The present invention relates to the field of network interface devices, and more particularly, to network interface devices having optical connectors.
Typically, electrical and optical connectors of a network interface device (e.g., such as form-factor pluggable device) are positioned at a distal end of the device, the end that is intended to be inserted into a receptacle at a data communication system. Mating electrical and optical ports of the data communication system are typically positioned deep inside the receptacle, far from a receptacle opening on a front panel of the data communication system. Such position of the optical port may, for example, create difficulties in maintenance (e.g., cleaning) of the optical port. Also, a network interface device with both electrical and optical connectors positioned at the distal end of the device typically has relatively large footprint and occupies relatively large space on a printed circuit board (e.g., motherboard) of the data communication system.
Embodiments of the invention may provide a device, which may include a frame, an optical connector coupled to an external surface of the frame, and an optical fiber connected to the optical connector, the optical fiber may include a bent section positioned external to an interior of the frame. The device may include an electrical connector positioned at an end of the frame. The optical connector may be offset with respect to the electrical connector in a longitudinal direction of the frame. The device may include a cover coupled to the frame and accommodating at least a portion of the bent section of the optical fiber. The cover may be optically sealed with respect to the frame.
Embodiments of the invention may provide a form factor device which may include a frame having a first end and a second end, a first (e.g., electrical) connector positioned at the first end of the frame, and a second (e.g., optical) connector coupled to an external surface of the frame, the second connector being offset from the first end towards the second end of the frame in a longitudinal direction. The form factor device may include an optical fiber connected to the second connector, the optical fiber may include a curved section positioned external to an interior of the frame. The form factor device may include a shell coupled to the frame and accommodating at least a portion of the curved section of the optical fiber. The shell may be optically sealed with respect to the frame.
Embodiment of the invention may provide a data communication system, the system may include: a form factor device including: a frame having a first end and a second end; a first (e.g., electrical) connector positioned at the first end of the frame; and a second (e.g., optical) connector coupled to an external surface of the frame; and a network switch device including a front panel, the front panel may include: a first receptacle opening to receive the electrical connector of the form factor; and a second receptacle opening to receive the optical connector of the form factor. The network switch device may include: a printed circuit board (PCB) placed behind the front panel, a first receptacle placed on the PCB, the first receptacle to receive the first connector of the form factor device; and a second receptacle placed on the PCB with respect to the first receptacle, the second receptacle to receive the second connector of the form factor device. The first receptacle and the second receptacle may be placed, for example, on opposing sides of the PCB with respect to each other.
For a better understanding of embodiments of the invention and to show how the same can be carried into effect, reference will now be made, purely by way of example, to the accompanying drawings in which like numerals designate corresponding elements or sections throughout.
In the accompanying drawings:
It will be appreciated that, for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
In the following description, various aspects of the present invention are described. For purposes of explanation, specific configurations and details are set forth in order to provide a thorough understanding of the present invention. However, it will also be apparent to one skilled in the art that the present invention can be practiced without the specific details presented herein. Furthermore, well known features can have been omitted or simplified in order not to obscure the present invention. With specific reference to the drawings, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention can be embodied in practice.
Before at least one embodiment of the invention is explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is applicable to other embodiments that can be practiced or carried out in various ways as well as to combinations of the disclosed embodiments. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
Reference is now made to
Reference is also made to
Network interface device 100 may be, for example, a pluggable network interface device, such as, e.g., a small form-factor pluggable (SFP) device (e.g., a quad SFP (QSFP) device or an octal SFP (OSFP) device) or any other form-factor device known in the art. Network interface device 100 may include electronic components such as connectors, chips, lasers or any other components known in the art. Network interface device 100 may be used to transfer signals in telecommunication and/or data communication systems.
Network interface device 100 may include a frame 110. Frame 110 may include a first end 111, a second end 112, a top surface 113, a bottom surface 114, a first lateral surface 115 and a second lateral surface 116. In some embodiments, frame 110 may have a rectangular (or substantially rectangular) shape. For example, top surface 113 and bottom surface 114 of frame 110 may be parallel (or substantially parallel) to each other and/or first lateral surface 115 and second lateral surface 116 of frame 110 may be parallel (or substantially parallel) to each other and perpendicular to top surface 113 and bottom surface 114 of frame 110. Frame 110 may include a hollow (or substantially hollow) interior 117. Frame 110 may include a central longitudinal axis 118 extending between first end 111 and second end 112 of frame 110.
