This application is related to the following: U.S. Pat. No. 9,966,529; and Ser. No. 15/881,035, filing date Jan. 26, 2018; which are assigned to a common assignee and herein incorporated by reference in their entirety.
The present disclosure relates to a magnetic tunnel junction (MTJ) comprised of a free layer that interfaces with a tunnel barrier layer and a spacer such as a Hk enhancing layer, and having a nitride diffusion barrier (NDB) contacting the spacer to prevent oxygen diffusion out of the Hk enhancing layer, and to block nitrogen diffusion through the Hk enhancing layer to the free layer thereby improving the magnetoresistive ratio (DRR) and thermal stability, and enabling a lower resistance x area (RA) value.
MTJ thin films are essential elements for future Spin Transfer Torque Magnetic Random Access Memories (STT-MRAM) and other spintronic applications such as spin torque oscillators (STO), magnetic domain wall devices, and magnetic field sensors. Spin-transfer torque (STT) magnetization switching was described by J. C. Slonczewski in “Current driven excitation of magnetic multilayers”, J. Magn. Magn. Mater. V 159, L1-L7 (1996), and has led to the development of spintronic devices such as STT-MRAM on a gigabit scale.
STT-MRAM has a MTJ cell based on a tunneling magnetoresistance (TMR) effect wherein a stack of layers has a configuration in which two ferromagnetic (FM) layers are separated by a thin non-magnetic dielectric layer. One of the FM layers is a pinned layer having a magnetic moment that is fixed in a first direction while the other FM layer is called a free layer (FL) and has a magnetic moment that is free to rotate in a direction parallel (P state) or anti-parallel (AP state) to the first direction corresponding to a “0” or “1” magnetic state, respectively. Compared with conventional MRAM, STT-MRAM has an advantage in avoiding the half select problem and writing disturbance between adjacent cells. The spin-transfer effect arises from the spin dependent electron transport properties of ferromagnetic-spacer-ferromagnetic multilayers. When a spin-polarized current traverses a magnetic multilayer in a current perpendicular to plane (CPP) direction, the spin angular momentum of electrons incident on a FL layer interacts with magnetic moments of the FL layer near the interface between the FL layer and non-magnetic spacer. Through this interaction, the electrons transfer a portion of their angular momentum to the FL. As a result, spin-polarized current can switch the magnetization direction of the FL if the current density is sufficiently high, and if the dimensions of the multilayer are small.
P-MTJs are MTJ cells with perpendicular magnetic anisotropy (PMA) in the pinned layer and FL, and are the building blocks that enable STT-MRAM and other spintronic devices. Typically, there is a non-magnetic tunneling oxide layer called a tunnel barrier layer between the pinned layer and FL. When the FL has PMA, the critical current (iC) needed to switch the FL and p-MTJ from a P state to an AP state, or vice versa, is directly proportional to the perpendicular anisotropy field as indicated in equation (1) where e is the electron charge, α is a Gilbert damping constant, Ms is the FL saturation magnetization, h is the reduced Plank's constant, g is the gyromagnetic ratio, and Hk
The value Δ=kV/kBT is a measure of the thermal stability of the FL where kV is also known as Eb or the energy barrier between the P and AP magnetic states, kB is the Boltzmann constant and T is the temperature. Thermal stability is a function of the perpendicular anisotropy field as shown in equation (2):
The perpendicular anisotropy field (Hk) of the FL is expressed in equation (3) as:
where Ms is the saturation magnetization, d is the thickness of the free layer, HK,⊥ is the crystalline anisotropy field in the perpendicular direction, and KU⊥,S is the surface perpendicular anisotropy of the top and bottom surfaces of the FL. Since most spintronic applications like embedded non-volatile memory (eNVM) devices need to be integrated into standard Complementary Metal Oxide Semiconductor (CMOS) processes, the devices including the p-MTJ cells therein must be able to withstand 400° C. temperatures during annealing for up to 5 hours. High temperature anneal conditions combined with highly mobile oxygen in the oxide tunnel barrier, and other oxide layers when present, typically results in a loss of PMA and degraded FL properties.
