Non-corrosive cleaning composition for removing plasma etching residues

Information

  • Patent Grant
  • 6020292
  • Patent Number
    6,020,292
  • Date Filed
    Thursday, May 21, 1998
    26 years ago
  • Date Issued
    Tuesday, February 1, 2000
    24 years ago
Abstract
A non-corrosive cleaning composition for removing plasma etching residues comprising water, at least one quaternary ammonium hydroxide, and at least one corrosion inhibitor selected from (i) quaternary ammonium silicates and (ii) catechol nucleus-containing oligomers having a molecular weight in the range of about 220 to about 5,000.
Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a cleaning composition for use in microelectronics manufacturing, and more particularly to a non-corrosive cleaning composition that removes plasma etching by-products formed on wafer substrates after plasma etching of metal or metal oxide layers deposited on substrates.
2. Brief Description of Art
In the manufacture of microcircuits, positive photoresists are used as an intermediate mask to transfer an original mask pattern of a reticle onto wafer substrates by means of a series of photolithography and plasma etching steps. One of the final steps in the microcircuit manufacturing is removal of the patterned photoresist films from the substrates. In general, this step is affected by two methods. One method involves a wet stripping process in which the photoresist-covered substrates are brought into contact with a photoresist stripper solution that consists primarily of an organic solvent and an amine. However, wet photoresist stripper solutions cannot remove photoresist films effectively and completely in all cases, especially if they are exposed to UV irradiation and plasma treatments during the fabrication processes. Some photoresist films are highly crosslinked by such high energy treatments and become more difficult to dissolve in the stripper solution. In addition, the chemicals used in some conventional wet stripping solutions are ineffective in removing inorganic residues formed by the earlier step of plasma etching of metal or metal oxide layers with halogen-containing gases.
An alternative method of removing a photoresist film involves exposing a photoresist-coated wafer to an oxygen plasma to burn the resist film from substrate in a process known as oxygen plasma ashing. Recently, oxygen plasma ashing has become more popular in the microcircuit manufacturing process because it is carried out in a vacuum chamber and, hence, is expected to be less susceptible to airborne particulate or metallic contamination. However, oxygen plasma ashing is also not fully effective in removing the plasma etching residues noted above. Instead, removal of these plasma etching residues is accomplished by exposing them to certain alkaline solutions. Several commercial products are now available to clean the plasma etching residues left by plasma etching followed by oxygen ashing. For example, EKC 265, obtained from EKC Technology, Inc., is a cleaning solution composed of water, alkanolamine, catechol and hydroxylamine. Such a composition is disclosed in U.S. Pat. No. 5,279,771 by Wai M. Lee. ACT 935, obtained from Ashland Chemical, is another cleaning solution composed of water, alkanolamine and catechol. In both cases, catechol is used as a corrosion inhibitor. A post-strip rinse, R-10, obtained from Mitsubishi Gas Chemical, is also composed of water, alkanolamine and a sugar alcohol, wherein the sugar alcohol acts as a corrosion inhibitor.
In these commercial products, a combination of water and alkanolamine will not only dissolve the plasma etching residues, and will also attack metallic layers patternwise deposited on the substrate. The addition of a corrosion inhibitor is thus necessary in those products to prevent the unwanted attack on the metallic layers in the substrate. However, since these products have high pHs (above 11), they may attack certain corrosion-sensitive metal layers in the wafer substrate regardless of the presence of a corrosion inhibitor. Particularly, metal layers such as aluminum or its alloys (e.g., Al--Cu--Si), titanium nitride, titanium tungsten and the like are especially corrosion-sensitive. Therefore, the addition of a suitable corrosion inhibitor in a suitable amount is essential to prevent corrosion of the substrate metal layers without inhibiting the plasma etching residue removal. It is, however, difficult to balance the two desired results: (1) effective plasma etching residue removal and (2) effective corrosion inhibition. This dilemma is mainly due to the fact that the chemical compositions of the plasma etching residues are in general similar to those of the metal layers in the substrate. The alkanolamines included in the prior art cleaning compositions may thus randomly attack both the plasma etching residues and the substrate metal layers. Moreover, if a post-cleaner rinse such as isopropyl alcohol is not used, the corrosion may be very severe. In addition, it should be noted that some types of corrosion inhibitors tend to retard plasm etching residue removal. Accordingly, to date there has not been developed a perfect cleaning composition for removing plasma etching residues without metal layer corrosion. There has always been a tradeoff between plasma etching residue removal and substrate metal layer corrosion inhibition.
