A large capacity non-volatile semiconductor memory device includes plural memory cells and stores data in the memory cells. The memory cell has a structure that includes a tunnel insulating film formed on a semiconductor substrate, an electric charge storage layer formed on the tunnel insulating film, an insulating layer formed on the electric charge storage layer, and a control electrode formed on the insulating layer in many cases. Here, when a metal element is added to the electric charge storage layer, the metal element is possibly diffused to the outside (outward-diffusion) from the electric charge storage layer. As a result, the data storing property of the memory cell may be deteriorated.
A non-volatile semiconductor memory device according to the embodiments includes: a semiconductor substrate, a tunnel insulating film on the semiconductor substrate, a first electric charge storage layer on the tunnel insulating film, a first insulating layer on the first electric charge storage layer, a second electric charge storage layer on the first insulating layer and including a metal containing layer, a first metal diffusion suppressing layer on the second electric charge storage layer to suppress diffusion of the metal contained in the second electric charge storage layer, a second insulating layer on the first metal diffusion suppressing layer, and a control electrode on the second insulating layer.
Hereinafter, embodiments of a non-volatile semiconductor memory apparatus and a manufacturing method thereof are described with reference to the drawings. Further, with respect to the description in the drawings referred hereto, the same or similar portions are indicated by providing the same or similar reference numerals. The drawings are schematically provided, and the relation between the thickness and the flat dimension, the ratios of the thicknesses of the respective layers, and the like are not necessarily equal to actual thicknesses. In addition, upper, lower, left, and right directions indicate relative directions when a circuit formed surface side of a semiconductor substrate described below is faced up, and do not correspond to directions based on the gravitational acceleration direction. In addition, for convenience of the description, upper, lower, left, and right directions, or high and low directions, or a depth direction of a groove, or the like according to the descriptions of the embodiments are relative positional relations based on a rear surface side of the semiconductor substrate described below.
Furthermore, herein below, an XYZ rectangular coordinate system is used for convenience of the description. With respect to the coordinate system, two directions parallel to the surface of the semiconductor substrate and intersecting each other are set to be X and Y directions, and the direction intersecting the X and Y directions is set to be a Z direction.
Referring to
Each of the cell units UC has two selection transistors, STD and STS, and a plurality (for example, 64) of memory cells MT. The plurality of memory cells MT are connected in series between the selection transistors STD and STS. The plurality of memory cells MT form a cell string. One side of a drain and a source of the selection transistor STD is connected to bit lines BL, and the other side is connected to one side of a drain and a source of a memory cell MT disposed in an end portion of the cell string. The other side of the cell string is connected to one side of a drain and a source of the selection transistor STS, and the other side of the drain or source of the selection transistor STS is connected to source lines SL.
In addition, as illustrated in
In the schematic cross-sectional view illustrated in
The gate MG is formed by sequentially stacking a first electric charge storage layer 3, a first insulating layer 4, a second electric charge storage layer 5, a first metal diffusion suppressing layer 6, a second insulating layer 7, and a control electrode 8 on the tunnel insulating film 2. The tunnel insulating film. 2 can be formed of a silicon oxide film. The tunnel insulating film 2 allows an FN tunneling current to flow and is formed to have a certain film thickness of 3 nm or greater.
The first electric charge storage layer 3 is formed to be in contact with the upper surface of the tunnel insulating film 2. The first electric charge storage layer 3 can be formed of polysilicon, for example a p-doped polysilicon, such as polysilicon layer doped with boron. The first electric charge storage layer 3 is formed to have a film thickness equal to or less than the film thickness of the tunnel insulating film 2.
The first insulating layer 4 is formed to be in contact with the upper surface of the first electric charge storage layer 3. The first insulating layer 4 is formed of, for example, a silicon nitride film, an Oxide-Nitride-Oxide (ONO) film, a Nitride-Oxide-Nitride-Oxide-Nitride (NONON) film, or a stacked film in which the nitride film between the ONO film or the NONON film is replaced with a high-permittivity insulating film (High-K film: for example, alumina or hafnia). The first insulating layer 4 can also function as a charge trapping film. The first insulating layer 4 is formed to have a film thickness equal to or less than the film thickness of the tunnel insulating film 2.
The second electric charge storage layer 5 is formed to be in contact with the upper surface of the first insulating layer 4, and formed of, for example, a conductive metal layer or a metal-containing layer. The second electric charge storage layer 5 is formed to have a film thickness equal to or less than the tunnel insulating film 2. The metal contained in the second electric charge storage layer 5 can contain at least one of ruthenium (Ru), tungsten (W), tungsten silicide (WSi), chromium (Cr), copper (Cu), and the like. In some embodiments, the second electric charge storage layer 5 only includes one of the metals or metallic compounds described above.
