTAATAGAAATTAGTGGAAATATTTCTACTTCCTAAACATCCA





TCTTTCCTTTACATTTTAAAGTCAAGTTTCTACATCTGCCTCCCAACTGAAACACTTCTCTATGAAATCA





CCATAACTACCAAATGCAAATATTTTTATCAAGTCCTCATTGCCCTAGAAATCTACTCATATTTTGTTAT





TACTGCTCACTACAGCCTACTGAAAAATGTCTCACCTTTTGACTTGCCAGGGTGATATATTATACTAATT





GTCTCCTTGTCTCTCTAAGCACTCATTCCTTCCTCTTTCTTTCTTCTTTTTTTTTTTTTCACTTTTATTT





TAAGCTCTAGGGGCACATGTGCAGGTTTGTTACATGGGTAAATTGCATGTCATGGGAGTTTGGTGAACAG





ATTATTTTGTCACCCAGATAATAAGCATGGTACCTGATAGGTAGTTTCTCAGTCTTCACCATCCTCCCAC





CCTCCACCCTAGAGTAGATCCTGGTTTCTGTTGTTCCCTTCTTTGTGTTCATATGTACTCAGTGTTTAGC





TCCACTTATAAGTGAGAATATATGGTATTTGGTTTTCTGTTCCTATGTTATTTCACCTAGGATAATGGCC





TCCAGCTCCATCCATGTTGCTGCAAAGAACATAATCTCATTCTTTTTTCTGGCTGCACAGTATTCCCTGG





TGTATATGTACCACATTTTCTATATCTGATCTACCATTGATGGGCATTTAGGTTGATTCCATGTCTTTGG





TATTGGGAATAGTGCAGCAATGAACATACAGCTGCATGTGTCTTTATGGTAGAATGATTTATATTCCTTT





GGGTATATACCCAGTAATGGCATTGCTGGGTTGAACGGTAGTTCAGTTTTGAGTTCTTAGAGGTATTTCC





AAACTGCTTTCCACAGTGGCTGAACTAATTTACATTCCCACCAACAGGGTATAAGCATTCCCCTTTCTTC





ACAACCTCACCAGCATCTGGTATTTTTTGACTTTTTTTTTTTTTTTTTTTTTTTTTTTGAGACGAAGTCT





CGCTCTTGTCCCCCAGGCTGGAGTGCAATGGCGCAATCTTGGCTCACTGCAACCTCCACCTCCCGGGTTC





AAGTGATTCTCCTGCCTCAGCCTCCCAAGTAGCTGGGATTAGAGGCGCCTTCCACCATGCCTGGCTAATT





TTTTATTTTTAGTACAGACAGGGTTTCACCAGGTTGGCCAGGCTGGTCGCAAACTCCTGACCTCAGGTGA





TGCGCCCGCCCCGGCCTCCCAAAACGCTGAGATTACAGGTGTGAGCCACCACACCAAGCCCACAGTATCA





ATTCTATGCATTCTTTTCTGATTTCATTAATCTCATTATCTTCATTTGATATTTAGTCAATAGTTACTGT





CAGTTATGTGTTAGTTATTATACTAGAAACAGTCTTTTCTCCATCTCCTTTAATCCAATGATTTGAACAT





TTTTATTCCTTTCCAATGTCTGTCCCACATTTCTTACTGTATGTAGGACATTTCTTACTCAAATGTCTCA





CAAATGACATAAATTCAGTATGACCCAAATAGGCCATTTTTTATACCAAGTCTTATTTCCTATCCTGCTG





TTCATCCCGGTACCATCTTTTCAGTCAGAGAGTTCAGATCATATAGTCATTTCTAAATCTCCCACTTACT





TGCCTCACTTTCAAGTTCATTTTTAAGGTCTGTAGATTCTGCCTCCCTAATTCTTTATGACCATTCCTTT





CTCACTAGCCCCTTACCTCCACTCTCATTCACACTCTTACTATTTTTTACCCTCCTCCACTCATTCCTGC





CCACCAGTGGCTCCAATCCAACTTGCAGATTTCCATTTAAATTAAGCTTCCTAAAACATAGCTTAGGTTG





TAACTACAATGCAAATTCCATGAGAGCAAAGATTTCATCTGCTTTATTCACTTGTATATATCCATTGTCC





AAGACTGTGTGTGTCACATGAAAAGTGTTCAATAAGTATTTGTCAGTGAACGAAAATAATATATGACTCC





CCTCTTCAAACACCTTTTTTGACTTCAAAGCCCTTCAGAATATTCTACAGACTCCTTCACCTGGCTCTCC





ACAATTGCCCCTGAGTCTCGTTTCCAATCTTATTTCTTATTTTACCTCTCAATGCACCTTCAACTCCTAC





TAAAATGAACAGCTAGCCAGCTTACTTCTGTGTCTTTCGATGATCTTGTTTTTTGTCTTGAGATTCCTTT





TTTTCATCTAAGCTTACCCAAACATTACCTACTTTTCAAGGAAAGCCATTTTCGAATCTTCCCTTTTTCC





CTGAGCCCCCAAGCTGGAAGACATCTTGTCTCCATCTCAATTCCTATAGGCATTTCTCTGCACTTTAAAT





GACGTTTAGTACTTCTGACATTGCATTAGAGAGAGGCTGGGGTGGATAGTGTTTCATAGTGTGAACTTTG





AAGCCCGACTGCCTGAGTTTAAATCGTGATTCTGGGGCTTACTGACCATAGACGCATTTCTGAATTGCTC





TCAGATTATGGAGCATAAATCAAAAGTAATGACAGCTACCTCTTCAGGTTGTTGTGAGGGTGATGCGAAT





TAATGTACTGAAGTGCATGGAACAGTTTCTGGCACACGGTAAGCACCCAATAAACATAGCTAATATTATG





TTATTACTATTTTCAGGCTTATTTTTATGTATACATATAGTATGTAATTTTATGTCAATATGTATAAATA





GACTTTGGTATTGTTTATTTCACTATCACCTTGAGAGCACAATTCTCATTTGATTTGTGTGAGAAACTAC





TTAGAAAGAAATAGACGTGTGAATGAAACTATGCTTGAAATATTGGTTACTGTGAGTGTTGAAAATCCAT





TTTGTTTAAAGAAAGCTTCAATTGTTAATCTTCCATAAATTTTAGTTCTTAAGCGTTCATATTGACTCGT





TTTGGAAAAGCTCTTTAAAGTCTTGGGATATAAACAAGGCTGAATACCCTCATTCATGATAACAAACATA





TTATACTGAAAATTGTAAGAGAGATATTTTATCTTTCATAATGCCCTCCTTGGGAAAATACATTGACTTG





GCCCTTCTCTTTCAATCAGACACCAAAGTTGAGATTGCCTGAAACACAGTTTGGTAAAAGGAGTTTCTTT





TTCCCAAACATCCTGAGTAACACAGGAAATCACACCAATGACTGATAGATAACGTTAATAAAATTAATAA





AGTTGTTTTAAATGCATACCATGGGGCAGTGGCAATGAAAACATTGAGAAGGCTGGGACTATTTGCCAAC





TTTCTTTGATCTCCATTAGAACCTGGACAAGATCCACATAATTTCAGAACTTCTTCTCCAAACAAGAATT





GAAAAGGTCAGGAAAAGTTTGACCACAGAAAAATGTCAAAGAATTTTGTGTCACTTTCTCCTCCTCCCTT





CCTCTAACCTTGAATAATTTTTTAGGGTTATTGGTCTTTGGGAGCAGACTTTCTAGACCAAAACAAAAAA





AATGATATTCCTCTATGTGATAGGTAACAATCACTACCCATCCTACTGGAAAATTCTCAAAGTGTAAATT





GAGGGGATAAAAAAAGAATCTTAAGTCCTTTAAATTATTTTTAAGATGAACTACATTAGTGCCTCTCTTG





TGCCTTTCATAATTCTGATAATAAAACATTCCAGGTATTAGTCAAAGATTAATGGTATTGAAAATAATTT





AGGTTATCAGCATGTGATTTTCATTCCACATGAGGTCCTTTTGCAGTTTACATGGTTTTCTAAATTATAT





TAAAATAAAATGTCAGAAAGTTCACATTTTTTTCATGTTTAACAGCATCAATCTTTAAAGAAAAGTTATT





GCACAAAGGTCTGTGCATAAATCAGCCATTCTCCGAAGAGGTAAAAGAAGTCATTACGCCTGGTTATGAG





AGAGAGTTTCATGAATGTAAGAGACATAAATCATTTCCCACTGGAGATCATATTAGTCTAGATGGAAGAA





TGTCTGTTTCTTGATAGTGAGAAAGCAACAAATTACTTTTGTTTGCTCCTGAGTCTGTGGTTGTCCTTGA





GAGGTCTGTTAGCATGTTGACTATTGACTATTCAATATTAGCATTATAATAACTTACAATGATCTGAGTC





ACATAAATATAATCTTTCAGTTCTCTAAAGATTTTACTTTTTCCTCTCTAATATCTATTCACCTCCAACA





CCTTTGCAAATATATTATTCTCTGGGAGTTACAAAGAAAGTTATTCTCTGCAGGAAGCAGCATTTCAGTT





GCTCTCAGGAGCCAACCACATTTCACCTCAATTCTTTGCTCCCAATTCAACAATTCAATATTGGATTAAA





TTCAAGGCTGTGACCCCAAATAGAATGAGACCTGGATATTTATGAACCACTTGACCAGGCATTCTTCCCA





TGATTTACTCCATAAATCCTTTTTAGTTTTTGCAGTAGCTTTACAAATATTTGGAAAATGGCTGTGCAAT





GCAGTTTTAAAAAGTGCAATGAGTAGAGGTAGCTTCTTCACCTGGTATGGTAAATTGTTGATTCTCTTTT





GGAGTGGAAAACAAGTGTTCTTATTTGGATGCAACCATTGCATTGATTAGACAACCCTAAATTCATCTTT





CATCCATGACCTGAAAGAAATTTTGAAATTCATGCAATATATACCCGTAGTGGAAAATGTACTTTTTGAA





TGGATTCCTGAATGTGACTTTTAAGAAGAGCTATTAAGAAGTGGGATCTTCTACAGAACAGTAAACAGGC





ATGAAAATATACAAGTTGATAAGATATGGAACTACCCCAAAAGAGGAATTAATAGTGGTGGGGCTTGGGG





CAGGAGGACAGAGAGACCTAGCCAAGGAAGGAAGGGCTATATTATAATAGAGTACAAAGTCCTTTAGTCA





TCCAAGAGAAGGGGCACCTTCTGCATCCCTTATGAGTAAGATCAGAGAAGGTATTCTAGTTAACTTTTGC





TACATAACAAGCCAGCCCAAAACTTCATGGCTTCAGTAAAAATTACTTGTTTTGTTCATGAATCTACAGT





TTGCTCAAGGTTCAATGGGGCTTGCTTATCCCTGTTTCAGTTGATATCAGTTGGGGTAGATTGCCTGATG





CTGGAGGATTCACTTCCAAGAGGGCTCACTCACATGCCTGGAAAATAGGTGCTGACTGTCAGTTTTTCTT





CATGTGGACCTCTCCATGGAGCAGTTTGGGCTTTTTCACAGTGTAAGAGTTGGGTCCCAAGAGCAATTAT





CCTAAGGGACAAGAAATTAAAGCTGCAAGCTTCTCAAGGCCTGCCCTAAAAGCAAGAATGGTTTTGCTTC





TCCCATATTCTATTTGTCAATCAGTGACAGAGCTCTGATTCAAGGGGATGAGAACATAAACTCCACCTTT





CCATGGAGAAGTATCAAAAAGTTTTGATGCCATTTAATTAAAGCTGCCATACAAAGTTTCTTATAAATGA





CACTGAGCTGAATGAATACTAAACAGCAAGTAGTCATTATCCCAGTCAAGAGAAGTTATCTTTGCTCAGA





ATACCCTTTCTCTCCTTGTCTACCTGGAAAATTCAACTCTTGGCCAAAGCCCTACCTCTTCTCGAAAGCA





TTACCAGGCCTTGCCTCTAAGTGTACAATTGGAGATACACCAGTATACTGATGTTTTTAAAACTTTAAAC





TTTTTTCTACAATAAAACATAAATTAAATAACTTCCCTTCTGACTTAAAAGCTGCAAAATGCTCATGACA





GTAACTATATAAATTAAAATTAAATCTTAAGCACGATAAATACCTCTCGAATAGCAACATAGATGCTTAC





TTCTTTATTTCACTTCTTTATTTGCTTTTCTTTGTCTATAGTTTGCCCCAAAGGTATTTTAATAATATCG





GGTTCCATGTATACCAGTGTGTACCAATTAATATTTAGAATATACCTGTTAATAACCTCATTTGCATAGC





CCTACTAATCTGAGCACAGCGCAGCCTTAAGAAAGTCTTAGTTTTTCTCAGTTTAGTTCATCTCTCTTCT





CTTCTCCTCCTGTCTCTCTTATTTCCTATTTCTTTTTCTTTTCAAGTGACTTTCAACTAAGTAGAAAATG





CATTTCACATCACTATGCCGGCCTCCAGGCTCTGTCTATTTCATTCACCCAGGAATGCCCTTTCTGAATG





CTTTCTCTCATTTAGCAGCTATCTATTGAAGTTGGACAAATGATAGAAATTCATTTCTTAAAGAGCCAGA





ACATCATCTTGAACAAGAAGTTAAAAGAATTCAGCAAATCAAAAGATGAGCTAATATGGGTGAATCTTAG





AGGCATTATGCTAAGTGAAATAAACCAGACACAAAATGAAAAATATTGTATGATTCCACTGGTATGAGCT





ACCTACAACAGTCAAATTTATACAGACGTAAAGTTGAAGGATGTTACCAGGAGCTGGAGGAAGAAGAGAA





TGAGGGCTTATTGTTTAATGAGTACCTGAGTTTCAGTTTGGGATGATGAAAACATTCTAGAGATGGATAG





TGGTGATGGTTCAACGATAATAATAATATAATATTAATGTACTTAATAGTACTCAACTGTATACTTAAAA





ATGGTCAAGAAAATGGTACCCCGTTATCCTGATGTGATTATTACACATTGTAGGCCTATATCAAAATATC





TCATGTACCCCGTAAATATATGCACCTACTATGTACCCATAAAAAAAATTTAAAGGCTAAATGGCCAGGC





ATTGTGGGTCACTTCTGTAATCCCAGAACTGTGGGAGGCTAAAGCAGGAGGATCACTTGAGCTCAGGAGT





TCAAGACCAGCCTGGGCAACATGGCAAGGCCCCATCTCTACAAAGAATTCAAAAATTAACTGGGTGTGGG





AGCTCATGCTTGTAGTCCCAGACACACTGGAGGCTGAGGCAGGAGGATTCCTTGAACCCAGGAACTGGAG





GAAGCAGTGAATGACACTGTACCCCAGCATGGTCAAGATCCCAAATCAAAAAGAAATGATTAAAATGATC





AATTTTATGTTGTGTATATTTTGCCACAATACAAAAATGGGGAAAAGCCTATTCGCTTTTAAGTATCCTT





AAAAAGGCACAGCTTCTTCAGCTAACAGACTCTAAAACTTTTTTTAATAGAAGTATTAAGGTATTTAGAG





AGTGCAAAATATCTTATTTTAAGTCAAGAAGTTAGGGTCCTGTTCCTAAACACTAGCCTCTGTAATCCTG





GGGAAGTCAGTGCTGTTGGAGATCTCAGGTTGATCTTCTGAAAAATGATGGATCTAGGTAAAAGATATGT





TTCTCCAGGTTTACATACCACGGACACCATCTTTACTTGGAAACTTTATTAAAAATGCATTGTGTCAGAA





GCTCTCTGGGGATGGGTCGTGGAATCTGCATATGTAAAGAGCCCCTAGGTAGTTCTTGTGCCCACTTAAA





TTTGAGAACCACTAGACCAGATGTTTTGCTTATGGCCCTTTCAGCTCTGAAATTTGAAAAAAAAAAAAAT





GATTCTGCAAGACAGAGTCTCTGTGCTTTTGCAGGATAAAGAAATGAAGAAAATAATACTTCCTGCTTGT





GTTGGAGCATTTTTTTCATTTGGTATCCCCATCTCCAGTGGCTAGCCAATCAAGAATAGTATTGTTTATT





CTTCCCACTGTTTTGAAGATACAAAAGGAAAAGCTAAGCCAGATGACACCTAAAGGCTTCCATTACCATT





TTCATGTTTTTCCCTTTGCATAAAAACTGTCCATGCCTCCATCAGAGCCATGATCACTAGTACAATGTTA





CACTCTAATGACTCATGACATTAAATTATATCTTAGCCTAATATGACCAAATTACAATATCAGAATAAAA





ATTTCTTTTTTCAGGTTGAATCCCATAACTTAATCCAATTATAATACTGGCTGAATTTTTCACAATTATG





TCTCAGTCTTGATTTAGGGAATCTTCTCTTTATCATAAAAATGCATTTTGTTAAACATGTTTCATTATAA





TCAATTTCTCAAAAGTAAAGTTAATCAAGAGAAGGAAAAAAGGTTTTGTTTTGATTTGATTTGGAATGTG





TATGTGTGTTTACTGTATTGAAATAGATTCTGTCTGAAAGACTGTATATAAGATAAAAAGTACAGAAGAG





TAGTCAGAGAGTTATTACCCACCCCTGACTGATGGTGAATAGATTATCTAAGTATCCCGTAAAAGGCACA





ACTCCTTCAGGTATATTTTACAAATTAATTAGTAACTTTCTAGCCAAATTTGTGTCTTAAAGACACCAGC





TAGAACTTGGTTAGTTCTAGCAAAGAAGATTATTTTATTCTGAAACAGGTTTTTGTTGTCGTTTTACTTA





TTTGAACTTTTTTCTTGAATATGTATTTCTTTGCACATAAAATATATTGACTTATGAATGTGATTAAAAT





GGAAAATAATTAGTTGATTTTAGAGAGACAGAGAGAGGAGAAGAGAAGTGTGAAGGAGAGAGGGAGGATA





GAAAGGAGAGAGGGAGAACAGGAAGGACAGAGGGAGAATGGGAAGGAGAGGGAGAGAGAGAGACAGAGAG





AGAGGAATGGAGTGGGTAATAAGCAAGAGAAAAATGCCAATCATATGCTTTGCTAGTGTGTAAAGTCTGA





TAACCCAAGGGAGAGAGGACTACTCTGGCCTAGTGAAACAAAGGAAAGAGAAATATGGTAGAATATTCTC





CTGGTGCTTCACCAAATGTGACACCAGAAGTCTGACAGAAGTCATGTCAGCATTTGAGCTCCATAAAACT





CAGGCTATCGACCTACCATGTGAGAGTCTCAAAATGAGTTTAGGTAGGGGCAGAGGAGTTGAAATCCAGT





AACATATGCAACAGTGATCACACCAGGATTGCACATAGAAAGCAAATTAGTCCTCTAATAGAGACGCCAA





TTTGAAATTCACCCTCTGAGCAGGTTTTTAAGCACACTCTTCTTTTACTTTTCTATTTACAAAAATGGAA





CACCACCAGAAAAACAAGAATTTGAAAGACGAGATGAGAAAAGTAAGTTGTAATTGGAAACAGACAGAAT





GTGTACACAAACACACACACACACGCACACACACGTGCATGCACAGGTGATGAGAGAGTAGTTTGCCTAC





ATGGTGTATCTGACTAAGAAGACTTTTTGCTCTGGTTGTCTTACAGGAAGTGACTAAATCTCATGATGTG





AAATATTTTCTTGCATATTGTATTGGAAAAGAAAATAATTTTCCCAAACTCCTTAGGGGCAGTGTTGTCT





TATAATTCCCATATAGTATATGCTCTTCAAGTAAGTAACTCCAGAGTTGAGTAAGACAAGACTCGTGACT





CAGATGGCATGCTCTGCTCCCTAGACTAGACATTGCATCAGTCTGCCTATACTCACATCCGCTGTTAAAG





GATTGCCTCCAGTAAAATATGTCTTTTAATTCCTTATACAAGAATCTGGAAAAAAAAAGTAAGATTCTCT





ATTTCTTAAATTTAGCAGCAGGTTAATCACTGATAACAATAAAAATACATAACAATCATCTAGCACGGGT





AAATATTGTGGCAAAAATTACACCCTGAAGAATTCAGTCAAAGATATAAGTAAGTACACATCATTGTCAT





GTTCCACAATATATCATCTGCTTTAAAGAAACTGTTATGTAGCTGTAGTAGATTTAATCATTAATCCCAT





TTCTTCTCCACCTTCTGCAATCACAACCTTAACAATGCCTCCTTATGAGTGGAATGTACTTCCCAACCCC





TAGTCTTAGGGGTTGGCCATGTGATTTGCTTTAGCAAATGGTAAATGAGCAGGAGTGAGAGGTGACAGTT





TTCAGCCTAGGCCTTAAGAGATCTATACATTCCTGTTTGTGCTTCTGCTATCATTCTGAGAACACGTCCA





TCTAGGCTGCTGGTCTCAGGAAAACGATAAAAGACATGAACAGCAGGGCTGCACTAGCCATTCACATCCA





GGAAAAGAAATGATTGTTGCATAAAGCCATTGAGCTTTATTCTACATTACTGTGACAATAGCTAATTGAA





ATAGTAAATATACTTTGGTTTTTCCTAAATGCATATTGAAAATTAATAATATTAGCCATCTGTATGATAA





AAATATAAAGCCTATGTTTTATTTTTTAATGGTTCACTGCCCTAAATAAATTTCCAAAAAGTAGATGTTC





CCTTGTCTAGTGATGTCATTATATTTTATTTATACATCATAAACACACTGTTTATTTCTGCTCATTTTTT





TGTAAGTAACATGTGTTACCGCCAATCTTGAGATGATACACACACTTCTGTACTAAATTTTGGAAAACAT





ATTAGCTACCCACTCCTTATATCAAAATATTGCCTAATAATGTGTTTTGTTTTAATCCTTCATGAATTTC





CAGGAGAACTGAACTGATACTTGGGTTTGTGAGATATATGAAAATAGTGAACATGAACTTCTGGTTTAAC





CCTTGTGATGATAATGGAATCATAGCTCTGTTAATTACTCTTGTGGTTTGTCTTCCTAGAGATAATCATG





TACAAAATTCCTTTCCAATTTGTTATATAATATTAGAAATACTTCCAAAATTGGCATGGATTTATTGTTA





TCATTTGTTGGCACAATCATTAAAACGAAACCCATAAAGCTAGATAATTAAATGTTTACAAAGCTATAGT





ACTCAAAACAAAAACACTGTGAAAAGAGATTTTTTAAATAATAGTTTTTGCATGCCTTTTGAATAATTGG





ATTATTCTGAATTTCTTCATGTTTAGTCCCTGAATCTAAGTCATACCGTCTACATAAAAATAGATGTCAG





CTGAAGAAAACCAGGCAATGGATTTGTCTTGACGACAATCTTTTTATATGTTCAGACTTCATTTAACATT





AGACTTGTCTGTATTTGAAATTGGTATTTCTTTACATTTCTGAATTTAGGGAAATGGCACAAGAGAATAA





CATTAATTTCCTCTGCATTTTGGCCTAATCAAATTTGAGCCTTTCAAGAGACACAGCCAAGTCAATTCAA





AGAGACATATGAAAAGACTACTGTTAATGTATCTTTAAAATGAATTAGCGGCATGAACTGTTGCTAGGTG





AGTTAGGTATAGTTGTAGTTTTTAGTAACCCTAAGAGAAGATGCAGTGCATTCTAAAATGTCACAAGGAG





TTTGATTGCTCAAAATTCTGGGAGATTGGCTCTCTGCAAGGCTTCTTGATGTCATTGTTCCTAGAGGAAT





GTTGTTCCAGTACCTATAGCGATTGCAGCCATAACTATTTATGTGTCATTGTAGCCATTGTTATTACTAC





ATGCTTCACATACCTCTACTGAGGTCTAAAGAATTAGTGGACTTCATATTCTGGAGAGAACACTTGAAGA





ACCAAACAGAAGTTTGATGTGAATCTGCATATCCACCATTATTGTTCATAGGTTCTCAGGATTAGTTGAG





TGATGCCTTAAAGAAAGAAAGTCAGATGATAGGTCTTCCTGCTGCCCGCACCACATCATGAGTGTTATTC





CTATAGAGGAGGAGTAAAGAGTGGGAAGAAAATGAAATCTGTCAATACTGTGAATATATAAATAATAAAA





GTAGCAGTAGGACTGATTAATTCTGAATCATCTTTATGAAATGACTGGAGCCGTGAAAATGCTCAGTCTG





CACAGCTGATTGAGAAATGTATGCAATCTGTTGATCGGAATTTATTTGTGAATGCTCTCTTCCAGAGATT





TATATACCAGAGTTCTTAAAACGAATTTTGTCCCCATGAAAAGAAAACTACAGATCTGTAAGACTGCAAT





TTAAAATGGAAGAAAACATGTTCCCACTTGAAGAACAACTTTCAAACAAACAACTGATACAAAAAAGTCA





AAAGCTGTTTTGTTTTATATAATAGTTTCAGAATACTTCCAGTCAATATATACCTTGGTTTGGTGAAAAA





ATAAAAAGCTAAATCCTTAGATCATTAACTAGAAATTTTTGTAAAATAAATAAAAGCCGTGGGTTTTAGT





GCAGTGATCCCATGAAGAGGAATATATTCACCATTGGTCTCTTAATCTCAGATAGAATGTACATGTTACT





TTATTTTATAACGAAAGCAACTGTGTTGTGATATTATGTATAATATTATAACAGGAGAAGTCCTCTTAGC





TAACTCAGTAATCAATAACATTGTACGTTGTGTGTTATTGTAACCAAAAACTATGACAGAACCCCATTTC





ATAAGATCAGTTTATCCACCTATATGATTTATATTTGAATATTCATTTCAGTACTTATGTTGCTTAAACA





AAGCTACTGTATTAGTCCATTTTCATACTGCTATAAAGAACTGCCCGAGACTGGGTAATTTCTAAAGGAA





AGAGGTTTAATTGACTCACAGTTCCACATGGCTGGGTAGGCCTCAGGAAACTTACAATCATGGCAGAAGG





TGAAGGGGAAGCAAGCATCTTCTTCACAAGGCCGCAGGAAGGAGAAGCGCCCAGCGAAGTAGGAAGAGCC





CCTTATAAAACCATCAGATCCCGCTATCATGAGAACAGCATGGGAGAAACTGCCCTTATGATTCCATTAC





CTCCACCTGGTCTCTCCCTTGACACGTGGGGATTATGGAGGTTATGGGGATTACAATTTAAGATGAGATT





GTGGGGTGGGGACACAGCCAAGCCATACCAAAAACTCTGTTTTTTGTTTTTGTTTAATGGAAATGATTTA





GAACTTTATTTTCTGATGTTTCTTTTTCATAAAACCACGACACCAAAATCTACTTTTCACTGCTCCATTC





AACTAGTAGAGAATATCTAATCTCTTCTCAAGTATTTCTTTCTCAATTATGGTGGTTTTAGCTAAGAACA





GCTTATGGCATGCTTTTCTAAATAATATTAGAACACATAAATTATCTGTACCTGGTATTACCACATTCAT





TGCTCATTTTAAGATCTCAATTGATACATTCAATTCATATATATTTAAAATTGATTCATTTAGAGCAAGA





GATACAGGCATTTTAATGTATTACACTGCTACTAAAGCTTAGCAAATTATTCTTTTTTGTGCCCACAAAT





TATCATCCATTCATGTCCTAAAAATAAAATTGAATTTATTATACTTTCCCATTTATCCAAAAAAAAGGTT





TTTTTTAACAATTGATGCAGATACACATTTTCAAGCTAAAAATATGTGTGAAAGTGGCCTCTTTCTCATA





GTATTTATTTTAGGAGTCTAGCAATAATTTTTCTTAGGTTATCAGCACATGTCTTAGCCTGAATTATTTG





AATTCAGTCTGTGTCTTCAAGTTCAGATGGTTATGTGATCTTGTTAAGATCTCAAAGTAGTGGGAATGAT





GGAGTATACAACAACCTCATTGTTTTTTATGGCAACTGTCATTTACTGAAGGACATAAGGCTAGCAGAAC





ATGGTCAGAGAAGGAATCAAAGTTTGGTCAGCCAACTCTGCTCCACAGCTACAAGCTGCTAGACAGGCAT





AAATTTTTCCAAACCTACACAAAGGGACTTAGGGCCCTTGGCTGAGAGCGACATTCTAACCACTTCCTTA





TTTATGGCTGGTGGGGTTTGTACATTTTCTCATTTCTGTATAACATTTCTTGACTGTAATAAGCAATGTA





TTCATTCTGCTTTACCACTTTCACTAACCTTAACCTCAATATATACTCAATTAAGCAATTGAAAACAGCA





GTTTTAATCTTTTGACATAAATGATTTCCTCCGAAGCAAAATGCTGGAAATCCCCTCAAATGCACCTTTT





ATTGATGAATACCTATAAGCACCACCTACAGTCGCTGGAGGCTGACAGGAACCAAACTTGATGATAACCA





CTGAGCTGAGAATTTTCAACTCACTCTTTTTCCCTGTATGGTTCTTCTAGCTGCATTATTTCCCACTATT





TAAAGCTACAGCTGGTGAACTATTCAAATATTTAAACTTTGGAGAAGAAAATATCAACTTATCACAACCC





TCTTTTTATATTCTAAATTCATATACCTGTTTGGTACTTAAAGGAAAAATATGCTGAGGAACAGGCTGGT





CATAAGACTGTATAGAACGTGCATCTTCCATCCTATTGAGGTGACTCCTAGACAATGGGAAAAATGCCTT





CACTCGACTTGCTCATTAAATGTGACCGTAGCTGCTAATCTTTTGGCGCTGTCTCGAACTTTAATTAGAT





GTGCTCTTCTCTTGAAGGTTGGAACTACAGTATCCAGAGACCATAGAATCACAGAGTTGAAAACAAAATC





TTGGAAATCATTGAATCCACTTATCAGATGAGAAAAAAAAAATAAGCCCATGGAGATAGCCATTTTAAAA





CATATCATTCTATTTAGCCTCCAATGTAAAACAATGAGTTACTATGTTTCAATAATGTTGATGTTAAGAA





ATTATTTGATAGCTTCCTCACTTGGTCTCCTATATTCCTCCAAGGTTACTAGTTAGGAAGACTGTCATTC





AAATTTGGAGACTACATAAGAAGCAGAAAAAGCATATAAAGAGGCACATGAAATTGGAACTTTTCTGGTA





AAATCTTCTTTCTTAAACTCTCCTCAAATAAGCTGTTGGTGGCAGGAGGTGAAAGACAGCCTCCACCCTT





TAGCACAGTCCGTACTTGTCAGCATTTCCCAGGAAGGGTGATGTCTGGAAATGATAGAGATTGTGGAAGC





ACATTGCATTATGGGTCAAGAATGCGAAGGTCAAGGAGTGGAGTCTTCCTTTACGAAGTAGTGTTAACTG





CTTGGCGTGGCATTGTTGTAAACAGAAGCCACCAGGAAGGATCATCCTTAGGAGGGAACCTGTAGATATG





ACTGAAAACAAGAGAGATCCAGTTTTACCACTCTGGAAACATAGGTAATAGAAAGCCCAAAAGGTACCTT





ATCACTTGTTTGTTCCTTTCTGTACAAAAGGACTTAAATCCTTTCTGAGCAAGAAAGATATTTGAGAATC





CAATTTTGTTTTAAACTTGAGCTTAGCATTTTGGAACTATTCCAAAGACCACAGAATTCACAGTCATTAG





CATACCACAGCAGACTCTTTTCAAATATTGCAAACCAGAACAGTCTGCTTGAAAACCTGGAAATACGACC





TAGTGGGTTCAACTTGACTTTTTTTATTTCTAACCCTTACCCCTAGGCAATTATTGATAACTCATTCTGG





TACCTGGTATGTATATGGACTTTGTTAGAAGAATTTGACAACTTTCTAATCATCTGTTTTTTTTCTTTTG





CTTGATAGACATACATTTAGTAGAACTTTACTGGATTGTATTGATTATAAACCACATTTCAGTTCATATC





AGTCCATTTTGCTGCACAATAAACAACCAAAAAAATTTAATTCAGTGGCTAATAACAACAATATTGATTT





ATTCATGGAGCTGCAGTTTGGTAGGGTTTGGCCAATCATGGCTGGAAATGGTTTAGCTATGCTTATCTCT





AGGCCGTCGGTTCTGTTCGGGTCTATACCACATATTTTCTTCTGAGACTCAAGCTGAAGGGACATCAGCT





ACTCGGGGTATGACAGAGTAGCACAAGGCAATGACAGAAGCACAAACAACACTTTTCAAAATCTCTCCTC





TTGTCACATTTGTTTATAGCCCATTAGACAAAACATGTCTTGTGGCCAAGCCCAAAGTCAAGGGGTAGGA





AAATACTTTCCACCTATGTGAGGCCATGGCTGGAGCGTGAATGTATGATACTACTAGGGATGTGAAAGGA





TTGAGGCCAATAATTCAATCTTCTATTGGAGACAAGCTCAACGAGTTAGTTAAAATGGAAGGCTAATATT





TACTAACTTTGCAACCCAAGGAAGAGAAAGCAGGATCTCTCTGACGATGACGGAATTTCATACCCTCATC





TTTGAAGTTATACTAAAGCTTAGGAACAACCGTCAGATAGGACTGAATTGCTCCCCCTTCCAGATTCAGC





ATGTGAAGTATGCAGCATCTTATTATAGCAGTAGCCAAAACAGCCGTTTTCTTCAATTTGGGAATACAAT





GTAGGTGTGTTAATTTTCAATTAAGAGTTCTAAACTTATTATCTGCTTGGTAGCTCTTCCATGTGACAGT





CATTCCATCTGACTCTTCATGTTGGCTTTTGAACTAAATTTTAAAGGAACCGCCAAAATTTAAGGGCCAT





GTACTTTTTATAACCTGTTTGTGGTCTGGGTAAGAAAATAAAAATTATACAACTGTTCTTTTTGACCAGC





CACAAGCATGTAATGAAAATGACTGTTTTGGCTAGCAGATGTATTAGAAGCTTTCAAGGTGTTTAAAAAA





AAAAAAAAAAACTGGAGAAAGGAGCCAGTGAATTGACCTCAAACAAAACAAGAACAAATAAACAAAACAC





TTGTCTGCACTTCCAAGGAAGGGTGATATCTAGAAAAGATAGAGATGATGGAAGCACCTTGCATTATGGG





TCACAAACGTGAAGGTCAAGGGGTGGCGTCTTCCTTTATGAAGTAGTATTAACTGCTTGGCAGGGCATTG





TTGTAAAAAGAATCCACCAGAAGTGAAACAAGCAGCACTAAAAGTTAAAAGATTTATGTGTAAACCTCAT





CTAAGGCAACAGAAGCCATTTCTATAAAATAGTATAGGACCTTTTATTATATATGGTCCTAGAGTATATT





AAAATAAGTCTGTTTGGGTCCATTTGCAGCTCATTTGAAGATTTTTATAGGAAAAACATCCTCAAAAATA





TCATACTACAGTGCCTTGATGCTTTTTTCTTTTTATAAGGTACTGCCAGCCCAAATAGTAAGAAACCGAT





ATGATTTTTGTCCATGTGAGGTGTTTAATTGCTTCCCAAAATATGGTTATTGTGTAGATGTCACTAACGA





AATATATAAAGAGCAGTATTTGGGAAAATTTATTTTAATACCACCTTTTTCCTTTTTTACCCTAAAAGTA





TTTATTTTTTTCGTAGCATACACTCTGTGTCTCAGTATCATTGTTTTTCATAAAAACATAAATTCTTAAC





AGAAAATTTCCTGCAAGCTCCCCTAAGCTTGAAGAGACAAAGGAGATTTGTAATGTAGCTCAGCCCCAAT





CAGGGTAAAAGAATGCAGGGCTGACTTTATACTTATAACTCAGAAAAAGGTTATGCTTCCCGTCTCTTCA





CAGAGCTAGTCTCTTAATTGATTCCGAACTAGGAACATGTACAAGTGGCCCACGATCTGGAACAGACTGG





CGGATAATGGAATATTGAGACCTTGTCTATGGTCAGCCATATTAACACTGGATAAGTCTGATAACACTGT





GATTACATATGTATCAATATAGTATGCTGTTAATATATTAAAAACTTATTTACAACATGATTATTGGACA





ACTGTTACAGTACAGCCACATCAATCCTATATCAAGTTAGACCATGTCAACTGGTTTTGTGTTGAGACAC





CTGTGTATGGACATAGTCTGAACTTTTCATAGTTTGTGCTAAATGATAGCAATCAACATCGGTATGGCAC





TTACAGTTTACTGATAACTTTCATGCCCATTAACATAGTACCGCAATAACTCTGTGAAGTGCTGAATTTG





TGTCCTGTTTCATGATTGTATTTGTGTTGATATCTCAGTCAGTCAGAGTCCCAACAAGAAACAGATGGCA





CATTCAGATTAGGGTAAGTTGAGGAGTCTTTATTTACAAGGCACTACATACTCAGGATTGGGCAGGGTGT





AGGGAAATCTCACAAGATAGCACAAGACTCTAGGACTAGCAGCAGCAGAGCTGTCACCTCTCCTAGACCT





GAAGCCGTTGTTGGGGAGAGAGGTTTCTCAGAGCCCAGAAAAAAAGAAAAAAAAAAAAAACATCATGCAG





ATTTTAATGCCTTGGGAGGAGCAGTGGCTTTCTCTTAAGGACAGAATTTGCCTCGAAATGATACTCAGGG





AAAAAGAGATGAAGGGAATCAATACTCTGACCCAAGACTCTCCCTTCTCTGCAGTGGTTTGCTAGTCCTC





TCCTTGGTCAAACCCAAACAGAAAACCATAGGGCATAGGAGTCTAATGATGTAATCCAAGTCAGCCCCCT





GGAAGGTGGAAAAAGAAGGGAAAATGGATCTGGATCTGGAGGGATACCAAAAAAAAAAAAAAAAAAAAAA





AACCATAGTTGGCATGCTTGTTTATTGATATTTTCTTGCATGATATAAGAATCCAGATAAATATAGTAAG





AGGTCTATTTTACTAACAATTTTAGGCACCTAATAATAATACTCCTTCTTTGAATGTATAACCTCTAGAA





TTGGTTCAGAAATGTAACTGTGCCGTTACAATTTCTATTAGTATTCAACAGTAGATTCATATCCATTCAT





CTATGACTGGAGTATCTGCCATTTGCTGGTTAGTTACTGTGTAAGGTACTTTGTAAGGTATAGAAATACA





CTTGGGGTGCGATGGCTCATGCCTGTAATCCCAAGGATTTGGGAAGCTGAGGCAGGCAGATCACTTGAGT





CCAGGAGTTTGAGATCAGCCTGGGCAACATGGTGAAACCCCATCTCTACAAAAAATGCAAAAAGAGTACC





TGCGCATGGTGGCATGTGCCTGTAGTCCCAGCTACTCGGGAGCCTGAGGTAGAAGGATCACGTGAACCCA





GGAAGTCGAGGCTGCAGTGAGCCATAATGGCACAACTGCACTCCAGCCTGGATGACAGAGTGAGACCCTA





TCAAAAAAAAATAAGAAATAAATTTGAGCTCAGTGACCTACATTCTAGTGCAGAAAAAAATGACCATAGT





TGATTATGAGATTTTAAAGCAATAAACCACATGAGACATACTAATGAGCTCATAAGATCATTCAGAAATT





GTTTATTATGAACACATAGTACTTTCAGTGTGGCATTAAACAGAGATCACTGTCCTTAAACAAGTTAAAA





GCAGAATCAAATCATCTGCAAATTAACACACCACTAAACTTTAAGCTTCTTGAGTGATTCTGTAATTTTT





AAAATGTCTTCAGCATTTCAGTGTCAAGATAGTGCAAACTCAGTAAAAGCTTGTGGAATTGCATTAAACA





AAACCAAAATAAATAGATTTTATTAAAACTATATACAATTGTCTTTCTAATCATATCCTCTCCATGAATA





GGGAAGAAATAATTTTAGGAATTTAAATATCTTCTATCTTAATAGTTCCTCTTATTTCCCTCTTAAGCAA





TGTTCACTCCTTCAAAAATATTTATTGAGCATCTAATATGTACTTAACACTGTGCCAGGTGCTGTGAAGA





ATGCCAAGGAAATAGAATGAACTTCTAATTCTTTGGAGTTCCAATTAAATAACCTAAAGTTAAATTGGTT





TCGGAGAGAACATTATGCCTTCGAGACTGTAGGCTTCTCTTGATTAGAAAGTCTTAAACATTTTAAGTAA





CTAAACAGATTAAGGAGAATTCAAGGATGCCTCTCACTAGTAAATTTGGATTAGTCTGGCAAACTTCAGA





CCTTAAATGCAAGATTTTTAATAATTAAAAGAAGAGAGAAAATGATAATTACATTTCTAGAGTCTATGTT





TACCATTCAGCCTTCTTAATCATTTCCTAAGTATATCTGGTGATCAGGATTTTATAACTCCAGAAAATCT





TTCTATACATCGCATAAATCTCTTCTTTTAAAAAGCTCTTCAATTTTGTATTTTGTTAAAACTTAAAAGC





CTCCATGAAAAATGAGACAAAAGTCAGTGAGAGGCTGTAGCAATAAAAATCAGATGTGATTTTCTTTTGA





ATAACATCTGTTTTTACAGTCCTTTCATGTTAAACTTTATAAGAATTTATTATAAACAGCTTTATTGACA





GTTCAATCCTATTTCTAAAAGGATTTATTTTCCCCCAATGGTAAGAGTTTTCTTTTCTTAAACCTAACTA