CoFeB/MgO (FL/tunnel barrier) based MTJ structures enable considerable thermal stability because of PMA induced at the FL/oxide interface, and also provide acceptable DRR, low writing voltage (Vwrite), and good reliability to satisfy most STT-MRAM performance requirements. However, improved thermal stability is desired, and to meet that demand a second metal oxide interface with the FL is introduced by sandwiching the FL between the tunnel barrier and a Hk enhancing layer to generate higher surface perpendicular anisotropy in equation (3). Unfortunately, there is an increase in RA, and a reduction in DRR because of the parasitic serial resistance contribution of the Hk enhancing layer. In order to minimize RA and the tradeoff in lower DRR, the Hk enhancing layer is underoxidized, which means a plurality of metal atoms in the lattice is not oxidized. However, this modification leads to an unwanted side effect where oxygen vacancies in the lattice allow for increased mobility of oxygen within the Hk enhancing layer and to/from adjacent layers as well as intermixing with adjoining layers, and diffusion of metal or nitrogen species into the FL.
Although various barriers including a nitride barrier between the Hk enhancing layer and a hard mask have been proposed, none have been able to completely prevent nitrogen diffusion from the nitride barrier and metals from the hard mask (when present) to the FL. Thus, an improved nitride barrier structure is needed to essentially eliminate nitrogen diffusion into the free layer while preventing oxygen diffusion out of the Hk enhancing layer so that FL thermal stability is enhanced while providing DRR and RA values required for high magnetic performance in advanced memory designs wherein a critical dimension (FL width) is substantially less than 100 nm.
One objective of the present disclosure is to provide a p-MTJ wherein there is an improved nitride diffusion barrier (NDB) that serves as one or both of a capping layer, and barrier on a seed layer that prevents the migration of metals and nitrogen to the free layer.
A second objective is to provide an improved NDB according to the first objective that also substantially minimizes oxygen diffusion out of a Hk enhancing layer that interfaces with the free layer.
A third objective is to provide a method of forming the p-MTJ according to the first two objectives with a process flow that is compatible with CMOS fabrication.
According to one embodiment, these objectives are achieved by providing a NDB that contacts a Hk enhancing layer in a p-MTJ with a bottom spin valve configuration. In one preferred embodiment, the NDB has a lower layer (L2), a middle layer (L1) and an upper metal nitride (MN) or metal oxynitride (MON) layer where L2 prevents oxygen diffusion from the Hk enhancing layer to L1, and L1 blocks nitrogen diffusion from the nitride layer (NL=MN or MON) to the FL. Thus, an optional seed layer, pinned layer, tunnel barrier layer, FL, Hk enhancing layer, and the NDB are sequentially formed on a substrate that may be a bottom electrode (BE). In an alternative embodiment, the Hk enhancing layer is omitted. Moreover, a second NDB with a NL/L1/L2 stack may be formed between the seed layer and pinned layer. In the second NDB, the stacking order is reversed such that L2 is the uppermost layer and adjoins the pinned layer.
In other embodiments, both of L1 and L2 may be partially oxidized to yield a L1ox/L2ox/NL, L1/L2ox/NL, or a L1ox/L2/NL NDB configuration. Furthermore, either of L1ox or L2ox may be omitted to provide a bilayer NDB having a L2ox/NL or a L1ox/NL configuration.
The present disclosure also encompasses embodiments where the NDB is formed between the seed layer and free layer in a top spin valve p-MTJ. For example, the p-MTJ may have a seed layer/NDB/Hk enhancing layer/FL/tunnel barrier layer/pinned layer/capping layer configuration.
According to a first embodiment, the metal nitride or metal oxynitride in the NDB has a M1N or M1ON composition wherein M1 is selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, Mg and W to afford a conductive M1N or M1ON that is beneficial in minimizing RA compared with a corresponding metal oxide (M1 oxide).
According to a second embodiment, the metal nitride or metal oxynitride in the NDB is comprised of an insulating metal (M2) nitride or oxynitride where M2 is one of B, Al, Si, Ga, In, or TI that is alloyed with a conductive metal or alloy (M3) selected from one or more of Pt, Au, Ag, Mg, Ca, Sr, Ba, Sc, Y, La, Co, Fe, Mn, Ru, Rh, Ir, Ni, Pd, Zn, Cu, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W to impart conductivity to the resulting M2M3 nitride (M2M3N), or M2M3 oxynitride (M2M3ON). Alternatively, the insulating M2N or M2ON layer has conductive pathways formed therein that are made of one or more of the M3 metals or alloys.