The first metal diffusion suppressing layer 6 is formed to be in contact with the upper surface of the second electric charge storage layer 5 and is provided for the purpose of suppressing the diffusion of the metal contained in the second electric charge storage layer 5. The first metal diffusion suppressing layer 6 may be formed of a silicon nitride (SiN) film or a stacked layer film including the silicon nitride film. Boron (B) and/or carbon (C), or the like can be included in the silicon nitride film of the first metal diffusion suppressing layer 6 in some embodiments. The first metal diffusion suppressing layer 6 is formed to have a film thickness equal to or less than the film thickness of the tunnel insulating film 2.
The second insulating layer 7 is formed to be in contact with the upper surface of the first metal diffusion suppressing layer 6. The second insulating layer 7 can be a high-permittivity insulating film (High-K film: for example, alumina, or hafnia). The second insulating layer 7 can be formed with a stacked layer film of a high-permittivity insulating film and a silicon oxide film. The second insulating layer 7 includes a charge blocking film that suppresses the passage of charges. The second insulating layer 7 is formed to have a film thickness of equal to or greater than the film thickness of the tunnel insulating film 2.
The control electrode 8 is formed to be in contact with the upper surface of the second insulating layer 7. The control electrode 8 can be formed of n-doped or p-doped polysilicon, a stack of doped polysilicon with a metal film formed on the polysilicon, a stack of doped polysilicon with a silicide layer obtained by performing a silicide process on a metal formed on the polysilicon, and the like.
An interlayer insulating film 9 is formed to cover the plurality of gates MG. The interlayer insulating film 9 can be formed of a silicon oxide film. The interlayer insulating film 9 may be formed only on the upper surface of the control electrode 8, and accordingly gaps may be provided between the adjacent gates MG-MG. In the present embodiment, the gaps are not provided.
As illustrated in
Element separation grooves 10 are formed on the semiconductor substrate 1. The element separation grooves 10 are formed to separate the element areas Sa, the tunnel insulating films 2, the first electric charge storage layers 3, the first insulating layers 4, and the second electric charge storage layers 5 in the X direction. Element separation films 11 are embedded in the element separation grooves 10. The element separation films 11 are formed with, for example, silicon oxide films, and are formed to protrude more upwardly than the upper surface of the semiconductor substrate 1. The element separation films 11 are formed in Shallow Trench Isolation (STI) structures.
In the schematic cross-sectional view illustrated in
According to the structure of the present embodiment, the first electric charge storage layer 3, the first insulating layer 4, and the second electric charge storage layer 5 are stacked on the semiconductor substrate 1 over the tunnel insulating film 2. Therefore, it is possible to effectively store charges by using the multi-stage electric charge storage layers 3 and 5. In addition, since the first metal diffusion suppressing layer 6 is formed on the second electric charge storage layer 5, it is possible to suppress the diffusion of the metal contained in the second electric charge storage layer 5. As a result, it is possible to enhance an ability of accumulating charges in the second electric charge storage layer 5 so that a data storing property may be enhanced.
In addition, if the second insulating layer 7 includes a portion to trap charges, the diffusion of the metal contained in the second electric charge storage layer 5 to the second insulating layer 7 may be further suppressed enabling the charges to be effectively and efficiently stored in the second electric charge storage layer 5. Consequently, writing speed and deleting speed may be further enhanced.
The data storing property may be enhanced by the operation as illustrated in
The control circuit CC may perform the data writing process to the selected memory cells MT by applying a program voltage Vpgm (writing voltage: high voltage) to the selected word lines WL (the control electrode 8) and applying a low voltage (<Vpgm) to the bit lines BL on the semiconductor substrate 1. Then, the FN tunneling current flows through the tunnel insulating film 2 and charges are injected from the semiconductor substrate 1 to the first and second electric charge storage layers 3, 5 of the memory cells MT selected for writing.
Meanwhile, when the control circuit CC in the peripheral circuit PC performs the reading process, the data reading process from the memory cells MT performs a reading control process as illustrated in
Here, until the reading process of the charges stored in the second electric charge storage layer 5 is performed, some of the stored charges in the second electric charge storage layer 5 may migrate to the first electric charge storage layer 3. Then, the threshold voltage of the memory cells MT that are the read target may be changed according to the change in the amount of charges stored in the first electric charge storage layer 3 of the memory cells MT that are the read target.
Accordingly, in the present embodiment, before the data reading process from the selected memory cell MT, the control circuit CC applies a voltage Vrew that is greater than the read voltage Vread and smaller than the program voltage Vpgm to the control electrode 8 (the selected word line WL) connected to the selected memory cell MT (S1 of
After this, the control circuit CC applies the read voltage Vread to the control electrode 8 (the word line WL) connected to the selected memory cell MT, and also applies the sense voltage Vsense lower than the read voltage Vread, to the bit line BL (S2 of
Hereinafter, an example of a method of manufacturing a non-volatile semiconductor memory apparatus according to the present embodiment is described. In the description below, although general portions are described other operations may be added between the respective operations, and some of the following operations may be removed as well, if necessary. In addition, if it is practically possible, the operations may be appropriately replaced.