Network interface device 100 may include a printed circuit board (PCB) 119. PCB may be at least partly positioned within interior 117 of frame 110.
Network interface device 100 may include a first (e.g., electrical) connector 120. First connector 120 may be positioned at first end 111 of frame 110. First connector 120 may be, for example, a male connector (e.g., having one or more exposed, unshielded electrical terminals), which may be inserted into a receptacle, e.g., such as receptacle 224 as described hereinbelow with respect to
Network interface device 100 may include a second (e.g., optical) connector 130. Second connector 130 may be coupled to an external surface of frame 110. For example, second connector 130 may be coupled to bottom surface 114 of frame 110 (e.g., as shown in
Network interface device 100 may include lasers 140 (e.g., as shown in
In operation, a portion of light emitted from laser 140 and propagating through optical fiber 150 may escape from curved longitudinal section 152 of optical fiber 150. Network interface device 100 may include a shell (e.g., cover) 160 that may be coupled to frame 110 and may accommodate at least a portion of curved longitudinal section 152 of optical fiber 150 (e.g., as shown in
Reference is now made to
Reference is also made to
Network switch device 200 may include a front panel 210 and a printed circuit board (PCB) 220 positioned behind front panel 210 (e.g., as shown in
Each pair 222 of receptacles may receive first and second connectors 120, 130 of network interface device 100. For example, first receptacle 224 of each pair 222 may receive frame 110 with first (e.g., electrical) connector 120 positioned at the end of frame 110, and second receptacle 226 of the respective pair may receive second (e.g., optical) connector 130 coupled to the external surface of frame 110 of network interface device 100 (e.g., as shown in
First receptacle 224 and second receptacle 226 of each pair 222 of receptacles may be positioned on opposing sides of PCB 220 with respect to each other, for example as shown in
Advantageously, optical ports 226c of network switch device 200, compatible with the inventive network interface device 100, are positioned closer to front panel 210 of network switch device 200 as compared to optical ports of typical prior art switch device which are typically positioned at the same location as electrical ports of the switch device far from the receptacle opening at the front panel of the switch device. Accordingly, optical ports 226c of network switch device 200 may be easily accessed via their respective receptacle openings 226a on front panel 210 of network switch device 200, e.g., for maintenance (e.g., cleaning) purposes.
Even though network interface device 100 has external optical connector 130, network interface device 100 meets safety requirements known in the art. For example, lasers 140 of network interface device 100 may operate only when electrical connector 120 is connected to its respective electrical port 224c in network switch device 200, which is possible only if both frame 110 and external optical connector 130 of network interface device 100 are positioned within their respective receptacles 224, 226 in network switch device 200. If network interface device 100 is unplugged from network switch device 200, electrical connector 120 is disconnected from its respective electrical port 224c in network switch device 200 and operation of lasers 140 is terminated. Accordingly, optical connector 130 of network interface device 100 is not operative if network interface device 100 is unplugged from network switch device 200. In operation, light emitted from lasers 140 and propagating through optical fiber 150 may escape from curved longitudinal section 152 of optical fiber 150 of network interface device 100. However, shell 160 covering curved longitudinal section 152 of optical fiber 150 may prevent light from escaping external to network interface device 100. Therefore, network interface device 100 meets safety requirements known in the art.
Network interface device 100 with external optical connector 130 occupies less space on PCB 220 of network switch device 200 as compared to typical prior art network interface device. Accordingly, network interface device 100 provides more flexibility in designing PCB 220 of network switch device 200 as compared to typical prior art network interface device.