GTTGCAGATATTTCAGATACTACATTTCTCATTGTGTAAGGTAAAGTTTCTGACCACCTGAATATGACTT





GTAGCTCCTGAGAACAATTTGTTTAGTACCGATATCATGCAGTGACATTGGTACAAAGGAATTTTCTTTA





TTTCACTGTACTGTTTTCAGTTTTATTCTATAGTTGTTAAATAAGACCATTAAATATTTTTATTAGTCTT





ATTTCCTGTTTAACTAGGTGGGTTTTTGATCTCTGTTCAGTAAAGCATTGTGCTCTTCAGAGCAAGCAAT





TGAAAAGCAAATAGTGAGTATTTCTACTGTAAAAGTTTAACATTAAAAGATATACACACAGCCAGGCAAG





GTGGCTCACGACTGTAATCCCAGCAATTTGGGAGGCTAAGGCAGGAGAATCGCTTGAGCCCAGGAGTTCG





AGACCAGTCTGGGAACCATAGCAAGACTCCGTCTCTACCAAAAAAATTTTTTAAAAAATAGTTGGATGTG





GTGGAACACCTCTGTAATCCCAGCTACTCAGGACGCTGAGGCAGGAGGATTGCTTGAGCCTGGGAGGTCA





AGGCTGCAAGGCTGCAGGGAGCTGTGACTATGCTACTGTACTCCAGTCTAGGTGACAGAATGAGACCCTC





TCTCTCTCAATTAAAAAAAAAAAAACAAGATACACACACATATATTTGCGTAGGTAACTCTAATTTCATT





TCAAGTATGTTATGTAACAACCATTTGTGTAGTGCTTGTAACAGTCAATATGTAAATACTGACTCATCTT





CTTTGACAATTCTACCTAGATACTTATTAGAGTCCCCCTTAGTCATTGAAAGGAAGGTTAAAATCAAAAG





ACGTTGTTTGCCAAAGTAATGAAAGAAAACTTATAAACACAATGTATCATGTCTGGGGCTGAACTAAAAC





CCTTCTGATATGTGGTATTAACAGATCATCTTTCATGACAGTACCAGTTATTAGAAATAAAATGATTGGA





GTTATTATTAATACTAACAATAGTGGTATTCTTAAAATGACTTCCTTATTTATCTTCACCTTTATACATT





CTACTACTGCTTCAAGACCCATCTTGAATTCTTCTTCCACAGAACATTCTGCATTAATTTCAGCCAACAT





TGATTTCTCTTTTTAAAATTTGTCTTGCACAGTGAATTAGAAAACCAGGAATTGGAAAACCAGAAAAGCT





TATTAAGTAAGAAGCAGAGAGGAGAGAGTTTCAACAAAGGGCCATTCTAAAGTGGTCTACTGCGGACACC





ATACTGATTATAGTTGGTGATTAAATCTTATCTTTCCAACTGATTATAAACTCCTCCAGGGCATACTCTT





ATATTCCACAAGATGCTTATCTGGGTGCAGAGCATGCATGCAGTTGGTATTTGCTGATTTATCAACTAAC





TAAATCTTAACATATTATTATTAACAATTTAAAATAAAGTTAAATGTATCACTCTCCACCCCTCAAAGCC





ATTTCTGTTCTTTGTTTTCATAGCACCATTATTATTTCCTGCATAGTATTTTTTAAAAACCGTATTTTTA





AAATTTATATATTTGTTTATTTGGGTATACTTCACTAGATTGTAAGCGTCACAAAAGCAGAACTATTATA





ACCCCAGCCACTAACACAATGCCTAACAAATAGTAGGTTCTCAATATTTGTTGAATGAATGACCTACAGA





TATTACTTCATTATGAAAGATTTTGCTAAGTTGTTTTACATCTATTTTATCCAAAACTAAAGTTCTTGAG





GCAAAGCCTAGAATATCTTCTATGTTCTCACAATGCTCTGAATCAGTGCTTCTCTTAATATGCATAGCAA





TTGCCTGGAGAGCTTGTTAAAACATAGATTACTTAGCCCCAACCCCAGAGATGCTGATTCAGTAGGTCCC





AGGTGATGCTGCTGCTGTCAGTCTCTGGCGCACACTTTGAGTAGTAGGGCTCTAGGATGTTATATGTACA





GACACATGCTGAATAGTGGGCTATGTGCTTACTTGCTGGCTAAATAATAAATGTTCTCACTGAGTCATAG





AACTTTGAAATTTGCAAGGACTTTTGCTATTATCTAGTCTATGGATAGCAAATAACCTGATACCGTGCTA





TAGTGCTTGACTGCATTTAACCTGCAGAATCCTCATGAGCAGCCCAGCACCATCACTCCAAGTGAAACTA





CTCTCTTCTTGAGGTTGTCCAATTCTATCAATTAAAGATGAAAACCAGGTTCTGAGAGTTGAAATCTCTG





GACTTCAAAGGTCCAACAGCCCAGGTCTTCTCAATTCTCGTTAGTGTTTCAGCAGCTGAATACAAATTTA





TTAAGCTGTATCAGAGTAGTATCTGTCAAATTGGAGTGTCCATAATATGCTTAAACAGAGAACTCCATTC





CAATAACATGAACTTTCCTTATGCTTTATTCATCATCGCTTGAAATTTTGAATTTTGCCCAAAGAAGTTT





ATACCAGTACATGTTAAATTACATCATAGCCTTCTTTGTATAAATCTTAGAGTAGTTTACTGAAGTACAT





CGCAAAGTTTTGTTGTTTCTTAGGTGATTTTAATTATGTATGTTTACTTTCAGTAATGCATCTTTTCTCC





TTCATCAATATTATGTTATGCTAGCTGTAAGTACAAAATAATTGAGAACAAATTATGACAAATTGAACCA





AGCCACAAAAAAAGGAGAAACCAAATACTTTTGTGATTTGAGCTTTTTTCAGTCCTTGAAACTTTAAGAA





TATCTGTCTTTATTAACTTTTGCTTTTTGCTGATGGTTTCTCTCATTTTATTATAGCTTATAGCATTGTA





AATTAATTTAACATGAAAGGATAAAAACGTTGCTTTTGAAATGTTTCTCATTAAATTATGAAAAAATATT





ACACTAAATAAAAGAAAGGAATGCCTCTGGTACCAGCTTCTGTTTGCTCAATTATTGCAGTACCCAAAGT





GAATTATTACACAGTTAACTCAGAGGCAATATTATTGTCATTATATTATAAAATAGATGAGTTGCAATCT





TCAAAAAAAAAAAACAGCATAGGTCCTTTGAAAGTGAAATACCTTTTTTCCTTGTGCTTCATTTAAATAT





ATACTGACCCCAGTTTTGTTTTTGTTTTTCCTTTTTAGAGTTCTTGCTAATGATGGGCCCAAAGTTATAT





TAAGAACTGCAAAGTAAATTTCAACCAATTACTTTATTCAGGGGAGTCATTAAATTGAGGTACCTCTGAA





ATTTTGGAAGGAATGTACTGCCAATTAGCCGAAAGCACTACTCAATGTCCTTTCTATGGTTATAATCTCT





CTAGTGTATTTTTAATTGAAGACAACCTCTATAGAGGAGGTGAGAAGTTGCTATTTATTGGTACTTGTTA





GGATGGAATCAAGGGTGTGGAAGATATTCATCTATTTCTCTCTCCAGCTCCCCCACACAAAAAGAATGGT





GCTTAATCCATCTGAAGCATTTGGGGAGCGAGGGTAAAGATGTAATATTTACCATGAGCCGAAACAGATC





TTCAGAAGTGGAAAATGGAAGCATATTGAAGTCCCTCAACTAAACAGACTTTCTTCCATATGGAATTCAA





TGCATTAATGTTTTCAAATTCTATAGCTTCAAATTCTTAATATTTTCAAATTATGTGAGCTTATGTCAAA





ACATTTAAGTGAGCTTTTAACAATGAGGCAAATATTTGAATCATTTGTCTACATAACAAATACTACTATA





AAGCATATTAAATGTTATAAAAATCCTAATATACTAATGTAAGCTATTATAAAGTACAAATAATTAAACA





ATATTTATATGATCAATGTTTTATAATACGATAAACACATTAAATAATTAAAAACTCTTCCACCGTGCAA





AAATGACTAAATAAATTGTTAATTTCTAAGGCTTTTTGAGATTACTGTGAAAGGGGGTATAGTTTCAGGA





AAGGTGAAACTTCCCTTCAATGTGTAAACCATTAAAGAACATAATAACCTACTGAGTGTGGGTCTCAATG





ATATGCCCTGGAAAGTATGGGCAACTACTCCACACCCAATTTTGTCTTTATATGATAAGGCACAGCAAAT





AATTATAATGCAATGGATAAATGGTAAATCCCACCAAAGATTAACCAATCAGAGCAGGATGAAAATTCTG





AGTTTGGAAATCTATTGGAAGATTTACAGATTAGATTAAAGTGCCCAGTAACCAAACTATCAAAATTATA





TGGCTTCAGTTAATTAATGATTTCCAAGGTTTTTAGTATACTGTATTACAAAACACATTAAGCATCTTAA





GCATTCAAACAACATTTTTTTGATGATTCAGAAAGCATCACAAATTGTTATATCAGCTGATAATAACTTA





GGTACATATCAATTAAACTTGTATTATAGACACGCAGAATTCTTCAGACCAGAAGTCGAAAGGGCTTCTC





TAGTTTGTTTATGCTAAGTTGTTTAGAGATGACATAACTCTGAGCTAATTTGTCTATTGCAATGGTTCTC





AAAATGGGGGGGGGGGGATATTTTTACCTCCACCAAGTGGACATTTAGCAATATCTGGAGGCATTTTTAA





TTATTATTACTGGATTGGAGATACAACTGAAGTCTAGTGGGTAGAGGCCAGATATGGTATAAAATATCCT





ACAATGCATAGGATAGCCCTCCACAAGGAATTATTTAGGCCAAAATGTCAGTAGTATAAAAATTGAGAAA





TGCTAGTCTAATATAGTGTTTACTCACCTTTCCTGAAACTATGTCCCCTTTCACAGTAATCTCAAAAAGC





TTTAGAAATTAAAAAATCGTTTAGTCATTTTTGCATGGTGGAAGAGCTTTTAATTATTTAGTGTGTTTTA





TCTTATGAAATGTTGATAATATAAATATTGTTTAATTATTTGAACTTTATAAGAGCTTATATTAGTATAT





TAATTAGGATTTTATTTAACATTTAATATGCTTTACAATAATATTCATTATATAGACAAACGTTTTATTT





TTTTCACTTTAACAATGATTTTTAACTCTAATTACATAAGAAAAAGTATGAGTTAACAATTTTTTAAATT





ACATGCTTGGTTTGAGGGCCAAATACACATGAAAATGTGGACTAAAATTTAAAATCAAATAAAATCTATA





AAGTCGAGGAAAAAGCTACTTTTATGACGAGGCATGGGGAATTCTTCATAGTTTTTGGGTTTTATCAGAA





GTTAGCTATTTTTTTTCTTTTTGCTCTGTAAACAATCAGATAAGAGAGGCTCAAATGACATTTTCAAGTA





CATCTTAACAAAATACACTTTGAGCATCAATTGAGTAAAGTTTCATTCTTTTGAAACTTTGGTTTTCACA





AGATTTCCTGAGAGTTTTATTTTATTGGTGTTCTGTGGGACTTGGGCATCATAATTCTTACAAACTACTC





AGCTCAATCTAATGTGCAGCGAAGCTCTGGGAACTTTTGTTTTGTCTAGTATCCAGTTGGAAGATTCTAT





AGCTACAGAGCTTGGGTTTAAACCCCCTCCAAGTCTTTACCAGCTACCTTTATGACCCTGGCAAATTACT





TAAACTGTGTGCCACCATTTTCTCCTCTGTAATACGGAGGCAATAAAAATTTCCACTTTTAGATTTTCTA





TATGCGGTTTACAAATTGACTTACTCTGAAGATCATCTGGAGTAAAATCTGGAGAAATATGATCCCTTAT





AACTTCTTCAACCCTTTATATATTTCAACATGAGTAACCAATGCTCTAAATATGGATATAAATTATAAGA





ATAAAAAATCTAGGACTATTATAATGGTCTAAACTCTCTTCATAGCTAAAAGTGTTGAGTAATTAAACCA





GTTGAGCAGCTAAATCATGTACACACTTCTTTGATCCCTCCCACGATCATGTATTTGGCATTGTAATGAA





AAGATATGTTTATTTTCGAGAATAGACATAACTACCTTTAATAATATGATCACCCAGAAATTTTTACAAA





CCCCTGGAAAATTTCATGAATATCAGGCTGTGCTCATAAAACCTTAGAGATGAGATCACAATAGACTGGG





TCAACATATAGTAATGAGCAGGATTAATAAAACCTCAGATGGGCATTTACAAATGAGTCAAAACCATGAG





TATAATTAAATAATTGTAGCAAAAAAAGAGCCTTGGGTAATCCTTTCAGCAAACGTAATCGAAGTGATTG





CATTTAGAAGACAAATATTTAATTTGGTGACTAGAAGGTCTTTTATTATTCCATTATGTCTTTGTGTGTG





TGTGTGTGTGAGACACTTTTCAAGGTCAATTTTTACTTATAAATTGTCTCTAATTAAAAATTGACTTGGT





TATTAAATCATTGAAAATTGGCCATCATCAAATTCCTCATTAAAATATTTCTATGTGCCATATATATATA





TATATATATATAGAATATATATGTAGAATATATGTATACATTTATTTTTACTTTTTTTTTACTGTGCCTA





CTAGAGAAATTTAAACTACATATATGTAGAATATATGTATGTTTTAACTAGACATACTGTTAAGTACACT





ATACCTAATATTTGGCAATATTAATACCATCTCATTGAGAAACCTGGAATATATGCACATTTTGGATGTC





TATTATATGTTGGGCACTGGACTAGTCATTGATAATACAGAGATTAGTAAGACTCAGGTTGACTTCAGCC





ATGTTGTCAGGAAGCACACACTCTAGTTTGGGACAGCGAGGAGAAATTCAATAAGAGAAATATATATAAG





GCATAATGCTCTAGGAGAATATGCAGTGGATAACTGCCCAATAGGACCAGGCAAGGCTTTTTAGAGGAGG





AGGTGGCATTTGAGTCAAGTGTTAAAGGCTGAATGGAAATTCACTGGTTGAGATAAACTCCTTAGGAGGA





ACTACTTTAATAGAACTTGCCGTTAGTCCTGAAATAAATGGTGTGCAAAATCATTACCATCTGTCAATTC





ACTCAGTCTACTTTGCTCTTAACTTCAGAAAAAAATCAGAAATACAATTAAAACATTTGAGCCTATTTTA





CTGTCTTTTAAAATGAGTTAATTCAAAGAGGAAATTAAATATAATGAGAGAGAATCTCCCCCGAGGATTG





GGGGCTGGGGAAATGCTATTGATTCTTTGCTTGTGTTTATTTTCTCTCAAAAATACATTATGCATAAACT





TGATGATCAAAAATTCAGATTATTACATTTCTAAATTGGCAATGCAATTTATTGCATCATACATCAATCA





CAAAAATGCTCATCTTGCTGACTTTCATAAACTTCTAAATGAACAAAAATGCAAAAATAGTTTATACTAT





ATTACACTATAGTAGATTTGTTAAACTAAACCAGAACAATGGTCCATGAAAAATAGGCCTCTGACTCCAA





ACGCTCACACCACAGGATCTCTCTGAGATTTTTGTGTCATTTCAAGTCAGAGAAAATTGTCTAATAAATT





GTTGGCTTGTAACAATGAAAACTAAGATATCTGTGGGGCTATTCTTGTTCTCTTCATTTTACTACAGCAG





CTCTGCCCAGTAGAAATAAAATGTGAGCCACATATGTAATTTAAATTTCTCTAGTAGGCACACTGAAAAA





ATAAAAATAAAGAAGTGAAATTAATTTCAACAGTATGTTGTATATAACCCAATATACCCAAAACATTGTC





ATTTTAACATGTAATTGTTACAAAAGTTATTAATTAGATTTTTTCCGTTAAGTATTTAAAATCTGGTAAG





TTTTACTCTTACAGCGCAACTCAGTTCAGATCAGCCACATTTCAAGTGCTCAGTAGCCATATGTGTCTAG





TGGTTACCATATTAGAAAGTAGTTTGAGAGATCCACATTAAACCAAAAGGAAAAGAACTTCCGGCCCTTC





ACTGATGAGTCACTCTTCACTGCTAACCTTGGAAGCATTCCCAAATGTAGTCTACAGAGTTTAAATAGTC





TATCTTAACATCTCTCAGGGCTTCAGTCTTAATGCCATAGTATTTTTAAAGAATGGTGGATATTCTTTTT





TACAGAACACTCTGTAAGAGCAATTAGAAGTTTATGATGCACGTAATGCAAAATACAGGTCATTTCCCAA





GCCTATTTTAAAAGCGCAAAAACTGTAGTCATTTATCACCCCTGAGAATGTTGTCTTAAATGTCTTGGTT





TGGATATTGGTGATGTGAGAACTTTGTGATAAGAAAGTAGTCTTTAAGAATAAGATATCAGACTAAAATT





CATATCTAGAATGAAAGTCTTGTTTTTAATGGAAGATTAAGAGCAAGTCTGATTCAGATCATGCATGGGG





TACACTAGTCTAGGAAAACACTAGTCTGAAAATATACTAAAAGTTACTTCGCAACTTAACAAGAAAATGT





CTTGTGGGTGATGTCGTTCTTGATTTTTAGGCAAACCTACCTACCTTTGCAAAGCAGCTGGGACCTTTTT





GCATTGGAAGAATCATTTGGAGCACAAACAAAATTAGATTATCAACACTTTGGAAAACAACTACGAATGA





GCAATCAGAAACCTGACCTTAAGATTACTTGTGAATTGTGAATCAGCAAAATAAACTCGATTGTTCATTG





CTAAGTGTATTTCAATTATCAAGGGCCTTCTAGATTATAAGTAGTCTTTTTTTTTTACTTAGTTTACAAT





TAAGATGTGTGGTATTTGAAATACATTTGCCACAGGGAGAAATATAAATTATAATTAATTTCCTAGGCTA





ATTCAATTTATGACATACCTATATACATTATCTGTCATCTATAATTTTTCCCTTATTGTTTACTTCCCAC





TGGAAGAATGAAAATGGAATATTATTACATGGCACATGGCTTGATACTTTTACAAACTCTGACAATTATG





TATTTATTTTGGGAGGCATTGAGTTTATTTGTTTTATTTATATAAATTTATGAGGTACAAGTATAATTTT





GTTACATGCATAGATTGTGTAATGGTCACGTCAGGCCTTTTAGGGTATCCATCACCTTAATAAGATGCAT





TGTACCCATTAAGTAATTTCTCACTCTCATAAAATTCTAATTATGTGAATTTAATTTAATCTATTTAATG





TGTTTTAGGCAAATATAGCCGGTACTATAAACAGTTGATTTTAAGATATCATTGCTTACATTGAGACTAA





GTAAAACAAAATGGGTCAATAAATGTCAATCTAGATAACAATGTCAACTAAATAAGAGGTCAAACATGGC





AGTATTTTTGAAGGTGATCTGTGAAAGTGATTATAGCGTTTACACTCATGGAAAATGCCTTCAGAGTTTC





AACTAAGAATGCCAACAGCTCATTCCTTTATCCTGATGCATATTGTCTTCCTTCTCACCCCCAGTTCCTT





CTTCCCCTAACCCCTACCCGCTTTCCTTTGCTGATTTTGACAGAAATAGGACCCCCAATAAGTCAGGGAG





ATAGCAGGAAATGGGATAGGATAGAACCCGGAATGATAGAATAGCTGAGCCTGAAGGCATGAAGAAAGGC





TCCTCCTGACATCTAAATGGAGACCTAAGAGATGGGTTGGTCAGGTAGGGGGAAGGAAACATGAGGAGTA





TTCTCTAAGCCAGGCAACATACTGTGCACAAGTCTGAAGTCATGGGAAAGTGATTTTGAGAGGATTGCTG





CTTGGTAAACCTAGAGTTTGAATTGGGAGAGATGAAGCTAGAAAGTTAGTAAGGGTCAGATTTTTTTTTT





TTTTACTTGCATGACAATGGTAAAAACCACTAAAGGTTCTGTGTTAAGCAGAGGAGTGACTTCATTTAAA





AAGGTAAATTGGATTGAAATGAAGGGCATAAACTGAGGCAAAAATATCCTTCGTTAAGTTATTGAAGCCC





AGTTGAACACACTGGTGGCTTAAACTGGAGTATTGGTATAAGTGGGGGAAAGAGGTTAATAGATTCCAAG





TTGAAAAAAAAAAAAAAAAACATAGACTTTGCTATCTAGTAATGGATTAATATACAAAAGGAAAAAGTAA





AGTTTCTACTTTTTGGACAGCTAGAAACCTTCACCGAAGTAGGGAACCCAAGACTTAGATTATGTTGGGA





GGGGCAGGGTATTTTAGTTGCACAGGGATTTGCTTTACAGAAATGACTGAATGACAATATAGAGAGATCA





ATTCCATTAAAAGAAGTTTGATTACTCACAGTTCTCAAGGGAAGAGTACATACTACGCCATGCAAAGCCA





TGCAGGAAAAAAGTTCCAGAGTCGGTCAGCAGGCAGAAAAGGAAAGCACAGCCCAAACCCTTTATTGTGG





TTTCCAAGGAAAAGAAATGAGTGAGGTAGAATAGGCAAGTCTGAGCAAGTTTAGGACTGGATAGTTCAAA





TAATTTCCAAAATTTCCTGGCTGTAAAAGTGGTCTCTGGTTGTCTGGTACCAAGCCCTAGGGTGAGGGGA





AAAAGTTAGGGTGGGGGAAATATTGGTTTGGTGTAACAACAGTTAGATGAAGAAGGTAGTTGGGGATACG





GACTTTGGATTAGTTGGTTTGTATAACGAAAAGCAATCCAACAAATCCACAAGGGAGCAAGTTTACAAGT





TATTTGCTATCTTTAGGAATTAGCTAGCCCTGGGAGGGGCAGTCTCTCCCTGGCCTTCCAAGGACCTCAA





GATGTTCAAGCATCCATAAAATATGGAAATTTTTTAAAAACATTATAAATACACAGAGTAAACGCTGGGC





ATGATATAGGACAGTGGTTCTCAAACTTTAGCTCCACTGGAATCTCCTGGAAAACTTGTTAATATGCAGA





TGACCGTTTTACCCTTAAGCTTCTAATTGGGGAGGTCTGGGGAGGGCACAGATAATTTGCATTTCTACAA





AGTTCTTCCATGATTTTGATGCCGCTGGTGAGGGACCAGGCTTTGAGAACACTGATTTAGGACGTGTCCT





GTTTAGGGAATATCCAAAAGGCGGACAAGTTCAGGGAATATTCTTGGGCAGTTGGCTGTGTGAGTCTGAA





ATTCAGGATAGAATATTAAGCTGAAATAAAGATTTGGGAGCTTATCTACAGTCAAATGATAATTGAAATA





CTGAGAGTACGGGGGGAGAGAGGTCCATGTACCAAGAAAAGTGAAAATGACTAATCCCAAGCCTCGCTGA





CCATTGAGAATGGAGCTAAGTGAGAGGAGTTAACAAAGCTGACCCAGAAAAAGTCATAAGGGCCTTAGGA





GGCCAAGGAAAAAAAATACATTCACTGCCAACGAGAGGCACTTACGAATGGCTTGACTGGCTTTGCCAGC





ATGCATGAACTGCTTCATAATTATTTGTATTGATTACAGTAACAGATACATATTTTAACAAGCAACTTAA





GTAATACAACTGATTTTTAATTATCTTGTTTAAATTGATAAAGGTTGTATATATTCATGGTGTACAACAT





GATGTTTTGATATACCCATACATTGTGGAATGGCTAAATCAAGCCAATTATCGTATGCATTACCTCACAT





ACACTTTATTTGTGGTGAGAACACTTAGAGTATACTCTTAGCAAGTATCAAGTATATAATACATTGCTGT





TAACTATAGTATCCATGTTGTACAATAGGTCTCTTGAACATACTCCTCCTGTCTAATTGAAATTGTGTTT





CCTTCGAACAACTGATTTTTTTAAATAAAAAACTTAATACCTGTAAGTTAGAATTCTTAATGGTCACCTT





AGGAGCCTATACAATTATTCCTACGTTGTTGTTACTATTCTGTGTCTTTTTCTTTTTTAACATCTTTAAA





GGTATCAAATTTTTATATTTTGAAAGTAGAATTTATTTTTTGTCAGTCTAAAATATTTTTATGTTGAACA





AAATGCATGAATGGTAAACCTAGATGCAATCAATTTTTCAAATAAAAAAAGTAGATACCCATGAACATTT





CTTTTGTAATTGCAAACTGTCTTGAAAGGCAGTTTCAAAAAGAGTTTAGTTCCTAAATTGTACCATTACT





CACTGCGTTAAAATGCAACATTCATTTGAGCGTATAACCTTTTGATCAATTTGTTTTTGATGTCTTGTTC





CCTGAGAGTTGTCTCAAATAGATACATATAAATATACACATATCTCAGATTGGCTCTGAGAAATGTCTTG





ATTCAAACGTTCTTGATTCTAAGATTCATGGTACATAGGAACTGTATGGTGACAACCTTGTCAGCCTATC





TTTAGAGTAGCTTTGGATTCTATTCAGAACATTTCCCAAAGCTATTCTGCTATCAAGAATATAAACAGGA





ATAGTCAAGGGAAGCTTTTTAAAGGGCAACATTTTCATGTAGGCATTTTTCTCACATTGAAAACTAGTTT





ACTAAATGCAGTGTATTACCTTCTCATTACAAGAAGTCTTTCACATTAGTATAAATGCATATGGCAGTTG





TGCCAGAAATAAATTGCCTCTCAAACTAGCACATGGAAAGAAGAATTCTGAGATTTAGCACATATGTAGC





TTTTAAATAGTATACTCTGTTTCAAACATTATGTGTTAGTCCACGTTCTCTTCAGCCATTTTCAGTTGCA





TTTTTACTTTATATTCCTTTGTATATTTATCTTTGCTAATCATTGTCCTGAGATTCCTTTAGCTCTTGAA





TTCTACGTTTTTAATTAATAGAAAACTTTCTTTTTATTTTTCCCCCGACATAGTTGTTTTCTAGAAAGAA





ACAGTTATAGGTTATAAATCCAACACTTTAGGGCCGACTTGAACATGCATCAAAGCTACTAGAGGACTTG





TAGAAATACAGATTGAATGGTCCCATGCCTAGAGTTTTACATTCAGTTACAGATAGGGTAGGACCTGAGA





ATTCACATTGCTCACAAATTTCCAGTTGATTTTGATGGCATTGGTCTAGAGACCAAACCCTGAGAACCAT





TAAAAAACAAACAAACAAAAACAAACAAACCAAAAAAAAAACTATATACAGAGATTTTCTTCATTGGCTT





TTGCCACTGAAGACATTTAGATGAAGAGACTCCACAAAGTGTAATCATTTAGTTATGAGAGGGGCCTGAT





AATTTGCATTTCTATCAAATTCCCAGGGGATACTATTGTTGCTGATTGAGAACCACACTTGGTGAAACAC





TAATTAAAATACCATTAAAAAGCAAAAACAATTTAGGCCAGCAAAACCTCCTAAAGAATGAGGCCTAAAG





ACTTATTTTGTTTTATTTTTGCCAGAAGCTTCTTATGGGCAAAATTATCACCAACAGAGCTGAGGTTCAA





ACTTGTGTTCATAGCAAGCAAAAGGGATAATTTGGAAAAAAAGCTGAGGTTAGCTTTGTGGTTGGTTTGG





GAGTGGGAATGAGTAGGGAGGAAGAAATTTAAAAAAAAAAAAAAAAGGAAGAAGCCAAATATTAAATTGT





TCACAGGGCGAAAAAAGAGAAAAGGAGTAACTAGAAATATCTTAGACTGGTTCGGCAAGTCGGGTCCCTC





GCAGCTAACAGTGGTCCCACCCTCTGGAGTTTATATGTTTACATTCTTTTTTTTTTTTTTTTTTTTTTTG





AGACAGGGTCTCACTCTGTTGCCTAGGCTGGAGTGCAATGGTATGATCACAGCTCACTGCAACCTCCACC





TCCTGGGCTCGGGTGATCCCCCCAACCTCAGCCTCCCAAGTAGCAGAGACTACAGGCAAGTGCCACCATG





TCCAGCTAATTTTTTGTATTTTTTTGCAGAGATGGGGTTTCACCAGTTGCCTAGGCTGGTCTCAATCTCC





TAGGCTCAAGTGATCTGCCCACCTCAGCCTCCCAAAGTGCTGGGATTACAGGTGTGAGCCACCGCGCCTC





ATTGGAGTTTGCATTCTAGTTGGGAAAATAGCCAATAAATTTGTGACTTATTTTCCTTTAAAAAAAAAAC





TTATTCTGGCTATTGTGTGACTATAGGATATGGAAGGTGCAAGAGTATGAGGCTAACACCCTGTTCTAAA





TTCCGTCTCCTCTGAGCCTTGTTCTGTCAAGAATCTCCTCCTTCTATACTTTTTAAGTCACCTTCCTACT





GATCCTTTGCTGTCAGCTTACCACTCTGGTACCCTTCATTTTAACAAACAAACAATTGTCCAAGCTTACC





GGTGCTGCTCCTTCACCCCTCCACCTGTACCTAGTGTCAATTCTCTCCCTCTTCTGATGGCCAAACTTTG





TGAAACTGTAGCACAGCTCCATATGTGTTCCTGCAAAGGACATGATCTCATTCCTTTTTATGGCTGCAGA





GTATTCCACAGTGTATATGTACCACATTTTCTTTATCCAGTCTATCACTGATGGGCATTTGGGTTGATTC





CATGTCTTTGCTATTGTGAATAGTGCTGCAGTGAACATACGTGTGCATGTATCTTTAAAATAGAATGGTT





TATATTCCTTTGGGTATATAACCAATAATGGGATTGCTGGGTCAAATGGTATTTCTGGTTCTAGATCTTT





GAGGAGCTGGAAGCCATTATCCTCAGCAAACTAACACAGGAACAGAAAAGCAAATATCACATGTTCTCAC





TTAAAAGTGGGAGCTGAACAATGAGAACACATGGACTCATGGAGGGGAACAACACACACTGAGGCCTGTC





GGGGGGTGGGGCGAGGGGAGGGAGAGCATTGGGAAAAATAGCTAATGCATGCTGGGCTTAATATCTAGGT





GATGGGCAATAGCAAAGACTTGGAACCAACCCAAATGTCCAACAATGATAGACTGGATTGAGAAAATGTG





GCACATATACACCATGGAATACTATGCAGCCATAAAAAAGGATGAGTTCATGTCCTTTGTAGGGACATGG





ATGAAGCTGGAAACCATCATTCTCAGCAAACTATGGCAAGGACAAAAAACCAAACACCACATGTTCTCAC





TCACAGGTGGGAATTGAACAATGAGAACACATGGACACAGGAAGGGGAACATCACACACCAGGGCCTGTT





GTGGGGTCGGGGGAGGGGGGAGGGATAGCATTTGGAGATACACCTAATGTTAACTGACGAGTTACTGGGT





GCAGCACACCAACATGGCACATGTATACATATGTAACTAACCTTCACGTTGTGCATATGGACCCTAAAAC





TTAAAGTATAATAATAAAATATATATATATATATCTCTAGGTGATGGGTTAATAGGTGCAGCAAACCACC





ATGGCACATGTTTACCTATGTAACAAACCTGCACATCCTGCACATGTACCACGGAACTTAAAATAAAAAT





TAATCATAGAACTTTAAAAAAAGAAAAGAAAATGTAGCAGAGCTGCCTAGCTCACCTTCTTTACCCACAG





CTCACTTTTCAGTCCATTTATCTGGCTATTACTCCTACCGTGCCAGGCAAACTGCTCTCACTAAGAAAAT





CAATAGCCTACCCCCTGCCAAATTGCCTGACTCAGCTTCTCCTTGTAATTTTCTCCTTTAGTTCTCTAAC





ACCCTCTTCCCCAGGTTTTCACCTGACCTGTCTCCATAGGACATTTGAGTCTCTTTCCTGATGATTCATC





CTCAGCCTCTTCCATAATAAGTATGGCTGCTCCCCAGATCCTACCCTCAGCACTTCTTCACTTTCCATGC





CACATCTCTTCTGTGATCTCATCTTCATCCACGGCTCTAATTAGTATCTATAAGCAGATGACTCTCAAAG





CATATGCTGCCTATGTACCCCTCTTGGCCATTCTACATTGACATCTGCAACTCCCCAGTGAACTTCTATA





TTTAGACCACAGGACTGGTACCTGCTGATAAGCACAGGTAGGGTGTACTGAGTAGTGTTTTCTCTATTTG





GTTGGGCTTTTGCTAAAGCAGTTGTCAAATATTTTGAGTCTTACTCATGGCCACAGACATTTTAACATTA





GCATGTCCCAAACTGAAATCCCCTACTGCCTCTATTCTCTATTTCAGAAGATGGCACCACCATCTACCCA





ATTATTTAAGCTAGAAACTTCTGATTCTGGTGAGACTTCTCTCTTTTATGCATATGTCTACACTGACACA





AAAGACTGCAAATTTTACCTCCTAAGTCTGTCTTAAAGCAGATTTTTCTCTATGATTCTCTATGGTTTCA





GGCCCTTATCACTGTGAAGTCAAGCATACCTGATTCGAATCTTGTCACCGTTGGCAAATTTTTAAATCTC





TTCTAGCCTCAGTTTCCTCATAAAGTTTTCTGTTTCTTAGGGTGACTAAAGGGCTTAAATGAGATTACCA





TACAGAGAGTAAGGTACATAAAATGCAATTAATAAAGAATAGTCACTATAACTGCTGATGATGATGCTAT





TACTATTCGTATCCTAGAAAACTCCGGTAACTTGTTCACTGGTCTTTCTGCATCTAGCATCACTTCCTCA





GCCAGAGTTATCTTCTGACATGAAGGCTGATGCCGTCACCCCCATACTCATGTTTGAAATTCTTCAATAC





CTTTAAGATAAATTCCCACCTCCTTGGTGTAGCATGCAAGGTCACACATGACATAATCTCTCCAAGGCCC





CATTTCTTCCACTCTCCTTGAGTGATATATGTGGCAGAAAATTTAAGGCTGCCTGGATATTATCCACCTT





ACGTCCCAATACTTCCATCTGCCGCAAAGACCTTCTACCCAACTTCCCATCCTCAACGAATTCTTATTCT





TTCTTTAAAAATAACCTCAAACTTCAGACTAGACCTCTGGTCCATAGGGCATTACAAATCTCTCAGTAAG





TTGTACAGGATGAACACGCCCCCTAAAACTTTGTTTCAGATATTTCAATTTTTATTTTATTTTATTATTA





TTATACTTTAAGTTTTAGGGTACATGTGCACAATGTGCAGGTTAGTTACATATGTATACATGTGCCAGAT





ATTTCAGTGTTAAAGGTTTAATAATCACATTTACAGAAAAGGAATTAGCTACAAAATGGTGGCACTGGTA





TACAAGTATGTAAAGATACAGTGCTTACAATTTAGGATTATTGTTGTCGATGTTTTAATATTAAAATGGC





TAATCATACAGCAAAGTCGAAAGAAATTTACGGTCAACATCTGTATACCCAGCACCTATACTTTGCCATT





GAAATTTTACTATACTTGATTTATTACATATTCATCTATCCATCCCTCTTTCTGTGATCAATTTTTAATA





TTCTAATACTCTTACCCTTAAATAATAAGTTATCTTTTCAAAAAATAATGTGTTTTTACATAGATGAAGC





AAAATAAACTTGCCCTTGATAAAACAATATGCACTGTAGTGCCTTCTAATTCAGTGCATTGAAGTATCCA





TTAACAATATAACCAGAGAATATAAAACATGTTTATTAATATTCCACTGTACCTGATTAGATATAGACCA





TTAGGAAGAGTTATTATAATTAAGAATCTAGGTTTGTCAATATAGAAAAAAACCTGTGTTTTTTATCCCA





CTGGAATGTCTTGTGAGGAATATTGTTCCCCTTTTTCTAAAATTTAACTTTGACCTTTATTTTGTTAATG





CACCATGGGTTAAGCCACACTACGACATGTGCTAAATAGACCTGGAAGTTTTCAAACTAGGTTTTTAAAG





TGTATTTGACATTAAATCTTCATAACACCTTATTGATTAATTTAAATCCATTACCATGGTAAGGAAAATT





CGCAGACAGGCAGGTGAAAATTAAAATAGAAACAAAACAACATGGTAAGCAATCCTTCCCCCCAAGCCAA





TCAGCATGTAGTCAGTGTGTCCTTTTAAATTAGCAAGGCGCAGCTTCCCATAAAGTCCCAGCTTGATTTT





ATATGCTGCAATAGTATTGCTAAAATAAAGGAGAAGGCAACTTTTCTCTATAATTTTTTTCTAGAAGTTT





TCACGCAGCTTAGTATACTGCAATGACCACATTACTCAGTTCCAGAATTAGCAGCATTCCATTGTGAATG





ACTTAATTCACATTGTGATTACTCATTTAACAACATTCTTGAGGGTTTACAATGTGCAAAGCATTACATT





AAGTCGTGTGTGGCAGAGGTTCTCAAATGCAGATGATCTGTGAAGAAGATTTCCTCAATAAGCAGAGAAA





TGAGAACTATAAGGACAGAAAGAGAGAGAGAGAGAAAGAGAAATTATTTAAGCTTGTAGCTTGTCATCCT





CCTTTCTTAGGACAGCCTACCATTTAGGCTGAGACTATGTCTTTCTGATTATTTCTTGTGGTTGAAATAC





CCCTTCCTTAACAATATGATGGTAACAGTGGATGGTAAATCTTGTTTTGTTTTAATAGTTTACCTGGCAA





AAGTATCATTTTATGTCTGTATCAGTTATATATAATAGTATATCAGTCCATTACCAAACCGCCTCAAAAC





TCAGTAGCTTAAAACAGTAGGTACTTCTTGAGTTCACTAATTTGTGGGCTGATGGTTTACATTGGGTAGT





TTATCTGCTCTGACTGGGCTCCCTTGGGAATCTGGAGGGTAGCTGAGAGCTTAAGTGTCTGAAAGTGGCT





GGGTCAACACAGCTCTATCGCTCACATCTTGAACATCCCTCCAGCAGGCTAACCAGCCCGAGCAAGTCCT





TTTTGTGAAGGCTGAGGTGAAGAGTGGAAGTGCAAACATGTAAACAATTTGTTGAGCCCCTGCTTCCATT





AAGCCTGCAATATCCGATTGGCTAAAGCAAGTTTTATTTCCCCCTGTGGTAGGCAGAATCATGGGCCCCT





CGAAGATGTTAATCCCCAGAACCTGTGAATATGCTGTGCTCCCTGGCAGTAGGGAATTAATATTCCAGAC





GGAATTAAGGTTGCTAAGCAGGTGACTTTGAGATGGGGAGATTTTATGGACTATTCAGATGGGCCTAATC





TAACCACAGGGTTCATATAAGTGAAAATGGAAGCAGGAGAGTGGGAGTCAGAGAGATGAAGATAGCCCCT





GCTGGCTTTGAAGATAGAGAAAGGGGCCATTAGCCAAACAATGTTGGTAGCATCTAATGCTGGAAAAGGC





AGGGAAATAGATTGTCCTCTAAGCTTCTTCAGAAGGAGTATAGCCCTGCCAACACTTTCATTTTAATCCA





TGAAACCCATTTCAAACTTCTGACTTCCAAAACTATAAGATAATCAATTTGTGTTGTTTTAGGCCAGTAA





GTTTATGGAAAATTGTCACAGAAGCAATAGGAAACAAATATACGCTCCATTGTTCAATCTTTTGAATAAC





ACATATACTATTATTTACTTAATGTTTTTCTTAAAATCAGCTCATTTTGTTTTCTGCTTTTAGCCTTAAG





TGATAATTCCCACAAAACTGTAGTCTGATGTTGCAGTGTTTTTTTCCTTAATACAGATAAAACTAAATGA





ATATTAAAATTTAAACTATAAGCTGTTTATCTGTGTAACATGGTAAATTGGCTCCCTACCACTACTGTTC





AGCAAACCACATTTTGGGAAACAGCGATTTAGGTGGTTCAAAGGAGCAAGTGATTGTGCAAGAACAAGAA





TTTATTAGAGAAAGAAGCATTTGGCCAATGGGTAGAATTGTTGGCAGACAAAGGTAGAAGAGAAAGACAA





ATTATTCAGTATGGCTCTAGCGAACTCTTTGCACTTTTATCACACAATCTGAAGCTTGCTAATCTTGACA





TGTCTTAATGTTGTTGGATTGCTCATTAAACTGGCTGAAATGTTCACAAAGACTCTCACCTGTCTTCTGG





CTTAAGCTGAGATTTATCACACTTCTTGGAAACATCTTCTGGTCTCCAGATCTCCCTCAGCTAAGCTATA





CAGTCAGTCTGTTCTGTAAGAAAGCCCAAACTTCTCTGCAGTGTTCCTCAGTCTTTTTGATATCATGATG





AACAGATTAAGTTGATGTGTTCATCATGATATCAGGTAAGCTGGCCGAAGACTCTAAGCTGCCTAACCAT