First, as shown in
As illustrated in
As illustrated in
Next, a resist mask (not illustrated) is patterned on the first metal diffusion suppressing layer 6 by a lithography process. A resist mask is used as a mask, and portions of the first metal diffusion suppressing layer 6, the second electric charge storage layer 5, the first insulating layer 4, the first electric charge storage layer 3, the tunnel insulating film 2, and the surface layer of the semiconductor substrate 1 are sequentially etched forming the element separation grooves as illustrated in
The element separation grooves 10 are formed to extend in the depth direction (Y direction) of the printed surface and formed to penetrate the first metal diffusion suppressing layer 6, the second electric charge storage layer 5, the first insulating layer 4, the first electric charge storage layer 3, and the tunnel insulating film 2. In addition, the element separation grooves 10 extend down to lower than the upper surface of the semiconductor substrate 1.
Subsequently, as illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
A resist mask (not shown) is patterned on the control electrode 8, and the patterned resist mask is used as a mask, to form grooves T on the stacking structures 3 to 8 as illustrated in
Then, dopants can be doped into the surface layer of the semiconductor substrate 1 by using an ion implantation method. As illustrated in
As illustrated in
Since the second metal diffusion suppressing layers 20 are formed along the side surfaces of the second electric charge storage layers 5 in the Y direction, the diffusion of metal contained in the second electric charge storage layers 5 in may be suppressed the Y direction (outward-diffusion). In addition, since the second metal diffusion suppressing layers 20 are formed along the side surfaces of the first electric charge storage layers 3 in the Y direction, the withstand voltage of the first electric charge storage layer 3 may be enhanced.
As illustrated in
Since the third metal diffusion suppressing layers 30 are formed on the side surfaces of the second electric charge storage layer 5, the outward-diffusion of the metal contained in the second electric charge storage layer 5 in the X direction may be suppressed. In addition, since the third metal diffusion suppressing layers 30 are formed along the side surfaces of the first electric charge storage layer 3, the withstand voltage of the first electric charge storage layer 3 may be enhanced.
As illustrated in
According to the present embodiment, the second metal diffusion suppressing layers 20 are continuously formed on the side surfaces of the first and second electric charge storage layers 3 and 5. However, the configuration is not limited thereto, and the second metal diffusion suppressing layers 20 may be selectively formed only on the side surfaces of the second electric charge storage layer 5.
The third metal diffusion suppressing layers 30 are also formed in the same manner. That is, the third metal diffusion suppressing layers 30 are continuously formed on the side surfaces of the first and second electric charge storage layers 3 and 5. However, the configuration is not limited thereto, the third metal diffusion suppressing layers 30 may be selectively formed only on the side surfaces of the second electric charge storage layer 5 in the Y direction.
A manufacturing method of the second embodiment is described below. In the description below, although general portions are described, other operations may be added between the respective operations, and some of the following operations may be removed, if necessary. In addition, if it is practically possible, the operations may be appropriately replaced.
First, as illustrated in
A resist mask (not illustrated) is formed on the first metal diffusion suppressing layer 6 by a lithography method. The formed resist mask is used as a mask, and the element separation grooves 10 are formed on the first metal diffusion suppressing layer 6, the second electric charge storage layer 5, the first insulating layer 4, the first electric charge storage layer 3, the tunnel insulating film 2, and the surface layer of the semiconductor substrate 1, as illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
A resist mask (not illustrated) is patterned on the control electrode 8, and the patterned resist mask is used as a mask to form grooves T on the stacking structures 3 to 8 as illustrated in
Subsequently, the second metal diffusion suppressing layers 20 are formed along exposed surfaces of the grooves T. The second metal diffusion suppressing layers 20 are formed with a silicon nitride film to which, for example, boron (B) or carbon (C) is added, by using a CVD method or an ALD method.
Next, dopants are added to the surface layer of the semiconductor substrate 1 by an ion implantation method. The dopants are formed for the source or drain areas 1b (See
The second embodiment provides many of the same advantages as the first embodiment.
The first to third metal diffusion suppressing layers 10, 20, and 30 are respectively formed with silicon nitride films, and boron (B) atoms may or may not be included in the silicon nitride films. Carbon (C) atoms may also possibly be included in the first to third metal diffusion suppressing layers 10, 20, and 30. The boron (B) and/or carbon (C) may be added to the first to third metal diffusion suppressing layers 10, 20, and 30 when the layers 10, 20, 30 are respectively formed and processed, or after the formation of the respective layers 10, 20, and 30. The boron (B) or carbon (C) atoms may or may not be included in the metal diffusion suppressing layers 10, 20, 30.
The second metal diffusion suppressing layers 20 and the third metal diffusion suppressing layers 30 may be integrated or separate. Although the cell is described with respect to the embodiment including the memory cells MT, when a dummy cell is provided between the selection transistor STS and the memory cells MT on the end portion of the cell string, the embodiment may be applied to the dummy cell as well.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel devices and methods described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions, and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modification as would fall within the scope and spirit of the inventions.
This application is based upon and claims the benefit of priority from U.S. Provisional Patent Application No. 61/951,738, filed Mar. 12, 2014, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61951738 | Mar 2014 | US |