In all embodiments, L1 is preferably a material with a low free energy of nitride formation and is one of Zr, Ti, Ta, V, and Nb that also has a low to medium free energy of oxide formation. L2 is preferably one of Mo, Nb, Ta, Ag, Ru, Pt, or W and has a high to medium free energy of oxide formation, which is higher than that of L1. Thus, L2 is more difficult to oxidize than L1.
The present disclosure also encompasses a method of fabricating a p-MTJ having a NDB with a structure according to one of the aforementioned embodiments. Typically, M1N, M1ON, M2M3N, and M2M3ON layers are sputter deposited in a single step. However, a multistep process may be employed where M1 or M2M3 layers are first sputter deposited, and then a second step involving nitridation or oxynitridation is used to form the nitride or oxynitride, respectively. Formation of M3 conductive paths within a M2N or M2ON layer is accomplished by a sequence of steps of (1) depositing a M3 layer, (2) depositing a M2 layer on the M3 layer, and (3) performing a nitridation or oxynitridation with plasma, or by a first step of ion implantation and a second step that is an anneal process.
The present disclosure is a p-MTJ structure and a method of making the same wherein one or two NDBs are employed to prevent oxygen diffusion out of a spacer that is typically a Hk enhancing layer, and block nitrogen diffusion into the free layer thereby enhancing thermal stability and DRR, and minimizing RA. Exemplary embodiments depict p-MTJ structures having bottom spin valve, top spin valve, or dual spin valve configurations. The p-MTJ may be incorporated in a MRAM, STT-MRAM, spin orbit torque (SOT)-MRAM, or other spintronic devices such as a spin torque oscillator, Spin Hall Effect device, magnetic sensor, and a biosensor. A thickness of each p-MTJ layer is in a z-axis direction, and the planes of each layer are formed in the x-axis and y-axis directions. The term “partially oxidized” may be used interchangeably with the term “non-stoichiometric oxidation state” when referring to the oxygen content in a layer.
In related U.S. Pat. No. 9,966,529, we disclosed a p-MTJ structure wherein a free layer forms a first interface with a first oxide layer (tunnel barrier layer), and a second interface with a second oxide layer (Hk enhancing layer) that is preferably MgO in order to increase PMA and thermal stability. In addition, a TiN barrier layer is inserted between the Hk enhancing layer and overlying hard mask to preserve the integrity of the MgO layer. However, energy dispersive X-ray spectroscopy (EDS) revealed extensive interdiffusion at the MgO/TiN interface indicating oxygen in the TiN layer, and N present in the FL.
In related patent application Ser. No. 15/881,035, we disclosed a NDB designed to substantially reduce oxygen diffusion from a Hk enhancing layer and significantly minimize metal or nitrogen diffusion from a nitride capping layer through the Hk enhancing layer into the FL. In particular, the NDB is a bilayer having a lower conductive metal buffer layer on the Hk enhancing layer, and an upper MN or MON layer. Although the NBD shows an improvement as a barrier to oxygen and nitrogen diffusion, we found that one cannot rely on a single buffer layer to completely block both oxygen and nitrogen diffusion. We have now discovered a modified NDB wherein the oxygen and nitrogen blocking capability is optimized by having two different layers between the FL and MN or MON capping layer to afford a considerable improvement in FL integrity and p-MTJ performance.
Referring to
Seed layer 11 is a single layer or multilayer and may be comprised of one or more of NiCr, Ta, Ru, Ti, TaN, Cu, Mg, or other materials typically employed to promote a smooth and uniform grain structure in overlying layers. Pinned layer 12 may have a SyAP configuration represented by AP2/AFC layer/AP1 where an AF coupling (AFC) layer made of Ru, Rh, or Ir, for example, is sandwiched between an AP2 magnetic layer and an AP1 magnetic layer (not shown). The AP2 layer contacts the seed layer (or BE) while the AP1 layer adjoins the tunnel barrier layer 13. AP1 and AP2 layers may be comprised of CoFe, CoFeB, Co, or a combination thereof. In other embodiments, the pinned layer may be a laminated stack with inherent PMA such as (Co/Ni)n, (CoFe/Ni)n, (Co/NiFe)n, (Co/Pt)n, (Co/Pd)n, or the like where n is the lamination number. Furthermore, a transitional layer such as CoFeB or Co may be inserted between the uppermost layer in the laminated stack and the tunnel barrier layer.
