Targeted editing of nucleic acid sequences, for example, the targeted cleavage or the targeted introduction of a specific modification into genomic DNA, is a highly promising approach for the study of gene function and also has the potential to provide new therapies for human genetic diseases.1 An ideal nucleic acid editing technology possesses three characteristics: (1) high efficiency of installing the desired modification; (2) minimal off-target activity; and (3) the ability to be programmed to edit precisely any site in a given nucleic acid, e.g., any site within the human genome.2 Current genome engineering tools, including engineered zinc finger nucleases (ZFNs),3 transcription activator like effector nucleases (TALENs),4 and most recently, the RNA-guided DNA endonuclease Cas9,5 effect sequence-specific DNA cleavage in a genome. This programmable cleavage can result in mutation of the DNA at the cleavage site via non-homologous end joining (NHEJ) or replacement of the DNA surrounding the cleavage site via homology-directed repair (HDR).6,7
One drawback to the current technologies is that both NHEJ and HDR are stochastic processes that typically result in modest gene editing efficiencies as well as unwanted gene alterations that can compete with the desired alteration.8 Since many genetic diseases in principle can be treated by effecting a specific nucleotide change at a specific location in the genome (for example, a C to T change in a specific codon of a gene associated with a disease),9 the development of a programmable way to achieve such precision gene editing would represent both a powerful new research tool, as well as a potential new approach to gene editing-based human therapeutics.
The clustered regularly interspaced short palindromic repeat (CRISPR) system is a recently discovered prokaryotic adaptive immune system10 that has been modified to enable robust and general genome engineering in a variety of organisms and cell lines.11 CRISPR-Cas (CRISPR associated) systems are protein-RNA complexes that use an RNA molecule (sgRNA) as a guide to localize the complex to a target DNA sequence via base-pairing.12 In the natural systems, a Cas protein then acts as an endonuclease to cleave the targeted DNA sequence.13 The target DNA sequence must be both complementary to the sgRNA, and also contain a “protospacer-adjacent motif” (PAM) at the 3′-end of the complementary region in order for the system to function.14
Among the known Cas proteins, S. pyogenes Cas9 has been mostly widely used as a tool for genome engineering.15 This Cas9 protein is a large, multi-domain protein containing two distinct nuclease domains. Point mutations can be introduced into Cas9 to abolish nuclease activity, resulting in a dead Cas9 (dCas9) that still retains its ability to bind DNA in a sgRNA-programmed manner.16 In principle, when fused to another protein or domain, dCas9 can target that protein to virtually any DNA sequence simply by co-expression with an appropriate sgRNA.
The potential of the dCas9 complex for genome engineering purposes is immense. Its unique ability to bring proteins to specific sites in a genome programmed by the sgRNA in theory can be developed into a variety of site-specific genome engineering tools beyond nucleases, including transcriptional activators, transcriptional repressors, histone-modifying proteins, integrases, and recombinases.11 Some of these potential applications have recently been implemented through dCas9 fusions with transcriptional activators to afford RNA-guided transcriptional activators,17,18 transcriptional repressors,16,19,20 and chromatin modification enzymes.21 Simple co-expression of these fusions with a variety of sgRNAs results in specific expression of the target genes. These seminal studies have paved the way for the design and construction of readily programmable sequence-specific effectors for the precise manipulation of genomes.
Significantly, 80-90% of protein mutations responsible for human disease arise from the substitution, deletion, or insertion of only a single nucleotide.6 Most current strategies for single-base gene correction include engineered nucleases (which rely on the creation of double-strand breaks, DSBs, followed by stochastic, inefficient homology-directed repair, HDR), and DNA-RNA chimeric oligonucleotides.22 The latter strategy involves the design of a RNA/DNA sequence to base pair with a specific sequence in genomic DNA except at the nucleotide to be edited. The resulting mismatch is recognized by the cell's endogenous repair system and fixed, leading to a change in the sequence of either the chimera or the genome. Both of these strategies suffer from low gene editing efficiencies and unwanted gene alterations, as they are subject to both the stochasticity of HDR and the competition between HDR and non-homologous end-joining, NHEJ.23-25 HDR efficiencies vary according to the location of the target gene within the genome,26 the state of the cell cycle,27 and the type of cell/tissue.28 The development of a direct, programmable way to install a specific type of base modification at a precise location in genomic DNA with enzyme-like efficiency and no stochasticity therefore represents a powerful new approach to gene editing-based research tools and human therapeutics.
Some aspects of the disclosure are based on the recognition that certain configurations of a dCas9 domain, and a cytidine deaminase domain fused by a linker are useful for efficiently deaminating target cytidine residues. Other aspects of this disclosure relate to the recognition that a nucleobase editing fusion protein with a cytidine deaminase domain fused to the N-terminus of a nuclease inactive Cas9 (dCas9) via a linker was capable of efficiently deaminating target nucleic acids in a double stranded DNA target molecule. See for example, Examples 3 and 4 below, which demonstrate that the fusion proteins, which are also referred to herein as base editors, generate less indels and more efficiently deaminate target nucleic acids than other base editors, such as base editors without a UGI domain. In some embodiments, the fusion protein comprises a nuclease-inactive Cas9 (dCas9) domain and an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain, where the deaminase domain is fused to the N-terminus of the dCas9 domain via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 7). In some embodiments, the nuclease-inactive Cas9 (dCas9) domain of comprises the amino acid sequence set forth in SEQ ID NO: 263. In some embodiments, the deaminase is rat APOBEC1 (SEQ ID NO: 284). In some embodiments, the deaminase is human APOBEC1 (SEQ ID NO: 282). In some embodiments, the deaminase is pmCDA1 (SEQ ID NO: 5738). In some embodiments, the deaminase is human APOBEC3G (SEQ ID NO: 275). In some embodiments, the deaminase is a human APOBEC3G variant of any one of (SEQ ID NOs: 5739-5741).