CCCAGGGCTGAGAGGGATCGATATCTGAAGTACCTATAACCCAATCAGGGCATGTGCCTTAGCATACCCA





TTGGAAAGCCCTGTTTTAGAGCCTTTATCAGCTGTGAACTTATTGAAGGCAATGATTTTGTCCTGTTAAT





CATTCTATTCATAATTTTCAACAAGATACGTGGTTGTTGTTAATAATAATTGTTGGTTGAAATGAAGTTA





AATAAATAGCAATTGACTTTTCCAAGGTGACGCATTGCACAGATTTATTTATCTTCCCTTTGCTGCCCTG





GAGTACCAGTTGTATCTACCAATAAGCTTCATTTATAGGCCAGCCTCATCTTAGTTTCTGAATTAGTCTA





AGTGGCTCTGGTAGCGCATCAAAAATCTTGCTTTCTGATGGTCTTTGTAATTTGAATTCTGTGACTTACA





GACTTGGTATTCAATATGTCAGGAATAAACCTGGGGTGTGCCCAAATGGTTTGAAAAATCCCAGCCTTCC





TGATTTCCTCTCTTCTCTTTCTCCCCTGGCCACCCTAATAGTCTGATAGTTTTTGTTATTTGGATACTCC





TAAACTCTTGGCAATTTTTCTTACATCTGTTCTCTACAGGCTGTCACAAGTGAGTGGAGGCAGGATGGCA





TGGGCTGCAGTGGAAAGACCAAGAAAATAAGTTAAAAGCCCTGGGTTCCAGTAAATGCTCTGTAGTGGGA





TTTAGGGCAAGTCTCTTAACTTCTCTCAGCATCAATCTCCGCATCTGTGAAATAAGATTAATGACACCTG





TCTTGCCTATACTTCAAGGTTGTTTTGAGGTTCACATGCATTTTCCACCCCATATAGCCTATAAATCTCT





GATGCCTACAGATAACCTATAATGTTCTCCAGTAAGTTTAATATTTCCAGGATTTTAAAACTCAATGACT





AGCACTGCTCTGATCTAACATAACATATTGTGTCAATATGTGTGGGAGTCTCTCTGGTTGATGTTAATGG





AAGTTTGTATAGTTTACCTAAAATAGAATAAAGCTATAATATTAATATATATCATCGATGTGTTTTAGGT





GATTTTTTTCAATATAAAGGCAATTTTGGTTCAAAATTAGGTAGAACATTTAATTTTTACTAATTTACAA





ATAAAATGATAACATCAAAAGGGCCCCTTCTTTTAAAGATAAGTTGTAACTCTCACATTGATAGTAATCT





GTCATTTAGGACAGGGAATCCATGTAGTTTGAAAATTCATTGGCATCATGGAGCTAAAACAGTGGCTTTT





TAAACATGTCGATTTCAGTTTTCTTTGTTTTACAAGTCAAGTAGTGATATTACTGGGTACATATGAAGCA





TACTGATTGACCAAAAAATAGTAACAAATTTTGTAAACCCTTCACTTAACCATTATTCACCTTTCCCAGC





CACATAAGAATCCTTTCTCTTTGTCCTTAGATTAATTGCCTTTCTTTAACCTTTTCAATTCTAAGTCCAG





ACAAGCTGCTGTGGTTCTTTAAAAGGCCACACAAAATAAGTATTGTCCAGTGCTAACACTCTGAAATGTG





ATATTGTAATTACTACCAAGTGAACATTAATCACTACTAGATTAGAATGGAATTACCTGTTATATTCACA





TTAATAGCAAATGAGCTTTCCCTGATTGATGTTGTTATAATGAATACAAAAGGAATTAATAGTGATCTGG





CACTCACCAAAAGAGGGGTAGTCATTAAGGACATGCCATCAAAAGGCGGGTAATACTTTACAAAAAACAA





GTATTAATTAAAGTAATATCACAACGAATGCCTATTGAATAACTTATATCCACATTACAAAGATATTATA





TGGTTGCGATTAATGTGATTGCAATACATTTTGTAAAAATTAATAATGACTAACCCTTTAAAATATTTAG





GAAGCAGATATTTGTTTATATTTGCTAAATAGCTATGCCAACTCTTTAGCTTTTGTGAGTGACTTCTAGC





ATAGGAACAGTGATGGATAATATGAAGCACTATATATAATAACTCATCGGCCGGGCGCGGTGGCTCACGC





CTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCGGATCACGAGGTCAGGAGATCGACACCATCCTGGC





TAACACGGTGAAACCCTGTCTCTACTAAAAACACAAAAAATTAGCCGGGCGTGGTGGTGGGCGCCTGTAG





TCCCACTACTCAGGAGGCAGAGCTTGCAGTGAGCCAAGATTGCACCACTGCACTCCAGCCTGGGTGACAG





AGTGAGACTCTGTCAAAAAAAAACAACCTCATATATTTTTACTTGAAAACATACATTTTGCCTTTAGGAT





TTTTACTTGTTAGAATATCCTAAAGGACCTATAATTGTAAATGTAAAATTGACTAATTTCTGGGTTTTAA





AAAAAAGTATTTGAAAGCTGATCTGCTGTGAACATTGAACCAGATGTTAAGAAAAATGCTAGTAAGAAAT





GAGACTTGGGAGCAAAGAAGCAGAACTAAACTTTTCATATATGGTTTCTATGGAGTAATTGAGAACGTAC





ATATTAACAGGGATACAAAGTCAGGCCCTCTCATTCAAGATGCTTTCTGTCTTTAAAAAAAAAAAAAAGT





AATTTTTGAAATTTTCTGTGGCAACAGTCCCATAGCAGAAAGCAAAGAGTTTTGAATTAAGTGATCAGAA





TATCATTCTTATAATTTTACTACACTGAACATTATTTAGAAAATTTTGAATGATATTAAAACCGCTATAA





AACATACTTGCCTACCATAAGACTTAGGATTTAAGCCAGATTAAAATAAATATTTATTTAGAAGGATGTA





TGTAAGAACTGGTGAAATATAAATGAGGTCTGTATTTGAGTTAATAGTATTGTGCCAATGTCAGTTTCCT





AGCTTTGATGATAATGTACTATGGGTATTTAAAATGCTATCATTGGGAGAAGCTGGGTAAAAGGTGCGTG





AGAAGTCTCTGTACTATATTTGCAAGTTTTGTGGTCTTAAACCATTTCAAAGTAAAGTTATTTTAGAAAA





TATCTAAATATATATTTTAGAAAGTATTATCTTTTTCTCTGTAACTAGTGGCTAATTAGCTCAGTCTGAA





AGAGTATGTAGAGGTGGAACTGCTAAATATATTTCTGATCTAGACTTACTTGATGATGCTTGAATTAGTA





AGTGAATGTTATGTGCCAACATATGCTATGATACATATAAATATATAAGATTAAATGATAGGAGCTAATT





ATTTCTTGGCATGTTGCAGTGGGTCCATTTAAAACTGTTTATGTAGGAAACTACTGTAATTATAAAAATG





AGCACAGCCCAACAGCCCAGTATATTAGTTGAAATATAAAAGGCGTTGTGTCCAAGATTTGAAATGCCTT





ACAATAAGCTTGGCACTTACTTACCTTCACACAAAGCAGACACATTTTATTGTGATTTTAGTGTTCCATA





TTATATGGTACAGTACCAAAGGAAAACTCTAAAATATGTACTCAAAATCCTGATGTGCCCTTCTTTCCAA





ACAGGTGGCACCACAATGAATATAACCTTTAGAGTTAATATCTGAGGACAAACCCAGCAGTTACACCAGC





ATGATTTAGGTCCTGCTGTTACAATTATTATTATTGTATTTATTTCACAATTAAGTTGCAGAGTTGAGCT





CGATATAGTTCCAGCTGTGGCTTTTTTTTCAACTGTCTCAATAGTTCATAGATATGGCCAAATGTTCAAT





AATAGTGAAAGCTTATAGTCCACATATTATTTCTGTAGCACCAATTTTATGTGAAAAAATGATTTATCTA





AATCTCAGAGAATTTCCATAACTAGTTTTGTTATACATCTACAAAACTAAGTTAAAAGAACAGAGCAGAC





TTTTTAAATAGCTAGATTGGCCAAATCCACCTCATTATCATCAAGAAGATACTGAAACACCGTGTTTATA





CAACAAGACCAGGCATTGTAAAAGAGGAGGAAAGGTAGAGACAAAATTTATTTAGCCCTCAGGAATCTTT





CATTCTGATAGTGTAAATTTGACAACTTTAGAGGGACTTATTAACATGTATCTTATATATCTTGATACCG





AATATATATTTTGTGATTGCATTAGAGCCATGAAATATTACACAGGTCATTTGAACATAGCATTTTCATA





GAGAAGGTGACATTTGCAAAAGATTAGGAGAAAAGTAACTACGATTAGAAAATCGTAGTTTTATTTTGTC





TCTTGAGAATGAATTGATGTTAATTTTATGTCTGATTTGGCCAAATACGATGTGGAATTTGCTAAAGACT





GAAAAAAGAAGAGACATCAAATAGAGGGTTGCAAGTTAACAGACCATGTTATAATTAAATGAGGGAAAAA





AAAGTAGAGTTGTTAAACTCCCAGAGAAGTCATTTCCCCTTGGTTTGGTGCATTTCACTTTGGTGGTGAA





GTAAATGACCATATGGGCACTTTTCTAGCTCTGTCCGCAGGTAGCACTGGGTATTTGTGGACAAATTACC





TAGCTTTTCATAGCACTAGTTTCCTTGTTGATAGACTTCAGAATTCTAAATTCCATTTTACATCCTTATT





TCTATGTTTAACTTAAAGATAATCCTTTGCAGCCGGGCACAGTGGCTCACACCTGTAATCCCAGCACTTT





GGGAGGCCGAGGCAGGCGGATCACGAGGTCAGGAGATCGAGACCATCCTGGCTAACATGGTGAAACCCCA





TCTCTACTGAAAATACAAAAAATCAGCCGGGTGTTGTGGTGGGCGCCTGTGGTCCCAGCTACTCAGGAGG





CTGAGGCAGGAGGATGGCATGAATCCGGGAGGTGGAGCTTGCGGTGAGCCGAGATCGAGTCACTGCACTC





CAGCCCGGGCAACAGAGCCAGACTCTGCCTCAAAAAAAAAAAAAAACAAAAAAAAAAACAAACAGATCAT





CCTTTGCACTGGAATTATCCTGCAGTGGAGGATAGTAATGAAAGTGTAGACTCTGTTTCTGAACACTAGC





TATGTCACTTTCAAACTGTGTGATTTTCCTTCAAGTTTCTCAATCACTCCAGGTCTGGTTTCTAAATAGA





GGAATAGGAGTAGAGATTAATATTGTGAAGATTAAATGAGAAAACTTATATAAAGCACTTAGTACGGTGC





CCTGCATATTGTGAAGGCTTGGTATGTTGTTAGTAGATTCATTTTATTATCATTATTAATAATACTGAAC





CCTGGCTGTTGGGGGAATTGGTTCTATCCTCCTGTCTCATAGTCAAAATAGGTTAAAGGGCCTTCTATCT





CTTATTTCTGGTGGTGCATTATAATTACTAATAGTAATGTGCTTCATTTGTATATGATCCTTTATAGTTT





ACATGGCGCTGTTTTATGTAATCTTACTAAAATTTCAAAAATAATTTTAAAAAGCCAGAATTCACAAGAA





TGTGACTCGGAGAAGAAGTAGATGTTTTTCTAAGTAGATCTTTCAGTTTAACTGATTCAAATTTTCTCAT





GTTTCATATACATGATTATCATGTCTTTTGATAAACAGAATGTTAACCAGAGTACAACCTTGTATGAACA





TATTTATTCAGCTTAGAAAAGATCCAGAGGTACAAAATCTAGATCCCAGTGTAGAAGTTAGCATACACAG





TACAATTTCTAGTATGTCCATAAACAATATGTTAAAGTATTAGTTTGAGCCATATAGGATTGCCAATATC





TGAGTGTTATAGAGCTACAAAATTAGTAGGAAATTTTGTTGCTTTAACCTAATCATTAAATTAGAATTGT





GTGACTTAAAGTTACAAATGGTTTCCGAATATTTTGCAGTAAAAAAGTAGTGAGGAAAATAAATATAAAT





ACTAAACTAGACCTGGGAAATTTAAGGCTATAAAGAATTCTAGCTTACAGAGAGAGGAGTCTTTGTTTGC





AACCTCCCACTAGCTAAATTTAAATTATCACAAATTTCATCCTCTCCTTTACTTAACCCTTGACTCATGC





AACTAGTCAAATGTCTTTTTCTTGCTAATTTTTTCTTTCCATAGATCACTTATAGGGAGTTCTGGTTAAA





AATGATGTCTCTTTAACCTTCACTAAAATGAGAATAGGGGAATTAAAATGATATTTACCACAAAGAGAAA





AAAATCTGGGAGGAAAAACAATAAAATAAAAAAGATAAAAAATTTAGGAATATGCAGAGAATGGAGGAGT





TAGCATATCTTGGAAACCTGAATTCCAAGTACTTAGAACTTGGGAAGTCCTAGAAATGTGAAGCACCAGC





TACTGCAGAAGGCAGAGATGAATGTGAGGTAAGATAGTGAGACTGTGAAGAGAAATCATTCAGTAAAAAA





TGCATTATCAAGCCAACTGCCACTGGTCTAGTGGAGTTTAATCCCACTGGGGAAATTCTAAATGGATTGA





AGACATGTGTTTAAGAGTTAGTTATTCTTTCAAAGGGGCAAGGGAGCTGGGGTATTTATACACAAAATCC





TGCTAGTCATTGGTTTAGGACTGCTTCCAACGGGGGAATTATTTTCCTAGCATTTCTGGCATACCACCTT





GGCAAGAAAAATTATTTTGTGTCCAGAGTATGTCTAAAGCCATTAGGGAAAAAAAATGTGGATCCTCATA





GTTGAAAGCCAGGCCAGTCTGCACTAAAGTGGTAAGGATGTTTTCTTTTAGAGATACAGGTCTAAGAAAG





AAATCTGAAGGTGGTTACCTCTTATGCAAGAATTTAATTTGATGGATTCAAGGTGTGTTGGTTAAGAGAA





ATGGGGAAGGGTTGCTTCTCATGACTGCGGCACGATTCTACTATACTAAATTTTTCTTTTATTAAGCAGC





ATTGCCTTATGCAATGATAGGAAACATTTGTTATATGTGAAATCACTTTTATTTTTATTTTTTAATCTAT





TCCTATTCTTTTCATTTTTTTAACTTTTATTTTAGGTTTGTGGGGTACATGTGAAGGTTTATTACATAGG





CAAACCGGTGTCACAGGGGTCCGTTTTACATTTTATTTCACCACCGAGGTATTAAGCCAACTACTCAGTA





GTTATCTTTTCTGCTCCTCTCTCTCCTCCCGGCATCTCTTTTAAAAGAAAATAATTTTTAGCAATTCTTT





AGAATAAGTCTTGGCCACCTAAAGGTTTCCAGGACTCTAGTTCAGGGAGTATTTATCTAAGTCAGTAGTT





CTTAACCTGATATAATTTCATCCCCAGAGAACATTTGACAGTATCTCAAGAAATTCTTGGTTGTCACATT





GGGGGGGGGATACTGCTGTCATCAAGTGGGCAGAGGCCAGGGATGCTGCTCAACATGTTGTAATGCACA





AGACAGCCCCCCACAACAAAGAATTATTTGGTCCAATATGTCAGTAGTGCCAAGTTTCAGACATCCTGCT





CTAAATCAGGACTGTGATGTGAATTCTCTGCGATGATGAAGATATTTTATATCCGTGATGTGCAGTACTG





TAGCATATGGCTACTGAGCAATTGAAATATAGCTAGTGTGACTGTACACCAGGTGTGATGTTCCATACCG





AGGAAAGAAGTAGAAATAAGATATAGTCTTTGAAGTCAGAGCTCACAATCTAGTAGCGGAGACAGATTTT





TAAAAATTACAATATTTTAAAAATATTGCAATAGAACATGGTAATGTTAGAAGATTAATAACATGCTAAA





TTTGAGGCATCAGGACTCAGACAGACAATTAAAAATTCTCTGAGGTGAATTTCCACCCTTAGCTCAGAAT





ACTGTAATGTTTAAAAGCTGTTTTCTATACACACACACACACACACACACACACACACACACACACACCC





CTTTAAATCTTTTATCATGTAACTCATTGCTTCTTATTTTACCCTTTTGTCAGAGAATACATATAAAATA





CTGGAATCTGATGGGACATTCTACTTTATTTAACAATGCTATTGAGTTTCTCAAAATAGTTTCCTAAGAA





AGTCTATTAAAGTATTGATTTTTTCATAAAGGATAATACAAATGGCATGAGTCTGTTTAACATTTTAATC





AAGCTTAAAATTAGTCTTGCATTTGAAACAAACTTGCCCAGAGAAATTGTTGAGAAACTTAAGAGAAAAA





CATCATAAAAAATTGATGGGCCAGCCAGGCTGTGAGAATATTAAAATCCAAATCTAAATTATGGTTAACC





ATTGTCACATCTTTCTTTGAAGCTTAAGTAACTCGATATTCCCTGTAGGATACCCAGTGATTCAAAGTGA





CACATATACTGTCAGCTCATTTTCCTTCCCAGCATGCTGGTACAATTTGTATCCATAGAAATATATGGAA





AAACCTATTAGTCTTGAGTGCCAGAACCTACCAAAAGGAATCTTTGTCATCTACAAATAAATTAATAACA





TAAGATAAACAATCCTATTAAGTTATACTGGCCCGAAAAGGGAAAAAAGACCAGTTTATGAATTGACAAA





AGAAGGTAAATGAGATTAGCCATATAGCAACCACTCAGATAATAATGTGTTTTCTCTGTTTAGTAAAAAA





GCATATTTGAGAGAAAATTTTCCCTTATAGAACAATTCTTAATAATATACATAGATACTCCTTTCCTGGG





ATGTAGAGTTTAATCCTCCCCTAAGCCCCTCCATGAACTTGGTAACTTACTTCCAGATAATAGAATATGG





AAAAGTAGGAATAACAATGGAGAAGAAACCAGGCAGGCACCAAGTTAACTAAGTAGTCAAGTATAACATC





GCCAGTGATAATAATATTGATATCATGTCTCCTGTGATATGATGTCATGAAAAGGACATGTTATCTCTCT





GGTATTCTTCCCCAAAACCTGTAACTTCTTCTAATAGGGAAAATACTTCAGTCAAATCTTAAGAGACTTC





TAGAATATACCTGACTAGTCCTATTCAAAAGTTTCAAGGTCATGAAGAACAAGAAGAAACTGAGAGACTG





TCACAGACTAGAGGAGACCAAAAAGACCCAAGGACCAAATGCAGTAGGAGATTCTGGATTGGATCCTGAA





ACAGAAAAATGACATGAGTGGAAAAACTGGTGAAATCTGAATAAAGTCTGTAGTTTTGTTAATAGTGTTG





TATCAGTGTTTGTTTAAATGTTTAGATAAATCTCTCATGCGTACAGAAGAGTTATCATTAGGGGAAGCTG





TGTGTCAGGCACTTAGAAAACTTTCAGATACATAGGTACCTTTTGTAAGTAAAATAATGAATTAATGGGT





CATTTTATGTCTGTATTTTATATAAGGCTACATTTCTAAAGAGACAAAATTGTGAGTCCCATAAAAATAT





AAAATGAATATGTGTAAAACATTTTATTAGATCATTAACTGATGAAGGAATTAGTAAGATGTTAGTTACA





GTTGGTTCAAAGGAGAGTCTGAAGAATTGGCATATATATATACGTATATATACGTATATATACGTATATA





CATATATATACGTATATACGTATATATACGTATATACATATATGTGTATATATATATTTTATATATATAC





ACATATATATATAAAAAACACTCTAGAATGCTGATAGGAATTTTATAACAGATACAATACTGATCACTAA





CTGTAGGGCAGGAATCTATTGCGTTCCATGAGAAAATTTTACTGGCATCTAGTGAACAAGAATCATTTGT





GTCACCATCAGCCCTCCACAAATTGACTTTTAAACGTACAGAATTGCAAAATAGCATAACCAAAGTCTAA





GGTACAGACTCTTAGATAATCAGATAACTCCTAAGGTTTTCCTAAGGAATTAAAGGGAAAGAGACATTCT





CAGATTAAGGAAAACAAAGAATTTCTTGCTAGCAAATCTGCTCTTAAAGAATGACAAAAAGACATTCTCT





AAACAGAAAGGAAATTATAACGAAGTCTTGACATTTCAGAAAGAAAATAGTAGAATGGGTAAAAATGAGA





GTAAAATAATAGACTATCCTATTTACCATAAGTTTGAAGTGAAAACTTTAACACCACCTGATGTGGTTCT





CAATGTATGTAGAGAAAATACTTAAGAGTTATATTTTAAAAGAAGACATACCTAAGTGGAAGTAAGAGTC





CTTCTACACGTCACCTGAAGTCAATTCCAGTAGATTGCAATGTTAATGCGTATCGTAATGCCTGGAAAGA





CCACTAAAAAACTATACAAAGTGATACGTTAAGAAAATACAACAAATAAATTTTGATGGAATCTTAAGAA





ATGTTCAAATAACCCACAAGAAGGTAAGAAAAAAGAAAGAGAAGAATGAGAAATAAAGAAAACAAACAGA





AACCAAATAAGGTGGCAGATTGAAGCCCTAATATATCCATAATTACCTTAAATGCAAATGGTCTAAATAT





ACCAATTAAAAGAGATTTAGCTGAGTGGATTGATAAAAGCTGAGCACACAATATGCCGTCTAAAAGAAGT





TTATTTCAAATACAACCTAGGTAGGTTAAAATTAAAAGAATCGAAAAAGTTACATTATGCAACAATTAAT





CAAAAGAAAGCAGCAGCAGTAATGTTAATATCAGATAAAGTAGGCTTCATTGCAAAGAAAATTACTAGTG





ACAAACAGGGACATTACATAAAGATTAAGTGTTAATTCACTGGGAAGACATAATAATCCTAAATGTGTTT





GCACCTAACAACAGAGCTTCCAAATACATGAAGCAAAAATGAATAGAGCTGAAAAAAGAAACAGACAAAT





CCATATTTCTAGTTAGGGACTTCAACACTCCTCTCTCTTCAGTTGATAGAACTACTAAATGGAAAATAAG





CAAGGGTAAAGAGAACTGAACAACACCATCAACCAATAGGATCTAATTGAAGCACTCCTCCCAACAGTAG





CAGAATACACATTACTTTAAAGCTCTCATGAAACATTCACTGATATAAGCCATATTCTGGACTCCAAGCA





ACTTCAGCAAATTTAGAGAATTCAACTTATATGTTCCCAGAACATAATGAAACCAAGCTAGAAATCAATA





AGAGAAAGACAAAAGAAAAACCTCAAAACACTTGGAAATGAAGCAGCACACCTTTAAATCATTTTCCCCA





GGTCAAGGAGGAGGTTGCAAAGAAAAATTTTTTAAACACAAAGAACTAAATAAAATGAAAATAAAACATC





AACATGAGTGAGATTCTGAAGCAAAGGGCAAGCATATCTACTGTCTATTTTTAAAGATTAAGCTTCCTTA





AGCTCAGGGTTTCTCTCCTGTGATGCAATCCACTGTGTGTACAGGTGTCTCCTGAACTTCTTTGGGATTA





CTCTGTGGGAACTGGCTCAATAAAATGTTGGTTCTTTGACTACTGCTTTGCTGTGAGTAATCTAGTCTTT





TTCTCTGGCAAAAAAAAATAAAGTGAGATGTCATAAAAGCAGTATTGAGAATAAAATGTATAGCATTAGA





TTATTTAGTTAGAAGACAGGAAAGGTCTAAAATAAATAAATGAGCCTAGAGACAAAAACCATCAACAAAA





TATTAAATAACATGCGTCAAAGTTTAAAAAAAGAGTGTCATACCATAACTAACTGGGATTTAGTATTGAA





GGCTGGCTCAACATTTGAAAGTTAATTAGTGTAATCTACCATATCAACAAACTAAAGAAGAAAAAATCAT





ATGATTATATTGATTGATGCAGAAGCATCTGACAACACCCAGCATCCATTCATGATAAAAACTATGAGAA





AACTGGGAATAGAGGATAACTTCCACATCTTAATAAAGGGTATCTACAGAAAACTACAGTTAATAGCATA





ATTTTAATAATGGAAGGCTTAATGTTTCCACCCATGATTGCTAATTAGGGAAGGATGCCCAATTTCACTA





CTCTTTTTTAACATAGTTCTGGAAGTTCCAGACACTACAATAAAGCAAGGAAAAACAATAAAGCATGCAT





ATTGAAAAGTATAAAATAAAATTATTTCTATTTGTGGATGGCATGACTGTGTACGTAGAAAATATCAAAT





ATTCTACAAAAACAAAAGCAAAAATAACCAAAAATGCTCATGGAGCTGAGAAGAGAGGTTAACAAGATCC





AAAAATACAAGATCAACACACCAAAGCTAGTCACATTTTTATATACAGATGCTCCTCATCTTATGATGGG





CTTACATTTAGATAAACCCATCATAAAGTCAAAAAATCATAAGGCAAGCCATCACAACTTACGGATTATC





TATGTTGGAAATGAAGATGTGAAAAGTGAAATTAAAAACACAACACCATTTATAATTGCTTATCCAAAAA





TGAAATACGTAGGTATAAATCTATCATACATGTACAGGATCGGTATGTAGAAAATTATAAAATGCTGATG





AAAGGCATTAAAAACAACCTAAATAAGTGGATTATATGGCATGTTTATAGACTGGAAGAGTCAGCATAGC





AAATATGTCAGTTCTTCTCAAATCAATCTAAAGGTTTAATTTAGTTTCTATCAAAATCTTATCAAGGATT





TCTGTACACATAGACAAGCATACTCTAAAATCTATAAGAAAAGTCACAGGCCACAGAATAACTAAAACAG





TCTTTTAAAAAGGTAAATAAAGTGGGAGTAACCTCTCTACCCAATATTATGGCTAACAATATAGTAAGGC





TATCAATACAGTATGATGTTGCTGGAGGGATAGACTCATAGACCAAATGAAACAGAATAGAGAACCCAAA





AACAGACCCATGCAAATGTGCCCAACAGATTTTTGATAAAGTTGCAAAAGCAATTCAATAGAGAAAGCTC





ACCTTTTCAACAAATGGTCCTGCAGAAATTGGACATCCCTAGAGTGGGAAAAAAAAAGAACTTCAACCTA





AATCTCACACCTTGTAAAAACTTAATTCAAAATAGATCATGGACTTAAATGTAAAACATAAAACTATCAA





AATTTAGGGAAAAATGAGAAAATCTTCAGGCTCTAGGGCTAGAATTGGCATTGAAAGCATGATCCACACA





CAGAAAAAAATCAGTTGGACTGCATCAAGATTTAAAACCTTTGCACTGCAAAAGACCTGTGAGGGAGGAT





GAAAAGACAAGCTACAGACTGATAGAAAATATTTTCAAGCCATATAGCCAAAAGATGGATGTCTAGAATA





TATAAAGAACTCTCAAAACTGCAAGGTAAAACAAGAAACAAACAATGCAATTAGGAAATGGGCAAGACAC





ATCAAGAAACGTTTCACCAAAAAGGATATACAGATAGCAAATAGGTGCATGAAAAGATTATCAAAAACAT





TAGCCATTAGAGAAATGCAAATTAAAATTATTATATATTCCTACACATCTATCAGAATGGCTAAAACAAA





GTAGTTACAACACCAGATGCTAGCAAGGATGTGGAGAAAATGGATCATTCACATATTGCTGGTGGAAATG





TAAAATGGTACAGCCACTGTAGCAAACTGTTTATCAATTTTCTGTAAAACTAAACATGCAGCTACCATAC





AACCCAGCAATTGCACTCTTGGACATTTATCTTACAACCTGTACAAAAATATTCATACCACCATTATTCA





TTATAGCCAAAAACTGGAAAGAACCCAGACGGTCAACAATGAATGGTTGTACAAACTACGGTACATCCAT





ACATACCAGGCAATACTATTCAGCAATAAAATGGAATGAAATATTTATACATGCAACAACTTTTAGATCA





ATCTCCACAGAATTATGCTGAGTAAAAACAGCTCATCTGAAAAGGTTACATAATGAATGATTCTGTTTAT





ATAGCCGTCTTGAAGTGACAGAATTAAAGAATGAAGAACAGATTGGTGATTGCAAGGAGTCCGGGACAAC





AGGGGAAAGAGAGAGAGAGAGATGGATGTGACTCCAAAAGGGCAACACAGGAGGCATCCTTGTAGTGTTG





GAACTGTTCTTTACCTTGATTGTGTCAATGTCAATATCCTGGTTATGATATTGTACTATATTTTTGCAAG





GTTTTACCTTCAGGGAGACGGGGTCAGGGGTATACTGGTTTTCTCTGTATTATTTCTCACAACTACATGT





GAACATACAATTATCTCAAAACTAAAAGTGTAATTTCAAAAAACAAATAAAACAATTCAGAAATTTTAAG





ACTTCAACAGTCATTTATCTCATTTGTTATTTTACTGTTGAGAAAACAGGCACAAAGAAACTGAAGTGAC





TTACTTTCATGCTTCACCTAAGTCTTTTTTTCTTTTCTCCATCACTCAGTTAAGAGCTTCTGTAATACAG





AAAGTATGTCTTGTATTCTTTTAACTCCCATATTACTTCAAGCAATGTTGAACACATGTTAACATTGTAA





AAGTTGTTGTCTGAGTAAATGGGAAAGATAGAGGTCTATGTCTATATGCAAATACTTTGTATTAACATGT





TTCAGTCTGATATAACTTTCCACACAGAAAGTACAAAAGAAGATCTGTTCAAGTTATCTGATTTAATTAA





GATAGTAAAAAGAAAGCTGATAATTTAGGGGGTCTTATTTGATTGTTTTTAATTTTACTTATTTTCCACT





AGGTGATCATTTTGATGATTCAAAAATGAAAATTTACAAAAAGGTATAAAATAAAAATTATTTCTCCTAC





CTCTATGCACTGTCGAATCAATTCCCCTACCCACCACCAATCAGTATTGTCAGCTGTTTGTATATCCTTC





AGGAGATATGTACGAATTTCAAGCGAATATGCATAAGTTTATGTTATGTATATGTGTGTGTCTGTTTTCT





ATATATATGCATCTTTACATTAATGGTAGCATACGATACACATTTTCTTCTGAATTATGCTTCTCTCTCA





ACAATGTTTCTTGGACATTTTCCTGTATCAGTACATAAAGAATGTATTTGTTTCCTATGACTGCAATAGT





GAAATACCACAAACTGGATGACTTAACCAAAAGAAGTCTGTTGTCTTACAGTTCTGGAGGATAGAAGTCT





GAGATCAAGGTGTCAGGAGGGTTGGTTCCTTCTGAGGGCTCGGAAGGAGAATCTGTTCCATTCCATTCCC





CTAGTTTCTGATGGTTTGTTGGCAATCTTTGGTGCTCCTTGTCCTGTAGATGTCTGCCTTCATTTTCACA





TGGCATGCCCCCTGTGTACGTGTCTGTCTCCAACTTCCCCTTTTAAGGACAGAGTCATATTGGACTCAGG





CCCAACCAAATGACCTCATTTTAAGTTGATTATCTCTGTAATGACCCTATCTCCAAATAGGGTCACATTC





TGAGGTACCAGGGGTTAGGACTTCAACATTTAAATTTGGAGAAAATTTGGACAGAATTCAACCCATAGCA





AAGAACTTAACCGTTAGTTTAATGACTACATATTGTTCCATTTTGTGGATGTATCATAATCTATTTAAGC





AGTGCTCTGAACATTTTATTGGTTTTCACTTTCATTGTTTTGCCTTAATATTGGTGTCTGTTTCATAGAA





TAGATTTATAGTATTTTAGGCTTATCAAGATTTTATTTAAATCTTGGAATTTAAATTCCCTGTAAATTTC





AAGTGCCTTGAAGGCAAGATATATTGAGGAGGGGAGACTTTTAAAGTTCATATGAAATAATAAATAATCG





CAAGTATCTCAGGAATGCATGAAAAATAATAAATGTCTCTGCATCAATAATAAGGGAGGGGGCTTGCCTT





ATCCAATATTAAACTTGCTGTAAAGCTACTGTAATCCAAATAGTATAGTATTAGCACAAAACAAGACAAG





TAGATCACTGAAGCAAAATTGAGAGTCCAGAAGCAGATCAGATTGTTTTTGGAGGCCGGGCATGGTGGCT





TACGCCTGTAATCCCAGCACTTTGGGAGTCTGAGGTGGGTGGATTACCTGAGGAGTTCAAGACCAGCCTA





GCCAACTTGGTGAAACCCCGTCTCTACTAAAAATACAAAAATTAGCTGGGCGTGGTGGTGGGCGCCTGTA





GTCCCAGCTACTTGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCAGGAGGCGGAGGTTGCAGTGAGCCA





AGATCGCACCATTGTACTCCAGCCTGGGCAACAAGAGCGAAACTCCATCTCAAAAAATAAATAAATAAAT





AAATAAATAGATACAAATTGTTTTTGGAAACATTATATGGCAAATGTGTTATTTTAATTCAAGGAATAAA





GGTGTTTTATTCAATAAATGGTGCCAGCACTCTTTGCAATTCCTCTTAGAAAACACAGATTGCCTCCTAG





CTTATGCAATGTAAGAATACATTTCAAATGCATTAAAGTTTTAAATGTAAAAACAAAAATTCTTGGAATG





AGGAAGACGTTTTCTAAACAAGACACAAAACTCAAAAGCTATAAGGAAAAAATATACCTTGTTACTGCTT





AAAATAACAGAAGACAAAGTCAAAAGAAAAACAGCAAATAGAGTAGATGTATTCGCAACATGTGACATAA





AGAGATGCATATACCTAATATACAAATTTCTCCTACAAATTTGTTAATTAAATTAATATTTTTTAAAATT





CAAACAACCCAGTACAAAACTGGCCGAAGTATAGGAATATGCAATTCCCAGAAGAGGATATCCAGATAGC





TGGAAAAATAAAACTATGATAATATGCTTCCTCATAGTAGTAAGGGATAGGAAAATAAAGAAATAAGACA





CCATGTCTATCTAACAAATAGACAGAAATTAAGAATGATAATTTTTAATGGAAGAGAGCACTCTCAGATA





TTGCAGATGAAACGCAAATTGCTGTGGTCTTTGAGGAAAGAAATGTGGTATGATCTACAAAAATTTTAAA





TGCACTTACCTTTTGATCAGTCACTCCATTTCTGAGAATCAATACTACAGAAATAAAAGTACCAGTATGA





AAGGCTGTATGTAGAGGATGTGTATTTTGGCATTGTCTATGATGGTCAAAAAGTAGAAATCAAGCAAATA





CCCTTCAGTGTGGAAATTATTGAATATGTTATGGAATTATTTGGGCATCCCAGAATGAATTATTATTTAG





TCTAGTTAGAGCTGTGTCTACTGTCCTGAAAGAATGGTGATGATATCTTTCAAAAATCAAAACAAGTTTC





AATTAACATATTCCATTTTTAAAATAAAAAAGATAAAATTAATCTTATGGGATTACATAACCATGAAGGA





GGAATGGAGAGATATATACTAGGTTATCAGTATTTGTTACCTTGGATTTTCAAAGGAGAATGAAAGAGGA





ACAAATAATGTATCAAGTTTCACAAAAAGTGAAAAGGTGGAATATAAATATTACTGCAAATATATAACCA





TTGAATATGTATATGGACAAGGACGATAAGATAATATAGAAAACTGAATATGTTGGTTTTATTATGAGGT





GGTTGGATTGAAGATATTTTTGTCTCCAAATACTGTTGTTTTAATATGTTGTGTTTTACAAAGAAACATG





GGCTGAGCAGACAGGGAAGCCCTGATAAGCATAGTACCTGCCATGTGGCCATTCAATAAATGATAGTTAT





TGATTATTATTATTAGAGTTGTAGTACAGTAGTGCCTACCTTAATATATTTAGATTGATGCCCAGCAGCA





TTGAGTTAACCCGCATTTTAAGGACAAGTGTTATAGCTATTATATACTAATGGTAAACTTGAGTCTGTAA





CTAGCACTGTTGAAGGAGGACAACAGAGTAATATGATGTGTATTGGCCTGGGGATGGAAGGGTGGTGCTT





AAGGCACAGCAGATTTTCACTCCAGCCAGGTTTCCTTAGGACCTCTCCAATGAACAGGATACCTCCCTTC





CTGTTCTTTCTACCCTCCCACCCCGTTTTTTGCTTTTTCAGTTTCAGCCCAAAGGGGAAGGAAGTATGAT





GACTGACTCCCCATCAGTCCCTGAGGTGAACTGGGATTTTGGGAGAGTGTGGCAGCTGCAAATTTGGCTT





CCTGGAGATAGGATTTTTGCCCTCAATCTGGAGAAAGTTCCTGAGGCTACAGCTGTTCAAGCTTGTGAAG





TAGGAACTTTGATCCCTTTTTTCAAAAGTTTTGTATAATTAGCATCCAACTTGTTAGACAGTATGTGGCT





CATTACAAGATTGCCACAAATTCATGCTGGGCCGTGTCTAAGAACAGGGCAAAGGGAGCCTTTGGAAAGT





GTTATACAGTTGACCCTCAAACAATGTGAGGGTTAGGGGCGCTGAGCCCAACACATTGAAAAATCTAAGT





AGAACTTTTCACTCCCCCAAAACGTAACTACTAATAGGCTACTGTTGACAGAAGCCATACTGATAACATA





AAGAGTGATTAGCGTATACTTTGCATTGTTATATGTAATATATACTGTATTCTTGCAATAAAGTAAGTTA





GAGAAAATACGATGTTACTAAGAAAATCATAAGGAAGAGAAAAATATATTTACTATTAATTAAGTGGAAG





TGGATCATCATATAGGTCTTCATTCTCATTATCTTCACGTTAAGTAGGCTGAGGAGGTGGAGGGAGAGGA





GGGGTTGGTCTTGCTGCCAATCTAAATGCTGGGCCCAGCCAATGGGTATAAGTTTTAAGTGTGCACATAT





TGGTGAACCCTTACAGATCACGGCACTGTCTGTTCGAGTGTCTATTTTGAAATGTCCCTATCCGTAATAT





AAGTTGCAAAGGAGTTTGTGGGCCCACTGAATTCTACCACCCTGATCATTGTGAAGCCCATTCAGCTTTG





TGAAGAGCTTATCTTGGTACTACCTTAGCCAAGGTATGATAACTCAGACATAATGTCTTTTCTTTCATGG





TTCCTTTTTTAGTGATCATAGATTCAGTTCTGTAATAATTAGAGATTTATGTGTCCTATTAGTAATTGCA





TCATTCTTTAAAGACAGTGTCAACCTTGCTATACAGTGTGATTGAAGCCTTGACATAACTTGGGGGTTTG





TTGGCATTTTGAAATCCCAGGCCCCACTTCAAAACTGTTGAATCAGAATCTGCATTGTAAGAAGATCCCC





AAAAGATCTGCATGCACAAGCCTTGAAAGAGAAGAGAAGCCATCTAACATTCCTCACCTAAGATTTGAAG





AATTTCCCACTTATGCAAGAGTAGGGGTGTGATTTCTCAGGCAGGATATCTAACAGAAAACAACACTTAT





GAAGTGTTTCCTGTAGGAGCTAAGCAGGTGGCCAGAAAATGGCAGGCTACAAAGGAGAAGAATGACTAGG





AACCTGAGCAAGGAGAAAGTCTCAAAGACAAGGAAGTGGCTGGCAGTGTCAGGGACTACCAGGCAGCTGA





AAAAGCTAGGTGTGAACACTATTTCTTGGAGTTTTCAGCAAGTAAGAGGTTCATGATGATGCCTCAAAGA





ATTTACAGTGGAACCAGAGCCAAGAAGTCTTATTGTGGTGAGTTGGGAATTAGGGAAAGTGTTATACAGT





TGACCCTCAAACAGTGTGAGGGTTCGGGGCGCTGAGCCCTAACCTCAAGTAAGAGGTTCATGATGATGCA





ATCAAAGAATTTACACTGGAACCAGAGCCAAGAAGTCTTTTTTTTTTTTTTTTTTTTTTTTTGAGACGGA





GTTTCGCTCTGTCGCCCAGGCTGGAGTGCAGTGGCGCGATCTCGACTCACTGCAAGCTCCGCCTCCCGGG





TTCACGCCATTCTCCTGCCTCAGCCTCCCGTGTAGCTGGGACTACAGGCGCGCGCCACCATGCCCAGCTA





ATTTTTGTATTTTTAGTAGAGACGGGGTTTCACCGTGTTAGCCAGGATGGTCTCGATCTCCTGACCTCGT





GATCCGCCCGTCTCGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCGCGCCCGGCAGCCAAGAA





GTCTTATGGTGGTGAGTTGAGAAGTAGGGAGGTGGAAATAAGGAATGGAGATGAAGACATGAAAGGAATT





TGAGAAATGAGGCAATAGCTAGAGAAGAATATAGGAATACACAGATCCAGCAACCCAGCAAGGGAAGGGC





TAGATTCTGATTTCATGAGCAAATTGCCTACTAATTAAATTCACAATATCAGAGGAAACTGTTGGACTCA





CTTACTGAATAATAGCTGAAAAGTATCTTTGCTTTATAGAGAGATCACTGTAGATGAAAGTCATCTTCCA





GTGGTGAGATATTCTTCAGTGTCATCTCTTCATTTTTATTTCTAATTTTTCTTAATTTGAATTATTTCTT





CTGATAATGGGAATGATGTGGTAATTTTGTCTCTCCTGTAAATTATTTTAAAGATTTGTACGAACTCCTT





TGGCAGGCTTGAGTGTGTTGTGACAGCTTGGCTTAGATATGCATTGAATGTCATTGAATTCAAACTCCTT





ACCAACATAGTTAGATAGCCCATAGGCATTCTACTTGACCCTTTCAAGGAGATCTGGAGATGCAATTGTA





GGGGAAAAAAGAAGAAAAGAATTCAAGAAGCAACAAAGTGAAAGATAATTTGGCTTGCAGAAGAGAGGTC





TTTCTATCACAGTAATAATAATGCCAATTATATGTCCATATATATATATACGCACACATATATATAGTAT





ATATATATACACATATAACTCAGACATAATTCTTTCATAGTTCTTTCTTTTGTGCACAGATTCACTTCTG





TTATAATTACATACTTATGTGACCTATTTGTTAGTAATTGCTTCAGTTTCTTAAAAGAGCATCACCTTGC





TGTGCAAAGTGTGATTGAAGCCTCAACATCTCTTGGGAGTTTTTTTAGAATTTTGAAATCCCAGGCCCCA





CTTCAGAACTGTTGAATCAGAATCCGCCATTGTAAGACAATCCCCAAGGGATCTGCACGCACGTTGCAGC





TTGAGAAGCACTGCAGTATCACACATATACACACATATTCAACACCAAAGAGAGAGAAAGAGGTCATAAG





CTCTCAGGTGGAGACTAGTTCCATGTATATATGCATAGAGAGAAGAACAAACTCTACCTTCCAGCAACGT





AAAATTCTACTCAATCATGTATTCACCAAAAAAGAAAAGGCTTTCTCCATATAATGTGTATTATTCATAT





ATTGGCACTCTTCAGAGCTCTTCATTCCACCCTAATGTTATCTTTCTTAGATAATTCACATGACACTTTG





TTATCTTCCAATAATTTCTGTCATTGTTATAAGCGAAATTATTCAGGCTTTATCTAAGAGAGTAAATCAA





ACAGTATGCCTCTCTCATTCCAATTCTGCAATATTTTCATTCTAGAATGTCTAAAGGAGCCTTGAAAGAG





AGGAGAAGTCACCTAAGGCCAGCTAGAGGGGATATATAGCAGGGAATGGTGGCAACTCCACTCCTCGTAG





CCCAGTGGGGTTTTTTTTTTTTCCAATCTGTATTTGTATGTGAGTATCACGTCTATGCCGATTTTATGTG





TACATATGTAACTCAAATCTGTTCATTGTGCTAGTTAGAATCTTATTTCCCCCTCTTCTACTACACTCTA





CCCTTTCTCTTTCCCCTCCTTTGGCAACCAAGACACTGAGTTATTAATAAGCAGATTGGAGCAAACATTT





TGATGCACTATTGTTTGATAGATTTGTTGGTTCATTCAATAAGCATTAATTGAGCACTTGCTAAGTGTTA





AACAATGTACTAATTGCTAGATTTAAGGATGAAAATGATAAAACCCTTGGCCTCTAGAGCCTAGAGTGTA





GTTGGGGAGACAAATGGGCAAATTAGTCACACGACAACATATTCCTTGTTAAAACAGACAGTTGTGCATA





AGTCTGTATACCCAGACTGGAGATGACTCTGTTTCCAATGTTGCCCTGGGAAACCTCATGATCAGTTTAA





TAATGATGTTTGGGGTGAGAGGATACTGAGACAGTTTGCTTCTAGCATAGTAATTACCCATAGAAGTTTG





GGGTCTTTATTCAAAAGAGTTTACAGGCCACATGAGCCACTGTCTTGCCTTTTATAGGATCACATCTAAG





TTCCGTGTCATATAATGGCCTTGGCCTTCTTGGCTTTCTCTGTGCTCTTTGCCTGCCAATACCCTAATTA





TTGAAGTACTGTCTCCCGCAGCTCCTCAACCATGAGCTGTTCCCGATCCTCCCAGCAGCTATGTTTCTCC





TTTCTTCAAACCTCTTTAGCTTTTTATTTGTACTTTATTTGTACTAAATTGTATTTAGAGCTTTGGAGAA





CATTCTTCATAGTTGTAATTAGACTGTAAAGTCCTGAGAATGTATTTTTCATCTTCGTAGCCCCCTGCAG





TATCTAGCAGAATGCCTTTAAACAAATGGGCAGTAAATAAATCCCAACAAACTTAAATTAAATTTCTCCA





AATTGCATATTTAATTTTATAGTGGCATTTACTGATAACATACATTGAAATAAAGGCCAGAGCATAATCC





TCTCTGTTTCTGAATATTATTTATTTAAATATTAACTTTCTAATCCAATTAGGTCTTTCAATGACACTTT





AGATCTAAATTTATTTTTGCATTGTTTTAAATGTCATCAAATGATTCATCTCTTGTGTTTTTTAATATTT





TTGGAACGAACGTGTGAAAATGAGCAAGTGTCATCAGAATATGATGCTTGGGTTTTTTTAATTCAACATT





TCTTTGATCATATATTTAAAGACTTTTTCTCAATTCCTTTCTGGATGTGGCCTCACAAATCATTTCAGAA





GTCAATCCATTTCAAGATTTTTTTTTTTTTTTTTGCTTTTTTCACTTCACAGGAAGTCAAGTTCATTCTT





TAAAATGTAGCAAATGATTAAGCAAATTCAACGAATGATCTTCATCAACTCCGAGGTGTTTTTCCCCCTT





GAAAAATTTAAGTTACTATTATTTTTTTTTCTTTTTTTTTTTTTTTGATACAGAGTCTCACTCTGTTACC





CAGGCTAGAGTGCAGTGGTGTGATCTCGGCTCACTGCAAGCTCCACCTCCTGGGTTCACGCCATTCTCCT





GCCTCAGCCTCCCGAGCAGCTGGTACCACAGGCGCCTGCCACCATGTCTGGCTAATTTTGTGCATTTTTA





GTAGAGATGGGGTTTCTCCTTGTTAGCCAGGATGGTCTCGATCTCCTGACCTCGTGATCCACCCACCTCG





GCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACTGCGCCCGGCCAATTATTATTATTTTTTTTAAAC





TTCACCTATCATAAATCTTTTAAAATTTCACCTATGATAAACTTCCTCTGTCATCTGGGGAATTACTTAA





ATGCAATGATGGCCTTCAAGTATACTACCAGGCAGCCTATCCAAATCATGAAACAGAAAGGCTCATAGAC





CAAATTAAAATACTTGAATCACAGAGTTTATTAAAATCACAGTGAGAAGCAAACGGGAAAGATATGTGCT





AAGTTAACACGCTTAGAATAGAGTGTAAGCAGACTGTGAAGATTAGAGTACTTGAATTCTGCAGTACACA





ACATTATATGTCTTGTCTGTCTCTGTATTGCATCAGCCTTCCCAATTATGGTGTGCTTACAAGGACCAAA





GTTGACTTCCCAACAAGGGAGTCCAAAATGGGTGGTGCCTGATTCAGTGGCATGTGGTTTATCAGAGACA





CAGAGACAAGAATGCATGGCCACAGCTGTAACTTGCCAAAATAGCCTGATGACTAGCCATGTAATTCTCA





GGCAGAAGACTTACGGTGCTGGAATAGGTATCACCTATGGATGCCTGAATTAAGACCTTGTGAACATTAA





GTGCTCATGTGTATTTATTTGATCTTGAATATTTAGTGCCTCTTGTATATTTGGTCTCATGTGTATTTAG





CATATTATGAATATTTAGTACCCAGGTGCCTCATGAATATTGGGTATCTTTTGGTCCTTCTATCCCTCAC





TATCTATGTTTAGTACACACATGCTCTGCTTGCTAACTACTTATCTTCTAATTAACACATTCCAAGAGCC





AATTATGTGTATCTCTTTCCACTGAGTTCTTCATTCAATGACATCAAGTTAGTTGCTTGAAATCAGCTAT





TGTGAGAGCACTTACACCACAGAAATTGGCAAATGCTACAATTAGCGCCACTGCCCTCCCCTAGAGCCAG





TTATTTGACATTTACTAGCATTCCACTACTTACATGGCCCTTCATGCTCTCACTCCGTGTGACCACTCAA





GCCTTATCCCTCTTTACTGAACTCTACAATCAAATAAAATATCTTTGTTTCTTGCTTCTGGCCCTCCATC





AAATGGCTCCCTCTCCTAGGAACAATCTGTCTCTCCTCTATCACCTTTGTTTAGCTAGTTAATAATCCCT





TTTCAGACAGCACCTCATAAATAGATTCCTGAACATCCCAAACCGGATCTCCTGCACCTTCAATGTGCTA





CTTCAGTACATTTGTCTTACCCTTTGCCATATGGTATTTCAATTGCCCATGAATTTGTATTCCTGTTTAG





ATCTTAAGCTTTGTGAGGTCTTTTTGTACTTTTTTGTACTTCCGTATACCTACCACATAATAAATATTTA





ATGAAAGCATTAATGAATAAGTAAGTGAATGGAGTGAGTGAATGAGTATTCAATTATGATTCATTTGTAT





CAAAGTGATAACATATACTTACAGGGAAAAGGCCAGAGGGGGAAAAAATAAAAAATAATAATATATTTTA





TGTATGACCTTGTGTGGGGAAAGGAACATAGGGCCACTGCCTGGCCTGCTTCTTTTATGCAAATCCTAAT





GTAAAATATGATCAACGCCTGGCTGGGCAGAAATACAAAAACCCAGTACTAGTGATTCTCCCAACCAGAT





ACCAGCTAGTACAGATCATAGCCAGATTTAACTACTGTGAAGTGGTTAGGTTAGAGGTGACCTATAAGGA





AATGACGCTAATGATCATTAGCATCATCTTGGAAGCTTAAAAAAATGCCCCAGCTGTACCCCAAGCCAAT





GATATCAGACTTTTGTGGGGAACCCAGATATCATTGTTTTTAATCTTTAATGATTCCAATTTAGCCAAAG





TTGAGTCTCAACAAACCAAGTTCTTCTTACTCTCATATTCTCTTCTTCTCGCATAGATAAGAATTAACAG





CCAGCTCTTCTACATGTTTCTTAGACACATATATTGTTTCAGTGGTAATTCGTTAACAGTGCATATGTCA





GCAAAGCATGACTGAAAAAAATATCTGCTCCCACACATTCTGATCCCATCTTGACACTGCATAGCTGTTG





GCGAAGGCAATTTCAACAATGAAGAAGTGGGAGAAATGACTACATTTTATGTAAATATGTATTCATTGAA





AATCAAAAGGACATATGTAATGATATTGTTTAAGATTCTAAATGAAGGACAATACTTAAGAGTCCTCTGT





AGTCAAATTTCTCAGCAGTAAAAAAACATTGTCTTTTCTTTACAACTATTAACCATATGGCTGTGAAAAT





GTTATTCTACAAGCCTTTAAGATTTGAAATCTGACTTTATGTTAATACACAGAATTTACCACACAATCCT





GTATGATTTCTAAGTAGATTTAAAGAGTAGCTATTGCTCACCTTTTCAACATAATGGTAATGATGGTGCA





ATGTCAATTACATGATACTCTCATGGGCGTGATTATATGATTGTTAACACACTGAAGTGCTTATATAGAC





ATAGATACTGATTTTTATATGTACATATTTAAAACAAACAAGGACTTAAAATGGCCTGTAAAAGTCTTTC





TAGTCAGTCTTTCTGGTTTTGGACAGAGAACAAATAATCCCTTACAGCTGTTAGGTTGGTGCAAAAGTAA





TTGTGGTCTTTGCCATTGCTTTTAATGGTAAAAAAAACGCAATTACTTTTGCACCAACCTAATAGTTATC





TACTTCCATCTTTAACGGGCCCTACCCAAGACTGCATGGTATATAAGTAAGAAATGTAAATGAAAATCTC





AAATGCTAGATCTGCCCAGGAGGGGACCACTAATGAGAGAGGAAATGTTAACGTCCCATATGAACTAAGC





TCAGCTTAGCATTTACCCTTCCTGCTATTCCGCTAGAGCAGTGCTTCTCAAAAGTTGACCTGTAATGGAA





TCTTCTGAATGCCTTTTTAAAACGTAGCTGGCTGGGCCCCATCCCCAGAGTTTCTGTGTCAGTTGGTCTG





GGATGGGGCCTGAGAATTTGCATCTCTAACAAGTTCTCAGGGGATGTTGCCGGCCCTTGAATCACAACTT





AAAAACCTCTGCTCTGAAGAAAGGGAAAGCTCTCTCTGCTGGATTTCCCCAAGCCTTTTTCAGATTTTCA





GGAGACTTCTGTGCGGTAGCTTGCTTCCTTCTTTCCATACTACTACTACTACCACTACTACTACTACAAA





TAGCAACCTCTAGCATATTTTCAGTACTAAATACCCAGCACTATATATACATCACAAAAGTCCCTTGAGG





AAGGTGGTATTATCATCTCCATTCTGCGGATAAGGAAATAGATAAGAAATTTGCTGAAGATCGCAGAGCC





AAATGAGACTCAAACCCATGTAACCCATGTCTGTTTGACTTTAAAGCCCGGAATCTTAATTTGTTCCAGA





CAAGCTCATTATGTGCTCTGATCTTCACCACTGAAATGTTCTGAATATGAGGCTGAGGGCAGCAGTGAGG





TTGGAAGGAGCAGCCCAGAGGAGCAGGCACTGTGCTGGTAGAATAGTAGTATGGTGGGGCCTGCACTCCC





TAATAAAAGAAGGGGACAATGACTATTTCCTCCTTCTCCAAGGTCGTGCTGCCTCCCATTTCTCTGTCTG





CCTGGTAAGAAGCAGCTCTGGGCCATGTGTGGTGGCTCACACTTGTAATCCCAGTGCTTTGGGAGGCTGA





GGCGGGAGGATCTCTTGAGCCCAGGAAATTAAGACCAACCCTAGCAATCTAGTGGGACTTCATCTCTAAT





AAAAATAAAAAACTTAGCTGGGTGTGGTGGCACACACCTATAATCCCAACTACTCAGGAGGCTGAGGTGG





GAGGATTGCTTGAGCTTGGGAAGTCGAAGCTGCAGTGAGCCGTGGTCTCACCACTGCACTCCAGCTTGGG





CAGCAGGGTGAGACCCTGTCTCCAGAAAAACAAAAAGCAGCAGCTCTGAAAAGAGGATCTAGCAGTTTCT





ATATGCAGGAGAGCATTTGCGCAATTGTTCCTGGGGTTGAATCTGAGAAACTCACAGTGCACATTCAGAT





ACTATTTACAATCTTCTAGGAATAGTATAAATATTGTGGCCAGGGCACCTTCATATTGTGAAACACAAAA





AGACTTCAGACCTTAGATTATGTGTCGAAAGTTAGGCACCAATGATTTTTTTTTCCATTTGTTCTTAAGT





GGCAAATCTTTACATTAACATTTTTGGTACTTGTCTTTAGGGAAATTTCTTCTCTGTTCTGAATGTATAT





ATTGTAATTCCTCATTTACAATTTTGCCTGCAAATGCAAGTGAGTACAGATCATCCAGTTATGAAAATGC





TCTGAGATTTGAGTCTAGCTGTTTCAGCTTTAAGAGCCCTGACCTAGACTTTGAAACTGACATGGTTTTA





TATGTATGTGGTTGGAATTAAACCCAAAGCACATCTTTTAAAACTCTGAGGAACTTCTGTGCCACAGCTT





TCGCTCAGTTGGTGAGATTTTACTTTGAAATTTAAGGGATGAGTCTAGTTTATATGCAAAGAAATGTAGG





GAGCTTTGCAAACCCAATCAAATCCTTTGTGAACAGTGTGTGCATCTGTTTATTTTGCTGTCATTTTGAG





TCCATGATCCTGTATACTGTTTTGTGGGCACATATTGAGGGTAATATCAAATACCATGTAGAACAGATGC





TGCAGGTATCCTTTCCATGTCCTCTTAGCTTTGGGGTGGTAGATGGGCACATGGACCAAGCCCAAAGTGA





CAGGGTATTAACAGGAGCAAGACTCAACCAATAAGGGAGAGTAGATGGGTACAAATCTCAGCTTTCTCTC





CCCTCACTGGGATAATTTTGAGATATATTCCAAAGATCCTCAGAGCATCCCCAACAGCATTGAGCCCCAG





TTCCCCAGATTAGTAATCTACTCAATAAATACCTCTTTTTTTTTTTTTTTTCCCGAGATGGAGTCTCACT





CTGCACCCTGGCTGGAGTGCAGTGGCACAATCTCAGCTCACTGCAACCTCCACCTCCCGAGTTCAAGTGA





TTCTCCTGCCTCAGCCTCTTGAGTAGCTGGGACTACAGGCATGCGCCACCACACCCAACTAATTTTTGTA





TTTTTAGTAGAGATGGGGTTTCACCATTTGGCCAGGCTGGTCTAGAACTCCTGATCTCAAGTGATCCGCC





CGCCTTGGCCTCCCAAAGTCCTGGGATTACAGGCATGAGCCACCACGCCCAGCCCAATAAAGAACTCTGG





ATTGTTTCTTCCTTTTCCTCTCCTCCTTTCCTGTTCCCTACAGTGTTTCCTAGGATCACCTCAGTCTGCT





GTATGGGAAACCCAGACTGAGTCACCATAACAGACAGAGGCATTGTTACTTTAGGACTTTAGTGGATATA





GTTACATGGGAGAGAGAGACTGTGTATGTATATATAACCTTTATAATATTAAACCATGCTATACTCAAAT





TATTTACTGGCCAAGATTTCCAATATAAATTGGAAATAAATTGGATATAAATCAAGAACAGTTAAAATTG





GAAATAGTTAAAATACAAATAAAATAGCTAAAATTGGGCAAAATACCTGACCCAATGCTTTAATATCCGA





TTGCATAATTAAACGAGTAAAGAGGAAAGGAAATTATTAGCAACTCTATATTTAAATGCAACTGACATCC





AAGGAAGTCATGAAGAAAACTCTTTGTGTTGATAAACTGAAGGCCTCTTCTAGCAGACTTCTGTGTTTAT





TGTTCTGTTGCTGACTATTTTATTCCAAACAAATGAACTTGCTTGTCATTATACCCCACCCTTCCCTAGT





ACAGGGCCCCCATTCTTTGAAACAGTAACTCATTCAGTTCCAAGGAGAATATGAAAAGGGAGGGTAATAT





ATAAAAGAACTGAAATGAAAAGTGGCCTAAGTGTGGCACATTTCCATTGTGGATTCCATGGCAATGGAGA





ATTGATGGCAGAGCATGGTGAGAGATGTGAAGCATCAATTGGCTGTATCTCCAGGGAATTCCTGAAGTTC





AGTTGCCACCCTGGAGGGTGGCAAATGCTCTCTCTCACCTTCCTTGAGTTATTGCTTAGATGACTCAAAA





CAAAAAACTGATGAGCTATAAATGGGCTGTATTATTTGTTTTTACCTGCTGAGTAGTTCAGATATTTCAA





AATAATCTCAAACTTAACCTATGGTGTGGTTTCTGTGTTAAACAAAATACCGTAACTTTTAGTTGAAAAT





ACTGTGTAAGCCCACACAATCTCTTGTTCACAGATAATCTTGTTGTCAAACATTCATGATGACAAAAACT





CATAAACGATTCTTTTAAATATCAAGAATAACTTATGCTGTAAGTCATAATTTCATAAGCATGAATTTAT





GAATGTGTTTTGTGTTTGCAATTTTCATTTAGGTTGTCTTAAAATCATGCGTTTTAGCTTAACTTAGGAG





AAATATATCTTTTGTGACAACATAGGATATTCAGAGAAACGTGAAAACTAGGTGATGTGTTTTATGAAAG





AAGGCATAAAGTATATCAAGCATAAGAACTTTGAATTCTATTTGTGTTTTTTGTGGCTTTAGAAAAGATT





GTTCTGGGAATAGAGAATTCCATTTGGGAAACCTAGCACATACACAGTAGCAGAGTTAAAATACTGACTT





GGAGGGTTCATTTGAAGAATTCTATAGAATTTTTGCATGTTGGGAATAGGTTTATATTCTTAAACATTGC





ACTCAGGGTTTCTATTCAAAGCAAAAATAACTTTGCATAGACCTTGGCCATTCTTTCACATTCTAAAGTA





ATCCATTTTTTTTTTTCAGGGTAGTTGTTCTCAGTCCTGATTTTCTGATAATTCAGATCATCTTTAATTT





ACACCAAAAACTTTTAGAAGAGTCAGATAATAATTTAACATAAAATGTAAATGACTGAAATATACATTTT





TTAAAGGAGCAGATATGGAGGGGTCCAATGTACTTAACTATTTGCTCTCTTTGTCTCCTTGCATTCACGG





GAATGTTTCTATGTAGTTTTCTAATTTCACACAATTTCAATAATCCATACCCTCCTCATTTTTATGGGCC





TTCATGATACTAAAAATGTTACCAGAAATTATTTTGTGTTAGTCTCTTTGTTTAGCACATTCATACATAA





GTTTTAACATTTAACTGGCATATTTTTAAAGTAATACATGTTTTTTTTTTAAAAAAAATCAGTTATGTTT





GTGTGTGTGCATATTTTCTTTTGTGGCCAAATGTTGCACGCCCTAGTCCTTCTATTTAAACAATGAGTTT





ACATAACAAATGTTACATGATAAACATGAAGACATTTAGTTTGAAAAAAAATGATTTTCTAGTTTACTCA





TTTAAAAAAAGCTGAAGTAACCGGGAAGAGGAGTGGCAGAACATATTAGTCTTTTTCATAATGCCATCAT





TAAACAAAGATACTTAATTTCCAGGCCTGGTGCAGTGGCGCAGCCTGTAATCCCAGTACTTTGGGAGGCT





GAGGAGGGCAGATCACTTGAGGTCAGGAGTTCGAGACCAGCTTTGCCAATATGGTGAAACCCTGTCTCAA





AAAAAAAAAAAAAAGAAAAAGAAAAAGCTACATAATTTCCAAAATGACTTCAGTGGGACCTGAGGTGAGG





GAATAAAGGCTCTGGAGTAATTTCACTCTCTATTCCTCTCCTAATTTTTTTTCTGTTCCTTTATAACAAC





ATTTTCACTACTTTTGAGCTTGGGAGTTGAGGAATCATGACCAGAAGAAAAGGAAAGACGGGAAAGATGT





TCAAGGGTGAGGATGCTTAAGAATGACCTGGCAAGCTTATGAAAATGCAGTTGTCTGGATCCCACCACAG





AGATTCTGATTTAGCAGGTCTGTGGCAAGGCCTGCGATTCTGCATTGCTAACCAGCTCCCAGGTGATGAC





ACTCATGCTGGCAACCTATGAACCATTGAGTGGCACTGTTCCAGGGGGCAGGGCAATGAGAAATTGAAGT





CAAAAGCCCCAAGACCTGGTGCTACGAAAATACTCTGGTTCCTTCCCTCTCAACTGATTTACTTGTCGGT





GTGATTTTGCAAAAATCCCTGAACTTCTTAAATCCCAGTTACCTCACCTGAAAAGTATGAGTGTTGCTCC





AGATCTGGAGGCTTTCAGACCATGCAAATCGAATTCAAACCATGCAAACCATTCAAGTCATTCTAGAAAG





TTCTGCAAGGTGCCTCAGAGGCCAAAGGGAGAGATGGGAAGAGGGATTGAATGGGCTCTTTCCAAGGTTC





CCTAACCCACTTGAATACTTTCATCTTTTATCTCTTTCATATATTCCACTTTTGAGTATGGTTTCATTTA





GAAAATAGGATTTTATACCAACAGATTTAAAGAAAAACTCCAAGTCTGAAAATGACTCATTTATTTAAAA





CTGTATAGAACAAAGACATTTAGTGCACAATTCCAAAAATTCTCTGATCCTTCCACAGCATGCCCAGTAT





GCTGCAAGAGTGCCAGCAAACACATGCTTACTGCTCACAAATGTGAAATTTAACCCCATGCACTAGGAGG





TCCCTAGTGTGGGGTGGTTTTAGCTAACCAGACTAAGAGAGTACAGGGCAACATCGAGCCTTTCTCTGCG





GTCATGTCTGATTCATTAAAAATCCAGCTTTCCCCGAAGATATATTAATTACCTTCTGTTTCAGAATTTG





TTTTTAGAGCCTAATTCTTAATTATATCTCCAGCCATTGTGTGATTTGACCATTTTGGAACTAAAAAGTT





ATCCTATGAAATTCCACCTCCAACTATTGCCACACTGTTAGTTTGTCTATTTCATACACCATGCCAATCT





TAGCGTGGTGCTAGCATTTCATTATAACCAGCTTTCATTTTTAATAAGACCATGTGTATATGAAATTGTA





GACTTCAGTCTTTGTATGAATTGAAAGCTATTAATCTTCCCAGGGTTAGGTTATGTTAAACAGATTGTAA





TGTTCTTCTTTTTATTATGTTATTTAAATCCCCTTCATTTCATACTGCACCAATACATTTCTACTATCTT





GGAATAAATTAATTCCAGTTACGTGATGGAAAATTTTAGTGTAAAAATATAACCTGCAGTATAATTTTTT





CTGTCAGAATACCAACTAGAACTGGTATGTTTCATTCTAATTGGAAATTTGAGTTATCGCTTTGATTTTT





AACAGTGGGAAAGGAAAATGAAGATTGATATCTTTCAATAGCCGTTCATTCATTCTTCATTCCTTCATTC





ATTCACGTATTAAGAATAGTCTATGTGCTAAGAACAGAAAGAGTGTTAGAGATATGAAGATTAATAAGAC





CAGATCCCTGCCTGCAGGCATTTCCTATTCTATGTCATAGATAGGGGGCTATTCTGTTTAGAGGTAAAGC





ATGACCCACATTGCCTCTGACAAGAAGCATAATGTCTGTAGCAGCTAACTGCTGGAGACAGGAGGCTAGA





GGGCTGCCCTGGTAATTGGTATTCAAGTCTTCAAGAAAGGAAACCAGCTATTCCAAAATCAGTGGGCAAG





AGGAAGTTGTAAAGTTAAGTGAAATGACTAAAATATGAATAACTAAAGGTTGGAATCTGGTAGAAGGAGA





GGAGAGCATCGGTCAGCACCTTAGTTTGGGAAGGTGGTGTGGCCATAGTAGGCTTTATTTAGAAAGAAGC





AATTCTTAGGTACCAGCTAGGTTTCAGTTCCTTAAGGGGAGAAAACTGGCAAAATATAGGCAGGTTTCCA





GGGTGCAAAGCCACGTTCTAGCTTCAGCTCAGGCAAGGCCCTGGGGTATGAATCACCACCAGAGTAGCCC





AGCCAAAATGACTAAGGGATCTAAGCTGGTTGCTAATGAAAGAGGTTGCAGCTCAAGGCAGCTCTGCTGA





CGCCCACTGGATACTGGGATTACATTGATTTAACACATGGAAACCACTTAATATGGTATGTGGCACAACA





CAATTAAGTACTCATAAATATTTGCAGATAATGCTGCTGCCATTGCTGTTTTTGTCGTTAGAAGACTCGG





GAAAATCATCTAATACAGGAATCCATCTGTTGGCGGGGCTTGGGCTTCTAATATTTGACTGGTTGATTTT





TGTCGACCCAATCTTAACAATATTATACACAGCCATTACTTCAGGAAAGGCAGTTGTAAAGAATGGTATA





AATTTCCTGTAACTTGACTGCCACATTCTAGCTGAGTCACCTCTATATACCTCAGTTTCTTTGTATCCGC





AGTGAAGATTAATGACCTCATAGGGTTGTTATTAGAATGAAGTGAATTACTACACTGGACTTATTTAGGA





CAGTAACTCGCACATAGTGAGTGCTCAAGGAAATCTCAGACCCTGCCTGCTAGTGGAGGGTCCAGCTCCT





GATACATTTGGGGGCAGGTTTAAGGAGTTCATTGATTTAGAGCTGTAAGGGCTGATCTTTCACCCTGCAT





GTCTTCAGCAACTGTGGCTGGTAAAGTCCAGAGCAGTCAAAGGCTGACAAATCCTTGTTAGAAATCACAA





ATGCCCATTCTCACAACTTCTGTGGTGTTTTCCATCCTTTCCCTAGAATACTTTCTTTTTAAGGCAAAGG





AAAGAATAATCACTGCAGATAGCACACAGTATTTTTTTGCAACATATTTTCAAAAATTATGATGAGAAAA





GTGTATCATTCCTGTGAAGAAACAGCATAAGGAAAATGATTTGAGAAAGAAACATGGTTCTTAAACTGAA





ACAAGTGTCAGAAGGAATCCCAGAAGGCAGAAGGAAATATAGTAATCATGATGAAGTCTAGAGCTCACAC





CGGTTAACAGAATGGCAGCAGCGATATTCATCTCACGCCTCTTCCATGCTGTCCCTGAGTGAGCTTCTGC





TGAATTGCCTGGCTGGTGAGGATTGGTTTCAGCAGCAGAAGGAATGGGCTGCCAGCTGAAGGCTCTGGTT





CTGATCCTGGGTAGGGTCAGAGAAAGCAAGATGTGACCATCACTTTTGACCTTGGTCTTGAATTTGATTC





CATGGAACAACGATATTTTACAAACCCAGTTGAAGGTTTATCCCTTTTTCTATTCAACACAGGGAGAGTC





CTTAGAGCCCCAGGAAGACTTAGCCCTTTTTCATTCTAAGAGTAAACCACATCTAGGTTTCCAGAGATGA





AAAGACCAGGCTCTGATCTTCCTTCTGGAAGCCCTTGCCTATTCAACAAGCATGAGTATTAAATGCTATT





GCCTTGGAATCATAATTCAGTTTTCACAGTTTGGGCTATGTCAGAACCATTCTTGTCAACCCCCTGTTTT





CTGAGAACCCGAAACCTGCTTGTTTAGAATTTTAGAATCTACTTGACTCTTACAGGGGAGAAAAGATCTC





TTTTCTCACCCATCGCTAGGTTCATGGCTGAGGCACCTATAATGAAGGACAAATCAACAACATAAAAGCA





TGCGAATTTATTTAATATAAGTTTCACATGACACAGGAGCCTTCAGAAATGACCCAAAGAATCAGGGAAA





AGTGTGTATTTTTATGCTCTGATTTGAGGAAAAGTAGATGTCCAGTATGACTGGACAAAGGGGAATGGTA





ATAAACTGGGGTGACCACAGCAAGGCCTGTTTCTGCAGAACCTCCTGTGTCCCTGTGTTTTCAGAGGTAA





AAATTTTCCTTTCCTTCCAGTATAGTAAGGGCACCTCTGGTATGATAGTCTCATGACCTGCTTCAGGGGA





GAAGGGGGAAGGGGAAGGTGAGAGTGACCATCCTGCTTCTGCTGTCTTCTCAAATACCAAGCTGCCATAT





TGTGGATTTTGGAGTAGCGTAACTTGAATCCTTTTTTTTTTTTTTTTTTGAGACGGAGTCTCACCCTGTA





ACCCAGGCTGGAGTGCAATGGCACAATCTCGGCTCACTACAACCTCCACCTCCCAAGTTCAAGTGATTCT





CCTGCCTCAGCCTCCCGAGTAACTGGGATTACAGGCACATGCCACCATGCCTGGCAAATTTTTTGTATCT





TTAGTAGAGATGGGGTTTCACCATGTTAGCCGGACTGGTCTTGAACTCCTGACCTCGTGGTCCGCCCACT





TCGGCCTCCCAAAGTGCTGAGCCACCGCACCCAGCCGCATAGCTTGAATCTTATCAATACCTTAACCAAA





TGACTCTGACAGTTTTCCTCTTCTTATCTAAATTCTTGAGGGTCACCCACACTTCCCAATGTCTTTTGAA





ACTTGACCTCTTTTCTGCTGAATTGAGGAAGATACCTGATTTCTTTAACCTCACCAAATTCCTACTTCTT





ACTGTTGTTCATTGCTGGCTGAAAATTTACTTTGGCGAGTTCACCAAGAACATACTTATCGGTTCACTGT





TTATATTTGCACTCAAGATAACACTTGAGGCCCTGCTACTCAAAGAATTTAGTGACAACTTTCTTCATCA





CTCTCATATCTTATCTGTCATCAAGTCTTTTTTTCCTCGTAAAAATGCTTTTAGCTCTTTAAGTATGTTT





CATATCTATAATAGCTAAGATAGGCTAACAGCTATAATATATTAAACATCCACCAAATGGACTATTAAAA





TGACTTAAACAAAATAGAAATGTATTTCTTTCTCATGTAAACAGTCTAAGGTGAATTCATGTTAGTTGGT





GTTGGATGTGTGTGTGGGAAGGGAGGGGTGACACCCACATAATTATTCAAGAATACAGGCCAGGCCAGGT





GCAGTGGCTCACACCTGTAATCCCAGCACTTTGGGAGGCCAAGGTGGGCGGATCACCTGAGGTCAGGAGC





TCGAGACCATCCTGGCCAACATGATGAAACCCCATCTCTACTAAAAATACAAAAAATAGCTAGGAGTGGT





GGTGGGCACCTGTAATCCCAGCTACTTGGGAGGCTGAAGCAGGAGAATCACTTGAAGCCGGGAGGCGGAG





GTTGCAGTGAGACAAGATCATGCCACTGCACTCCAGCCTGGCGACAGAGCAAGACTCTATCTAAAAAAAA





TAAAATAAAATAAAAATAAAAAATAAAAAATAAATTAAAAAAAAAACAGGCCAGCAAGGGTCTTCCATCT





GCAATAGCCAATTGCCGAGGTTGCCCTCCTGAAGATATTCAGCCAGCCCAAAGGGGAATGAGCTAGAGGA





CTGCACACGGAGGCGTCCCATGTCCTTTGACTCAACCTTCTACTGGCTAGAACTCTGCCCTGTGGCCACA





TGTAACAGCAGAGGGGCTGGAAAATGAAGTCTAGCTAGATACCTAAAAAGAAGCAGAGAAAGGTTTCAAG





AGCATTTAGCAACCATATCCACCTTATTCATGCCCTGCCCTCTATTCGCAGTGGCCCCGCAGCACTGCTC





AACTAGCTTGCTGCATTGGCCTCTTATCTCTTATCTATTGCCTTAGATCCATCTAAATGCTCTGCTACTC





TTATGCCTGGAATATGTTTTCAAGATGTGACTAATCCTCTCACAGCTTGAAGGATAAAAGGTCAAACTGC





TCTGGTGAATGCATGATGCCTGGTCACCTCTGTAGCCCCATCTTCCCTGACACTTTCACAGACAGTATTC





CCTTTACTCCAACCTGTGGGAGTATTTTCTAATTCACAATAATAGCAGGAAATACAATGTGGACCAGACA





CAGTTCTGAGCAGTATATTAACTCATGCATTTCTTACGATAACTTTATAAGGTTGACAGTAGTAGTATCC





CTATTTCACAGAGAAGGAAAGAGATACAGATAAGTAATTTACATATGATCTCACAGATAGTAAGTGGTAC





AGCTTGAGTGCATATGACTCAAAGGGTAGAGGTTCTAGATTCTTAATCACTGTATTGTACTACTTCTCCC





AATGTTATCGTACATGCCATTCCGTCTTCCTGGAATACCCTTCGTCTTTCTTCATCTAACTTCCACTCAA





ACTTTAAGGATCAATTTAAGCATGCCTTATTTTAGGTAGCCATGGTTGACATCAGCCTAATTTAATTGCT





ACTCATCTATGTCCCCATAGCGTCCTTTGCATTCCTCTATATCTCTCTGCTATAGCAGTAAATGTACCAC





CATTCCGTAAAATCCTTAAGGGAATGTTTAGTTTTATGTTCCCAATGCCAGCACAATGTCCAGAACAGTG





TTGTCCCATAGAAATGAGAGCCACCTATGTAATCTTAAGTATTCTAGTAGCCACGTTCTTTAAAAGTAGA





AGTGAAACTAATATTTTATTGACCCTGATATATCCAACATATTATTATTTCAATATGTAATCAATAAAAA





GTATTAATAAAATTTGCTTTTTCCATTCTAAGTCTTTGAAATCTGGCATGTGTCTTTCAATTGCATCCCA





TCTCAATTTGGACACCGTATTTTCATTGAAAATATTTGGTCTCACCTGCACACGTATGTTTATTGCGGCA





CTATTTACAGTAGCAAAGACTTGGAACCAACCCAAATGTCCATCAATGATAGACCGGATTAAGAAAATGT





GGCACATATATATCATGGAATACTATGCAGCCATAAAGAGGATGAGTTCAAGTCCTTTGTAGGGACGTGG





ATGAAGCTGGAAACCATCATTCTGAGCAAACTATCACAAGGACAGAAAACCAAACACCACATGTTCTTAC





TCACAGGCGGGAATTGAGCAATGAGAACACTTGGACACAGGGTGGGGAACATCACACACCAGGGCCTGTC





GTGGGGTGGGGGGAGGGGGGAGGGATAGCGTTAGGAGATATACCTAATGTAAATGACGAGTTAATGGGTG





CAGCACACCAACATGGCACATGTATACATATGTAACAAACCCGCACGTTGTGCACATGTGCCCTAGAACT





TAAAGTATAATAAAAAAAAAAGAAAATATTTGGTCTCTATTTACATTTCATAAACTTTATAGTTGAAAAA





AGAAGATTCACATTCCTAAGTTGTTCCAAACATACACAAAAGTTTTTCAATAACTGAACCAAGAGTCAAT





TTTTAAATTTATATTTAAATTTAATAAAATGGAATAAAAATTTGTTAAACTTCAGTCTCTCCGTCTCACT





AGCCTGATTTCAATTGCTCGGTAGCTACCTACAGCCAGTGGCTCCTGTGTTAGACAGAGCAGCACAGCCC





TAGAACACAGTAGATCCTAAATCGATGTTTATTGAAGAAATTAATCAATGACAGTGTAGAAAATTTGCAG





TGATTATGTCAGAATCAATAGTTCTCCACCCATTTTCTCCCACACTCTCAAAAGGGCCAAGTTTTATATC





ACCAAATGATATTCCTCTTACTTCTTTCTGAGCAGAAACAGTTTTGGAAATTAAGATCTTTTTCAAATTT