Several other patents in the photoresist stripper/cleaner application field exist as follows, although none of them disclose the use of the composition of the present invention.
Japanese Patent Application No. 7-028254 assigned to Kanto Kagaku discloses a non-corrosive photoresist removal liquid comprising a sugar alcohol, an alcohol amine, water, and a quaternary ammonium hydroxide.
PCT Published Patent Application No. WO 88-05813 teaches a positive or negative photoresist stripper containing butyrolactone or caprolactone, quaternary ammonium hydroxide compound, and optionally a nonionic surfactant.
U.S. Pat. No. 4,239,661 to Muraoka et al. discloses a surface treating agent comprising an aqueous solution of 0.01 to 20% trialkyl(hydroxy-alkyl)ammonium hydroxide. This agent is useful in removing organic and inorganic contaminants deposited on the surfaces of semiconductor products.
U.S. Pat. No. 4,904,571 to Miyashita et al. teaches printed circuit board photoresist stripper composition containing a solvent (e.g., water, alcohols, ethers, ketones, etc.), an alkaline compound dissolved in the solvent, including quaternary ammonium hydroxide, and a borohydride compound dissolved in the solvent.
U.S. Pat. No. 5,091,103 to Dean et al. teaches a positive photoresist stripping composition containing the combination of: (A) N-alkyl-2-pyrrolidone; (B) 1,2-propanediol; and (C) tetraalkylammonium hydroxide.
U.S. Pat. No. 5,139,607 to Ward et al. teaches positive and negative photoresist stripping composition containing tetrahydrofurfuryl alcohol, a polyhydric alcohol (e.g., ethylene glycol or propylene glycol), the reaction product of furfuryl alcohol and an alkylene oxide, a water-soluble (Bronstead) base type hydroxide compound (e.g., alkali metal hydroxide, ammonium hydroxide and tetramethyl ammonium hydroxide), and water. optionally, the composition may also contain up to 1% of a nonionic surfactant.
U.S. Pat. No. 5,174,816 to Aoyama et al. discloses a composition for removing chlorine remaining on the surface of an aluminum line pattern substrate after dry etching, comprising an aqueous solution containing 0.01 to 15% by weight of a quaternary ammonium hydroxide, such as trimethyl(2-hydroxyethyl)ammonium hydroxide, and 0.1 to 20% by weight of sugar or sugar alcohol, such as xylitol, mannose, glucose, and the like.
In the above-mentioned examples of art of the photoresist stripping and cleaning technology, a mixture of water and organic amines, especially alkanolamines, are used as essential ingredients of the cleaning compositions. These essential ingredients dissolve metal or metal oxide type of plasma etching residues due to the reaction of the residues with hydroxide ion that is formed by the reaction of amines with water. To inhibit the corrosion of substrate metals patternwise deposited on wafers, corrosion inhibitors such as catechol, sugar alcohols, and other reducing or chelating compounds have been added to the mixtures of water and amines. However, none of the prior art teaches the use of a mixture of water and quaternary ammonium hydroxides in combination with selected corrosion inhibitors that can effectively prevent the corrosion of substrate metal layers without retarding the plasma etching residue removal.