Some aspects of the disclosure are based on the recognition that certain configurations of a dCas9 domain, and a cytidine deaminase domain fused by a linker are useful for efficiently deaminating target cytidine residues. Other aspects of this disclosure relate to the recognition that a nucleobase editing fusion protein with an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain fused to the N-terminus of a nuclease inactive Cas9 (dCas9) via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 7) was capable of efficiently deaminating target nucleic acids in a double stranded DNA target molecule. In some embodiments, the fusion protein comprises a nuclease-inactive Cas9 (dCas9) domain and an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain, where the deaminase domain is fused to the N-terminus of the dCas9 domain via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 7).
In some embodiments, the fusion protein comprises the amino acid residues 11-1629 of the amino acid sequence set forth in SEQ ID NO: 591. In some embodiments, the fusion protein comprises the amino acid sequence set forth in SEQ ID NO: 591. In some embodiments, the fusion protein comprises the amino acid sequence of any one of SEQ ID NOs: 5737, 5743, 5745, and 5746.
Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within a subject's genome, e.g., a human's genome. In some embodiments, fusion proteins of Cas9 (e.g., dCas9, nuclease active Cas9, or Cas9 nickase) and deaminases or deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of Cas9 and deaminases or deaminase domains, are provided.
Some aspects of this disclosure provide fusion proteins comprising a Cas9 protein as provided herein that is fused to a second protein (e.g., an enzymatic domain such as a cytidine deaminase domain), thus forming a fusion protein. In some embodiments, the second protein comprises an enzymatic domain, or a binding domain. In some embodiments, the enzymatic domain is a nuclease, a nickase, a recombinase, a deaminase, a methyltransferase, a methylase, an acetylase, an acetyltransferase, a transcriptional activator, or a transcriptional repressor domain. In some embodiments, the enzymatic domain is a nucleic acid editing domain. In some embodiments, the nucleic acid editing domain is a deaminase domain. In some embodiments, the deaminase is a cytosine deaminase or a cytidine deaminase. In some embodiments, the deaminase is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the deaminase is an APOBEC1 deaminase. In some embodiments, the deaminase is an APOBEC2 deaminase. In some embodiments, the deaminase is an APOBEC3 deaminase. In some embodiments, the deaminase is an APOBEC3A deaminase. In some embodiments, the deaminase is an APOBEC3B deaminase. In some embodiments, the deaminase is an APOBEC3C deaminase. In some embodiments, the deaminase is an APOBEC3D deaminase. In some embodiments, the deaminase is an APOBEC3E deaminase. In some embodiments, the deaminase is an APOBEC3F deaminase. In some embodiments, the deaminase is an APOBEC3G deaminase. In some embodiments, the deaminase is an APOBEC3H deaminase. In some embodiments, the deaminase is an APOBEC4 deaminase. In some embodiments, the deaminase is an activation-induced deaminase (AID). It should be appreciated that the deaminase may be from any suitable organism (e.g., a human or a rat). In some embodiments, the deaminase is from a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse. In some embodiments, the deaminase is rat APOBEC1 (SEQ ID NO: 284). In some embodiments, the deaminase is human APOBEC1 (SEQ ID NO: 282). In some embodiments, the deaminase is pmCDA1.
Some aspects of this disclosure provide fusion proteins comprising: (i) a nuclease-inactive Cas9 (dCas9) domain comprising the amino acid sequence of SEQ ID NO: 263; and (ii) an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain, wherein the deaminase domain is fused to the N-terminus of the dCas9 domain via a linker comprising the amino acid sequence of SGSETPGTSESATPES (SEQ ID NO: 7). In some embodiments, the deaminase is rat APOBEC1 (SEQ ID NO: 284). In some embodiments, the deaminase is human APOBEC1 (SEQ ID NO: 282). In some embodiments, the fusion protein comprises the amino acid sequence of SEQ ID NO: 591. In some embodiments, the fusion protein comprises the amino acid sequence of SEQ ID NO: 5737. In some embodiments, the deaminase is pmCDA1 (SEQ ID NO: 5738). In some embodiments, the deaminase is human APOBEC3G (SEQ ID NO: 275). In some embodiments, the deaminase is a human APOBEC3G variant of any one of SEQ ID NOs: 5739-5741.
Some aspects of this disclosure provide fusion proteins comprising: (i) a Cas9 nickase domain and (ii) an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain, wherein the deaminase domain is fused to the N-terminus of the Cas9 nickase domain. In some embodiments, the Cas9 nickase domain comprises a D10X mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid except for D. In some embodiments, the amino acid sequence of the Cas9 nickase domain comprises a D10A mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the amino acid sequence of the Cas9 nickase domain comprises a histidine at amino acid position 840 of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding amino acid position in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the amino acid sequence of the Cas9 nickase domain comprises the amino acid sequence as set forth in SEQ ID NO: 267. In some embodiments, the deaminase is rat APOBEC1 (SEQ ID NO: 284). In some embodiments, the deaminase is human APOBEC1 (SEQ ID NO: 282). In some embodiments, the deaminase is pmCDA1.