TCCAGACTCGGCATTTTAGCAGCGTTTCTATTTGTACCAACAATGCCTTTCTACCTATTTTCCTTGCTTC





TTAATAAGTTAACTTTGTGCGAAGGTCATTTTGTAGGTCAGTGTAATATTGTGCATTAAGGGCTTCTAAG





TTTTCTGGTATTATAAGAACTCCTTGGTTTCCTTCTACTTTTCAGAATGGAAAATCCTCAGAGCAATTTT





CATCTAAAAGTGCTGCATTTAGGTTGTTTCACAATTCCCCAACCCTGAGTCAAATATAGGTTGGTGTATG





AGCAGCAGTGTCTCTTGGCTAATCAAGAGCGTCTCCTTTTGCTACGCTCAGTGTTAGAGAAATGGAGAAA





GTCAGCTGGGTTTAGAGATTAGGTGAGAGACTCAGGCATATCCTTTGATAAGTCATAAATCATTTCCTGT





TTAGAAAAGCACATGTTTAGACACCCATAAAATCTCCAAATGAAGGGTGTTTTACTTTTCCTTCAAAATC





TCACTGGGAAAAGGTACTTCTGACTTTCCAAGTGAATAAAAATAATGACTCCTGATTACCATGTATGTTT





AAACTGATTTGCAAAGCAAGTGAAAAAGAGTCTAGTGAGTAGTGATAAGCATCTTTTAGACATCAGAAGA





TGTACTGATTTAAAGGTCCGTATCATTTTATAACTAGTATCTATTGAGATTCAAATGGTTATTACTCTGT





GTGAATCTGTCTTTTCTAATTGTTTTTACTTATTTTAGAATATCGATTTGTGAATATTAAATTCCTAAGT





TTTCCAGCAATCCAGTGTTTGTTTTGGATATCCAGCCTGGATGCAGAATAGCTGCAGAAAGTTATCACAA





ATTGATCTCTATATTCTGTTTCCGAGTGGCAATTGTCAAAAATTTGGGGTCATCGGCTACCCCTCCCACC





CCTAAGAAGTTCCTTGTACTTCCTCTTTCAAAACACTCACATCATTGTTCAGTGCCTCACTTCTCTACTA





AAATGTAACCAACCACAAAGATAGGGACTATGTCTTTCCTGTTTACTGGTGGATTCTCAGTATCTAGCAC





CATGACCAATGTTAATAGACGTTGAATCAATTCCAGTTGTTACCTCTTCACACTGGGACAAAAGTCCTTG





CAAGTATTCTGCTGCCATTTGTATAGATTCAAGCCAAATATGTCTCAAAACGATATTACAGATGATCTCT





TCGTTGTTCCTCTGACAATTTCTTTCCCCCCTGCATTGCTTAACTTGATTGACAATGACCCCTACTACTT





ATAACATGTGCCTTTTAGGTAGTGCACTTGGCACTACATTTTATGTGATAGTTTTATGATGCTAAAGACT





ATTTGCTGTGATGATGCTGTGTTCTCACATGGCATATCCAGATTTATTTATGCTGGTGACCAAAGGCAGG





TAGTTAACCTTGAAAATAGGTTAAAATTTGAAAGGCAGCAAATCTTAGGGCTAGAATTTATAATTTATCT





TTAAGGAATCTTGAAACCAGGTGTGAAGGAAGGGACGTAGGCTAGAAGTACAGAAACCTGGGTTCTGCTC





CAGCACTGATGTTAAGAGCAAGTTGCATTGCTTTTCTGGACCTTAATTTTCTCTTCTGGAAAATGAATAG





ATTAACTGGAACAAGGAAGGAAAATACGTGAATGGCTTCCGTTTCTGTCTCGTTTACCCCTGAAAGACAT





GGCTAGTCAGTCAGCTCTGTATCAGAGCACTTCTCAAGGCAATGCTCCAGGTAGCTACCACTCACTAATG





AGAGTTAGCACATAGGTAAAACCTCTTTGTCATCTCTAGGCTACTTCATGTTTAAGATACTCTCCAGCTT





TAAAATTCTAATAACTCTATTAGACTGAAATTTAAGAATACGAGAATAATCATCCCTCACCATGAAGAGA





GAGTCTGAGGAAAAAATAATGAGAACGAATAACCCTTCTCTTTTACTACAATTCAGGACTGCCATGAAGA





GCCGTCCAGATTGTGAAACATACAACTCATGATGTGAATGGTACTTCTTTGTTTTTCTCGGTGTACAACT





TGCACAGCTGTTCATGGCCCTCTGCTTCCACAAATTCATTTCTAAATAGCTGTACCTCAGTTCTTTGACT





TCTAGTATGTCTAATTTAATACACATTTCTAGATTTACGATATATAAGAAATATCTCCATGAAGGAAAAA





TGTAATAGCCCATGCTTTTCATTATAATAGAATTTTATGAAACAATGTCTTTTAAAAACAGAAACATATG





TACTACTACTTCGCAGGACATTAGCCCTTGTATATAAATCAATAATACAAAAAATTCAAATTACCAAGGA





TTAGAAAAGACTGCTGTGGGATATCTTCTGGTGCAAGCATACAGTTATTTATCCATTTCTTTCATGAATA





TTTATTGATGTTCCAAACATTAGGCTAGACACTAGAGACACATCAATAAATAAAGGAAATAGGTTTGATC





TCTATCTTCTTTGATCTGTAGTTTAGTGGGGGAGGAAGGAAATTAAACAAGTAACTACTACAGGTTGAAC





ATCCCTGATCCAAAAACCTGAAATCCAAATGTTCCAAATTCCAAAACTGTTTGAATGCTGACATGACATC





ACAAATGGAAAACTCCACTTCTGACCTCATGTGACAAGTCACAGTGAAAATGCAGGCACACCACATAGAG





TTTATTCAGCATCCCCAAGGGAAGAAAGATCCTCTCAGCCCCCGTTAGCTGTGATATATCTTTTCCACCC





ACACCCAGATTCCATCATACAAGCAAACCCACAAAAGGTACGAAAAATGGCACATGTGCGGGCTAGACGC





GACAACGGCAGGTACCCTACAATGTCCAGCATGGGGCCAAAACCTACGTGCATTAATCACTGTGTTTGCT





GGTATATTCTCTGGTGGTGTCAAGATATTGTTGAAAATGCCCTAAAGGCCTGCATGATATCCATAGGGTA





ATGCAAATATTCCAAAACCTGAAATTTGAAATACTTTCAGTCGCAAGTATTTTGGATATGAGATATTCAA





CCTATAGATGGTAAGGGTATTACTATGATAGTGCTACGGGTGTACATCAAGGTAATTGACCCTGGCTTGG





CAGGATGCAGAAGGCTTTCCCAAGGAAGCCTTACCTCAGCTGAGACCTGAAGAGAAGCAGGAGTTAGACA





GGTCAAGTTGGGGATTTGGAGGAGGTGGAGTCCCAGCAGATGGAATACTATGCATAAAGGCCTGGAAGTG





AGAAAGTCATGTCATGTTATTTCAAGGGACTAGAGGAAGCTTAGCAAACTGGAGGCAAGAAGATAGCTTC





AGCACACTATTGAAATTGTCCAGGTGAGTAATGATGATAGTGTAACTAAGTTGTGATACCTAGGTATGTG





AGCTGAACCTATGGAGAAATGTTCTAGGCTAGAGAATCTTTAATTGGATATTTAATTATCAGTATATACG





TAATTAAAACCTTGCAAGGGTTTGAAATGGTTCAGAGTAAAGTTCGTAGATGAGAAGAGGGCCTAGGAGT





GAACCCAGGAAAATGGCAAAGTTTCAGGGGTAAATAAAGAAAAATAAGCTTTCAGTGGAGACAGGGAAAT





TTGCAGTTCAGTAGATAGGAGACAGACTAGGTTCGTGTGATGTCACAGAATCCAAGGGAAGAGAGGTTTT





CAAGAAAAAGTAACATTTAGAGGTGTCAAATACTACAAAAGCATCATGAAAGATAAGACCAAAATATATC





CTATTAATTTAGCAACAAGGAAGGTATTGACAACCTTTATGCAAGTGATTTCAGTGTTGATTATGGAGAA





CTCAGTAATTACTTGGTGGTAACTAAAGAACCAAGATTGCAGTACGTTCAGGCATGATTGAGAATTGAGA





AAGTGGGGGAGCAAGTGTAAAACAATTATTTTAAGACTTTTGGCTGCGATGGGAAGAGAGAAAGGGCCAT





AGTAGCAGAAGATGGATGTAGGGGCAGGAAGAACACACTCTTAAAAGGGTAGTGACTTACACATGTTTAA





ATGGCAATGAGAAGAAGATGGTAGAGAGGGAGAGGTTGAGGATGCAGGAGAAATTAGAGATAATCAATAG





CACAGGTACTTGAGAAGGCAGAAAGATGAAATTTAGAAATTAGCTTCAGATAGGAAGGAAAGTACAGCTT





CTATTACAACATCAGGGGAGAAGGGAAGGAGGATGGGCATAGCTACTGGTAGTTTTGTAAGTTTGGTGAA





AGGTTAAGTAGGATTGTTGTATTGGATTTATTTTTTATTGAAGTGGAAGCTGCAGCTAAATGCCCAGTGA





TGAGGAAGGTGTTGGAGTCTGAGATTTAAGGTGAGTGGCAATTTGAAATAGCTGCTCTAGGATCCTATTT





AACAGAGAAAATGTTGAGTACACAATCAGTGAGCAGTTTTAAGTCCACTCTATTCTGTTTGCAGTTTCAA





GTACCTTTCATTGCTTCTAAGTTTATGAAAACTGGTTCACAATCTTCTTGTGCTTCTTATTTCTACCTCT





TTTCCTTCTGTTTTCTCACCTCCCCAGTTTAAACAGTCCCGAATTTTTTACAATTAAATATACAGCAACT





GCCATGAAATCTACTGATAAAAGATACTGCAAAATCAGTTTGGGATTGGGTTCATTAGCTTACTTATTAT





TATCAATCCTAGGCCACTAAGCAACCTTGCATAAAATGCATAAAATGAGGAGATTCTAGTGGAGGATAGT





TTTCAATTATCTCATTAATTTCAGGCCATGTGACTAGTCCAAATAGATATTATAGGCCAAGAAGAGCCTA





TCTTGAGATTTTAACTCCCAGGATAGGTTTTCTACCTGATCAAAAGAATCTAATAACTATTCAATCTCTT





CTTAAATGGTTTGGTTTTCTGTGCAAACAGTTTTACCCTTTTAGCTGATTTTCTAGGTGTTAAATTAAGA





AAATTCTCTCAGATACTTGTTCATCATGTACTAGGATCCCTGATGTGTTCAGAGTTGTCCAACTTTCAAA





GGGCTTTGCATTCAGAGTACCTAATCTAAACCCTGATATCATTCTTTTATAACAGAAAACCCCGGATTAG





ACTGGGACAGTGTCTGTCATGTTCATCACTGCATCTCCCTCAGTATTTGTAGAATGAATGAAGGGACAAT





GGCAAACTATAGTCCTACCATCACACTTTTGGTAGTGAGGAGAACTGCTGTAACTTGGAAGATTGGAGGG





GGAAAAGGTGGCTAAAACAATCATACAGTAAACTGGGCTGCTATCAAGAGAAACCATTTGTCAATTTTGG





CTTTTGTTGCCATTGCTTTTGGTGTTTTGGACATGAAGTCCTTGCCCACGCCTATGTCCTGAATGGTAAT





GCCTAGGTTTTCTTCTAGGGTTTTTATGGTTTTAGGTCTAACGTTTAAATCTTTAATCCATCTTGAATTG





ATTTTTGTATAAGGTGTAAGGAAGGGATCCAGTTTCAGCTTTCTACATATGGCTAGCCAGTTTTCCCAGC





ACCATTTATTAAATAGGGAATCCTTTCCCCATTGCTTGTTTTTCTCAGGTTTGTCAAAGATCAGATAGTT





GTAGATATGCGGCATTATTTCTGAGGGCTCTGTTCTGTTCCATTGATCTATATCTCTGTTTTGGTACCAG





TACCATGCTGTTTTGGTTACTGTAGCCTTGTAGTATAGTTTGAAGTCAGGTAGTGTGATGCCTCCAGCTT





TGTTCTTTTGGCTTAGGATTGACTTGGCGATGCGGGCTCTTTTTTGGTTCCATATGAACTTTAAAGTAGT





TTTTTCCAATTCTGTGAAGAAAGTCATTGGTAGCTTGATGGGGATGGCATTGAATCTGTAAATTACCTTG





GGCAGTATGGCCATTTTCACGATATTGATTCTTCCTACCCATGAGCATGGAATATTCTTCCATTTGTTTG





TGTCCTCTTTTATTTCCTTGAGCAGTGGTTTGTAGTTCTCCTTGAAGAGGTCCTTCACATCCCTTGTAAG





TTGGATTCCTAGGTATTTTATTCTCTTTGAAGCAATTGTGAATGGGAGTTCACTCATGATTTGGCTCTCT





GTTTGTCTGTTGTTGGTGTATAAGAATGCTTGTGATTTTAGTACATTGATTTTGTATCCTGAGACTTTGC





TGAAGTTGCTTATCAGCTTAAGGAGATTTTGGGCTGAGACGATGGGGTTTTCTAGATAAACAATCATGTC





GTCTGCAAACAGGGACAATTTGACTTCCTCTTTTCCTAATTGAATACCCTTTATTTCCTTCTCCTGCCTG





ATTGCCCTGGCCAGAACTTCCAACACTATGTTGAATAGGAGTGGTGAGAGAGGGCATCCCTGTCTTGTGC





CAGTTTTTAAAGGGAATGCTTCCAGTTTTTGCCCATTCAGTATGATATTGGCTGTGGGTTTGTCATAGAT





AGCTCTTATTATTTTGAAATACGTCCCATCAATACCTAATTTATTGAGAGTTTTTAGCATGAAGGGTTGT





TGAATTTTGTCAAAGGCTTTTTCTGCATCTATTGAGATAATCATGTGGTTTTTGTCTTTGGCTCTGTTTA





TATGCTGGATTACATTTATTGATTTGCGTATATTGAACCAGCCTTGCATCCCAGGGATGAAGCCCACTTG





ATCATGGTGGATAAGCTTTTTGATGTGCTGCTGGATTCGGTTTGCCAGTATTTTATTGAGGAGTTTTGCA





TCAATGTTCATCAAGGATATTGGTCTAAAATTCTCTTTTTTGGTTGTGTCTCTGCCCGGCTTTGGTATCA





GAATGATGCTGGCCTCATAAAATGAGTTAGGGAGGATTCCCTCTTTTTCTATTGATTGGAATAGTTTCAG





AAGGAATGGTACCAGTTCCTCCTTGTACCTCTGGTAGAATTCGGCTGTGAATCCATCTGGTCCTGGACTC





TTTTTGGTTGGTAAAATATTGATTATTGCCACAATTTCAGAGCCTGTTATTGGTCTATTCAGAGATTCAA





CTTCTTCCTGGTTTAGTCTTGGGAGAGTGTATGTGTCGAGGAATGTATCCATTTCTTCTAGATTTTCTAG





TTTATTTGCATAGAGGTGTTTGTAGTATTCTCTGATGGTAGTTTGTATTTCTGTGGGATCGGTGGTGATA





TCCCCTTTATCATTTTTTATTGTGTCTATTTGATTCTTCTCTCTTTTTTTCTTTATTAGTCTTGCTAGCG





GTCTATCAATTTTGTTGATCCTTTCAAAAAACCAGCTCCTGGATTCATTGATTTTTTGAAGGGTTTTTTG





TGTCTCTATTTCCTTCAGTTCTGCTCTGATTTTAGTTATTTCTTGCCTTCTGCTAGCTTTTGAATGTGTT





TGCTCTTGCTTTTCTAGTTCTTTTAATTGTGATGTTAGGGTGTCAATTTTGGATCTTTCCTGCTTTCTCT





TGTAGGCATTTAGTGCTATAAATTTCCCTCTACACACTGCTTTGAATGCGTCCCAGAGATTCTGGTATGT





GGTGTCTTTGTTCTCGTTGGTTTCAAAGAACATCTTTATTTCTGCCTTCATTTCGTTATGTACCCAGTAG





TCATTCAGGAGCAGGTTGTTCAGTTTCCATGTAGTTGAGCGGCTTTGAGTGAGATTCTTAATCCTGAGTT





CTAGTTTGATTGCACTGTGGTCTGAGAGATAGTTTGTTATAATTTCTGTTCTTTTACATTTGCTGAGGAG





AGCTTTACTTCCAAGTATGTGGTCAATTTTGGAATAGGTGTGGTGTGGTGCTGAAAAAAATGTATATTCT





GTTGATTTGGGGTGGAGAGTTCTGTAGATGTCTATTAGGTCTCCTTGGTGCAGAGCTGAGTTCAATTCCT





GGGTATCCTTGTTGACTTTCTGTCTCGTTGATCTGTCTAATGTTGACAGTGGGGTGTTAAAGTCTCCCAT





TATTAATGTGTGGGAGTCTAAGTCTCTTTGTAGGTCACTCAGGACTTGCTTTATGAATCTGGGTGCTCCT





GTATTGGGTGCATAAATATTTAGGATAGTTAGCTCCTCTTGTTGAATTGATCCCTTTACCATTATGTAAT





GGCCTTCTTTGTCTCTTTTGATCTTTGTTGGTTTAAAGTCTGTTTTATCAGAGACTAGGATTGCAACCCC





TGCCTTTTTTTGTTTTCCATTTGCTTGGTAGATCTTCCTCCATCCTTTTATTTTGAGCCTATGTGTGTCT





CTGCACGTGAGATGGGTTTCCTGAATACAGCACACTGATGGGTCTTGACTCTTTATCCAACTTGCCAGTC





TGTGTCTTTTAATTGCAGAATTTAGTCCATTTATATTTAAAGTTAATATTGTTATGTGTGAATTTGATCC





TGTCATTATGATGTTAGCTGGTGATTTTGCTCATTAGTTGATGCAGTTTCTTCCTAGTCTCGATGGTCTT





TACATTTTGGCATGATTTTGCAGCGGCTGGTACCGGTTGTTCCTTTCCATGTTTAGCGCTTCCTTCAGGA





GCTCTTTTAGGGCAGGCCTGGTGGTGACAAAATCTCTCAGCATTTGCTTGTCTATAAAGTATTTTATTTC





TCCTTCACTTATGAAGCTTAGTTTGGCTGGATATGAAATTCTGGGTTGAAAATTCTTTTCTTTAAGAATG





TTGAATATTGGCCCCCACTCTCTTCTGGCTTGTAGGGTTTCTGCCGAGAGATCCGCTGTTAGTCTGATGG





GCTTTCCTTTGAGGGTAACTCGACCTTTCTCTCTGGCTGCCCTTAACATTTTTTCCTTCATTTCAACTTG





GTGAATCTGACAATTATGTGTCTTGGAGTTGCTCTTCTCGAGGAGTATCTTTGTGGCGTTCTCTGTATTT





CCTGAATCTGAACGTTGGCCTGCCTTACTAGATTGGGGAAGTTCTCCTGGATAATATCCTGCAGAGTGTT





TTCCAACTTGGTTCCATTCTCCACATCACTTTCAGGTACACCAATCAGACGTAGATTTGGTCTTTTCACA





TAGTCCCATATTTCTTGGAGGCTTTGCTCATTTCTTTTTATTCTTTTTTCTCTAAACTTCCCTTCTCGCT





TCATTTCATTCATTTCATCTTCCATTGCTGATACCCTTTCTTCCAGTTGATCGCATCGGCTCCTGAGGCT





TCTGCATTCTTCACGTAGTTCTCGAGCCTTGGTTTTCAGCTCCATCAGCTCCTTTAAGCACTTCTCTGTA





TTCGTTATTCTAGTTATACATTCTTCTAAATTTTTTTCAAAGTTTTTCAAAAGCAATGGCAACAAAAGCC





AAAATTGACAAATGGGATCTAATTAAACTCAAGAGCTTCTGCACAGCAAAAGAAACTACCATCAGAGTGA





ACAGGCAACCTACAACATGGGAGAAAATTTCCGCAACCTACTCATCTGACAAAGGGCTAATATCCAGAAT





CTACAATGAACTCAAACAAATTTACAAGAAAAAAACAAACAACCCCATCAAAAAGTGGGCGAAGGACATG





AACAGACACTTCTCAAAAGAAGACATTTATGCAGCCAAAAAACACATGAAGAAATGCTCATCATCACTGG





CCATCAGAGAAATGCAAATCAAAACCACTATGAGATATCATCTCACACCAGTTAGAATGGCAATCATTAA





AAAGTCAGGAAACAACAGGTGCTGGAGAGGATGTGGAGAAATAGGAACACTCTTACACTGTTGGTGGGAC





TGTAAACTAGTTCAACCATTGTGGAAGTCAGTGTGGCGATTCCTCAGGGATCTAGAACTAGAAATACCAT





TTGACCCAGCCATCCCATTACTGGGTATATACCCAAAGGACTATAAATCATGCTGCTATAAAGACACATG





CACACGTATGTTTATTGCGGCACTATTCACAATAGCAAAGACTTGGAACCAACCCAAATGTCCAACAATG





ATAGACTGGATTAAGAAAATGTGGCACATATCCACCATGGAATACTATGCAGCCATAAAAAATGATGAGT





TCATGTCCGTTGTAGGGACATGGATGAAATTGGAAACCATCATTCTCAGTAAACTATCGCAAGAACAAAA





AACCAAACACCGCATATTCTCACTCATAGGTGGGAATTGAACAATGAGATCACATGGACACAGGAAGGGG





AATATCACACTCTGGGGACTGTGGTGGGGTCGGGGGAGGGGGGAGGGATAGCATTGGGAGATATACCTAA





TGCTAGATGACACGTTAGTGGGTGCAGCGCACCAGCATGGCACATGTATACATATGTAACTAACCTGCAC





AATGTGCACATGTACCCTAAAACTTAGAGTATAATAAAAAAAAAAAAAAAATTAAAAAAAAAAAAAAAAA





AAAAAGAGAAACCAGTGCTCTATTATCTAGGTATATACCAAGGTTACCCACTGCTTGACTCTCATTATTA





GCCTTCTTTGATGTTCTCTGGTACTTGATGTCTTTCATAACTAATCAATGTATTAATGTATCCAATCATT





TACTCGATAACTTTATTGAAAGCAAAAGCAGTTGCATACCAGCTATCAAGCTGGAAGTGGGAGATACAGC





CGCAGACAAGGCAGATATGGTCCCAGCCCTTAGGAGCTCCCAGAGTAGCAGGAGGTTTCCCCTTCCAGTG





TCTTCTCTCTGCTTTTCTTCAAAAGGAAAAGGCTGATGTGTATAATATACCATATCTCTTTGAAGTTCTC





TGATTATGGATTTTAGGTTTAAACCAGTTCTTCATCCATGACTTTATAAATTGAAAATCCAGGATTTTGC





TGTGTTGTTGTGTTCTTGTTTTGTTTTGATGTCCCTGTTTTCTCTAGATACAGTTAGAAATGTCTAGGAA





GAAATTTTTGGTTAGTATGGGAGCCCCACAAAGCCATTTTTTTAAACATAAAATCTGTATTACATATCAG





GTATGAAATACAGGGGGAATGAATCATTTCTCCGTAAAGGAAAATTTAAAGTAAATTTCAGGAAAGTGAA





TTCTTTCCCGTTTGCATTACCGACAGATGCAGAAACTTTAATCGTCATTTGCTAAGAGGGATATGGCAGA





TAATACACAATAGATGTCGTAGCAACATTCACTCGCATTCTTTTTTTTTTTTTTTAAAGAAATCTTTCTT





TCAAGAAGCTATTCTAGGATCTTTCTCATGACAGTGTCCTAGTTCTTATCTTTGCTACACACAGGCTCAC





AAAGTGTTTTCTTTGAAGGGCATTTTGTTATTGGCCCTCTTTTCATTTTTCTTTTCCGTAGCAAACAGAA





CCGAAGGTGTTTACTCCCCACGGTGAGAGGGCACCTGGGTGCACAAACAGTGGTGTGAACCACTGGCCTT





TCTCTGCTTTCCGTTCCCTGAATGTAAGAAACAGGTGCAGTGATCAATTCACTGCGTGCAGTGAACCCCA





GGCAGAAAGAGAACGTCGTGTCACAGACCTTTTGTTACTTGGAGAGAATGAGCGGGAAGAAAGGCTGCCT





CTGCTGCTACTGAGACCCTTTTGCCCATTTTATTGACTGCTATAGGTTCATCTATCCTAATTTGTCTCCG





GCTGTCCCAGTTTATCCCTGTTATTCTTGTGTTACTTTACTTTACTATATTTTATTTTATTTTATTTTAT





TTATTTTAGAGACAGAGTCTTGCTCTGTCACCCAGGCTGGAGTGGAGTGGCATGATCATAGCTCACTGCA





GCCTCAAACTCCTGAGCTCAAGCAATCCTCCTCCTTCAGCCTACTGAGTAGCCAGGATTATAGCTGTGCA





CCACTATGCCCACCTAATTTTTTTTTTTTTTGAAATGGAGTCTCGCTCTGTCACCCAAGCTGCAGTGCAG





TGGTGCGATCTCGGCTCACTGCAACCTCCACCTCCCGGGTTCAAGCGATTCTCCTGCCTCAGCCTCCTGA





GTAGCTGGGATTACAGGTGCCCACCACCATGCCCTGCTAATTTTTGTATTTTTAGTAGAGACAGAGTTTC





GCCATGTTGGCCAGGCTGTTCTCAAACTCCTTTAACTGTTTTTTTATTTTTATTTTTAATTTTTAAAACA





TATTGTAGAGATAAGAGTCATGCTACATTGCCCAGGCTGATCTCAAACTCCTGGCTTCAAGCAATACTCC





TACCTCGGCCTCCCAAAGCACCTGGATTACAGGCATGAGCCAGTGTGCCTGACCCTGTGTGATTATTATT





AGCATCCTGGACACTCTCAAAAGTGTTCAGGTTTGGACAATGAACTATAGGATCACCCTAATTACATGAG





ATTAAGAGTAGAGACCTTGACCACCAGAAATGGTCAATACTCACCATATATTTTCTTCCTGATGTTAGAA





CCTGGTACTTTTGGGAAATGAAATTGTACATGAGATATATGCAGAATGGGCGAAGGGAGCGAAAAGATTT





AAAAAATTAAGCTCGATTTATTGAGCGCCTCGAGTGCGCTCAGTGCTGTTCCAAGTGCTGACAGCAGAGA





GGTAAGTTCTGTTCTCCAGTGTTCACCTCACACGTGCAAGCCAGGTTTGAAAACACACTGTCTTTCCTTA





GTATCCCTCCACCCCTCCATGTGACTATACGTATGTATCAAGTTTGTGATATTTCACTTCTGGGCTTCTT





TTCATTTGGAAATTTAATGTCAGTGTATCATGTTTTAATTAATAGGACATCATGTTATGAAACTGTTGAA





TCGAATATTTTCCCTAGGCATCAAATTACTTGTCAGTGGAAATTTGACATCTAGATATGAGGGACAAAAG





AGATGAGAAAAATAATAGTAAAGTGTTCCTAAAGGATGCTGGTATACTGTTTAGGTATTTTAATGCACTG





TTACAACCTAAAGTGTCTTGTAAAGTATGTTCTTTAGAAATAAAATAAATAAAACAAGACATCTCTCCAT





AGGTACAAATCCACTTGCCTTCCTCAATTCCTATCCTTCTGTGATGGGAAATCTCTGCTGTGACAAAGAA





CCATGTTAAGAAAACCATAAAGTTGTATTGTTTGTAGATTTTTTTAATGACTAAAGGAAGATATTGCAAG





TAGTAGAAACAAATAGAGGAGGTGGCCCTGAAGGTCAATATAACGGAGTTCACTGCAGAAAAGAGAAACT





ACTCTAGGTACGTTAGACACATATCAAAGTTTTGGAAAGGCTAAAGTAGCAGGTTTTAGACTTGGCTTCG





AGGACAGATTTCTAAAACTATATAGAACTGATCCAATAAGAAACTACCATCTCCGGGGTACCACTGAAGC





AATGATTTCAAGAACATACTTTGTAAATAGGAACTAGGAACCAGGAGGTTGAAATCTAGACGCTACCACT





TTTGAAGCTGCTGTTAGCAACTGCCCTTCTCCAGCCAGGAAGCTGGAGAAAGAACTTTGGAACTCTGATG





TAGGAAATCTCATGTTTCTTTGACTAAGCTCGCCAACAGAAATAGCCAAAAGGGGCAGAAAGGTGACCTA





TGCCTCACTTCCACTTTCCAGATCTCTCACAAGTATACACATTTGGCAAAACGTTGCCAGATTTAGCAAA





TAAAAATAATGCATGCAACATACTTAACACTAAATAAAAAAAGATTGTGTAGAAAATTTAAATTTAACTG





GGTGCCTTGTATTTTATCTGACAACCCTAACTTATTATATCCTAATTCATAATCAGAACACTAGCTGCAT





GGAAGTCTGGCAAATACAGTTTTTAATTTCCAACCTGTCCAACTGGAAGGATGGTAAGTAGATTTAGGTG





AGCCAGTTCACAGTATTAACCAAAGTAGATTGCCTACCAAGAATAGCTAAAGCCTTTCTGCCCCCAGACG





CTTATGCTACCATCTGAATATTTTTACTTTGCATTCTTATATTCTTGGAAATCCTATCAATCTGTGATTC





AGATTGGTTTGGTTTAACTCAGCTTCCCCTTTTTTTTGGAGACAGGGTCATACCCTGTCACCCAGGCTGG





AGTGCAGTGGCACAATCATGGCTCACTGCAACTTCGACATCCCTGGGCTCAGGTGATCCTCCCTCCCACC





TCAGCCTCCCAAGTGGCTGGGACTACAGGCACGTGCCACCACACCCCGCTACTTTTTGTATTTTCTGTAG





AAACAGAGTTTCGCCACATTGCCTAAGCTGGTCTCAGATTCCTGGGCTGAAGTGATCCACCCACCTTGGC





CTGACAACGTGCTGGAATTACAGATGTGAGCCACCATGCCCAGCCCCTCTTTTTAAAATATAAAAATCTC





CCAGAATGTGAAAGTTGTCAGTCTATACTTTGGGAATAAGATTTTCAACAGATAGAAGAGAATGAGGATT





AAAACATAAGGAAGTTTGGGAGTAGAAAATATGGGCACCAGAAGGTGGAAGGAGAGAGCAGATGCCCATT





TATATATCTCCTTTGTTGGGTGTTGGACAAATCCAGGTCTTAAAATAGGAAGTATTTCTTTTCCGTACTT





CTTGAATCTTTCATATCCCAAAAGATGCATATTTCCCAAATCATATAACCCAAAGTCATGCTATCAAAAT





GATATAAATCATCCATGGTATAGGTTAAATAGCTATATATGTATATGCTGGTCTGAGACATGTATATGAC





TATTGTGTCCATGGAAATTTGAGTTTGGGGTTCTGGACCATTTATTTGCAAGTGATTTTTGGTTAGAGAA





CTCTTTGTAAGTTGGGGATTGCTTTTACTTATTTTATGAGTAAAGATGTCAAAAGGATGACTGCTAAATT





TGCACTGTGTTAATTCACTATTTAGTGAGAAGAAATATTAGACTAGCTATGAAAAGTAAAACTGCCTCTC





CAAAAAGTCAAAGCTGATGAAAAACAGTCATACAAGCACAATGCCGCTCTTCGGAAACATGGAAACACTT





TTTCCTTCCCAATTTTCCCTCAGATTTTCTCTTCCGCATTTAAAACACTTGGGTGGTTCAAGTTTCTAGG





CTACCACTGATTGTAACAGCAAACAGTAGCAACTGGAAGCAGTGGGATGTTGGGAGAAGTAATAGAGGTA





GCTGCTACCCAAGTTATCCTGGAGGATTTTCCATGGCAATGAAATCAGGTAGTAGAAGCTTGGCTAACTG





AGTGTAAGCAAACAGTTCTACTGAGAATGGTGTTGTCTTTTCAATCCGTTTATCTGTGATGGTGATAGTG





TGAAACAGGGGAATTTTATCCAAGGTTTAAGGAAGGTTATTTGGTTAAAAGAGGATATTGTTACAGTGAA





GTCAAACTTTCCATTAACTTTTTGCTGTAACAACAGATTGAACGTAGCATTTCACCGTCAACGAGTAAAG





TGAAATTTACAGATTAACTTATGTGCCTCTTTTAAAATATATCAGATTTCTAAATTGCTTTTATTTCAGA





GGTATGGGAGGTTCACTTTCTCTTTGAAAGTGTACATTATTTTTCTAGTGTCTTACATCTGCCTACAAAG





ATGTTATTTTACTTGAAAGCACAGTAACTATTTGATGAGAATTTGTCAGCATCAGTAAATTAAAGACCCT





CAAATGATTTCTACTAATTATAGTTTAATTCCGTACATTTAATGATATTTTAAAACACATGAGTTATTTC





ATAACTCCCAACATCACAAGGATAAATTTTATTCTACAAACAAAATATTGTGCTAAATGAAATAGTTCAT





TTAGGCAAAGAAAGGAGCACAGAAAATTAGTGGAACTCTCTGCTGTAAGTAACGTAGACATTACATGGCA





TATTGAGTCTCCATGAATATTGTCATGTTATGTTTTAAAAAGGTGATCGAACATATGGCATTTAAAAGTT





CCAAGTCCTCTTTTAAATGCTTCAGAATCTATTATTTAATGATCATCTTGGATCTCAAAACTGATCTTTT





GAAAGATTTTATTCGCCCCATGTGTTAATATGATTTCCCTGTCATATGATATGATTATCTATCAATACTT





AAAACCAGCAGCCAAGTAAAAAATCAGTTCATATCATTTAATGAATACTATGAGTCAGGATCTGGGTAGG





CAAGCTATTTTCGGGTTTGAGTAGTTCCAAAGCTTAAAAATCTTATATTGATTTTACAGTGAAGAAGAAA





TAGTCTTAGCTACTTTGGAGGTTTCAAACATTGACTACTCAAGGAGTATTTCCTTGCTTTCTCAGGCACC





AGGCAGTTTTTCAGGAGCAAGCATTCATCCATTCAGGGAATTGTAACCTGTAGTTTCCACTTTTCTAGCA





ATCACACTTAAAACCATGAGAGTAGGCCATAGGACATAAGGAGCTCAGCTTCTCAGGGCAAGCACATCCT





TTCAGCTTTCACCTGTCCGTTTGTTAGTGTTCACTTCCGTGCTCAAGGAGTTTCTTGTTGCCTCTGAGTT





CTAAGAGACAGAACGAAGGGAGAAGGGTGCAGAAGTCTAACGCATGTTCATGGACTTATCTCTCCAATAA





AGAGCTTGTTTTATCTTCTTTTATTTATTTATTTTTTCTAATGAAGCCATTAGCCTCAAACAAAGCCATG





GAATCTTATCAGAGTGAAACCGGGGTCATTCCATAGGCTGGCTGAGTGAGAGCTCCATGGCACGATGATG





TATGGTCACTGCACAACAACGCCTTTGCCACAACACATGTGCCTTTTAATTACACTTTAAATCTCATTTG





AAGAGATGTTATCATTATGGAAATTGCTCTGTAAATGTGCCCAGGATGAGACCCAATAAAAGTTTGCTGA





GAAGAATTGAAGACAGAGGAGATGAATCAGCAGCTAAAACATTACCATCAGACAGAATTTTCTTGGCTGT





AGGCAAAACAGCCCATGCAATAACAGAAAATCTTCATTGACTCAGAGGCGTATTTTCCCTAGATTATTAT





GGGGCACTCCTGCCTGTAGCACTATCACTTCTTTGATAAGCTGAAGGAAGCGTTCTGCTCTCCAGCTCAG





CGGGCCTTTTTCTCCCCAACCTCAGAGCCATCATTTGAATTTATAGTTGCCAAAATGAATAATACAGTAT





TGCCCTTGTGTTCCTGACTTCATGCATGCATGCAGAGCGGGGTTAAGGTTCTTTAAATGAAAGATTGCCT





TCTATTCATGCAATAAAGAACACCTCTGCTTCCTTTCCAGGGTCATTTAAAAATAACTATACCGCTGGGC





TATGGAAAGCACATAAGAAAGATTCTTAGGGTAAAGTCAAAATGCTCTTTTCTCTACAACAGGCATTGTC





TCATATCTTTGTGTAGCACAGCTGATTTGAAGTTTTCTTTTAAGCACATTCTTAATTATCTTTTCCTTTG





ATCTTGAACTGTTTCCCTGGGCTACCAGACAGAGAGCCTAGAGCCCTACCTCCGCTTTCCCCGAGGTGCA





AACTGCTCCGTCCTTCCACAGGCAGGCCCCTGGCTGAATGCACCCTTTTCTCCATGGTTACCCACCCACC





TCTCTGTTATTTGTTACTTCCCAAGTGAATGGCAGGTTAAAATGGGAAAAGGTCAGGTTATCTGAATGTG





GTTAGAGTGAAATGAATTTCCTCATTGCACCCAAGAACTGTCCTTTGACAGGTCTCCTTCCCCAAATCGG





GTCATTTTGTACGTAGGCTCACTGGGAGTAATTCTAAGACAACTAAATAAGTAAAATCACATTTTGGTGC





CATTTTCCAATGTATTCTTCTTCTTGGGGGTTCTCCTTTAAAATGGTACTGGAAGGATACGTTGTCTTCA





TTAATCCATTGTATGTCCCGGGGGTGGAGGTGGAGGTGGCAGTAGCAGAAGCCCGTGAAGTAATAGGTCG





TATTTTGTGTTTATAAATATTTCTGCAGGTTTTTGAGGAGAAGATCCATCATTCTTATAAAGGCATTCAT





GACCTCCAGAAGATTAAGGGCTGTTATGCTAGAACAGTGTTTCATTCTTAAAATGGGGTCTCTGGACTAG





CAGTATCGGCATCACTTGGGAACTTCTAAGAAATGCAAATTCTTGAGTTCTACCCCAGACATACAGAATC





ATGATCTCTCAGAGTGGAGCCCAGCAGCCTGTGTTTTAATGAGCCCTCTGGGTGATTCTCAAGCCCACTC





AAGTTTGAGAACCACTGTACTAAGGGAACTACTGATGCATGATGCAAGTTCACGCTCACAGGCACGTGTG





AATGACACAAAGAACACAGACGCCTGAGAGAGCAAGAAAGACAACATAGACTGTCTGACTCCCTGCTGGG





CCCTTCTTTACCGCCCCTATTTCAGGCTACCATGCCCATGAGTGGATGACACGTACCCCCCGACAAAGGT





CAACACCACTCTCCCTTCCACACCCTATCACTAAGTGACAGGCTAAGCCTATGTTAAACTGCTCACATCT





CCTTGGAAATTCAACACTTTAATAATAGGTAGCATTATCACCCCCATCTTCTTCTCTAAGCCAGAAACCC





AACTTGCCTCCCTATATGTTATCCTTGCATTCAGTCAGTCTCTAAGTTGTATTCATGATCTCTCAAAAAT





ATCTCCCTTTTTCTCATCCTGTGTCTATTACCTCAGTTTAGATCTCCATATTCTCTTGCCTCTAATGTTC





TTGCCTCTAATGTACCTTTTCACTGCCACCAAGATGATGTTACCAAAAAATCTTAAACAGATTAGACATC





TTCACAGGATAAAGTCCAAACCCTTAGCTTGATACACAAGCCCCTTCACAATCCAGGCCCTCCTTCCTGT





GCAGCTATATATATATATATATATATATAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAAAT





TTTGATCTTACCACTCTGTCTCTCTTCCCGCCATGGGTCTTCCCCTCTTCCCTCCGGAGTTACTTAGCTC





TGATGTGTATTCTTATCTCGTCTTATCTTCAACTTCATTCATGTTTTTCCCACTGCTTCAAATTTCACTC





TCCCACTTCTCCCCTGGCCAGCTGCTACTCATCCCTCAAGACCCTGATCAAATATCATCACTTGTATGAT





GGCATCTGCAAATCTTGGGGGGCAAGGCTAATTGTTCTTTGTTCCCACAGGGCTGTGTTCCAGTTTAACA





TGATCACATGTTATTTTGGTTCATTTATTTGCTTAAGACTTTTTCAGAAGGCTATGGGCTCTTTAAAATA





GAGAACTTACATCTTGTAGTTTTAAGAGTATTTTTAGTAAAAGTTTAGAGTGACCCCCATCTTTCTGCCA





GCCCACAAAAGGAAAACATCAAAAAGTGAATGTGTAAAAGGAAGAGAACTCTGACAAAACCAGGCAGAAA





GGTTTTTCAGCAAGTCTTTTTATTTTCTGTTCAGGATAACATTAATAATTATCCACGTTGGTTTCTCATT





CTCCTGTTGGTGAATATTTTTCTGCTAAATTTAAAACCGTATCACAAACTCAAGCAGAGATTTACAACAT





TTCAACAGCTTTTCTACCCCTGCCTTAGAAGGGTGGATCAAAAACATTTGTCCATGGTAAAGCACTATGG





ACATGACTTAGTTAACAATTCTCTGTTTGGGTCACCATGAGGCTTCTTCGTTTATACTCAGGGTCAGCGA





CAATGCTGATATGCAGCTACAATTTCTCATTTCTTACTCAGGGTGTTATGAAGCAGATTTCCACTGTTCT





TTAATCGTTATTAAAATGTAGTCCAGGTGCAGTGGCTCACGCCTATAATCCCAGCACTTTGGGAAGCTGA





GGCAGGTGGGTCACATAAGGTTAGGAGTTCGACACCAGCCTGGCCAACATGGTGAAACCCTGTCTCTACT





AAAAATAAAAAAACTGGCCGGGCATGGTGGCAGGTGCCTGTAATCCCAGCTACTCAGGAGGCTGAGGCAG





GAGAATCGCTTGAACCCAGGAGGGGGACAGAGGTTGCAGTGAGCCGAGATCACACCATTGCACTCCAGCC





TGGGCGACAAGAGCAAAACTCTGTCTCAAAAAAAAAAAAAAGTCATTCTCATGTAAAAATTCTTGTAAAA





TAATCTGTAAAGTCATCCTCTTATCTGTTCTAGTTCTTCATAAGACTTATATAACATGTCATATGGGCAT





GGAAAGGCCTAAGCCTTCCCAAACCTTGCTCTTTTGGGGATGATTTTCCAAATGTACTTGTTCTCAGTTG





AAAAGAGCATTGCGGCCGGGCGCGGTGGCTCAACGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGTGGG





CAGATCACGAGGTCAGGAGATCGAGACCATCCTGGCTAACATGGTGACACCCCGTATCTACTTAAAATAC





AAAAAATTAGCCGGGCGTGGTGGCGGGCGCCTGTAGTCCCAGCTACTTGGGAGGCTGAGGCAGGAGAATG





GCGTGAACCCGGGAGGTGGAGCTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAGCCTGGGCAACAGA





GCAAGACTCCGTCTCAAAAAAAAAGAAGAAGAAAAGAACATTGCATCATGGCACAAGGACACAAAAAATA





CCCTGGACCTGCTTCAGTGAGATGGTCTAAGGGTCTCTAGCATCTTCTGAACTGAACTGAATGCTTTGGG





AAGAATTAATAGATACACGATGTATATTAGTTCGTTTCACACTGCTATAAAGAACTTCCCTGAGACTGGG





GTAATTTATTTAAAGAAAAAGAGGTTTAGTTGACTCACAGTTCTGTGTGGCTGGGGAGGCCTCAGGAAAC





TTATAATCATGGTGGAAAGCAAAGGGGAAGGAAGCACCTTCACAAGGCAGCAGGAGAGAGAGAGAAAGAG





TGAATGGGAAGAGCCCCTTATAAAACCATCAAATCTCATGAGAACTCACTCACTATCACATGGGAAAACA





GCATGGGGGAAGCCACCCCCATGATCCAATCACCTCCCACCAGGTTCCCCCGGATTACAGTTCTAGATGA





GATTTGGGTGAGGACACAAAGCCAAACCATATCACAATGGAAAGCTCATGAATGGGTTCTAAGAATGAGG





AAATGTACCTTAGCATTTTGCCTACTTTTCCTTTATGACATTTTTTTCCCGGCAAATATGCCAAATATTA





CCTACCTTTACATCAGTGTCCACATGCATATCCCCTGTCTTCCTCCTTTTCCTCATACATTAACAAAAGA





GTAACTTTGTTTTCTCCCCATCACTGTTCACCCTATTGTATAAGAGAAGAAAAGCAAAATAGGATGAAAG





AACTATCTAGGCACACACACAAAAGTCACACTCTCCAGAAGAAAGAATTTGCTCTACTTGGTAGTAGACA





GAAATTAACTCACTGAAGATCACCAGAGAATCAGATCCAATTATATCAGCAGGACTTTAGTTTACATCAT





GGTACTAGAACCTTCTTTAACATTCAAAACTTATGAATACCTAGAAATAGTTTTAAGGTTAATATCTCTA





TGCTGTGGGCTAAAGAGTACCCACAAATGAATACAGTTGTGTCTGATGAGTGTCTGTGATTATTTTGGAA





ATTGTCCTGCTATTTAAAATGAAAAAAATAGAAATGTCTTAGATTTTCCTATCATTAACCTATTGTAAAC





AATTACATCAGTGTAGGGTTGTTTTGTGGTTGCGTGGGAGTATTTTGAGGTTTTTAGGGGGTAAAGTGGG





GGATAGAATGAAGTTGTTGTTTGCATTTACAACCCTAATAATTAAAACAAGCCAGAGGGAATTACCTACA





TGGCTGTTGTGATTTCTAGTGTATGATCAAAAATAATTATGGCACTTTGCCATATGTTCTTGCTTTCTTC





TTAGATATGTGTTATTGGGAAAAGATGAGACTTGACATCAACTAATTGCTTTTTTCTAATATACAACCTT





GAACCACAGTGATTCTCTGGAGGACAAAAAATAGCTTAGTGACAAAGAGATTCCAGAAATAAGAGCTTTT





CGAGCTTTTAACTCTCTATGTAATATAGACAAATTGCACAGATTAATATAACCAAATATGTATTGGTCCA





TGGGAAGAGAGTTACCTATTTGAAGAATAGGAGTGTATTGTGTTCATTTAGAACCATTCAGAAACATCAA





TGATATTAGTTCTGAGTTGACTAAGGATAAATTTTTAAAAGCAATACCTAATTGGAAAATTATTCAGTTG





TTGACCATTCCTATCAGTGCTCTGAAACTAAATATCTCACAGATGCCTTAATGAGTTATTATAATTATGT





TGCTGTGATACATGTAGCCCAAGTCAGAAGTCACTTGCTTTGTATTTAATGGATGGGGAAGACACTGGAG





CTTGGAGGGAAGAGAATAAAAATAACCTAGTTTCAGGAAGATCTATGCTCTAACCCTGCTTCTGCCACAT





AACAACAACTCTATGATTTGTATAAGTTACTTTACCTCTCAAACTCGTGGTTTCCTCGATAGGGGATAAA





GAAGGCCTATTTCATAGAGTTGGTGTAAAGGATTTATAAGGGCTGTAAGTATTAGTTCCTGCCCTGTTTC





ATCCCCCTACCCTACCCCCACCCCTCATCATGGCTCTGCAAAAACAAATATGTCTCAGAGTTGGAAAGAC





CCATCTGGTCTTTCTCAGATAAGGGTAGTTTTCTTCAAACAGACTGATTCCTGCACATAAAATATAATAT





AAAAAACCAAAAGTACCTTCAACATTGTAGACTTTTCATATGTGGTTGTCTCTGTGACTTAAATGTACAA





TCTAGGGTTTGCATGTTAAGGTCTTTCAAGATTACTGTTGGCACTGATCTGAAAGATGTCTCATGCAGGA





AATGCTCACCCAATTATGAGCACTGAGGCTGTATAGCAATATCAGAAATAATATTGCAGCACAGTATTTT





CTATGGATTTTAGATGCAGTATTAAAAAAAGAAAACTCAGCCTGTCTTTAAGACTCGTTTTCTCTTTCAA





CACCAGAATTAAAAGGCATGCCATTCTTTTTTAAAGTTTATGTGCAGAGCCAAATGAATATCAACATTAG





TTCTCCACTGGGTCCACGGCTTCTTTTTAAAAATATCTGAAGCAGTGTTACTCTACCCACTTTTTCTCAG





GAAATTGTGTCCTTTAGAACTGGCACCCATATAGTTTAGGAATGCTTGATAGGGTATATTTTAGGTGGGA





GTCACCTGTGCCTATATGGAGCTTTGATGTCAATGCCCTTGTCATTTGGTGTCAATGGTTTTGTCATTCT





AATTTATTTGGCCCCAAGGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTTGAAA





CACAGCATATGTATTTTTTTCTTACTCCTTGAGAAATAGAACTTTAAATAACATTTCTATCTTTAAAATG





TACTTGTGAATAGTTATCACTTTCCTGAATTCTACCTTCCAAAGGTAGGACAAGAGAAGGATGGAATTAA





ATCACACATGCAGCTATTTTTATAACTTATGAGCACTCAATGATGGTAGCATCCCTCTTCTTTACCTTCT





CTCTGATTCTGAAGCCACTGCTGTTTTGGTTCCTGTATGGCTGGGACTGCCTGTCCACTAGACTTCCTGC





CTTCACTCTGACCCTGCTACATTTACCCTGAACACCATCCTCCCAATAATCATTACCAGATGCTATTTTC





ACAATGTTACACCTTTACACAAGAAGCTACAGTGGAATATTATCCTTACAGAATCAGATAAAAATCTCCA





GGCGGCATTCTAAGCTCTCATTGGCTACACTGTACCCTTTGAACCTGAACTTCCTGAGAACTACCTCTTA





GCTCCTGCCTGTAGCTCTGGCTCCCATCTTCATGCAGTAGGTATTCGTTTTCTTTTGAACGGCCTCATAT





CTTCTCTGCTAGCAGGATTGGAGTCATGGCAGAAAGTGAGAGGGGGACTAGAAGGATGCAACATTAATGA





AACCTCACAATAGGTTAGGCATTGGGTTAGGTACTTGGTTGATCTACTCACATCATCTCATCTAATCTTT





GCCAAAACCTTAAAAGGTAGGTATTATCGGCCCTACTTATAGACATACAATAGGTACTTAATGCACATTT





TTGTGATGAATAAATATTCGGGAATTTTTGCATTGTGACTGGATGAGAAGAAACTAGGAAAAACAAGACG





TAGATGAGAAAGATACCTCTCATCTTACTTCCAACCTAGGAGATCTTAAATGAACTCATCAGTTTTAAAA





GGTAATCTTAAGAATGGAGTCAGAGGGTCACACAAGGAGAGAAAGCATCACGTATTACCAGAGTTCGGGA





TTGCTTAAGGCGGTTTGACAGTTTCCTCCGGGGGTAATCCACCCTAGGCCAGGCATTTTTAAAGATTAGA





TTTTGAAATGAAGCTTTGCACTTGGGAATATACTGAGGCAAGAAAGCATATCCCTTCTCCCTGCTGAGAG





AGCATATCCCTTCTCTCTGCTGTTGCAGTGCTTAAGTGTGAGAATTTTCGAATGAGATATGAAAGCAAAG





ACAACAAACCCTGCAGGATAATAGTCTCTGAGGACTTTAATAACAGCCGTTTTTAAAGCAAAGCCTGTGG





ACTCCTAAATCCATAGCTGCTCGTTTAAGATGCAACGCAATGCAGTGGACCTGAAAACATACTCCTTATC





TACCTAGAGCAACCAGGCTCCAAGCCAAACAGCAGTCCTCAAATTAACTCTTGTTTCTCTTGGGACGACA





ACTCTGCTGCTTTTAAAGGTGTTGCGTGGCCACATATAGAATAAGAAGGGAAAAAACAGTCACACCCTCT





TGTGAGTCTGTATCCAACTGCATTTTCTGATCTGGTTAGGAACCTCCGGTGGTTAGATTAGAATCCTGAT





AAGGCCAAGACTGTGGGTCCAATTTCTTCCTATGGATTCTTCTCGAAAAACTTGTTAGGAAAGATCCACT





TCGGGTTTTTTTTTTTTTTTTTTTGCGCTTGTTTTAATTCCCAATCCATAATAGACTGATACTTTTGTAA





CATGCAATAAAAATGAATTATTTTAAAAATTACAAATACCAGACATACAAAATTTAAGCCGATGCTTTTT





ATTTTTAGATTGCTGTACACGTTTCTAAAGATTTGCTTTCAATTTCTGTTCTTATGTCTTCATAATAGAA





TATCTGTTTCTGTGTGTGTATACGTATGAGTGTATGCAAGTGTGCTCCAAAAGCTCTACTATTTAGAGCT





CATGTTTAATGAGTCATGTTGGATAACCAGTCTAAGGGAGTTCTACTTTCATATAATTGTTTTTGTTTTA





TTTTTATTTAAATCATTAACACCTTTTCAAAACAACTGTATCAAATAACAGTCATTTGGTCATTTGAAGC





ATTTACATACACTGCTTTCTTCTTAAACAGATTTTACTGAATGTAAATCTGCTTTCCCTGGCTAATTCAG





CATCATCATCCTGAGCATTAACTATTTTGCTTCGCTATAAAACGAGGTGATGCCTTCAAGGGCTACTGAT





GCATGGAGAGCTGTTAGTTTCCACACTGTGTGACCCTGGTCAATTATGCATGCCCATGGCTCCTTTTACA





CCTTTCTGATTCTCTGTAAGGTGTCACTTCTTCCTACTCTCAATTTAGCCACTTAGGATAATTTCTTTAC





TATTTTGAATTGTATGTTCCTGACCTTCTAAGTTCTTAGAAATCAGACCACTTTTTTTCCCATCAAGCTA





ATTTAAATTAGATAAAAATTATCAGTAAGGAGGAACTAATGGCCTTATAATTATTCATATACTAACTGCT





TTCAGAAAAGCTTAGAGATAATCTGTCTATAATAAAATTCTTAAGGAGATTTGGTCACTTATTGTTATTC





TTTCTACACCATTGTGTTTGTTTCCTTACTTCTCAGCTATATTAAAATGGGGAAGTTTTCATTTGCTGAG





TCCTATTTTAGAGACCAATAATTCCATTTACATAGGAAAGGAAATATGTGGATACGATTATTCATGATGT





TCTAGAATAGTATCACAACCATCTGCTTAATGGTTAATAAAATGGTTAATAATAAAAAGAAGGGTACAGC





ACTAATTCTTGACATCTCCCTTCTTTATTTTTCTTCTAGTAAAACATCCATAACTTTTCCTATTCTTCCC





CAGTTGTATTATTACTTATGAACACCATGGATCATTCTACTTTTTGAATGAAATAGTACAAATTTAATAT





TCGATAATCTTGTCTTTGTACTTTTCTTTCTAAACTTTTATTCTCGGTGGCTTCCTAAAGGAAGACTTTA





TTCTACTTGGTTTAAGCAGTTGGTCTGCATTCTACCTATTTCTCTCAACTCTCATTGTCCATTCCAATCA





GGTTGTGCAATTCATTGTCCCTGCTCATAAACCAAATTCATTTCACCTTTACTCCATTCCCATGCTATTC





TTTTTACCTGGAATATTTTCTTTTGTTCCAATTTCCCAATCGTATACATCCCTCAAGGCTCAAGCCAAGT





CCTGTAACTTCATGAAATCTATTTCTAACATCTGATTTCCACATGGATTATCTTGTAATAGTAAGCCCTG





CATTTGCTATTATTTATTAAAGATCTCTTGTGTTCTAGACGCTATTCAAAGTATTTTACAAAAATTCCAT





GTAATATTCAAAAAATTCAGCAGGTATGTATTATTATTTCATGTTTAGTGAAACCAAAGTAATGAAAGAG





TTTTCATCATTATGTGGCTAATAAGGGAAAGAGAAGAGAAGGGTCAAACCTATGTCTATTTAACTGCACT





TTGCCATGAGTTTTCTCTGGAAGCTGAGAAAGGAGATTCACAACAAGAGTAGATGAGACTCAGATAAGAA





GGAAGTGTGGAATTTGAAAAAGCCCTTCAGAAAACAGGATCTCCCCTACTCCTAAAACTGCTATACTGTG





AACATATTGCTTGTCTCATAACTGAACTTTTTTGGTACTCTCAGCTGAAATTTGCTCTATAATTGTACAG





AACTTTAGGCCAAATGTTTCTTTTATGGGGACACACATTATTTGTTTCGTTTGCACCCATTTTCTCAATT





ACTTTGTGTTTTCTCTTGTTGTATTGGATGCATCTCTATCCACTGCTACAAATCTGTTTAATAGTCTTTA





TATTAATAAGACCATGAAATTGCTCTTTGTGTGCTGACATAGTTATCCTTTATTTTCTAATGGCAGTGCT





AGATTTGCTAAAATTTAGGTAGTAGCATTATTAATAGGAAAAACTACCACCAACAACTAAACTTGAAAGG





TAATATAGCCTAGTGGCTAAGAGCACAATCCCTGAAGTCTGACTGACGAGGTTCTAAATCTTGCTGCATT





TATTAGCTGTGTGAACCTGGGCATTTTTAGTTAACCTTACAGTAGTTTCATTATCTTATATGGAAAATGA





AGATAATAGTAGCCCCTACCCTAGAGGGTTGTTGAGAGGAGAAAATGAGCTCATGTATATACAGTGCTTT





GGACAGCACCTGATGTACAGTAAGGTTCATGTATGTTGTTGTTCTTGCTGCTGCTGCTGCTGCTATGGTT





TTTGTTATGTAACAACTACCTTTTCCCCTTTGTTCATTCGTTATTGCTTTTCCTAAAGACTACAATCACA





AAAAAGAAGAAAAAAATTAGAGAGCATACAGTGAATGCAGTAATGAAGGCTTGAATGATCTTTTCTAGTT





AAGTCAGAAGTGAAATAAAACTATCCAAAAATTTCTATGAAAATTATCCTTTGTCCAGATTGGCTACCCA





CTGAGAACTCCACTTGATTCTCCATATCAATCTTTTGCTCTTTTGTGCTACCTGAGTCTGAGGTGTAGTC





TTTAAATGATGAGTTTATTGGCACAAGACAGGGATGCCCTCTCTCACCACTCCTATTCAACATAGTGTTG





GAAGTTCTGGCCAGGGCAATCAGGCAGGAGAAGGAAATAAAGGGTATTCAATTAGGAAAAGAGGAAGTCA





AATTGTCCCTGTTTGCAGACGACATGATTGTATATCTAGAAAACCCCATCGTCTCAGCCCAAAATCTCCT





TAAGCTGATAAGCAACTTCAGCAAAGTCTCAGGATACAAAATCAATGTACAAAAATCACAAGCATTCTTA





TACACCAACAACAGACAAACAGAGAGCCAAATCATGAGTGAACTCCCATTCACAATTGCTTCAAAGAGAA





TAAAATACCTAGGAATGCAACTTACAAGGGATGTGAAGGACCTCTTCAAGGAGAACTACAAACCACTGCT





CAAGGAAATAAAAGAGGACACAAACAAATGGAAGAACATTCCATGCTCATGGGTAGGAAGAATCAATATT





GTGAAAATGGCCATACTGCCCAAGGTGATTTACAGATTCAATGCCATCCCCATCAAGCTACCAATGCCTT





TCTTCACAGAATTGGAAAAAACTACTTTAAAGTTCATATGGAACCAAAAAAGAGCCCACATCGCCAAGTC





AATCCTGAGCCAAAAGAACAAAGCTGGAGGCATCACACTAGCTGACTTCAAACTATACTACAAGGCTACA





GTAACCAAAACAACATGGTACTGGTACCAAAACAGAGATATAGATCAGTGGAACAGAACAGAGCCCTCAG





AAATAATGCCGCATATCTACAACTATCTGATCTTTAACAAACCTGAGAAAAACAAGCAATGGGGAAAGGA





TTCCCTATTTAATAAATGGTGCTGGGAAAACTGGCTAGCCATATGTAGAAAGCTGAAACTGGATCCCTTC





CTTACACCTTATACAAAAATCAATTCAAGATGGATTAAAGACTTAAACGTTAGACCTAAAACCATAAAAA





CCCTAGAAGAAAACCTAGGCATTACCATTCAGGACATAGGCATGGGCAAGGACTTCATGTCTAAAACACC





AAAAGCAATGGCAACAAAAGCCAGAATTGACAAATGGGATCTAATTAAACTAAAGAGCTTCTGCACAGCA





AAAGAAACTACCATCAGAGTGAACAGGCAACCTACAACATGGGAGAAAATTTTCGCAACCTACTCATCTG





ACAAAGGGCTAATATCCAGAATCTACAATGAACTCAAACAAATGTACAAGAAAAAAACAAACAACCCCAT





CAAAAAGTGGGTGAAGGACATGAACAGACACTTCTCAAAAGAAGACATTTATGCAGCCAAAAGACACATG





AAAAAATGCTCACCATCACTGGCCATCAGAGAAATGCAAATCAAAACCACAATGAGATACCATCTCACAC





CAGTTAGAATGGCAATCATTTAAAAGTCAGGAAACAACAGGTGCTGGAGAGGATGTGGAGAAATAGGAAC





ACTTCTACACTGTTGGTGGGACTGTAAACTAGTTCAACCATTGTGGAAGTCAGTGTGGCGATTCCTCAGG





GATCTAGAACTAGAAATACCATTTGACCCAGCCATCCCATTACTGGGTATATACCCAAAGGACTATAAAT





CATGCTGCTATAAAGACACATGCACACGTATGTTTATTGCGGCACTATTCACAATAGCAAAGACTTGGAA





CCAACCCAAATGTCCAACAGTGATAGACTGGATTAAGAAAATGTGGCACATATACACCATGGAATACTAT





GCAGCCATAAAAAAAGGATGAGTTCACATCCTTTGTAGGGACATGGATGAAATTGGAAATCATTATTCTC





AGTAAACTATCACAAGAACAGAACACCAAACACCGCATATTCTCACTCATAGGTGGGAATTGAACAATGA





GAACACATGGACACAGGAAGGGGAACATCACACTCTGGGGACTGTTGTGGGGGGGGGGAGGGGGGAGGG





ATAGCATTGGGAGATATACCTAATGCTAGATGATGAGTTAGTGGGTGCAGCGCACCAGCATGGCACATGT





ATACATATGTAACTAACCTGCACGTTGTGCACATGTACCCTAAAATTTAAAGTATAATAATAATAATAAA





TAAATAAATAAATAAATAAAAAATGATGAGTTTAGACAAATATCATTATGGTAGTATTATATTATGTTAT





GTTATATTATATTATATTATATTATGTATAATGTATATTCCTTGCAGCCTGCCCTGCATTCCCAATCTAT





GACTCATGCTGCCTTATTGATACTGAAAAATCTCCACTACAGCATGCCAGCTTTTGAAAGAGAGCCTTGG





GTTCTTTCCCAATACTTACCTTCCTTTTAGGGCAACCTATCTGAGTCCTGTAGCTTGAAAGATTTCCTAC





CAGCCTGCCATCCCAAAGGAACATGGATGAACTATGTTTATGCTGATGTGTCAAGTCATTTCTTGGTATG





GTTCATAGTAGTCCACATGGCTCTTGTAGACAAAGAGATGAATTACTGATGGCAGAATTTCTGTTCTGGC





AACAGGGAAATTTGCAGAAAGGAGACCTTTTCAGTGTGAACATTTTTTGCTCACAGGTGGTCCAGGATGC





CCAATGCTAAATGAGAAGTGAAAAGAGCAATCAGGGCCAGGTGTGGTGGCTCACGCCTGTAATCCAAGCA





CTTTGGGAGGCCAAGGTGGGCGGATCACGAGGTCAGGAGATCGAGACCATCCTGGCTAACATGGTGAAAC





CCTGTTTCTACTAAAAATACAAAAAAAATTAGCCAGGCGTGGTGGCGGGCGCCTATAGTCCCAGCTACTT





GGGAGGCTGAGGCAGGAGAATGGCGTGAACCTGGGAGGCGGAGCTTGCAGTGAGCCAAGATCGCGCCACT





GTGCTCCAGCCTGGGTGACAGAGCGAGACTCTGTCTCAAAAAAAAAAAAAAAAAAAGAGCAGTCAGAATT





CAATTTTTCATTCAGAACAAATCAATCCACGTGGGTAAACATTTTATCAAACTCAAGAATGCTGTCTTTC





AGGGTGCTTTTCCCTCAACAGTCACTTATTTCCTCTTGCAAGTAGTATCTTCGTTCAGGTTCAGTGACTA





CTGTGTATTATATCCAATGCTTCTGGCAAGTGGGTTGGTGGAGGCAGCCCAAGATCTTCTAGAATCAAGA





GAATTGGATCCATTTCCCAGTTCTAACACTTATCAGCTATATGGCTTTTAGGCAAGTCAGTTAAACATCC





GAGTCTCAGTGCTCTCATCTGCAAAACAGAAAATGTGATGTACTTCACAGAGCCAGGGGGAGGAATAACT





AAGGTGGTACATTTGTACGTGCTTTGTAACCTGTAAAGCCCTTTACTGTACACGTGTCATTTACAGCTCT





GTATCACCATCATGACCTAGAAAAGCAGTACTGACAGAAGACTTATCTTCTTGCCAATGCTAAGATAACT





TTAGCCATTTCTGCATTTCTAAAGGAAGGAGTCTTTATCCCAGTATCTATGAAGACTTGGCAGGAATTGC





CGTCAATATTTAGTTGGTAATATAAACGAATTAAACAAAAATGCACACTAGGTTTTAGGAAAATTAAAGA





CAGAACTATCATTTGTACTCCTCTTACATTTCCCAAAGTGCTAAAACTAGACAATAAATCAGTCCTCAAT





AAATGCTTGTTTATCAATTTTATATTCATTTATTTGTTGATAATACAACAAAGATGTTTATATGCAGTAT





AATATATATGGCAAAGATGAAAAGTAGCAAATTCATGAATCAACATCCTATTTATGCTTGAGAAGACAAA





GAAAGTGTTGGTGACTTCATGGTATACATAACCTTAAGGAGCTCGTGATTGAGCCTGGGTCTCTGCTATC





AATGTAGGATATAAATTTCAAATGTACTATCCTTTATATGTATGTTAATGTAGTAAACATAGAAAACTGA





TGCTACTAGTGAGAATACTTTTACTTGAACAACTAAAAGTTTGTCTTTAATCCCCTAAGTGCATACACAA





AAGGAAAGTACTGTACAAATCAAGTACAACAGAAGAAGTAAAGTAAAAGACAAGTGAAGGAATTATCTGG





AACTTAGATCTGGTTGGCTTTTTCTCCTGAAGTACTTAGATAAATTAACTCACTTTTCTCTTTTGCTGAA





GAAGTGCAAATTAGGCAGGCATGTTATTCCACGTAGGCAAAAGGAAAAAAGAAAGAAAAACATAAAATGG





CTATATATTTGACCAAACTTCGTTCTGCAAGAATCCCAATACTAACCTTCTACCATATAAACTACTTTCA





AAATCAGGCTATATCCTTCCAGTACAAACCTGGTTTGTACTACTCAGAGATACTACTCAGAAATACTTTC





AGTATTTCCCTTCTTTCAACTTCTGATGTGATTCTATCCATATTCCCCTGCCTGTCTCCCAGTCAAAGAG





AATGGGACACAACTCTCTTTAGAGTCCATCAGTGATGCTTTAGCTGCCAAAAATAGTGACAATAGACATT





CATTGTCTGTCTACCTTACTTGTTCAACATTCAGAATTCTGCATCTTAAGAGGCTGTGGCTGAAAACTTG





AGCCAGTTCTTCAGAATTTCTAACATGTTATTTCTGCCACTTTTTCTCCCTTACTTTAGCAGAGTAATTT





AATTCAATTTGAGAGAGAGAGAGAAAAAAAAAACTTTTCTAGTTACACAGATCAATCCAATTGTTTGGAG





CTTCAGAATGAATTTTTAAACTTGTTGAACAGAAGCATACAAATCTCTAAGAGCAAGTCAGATAATATAC





AAAGCCTCCATTCATTGTGTAGGCAGAAAGGAATGCTGGTACCCGGCAGCTCTCTGAGGAATGTTCCCTT





GGCTTTGACTATTCTGCTGGGAACAAGGAAGGAAACACATATATAAAATGAATTTATAATGTCTCTGGCT





TGTAATGGCAGAATGATAAGAAAAGTTGGCTGTTTAATATAAACTGTCAGTTGCATATTCCAGGCCTCCT





CTCTTTGAGGTTCCTCCCACATCCACACGCCTGGCTACTGTTTAGTGCGGAGTACAAAGTGGCCGTTTAT





TATTATTGACTGGTGAGGCCTGTGCTCCAAAATTCATTCTGTCAACAGAATGTAAGCAAAGTTGGCATTT





TAAAGCAGGGCTCTTTCAGTTTCTGGGTTTTCTCAGGATTGCTATGCAACAGGATCAGTGCTGTAGTGCC





CGGTTCAAGCTGAAAATGTTACACAGGAAGACATACCATGTAAAGGTCAGATTCTTCTACTATAATAATT





TTCTTGATCTGTGTGTATACAAGTGAAGTTGAATGCATAACCTCTTATCATAACTCTTACCAAGGTCCTA





TGTACTTTCCACCTGTCAAGCCTAAAAATGTGTATTAAATGGGAAATCAAAACTAATAAATGTATGATGC





TGTACTATATGTATGATGCTATAATACCAAGGTGAACTTAATTTGTGTTGTCAAGAAGATTTTCTCTCCC





ATGACAGACTCCCAGGAATGTGCTGGTGCTGTGGGCCAAGTGCAATCTTGTTTATTAGTCTCTCCACGCT





TTTATGGTCAGAGTTAACTCTACAGATTACTACGTAAATAGAAAATATGACTTGATCCATATAGTAATGA





AATTATTGGCACTGGGGTACACTTTATCATAGAATTTTATTGCCTATCACTTCCATAAAATAATACATTT





TGTCCATAGACTAGAAGATATAACTTGTGAACTTTATAAAGTTATAAATACATTACTTTCCAACTCATAA





TGGCAAGGAATAAATCTATTACAACTAATAAGATGCCCATTTTAAATCTACATAATAACAGGAGAAGGCA





ATACGCCAAGAAAAGGGATTTGAGATGTATCTTCTTGTTAGTTTAGCCTGATTGAAATGTCTTTTGAACT





AATAATTATTTATATTTTGCAATTCTCCAAATTCACATTCATCGCTTGTTTCTTTTGTTTGGTAATTCTG





CACATATTCTTCTTCCTGCTGTCCTGTAG







Homo sapiens dystrophin (DMD), intron 55 target sequence 1 (nucleotide positions 1716938-1716987 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 2158)


GTAAGTCAGGCATTTCCGCTTTAGCACTCTTGTGGATCCAATTGAACAAT







Homo sapiens dystrophin (DMD), intron 55 target sequence 2 (nucleotide positions 1716950-1717012 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 2159)


TTTCCGCTTTAGCACTCTTGTGGATCCAATTGAACAATTCTCAGCATTTG





TACTTGTAACTGA







Homo sapiens dystrophin (DMD), intron 55 target sequence 3 (nucleotide positions 1717003-1717050 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 2160)


TTGTAACTGACAAGCCAGGGACAAAACAAAATAGTTGCTTTTATACAG







Homo sapiens dystrophin (DMD), intron 55 target sequence 4 (nucleotide positions 1837063-1837116 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 2161)


TTATTTATATTTTGCAATTCTCCAAATTCACATTCATCGCTTGTTTCTTT





TGTT







Homo sapiens dystrophin (DMD), intron 55 target sequence 5 (nucleotide positions 1837104-1837153 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 2162)


TGTTTCTTTTGTTTGGTAATTCTGCACATATTCTTCTTCCTGCTGTCCTG







Homo sapiens dystrophin (DMD), intron 55 target sequence 6 (nucleotide positions 1836907-1837156 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 2163)


CCAACTCATAATGGCAAGGAATAAATCTATTACAACTAATAAGATGCCCA





TTTTAAATCTACATAATAACAGGAGAAGGCAATACGCCAAGAAAAGGGAT





TTGAGATGTATCTTCTTGTTAGTTTAGCCTGATTGAAATGTCTTTTGAAC





TAATAATTATTTATATTTTGCAATTCTCCAAATTCACATTCATCGCTTGT





TTCTTTTGTTTGGTAATTCTGCACATATTCTTCTTCCTGCTGTCCTGTAG







Homo sapiens dystrophin (DMD) intron 55/exon 56 junction (nucleotide positions 1837127-1837186 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 2164)


GCACATATTCTTCTTCCTGCTGTCCTGTAGGACCTCCAAGGTGAAATTGA





AGCTCACACA







Homo sapiens dystrophin (DMD), transcript variant Dp427m, exon 56 (nucleotide positions 8462-8634 of NCBI Reference Sequence: NM_004006.2; nucleotide positions 1837157-1837329 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 2165)


GACCTCCAAGGTGAAATTGAAGCTCACACAGATGTTTATCACAACCTGGA





TGAAAACAGCCAAAAAATCCTGAGATCCCTGGAAGGTTCCGATGATGCAG





TCCTGTTACAAAGACGTTTGGATAACATGAACTTCAAGTGGAGTGAACTT





CGGAAAAAGTCTCTCAACATTAG







Homo sapiens dystrophin (DMD), exon 56 target sequence 1 (nucleotide positions 1837157-1837281 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 2166)


GACCTCCAAGGTGAAATTGAAGCTCACACAGATGTTTATCACAACCTGGA





TGAAAACAGCCAAAAAATCCTGAGATCCCTGGAAGGTTCCGATGATGCAG





TCCTGTTACAAAGACGTTTGGATAA







Homo sapiens dystrophin (DMD), exon 56 target sequence 2 (nucleotide positions 1837157-1837201 of NCBI Reference Sequence: NG_012232.1)











(SEQ ID NO: 2167)



GACCTCCAAGGTGAAATTGAAGCTCACACAGATGTTTATCACAAC







Homo sapiens dystrophin (DMD), exon 56 target sequence 3 (nucleotide positions 1837181-1837237 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 2168)


CACACAGATGTTTATCACAACCTGGATGAAAACAGCCAAAAAATCCTGAG





ATCCCTG







Homo sapiens dystrophin (DMD), exon 56 target sequence 4 (nucleotide positions 1837225-1837281 of NCBI Reference Sequence: NG_012232.1)









(SEQ ID NO: 2169)


CCTGAGATCCCTGGAAGGTTCCGATGATGCAGTCCTGTTACAAAGACGTT





TGGATAA






In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a splicing feature in a DMD sequence (e.g., a DMD pre-mRNA). In some embodiments, a splicing feature in a DMD sequence is an exonic splicing enhancer (ESE), a branch point, a splice donor site, or a splice acceptor site in a DMD sequence. In some embodiments, an ESE is in exon 55 of a DMD sequence (e.g., a DMD pre-mRNA). In some embodiments, a branch point is in intron 54 or intron 55 of a DMD sequence (e.g., a DMD pre-mRNA). In some embodiments, a splice donor site is across the junction of exon 54 and intron 54, in intron 54, across the junction of exon 55 and intron 55, or in intron 55 of a DMD sequence (e.g., a DMD pre-mRNA). In some embodiments, a splice acceptor site is in intron 54, across the junction of intron 54 and exon 55, in intron 55, or across the junction of intron 55 and exon 56 of a DMD sequence (e.g., a DMD pre-mRNA). In some embodiments, the oligonucleotide useful for targeting DMD promotes skipping of exon 55, such as by targeting a splicing feature (e.g., an ESE, a branch point, a splice donor site, or a splice acceptor site) in a DMD sequence (e.g., a DMD pre-mRNA). Examples of ESEs, branch points, splice donor sites, and splice acceptor sites are provided in Table 9.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets an exonic splicing enhancer (ESE) in a DMD sequence. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets an ESE in DMD exon 55 (e.g., an ESE listed in Table 9).


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 55) comprises a region of complementarity to a target sequence comprising one or more full or partial ESEs of a DMD transcript (e.g., one or more full or partial ESEs listed in Table 9). In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising one or more full or partial ESEs of DMD exon 55. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising one or more full or partial ESEs as set forth in any one of SEQ ID NOs: 2020-2027, 2031-2061, and 2064-2080. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of an ESE as set forth in any one of SEQ ID NOs: 2020-2027, 2031-2061, and 2064-2080. In some embodiments, the oligonucleotide comprises at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of an ESE antisense sequence as set forth in any one of SEQ ID NOs: 2081-2088, 2092-2122, and 2125-2141.


In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising at least 6 (e.g., 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more) nucleotides of one or more ESEs (e.g., 2, 3, 4, or more adjacent ESEs) of DMD exon 55. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising at least 6 (e.g., 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more) nucleotides of one or more ESEs (e.g., 2, 3, 4, or more adjacent ESEs) as set forth in any one of SEQ ID NOs: 2020-2027, 2031-2061, and 2064-2080. In some embodiments, the oligonucleotide comprises at least 6 (e.g., 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more) nucleotides of one or more ESE antisense sequences (e.g., antisense sequences of 2, 3, 4, or more adjacent ESEs) as set forth in any one of SEQ ID NOs: 2081-2088, 2092-2122, and 2125-2141.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 55) is 18-35 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of an ESE as set forth in any one of SEQ ID NOs: 2020-2027, 2031-2061, and 2064-2080. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 55) is 20-30 (e.g., 20, 25, 30) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of an ESE as set forth in any one of SEQ ID NOs: 2020-2027, 2031-2061, and 2064-2080. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 55) is 20-25 (i.e., 20, 21, 22, 23, 24, or 25) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of an ESE as set forth in any one of SEQ ID NOs: 2020-2027, 2031-2061, and 2064-2080. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) is 30 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of an ESE as set forth in any one of SEQ ID NOs: 2020-2027, 2031-2061, and 2064-2080.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a branch point in a DMD sequence. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a branch point in DMD intron 54 or intron 55 (e.g., a branch point listed in Table 9).


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 55) comprises a region of complementarity to a target sequence comprising a full or partial branch point of a DMD transcript (e.g., a full or partial branch point listed in Table 9). In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising a full or partial branch point of DMD intron 54 or intron 55. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising a full or partial branch point as set forth in SEQ ID NO: 2029. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a branch point as set forth in SEQ ID NO: 2029. In some embodiments, the oligonucleotide comprises at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a branch point antisense sequence as set forth in SEQ ID NO: 2090.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 55) is 18-35 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a branch point as set forth in SEQ ID NO: 2029. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 55) is 20-30 (e.g., 20, 25, 30) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a branch point as set forth in SEQ ID NO: 2029. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 55) is 20-25 (i.e., 20, 21, 22, 23, 24, or 25) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a branch point as set forth in SEQ ID NO: 2029. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) is 30 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, or 7) consecutive nucleotides of a branch point as set forth in SEQ ID NO: 2029.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a splice donor site in a DMD sequence. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a splice donor site across the junction of exon 54 and intron 54, in intron 54, across the junction of exon 55 and intron 55, or in intron 55 (e.g., a splice donor site listed in Table 9).


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 55) comprises a region of complementarity to a target sequence comprising a full or partial splice donor site of a DMD transcript (e.g., a full or partial splice donor site listed in Table 9). In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising a full or partial splice donor site across the junction of exon 54 and intron 54, in intron 54, across the junction of exon 55 and intron 55, or in intron 55 of DMD. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising a full or partial splice donor site as set forth in SEQ ID NO: 2028 or 2062. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of a splice donor site as set forth in SEQ ID NO: 2028 or 2062. In some embodiments, the oligonucleotide comprises at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of a splice donor site antisense sequence as set forth in SEQ ID NO: 2089 or 2123.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 55) is 18-35 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of a splice donor site as set forth in SEQ ID NO: 2028 or 2062. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 55) is 20-30 (e.g., 20, 25, 30) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of a splice donor site as set forth in SEQ ID NO: 2028 or 2062. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 55) is 20-25 (i.e., 20, 21, 22, 23, 24, or 25) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of a splice donor site as set forth in SEQ ID NO: 2028 or 2062. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) is 30 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, or 8) consecutive nucleotides of a splice donor site as set forth in SEQ ID NO: 2028 or 2062.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a splice acceptor site in a DMD sequence. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) targets a splice acceptor site in intron 54, across the junction of intron 54 and exon 55, in intron 55, or across the junction of intron 55 and exon 56 (e.g., a splice acceptor site listed in Table 9).


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 55) comprises a region of complementarity to a target sequence comprising a full or partial splice acceptor site of a DMD transcript (e.g., a full or partial splice acceptor site listed in Table 9). In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising a full or partial splice acceptor site in intron 54, across the junction of intron 54 and exon 55, in intron 55, or across the junction of intron 55 and exon 56 of DMD. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising a full or partial splice acceptor site as set forth in SEQ ID NO: 2030 or 2063. In some embodiments, the oligonucleotide comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, 8, 9, 10, or 11) consecutive nucleotides of a splice acceptor site as set forth in SEQ ID NO: 2030 or 2063. In some embodiments, the oligonucleotide comprises at least 4 (e.g., 4, 5, 6, 7, 8, 9, 10, or 11) consecutive nucleotides of a splice acceptor site antisense sequence as set forth in SEQ ID NO: 2091 or 2124.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 55) is 18-35 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, 8, 9, 10, or 11) consecutive nucleotides of a splice acceptor site as set forth in SEQ ID NO: 2030 or 2063. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 55) is 20-30 (e.g., 20, 25, 30) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, 8, 9, 10, or 11) consecutive nucleotides of a splice acceptor site as set forth in SEQ ID NO: 2030 or 2063. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping, such as for skipping exon 55) is 20-25 (i.e., 20, 21, 22, 23, 24, or 25) nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, 8, 9, 10, or 11) consecutive nucleotides of a splice acceptor site as set forth in SEQ ID NO: 2030 or 2063. In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) is 30 nucleotides in length, and comprises a region of complementarity to a target sequence comprising at least 4 (e.g., 4, 5, 6, 7, 8, 9, 10, or 11) consecutive nucleotides of a splice acceptor site as set forth in SEQ ID NO: 2030 or 2063.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to a junction of an exon and an intron of a DMD RNA (e.g., any one of the exon/intron junctions provided by SEQ ID NOs: 2144, 2151, 2156, and 2164). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to at least 10 (e.g., 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) consecutive nucleosides of ajunction of an exon and an intron of a DMD RNA (e.g., any one of the exon/intronjunctions provided by SEQ ID NOs: 2144, 2151, 2156, and 2164). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) is complementary to any one of SEQ ID NOs: 2144, 2151, 2156, and 2164.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to a target sequence of a DMD RNA (e.g., a target sequence provided by any one of SEQ ID NOs: 2143, 2146-2150, 2153-2155, 2158-2163, and 2166-2169). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to at least 10 (e.g., 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) consecutive nucleosides of a target sequence of a DMD RNA (e.g., a target sequence provided by any one of SEQ ID NOs: 2143, 2146-2150, 2153-2155, 2158-2163, and 2166-2169). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) is complementary to any one of SEQ ID NOs: 2143, 2146-2150, 2153-2155, 2158-2163, and 2166-2169.









TABLE 9







Example target sequence motifs














SEQ

SEQ
Motif


Location in

ID
Motif
ID
Antisense


DMD
Type
NO:
Sequence†
NO:
Sequence†





Exon 54
ESE
2020
ATTCTGC
2081
GCAGAAT





Exon 54
ESE
2021
CTGCAGA
2082
TCTGCAG





Exon 54
ESE
2022
TGCAGA
2083
TCTGCA





Exon 54
ESE
2023
CAGATGA
2084
TCATCTG





Exon 54
ESE
2024
CCACATG
2085
CATGTGG





Exon 54
ESE
2025
CACATGA
2086
TCATGTG





Exon 54
ESE
2026
CAGAGAA
2087
TTCTCTG





Exon 54
ESE
2027
TCAATGC
2088
GCATTGA





Across exon
Splice
2028
AGGTATG
2089
CATACCT


54/intron 54
Donor






junction










Intron 54
Branch
2029
TTCTGAT
2090
ATCAGAA



Point









Across
Splice
2030
TCCTTTGC
2091
CCTGCAAA


intron
Acceptor

AGG

GGA


54/exon 55







junction










Exon 55
ESE
2031
CGAGAGG
2092
CCTCTCG





Exon 55
ESE
2032
GGCTGCTT
2093
AAGCAGCC





Exon 55
ESE
2033
GATTACTG
2094
CAGTAATC





Exon 55
ESE
2034
TTACTGC
2095
GCAGTAA





Exon 55
ESE
2035
TGCAAC
2096
GTTGCA





Exon 55
ESE
2036
CCCCCTG
2097
CAGGGGG





Exon 55
ESE
2037
CCCCTGG
2098
CCAGGGG





Exon 55
ESE
2038
CCCTGGA
2099
TCCAGGG





Exon 55
ESE
2039
GTTTCTTG
2100
CAAGAAAC





Exon 55
ESE
2040
TTTCTTG
2101
CAAGAAA





Exon 55
ESE
2041
TGCCTGG
2102
CCAGGCA





Exon 55
ESE
2042
GGCTTACA
2103
TGTAAGCC





Exon 55
ESE
2043
TTACAGA
2104
TCTGTAA





Exon 55
ESE
2044
TACAGA
2105
TCTGTA





Exon 55
ESE
2045
ACAGAAG
2106
CTTCTGT





Exon 55
ESE
2046
CTGCCAA
2107
TTGGCAG





Exon 55
ESE
2047
TGCCAATG
2108
CATTGGCA





Exon 55
ESE
2048
GTCCTACA
2109
TGTAGGAC





Exon 55
ESE
2049
CTACAGG
2110
CCTGTAG





Exon 55
ESE
2050
TACAGGA
2111
TCCTGTA





Exon 55
ESE
2051
GGATGCTA
2112
TAGCATCC





Exon 55
ESE
2052
CTACCCG
2113
CGGGTAG





Exon 55
ESE
2053
TACCCGTA
2114
TACGGGTA





Exon 55
ESE
2054
GGCTCCTA
2115
TAGGAGCC





Exon 55
ESE
2055
CTAGAAG
2116
CTTCTAG





Exon 55
ESE
2056
AGACTCC
2117
GGAGTCT





Exon 55
ESE
2057
GACTCCAA
2118
TTGGAGTC





Exon 55
ESE
2058
CTCCAAG
2119
CTTGGAG





Exon 55
ESE
2059
CCAAGGG
2120
CCCTTGG





Exon 55
ESE
2060
CTGATGA
2121
TCATCAG





Exon 55
ESE
2061
ACAATGG
2122
CCATTGT





Across exon
Splice
2062
AAGTAAG
2123
CTTACTT


55/intron 55
Donor






junction










Across
Splice
2063
TCCTGTAGG
2124
CCTACAGGA


intron
Acceptor






55/exon 56







junction










Exon 56
ESE
2064
GACCTCCA
2125
TGGAGGTC





Exon 56
ESE
2058
CTCCAAG
2119
CTTGGAG





Exon 56
ESE
2065
CCAAGGT
2126
ACCTTGG





Exon 56
ESE
2066
TCACACA
2127
TGTGTGA





Exon 56
ESE
2067
CACACAG
2128
CTGTGTG





Exon 56
ESE
2068
ACACAGA
2129
TCTGTGT





Exon 56
ESE
2069
CACAGA
2130
TCTGTG





Exon 56
ESE
2070
CAGATGT
2131
ACATCTG





Exon 56
ESE
2071
TCACAAC
2132
GTTGTGA





Exon 56
ESE
2072
CAGCCAA
2133
TTGGCTG





Exon 56
ESE
2073
AAATCCTG
2134
CAGGATTT





Exon 56
ESE
2074
CTGAGAT
2135
ATCTCAG





Exon 56
ESE
2075
GATCCCTG
2136
CAGGGATC





Exon 56
ESE
2076
TCCCTGG
2137
CCAGGGA





Exon 56
ESE
2038
CCCTGGA
2099
TCCAGGG





Exon 56
ESE
2077
GGTTCCGA
2138
TCGGAACC





Exon 56
ESE
2078
CCGATGA
2139
TCATCGG





Exon 56
ESE
2079
TTACAAA
2140
TTTGTAA





Exon 56
ESE
2080
AAGACGT
2141
ACGTCTT





†Each thymine base (T) in any one of the sequences provided in Table 9 may independently and optionally be replaced with a uracil base (U). Motif sequences and antisense sequences listed in Table 9 contain T's, but binding of a motif sequence in RNA and/or DNA is contemplated.






In some embodiments, any one of the oligonucleotides useful for targeting DMD (e.g., for exon skipping) is a phosphorodiamidate morpholino oligomer (PMO).


In some embodiments, the oligonucleotide may have region of complementarity to a mutant DMD allele, for example, a DMD allele with at least one mutation in any of exons 1-79 of DMD in humans that leads to a frameshift and improper RNA splicing/processing.


In some embodiments, any one of the oligonucleotides can be in salt form, e.g., as sodium, potassium, or magnesium salts.


In some embodiments, the 5′ or 3′ nucleoside (e.g., terminal nucleoside) of any one of the oligonucleotides described herein is conjugated to an amine group, optionally via a spacer. In some embodiments, the spacer comprises an aliphatic moiety. In some embodiments, the spacer comprises a polyethylene glycol moiety. In some embodiments, a phosphodiester linkage is present between the spacer and the 5′ or 3′ nucleoside of the oligonucleotide. In some embodiments, the 5′ or 3′ nucleoside (e.g., terminal nucleoside) of any of the oligonucleotides described herein is conjugated to a spacer that is a substituted or unsubstituted aliphatic, substituted or unsubstituted heteroaliphatic, substituted or unsubstituted carbocyclylene, substituted or unsubstituted heterocyclylene, substituted or unsubstituted arylene, substituted or unsubstituted heteroarylene, —O—, —N(RA)—, —S—, —C(═O)—, —C(═O)O—, —C(═O)NRA—, —NRAC(═O)—, —NRAC(═O)RA—, —C(═O)RA—, —NRAC(═O)O—, —NRAC(═O)N(RA)—, —OC(═O)—, —OC(═O)O—, —OC(═O)N(RA)—, —S(O)2NRA—, —NRAS(O)2—, or a combination thereof; each RA is independently hydrogen or substituted or unsubstituted alkyl. In certain embodiments, the spacer is a substituted or unsubstituted alkylene, substituted or unsubstituted heterocyclylene, substituted or unsubstituted heteroarylene, —O—, —N(RA)—, or —C(═O)N(RA)2, or a combination thereof.


In some embodiments, the 5′ or 3′ nucleoside of any one of the oligonucleotides described herein is conjugated to a compound of the formula —NH2—(CH2)n—, wherein n is an integer from 1 to 12. In some embodiments, n is 6, 7, 8, 9, 10, 11, or 12. In some embodiments, a phosphodiester linkage is present between the compound of the formula NH2—(CH2)n- and the 5′ or 3′ nucleoside of the oligonucleotide. In some embodiments, a compound of the formula NH2—(CH2)6— is conjugated to the oligonucleotide via a reaction between 6-amino-1-hexanol (NH2—(CH2)6—OH) and the 5′ phosphate of the oligonucleotide.


In some embodiments, the oligonucleotide is conjugated to a targeting agent, e.g., a muscle targeting agent such as an anti-TfR1 antibody, e.g., via the amine group.


a. Oligonucleotide Size/Sequence


Oligonucleotides may be of a variety of different lengths, e.g., depending on the format. In some embodiments, an oligonucleotide is 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 75, or more nucleotides in length. In some embodiments, the oligonucleotide is 8 to 50 nucleotides in length, 8 to 40 nucleotides in length, 8 to 30 nucleotides in length, 10 to 15 nucleotides in length, 10 to 20 nucleotides in length, 15 to 25 nucleotides in length, 21 to 23 nucleotides in lengths, 20 to 25 nucleotides in length, etc.


In some embodiments, a nucleic acid sequence of an oligonucleotide for purposes of the present disclosure is “complementary” to a target nucleic acid when it is specifically hybridizable to the target nucleic acid. In some embodiments, an oligonucleotide hybridizing to a target nucleic acid (e.g., an mRNA or pre-mRNA molecule) results in modulation of activity or expression of the target (e.g., decreased mRNA translation, altered pre-mRNA splicing, exon skipping, target mRNA degradation, etc.). In some embodiments, a nucleic acid sequence of an oligonucleotide has a sufficient degree of complementarity to its target nucleic acid such that it does not hybridize non-target sequences under conditions in which avoidance of non-specific binding is desired, e.g., under physiological conditions. Thus, in some embodiments, an oligonucleotide may be at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% complementary to the consecutive nucleotides of a target nucleic acid. In some embodiments a complementary nucleotide sequence need not be 100% complementary to that of its target to be specifically hybridizable or specific for a target nucleic acid. In certain embodiments, oligonucleotides comprise one or more mismatched nucleobases relative to the target nucleic acid. In certain embodiments, activity relating to the target is reduced by such mismatch, but activity relating to a non-target is reduced by a greater amount (i.e., selectivity for the target nucleic acid is increased and off-target effects are decreased).


In some embodiments, an oligonucleotide comprises region of complementarity to a target nucleic acid that is in the range of 8 to 15, 8 to 30, 8 to 40, or 10 to 50, or 5 to 50, 15 to 20, 20 to 25, or 5 to 40 nucleotides in length. In some embodiments, a region of complementarity of an oligonucleotide to a target nucleic acid is 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides in length. In some embodiments, the region of complementarity is complementary with at least 8 consecutive nucleotides of a target nucleic acid. In some embodiments, an oligonucleotide may contain 1, 2 or 3 base mismatches compared to the portion of the consecutive nucleotides of target nucleic acid. In some embodiments the oligonucleotide may have up to 3 mismatches over 15 bases, or up to 2 mismatches over 10 bases.


In some embodiments, the oligonucleotide is complementary (e.g., at least 85% at least 90%, at least 95%, or 100%) to a target sequence of the any one of the oligonucleotides described herein (e.g., the oligonucleotides listed in Table 8). In some embodiments, the oligonucleotide is complementary (e.g., at least 85% at least 90%, at least 95%, or 100%) to a target sequence of the any one of the oligonucleotides provided by SEQ ID NO: 780-2019. In some embodiments, such target sequence is 100% complementary to an oligonucleotide listed in Table 8. In some embodiments, such target sequence is 100% complementary to an oligonucleotide provided by SEQ ID NO: 780-2019. In some embodiments, the oligonucleotide is complementary (e.g., at least 85% at least 90%, at least 95%, or 100%) to a target sequence provided herein (e.g., a target sequence listed in Table 8). In some embodiments, the oligonucleotide is complementary (e.g., at least 85% at least 90%, at least 95%, or 100%) to any one of SEQ ID NO: 160-779.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to a target sequence of a DMD RNA (e.g., a target sequence provided by any one of SEQ ID NOs: 160-779). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to at least 8 (e.g., 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) consecutive nucleosides of a target sequence of a DMD RNA (e.g., a target sequence provided by any one of SEQ ID NOs: 160-779). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) is complementary to any one of SEQ ID NOs: 160-779.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a sequence comprising at least 8 (e.g., 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) consecutive nucleobases of a DMD-targeting sequence provided herein (e.g., an antisense sequence listed in Table 8). In some embodiments, the oligonucleotide comprises a sequence comprising at least 8 (e.g., 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) consecutive nucleobases of any one of SEQ ID NOs: 780-2019. In some embodiments, the oligonucleotide comprises the sequence of any one of SEQ ID NOs: 780-2019.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to a target sequence of a DMD RNA (e.g., a target sequence provided by any one of SEQ ID NOs: 160, 162-166, 168, 169, 173, 178-180, 243-251, 253, 255, 256, 262-266, 268, 270-272, 274, 282-284, 289-291, 294, 295, 319, 343, 347, 351, 356-358, 364, 366, 367, 398, 401, 453-455, 462, 463, 526, 573, 748, and 755). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a region of complementarity to at least 8 (e.g., 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) consecutive nucleosides of a target sequence of a DMD RNA (e.g., a target sequence provided by any one of SEQ ID NOs: 160, 162-166, 168, 169, 173, 178-180, 243-251, 253, 255, 256, 262-266, 268, 270-272, 274, 282-284, 289-291, 294, 295, 319, 343, 347, 351, 356-358, 364, 366, 367, 398, 401, 453-455, 462, 463, 526, 573, 748, and 755). In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) is complementary to any one of SEQ ID NOs: 160, 162-166, 168, 169, 173, 178-180, 243-251, 253, 255, 256, 262-266, 268, 270-272, 274, 282-284, 289-291, 294, 295, 319, 343, 347, 351, 356-358, 364, 366, 367, 398, 401, 453-455, 462, 463, 526, 573, 748, and 755.