BRIEF SUMMARY OF THE INVENTION
The present invention is directed to a non-corrosive cleaning composition for removing plasma etching residues comprising:
(A) water;
(B) at least one quaternary ammonium hydroxide; and
(C) at least one corrosion inhibitor selected from the group consisting of (i) quaternary ammonium silicates such as tetramethylammonium silicate; and
(ii) catechol nucleus-containing oligomers which have a molecular weight in the range of about 220 to about 5,000.
The cleaning composition of the invention is effective in removing plasma etching residues formed on wafers without corroding metallic layers.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE PRESENT INVENTION
The present invention is directed to a non-corrosive cleaning composition for removing plasma etching residues from wafer substrates comprising water, a quaternary ammonium hydroxide, and at least one selected corrosion inhibitor.
The quaternary ammonium hydroxide component included in the composition of the invention includes any tetraalkylammonium hydroxides having alkyl groups of methyl, ethyl, propyl, butyl, hydroxyethyl, benzyl, and the combinations thereof (e.g., such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, trimethyl hydroxyethylammonium hydroxide, methyl tri(hydroxyethyl)ammonium hydroxide, benzyl trimethylammonium hydroxide, and the like). Additionally, combinations of ammonium hydroxide with the quaternary ammonium hydroxides may also be used. Preferably, the quaternary ammonium hydroxide component is present in the composition of the invention in the range of about 0.01% to about 10% by weight.
Corrosion inhibitors useful in the invention include quaternary ammonium silicates, and catechol nucleus-containing oligomers which have a molecular weight in the range of about 220 to about 5,000. In particular, the catechol oligomers are most preferred among all the candidates described above.
Silicates are known to inhibit metal corrosion in some application areas such as resist developers for aluminum substrates. However, this chemistry has not been applied to the stripper/cleaner field. In microelectronics manufacturing, any metallic contamination decreases the device life of microcircuits so that alkali metal silicates such as sodium silicate which have been used in other application areas cannot be used. Therefore, quaternary ammonium silicates such as tetramethylammonium silicate are useful in the composition of the invention.
Some of the catechol nucleus-containing oligomers useful in the invention are commercially available; for example, the following compounds are obtained from Honshu Chemical: 4,4'-[3,4-dihydroxyphenyl)methylene]bis[2-methylphenol], trade name of Tris P-234, 4-(1',3',4',9' a-tetrahydro-5',6'-dihydroxyspiro[cyclohexane-1,9'-[9H]xanthen]-4]' a(2'H)-yl)-1,2,3-benzenetriol, trade name of Pyrogallol Flavan Z, and 4,4'-[1,4-phenylenebis(1-methylethylene)]bis [1,2,3-benzenenetriol], trade name of Bis PG-P.
In addition, more catechol nucleus-containing oligomers useful in the invention can be synthesized by addition-condensation reaction of catechol with formaldehyde or related aldehydes or ketones in the presence or absence of other phenolic compounds. The phenolic compounds added to catechol should preferably have hydrophilic groups to increase their solubility in the cleaning composition of the invention of resulting oligomers. The resulting oligomers have a molecular weight in the range of about 220 to about 5,000.
Preferably, the corrosion inhibitor is present in the composition of the invention in the range of about 0.01% to about 10% by weight, and more preferably in the range of about 0.5% to about 5% by weight to a total weight of the cleaning composition.
The cleaning composition of the present invention can be used either after an oxygen plasma ashing step or after a conventional wet photoresist stripping step. The cleaning composition of the invention is not designed to remove photoresist films from wafer substrates. Rather, the cleaning composition of the invention is formulated to remove plasma etching residues after removing photoresists by the dry or wet stripping method.
The following synthesis and examples are intended to illustrate the various aspects of the invention, but are not intended to limit the scope of the invention. All % and parts are by weight and all temps are degrees Celcius unless explicitly stated otherwise.