Some aspects of this disclosure provide fusion proteins comprising: (i) a Cas9 nickase domain and (ii) an apolipoprotein B mRNA-editing complex 1 (APOBEC1) deaminase domain, wherein the deaminase domain is fused to the N-terminus of the Cas9 nickase domain. In some embodiments, the Cas9 nickase domain comprises a D10X mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid except for D. In some embodiments, the amino acid sequence of the Cas9 nickase domain comprises a D10A mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the amino acid sequence of the Cas9 nickase domain comprises a histidine at amino acid position 840 of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding amino acid position in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the amino acid sequence of the Cas9 nickase domain comprises the amino acid sequence as set forth in SEQ ID NO: 267. In some embodiments, the deaminase is rat APOBEC1 (SEQ ID NO: 284). In some embodiments, the deaminase is human APOBEC1 (SEQ ID NO: 282). In some embodiments, the deaminase is pmCDA1.
Other aspects of this disclosure relate to the recognition that fusion proteins comprising a deaminase domain, a dCas9 domain and a uracil glycosylase inhibitor (UGI) domain demonstrate improved efficiency for deaminating target nucleotides in a nucleic acid molecule. Without wishing to be bound by any particular theory, cellular DNA-repair response to the presence of U:G heteroduplex DNA may be responsible for a decrease in nucleobase editing efficiency in cells. Uracil DNA glycosylase (UDG) catalyzes removal of U from DNA in cells, which may initiate base excision repair, with reversion of the U:G pair to a C:G pair as the most common outcome. As demonstrated herein, Uracil DNA Glycosylase Inhibitor (UGI) may inhibit human UDG activity. Without wishing to be bound by any particular theory, base excision repair may be inhibited by molecules that bind the single strand, block the edited base, inhibit UGI, inhibit base excision repair, protect the edited base, and/or promote “fixing” of the non-edited strand, etc. Thus, this disclosure contemplates fusion proteins comprising a dCas9-cytidine deaminase domain that is fused to a UGI domain.
In some embodiments, the fusion protein comprises a nuclease-inactive Cas9 (dCas9) domain; a nucleic acid editing domain; and a uracil glycosylase inhibitor (UGI) domain. In some embodiments, the dCas9 domain comprises a D10X mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid except for D. In some embodiments, the amino acid sequence of the dCas9 domain comprises a D10A mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the amino acid sequence of the dCas9 domain comprises an H840X mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid except for H. In some embodiments, the amino acid sequence of the dCas9 domain comprises an H840A mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the dCas9 domain comprises the amino acid sequence as set forth in SEQ ID NO: 263.
Further aspects of this disclosure relate to the recognition that fusion proteins using a Cas9 nickase as the Cas9 domain demonstrate improved efficiency for editing nucleic acids. For example, aspects of this disclosure relate to the recognition that fusion proteins comprising a Cas9 nickase, a deaminase domain and a UGI domain demonstrate improved efficiency for editing nucleic acids. For example, the improved efficiency for editing nucleotides is described below in the Examples section.
Some aspects of the disclosure are based on the recognition that any of the base editors provided herein are capable of modifying a specific nucleotide base without generating a significant proportion of indels. An “indel”, as used herein, refers to the insertion or deletion of a nucleotide base within a nucleic acid. Such insertions or deletions can lead to frame shift mutations within a coding region of a gene. In some embodiments, it is desirable to generate base editors that efficiently modify (e.g. mutate or deaminate) a specific nucleotide within a nucleic acid, without generating a large number of insertions or deletions (i.e., indels) in the nucleic acid. In certain embodiments, any of the base editors provided herein are capable of generating a greater proportion of intended modifications (e.g., point mutations or deaminations) versus indels.
Some aspects of the disclosure are based on the recognition that any of the base editors provided herein are capable of efficiently generating an intended mutation, such as a point mutation, in a nucleic acid (e.g. a nucleic acid within a genome of a subject) without generating a significant number of unintended mutations, such as unintended point mutations.
In some embodiments, a fusion protein comprises a Cas9 nickase domain, a nucleic acid editing domain; and a uracil glycosylase inhibitor (UGI) domain. In some embodiments, the amino acid sequence of the Cas9 nickase domain comprises a D10X mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid except for D. In some embodiments, the amino acid sequence of the Cas9 nickase domain comprises a D10A mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the amino acid sequence of the Cas9 nickase domain comprises a histidine at amino acid position 840 of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding amino acid position in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the amino acid sequence of the Cas9 nickase domain comprises the amino acid sequence as set forth in SEQ ID NO: 267.
In some embodiments, the deaminase domain of the fusion protein is fused to the N-terminus of the dCas9 domain or the Cas9 nickase. In some embodiments, the UGI domain is fused to the C-terminus of the dCas9 domain or the Cas9 nickase. In some embodiments, the dCas9 domain or the Cas9 nickase and the nucleic acid editing domain are fused via a linker. In some embodiments, the dCas9 domain or the Cas9 nickase and the UGI domain are fused via a linker.