Tunnel barrier layer 13 is preferably MgO that is formed by sputter depositing a MgO target, or by depositing one or more Mg layers and then oxidizing one or more Mg layers with a known radical oxidation (ROX) or natural oxidation (NOX) method. However, other metal oxides, or metal oxynitrides known in the art may be employed with or instead of MgO. For example, the tunnel barrier may be comprised of Al2O3, MgAlO, TiOx, AlTiO, MgZnO, Al2O3, ZnO, ZrOx, HfOx, or MgTaO. The present disclosure also anticipates that the tunnel barrier may be a lamination of one or more of the aforementioned metal oxides.
FL 14 has a thickness from 2 Angstroms to 100 Angstroms, and preferably 5 Angstroms to 30 Angstroms and is a single layer or a multilayer that is one or more of Co, Fe, CoFe, CoFeB, CoB, and FeB, or alloys thereof including CoFeNi and CoFeNiB. Moreover, there may be a metallic insertion layer with a thickness from 0.2 Angstroms to 10 Angstroms that is one or more of Al, Au, Ag, Mg, Ca, Sr, Ba, Sc, Y, La, Mn, Ru, Rh, Ir, Pd, Zn, Cu, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, or Pt in the FL. In other embodiments, the FL may be comprised of a material with a high crystalline anisotropy energy constant (Ku) having inherent PMA including Heusler alloys, ordered L10 or L11 materials, and rare-earth alloys. Heusler alloys include Ni2MnZ, Pd2MnZ, Co2MnZ, Fe2MnZ, Co2FeZ, Mn3Ge, Mn2Ga, and the like where Z is one of Si, Ge, Al, Ga, In, Sn, and Sb. Ordered L10 or L11 materials have a composition such as MnAl, MnGa, and RT wherein R is Rh, Pd, Pt, Ir, or an alloy thereof, and T is Fe, Co, Ni or an alloy thereof. Rare-earth alloys include but are not limited to TbFeCo, GdCoFe, FeNdB, and SmCo.
As a result of this configuration where a tunnel barrier (metal oxide) 13 and Hk enhancing layer (metal oxide) 15 form first and second interfaces with bottom and top surfaces, respectively, of FL 14, there is strong perpendicular surface anisotropy, KU1⊥,S and KU2⊥,S at the first and second interfaces, respectively, that contribute to enhancing the term KU⊥,S in equation (3) mentioned earlier.
Hk enhancing layer 15 is a metal oxide or metal oxynitride layer having a thickness and oxidation state that are controlled to give a RA product smaller than that of a MgO layer in tunnel barrier layer 13 in order to minimize a decrease in DRR. Thus, the Hk enhancing layer may be a single layer or laminate that is an oxide or oxynitride of one or more of Mg, Si, Ti, Ba, Ca, La, Al, Mn, V, and Hf. Moreover, the Hk enhancing layer may be a laminated layer comprised of one or more of the metal oxides or oxynitrides described above. In all embodiments, the Hk enhancing layer may have stoichiometric or non-stoichiometric oxygen content. Stoichiometric is defined as an oxidation state where essentially all non-metal lattice sites in a metal oxide are occupied by oxygen while in a non-stoichiometric oxidation state there is a plurality of unoccupied lattice sites.
Metal nitride or metal oxynitride layer also referred to as NL 16 comprises a metal or alloy (M1) where the metal or alloy is preferably one or more of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, Mg, and W to afford a conductive nitride (M1N) or oxynitride (WON) to minimize a RA contribution to the p-MTJ. Note that the total RA value for the p-MTJ is determined by a contribution from each of the metal oxide and metal nitride/oxynitride layers and is represented by the equation RATOTAL=(RA13+RA15+RA16) where RA13, RA15, and RA16 are the RA product for the tunnel barrier layer, Hk enhancing layer, and M1N or M1ON layer, respectively. Preferably, RATOTAL is <5 ohm-um2 for optimum p-MTJ performance. Since the largest contribution to the total is from the tunnel barrier layer, and the Hk enhancing layer is often underoxidized to avoid exceeding the desired RATOTAL, RA16 should provide the smallest RA contribution and is ideally proximate to zero.