SYNTHESIS 1
N-methyl-2-pyrrolidone (NMP), 110 grams, was placed in a 500 ml flask equipped with a mechanical stirrer, a condenser, and dropping funnel, and the flask was heated to 70-75.degree. C. with stirring. Catechol, 110 grams, was gradually added to NMP with stirring, followed by 65.5 grams of 36.7% aqueous formalin, added dropwise to the reaction solution over an hour. An aqueous solution of 7.0 wt % oxalic acid (18.0 grams) was slowly added to the above solution over 30 minutes. The reaction mixture was heated at a refluxing temperature of water with stirring for an additional eight hours, and then heated at about 120.degree. C. in a vacuum to remove water and NMP from the reaction solution by distillation.
The resulting product was characterized by GPC (Gel Permeation Chromatography) to measure the molecular weight using a polystyrene standard reference. A weight-average molecular weight of the reaction product was 2,450 with a polydispersity of 2.3.
EXAMPLE 1
A cleaning solution was prepared by diluting OPD 262, 2.39 wt % TMAH (tetramethyl ammonium hydroxide) aqueous solution obtained from Olin Corporation, with deionized water by a factor of 10 and adding the product obtained in Synthesis 1 by 4.0 wt % to a total weight of the cleaning solution.
The cleaning of a metal etch residue from a substrate was made with the above cleaning composition using a multilayered substrate of Photoresist/SiO.sub.2 /TiN/Al--Si--Cu that was patterned lithographically, etched in a plasma metal etcher, and followed by oxygen plasma ashing to remove the top layer of photoresist completely. The thus prepared wafer was immersed in the above-mentioned cleaning solution at room temperature (about 25.degree. C.) for 5 minutes without agitation. The wafer was then immersed in isopropyl alcohol (IPA) for 60 seconds with agitation, followed by deionized water rinse at room temperature with nitrogen bubbling for 5 minutes.
The thus treated wafer was analyzed by a field emission type scanning electron microscope (SEM) to observe the surface. SEM showed that the plasma etching residues were completely removed with no metal attack to both the metal layers of Al--Si--Cu and TiN.
COMPARISON 1
A reference cleaning solution was prepared according to the steps outlined in Example 1 except that no corrosion inhibitor was added. The cleaning test was carried out on a multilayered substrate according to the same method as described in Example 1. SEM surface analysis showed severe metal corrosion and complete removal of the plasma etching residues.
While the invention has been described above with reference to specific embodiments thereof, it is apparent that many changes, modifications and variations can be made without departing from the inventive concept disclosed herein. Accordingly, it is intended to embrace all such changes, modifications and variations that fall within the spirit and broad scope of the appended claims. All patent applications, patents and other publications cited herein are incorporated by reference in their entirety.
Claims
  • 1. A cleaning composition for removing residues formed during plasma etching from a substrate, said cleaning composition comprising:
  • (A) water;
  • (B) at least one quaternary ammonium hydroxide selected from the group consisting of tetraalkyl ammonium hydroxide, wherein the alkyl groups are independently selected from the group consisting of methyl, ethyl, propyl, and butyl; trimethyl hydroxyethyl ammonium hydroxide; methyl tri(hydroxyethyl) ammonium hydroxide; and benzyltrimethyl ammonium hydroxide; and
  • (C) a corrosion inhibitor which is tetramethyl ammonium silicate.
  • 2. The cleaning composition of claim 1, wherein the quaternary ammonium hydroxide is present in said cleaning composition in an amount from about 0.01% to about 10% by weight, based on the total weight of the composition.
  • 3. The cleaning composition of claim 1, wherein the amount of corrosion inhibitor is from about 0.01% to about 10% by weight, based on the total weight of the cleaning composition.
Parent Case Info

This is a division of application Ser. No. 08/709,054, filed Sep. 6, 1996, now U.S. Pat. No. 5,817,610.