In certain embodiments, linkers may be used to link any of the peptides or peptide domains of the invention. The linker may be as simple as a covalent bond, or it may be a polymeric linker many atoms in length. In certain embodiments, the linker is a polpeptide or based on amino acids. In other embodiments, the linker is not peptide-like. In certain embodiments, the linker is a covalent bond (e.g., a carbon-carbon bond, disulfide bond, carbon-heteroatom bond, etc.). In certain embodiments, the linker is a carbon-nitrogen bond of an amide linkage. In certain embodiments, the linker is a cyclic or acyclic, substituted or unsubstituted, branched or unbranched aliphatic or heteroaliphatic linker. In certain embodiments, the linker is polymeric (e.g., polyethylene, polyethylene glycol, polyamide, polyester, etc.). In certain embodiments, the linker comprises a monomer, dimer, or polymer of aminoalkanoic acid. In certain embodiments, the linker comprises an aminoalkanoic acid (e.g., glycine, ethanoic acid, alanine, beta-alanine, 3-aminopropanoic acid, 4-aminobutanoic acid, 5-pentanoic acid, etc.). In certain embodiments, the linker comprises a monomer, dimer, or polymer of aminohexanoic acid (Ahx). In certain embodiments, the linker is based on a carbocyclic moiety (e.g., cyclopentane, cyclohexane). In other embodiments, the linker comprises a polyethylene glycol moiety (PEG). In other embodiments, the linker comprises amino acids. In certain embodiments, the linker comprises a peptide. In certain embodiments, the linker comprises an aryl or heteroaryl moiety. In certain embodiments, the linker is based on a phenyl ring. The linker may included functionalized moieties to facilitate attachment of a nucleophile (e.g., thiol, amino) from the peptide to the linker. Any electrophile may be used as part of the linker. Exemplary electrophiles include, but are not limited to, activated esters, activated amides, Michael acceptors, alkyl halides, aryl halides, acyl halides, and isothiocyanates.
In some embodiments, the linker comprises the amino acid sequence (GGGGS)n (SEQ ID NO: 5), (G)n, (EAAAK)n (SEQ ID NO: 6), (GGS)n, (SGGS)n (SEQ ID NO: 4288), SGSETPGTSESATPES (SEQ ID NO: 7), (XP)n, or any combination thereof, wherein n is independently an integer between 1 and 30, and wherein X is any amino acid. In some embodiments, the linker comprises the amino acid sequence (GGS)n, wherein n is 1, 3, or 7. In some embodiments, the linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 7).
In some embodiments, the fusion protein comprises the structure [nucleic acid editing domain]-[optional linker sequence]-[dCas9 or Cas9 nickase]-[optional linker sequence]-[UGI]. In some embodiments, the fusion protein comprises the structure [nucleic acid editing domain]-[optional linker sequence]-[UGI]-[optional linker sequence]-[dCas9 or Cas9 nickase]; [UGI]-[optional linker sequence]-[nucleic acid editing domain]-[optional linker sequence]-[dCas9 or Cas9 nickase]; [UGI]-[optional linker sequence]-[dCas9 or Cas9 nickase]-[optional linker sequence]-[nucleic acid editing domain]; [dCas9 or Cas9 nickase]-[optional linker sequence]-[UGI]-[optional linker sequence]-[nucleic acid editing domain]; or [dCas9 or Cas9 nickase]-[optional linker sequence]-[nucleic acid editing domain]-[optional linker sequence]-[UGI].
In some embodiments, the nucleic acid editing domain comprises a deaminase. In some embodiments, the nucleic acid editing domain comprises a deaminase. In some embodiments, the deaminase is a cytidine deaminase. In some embodiments, the deaminase is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the deaminase is an APOBEC1 deaminase, an APOBEC2 deaminase, an APOBEC3A deaminase, an APOBEC3B deaminase, an APOBEC3C deaminase, an APOBEC3D deaminase, an APOBEC3F deaminase, an APOBEC3G deaminase, an APOBEC3H deaminase, or an APOBEC4 deaminase. In some embodiments, the deaminase is an activation-induced deaminase (AID). In some embodiments, the deaminase is a Lamprey CDA1 (pmCDA1) deaminase.
In some embodiments, the deaminase is from a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse. In some embodiments, the deaminase is from a human. In some embodiments the deaminase is from a rat. In some embodiments, the deaminase is a rat APOBEC1 deaminase comprising the amino acid sequence set forth in (SEQ ID NO: 284). In some embodiments, the deaminase is a human APOBEC1 deaminase comprising the amino acid sequence set forth in (SEQ ID NO: 282). In some embodiments, the deaminase is pmCDA1 (SEQ ID NO: 5738). In some embodiments, the deaminase is human APOBEC3G (SEQ ID NO: 275). In some embodiments, the deaminase is a human APOBEC3G variant of any one of (SEQ ID NOs: 5739-5741). In some embodiments, the deaminase is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the amino acid sequences set forth in SEQ ID NOs: 266-284 or 5725-5741.
In some embodiments, the UGI domain comprises an amino acid sequence that is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to SEQ ID NO: 600. In some embodiments, the UGI domain comprises the amino acid sequence as set forth in SEQ ID NO: 600.
Some aspects of this disclosure provide complexes comprising a Cas9 protein or a Cas9 fusion protein as provided herein, and a guide RNA bound to the Cas9 protein or the Cas9 fusion protein.
Some aspects of this disclosure provide methods of using the Cas9 proteins, fusion proteins, or complexes provided herein. For example, some aspects of this disclosure provide methods comprising contacting a DNA molecule (a) with a Cas9 protein or a fusion protein as provided herein and with a guide RNA, wherein the guide RNA is about 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence; or (b) with a Cas9 protein, a Cas9 fusion protein, or a Cas9 protein or fusion protein complex with a gRNA as provided herein.