In the above description, an embodiment is an example or implementation of the invention. The various appearances of “one embodiment”, “an embodiment”, “certain embodiments” or “some embodiments” do not necessarily all refer to the same embodiments. Although various features of the invention can be described in the context of a single embodiment, the features can also be provided separately or in any suitable combination. Conversely, although the invention can be described herein in the context of separate embodiments for clarity, the invention can also be implemented in a single embodiment. Certain embodiments of the invention can include features from different embodiments disclosed above, and certain embodiments can incorporate elements from other embodiments disclosed above. The disclosure of elements of the invention in the context of a specific embodiment is not to be taken as limiting their use in the specific embodiment alone. Furthermore, it is to be understood that the invention can be carried out or practiced in various ways and that the invention can be implemented in certain embodiments other than the ones outlined in the description above.
The invention is not limited to those diagrams or to the corresponding descriptions. For example, flow need not move through each illustrated box or state, or in exactly the same order as illustrated and described. Meanings of technical and scientific terms used herein are to be commonly understood as by one of ordinary skill in the art to which the invention belongs, unless otherwise defined. While the invention has been described with respect to a limited number of embodiments, these should not be construed as limitations on the scope of the invention, but rather as exemplifications of some of the preferred embodiments. Other possible variations, modifications, and applications are also within the scope of the invention. Accordingly, the scope of the invention should not be limited by what has thus far been described, but by the appended claims and their legal equivalents.
Number | Name | Date | Kind |
---|---|---|---|
5920668 | Uehara | Jul 1999 | A |
6275639 | Bolt | Aug 2001 | B1 |
9281636 | Schmitt | Mar 2016 | B1 |
9590737 | Tang | Mar 2017 | B2 |
9711929 | Kim | Jul 2017 | B1 |
9871590 | Matsui | Jan 2018 | B2 |
9876576 | Ho | Jan 2018 | B2 |
9891395 | Lin | Feb 2018 | B2 |
10219412 | Betz | Feb 2019 | B1 |
10241283 | Shen | Mar 2019 | B1 |
10247893 | Elkayam | Apr 2019 | B1 |
10281672 | Mullsteff | May 2019 | B1 |
10330868 | Li | Jun 2019 | B2 |
10623101 | Morris | Apr 2020 | B1 |
10795096 | Leigh | Oct 2020 | B1 |
10795105 | Li | Oct 2020 | B1 |
10809480 | Cox | Oct 2020 | B1 |
10812193 | Matsui | Oct 2020 | B2 |
10924187 | Ishii | Feb 2021 | B2 |
10938482 | Ishii | Mar 2021 | B2 |
10950997 | Dambach | Mar 2021 | B2 |
11201422 | Lu | Dec 2021 | B2 |
11204476 | Mainardi | Dec 2021 | B2 |
11226458 | Minota | Jan 2022 | B2 |
11314025 | Matsui | Apr 2022 | B2 |
11320598 | Lin | May 2022 | B2 |
11320609 | Li | May 2022 | B2 |
11454771 | Mizuno | Sep 2022 | B2 |
11573385 | Zanetti | Feb 2023 | B1 |
11609390 | Khazen | Mar 2023 | B2 |
11619789 | Chen | Apr 2023 | B2 |
20100202736 | Roth | Aug 2010 | A1 |
20110103797 | Oki | May 2011 | A1 |
20130308904 | McGinnis | Nov 2013 | A1 |
20150104177 | Kato | Apr 2015 | A1 |
20150110136 | Schusslbauer | Apr 2015 | A1 |