US Referenced Citations (64)
Number Name Date Kind
3582401 Berilla et al. Jun 1971
3961992 Jahnke et al. Jun 1976
3962108 Perruccio Jun 1976
4015986 Paal et al. Apr 1977
4020040 Kattoh et al. Apr 1977
4051047 Liston Sep 1977
4169068 Harita et al. Sep 1979
4239661 Muraoka et al. Dec 1980
4304681 Martin et al. Dec 1981
4395348 Lee Jul 1983
4395479 Ward et al. Jul 1983
4401747 Ward, Jr. et al. Aug 1983
4401748 Ward, Jr. et al. Aug 1983
4403029 Ward, Jr. et al. Sep 1983
4423159 Ebra et al. Dec 1983
4428871 Ward et al. Jan 1984
4617251 Sizensky Oct 1986
4680133 Ward Jul 1987
4770713 Ward Sep 1988
4786578 Neisius et al. Nov 1988
4791043 Thomas et al. Dec 1988
4824762 Kobayashi et al. Apr 1989
4824763 Lee Apr 1989
4830772 Van De Mark May 1989
4844832 Kobayashi et al. Jul 1989
4904571 Miyashita et al. Feb 1990
4940759 Yang Jul 1990
4944893 Tanaka et al. Jul 1990
4971715 Armant et al. Nov 1990
4992108 Ward et al. Feb 1991
4994153 Piano et al. Feb 1991
5091103 Dean et al. Feb 1992
5102777 Lin et al. Apr 1992
5104515 Chu et al. Apr 1992
5114834 Nachshon May 1992
5128230 Templeton et al. Jul 1992
5139607 Ward et al. Aug 1992
5145717 Drury Sep 1992
5156828 Degnan et al. Oct 1992
5174816 Aoyama et al. Dec 1992
5185235 Sato et al. Feb 1993
5219700 Nakai et al. Jun 1993
5234795 Jeffries, III et al. Aug 1993
5266440 Zampini Nov 1993
5279771 Lee Jan 1994
5308745 Schwartzkopf May 1994
5334332 Lee Aug 1994
5348687 Beck et al. Sep 1994
5381807 Lee Jan 1995
5389452 Nakajima et al. Feb 1995
5409800 Sato et al. Apr 1995
5417802 Obeng May 1995
5419799 Lind et al. May 1995
5419995 Zampini May 1995
5446126 Honda Aug 1995
5472830 Honda Dec 1995
5480585 Shiotsu et al. Jan 1996
5507978 Honda Apr 1996
5561105 Honda Oct 1996
5571642 Wakata et al. Nov 1996
5571886 Zampini Nov 1996
5612304 Honda et al. Mar 1997
5759973 Honda et al. Jun 1998
5817610 Honda et al. Oct 1998
Foreign Referenced Citations (27)
Number Date Country
647 884 A1 Jun 1994 EPX
143 921 Sep 1980 DEX
143 920 Sep 1980 DEX
3 821 231 A1 Jan 1989 DEX
3 828 513 A1 Mar 1990 DEX
56-115368 Aug 1981 JPX
62-132723 Jul 1987 JPX
63-50838 Mar 1988 JPX
63-208043 Nov 1988 JPX
64-13217 Jan 1989 JPX
64-42653 Mar 1989 JPX
64-81949 Apr 1989 JPX
64-81950 Apr 1989 JPX
64-88548 Apr 1989 JPX
1-114846 May 1989 JPX
1-133049 Jul 1989 JPX
2-48668 Mar 1990 JPX
2-131239 Jun 1990 JPX
2-253265 Sep 1990 JPX
4-124668 Jun 1992 JPX
4-350660 Nov 1992 JPX
5-24498 Jan 1993 JPX
5-45894 Feb 1993 JPX
7-28254 Jan 1995 JPX
7-271056 Aug 1995 JPX
7-244386 Oct 1995 JPX
WO8805813 Aug 1988 WOX
Divisions (1)
Number Date Country
Parent 709054 Sep 1996