Some aspects of this disclosure provide kits comprising a nucleic acid construct, comprising (a) a nucleotide sequence encoding a Cas9 protein or a Cas9 fusion protein as provided herein; and (b) a heterologous promoter that drives expression of the sequence of (a). In some embodiments, the kit further comprises an expression construct encoding a guide RNA backbone, wherein the construct comprises a cloning site positioned to allow the cloning of a nucleic acid sequence identical or complementary to a target sequence into the guide RNA backbone.
Some aspects of this disclosure provide polynucleotides encoding a Cas9 protein of a fusion protein as provided herein. Some aspects of this disclosure provide vectors comprising such polynucleotides. In some embodiments, the vector comprises a heterologous promoter driving expression of polynucleotide.
Some aspects of this disclosure provide cells comprising a Cas9 protein, a fusion protein, a nucleic acid molecule, and/or a vector as provided herein.
The description of exemplary embodiments of the reporter systems above is provided for illustration purposes only and not meant to be limiting. Additional reporter systems, e.g., variations of the exemplary systems described in detail above, are also embraced by this disclosure.
The summary above is meant to illustrate, in a non-limiting manner, some of the embodiments, advantages, features, and uses of the technology disclosed herein. Other embodiments, advantages, features, and uses of the technology disclosed herein will be apparent from the Detailed Description, the Drawings, the Examples, and the Claims.
As used herein and in the claims, the singular forms “a,” “an,” and “the” include the singular and the plural reference unless the context clearly indicates otherwise. Thus, for example, a reference to “an agent” includes a single agent and a plurality of such agents.
The term “Cas9” or “Cas9 nuclease” refers to an RNA-guided nuclease comprising a Cas9 protein, or a fragment thereof (e.g., a protein comprising an active, inactive, or partially active DNA cleavage domain of Cas9, and/or the gRNA binding domain of Cas9). A Cas9 nuclease is also referred to sometimes as a casn1 nuclease or a CRISPR (clustered regularly interspaced short palindromic repeat)-associated nuclease. CRISPR is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain spacers, sequences complementary to antecedent mobile elements, and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA). In type II CRISPR systems correct processing of pre-crRNA requires a trans-encoded small RNA (tracrRNA), endogenous ribonuclease 3 (rnc) and a Cas9 protein. The tracrRNA serves as a guide for ribonuclease 3-aided processing of pre-crRNA. Subsequently, Cas9/crRNA/tracrRNA endonucleolytically cleaves linear or circular dsDNA target complementary to the spacer. The target strand not complementary to crRNA is first cut endonucleolytically, then trimmed 3′-5′ exonucleolytically. In nature, DNA-binding and cleavage typically requires protein and both RNAs. However, single guide RNAs (“sgRNA”, or simply “gNRA”) can be engineered so as to incorporate aspects of both the crRNA and tracrRNA into a single RNA species. See, e.g., Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. Science 337:816-821 (2012), the entire contents of which is hereby incorporated by reference. Cas9 recognizes a short motif in the CRISPR repeat sequences (the PAM or protospacer adjacent motif) to help distinguish self versus non-self. Cas9 nuclease sequences and structures are well known to those of skill in the art (see, e.g., “Complete genome sequence of an M1 strain of Streptococcus pyogenes.” Ferretti et al., J. J., McShan W. M., Ajdic D. J., Savic D. J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A. N., Kenton S., Lai H. S., Lin S. P., Qian Y., Jia H. G., Najar F. Z., Ren Q., Zhu H., Song L., White J., Yuan X., Clifton S. W., Roe B. A., McLaughlin R. E., Proc. Natl. Acad. Sci. U.S.A. 98:4658-4663 (2001); “CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III.” Deltcheva E., Chylinski K., Sharma C. M., Gonzales K., Chao Y., Pirzada Z. A., Eckert M. R., Vogel J., Charpentier E., Nature 471:602-607 (2011); and “A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.” Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. Science 337:816-821 (2012), the entire contents of each of which are incorporated herein by reference). Cas9 orthologs have been described in various species, including, but not limited to, S. pyogenes and S. thermophilus. Additional suitable Cas9 nucleases and sequences will be apparent to those of skill in the art based on this disclosure, and such Cas9 nucleases and sequences include Cas9 sequences from the organisms and loci disclosed in Chylinski, Rhun, and Charpentier, “The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems” (2013) RNA Biology 10:5, 726-737; the entire contents of which are incorporated herein by reference. In some embodiments, a Cas9 nuclease has an inactive (e.g., an inactivated) DNA cleavage domain, that is, the Cas9 is a nickase.
A nuclease-inactivated Cas9 protein may interchangeably be referred to as a “dCas9” protein (for nuclease-“dead” Cas9). Methods for generating a Cas9 protein (or a fragment thereof) having an inactive DNA cleavage domain are known (See, e.g., Jinek et al., Science. 337:816-821 (2012); Qi et al., “Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression” (2013) Cell. 28; 152(5):1173-83, the entire contents of each of which are incorporated herein by reference). For example, the DNA cleavage domain of Cas9 is known to include two subdomains, the HNH nuclease subdomain and the RuvC1 subdomain. The HNH subdomain cleaves the strand complementary to the gRNA, whereas the RuvC1 subdomain cleaves the non-complementary strand. Mutations within these subdomains can silence the nuclease activity of Cas9. For example, the mutations D10A and H840A completely inactivate the nuclease activity of S. pyogenes Cas9 (Jinek et al., Science. 337:816-821 (2012); Qi et al., Cell. 28; 152(5):1173-83 (2013)). In some embodiments, proteins comprising fragments of Cas9 are provided. For example, in some embodiments, a protein comprises one of two Cas9 domains: (1) the gRNA binding domain of Cas9; or (2) the DNA cleavage domain of Cas9. In some embodiments, proteins comprising Cas9 or fragments thereof are referred to as “Cas9 variants.” A Cas9 variant shares homology to Cas9, or a fragment thereof. For example a Cas9 variant is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to wild type Cas9. In some embodiments, the Cas9 variant may have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 or more amino acid changes compared to wild type Cas9. In some embodiments, the Cas9 variant comprises a fragment of Cas9 (e.g., a gRNA binding domain or a DNA-cleavage domain), such that the fragment is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to the corresponding fragment of wild type Cas9. In some embodiments, the fragment is is at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% identical, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% of the amino acid length of a corresponding wild type Cas9.