Metallic buffer layer 18 is advantageously used as a barrier to oxygen migration out of the adjoining Hk enhancing layer 15, and as a barrier to nitrogen migration from the M1N or M1ON layer 16 to FL 14 so that DRR is not degraded. Typically, the metallic buffer layer is one of the aforementioned M1 alloys or metals.
Alternatively, metal nitride or metal oxynitride layer 16 may be comprised of an insulating metal (M2) nitride or oxynitride where M2 is one of B, Al, Si, Ga, In, or TI that is alloyed with a conductive metal or alloy (M3) selected from one or more of Pt, Au, Ag, Mg, Ca, Sr, Ba, Sc, Y, La, Co, Fe, Mn, Ru, Rh, Ir, Ni, Pd, Zn, Cu, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W to impart conductivity to the resulting M2M3 nitride (M2M3N), or M2M3 oxynitride (M2M3ON). The M2M3N or M2M3ON layers may be formed by sputter depositing M2 and M3 targets in reaction chamber with a plasma generated using a flow of N2 and RIE conditions, or by sputtering a M2M3 alloy, if available, in the presence of nitrogen plasma.
Capping layer 17 may be a single layer of Ta or Ru, or have a Ru/Ta or Ru/Ta/Ru configuration, for example, or may be another metal or alloy known in the art. Generally, the capping layer (or uppermost metal nitride or metal oxynitride layer in the p-MTJ in embodiments of the present disclosure) serves as a reactive ion etch (RIE) or ion beam etch (IBE) mask during patterning of the p-MTJ, and also functions as a barrier to a chemical mechanical polish (CMP) step that is typically employed to planarize an encapsulation layer for insulating p-MTJ cells.
According to a first embodiment of the present disclosure depicted in
NL 16 may have any of the M1N, M1ON, M2M3N or M2M3ON compositions described previously where M2 and M3 form a conductive alloy, or M3 forms conductive pathways in a M2N or M2ON insulating matrix as depicted in related patent application Ser. No. 15/881,035. The NL may be the thickest layer in NDB 21-1 in order to function as a hard mask during etching and CMP processes that are used to pattern a p-MTJ stack of layers into a plurality of p-MTJ cells. The NDB has a thickness from 4 Angstroms to 500 Angstroms.
L219 is preferably one or more of Mo, W, Ru, Nb, Ta, Cr, Pt, Cu, Au, Ag, Zn, V, Cd, Sn, Ir, Mn, Rh, Co, Fe, CoFe, CoFeB, CoB, FeB, CoFeNi, and CoFeNiB. The first group of the aforementioned metals from Mo to Rh is employed to prevent the diffusion of oxygen from the Hk enhancing layer (when present) to L120. Co, Fe, and their alloys are advantageously used in the NL to ensure good crystallization of the Hk enhancing layer during annealing. Thus, L2 is a metal or alloy with a medium to high free energy of oxide formation, preferably in the top half in the Table in
L1 is relied upon to block nitrogen diffusion from the MN or MON layer to spacer 15s or to FL 14, and is preferably a metal with a low energy of nitride formation in the graph shown in
The present disclosure also encompasses a second embodiment depicted in
According to a third embodiment shown in
A fourth embodiment is shown in
According to a fifth embodiment shown in
In a sixth embodiment illustrated in
Referring to
In
In
We have demonstrated improved p-MTJ performance using a NDB disclosed herein by building p-MTJ stacks with a pinned layer/MgO tunnel barrier/FL/capping layer configuration wherein a nitride capping layer (NL=TiN) in the prior art sample (a) was replaced by L1/NL (Ti/TiN)=sample (b), L2/NL (Mo/TiN)=sample (c), and with NDB 21-1 (Mo/Ti/TiN) from the first embodiment to afford sample (d). Note that a spacer was omitted between the FL and capping layer to rule out all diffusion barrier contributions from a Hk enhancing layer in order to more clearly determine the effect on interlayer mixing for each capping layer or NDB example. Each p-MTJ sample was annealed at 400° C. for 141 minutes and then an Energy-Dispersive X-ray Spectroscopy (EDS) measurement was performed to generate an EDS spectrum to enable a study of elemental composition as a function of depth into the film stack.