In some embodiments, an oligonucleotide useful for targeting DMD (e.g., for exon skipping) comprises a sequence comprising at least 8 (e.g., 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) contiguous nucleobases of a DMD-targeting sequence provided herein (e.g., a sequence of any one of SEQ ID NOs: 1400, 1402-1406, 1408, 1409, 1413, 1418-1420, 1483-1491, 1493, 1495, 1496, 1502-1506, 1508, 1510-1512, 1514, 1522-1524, 1529-1531, 1534, 1535, 1559, 1583, 1587, 1591, 1596, 1597, 1598, 1604, 1606, 1607, 1638, 1641, 1693-1695, 1702, 1703, 1766, 1813, 1988, and 1995). In some embodiments, the oligonucleotide comprises at least 8 (e.g., 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more) consecutive nucleosides of a DMD-targeting sequence provided herein (e.g., a sequence of any one of SEQ ID NOs: 1400, 1402-1406, 1408, 1409, 1413, 1418-1420, 1483-1491, 1493, 1495, 1496, 1502-1506, 1508, 1510-1512, 1514, 1522-1524, 1529-1531, 1534, 1535, 1559, 1583, 1587, 1591, 1596, 1597, 1598, 1604, 1606, 1607, 1638, 1641, 1693-1695, 1702, 1703, 1766, 1813, 1988, and 1995). In some embodiments, the oligonucleotide comprises the sequence of any one of SEQ ID NOs: 1400, 1402-1406, 1408, 1409, 1413, 1418-1420, 1483-1491, 1493, 1495, 1496, 1502-1506, 1508, 1510-1512, 1514, 1522-1524, 1529-1531, 1534, 1535, 1559, 1583, 1587, 1591, 1596, 1597, 1598, 1604, 1606, 1607, 1638, 1641, 1693-1695, 1702, 1703, 1766, 1813, 1988, and 1995.


In some embodiments, it should be appreciated that methylation of the nucleobase uracil at the C5 position forms thymine. Thus, in some embodiments, a nucleotide or nucleoside having a C5 methylated uracil (or 5-methyl-uracil) may be equivalently identified as a thymine nucleotide or nucleoside.


In some embodiments, any one or more of the thymine bases (T's) in any one of the oligonucleotides provided herein (e.g., the oligonucleotides listed in Table 8) may independently and optionally be uracil bases (U's), and/or any one or more of the U's in the oligonucleotides provided herein may independently and optionally be T's. In some embodiments, any one or more of the thymine bases (T's) in any one of the oligonucleotides provided by SEQ ID NOs: 1400-2019 or in an oligonucleotide complementary to any one of SEQ ID NOs: 160-779 may optionally be uracil bases (U's), and/or any one or more of the U's in the oligonucleotides may optionally be T's. In some embodiments, any one or more of the uracil bases (U's) in any one of the oligonucleotides provided by SEQ ID NOs: 780-1399 or in an oligonucleotide complementary to any one of SEQ ID NOs: 160-779 may optionally be thymine bases (T's), and/or any one or more of the T's in the oligonucleotides may optionally be U's.


b. Oligonucleotide Modifications:


The oligonucleotides described herein may be modified, e.g., comprise a modified sugar moiety, a modified internucleoside linkage, a modified nucleotide or nucleoside and/or (e.g., and) combinations thereof. In addition, in some embodiments, oligonucleotides may exhibit one or more of the following properties: do not mediate alternative splicing; are not immune stimulatory; are nuclease resistant; have improved cell uptake compared to unmodified oligonucleotides; are not toxic to cells or mammals; have improved endosomal exit internally in a cell; minimizes TLR stimulation; or avoid pattern recognition receptors. Any of the modified chemistries or formats of oligonucleotides described herein can be combined with each other. For example, one, two, three, four, five, or more different types of modifications can be included within the same oligonucleotide.


In some embodiments, certain nucleotide or nucleoside modifications may be used that make an oligonucleotide into which they are incorporated more resistant to nuclease digestion than the native oligodeoxynucleotide or oligoribonucleotide molecules; these modified oligonucleotides survive intact for a longer time than unmodified oligonucleotides. Specific examples of modified oligonucleotides include those comprising modified backbones, for example, modified internucleoside linkages such as phosphorothioates, phosphotriesters, methyl phosphonates, short chain alkyl or cycloalkyl intersugar linkages or short chain heteroatomic or heterocyclic intersugar linkages. Accordingly, oligonucleotides of the disclosure can be stabilized against nucleolytic degradation such as by the incorporation of a modification, e.g., a nucleotide or nucleoside modification.


In some embodiments, an oligonucleotide may be of up to 50 or up to 100 nucleotides in length in which 2 to 10, 2 to 15, 2 to 16, 2 to 17, 2 to 18, 2 to 19, 2 to 20, 2 to 25, 2 to 30, 2 to 40, 2 to 45, or more nucleotides or nucleosides of the oligonucleotide are modified nucleotides/nucleosides. The oligonucleotide may be of 8 to 30 nucleotides in length in which 2 to 10, 2 to 15, 2 to 16, 2 to 17, 2 to 18, 2 to 19, 2 to 20, 2 to 25, 2 to 30 nucleotides or nucleosides of the oligonucleotide are modified nucleotides/nucleosides. The oligonucleotide may be of 8 to 15 nucleotides in length in which 2 to 4, 2 to 5, 2 to 6, 2 to 7, 2 to 8, 2 to 9, 2 to 10, 2 to 11, 2 to 12, 2 to 13, 2 to 14 nucleotides or nucleosides of the oligonucleotide are modified nucleotides/nucleosides. Optionally, the oligonucleotides may have every nucleotide or nucleoside except 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides/nucleosides modified. Oligonucleotide modifications are described further herein.


c. Modified Nucleosides


In some embodiments, the oligonucleotide described herein comprises at least one nucleoside modified at the 2′ position of the sugar. In some embodiments, an oligonucleotide comprises at least one 2′-modified nucleoside. In some embodiments, all of the nucleosides in the oligonucleotide are 2′-modified nucleosides.


In some embodiments, the oligonucleotide described herein comprises one or more non-bicyclic 2′-modified nucleosides, e.g., 2′-deoxy, 2′-fluoro (2′-F), 2′-O-methyl (2′-O-Me), 2′-O-methoxyethyl (2′-MOE), 2′-O-aminopropyl (2′-O-AP), 2′-O-dimethylaminoethyl (2′-O-DMAOE), 2′-O-dimethylaminopropyl (2′-O-DMAP), 2′-O-dimethylaminoethyloxyethyl (2′-O-DMAEOE), or 2′-O—N-methylacetamido (2′-O-NMA) modified nucleoside.


In some embodiments, the oligonucleotide described herein comprises one or more 2′-4′ bicyclic nucleosides in which the ribose ring comprises a bridge moiety connecting two atoms in the ring, e.g., connecting the 2′-O atom to the 4′-C atom via a methylene (LNA) bridge, an ethylene (ENA) bridge, or a (S)-constrained ethyl (cEt) bridge. Examples of LNAs are described in International Patent Application Publication WO/2008/043753, published on Apr. 17, 2008, and entitled “RNA Antagonist Compounds For The Modulation Of PCSK9”, the contents of which are incorporated herein by reference in its entirety. Examples of ENAs are provided in International Patent Publication No. WO 2005/042777, published on May 12, 2005, and entitled “APP/ENA Antisense”; Morita et al., Nucleic Acid Res., Suppl 1:241-242, 2001; Surono et al., Hum. Gene Ther., 15:749-757, 2004; Koizumi, Curr. Opin. Mol. Ther., 8:144-149, 2006 and Horie et al., Nucleic Acids Symp. Ser (Oxf), 49:171-172, 2005; the disclosures of which are incorporated herein by reference in their entireties. Examples of cEt are provided in U.S. Pat. Nos. 7,101,993; 7,399,845 and 7,569,686, each of which is herein incorporated by reference in its entirety.


In some embodiments, the oligonucleotide comprises a modified nucleoside disclosed in one of the following United States Patent or Patent Application Publications: U.S. Pat. No. 7,399,845, issued on Jul. 15, 2008, and entitled “6-Modified Bicyclic Nucleic Acid Analogs”; U.S. Pat. No. 7,741,457, issued on Jun. 22, 2010, and entitled “6-Modified Bicyclic Nucleic Acid Analogs”; U.S. Pat. No. 8,022,193, issued on Sep. 20, 2011, and entitled “6-Modified Bicyclic Nucleic Acid Analogs”; U.S. Pat. No. 7,569,686, issued on Aug. 4, 2009, and entitled “Compounds And Methods For Synthesis Of Bicyclic Nucleic Acid Analogs”; U.S. Pat. No. 7,335,765, issued on Feb. 26, 2008, and entitled “Novel Nucleoside And Oligonucleotide Analogues”; U.S. Pat. No. 7,314,923, issued on Jan. 1, 2008, and entitled “Novel Nucleoside And Oligonucleotide Analogues”; U.S. Pat. No. 7,816,333, issued on Oct. 19, 2010, and entitled “Oligonucleotide Analogues And Methods Utilizing The Same” and US Publication Number 2011/0009471 now U.S. Pat. No. 8,957,201, issued on Feb. 17, 2015, and entitled “Oligonucleotide Analogues And Methods Utilizing The Same”, the entire contents of each of which are incorporated herein by reference for all purposes.


In some embodiments, the oligonucleotide comprises at least one modified nucleoside that results in an increase in Tm of the oligonucleotide in a range of 1° C., 2° C., 3° C., 4° C., or 5° C. compared with an oligonucleotide that does not have the at least one modified nucleoside. The oligonucleotide may have a plurality of modified nucleosides that result in a total increase in Tm of the oligonucleotide in a range of 2° C., 3° C., 4° C., 5° C., 6° C., 7° C., 8° C., 9° C., 10° C., 15° C., 20° C., 25° C., 30° C., 35° C., 40° C., 45° C. or more compared with an oligonucleotide that does not have the modified nucleoside.


The oligonucleotide may comprise a mix of nucleosides of different kinds. For example, an oligonucleotide may comprise a mix of 2′-deoxyribonucleosides or ribonucleosides and 2′-fluoro modified nucleosides. An oligonucleotide may comprise a mix of deoxyribonucleosides or ribonucleosides and 2′-O-Me modified nucleosides. An oligonucleotide may comprise a mix of 2′-fluoro modified nucleosides and 2′-O-Me modified nucleosides. An oligonucleotide may comprise a mix of 2′-4′ bicyclic nucleosides and 2′-MOE, 2′-fluoro, or 2′-O-Me modified nucleosides. An oligonucleotide may comprise a mix of non-bicyclic 2′-modified nucleosides (e.g., 2′-MOE, 2′-fluoro, or 2′-O-Me) and 2′-4′ bicyclic nucleosides (e.g., LNA, ENA, cEt).


The oligonucleotide may comprise alternating nucleosides of different kinds. For example, an oligonucleotide may comprise alternating 2′-deoxyribonucleosides or ribonucleosides and 2′-fluoro modified nucleosides. An oligonucleotide may comprise alternating deoxyribonucleosides or ribonucleosides and 2′-O-Me modified nucleosides. An oligonucleotide may comprise alternating 2′-fluoro modified nucleosides and 2′-O-Me modified nucleosides. An oligonucleotide may comprise alternating 2′-4′ bicyclic nucleosides and 2′-MOE, 2′-fluoro, or 2′-O-Me modified nucleosides. An oligonucleotide may comprise alternating non-bicyclic 2′-modified nucleosides (e.g., 2′-MOE, 2′-fluoro, or 2′-O-Me) and 2′-4′ bicyclic nucleosides (e.g., LNA, ENA, cEt).


In some embodiments, an oligonucleotide described herein comprises a 5′-vinylphosphonate modification, one or more abasic residues, and/or one or more inverted abasic residues.


d. Internucleoside Linkages/Backbones


In some embodiments, oligonucleotide may contain a phosphorothioate or other modified internucleoside linkage. In some embodiments, the oligonucleotide comprises phosphorothioate internucleoside linkages. In some embodiments, the oligonucleotide comprises phosphorothioate internucleoside linkages between at least two nucleosides. In some embodiments, the oligonucleotide comprises phosphorothioate internucleoside linkages between all nucleosides. For example, in some embodiments, oligonucleotides comprise modified internucleoside linkages at the first, second, and/or (e.g., and) third internucleoside linkage at the 5′ or 3′ end of the nucleotide sequence.


Phosphorus-containing linkages that may be used include, but are not limited to, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates comprising 3′alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates comprising 3′-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3′-5′ linkages, 2′-5′ linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3′-5′ to 5′-3′ or 2′-5′ to 5′-2′; see U.S. Pat. Nos. 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455, 233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563, 253; 5,571,799; 5,587,361; and 5,625,050.


In some embodiments, oligonucleotides may have heteroatom backbones, such as methylene(methylimino) or MMI backbones; amide backbones (see De Mesmaeker et al. Ace. Chem. Res. 1995, 28:366-374); morpholino backbones (see Summerton and Weller, U.S. Pat. No. 5,034,506); or peptide nucleic acid (PNA) backbones (wherein the phosphodiester backbone of the oligonucleotide is replaced with a polyamide backbone, the nucleotides being bound directly or indirectly to the aza nitrogen atoms of the polyamide backbone, see Nielsen et al., Science 1991, 254, 1497).


e. Stereospecific Oligonucleotides


In some embodiments, internucleotidic phosphorus atoms of oligonucleotides are chiral, and the properties of the oligonucleotides by adjusted based on the configuration of the chiral phosphorus atoms. In some embodiments, appropriate methods may be used to synthesize P-chiral oligonucleotide analogs in a stereocontrolled manner (e.g., as described in Oka N, Wada T, Stereocontrolled synthesis of oligonucleotide analogs containing chiral internucleotidic phosphorus atoms. Chem Soc Rev. 2011 December; 40(12):5829-43.) In some embodiments, phosphorothioate containing oligonucleotides comprise nucleoside units that are joined together by either substantially all Sp or substantially all Rp phosphorothioate intersugar linkages are provided. In some embodiments, such phosphorothioate oligonucleotides having substantially chirally pure intersugar linkages are prepared by enzymatic or chemical synthesis, as described, for example, in U.S. Pat. No. 5,587,261, issued on Dec. 12, 1996, the contents of which are incorporated herein by reference in their entirety. In some embodiments, chirally controlled oligonucleotides provide selective cleavage patterns of a target nucleic acid. For example, in some embodiments, a chirally controlled oligonucleotide provides single site cleavage within a complementary sequence of a nucleic acid, as described, for example, in US Patent Application Publication 20170037399 Al, published on Feb. 2, 2017, entitled “CHIRAL DESIGN”, the contents of which are incorporated herein by reference in their entirety.


f. Morpholinos


In some embodiments, the oligonucleotide may be a morpholino-based compounds. Morpholino-based oligomeric compounds are described in Dwaine A. Braasch and David R. Corey, Biochemistry, 2002, 41(14), 4503-4510); Genesis, volume 30, issue 3, 2001; Heasman, J., Dev. Biol., 2002, 243, 209-214; Nasevicius et al., Nat. Genet., 2000, 26, 216-220; Lacerra et al., Proc. Natl. Acad. Sci., 2000, 97, 9591-9596; and U.S. Pat. No. 5,034,506, issued Jul. 23, 1991. In some embodiments, the morpholino-based oligomeric compound is a phosphorodiamidate morpholino oligomer (PMO) (e.g., as described in Iverson, Curr. Opin. Mol. Ther., 3:235-238, 2001; and Wang et al., J. Gene Med., 12:354-364, 2010; the disclosures of which are incorporated herein by reference in their entireties).


g. Peptide Nucleic Acids (PNAs)


In some embodiments, both a sugar and an internucleoside linkage (the backbone) of the nucleotide units of an oligonucleotide are replaced with novel groups. In some embodiments, the base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, for example, an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative publication that report the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., Science, 1991, 254, 1497-1500.


h. Mixmers


In some embodiments, an oligonucleotide described herein may be a mixmer or comprise a mixmer sequence pattern. In general, mixmers are oligonucleotides that comprise both naturally and non-naturally occurring nucleosides or comprise two different types of non-naturally occurring nucleosides typically in an alternating pattern. Mixmers generally have higher binding affinity than unmodified oligonucleotides and may be used to specifically bind a target molecule, e.g., to block a binding site on the target molecule. Generally, mixmers do not recruit an RNase to the target molecule and thus do not promote cleavage of the target molecule. Such oligonucleotides that are incapable of recruiting RNase H have been described, for example, see WO2007/112754 or WO2007/112753.


In some embodiments, the mixmer comprises or consists of a repeating pattern of nucleoside analogues and naturally occurring nucleosides, or one type of nucleoside analogue and a second type of nucleoside analogue. However, a mixmer need not comprise a repeating pattern and may instead comprise any arrangement of modified nucleoside s and naturally occurring nucleoside s or any arrangement of one type of modified nucleoside and a second type of modified nucleoside. The repeating pattern, may, for instance be every second or every third nucleoside is a modified nucleoside, such as LNA, and the remaining nucleoside s are naturally occurring nucleosides, such as DNA, or are a 2′ substituted nucleoside analogue such as 2′-MOE or 2′ fluoro analogues, or any other modified nucleoside described herein. It is recognized that the repeating pattern of modified nucleoside, such as LNA units, may be combined with modified nucleoside at fixed positions—e.g. at the 5′ or 3′ termini.


In some embodiments, a mixmer does not comprise a region of more than 5, more than 4, more than 3, or more than 2 consecutive naturally occurring nucleosides, such as DNA nucleosides. In some embodiments, the mixmer comprises at least a region consisting of at least two consecutive modified nucleosides, such as at least two consecutive LNAs. In some embodiments, the mixmer comprises at least a region consisting of at least three consecutive modified nucleoside units, such as at least three consecutive LNAs.


In some embodiments, the mixmer does not comprise a region of more than 7, more than 6, more than 5, more than 4, more than 3, or more than 2 consecutive nucleoside analogues, such as LNAs. In some embodiments, LNA units may be replaced with other nucleoside analogues, such as those referred to herein.


Mixmers may be designed to comprise a mixture of affinity enhancing modified nucleosides, such as in non-limiting example LNA nucleosides and 2′-O-Me nucleosides. In some embodiments, a mixmer comprises modified internucleoside linkages (e.g., phosphorothioate internucleoside linkages or other linkages) between at least two, at least three, at least four, at least five or more nucleosides.


A mixmer may be produced using any suitable method. Representative U.S. patents, U.S. patent publications, and PCT publications that teach the preparation of mixmers include U.S. patent publication Nos. US20060128646, US20090209748, US20090298916, US20110077288, and US20120322851, and U.S. Pat. No. 7,687,617.


In some embodiments, a mixmer comprises one or more morpholino nucleosides. For example, in some embodiments, a mixmer may comprise morpholino nucleosides mixed (e.g., in an alternating manner) with one or more other nucleosides (e.g., DNA, RNA nucleosides) or modified nucleosides (e.g., LNA, 2′-O-Me nucleosides).


In some embodiments, mixmers are useful for splice correcting or exon skipping, for example, as reported in Touznik A., et al., LNA/DNA mixmer-based antisense oligonucleotides correct alternative splicing of the SMN2 gene and restore SMN protein expression in type 1 SMA fibroblasts Scientific Reports, volume 7, Article number: 3672 (2017), Chen S. et al., Synthesis of a Morpholino Nucleic Acid (MNA)-Uridine Phosphoramidite, and Exon Skipping Using MNA/2′-O-Methyl Mixmer Antisense Oligonucleotide, Molecules 2016, 21, 1582, the contents of each which are incorporated herein by reference.


i. Multimers


In some embodiments, molecular payloads may comprise multimers (e.g., concatemers) of 2 or more oligonucleotides connected by a linker. In this way, in some embodiments, the oligonucleotide loading of a complex can be increased beyond the available linking sites on a targeting agent (e.g., available thiol sites on an antibody) or otherwise tuned to achieve a particular payload loading content. Oligonucleotides in a multimer can be the same or different (e.g., targeting different genes or different sites on the same gene or products thereof).


In some embodiments, multimers comprise 2 or more oligonucleotides linked together by a cleavable linker. However, in some embodiments, multimers comprise 2 or more oligonucleotides linked together by a non-cleavable linker. In some embodiments, a multimer comprises 2, 3, 4, 5, 6, 7, 8, 9, 10 or more oligonucleotides linked together. In some embodiments, a multimer comprises 2 to 5, 2 to 10 or 4 to 20 oligonucleotides linked together.


In some embodiments, a multimer comprises 2 or more oligonucleotides linked end-to-end (in a linear arrangement). In some embodiments, a multimer comprises 2 or more oligonucleotides linked end-to-end via an oligonucleotide based linker (e.g., poly-dT linker, an abasic linker). In some embodiments, a multimer comprises a 5′ end of one oligonucleotide linked to a 3′ end of another oligonucleotide. In some embodiments, a multimer comprises a 3′ end of one oligonucleotide linked to a 3′ end of another oligonucleotide. In some embodiments, a multimer comprises a 5′ end of one oligonucleotide linked to a 5′ end of another oligonucleotide. Still, in some embodiments, multimers can comprise a branched structure comprising multiple oligonucleotides linked together by a branching linker.


Further examples of multimers that may be used in the complexes provided herein are disclosed, for example, in US Patent Application Number 2015/0315588 A1, entitled Methods of delivering multiple targeting oligonucleotides to a cell using cleavable linkers, which was published on Nov. 5, 2015; US Patent Application Number 2015/0247141 A1, entitled Multimeric Oligonucleotide Compounds, which was published on Sep. 3, 2015, US Patent Application Number US 2011/0158937 A1, entitled Immunostimulatory Oligonucleotide Multimers, which was published on Jun. 30, 2011; and U.S. Pat. No. 5,693,773, entitled Triplex-Forming Antisense Oligonucleotides Having Abasic Linkers Targeting Nucleic Acids Comprising Mixed Sequences Of Purines And Pyrimidines, which issued on Dec. 2, 1997, the contents of each of which are incorporated herein by reference in their entireties.


C. Linkers

Complexes described herein generally comprise a linker that covalently links any one of the anti-TfR1 antibodies described herein to a molecular payload. A linker comprises at least one covalent bond. In some embodiments, a linker may be a single bond, e.g., a disulfide bond or disulfide bridge, that covalently links an anti-TfR1 antibody to a molecular payload. However, in some embodiments, a linker may covalently link any one of the anti-TfR1 antibodies described herein to a molecular payload through multiple covalent bonds. In some embodiments, a linker may be a cleavable linker. However, in some embodiments, a linker may be a non-cleavable linker. A linker is typically stable in vitro and in vivo, and may be stable in certain cellular environments. Additionally, typically a linker does not negatively impact the functional properties of either the anti-TfR1 antibody or the molecular payload. Examples and methods of synthesis of linkers are known in the art (see, e.g. Kline, T. et al. “Methods to Make Homogenous Antibody Drug Conjugates.” Pharmaceutical Research, 2015, 32:11, 3480-3493.; Jain, N. et al. “Current ADC Linker Chemistry” Pharm Res. 2015, 32:11, 3526-3540.; McCombs, J. R. and Owen, S. C. “Antibody Drug Conjugates: Design and Selection of Linker, Payload and Conjugation Chemistry” AAPS J. 2015, 17:2, 339-351.).


A linker typically will contain two different reactive species that allow for attachment to both the anti-TfR1 antibody and a molecular payload. In some embodiments, the two different reactive species may be a nucleophile and/or an electrophile. In some embodiments, a linker contains two different electrophiles or nucleophiles that are specific for two different nucleophiles or electrophiles. In some embodiments, a linker is covalently linked to an anti-TfR1 antibody via conjugation to a lysine residue or a cysteine residue of the anti-TfR1 antibody. In some embodiments, a linker is covalently linked to a cysteine residue of an anti-TfR1 antibody via a maleimide-containing linker, wherein optionally the maleimide-containing linker comprises a maleimidocaproyl or maleimidomethyl cyclohexane-1-carboxylate group. In some embodiments, a linker is covalently linked to a cysteine residue of an anti-TfR1 antibody or thiol functionalized molecular payload via a 3-arylpropionitrile functional group. In some embodiments, a linker is covalently linked to a lysine residue of an anti-TfR1 antibody. In some embodiments, a linker is covalently linked to an anti-TfR1 antibody and/or (e.g., and) a molecular payload, independently, via an amide bond, a carbamate bond, a hydrazide, a triazole, a thioether, and/or a disulfide bond.


i. Cleavable Linkers


A cleavable linker may be a protease-sensitive linker, a pH-sensitive linker, or a glutathione-sensitive linker. These linkers are typically cleavable only intracellularly and are preferably stable in extracellular environments, e.g., extracellular to a muscle cell.


Protease-sensitive linkers are cleavable by protease enzymatic activity. These linkers typically comprise peptide sequences and may be 2-10 amino acids, about 2-5 amino acids, about 5-10 amino acids, about 10 amino acids, about 5 amino acids, about 3 amino acids, or about 2 amino acids in length. In some embodiments, a peptide sequence may comprise naturally-occurring amino acids, e.g. cysteine, alanine, or non-naturally-occurring or modified amino acids. Non-naturally occurring amino acids include 3-amino acids, homo-amino acids, proline derivatives, 3-substituted alanine derivatives, linear core amino acids, N-methyl amino acids, and others known in the art. In some embodiments, a protease-sensitive linker comprises a valine-citrulline or alanine-citrulline sequence. In some embodiments, a protease-sensitive linker can be cleaved by a lysosomal protease, e.g. cathepsin B, and/or (e.g., and) an endosomal protease.


A pH-sensitive linker is a covalent linkage that readily degrades in high or low pH environments. In some embodiments, a pH-sensitive linker may be cleaved at a pH in a range of 4 to 6. In some embodiments, a pH-sensitive linker comprises a hydrazone or cyclic acetal. In some embodiments, a pH-sensitive linker is cleaved within an endosome or a lysosome.


In some embodiments, a glutathione-sensitive linker comprises a disulfide moiety. In some embodiments, a glutathione-sensitive linker is cleaved by a disulfide exchange reaction with a glutathione species inside a cell. In some embodiments, the disulfide moiety further comprises at least one amino acid, e.g., a cysteine residue.


In some embodiments, a linker comprises a valine-citrulline sequence (e.g., as described in U.S. Pat. No. 6,214,345, incorporated herein by reference). In some embodiments, before conjugation, a linker comprises a structure of:




embedded image


In some embodiments, after conjugation, a linker comprises a structure of:




embedded image


In some embodiments, before conjugation, a linker comprises a structure of:




embedded image


wherein n is any number from 0-10. In some embodiments, n is 3.


In some embodiments, a linker comprises a structure of:




embedded image


wherein n is any number from 0-10, wherein m is any number from 0-10. In some embodiments, n is 3 and/or (e.g., and) m is 4.


In some embodiments, a linker comprises a structure of:




embedded image


wherein n is any number from 0-10, wherein m is any number from 0-10. In some embodiments, n is 3 and/or (e.g., and) m is 4.


ii. Non-Cleavable Linkers


In some embodiments, non-cleavable linkers may be used. Generally, a non-cleavable linker cannot be readily degraded in a cellular or physiological environment. In some embodiments, a non-cleavable linker comprises an optionally substituted alkyl group, wherein the substitutions may include halogens, hydroxyl groups, oxygen species, and other common substitutions. In some embodiments, a linker may comprise an optionally substituted alkyl, an optionally substituted alkylene, an optionally substituted arylene, a heteroarylene, a peptide sequence comprising at least one non-natural amino acid, a truncated glycan, a sugar or sugars that cannot be enzymatically degraded, an azide, an alkyne-azide, a peptide sequence comprising a LPXT sequence, a thioether, a biotin, a biphenyl, repeating units of polyethylene glycol or equivalent compounds, acid esters, acid amides, sulfamides, and/or an alkoxy-amine linker. In some embodiments, sortase-mediated ligation can be utilized to covalently link an anti-TfR1 antibody comprising a LPXT sequence to a molecular payload comprising a (G)n sequence (see, e.g. Proft T. Sortase-mediated protein ligation: an emerging biotechnology tool for protein modification and immobilization. Biotechnol Lett. 2010, 32(1):1-10.).


In some embodiments, a linker may comprise a substituted alkylene, an optionally substituted alkenylene, an optionally substituted alkynylene, an optionally substituted cycloalkylene, an optionally substituted cycloalkenylene, an optionally substituted arylene, an optionally substituted heteroarylene further comprising at least one heteroatom selected from N, O, and S, an optionally substituted heterocyclylene further comprising at least one heteroatom selected from N, O, and S, an imino, an optionally substituted nitrogen species, an optionally substituted oxygen species 0, an optionally substituted sulfur species, or a poly(alkylene oxide), e.g. polyethylene oxide or polypropylene oxide. In some embodiments, a linker may be a non-cleavable N-gamma-maleimidobutyryl-oxysuccinimide ester (GMBS) linker.


iii. Linker Conjugation


In some embodiments, a linker is covalently linked to an anti-TfR1 antibody and/or (e.g., and) molecular payload via a phosphate, thioether, ether, carbon-carbon, carbamate, or amide bond. In some embodiments, a linker is covalently linked to an oligonucleotide through a phosphate or phosphorothioate group, e.g. a terminal phosphate of an oligonucleotide backbone. In some embodiments, a linker is covalently linked to an anti-TfR1 antibody, through a lysine or cysteine residue present on the anti-TfR1 antibody.


In some embodiments, a linker, or a portion thereof is covalently linked to an anti-TfR1 antibody and/or (e.g., and) molecular payload by a cycloaddition reaction between an azide and an alkyne to form a triazole, wherein the azide or the alkyne may be located on the anti-TfR1 antibody, molecular payload, or the linker. In some embodiments, an alkyne may be a cyclic alkyne, e.g., a cyclooctyne. In some embodiments, an alkyne may be bicyclononyne (also known as bicyclo[6.1.0]nonyne or BCN) or substituted bicyclononyne. In some embodiments, a cyclooctyne is as described in International Patent Application Publication WO2011136645, published on Nov. 3, 2011, entitled, “Fused Cyclooctyne Compounds And Their Use In Metal-free Click Reactions”. In some embodiments, an azide may be a sugar or carbohydrate molecule that comprises an azide. In some embodiments, an azide may be 6-azido-6-deoxygalactose or 6-azido-N-acetylgalactosamine. In some embodiments, a sugar or carbohydrate molecule that comprises an azide is as described in International Patent Application Publication WO2016170186, published on Oct. 27, 2016, entitled, “Process For The Modification Of A Glycoprotein Using A Glycosyltransferase That Is Or Is Derived From A P(1,4)-N-Acetylgalactosaminyltransferase”. In some embodiments, a cycloaddition reaction between an azide and an alkyne to form a triazole, wherein the azide or the alkyne may be located on the anti-TfR1 antibody, molecular payload, or the linker is as described in International Patent Application Publication WO2014065661, published on May 1, 2014, entitled, “Modified antibody, antibody-conjugate and process for the preparation thereof”; or International Patent Application Publication WO2016170186, published on Oct. 27, 2016, entitled, “Process For The Modification Of A Glycoprotein Using A Glycosyltransferase That Is Or Is Derived From A P(1,4)-N-Acetylgalactosaminyltransferase”.


In some embodiments, a linker comprises a spacer, e.g., a polyethylene glycol spacer or an acyl/carbomoyl sulfamide spacer, e.g., a HydraSpace™ spacer. In some embodiments, a spacer is as described in Verkade, J. M. M. et al., “A Polar Sulfamide Spacer Significantly Enhances the Manufacturability, Stability, and Therapeutic Index of Antibody-Drug Conjugates”, Antibodies, 2018, 7, 12.


In some embodiments, a linker is covalently linked to an anti-TfR1 antibody and/or (e.g., and) molecular payload by the Diels-Alder reaction between a dienophile and a diene/hetero-diene, wherein the dienophile or the diene/hetero-diene may be located on the anti-TfR1 antibody, molecular payload, or the linker. In some embodiments a linker is covalently linked to an anti-TfR1 antibody and/or (e.g., and) molecular payload by other pericyclic reactions such as an ene reaction. In some embodiments, a linker is covalently linked to an anti-TfR1 antibody and/or (e.g., and) molecular payload by an amide, thioamide, or sulfonamide bond reaction. In some embodiments, a linker is covalently linked to an anti-TfR1 antibody and/or (e.g., and) molecular payload by a condensation reaction to form an oxime, hydrazone, or semicarbazide group existing between the linker and the anti-TfR1 antibody and/or (e.g., and) molecular payload.


In some embodiments, a linker is covalently linked to an anti-TfR1 antibody and/or (e.g., and) molecular payload by a conjugate addition reaction between a nucleophile, e.g. an amine or a hydroxyl group, and an electrophile, e.g. a carboxylic acid, carbonate, or an aldehyde. In some embodiments, a nucleophile may exist on a linker and an electrophile may exist on an anti-TfR1 antibody or molecular payload prior to a reaction between a linker and an anti-TfR1 antibody or molecular payload. In some embodiments, an electrophile may exist on a linker and a nucleophile may exist on an anti-TfR1 antibody or molecular payload prior to a reaction between a linker and an anti-TfR1 antibody or molecular payload. In some embodiments, an electrophile may be an azide, pentafluorophenyl, a silicon centers, a carbonyl, a carboxylic acid, an anhydride, an isocyanate, a thioisocyanate, a succinimidyl ester, a sulfosuccinimidyl ester, a maleimide, an alkyl halide, an alkyl pseudohalide, an epoxide, an episulfide, an aziridine, an aryl, an activated phosphorus center, and/or an activated sulfur center. In some embodiments, a nucleophile may be an optionally substituted alkene, an optionally substituted alkyne, an optionally substituted aryl, an optionally substituted heterocyclyl, a hydroxyl group, an amino group, an alkylamino group, an anilido group, and/or a thiol group.


In some embodiments, a linker comprises a valine-citrulline sequence covalently linked to a reactive chemical moiety (e.g., an azide moiety or a BCN moiety for click chemistry). In some embodiments, a linker comprising a valine-citrulline sequence covalently linked to a reactive chemical moiety (e.g., an azide moiety for click chemistry) comprises a structure of:




embedded image


wherein n is any number from 0-10. In some embodiments, n is 3.


In some embodiments, a linker comprising the structure of Formula (A) is covalently linked (e.g., optionally via additional chemical moieties) to a molecular payload (e.g., an oligonucleotide). In some embodiments, a linker comprising the structure of Formula (A) is covalently linked to an oligonucleotide, e.g., through a nucleophilic substitution with amine-L1-oligonucleotides forming a carbamate bond, yielding a compound comprising a structure of:




embedded image


wherein n is any number from 0-10. In some embodiments, n is 3.


In some embodiments, the compound of Formula (B) is further covalently linked via a triazole to additional moieties, wherein the triazole is formed by a click reaction between the azide of Formula (A) or Formula (B) and an alkyne provided on a bicyclononyne. In some embodiments, a compound comprising a bicyclononyne comprises a structure of:




embedded image


wherein m is any number from 0-10. In some embodiments, m is 4.


In some embodiments, the azide of the compound of structure (B) forms a triazole via a click reaction with the alkyne of the compound of structure (C), forming a compound comprising a structure of:




embedded image


wherein n is any number from 0-10, and wherein m is any number from 0-10. In some embodiments, n is 3 and m is 4.


In some embodiments, the compound of structure (D) is further covalently linked to a lysine of the anti-TfR1 antibody, forming a complex comprising a structure of:




embedded image


wherein n is any number from 0-10, wherein m is any number from 0-10. In some embodiments, n is 3 and/or (e.g., and) m is 4. It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (E) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.


In some embodiments, the compound of Formula (C) is further covalently linked to a lysine of the anti-TfR1 antibody, forming a compound comprising a structure of:




embedded image


wherein m is 0-15 (e.g., 4). It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (F) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.


In some embodiments, the azide of the compound of structure (B) forms a triazole via a click reaction with the alkyne of the compound of structure (F), forming a complex comprising a structure of:




embedded image


wherein n is any number from 0-10, wherein m is any number from 0-10. In some embodiments, n is 3 and/or (e.g., and) m is 4. It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (E) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.


In some embodiments, the azide of the compound of structure (A) forms a triazole via a click reaction with the alkyne of the compound of structure (F), forming a compound comprising a structure of:




embedded image


wherein n is any number from 0-10, wherein m is any number from 0-10. In some embodiments, n is 3 and/or (e.g., and) m is 4. In some embodiments, an oligonucleotide is covalently linked to a compound comprising a structure of formula (G), thereby forming a complex comprising a structure of formula (E). It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (G) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.


In some embodiments, in any one of the complexes described herein, the anti-TfR1 antibody is covalently linked via a lysine of the anti-TfR1 antibody to a molecular payload (e.g., an oligonucleotide) via a linker comprising a structure of:




embedded image


wherein n is any number from 0-10, wherein m is any number from 0-10. In some embodiments, n is 3 and/or (e.g., and) m is 4.


In some embodiments, in any one of the complexes described herein, the anti-TfR1 antibody is covalently linked via a lysine of the anti-TfR1 antibody to a molecular payload (e.g., an oligonucleotide) via a linker comprising a structure of:




embedded image


wherein n is any number from 0-10, wherein m is any number from 0-10. In some embodiments, n is 3 and/or (e.g., and) m is 4.


In some embodiments, in formulae (B), (D), (E), and (I), L1 is a spacer that is a substituted or unsubstituted aliphatic, substituted or unsubstituted heteroaliphatic, substituted or unsubstituted carbocyclylene, substituted or unsubstituted heterocyclylene, substituted or unsubstituted arylene, substituted or unsubstituted heteroarylene, —O—, —N(RA)—, —S—, —C(═O)—, —C(═O)O—, —C(═O)NRA—, —NRAC(═O)—, —NRAC(═O)RA—, —C(═O)RA—, —NRAC(═O)O—, —NRAC(═O)N(RA)—, —OC(═O)—, —OC(═O)O—, —OC(═O)N(RA)—, —S(O)2NRA—, —NRAS(O)2—, or a combination thereof, wherein each RA is independently hydrogen or substituted or unsubstituted alkyl. In some embodiments, L1 is




embedded image


wherein L2 is




embedded image


wherein a labels the site directly linked to the carbamate moiety of formulae (B), (D), (E), and (I); and b labels the site covalently linked (directly or via additional chemical moieties) to the oligonucleotide.


In some embodiments, L1 is:




embedded image


wherein a labels the site directly linked to the carbamate moiety of formulae (B), (D), (E), and (I); and b labels the site covalently linked (directly or via additional chemical moieties) to the oligonucleotide.


In some embodiments, L1 is




embedded image


In some embodiments, L1 is linked to a 5′ phosphate of the oligonucleotide. In some embodiments, the phosphate is a phosphodiester. In some embodiments, L1 is linked to a 5′ phosphorothioate of the oligonucleotide. In some embodiments, L1 is linked to a 5′ phosphonoamidate of the oligonucleotide. In some embodiments, L1 is linked via a phosphorodiamidate linkage to the 5′ end of the oligonucleotide.


In some embodiments, L1 is optional (e.g., need not be present).


In some embodiments, any one of the complexes described herein has a structure of:




embedded image


wherein n is 0-15 (e.g., 3) and m is 0-15 (e.g., 4). It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (J) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.


In some embodiments, any one of the complexes described herein has a structure of:




embedded image


wherein n is 0-15 (e.g., 3) and m is 0-15 (e.g., 4).


In some embodiments, the oligonucleotide is modified to comprise an amine group at the 5′ end, the 3′ end, or internally (e.g., as an amine functionalized nucleobase), prior to linking to a compound, e.g., a compound of formula (A) or formula (G).


Although linker conjugation is described in the context of anti-TfR1 antibodies and oligonucleotide molecular payloads, it should be understood that use of such linker conjugation on other muscle-targeting agents, such as other muscle-targeting antibodies, and/or on other molecular payloads is contemplated.


D. Examples of Antibody-Molecular Payload Complexes

Further provided herein are non-limiting examples of complexes comprising any one the anti-TfR1 antibodies described herein covalently linked to any of the molecular payloads (e.g., an oligonucleotide) described herein. In some embodiments, the anti-TfR1 antibody (e.g., any one of the anti-TfR1 antibodies provided in Tables 2-7) is covalently linked to a molecular payload (e.g., an oligonucleotide such as the oligonucleotides provided in Table 8) via a linker. Any of the linkers described herein may be used. In some embodiments, if the molecular payload is an oligonucleotide, the linker is linked to the 5′ end of the oligonucleotide, the 3′ end of the oligonucleotide, or to an internal site of the oligonucleotide. In some embodiments, the linker is linked to the anti-TfR1 antibody via a thiol-reactive linkage (e.g., via a cysteine in the anti-TfR1 antibody). In some embodiments, the linker (e.g., a linker comprising a valine-citrulline sequence) is linked to the antibody (e.g., an anti-TfR1 antibody described herein) via an amine group (e.g., via a lysine in the antibody). In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779).


An example of a structure of a complex comprising an anti-TfR1 antibody covalently linked to a molecular payload via a linker is provided below:




embedded image


wherein the linker is linked to the antibody via a thiol-reactive linkage (e.g., via a cysteine in the antibody). In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779).


Another example of a structure of a complex comprising an anti-TfR1 antibody covalently linked to a molecular payload via a linker is provided below:




embedded image


wherein n is a number between 0-10, wherein m is a number between 0-10, wherein the linker is linked to the antibody via an amine group (e.g., on a lysine residue), and/or (e.g., and) wherein the linker is linked to the oligonucleotide (e.g., at the 5′ end, 3′ end, or internally). In some embodiments, the linker is linked to the antibody via a lysine, the linker is linked to the oligonucleotide at the 5′ end, n is 3, and m is 4. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779). It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (E) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.


It should be appreciated that antibodies can be linked to molecular payloads with different stoichiometries, a property that may be referred to as a drug to antibody ratios (DAR) with the “drug” being the molecular payload. In some embodiments, one molecular payload is linked to an antibody (DAR=1). In some embodiments, two molecular payloads are linked to an antibody (DAR=2). In some embodiments, three molecular payloads are linked to an antibody (DAR=3). In some embodiments, four molecular payloads are linked to an antibody (DAR=4). In some embodiments, a mixture of different complexes, each having a different DAR, is provided. In some embodiments, an average DAR of complexes in such a mixture may be in a range of 1 to 3, 1 to 4, 1 to 5 or more. An average DAR of complexes in a mixture need not be an integer value. DAR may be increased by conjugating molecular payloads to different sites on an antibody and/or (e.g., and) by conjugating multimers to one or more sites on antibody. For example, a DAR of 2 may be achieved by conjugating a single molecular payload to two different sites on an antibody or by conjugating a dimer molecular payload to a single site of an antibody.