In some embodiments, the fragment is at least 100 amino acids in length. In some embodiments, the fragment is at least 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, or at least 1300 amino acids in length. In some embodiments, wild type Cas9 corresponds to Cas9 from Streptococcus pyogenes (NCBI Reference Sequence: NC_017053.1, SEQ ID NO:1 (nucleotide); SEQ ID NO:2 (amino acid)).
LLFGSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR
GILQTVKIVDELVK
VMGHKPENIVIEMARENQTTQKGQKNSRERMKRIE
EGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLS
DYDVDHIVPQSFIKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYW
RQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVA
QILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREI
NNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQ
EIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDK
GRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKD
In some embodiments, wild type Cas9 corresponds to, or comprises SEQ ID NO:3 (nucleotide) and/or SEQ ID NO: 4 (amino acid):
LFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHR
MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHP
VENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDD
SIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL
TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLI
REVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKK
YPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI
TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKT
EVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVA
In some embodiments, wild type Cas9 corresponds to Cas9 from Streptococcus pyogenes (NCBI Reference Sequence: NC_002737.2, SEQ ID NO: 8 (nucleotide); and Uniport Reference Sequence: Q99ZW2, SEQ ID NO: 10 (amino acid).
TAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHE
VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL
QNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDK
NRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIK
RQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKV
REINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGK
ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSM
PQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVV
In some embodiments, Cas9 refers to Cas9 from: Corynebacterium ulcerans (NCBI Refs: NC_015683.1, NC_017317.1); Corynebacterium diphtheria (NCBI Refs: NC_016782.1, NC_016786.1); Spiroplasma syrphidicola (NCBI Ref: NC_021284.1); Prevotella intermedia (NCBI Ref: NC_017861.1); Spiroplasma taiwanense (NCBI Ref: NC_021846.1); Streptococcus iniae (NCBI Ref: NC_021314.1); Belliella baltica (NCBI Ref: NC_018010.1); Psychroflexus torquisI (NCBI Ref: NC_018721.1); Streptococcus thermophilus (NCBI Ref: YP_820832.1), Listeria innocua (NCBI Ref: NP_472073.1), Campylobacter jejuni (NCBI Ref: YP_002344900.1) or Neisseria meningitidis (NCBI Ref: YP_002342100.1) or to a Cas9 from any of the organisms listed in Example 5.
In some embodiments, dCas9 corresponds to, or comprises in part or in whole, a Cas9 amino acid sequence having one or more mutations that inactivate the Cas9 nuclease activity. For example, in some embodiments, a dCas9 domain comprises D10A and/or H840A mutation.
dCas9 (D10A and H840A):
GET
AEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKK
NTOLONEKLYLYYLONGRDMYVDOELDINRLSDYDVDAIVPOSFLKDDSIDNKV
In some embodiments, the Cas9 domain comprises a D10A mutation, while the residue at position 840 remains a histidine in the amino acid sequence provided in SEQ ID NO: 10, or at corresponding positions in any of the amino acid sequences provided in SEQ ID NOs: 11-260. Without wishing to be bound by any particular theory, the presence of the catalytic residue H840 restores the activity of the Cas9 to cleave the non-edited (e.g., non-deaminated) strand containing a G opposite the targeted C. Restoration of H840 (e.g., from A840) does not result in the cleavage of the target strand containing the C. Such Cas9 variants are able to generate a single-strand DNA break (nick) at a specific location based on the gRNA-defined target sequence, leading to repair of the non-edited strand, ultimately resulting in a G to A change on the non-edited strand. A schematic representation of this process is shown in
In other embodiments, dCas9 variants having mutations other than D10A and H840A are provided, which, e.g., result in nuclease inactivated Cas9 (dCas9). Such mutations, by way of example, include other amino acid substitutions at D10 and H820, or other substitutions within the nuclease domains of Cas9 (e.g., substitutions in the HNH nuclease subdomain and/or the RuvC1 subdomain). In some embodiments, variants or homologues of dCas9 (e.g., variants of SEQ ID NO: 10) are provided which are at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to SEQ ID NO: 10. In some embodiments, variants of dCas9 (e.g., variants of SEQ ID NO: 10) are provided having amino acid sequences which are shorter, or longer than SEQ ID NO: 10, by about 5 amino acids, by about 10 amino acids, by about 15 amino acids, by about 20 amino acids, by about 25 amino acids, by about 30 amino acids, by about 40 amino acids, by about 50 amino acids, by about 75 amino acids, by about 100 amino acids or more.