20150370021 | Chan | Dec 2015 | A1 |
20160047998 | Amirkiai | Feb 2016 | A1 |
20160216466 | Tang | Jul 2016 | A1 |
20170133777 | Little | May 2017 | A1 |
20180275356 | Li | Sep 2018 | A1 |
20180348446 | Li | Dec 2018 | A1 |
20180372978 | Wentworth | Dec 2018 | A1 |
20190018206 | Luo | Jan 2019 | A1 |
20190036316 | Van Baelen | Jan 2019 | A1 |
20190157810 | Little | May 2019 | A1 |
20190170961 | Coenegracht | Jun 2019 | A1 |
20190190607 | Chou | Jun 2019 | A1 |
20190219786 | Crawford | Jul 2019 | A1 |
20190265428 | Sedor | Aug 2019 | A1 |
20190271812 | Bretz | Sep 2019 | A1 |
20190278040 | Geens | Sep 2019 | A1 |
20190293884 | Little | Sep 2019 | A1 |
20190302367 | Van Baelen | Oct 2019 | A1 |
20190331871 | Van Baelen | Oct 2019 | A1 |
20190334648 | Li | Oct 2019 | A1 |
20190353854 | Radelet | Nov 2019 | A1 |
20200081208 | Leigh | Mar 2020 | A1 |
20200103608 | Hill | Apr 2020 | A1 |
20200116590 | Simard | Apr 2020 | A1 |
20200158963 | Leigh | May 2020 | A1 |
20200249412 | Marcouiller | Aug 2020 | A1 |
20200264392 | Li | Aug 2020 | A1 |
20200271882 | Geens | Aug 2020 | A1 |
20200278504 | Chang | Sep 2020 | A1 |
20200288589 | Lavoie | Sep 2020 | A1 |
20200301078 | Montena | Sep 2020 | A1 |
20200341218 | Leclair | Oct 2020 | A1 |
20200371300 | Sashida | Nov 2020 | A1 |
20210018709 | Berdan | Jan 2021 | A1 |
20210036780 | Kuo | Feb 2021 | A1 |
20210044356 | Aboagye | Feb 2021 | A1 |
20210116649 | Tamekuni | Apr 2021 | A1 |
20210132311 | Shearman | May 2021 | A1 |
20210141167 | Wong | May 2021 | A1 |
20210141182 | Ward | May 2021 | A1 |
20210141185 | Geens | May 2021 | A1 |
20210149132 | Li | May 2021 | A1 |
20210157058 | Lin | May 2021 | A1 |
20210165174 | Minota | Jun 2021 | A1 |
20210181443 | Zhou | Jun 2021 | A1 |
20210191059 | Bolster | Jun 2021 | A1 |
20210223482 | Zanetti | Jul 2021 | A1 |
20210263247 | Bechtolsheim | Aug 2021 | A1 |
20210263253 | Granullaque Diaz | Aug 2021 | A1 |
20210271043 | Geens | Sep 2021 | A1 |
20210278313 | Simard | Sep 2021 | A1 |
20210286142 | Leigh | Sep 2021 | A1 |
20210311279 | Diepstraten | Oct 2021 | A1 |
20210333477 | Ott | Oct 2021 | A1 |
20210341699 | Bishop | Nov 2021 | A1 |
20210349274 | Sun | Nov 2021 | A1 |
20210356681 | Takeuchi | Nov 2021 | A1 |
20210373271 | Geens | Dec 2021 | A1 |
20210392300 | Tong | Dec 2021 | A1 |
20210392301 | Tong | Dec 2021 | A1 |
20220043223 | Leigh | Feb 2022 | A1 |
20220057585 | Hendrix | Feb 2022 | A1 |
20220066107 | Leigh | Mar 2022 | A1 |
20220066115 | Cooke | Mar 2022 | A1 |
20220082776 | Sedor | Mar 2022 | A1 |
20220120989 | Takeuchi | Apr 2022 | A1 |
20220137315 | Vaswani | May 2022 | A1 |
20220196953 | Gutierrez | Jun 2022 | A1 |
20220221669 | de Jong | Jul 2022 | A1 |
20220229254 | Sievers | Jul 2022 | A1 |
20220236477 | Bovington | Jul 2022 | A1 |
20220244471 | Khazen | Aug 2022 | A1 |
20220244472 | Goergen | Aug 2022 | A1 |
20220255627 | Wang | Aug 2022 | A1 |
20220260794 | Tang | Aug 2022 | A1 |
20220260799 | Van Baelen | Aug 2022 | A1 |
20220276456 | Bishop | Sep 2022 | A1 |
20220283360 | Nagarajan | Sep 2022 | A1 |
20220368424 | Zanetti | Nov 2022 | A1 |
20220404561 | Rathinasamy | Dec 2022 | A1 |
20230008823 | Milette | Jan 2023 | A1 |
20230034045 | Chen | Feb 2023 | A1 |
20230099201 | Takano | Mar 2023 | A1 |
20230116032 | Claessens | Apr 2023 | A1 |
Number | Date | Country | |
---|---|---|---|
20230324635 A1 | Oct 2023 | US |