EDS spectra for samples (a), (b), (c), and (d) are shown in
In contrast, when an additional layer (L1 or L2) is added to the capping layer to give sample (b) and sample (c), respectively, nitrogen diffusion into the FL and MgO barrier is largely reduced, although not completely suppressed as shown in
The present disclosure also encompasses a method of fabricating a p-MTJ cell described herein. All layers in the p-MTJ cells described herein may be formed in an Anelva C-7100 thin film sputtering system or the like which typically includes multiple physical vapor deposition (PVD) chambers each with a capability for five targets, an oxidation chamber, and a sputter etching chamber. Usually, the sputter deposition process comprises a noble gas such as argon, and oxygen is excluded in the oxidation chamber unless required for tunnel barrier or Hk enhancing layer formation, or for the partial oxidation of L1 and L2. Once all of the layers in the p-MTJ stack are laid down on the bottom electrode, high temperature annealing may be performed in a vacuum oven for 1 to 5 hours at a temperature of about 360° C. to 400° C. to transform the amorphous tunnel barrier and Hk enhancing layer (when present), and amorphous FL into crystalline layers for lattice matching in the tunnel barrier/FL/Hk enhancing layer stack to enhance DRR.
A M1N capping layer may be formed by sputter depositing a M1 target in a reactive environment comprised of N and Ar species where the term “species” is defined as an ion or radical. The M1N (or M1ON) layer may have a non-stoichiometric nitridation state wherein the metal nitride matrix has vacant sites not occupied by M1 or N atoms.
Thereafter, an array of p-MTJ cells may be fabricated by a process involving a conventional photolithography patterning process and reactive ion etch (RIE) and/or ion beam etch (IBE) processes well known in the art. Subsequently, an encapsulation layer (not shown) is deposited to electrically insulate p-MTJ cells. A chemical mechanical polish (CMP) process is typically employed to form a smooth surface on the encapsulation layer that becomes coplanar with a top surface of the hard mask in each p-MTJ cell. Then a top electrode array (not shown) including a plurality of conductive lines (i.e. bit lines or word lines) is formed on the p-MTJ array and encapsulation layer to continue the magnetic device fabrication. During a read or write operation, a current is passed through the p-MTJ from the BE to a top conductive line, or in the reverse direction.
With regard to the formation of a M2M3N or M2M3ON layer 16 in the NDB 21-1 through 21-6 of aforementioned embodiments where the resulting alloy is conductive, or where M3 conductive channels are formed in a M2N or M2ON insulating matrix, one approach is depicted in
According to an alternative embodiment shown in
Another embodiment for forming a M2M3N or M2M3ON layer 16 in NDB 21-1 to NDB 21-6 is shown in
In yet another embodiment depicted in
In all embodiments, the p-MTJ is patterned by a conventional sequence involving coating a photoresist layer (not shown) on a top surface 16t of metal nitride or metal oxynitride layer 16 in p-MTJ 1, 2, 4, and 5, or on a top surface 17t of hard mask 17 in p-MTJ 3 and 6. Then the photoresist layer is patternwise exposed and developed with a well known lithography process to generate an array of island shapes arranged in rows and columns. Thereafter, one or more IBE or RIE steps are used to transfer the photoresist pattern through the p-MTJ stack to form sidewalls 1s-6s in p-MTJs 1-6, respectively.
Referring to
All of the embodiments described herein may be incorporated in a manufacturing scheme with standard tools and processes. A considerable gain in overall magnetic performance is achieved in that higher DRR and FL PMA (Hk) are observed while maintaining or lowering RA to further improve 64 Mb and 256 Mb STT-MRAM technology, and related spintronic devices where switching current, RA, DRR, FL PMA, and thermal stability are all critical parameters.