In some embodiments, Cas9 fusion proteins as provided herein comprise the full-length amino acid sequence of a Cas9 protein, e.g., one of the Cas9 sequences provided herein. In other embodiments, however, fusion proteins as provided herein do not comprise a full-length Cas9 sequence, but only a fragment thereof. For example, in some embodiments, a Cas9 fusion protein provided herein comprises a Cas9 fragment, wherein the fragment binds crRNA and tracrRNA or sgRNA, but does not comprise a functional nuclease domain, e.g., in that it comprises only a truncated version of a nuclease domain or no nuclease domain at all. Exemplary amino acid sequences of suitable Cas9 domains and Cas9 fragments are provided herein, and additional suitable sequences of Cas9 domains and fragments will be apparent to those of skill in the art.
In some embodiments, Cas9 refers to Cas9 from: Corynebacterium ulcerans (NCBI Refs: NC_015683.1, NC_017317.1); Corynebacterium diphtheria (NCBI Refs: NC_016782.1, NC_016786.1); Spiroplasma syrphidicola (NCBI Ref: NC_021284.1); Prevotella intermedia (NCBI Ref: NC_017861.1); Spiroplasma taiwanense (NCBI Ref: NC_021846.1); Streptococcus iniae (NCBI Ref: NC_021314.1); Belliella baltica (NCBI Ref: NC_018010.1); Psychroflexus torquisI (NCBI Ref: NC_018721.1); Streptococcus thermophilus (NCBI Ref: YP_820832.1); Listeria innocua (NCBI Ref: NP_472073.1); Campylobacter jejuni (NCBI Ref: YP_002344900.1); or Neisseria meningitidis (NCBI Ref: YP_002342100.1).
The term “deaminase” or “deaminase domain,” as used herein, refers to a protein or enzyme that catalyzes a deamination reaction. In some embodiments, the deaminase or deaminase domain is a cytidine deaminase, catalyzing the hydrolytic deamination of cytidine or deoxycytidine to uridine or deoxyuridine, respectively. In some embodiments, the deaminase or deaminase domain is a cytidine deaminase domain, catalyzing the hydrolytic deamination of cytosine to uracil. In some embodiments, the deaminase or deaminase domain is a naturally-occurring deaminase from an organism, such as a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse. In some embodiments, the deaminase or deaminase domain is a variant of a naturally-occurring deaminase from an organism, that does not occur in nature. For example, in some embodiments, the deaminase or deaminase domain is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75% at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occuring deaminase from an organism.
The term “effective amount,” as used herein, refers to an amount of a biologically active agent that is sufficient to elicit a desired biological response. For example, in some embodiments, an effective amount of a nuclease may refer to the amount of the nuclease that is sufficient to induce cleavage of a target site specifically bound and cleaved by the nuclease. In some embodiments, an effective amount of a fusion protein provided herein, e.g., of a fusion protein comprising a nuclease-inactive Cas9 domain and a nucleic acid editing domain (e.g., a deaminase domain) may refer to the amount of the fusion protein that is sufficient to induce editing of a target site specifically bound and edited by the fusion protein. As will be appreciated by the skilled artisan, the effective amount of an agent, e.g., a fusion protein, a nuclease, a deaminase, a recombinase, a hybrid protein, a protein dimer, a complex of a protein (or protein dimer) and a polynucleotide, or a polynucleotide, may vary depending on various factors as, for example, on the desired biological response, e.g., on the specific allele, genome, or target site to be edited, on the cell or tissue being targeted, and on the agent being used.
The term “linker,” as used herein, refers to a chemical group or a molecule linking two molecules or moieties, e.g., two domains of a fusion protein, such as, for example, a nuclease-inactive Cas9 domain and a nucleic acid editing domain (e.g., a deaminase domain). In some embodiments, a linker joins a gRNA binding domain of an RNA-programmable nuclease, including a Cas9 nuclease domain, and the catalytic domain of anucleic-acid editing protein. In some embodiments, a linker joins a dCas9 and a nucleic-acid editing protein. Typically, the linker is positioned between, or flanked by, two groups, molecules, or other moieties and connected to each one via a covalent bond, thus connecting the two. In some embodiments, the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein). In some embodiments, the linker is an organic molecule, group, polymer, or chemical moiety. In some embodiments, the linker is 5-100 amino acids in length, for example, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30-35, 35-40, 40-45, 45-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-150, or 150-200 amino acids in length. Longer or shorter linkers are also contemplated.
The term “mutation,” as used herein, refers to a substitution of a residue within a sequence, e.g., a nucleic acid or amino acid sequence, with another residue, or a deletion or insertion of one or more residues within a sequence. Mutations are typically described herein by identifying the original residue followed by the position of the residue within the sequence and by the identity of the newly substituted residue. Various methods for making the amino acid substitutions (mutations) provided herein are well known in the art, and are provided by, for example, Green and Sambrook, Molecular Cloning: A Laboratory Manual (4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)).