In some embodiments, the complex described herein comprises an anti-TfR1 antibody described herein (e.g., the antibodies provided in Tables 2-7) covalently linked to a molecular payload. In some embodiments, the complex described herein comprises an anti-TfR1 antibody described herein (e.g., the antibodies provided in Tables 2-7) covalently linked to molecular payload via a linker (e.g., a linker comprising a valine-citrulline sequence). In some embodiments, the linker (e.g., a linker comprising a valine-citrulline sequence) is linked to the antibody (e.g., an anti-TfR1 antibody described herein) via a thiol-reactive linkage (e.g., via a cysteine in the antibody). In some embodiments, the linker (e.g., a linker comprising a valine-citrulline sequence) is linked to the antibody (e.g., an anti-TfR1 antibody described herein) via an amine group (e.g., via a lysine in the antibody). In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a CDR-H1, a CDR-H2, a CDR-H3, a CDR-L1, a CDR-L2, and a CDR-L3 of any one of the antibodies listed in Table 2. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a VH comprising the amino acid sequence of SEQ ID NO: 69, SEQ ID NO: 71, or SEQ ID NO: 72, and a VL comprising the amino acid sequence of SEQ ID NO: 70. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a VH comprising the amino acid sequence of SEQ ID NO: 73 or SEQ ID NO: 76, and a VL comprising the amino acid sequence of SEQ ID NO: 74. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a VH comprising the amino acid sequence of SEQ ID NO: 73 or SEQ ID NO: 76, and a VL comprising the amino acid sequence of SEQ ID NO: 75. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a VH comprising the amino acid sequence of SEQ ID NO: 77, and a VL comprising the amino acid sequence of SEQ ID NO: 78. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a VH comprising the amino acid sequence of SEQ ID NO: 77 or SEQ ID NO: 79, and a VL comprising the amino acid sequence of SEQ ID NO: 80. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a VH comprising the amino acid sequence of SEQ ID NO: 154, and a VL comprising the amino acid sequence of SEQ ID NO: 155. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 84, SEQ ID NO: 86 or SEQ ID NO: 87 and a light chain comprising the amino acid sequence of SEQ ID NO: 85. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 88 or SEQ ID NO: 91, and a light chain comprising the amino acid sequence of SEQ ID NO: 89. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 88 or SEQ ID NO: 91, and a light chain comprising the amino acid sequence of SEQ ID NO: 90. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 92 or SEQ ID NO: 94, and a light chain comprising the amino acid sequence of SEQ ID NO: 95. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 92, and a light chain comprising the amino acid sequence of SEQ ID NO: 93. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 156, and a light chain comprising the amino acid sequence of SEQ ID NO: 157. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 97, SEQ ID NO: 98, or SEQ ID NO: 99 and a light chain comprising the amino acid sequence of SEQ ID NO: 85. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 100 or SEQ ID NO: 101 and a light chain comprising the amino acid sequence of SEQ ID NO: 89. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 100 or SEQ ID NO: 101 and a light chain comprising the amino acid sequence of SEQ ID NO: 90. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 102 and a light chain comprising the amino acid sequence of SEQ ID NO: 93. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 102 or SEQ ID NO: 103 and a light chain comprising the amino acid sequence of SEQ ID NO: 95. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779).


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to a molecular payload, wherein the anti-TfR1 antibody comprises a heavy chain comprising the amino acid sequence of SEQ ID NO: 158 or SEQ ID NO: 159 and a light chain comprising the amino acid sequence of SEQ ID NO: 157. In some embodiments, the molecular payload is a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779).


In any of the example complexes described herein, in some embodiments, the anti-TfR1 antibody is covalently linked to the molecular payload via a linker comprising a structure of:




embedded image


wherein n is 3, m is 4.


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to the 5′ end of a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779) via a lysine in the anti-TfR1 antibody, wherein the anti-TfR1 antibody comprises a CDR-H1, a CDR-H2, a CDR-H3, a CDR-L1, a CDR-L2, and a CDR-L3 of any one of the antibodies listed in Table 2, wherein the complex has a structure of:




embedded image


wherein n is 3 and m is 4. It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (E) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to the 5′ end of a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779) via a lysine in the anti-TfR1 antibody, wherein the anti-TfR1 antibody comprises a VH and VL of any one of the antibodies listed in Table 3, wherein the complex has a structure of:




embedded image


wherein n is 3 and m is 4. It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (E) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.


In some embodiments, the complex described herein comprises an anti-TfR1 antibody covalently linked to the 5′ end of a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779) via a lysine in the anti-TfR1 antibody, wherein the anti-TfR1 antibody comprises a heavy chain and light chain of any one of the antibodies listed in Table 4, wherein the complex has a structure of:




embedded image


wherein n is 3 and m is 4. It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (E) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.


In some embodiments, the complex described herein comprises an anti-TfR1 Fab covalently linked to the 5′ end of a DMD-targeting oligonucleotide (e.g., a DMD-targeting oligonucleotide listed in Table 8, provided by any one of SEQ ID NO: 780-2019, or complementary to any one of SEQ ID NO: 160-779) via a lysine in the anti-TfR1 antibody, wherein the anti-TfR1 Fab comprises a heavy chain and light chain of any one of the antibodies listed in Table 5, wherein the complex has a structure of:




embedded image


wherein n is 3 and m is 4. It should be understood that the amide shown adjacent the anti-TfR1 antibody in Formula (E) results from a reaction with an amine of the anti-TfR1 antibody, such as a lysine epsilon amine.


In some embodiments, in any one of the examples of complexes described herein, L1 is:




embedded image


wherein L2 is




embedded image


wherein a labels the site directly linked to the carbamate moiety of formulae (B), (D), (E), and (I); and b labels the site covalently linked (directly or via additional chemical moieties) to the oligonucleotide.


In some embodiments, L1 is:




embedded image


wherein a labels the site directly linked to the carbamate moiety of formulae (B), (D), (E), and (I); and b labels the site covalently linked (directly or via additional chemical moieties) to the oligonucleotide.


In some embodiments, L1 is linked to a 5′ phosphate of the oligonucleotide. In some embodiments, the phosphate is a phosphodiester. In some embodiments, L1 is linked to a 5′ phosphorothioate of the oligonucleotide. In some embodiments, L1 is linked to a 5′ phosphonoamidate of the oligonucleotide. In some embodiments, L1 is linked via a phosphorodiamidate linkage to the 5′ end of the oligonucleotide.


In some embodiments, L1 is optional (e.g., need not be present).


III. Formulations

Complexes provided herein may be formulated in any suitable manner. Generally, complexes provided herein are formulated in a manner suitable for pharmaceutical use. For example, complexes can be delivered to a subject using a formulation that minimizes degradation, facilitates delivery and/or (e.g., and) uptake, or provides another beneficial property to the complexes in the formulation. In some embodiments, provided herein are compositions comprising complexes and pharmaceutically acceptable carriers. Such compositions can be suitably formulated such that when administered to a subject, either into the immediate environment of a target cell or systemically, a sufficient amount of the complexes enter target muscle cells. In some embodiments, complexes are formulated in buffer solutions such as phosphate-buffered saline solutions, liposomes, micellar structures, and capsids.


It should be appreciated that, in some embodiments, compositions may include separately one or more components of complexes provided herein (e.g., muscle-targeting agents, linkers, molecular payloads, or precursor molecules of any one of them).


In some embodiments, complexes are formulated in water or in an aqueous solution (e.g., water with pH adjustments). In some embodiments, complexes are formulated in basic buffered aqueous solutions (e.g., PBS). In some embodiments, formulations as disclosed herein comprise an excipient. In some embodiments, an excipient confers to a composition improved stability, improved absorption, improved solubility and/or (e.g., and) therapeutic enhancement of the active ingredient. In some embodiments, an excipient is a buffering agent (e.g., sodium citrate, sodium phosphate, a tris base, or sodium hydroxide) or a vehicle (e.g., a buffered solution, petrolatum, dimethyl sulfoxide, or mineral oil).


In some embodiments, a complex or component thereof (e.g., oligonucleotide or antibody) is lyophilized for extending its shelf-life and then made into a solution before use (e.g., administration to a subject). Accordingly, an excipient in a composition comprising a complex, or component thereof, described herein may be a lyoprotectant (e.g., mannitol, lactose, polyethylene glycol, or polyvinyl pyrolidone), or a collapse temperature modifier (e.g., dextran, ficoll, or gelatin).


In some embodiments, a pharmaceutical composition is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, administration. Typically, the route of administration is intravenous or subcutaneous.


Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. In some embodiments, formulations include isotonic agents, for example, sugars, polyalcohols such as mannitol, sorbitol, and sodium chloride in the composition. Sterile injectable solutions can be prepared by incorporating the complexes in a required amount in a selected solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.


In some embodiments, a composition may contain at least about 0.1% of the complex, or component thereof, or more, although the percentage of the active ingredient(s) may be between about 1% and about 80% or more of the weight or volume of the total composition. Factors such as solubility, bioavailability, biological half-life, route of administration, product shelf life, as well as other pharmacological considerations will be contemplated by one skilled in the art of preparing such pharmaceutical formulations, and as such, a variety of dosages and treatment regimens may be desirable.


IV. Methods of Use/Treatment

Complexes comprising a muscle-targeting agent covalently linked to a molecular payload as described herein are effective in treating a subject having a dystrophinopathy, e.g., Duchenne muscular dystrophy. In some embodiments, complexes comprise a molecular payload that is an oligonucleotide, e.g., an antisense oligonucleotide that facilitates exon skipping of a pre-mRNA expressed from a mutated DMD allele.


In some embodiments, a subject may be a human subject, a non-human primate subject, a rodent subject, or any suitable mammalian subject. In some embodiments, a subject may have Duchenne muscular dystrophy or other dystrophinopathy. In some embodiments, a subject has a mutated DMD allele, which may optionally comprise at least one mutation in a DMD exon that causes a frameshift mutation and leads to improper RNA splicing/processing. In some embodiments, a subject is suffering from symptoms of a severe dystrophinopathy, e.g. muscle atrophy or muscle loss. In some embodiments, a subject has an asymptomatic increase in serum concentration of creatine phosphokinase (CK) and/or (e.g., and) muscle cramps with myoglobinuria. In some embodiments, a subject has a progressive muscle disease, such as Duchenne or Becker muscular dystrophy or DMD-associated dilated cardiomyopathy (DCM). In some embodiments, a subject is not suffering from symptoms of a dystrophinopathy.


In some embodiments, a subject has a mutation in a DMD gene that is amenable to exon 55 skipping. In some embodiments, a complex comprising a muscle-targeting agent covalently linked to a molecular payload as described herein is effective in treating a subject having a mutation in a DMD gene that is amenable to exon 55 skipping. In some embodiments, a complex comprises a molecular payload that is an oligonucleotide, e.g., an antisense oligonucleotide that facilitates skipping of exon 55 of a pre-mRNA, such as in a pre-mRNA encoded from a mutated DMD gene (e.g., a mutated DMD gene that is amenable to exon 55 skipping).


An aspect of the disclosure includes methods involving administering to a subject an effective amount of a complex as described herein. In some embodiments, an effective amount of a pharmaceutical composition that comprises a complex comprising a muscle-targeting agent covalently linked to a molecular payload can be administered to a subject in need of treatment. In some embodiments, a pharmaceutical composition comprising a complex as described herein may be administered by a suitable route, which may include intravenous administration, e.g., as a bolus or by continuous infusion over a period of time. In some embodiments, administration may be performed by intramuscular, intraperitoneal, intracerebrospinal, subcutaneous, intra-articular, intrasynovial, or intrathecal routes. In some embodiments, a pharmaceutical composition may be in solid form, aqueous form, or a liquid form. In some embodiments, an aqueous or liquid form may be nebulized or lyophilized. In some embodiments, a nebulized or lyophilized form may be reconstituted with an aqueous or liquid solution.


Compositions for intravenous administration may contain various carriers such as vegetable oils, dimethylactamide, dimethyformamide, ethyl lactate, ethyl carbonate, isopropyl myristate, ethanol, and polyols (glycerol, propylene glycol, liquid polyethylene glycol, and the like). For intravenous injection, water soluble antibodies can be administered by the drip method, whereby a pharmaceutical formulation containing the antibody and a physiologically acceptable excipients is infused. Physiologically acceptable excipients may include, for example, 5% dextrose, 0.9% saline, Ringer's solution or other suitable excipients. Intramuscular preparations, e.g., a sterile formulation of a suitable soluble salt form of the antibody, can be dissolved and administered in a pharmaceutical excipient such as Water-for-Injection, 0.9% saline, or 5% glucose solution.


In some embodiments, a pharmaceutical composition that comprises a complex comprising a muscle-targeting agent covalently linked to a molecular payload is administered via site-specific or local delivery techniques. Examples of these techniques include implantable depot sources of the complex, local delivery catheters, site specific carriers, direct injection, or direct application.


In some embodiments, a pharmaceutical composition that comprises a complex comprising a muscle-targeting agent covalently linked to a molecular payload is administered at an effective concentration that confers therapeutic effect on a subject. Effective amounts vary, as recognized by those skilled in the art, depending on the severity of the disease, unique characteristics of the subject being treated, e.g., age, physical conditions, health, or weight, the duration of the treatment, the nature of any concurrent therapies, the route of administration and related factors. These related factors are known to those in the art and may be addressed with no more than routine experimentation. In some embodiments, an effective concentration is the maximum dose that is considered to be safe for the patient. In some embodiments, an effective concentration will be the lowest possible concentration that provides maximum efficacy.


Empirical considerations, e.g., the half-life of the complex in a subject, generally will contribute to determination of the concentration of pharmaceutical composition that is used for treatment. The frequency of administration may be empirically determined and adjusted to maximize the efficacy of the treatment.


The efficacy of treatment may be assessed using any suitable methods. In some embodiments, the efficacy of treatment may be assessed by evaluation of observation of symptoms associated with a dystrophinopathy, e.g., muscle atrophy or muscle weakness, through measures of a subject's self-reported outcomes, e.g., mobility, self-care, usual activities, pain/discomfort, and anxiety/depression, or by quality-of-life indicators, e.g., lifespan.


In some embodiments, a pharmaceutical composition that comprises a complex comprising a muscle-targeting agent covalently linked to a molecular payload described herein is administered to a subject at an effective concentration sufficient to modulate activity or expression of a target gene by at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90% or at least 95% relative to a control, e.g. baseline level of gene expression prior to treatment.


ADDITIONAL EMBODIMENTS

1. A complex comprising an anti-transferrin receptor 1 (TfR1) antibody covalently linked to a molecular payload configured for inducing skipping of exon 55 in a DMD pre-mRNA, wherein the anti-TfR1 antibody is an antibody identified in any one of Tables 2-7.


2. The complex of embodiment 1, wherein the anti-TfR1 antibody comprises:

    • (i) a heavy chain complementarity determining region 1 (CDR-H1) of SEQ ID NO: 33, a heavy chain complementarity determining region 2 (CDR-H2) of SEQ ID NO: 34, a heavy chain complementarity determining region 3 (CDR-H3) of SEQ ID NO: 35, a light chain complementarity determining region 1 (CDR-L1) of SEQ ID NO: 36, a light chain complementarity determining region 2 (CDR-L2) of SEQ ID NO: 37, and a light chain complementarity determining region 3 (CDR-L3) of SEQ ID NO: 32;
    • (ii) a CDR-H1 of SEQ ID NO: 7, a CDR-H2 of SEQ ID NO: 8, a CDR-H3 of SEQ ID NO: 9, a CDR-L1 of SEQ ID NO: 10, a CDR-L2 of SEQ ID NO: 11, and a CDR-L3 of SEQ ID NO: 6;
    • (iii) a CDR-H1 of SEQ ID NO: 7, a CDR-H2 of SEQ ID NO: 20, a CDR-H3 of SEQ ID NO: 9, a CDR-L1 of SEQ ID NO: 10, a CDR-L2 of SEQ ID NO: 11, and a CDR-L3 of SEQ ID NO: 6;
    • (iv) a CDR-H1 of SEQ ID NO: 7, a CDR-H2 of SEQ ID NO: 24, a CDR-H3 of SEQ ID NO: 9, a CDR-L1 of SEQ ID NO: 10, a CDR-L2 of SEQ ID NO: 11, and a CDR-L3 of SEQ ID NO: 6;
    • (v) a CDR-H1 of SEQ ID NO: 51, a CDR-H2 of SEQ ID NO: 52, a CDR-H3 of SEQ ID NO: 53, a CDR-L1 of SEQ ID NO: 54, a CDR-L2 of SEQ ID NO: 55, and a CDR-L3 of SEQ ID NO: 50;
    • (vi) a CDR-H1 of SEQ ID NO: 64, a CDR-H2 of SEQ ID NO: 52, a CDR-H3 of SEQ ID NO: 53, a CDR-L1 of SEQ ID NO: 54, a CDR-L2 of SEQ ID NO: 55, and a CDR-L3 of SEQ ID NO: 50; or
    • (vii) a CDR-H1 of SEQ ID NO: 67, a CDR-H2 of SEQ ID NO: 52, a CDR-H3 of SEQ ID NO: 53, a CDR-L1 of SEQ ID NO: 54, a CDR-L2 of SEQ ID NO: 55, and a CDR-L3 of SEQ ID NO: 50.


      3. The complex of embodiment 1 or embodiment 2, wherein the anti-TfR1 antibody comprises:
    • (i) a heavy chain variable region (VH) comprising an amino acid sequence at least 85% identical to SEQ ID NO: 76; and/or a light chain variable region (VL) comprising an amino acid sequence at least 85% identical to SEQ ID NO: 75;
    • (ii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 69; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 70;
    • (iii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 71; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 70;
    • (iv) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 72; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 70;
    • (v) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 73; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 74;
    • (vi) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 73; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 75;
    • (vii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 76; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 74;
    • (viii) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 77; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 78;
    • (ix) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 79; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 80; or
    • (x) a VH comprising an amino acid sequence at least 85% identical to SEQ ID NO: 77; and/or a VL comprising an amino acid sequence at least 85% identical to SEQ ID NO: 80.


      4. The complex of any one of embodiments 1 to 3, wherein the anti-TfR1 antibody comprises:
    • (i) a VH comprising the amino acid sequence of SEQ ID NO: 76 and a VL comprising the amino acid sequence of SEQ ID NO: 75;
    • (ii) a VH comprising the amino acid sequence of SEQ ID NO: 69 and a VL comprising the amino acid sequence of SEQ ID NO: 70;
    • (iii) a VH comprising the amino acid sequence of SEQ ID NO: 71 and a VL comprising the amino acid sequence of SEQ ID NO: 70;
    • (iv) a VH comprising the amino acid sequence of SEQ ID NO: 72 and a VL comprising the amino acid sequence of SEQ ID NO: 70;
    • (v) a VH comprising the amino acid sequence of SEQ ID NO: 73 and a VL comprising the amino acid sequence of SEQ ID NO: 74;
    • (vi) a VH comprising the amino acid sequence of SEQ ID NO: 73 and a VL comprising the amino acid sequence of SEQ ID NO: 75;
    • (vii) a VH comprising the amino acid sequence of SEQ ID NO: 76 and a VL comprising the amino acid sequence of SEQ ID NO: 74;
    • (viii) a VH comprising the amino acid sequence of SEQ ID NO: 77 and a VL comprising the amino acid sequence of SEQ ID NO: 78;
    • (ix) a VH comprising the amino acid sequence of SEQ ID NO: 79 and a VL comprising the amino acid sequence of SEQ ID NO: 80; or
    • (x) a VH comprising the amino acid sequence of SEQ ID NO: 77 and a VL comprising the amino acid sequence of SEQ ID NO: 80.


      5. The complex of any one of embodiments 1 to 4, wherein the anti-TfR1 antibody is a Fab fragment, a Fab′ fragment, a F(ab′)2 fragment, an scFv, an Fv, or a full-length IgG.


      6. The complex of embodiment 5, wherein the anti-TfR1 antibody is a Fab fragment.


      7. The complex of embodiment 6, wherein the anti-TfR1 antibody comprises:
    • (i) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 101; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 90;
    • (ii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 97; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 85;
    • (iii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 98; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 85;
    • (iv) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 99; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 85;
    • (v) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 100; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 89;
    • (vi) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 100; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 90;
    • (vii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 101; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 89;
    • (viii) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 102; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 93;
    • (ix) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 103; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 95; or
    • (x) a heavy chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 102; and/or a light chain comprising an amino acid sequence at least 85% identical to SEQ ID NO: 95.


      8. The complex of embodiment 6 or embodiment 7, wherein the anti-TfR1 antibody comprises:
    • (i) a heavy chain comprising the amino acid sequence of SEQ ID NO: 101; and a light chain comprising the amino acid sequence of SEQ ID NO: 90;
    • (ii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 97; and a light chain comprising the amino acid sequence of SEQ ID NO: 85;
    • (iii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 98; and a light chain comprising the amino acid sequence of SEQ ID NO: 85;
    • (iv) a heavy chain comprising the amino acid sequence of SEQ ID NO: 99; and a light chain comprising the amino acid sequence of SEQ ID NO: 85;
    • (v) a heavy chain comprising the amino acid sequence of SEQ ID NO: 100; and a light chain comprising the amino acid sequence of SEQ ID NO: 89;
    • (vi) a heavy chain comprising the amino acid sequence of SEQ ID NO: 100; and a light chain comprising the amino acid sequence of SEQ ID NO: 90;
    • (vii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 101; and a light chain comprising the amino acid sequence of SEQ ID NO: 89;
    • (viii) a heavy chain comprising the amino acid sequence of SEQ ID NO: 102; and a light chain comprising the amino acid sequence of SEQ ID NO: 93;
    • (ix) a heavy chain comprising the amino acid sequence of SEQ ID NO: 103; and a light chain comprising the amino acid sequence of SEQ ID NO: 95; or
    • (x) a heavy chain comprising the amino acid sequence of SEQ ID NO: 102; and a light chain comprising the amino acid sequence of SEQ ID NO: 95.


      9. The complex of any one of embodiments 1 to 8, wherein the anti-TfR1 antibody does not specifically bind to the transferrin binding site of the transferrin receptor 1 and/or wherein the anti-TfR1 antibody does not inhibit binding of transferrin to the transferrin receptor 1.


      10. The complex of any one of embodiments 1 to 9, wherein the molecular payload comprises an oligonucleotide.


      11. The complex of embodiment 10, wherein the oligonucleotide promotes antisense-mediated exon skipping in the DMD pre-RNA.


      12. The complex of embodiment 10 or 11, wherein the oligonucleotide comprises a region of complementarity to a splicing feature of the DMD pre-mRNA.


      13. The complex of embodiment 12, wherein the splicing feature is an exonic splicing enhancer (ESE) of the DMD pre-mRNA.


      14. The complex of embodiment 13, wherein the splicing feature is in exon 55 of the DMD pre-mRNA, optionally wherein the ESE comprises a sequence of any one of SEQ ID NOs: 2031-2061.


      15. The complex of embodiment 12, wherein the splicing feature is a branch point, a splice donor site, or a splice acceptor site.


      16. The complex of embodiment 15, wherein the splicing feature is across the junction of exon 54 and intron 54, in intron 54, across the junction of intron 54 and exon 55, across the junction of exon 55 and intron 55, in intron 55, or across the junction of intron 55 and exon 56 of the DMD pre-mRNA, optionally wherein the splicing feature comprises a sequence of any one of SEQ ID NOs: 2028-2030, 2062, and 2063.


      17. The complex of any one of embodiments 12 to 16, wherein the region of complementarity comprises at least 4 consecutive nucleosides complementary to the splicing feature.


      18. The complex of any one of embodiments 1 to 9, wherein the molecular payload comprises an oligonucleotide comprising a sequence complementary to any one of SEQ ID NOs: 160-779 or comprising a sequence of any one of SEQ ID NOs: 780-2019, wherein each thymine base (T) may independently and optionally be replaced with a uracil base (U), and each U may independently and optionally be replaced with a T.


      19. The complex of any one of embodiments 10 to 18, wherein the oligonucleotide comprises at least one modified internucleoside linkage.


      20. The complex of embodiment 19, wherein the at least one modified internucleoside linkage is a phosphorothioate linkage.


      21. The complex of any one of embodiments 10 to 20, wherein the oligonucleotide comprises one or more modified nucleosides.


      22. The complex of embodiment 21, wherein the one or more modified nucleosides are 2′-modified nucleosides.


      23. The complex of any one of embodiments 10 to 18, wherein the oligonucleotide comprises one or more phosphorodiamidate morpholinos, optionally wherein the oligonucleotide is a phosphorodiamidate morpholino oligomer (PMO).


      24. The complex of any one of embodiments 1 to 23, wherein the anti-TfR1 antibody is covalently linked to the molecular payload via a cleavable linker.


      25. The complex of embodiment 24, wherein the cleavable linker comprises a valine-citrulline sequence.


      26. The complex of any one of embodiments 1 to 25, wherein the anti-TfR1 antibody is covalently linked to the molecular payload via conjugation to a lysine residue or a cysteine residue of the antibody.


      27. A complex comprising an anti-TfR1 antibody covalently linked to an oligonucleotide configured for inducing skipping of exon 55 in a DMD pre-mRNA, wherein the oligonucleotide comprises a region of complementarity to any one of SEQ ID NOs: 160-779.


      28. The complex of embodiment 27, wherein the anti-TfR1 antibody is an antibody identified in any one of Tables 2-7.


      29. A complex comprising an anti-TfR1 antibody covalently linked to an oligonucleotide configured for inducing skipping of exon 55 in a DMD pre-mRNA, wherein the oligonucleotide comprises a region of complementarity to a splicing feature of the DMD pre-mRNA.


      30. An oligonucleotide that targets DMD, wherein the oligonucleotide comprises a region of complementarity to any one of SEQ ID NOs: 160-779.


      31. The oligonucleotide of embodiment 30, wherein the region of complementarity comprises at least 15 consecutive nucleosides complementary to any one of SEQ ID NOs: 160-779.


      32. The oligonucleotide of embodiment 30 or 31, wherein the oligonucleotide comprises at least 15 consecutive nucleosides of any one of SEQ ID NOs: 780-2019, optionally wherein the oligonucleotide comprises a sequence of any one of SEQ ID NOs: 780-2019, wherein each thymine base (T) may independently and optionally be replaced with a uracil base (U), and each U may independently and optionally be replaced with a T.


      33. A method of delivering a molecular payload to a cell, the method comprising contacting the cell with the complex of any one of embodiments 1 to 26.


      34. A method of delivering an oligonucleotide to a cell, the method comprising contacting the cell with the complex of any one of embodiments 27 to 29.


      35. A method of promoting the expression or activity of a dystrophin protein in a cell, the method comprising contacting the cell with the complex of any one of embodiments 1 to 26 in an amount effective for promoting internalization of the molecular payload to the cell, optionally wherein the cell is a muscle cell.


      36. A method of promoting the expression or activity of a dystrophin protein in a cell, the method comprising contacting the cell with the complex of any one of embodiments 27 to 29 in an amount effective for promoting internalization of the oligonucleotide to the cell, optionally wherein the cell is a muscle cell.


      37. The method of embodiment 35 or 36, wherein the cell is in vitro.


      38. The method of embodiment 35 or 36, wherein the cell is in a subject.


      39. The method of embodiment 38, wherein the subject is a human.


      40. The method of embodiment 39, wherein the subject has a DMD gene that is amenable to skipping of exon 55.


      41. The method of any one of embodiments 35 to 40, wherein the dystrophin protein is a truncated dystrophin protein.


      42. A method of treating a subject having a mutated DMD allele that is associated with a dystrophinopathy, the method comprising administering to the subject an effective amount of the complex of any one of embodiments 1 to 29.


      43. A method of promoting skipping of exon 55 of a DMD pre-mRNA transcript in a cell, the method comprising contacting the cell with an effective amount of the complex of any one of embodiments 1 to 29.


      44. A method of treating a subject having a mutated DMD allele that is associated with a dystrophinopathy, the method comprising administering to the subject an effective amount of the complex of any one of embodiments 1 to 29.


EXAMPLES
Example 1. Exon-Skipping Activity of Anti-TfR1 Antibody Conjugates in Duchenne Muscular Dystrophy Patient Myotubes

In this study, the exon-skipping activities of anti-TfR1 antibody conjugates comprising an anti-TfR1 Fab (3M12 VH4/Vκ3) covalently linked to a DMD exon 51-skipping antisense oligonucleotide (ASO) were evaluated. The DMD exon 51-skipping ASO is a phosphorodiamidate morpholino oligomer (PMO) of 30 nucleotides in length and targets an ESE in DMD exon 51 having the sequence TGGAGGT (SEQ ID NO: 131). Immortalized human myoblasts bearing an exon 52 deletion in the DMD gene were thawed and seeded at a density of 1e6 cell/flask in Promocell Skeletal Cell Growth Media (with 5% FBS and 1× Pen-Strep) and allowed to grow to confluency. Once confluent, cells were trypsinized and pelleted via centrifugation and resuspended in fresh Promocell Skeletal Cell Growth Media. The cell number was counted and cells were seeded into Matrigel-coated 96-well plates at a density of 50,000 cells/well. Cells were allowed to recover for 24 hours. Cells were induced to differentiate into myotubes by aspirating the growth media and replacing with differentiation media with no serum. Cells were then treated with the DMD exon 51-skipping oligonucleotide (not covalently linked to an antibody—“naked”) at 10 pM ASO or the anti-TfR1 Fab (3M12 VH4/Vκ3) covalently linked to the DMD exon 51-skipping oligonucleotide at 10 μM ASO equivalent. Cells were incubated with test articles for ten days then total RNA was harvested from the 96 well plates. cDNA synthesis was performed on 75 ng of total RNA, and mutation specific PCRs were performed to evaluate the degree of exon 51 skipping in the cells. Mutation-specific PCR products were run on a 4% agarose gel and visualized using SYBR gold. Densitometry was used to calculate the relative amounts of the skipped and unskipped amplicon and exon skipping was determined as a ratio of the Exon 51 skipped amplicon divided by the total amount of amplicon present:







%



Exon


Skipping


=



Skipped


Amplicon


(


Skipped


Amplicon

+

Unskipped


Amplicon


)


*
100.





The results demonstrate that the conjugate resulted in enhanced exon skipping compared to the naked DMD exon 51-skipping oligonucleotide in patient myotubes (FIG. 1). This indicates that anti-TfR1 Fab 3M12 VH4/Vκ3 enabled cellular internalization of the conjugate into muscle cells resulting in activity of the exon 51-skipping oligonucleotide in the muscle cells. Similarly, an anti-TfR1 antibody (e.g., anti-TfR1 Fab 3M12 VH4/Vκ3) can enable internalization of a conjugate comprising the anti-TfR1 antibody covalently linked to other exon skipping oligonucleotides (e.g., an exon skipping oligonucleotide provided herein, such as an exon 55 skipping oligonucleotide) into muscle cells and facilitate activity of the exon skipping oligonucleotide in the muscle cells.


Example 2. Exon Skipping Activity of Anti-TfR1 Fab-ASO Conjugate In Vivo in Cynomolgus Monkeys

Anti-TfR1 Fab 3M12 VH4/Vκ3 was covalently linked to the DMD exon 51-skipping antisense oligonucleotide (ASO) that was used in Example 1. The exon skipping activity of the conjugate was tested in vivo in healthy non-human primates. Naïve male cynomolgus monkeys (n=4-5 per group) were administered two doses of vehicle, 30 mg/kg naked ASO (i.e., not covalently linked to an antibody), or 122 mg/kg anti-TfR1 Fab (3M12 VH4/Vκ3) covalently linked to the DMD exon 51-skipping oligonucleotide (30 mg/kg ASO equivalent) via intravenous infusion on days 1 and 8. Animals were sacrificed and tissues harvested either 2 weeks or 4 weeks after the first dose was administered. Total RNA was collected from tissue samples using a Promega Maxwell® RSC instrument and cDNA synthesis was performed using qScript cDNA SuperMix. Assessment of exon 51 skipping was performed using end-point PCR.


Capillary electrophoresis of the PCR products was used to assess exon skipping, and % exon 51 skipping was calculated using the following formula:







%



Exon


Skipping


=



Molarity


of


Skipped


Band



Molarity


of


Skipped


Band

+

Molarity


of


Unskipped


Band



×
100.





Calculated exon 51 skipping results are shown in Table 10.









TABLE 10







Exon 51 skipping of DMD mRNA in cynomolgus monkey









Time










2 weeks
4 weeks














Naked

Naked



Group
Vehicle
ASOa
Conjugate
ASOa
Conjugate















Conjugate doseb
0
n/a
122
n/a
122


ASO Dosec
0
30
30
30
30


Quadriceps d
0.00
1.216
4.906
0.840
1.708



(0.00)
(1.083)
(3.131)
(1.169)
(1.395)


Diaphragm d
0.00
1.891
7.315
0.717
9.225



(0.00)
(2.911)
(1.532)
(1.315)
(4.696)


Heart d
0.00
0.043
3.42
0.00
4.525



(0.00)
(0.096)
(1.192)
(0.00)
(1.400)


Biceps d
0.00
0.607
3.129
1.214
4.863



(0.00)
(0.615)
(0.912)
(1.441)
(3.881)


Tibialis
0.00
0.699
1.042
0.384
0.816


anterior d
(0.00)
(0.997)
(0.685)
(0.615)
(0.915)


Gastrocnemius d
0.00
0.388
2.424
0.00
5.393



(0.00)
(0.573)
(2.329)
(0.00)
(2.695)






aASO = antisense oligonucleotide.




bConjugate doses are listed as mg/kg of anti-TfR1 Fab 3M12 VH4/Vκ3-ASO conjugate.




cASO doses are listed as mg/kg ASO or ASO equivalent of the anti-TfR1 Fab 3M12 VH4/Vκ3-ASO dose.




d Exon skipping values are mean % exon 51 skipping with standard deviations (n = 5) in parentheses.







Tissue ASO accumulation was also quantified using a hybridization ELISA with a probe complementary to the ASO sequence. A standard curve was generated and ASO levels (in ng/g) were derived from a linear regression of the standard curve. The ASO was distributed to all tissues evaluated at a higher level following the administration of the anti-TfR1 Fab VH4/Vκ3-ASO conjugate as compared to the administration of naked ASO. Intravenous administration of naked ASO resulted in levels of ASO that were close to background levels in all tissues evaluated at 2 and 4 weeks after the first does was administered. Administration of anti-TfR1 Fab VH4/Vκ3-ASO conjugate resulted in distribution of ASO through the tissues evaluated with a rank order of heart>diaphragm>bicep>quadriceps>gastrocnemius>tibialis anterior 2 weeks after first dosing. The duration of tissue concentration was also assessed. Concentrations of the ASO in quadriceps, bicep and diaphragm decreased by less than 50% over the time period evaluated (2 to 4 weeks), while levels of ASO in the heart, tibialis anterior, and gastrocnemius remained virtually unchanged (Table 11). This indicates that anti-TfR1 Fab 3M12 VH4/Vκ3 enabled cellular internalization of the conjugate into muscle cells in vivo, resulting in activity of the exon skipping oligonucleotide in the muscle cells. Similarly, an anti-TfR1 antibody (e.g., anti-TfR1 Fab 3M12 VH4/Vκ3) in vivo can enable internalization of a conjugate comprising the anti-TfR1 antibody covalently linked to other exon skipping oligonucleotides (e.g., an exon skipping oligonucleotide provided herein, such as an exon 55 skipping oligonucleotide) into muscle cells and facilitate activity of the exon skipping oligonucleotide in the muscle cells.









TABLE 11







Tissue distribution of DMD exon 51


skipping ASO in cynomolgus monkeys









Time










2 weeks
4 weeks














Naked
Conju-
Naked
Conju-


Group
Vehicle
ASOa
gate
ASOa
gate















Conjugate Doseb
0
n/a
122
n/a
122


ASO Dosec
0
30
30
30
30


Quadriceps d
0
696.8
2436
197
682



(59.05)
(868.15)
(954.0)
(134)
(281)


Diaphragm d

580.02
6750
60
3131



(144.3)
(360.11)
(2256)
(120)
(1618)


Heart d
0
1449
27138
943
30410



(396.03)
(1337)
(6315)
(1803)
(9247)


Biceps d
0
615.63
2840
130
1326



(69.58)
(335.17)
(980.31)
(80)
(623)


Tibialis
0
564.71
1591
169
1087


anterior d
(76.31)
(327.88)
(253.50)
(110)
(514)


Gastrocnemius d
0
705.47
2096
170
1265



(41.15)
(863.75)
(474.04)
(69)
(272)






aASO = Antisense oligonucleotide.




bConjugate doses are listed as mg/kg of anti-TfR1 Fab 3M12 VH4/Vκ3-ASO conjugate.




cASO doses are listed as mg/kg ASO or ASO equivalent of the anti-TfR1 Fab 3M12 VH4/Vκ3-ASO conjugate dose.




d ASO values are mean concentrations of ASO in tissue as ng/g with standard deviations (n = 5) in parentheses.







Example 3. Exon-Skipping Activity of Anti-TfR1 Antibody Conjugates in DMD Patient Myotubes

In this study, the exon-skipping activities of anti-TfR1 antibody conjugates comprising an anti-TfR1 Fab (3M12 VH4/Vκ3) covalently linked to a DMD exon 55-skipping antisense oligonucleotide (ASO) are evaluated. The DMD exon 55-skipping ASO is a phosphorodiamidate morpholino oligomer (PMO) and targets a DMD exon 55 splicing feature. Immortalized human myoblasts are thawed and seeded at a density of 1e6 cell/flask in Promocell Skeletal Cell Growth Media (with 5% FBS and 1× Pen-Strep) and allowed to grow to confluency. Once confluent, cells are trypsinized and pelleted via centrifugation and resuspended in fresh Promocell Skeletal Cell Growth Media. The cell number is counted and cells are seeded into Matrigel-coated 96-well plates at a density of 50,000 cells/well. Cells are allowed to recover for 24 hours. Cells are induced to differentiate into myotubes by aspirating the growth media and replacing with differentiation media with no serum. Cells are then treated with the DMD exon 55-skipping oligonucleotide (not covalently linked to an antibody—“naked”) at 10 pM ASO or the anti-TfR1 Fab (3M12 VH4/Vκ3) covalently linked to the DMD exon 55-skipping oligonucleotide at 10 pM ASO equivalent. Cells are incubated with test articles for ten days then total RNA is harvested from the 96 well plates. cDNA synthesis is performed on 75 ng of total RNA, and mutation specific PCRs are performed to evaluate the degree of exon 55 skipping in the cells. PCR products are measured using capillary electrophoresis with UV detection. Molarity is calculated and relative amounts of the skipped and unskipped amplicon are determined. Exon skipping is determined as a ratio of the Exon 55 skipped amplicon divided by the total amount of amplicon present, according to the following formula:







%



Exon


Skipping


=



Skipped


Amplicon


(


Skipped


Amplicon

+

Unskipped


Amplicon


)


*
100





The results demonstrate that the conjugates facilitate enhanced exon skipping compared to the naked DMD exon 55-skipping oligonucleotide in patient myotubes. This indicates that anti-TfR1 Fab 3M12 VH4/Vκ3 enables cellular internalization of the conjugate into muscle cells resulting in activity of the exon 55-skipping oligonucleotide in the muscle cells.


EQUIVALENTS AND TERMINOLOGY

The disclosure illustratively described herein suitably can be practiced in the absence of any element or elements, limitation or limitations that are not specifically disclosed herein. Thus, for example, in each instance herein any of the terms “comprising”, “consisting essentially of”, and “consisting of” may be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the disclosure. Thus, it should be understood that although the present disclosure has been specifically disclosed by preferred embodiments, optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this disclosure.


In addition, where features or aspects of the disclosure are described in terms of Markush groups or other grouping of alternatives, those skilled in the art will recognize that the disclosure is also thereby described in terms of any individual member or subgroup of members of the Markush group or other group.


It should be appreciated that, in some embodiments, sequences presented in the sequence listing may be referred to in describing the structure of an oligonucleotide or other nucleic acid. In such embodiments, the actual oligonucleotide or other nucleic acid may have one or more alternative nucleotides or nucleosides (e.g., an RNA counterpart of a DNA nucleoside or a DNA counterpart of an RNA nucleoside) and/or (e.g., and) one or more modified nucleotides/nucleosides and/or (e.g., and) one or more modified internucleoside linkages and/or (e.g., and) one or more other modification compared with the specified sequence while retaining essentially same or similar complementary properties as the specified sequence.


The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.


Embodiments of this invention are described herein. Variations of those embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description.


The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

Claims
  • 1. A complex comprising an anti-transferrin receptor 1 (TfR1) antibody covalently linked to an oligonucleotide configured for inducing skipping of exon 55 in a DMD pre-mRNA, wherein the oligonucleotide comprises a region of complementarity that is complementary with at least 8 consecutive nucleotides of any one of SEQ ID NOs: 160-779.
  • 2.-4. (canceled)
  • 5. The complex of claim 1, wherein the anti-TfR1 antibody is a Fab fragment, a Fab′ fragment, a F(ab′)2 fragment, an scFv, an Fv, or a full-length IgG.
  • 6. The complex of claim 5, wherein the anti-TfR1 antibody is a Fab fragment.
  • 7.-8. (canceled)
  • 9. The complex of claim 1, wherein the anti-TfR1 antibody does not specifically bind to the transferrin binding site of the transferrin receptor 1 and/or wherein the anti-TfR1 antibody does not inhibit binding of transferrin to the transferrin receptor 1.
  • 10. The complex of claim 1, wherein the oligonucleotide comprises a region of complementarity to at least 4 consecutive nucleotides of a splicing feature of the DMD pre-mRNA.
  • 11. The complex of claim 10, wherein the splicing feature is an exonic splicing enhancer (ESE) in exon 55 of the DMD pre-mRNA, optionally wherein the ESE comprises a sequence of any one of SEQ ID NOs: 2031-2061.
  • 12. The complex of claim 10, wherein the splicing feature is a branch point, a splice donor site, or a splice acceptor site, optionally wherein the splicing feature is across the junction of exon 54 and intron 54, in intron 54, across the junction of intron 54 and exon 55, across the junction of exon 55 and intron 55, in intron 55, or across the junction of intron 55 and exon 56 of the DMD pre-mRNA, and further optionally wherein the splicing feature comprises a sequence of any one of SEQ ID NOs: 2028-2030, 2062, and 2063.
  • 13. The complex of claim 1, wherein the oligonucleotide comprises a sequence complementary to any one of SEQ ID NOs: 160-779 or comprises a sequence of any one of SEQ ID NOs: 780-2019, wherein each thymine base (T) may independently and optionally be replaced with a uracil base (U), and each U may independently and optionally be replaced with a T.
  • 14. The complex of claim 1, wherein the oligonucleotide comprises a sequence of any one of SEQ ID NOs: 1400, 1402-1406, 1408, 1409, 1413, 1418-1420, 1483-1491, 1493, 1495, 1496, 1502-1506, 1508, 1510-1512, 1514, 1522-1524, 1529-1531, 1534, 1535, 1559, 1583, 1587, 1591, 1596, 1597, 1598, 1604, 1606, 1607, 1638, 1641, 1693-1695, 1702, 1703, 1766, 1813, 1988, and 1995, wherein each thymine base (T) may independently and optionally be replaced with a uracil base (U), and each U may independently and optionally be replaced with a T.
  • 15. The complex of claim 1, wherein the oligonucleotide comprises one or more phosphorodiamidate morpholinos, optionally wherein the oligonucleotide is a phosphorodiamidate morpholino oligomer (PMO).
  • 16. The complex of claim 1, wherein the anti-TfR1 antibody is covalently linked to the oligonucleotide via a cleavable linker, optionally wherein the cleavable linker comprises a valine-citrulline sequence.
  • 17. The complex of claim 1, wherein the anti-TfR1 antibody is covalently linked to the oligonucleotide via conjugation to a lysine residue or a cysteine residue of the antibody.
  • 18. An oligonucleotide that targets DMD, wherein the oligonucleotide comprises a region of complementarity to any one of SEQ ID NOs: 160-779, optionally wherein the region of complementarity comprises at least 15 consecutive nucleosides complementary to any one of SEQ ID NOs: 160-779.
  • 19. The oligonucleotide of claim 18, wherein the oligonucleotide comprises at least 15 consecutive nucleosides of any one of SEQ ID NOs: 780-2019, optionally wherein the oligonucleotide comprises a sequence of any one of SEQ ID NOs: 780-2019, wherein each thymine base (T) may independently and optionally be replaced with a uracil base (U), and each U may independently and optionally be replaced with a T.
  • 20. A method of delivering an oligonucleotide to a cell, the method comprising contacting the cell with the complex of claim 1.
  • 21. A method of promoting the expression or activity of a dystrophin protein in a cell, the method comprising contacting the cell with the complex of claim 1 in an amount effective for promoting internalization of the oligonucleotide to the cell, optionally wherein the cell is a muscle cell.
RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application Ser. No. 63/219,999, entitled “MUSCLE TARGETING COMPLEXES AND USES THEREOF FOR TREATING DYSTROPHINOPATHIES”, filed on Jul. 9, 2021, the contents of which are incorporated herein by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2022/073527 7/8/2022 WO
Provisional Applications (1)
Number Date Country
63219999 Jul 2021 US