While the present disclosure has been particularly shown and described with reference to, the preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit and scope of this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
6166948 | Parkin et al. | Dec 2000 | A |
6544801 | Slaughter et al. | Apr 2003 | B1 |
6743503 | Chen | Jun 2004 | B1 |
6834005 | Parkin | Dec 2004 | B1 |
6847510 | Childress et al. | Jan 2005 | B2 |
6974708 | Horng et al. | Dec 2005 | B2 |
7183120 | Berg et al. | Feb 2007 | B2 |
7335961 | Guo et al. | Feb 2008 | B2 |
7486551 | Li et al. | Feb 2009 | B1 |
7576956 | Huai | Aug 2009 | B2 |
7586781 | Saitoh et al. | Sep 2009 | B2 |
7630232 | Guo | Dec 2009 | B2 |
7742263 | Fukumoto et al. | Jun 2010 | B2 |
7817462 | Miura et al. | Oct 2010 | B2 |
7863060 | Belen et al. | Jan 2011 | B2 |
7902579 | Lim et al. | Mar 2011 | B2 |
7936627 | Fukami | May 2011 | B2 |
8009464 | Kajiyama | Aug 2011 | B2 |
8379429 | Ishiwata et al. | Feb 2013 | B2 |
8470462 | Horng et al. | Jun 2013 | B2 |
8580583 | Lee et al. | Nov 2013 | B2 |
8592927 | Jan et al. | Nov 2013 | B2 |
8921961 | Kula et al. | Dec 2014 | B2 |
9006704 | Jan et al. | Apr 2015 | B2 |
9048411 | Jan et al. | Jun 2015 | B2 |
9368551 | Masuoka et al. | Jun 2016 | B2 |
9614258 | Takahashi et al. | Apr 2017 | B2 |
9711202 | Kim et al. | Jul 2017 | B2 |
9966529 | Iwata et al. | May 2018 | B1 |
20040252539 | Parkin | Dec 2004 | A1 |
20070253122 | Fukuzawa et al. | Nov 2007 | A1 |
20080137405 | Ohno et al. | Jun 2008 | A1 |
20080204946 | Ochiai et al. | Aug 2008 | A1 |
20080278867 | Fukumoto et al. | Nov 2008 | A1 |
20090213503 | Sun et al. | Aug 2009 | A1 |
20090257151 | Zhang et al. | Oct 2009 | A1 |
20090303779 | Chen et al. | Dec 2009 | A1 |
20100072524 | Huai et al. | Mar 2010 | A1 |
20100090261 | Zheng et al. | Apr 2010 | A1 |
20110014500 | Horng et al. | Jan 2011 | A1 |
20120023386 | Oh et al. | Jan 2012 | A1 |
20120205758 | Jan et al. | Aug 2012 | A1 |
20140355152 | Park et al. | Dec 2014 | A1 |
20160211442 | Cao et al. | Jul 2016 | A1 |
20160284763 | Tahmasebi et al. | Sep 2016 | A1 |
20170084836 | Kim et al. | Mar 2017 | A1 |
20170338021 | Xiao | Nov 2017 | A1 |
20180005746 | Thomas et al. | Jan 2018 | A1 |
20190237661 | Iwata | Aug 2019 | A1 |
20200006626 | Smith | Jan 2020 | A1 |
Number | Date | Country |
---|---|---|
H 11337527 | Dec 1999 | JP |
2005150303 | Jun 2005 | JP |
2007123640 | May 2007 | JP |
WO 2007015474 | Feb 2007 | WO |
WO 2009101827 | Aug 2009 | WO |
Entry |
---|
“Current-driven excitation of magnetic multilayers,” by J.C. Slonczewski, Journal of Magnetism and Magnetic Materials 159, L-1-L-7, Elsevier, Jun. 1996. |
“A perpendicular-anisotropy CoFeB—MgO magnetic tunnel junction,” by S. Ikeda et al., Nature materials, Published online: Jul. 11, 2010/ DOI: 10.1038/NMAT2804, www.nature.com/naturematerials, pp. 1-4. |
Current-induced domain wall motion in perpendicularly magnetized CoFeB nanowire, by S. Fukami et al., Applied Physics Letters 98, 082504 (2011) Feb. 2011, doi: http://dx.doi.org/10.1063/1.3558917, pp. 1-3. |
“Growth, structure, electroic, and magnetic properties of MgO/Fe(001) bilayers and Fe/MgO/Fe(001) trilayers,” by M. Klaua et al., Physical Review B, vol. 64, 134411, Sep. 2001, pp. 1-8. |
Number | Date | Country | |
---|---|---|---|
20200266334 A1 | Aug 2020 | US |