The terms “nucleic acid” and “nucleic acid molecule,” as used herein, refer to a compound comprising a nucleobase and an acidic moiety, e.g., a nucleoside, a nucleotide, or a polymer of nucleotides. Typically, polymeric nucleic acids, e.g., nucleic acid molecules comprising three or more nucleotides are linear molecules, in which adjacent nucleotides are linked to each other via a phosphodiester linkage. In some embodiments, “nucleic acid” refers to individual nucleic acid residues (e.g. nucleotides and/or nucleosides). In some embodiments, “nucleic acid” refers to an oligonucleotide chain comprising three or more individual nucleotide residues. As used herein, the terms “oligonucleotide” and “polynucleotide” can be used interchangeably to refer to a polymer of nucleotides (e.g., a string of at least three nucleotides). In some embodiments, “nucleic acid” encompasses RNA as well as single and/or double-stranded DNA. Nucleic acids may be naturally occurring, for example, in the context of a genome, a transcript, an mRNA, tRNA, rRNA, siRNA, snRNA, a plasmid, cosmid, chromosome, chromatid, or other naturally occurring nucleic acid molecule. On the other hand, a nucleic acid molecule may be a non-naturally occurring molecule, e.g., a recombinant DNA or RNA, an artificial chromosome, an engineered genome, or fragment thereof, or a synthetic DNA, RNA, DNA/RNA hybrid, or including non-naturally occurring nucleotides or nucleosides. Furthermore, the terms “nucleic acid,” “DNA,” “RNA,” and/or similar terms include nucleic acid analogs, e.g., analogs having other than a phosphodiester backbone. Nucleic acids can be purified from natural sources, produced using recombinant expression systems and optionally purified, chemically synthesized, etc. Where appropriate, e.g., in the case of chemically synthesized molecules, nucleic acids can comprise nucleoside analogs such as analogs having chemically modified bases or sugars, and backbone modifications. A nucleic acid sequence is presented in the 5′ to 3′ direction unless otherwise indicated. In some embodiments, a nucleic acid is or comprises natural nucleosides (e.g. adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine); nucleoside analogs (e.g., 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, 5-methylcytidine, 2-aminoadenosine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-propynyl-uridine, C5-propynyl-cytidine, C5-methylcytidine, 2-aminoadenosine, 7-deazaadenosine, 7-deazaguanosine, 8-oxoadenosine, 8-oxoguanosine, O(6)-methylguanine, and 2-thiocytidine); chemically modified bases; biologically modified bases (e.g., methylated bases); intercalated bases; modified sugars (e.g., 2′-fluororibose, ribose, 2′-deoxyribose, arabinose, and hexose); and/or modified phosphate groups (e.g., phosphorothioates and 5′-N-phosphoramidite linkages).
The term “nucleic acid editing domain,” as used herein refers to a protein or enzyme capable of making one or more modifications (e.g., deamination of a cytidine residue) to a nucleic acid (e.g., DNA or RNA). Exemplary nucleic acid editing domains include, but are not limited to a deaminase, a nuclease, a nickase, a recombinase, a methyltransferase, a methylase, an acetylase, an acetyltransferase, a transcriptional activator, or a transcriptional repressor domain. In some embodiments the nucleic acid editing domain is a deaminase (e.g., a cytidine deaminase, such as an APOBEC or an AID deaminase).
The term “proliferative disease,” as used herein, refers to any disease in which cell or tissue homeostasis is disturbed in that a cell or cell population exhibits an abnormally elevated proliferation rate. Proliferative diseases include hyperproliferative diseases, such as pre-neoplastic hyperplastic conditions and neoplastic diseases. Neoplastic diseases are characterized by an abnormal proliferation of cells and include both benign and malignant neoplasias. Malignant neoplasia is also referred to as cancer.
The terms “protein,” “peptide,” and “polypeptide” are used interchangeably herein, and refer to a polymer of amino acid residues linked together by peptide (amide) bonds. The terms refer to a protein, peptide, or polypeptide of any size, structure, or function. Typically, a protein, peptide, or polypeptide will be at least three amino acids long. A protein, peptide, or polypeptide may refer to an individual protein or a collection of proteins. One or more of the amino acids in a protein, peptide, or polypeptide may be modified, for example, by the addition of a chemical entity such as a carbohydrate group, a hydroxyl group, a phosphate group, a farnesyl group, an isofarnesyl group, a fatty acid group, a linker for conjugation, functionalization, or other modification, etc. A protein, peptide, or polypeptide may also be a single molecule or may be a multi-molecular complex. A protein, peptide, or polypeptide may be just a fragment of a naturally occurring protein or peptide. A protein, peptide, or polypeptide may be naturally occurring, recombinant, or synthetic, or any combination thereof. The term “fusion protein” as used herein refers to a hybrid polypeptide which comprises protein domains from at least two different proteins. One protein may be located at the amino-terminal (N-terminal) portion of the fusion protein or at the carboxy-terminal (C-terminal) protein thus forming an “amino-terminal fusion protein” or a “carboxy-terminal fusion protein,” respectively. A protein may comprise different domains, for example, a nucleic acid binding domain (e.g., the gRNA binding domain of Cas9 that directs the binding of the protein to a target site) and a nucleic acid cleavage domain or a catalytic domain of a nucleic-acid editing protein. In some embodiments, a protein comprises a proteinaceous part, e.g., an amino acid sequence constituting a nucleic acid binding domain, and an organic compound, e.g., a compound that can act as a nucleic acid cleavage agent. In some embodiments, a protein is in a complex with, or is in association with, a nucleic acid, e.g., RNA. Any of the proteins provided herein may be produced by any method known in the art. For example, the proteins provided herein may be produced via recombinant protein expression and purification, which is especially suited for fusion proteins comprising a peptide linker. Methods for recombinant protein expression and purification are well known, and include those described by Green and Sambrook, Molecular Cloning: A Laboratory Manual (4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)), the entire contents of which are incorporated herein by reference.
The term “RNA-programmable nuclease,” and “RNA-guided nuclease” are used interchangeably herein and refer to a nuclease that forms a complex with (e.g., binds or associates with) one or more RNA that is not a target for cleavage. In some embodiments, an RNA-programmable nuclease, when in a complex with an RNA, may be referred to as a nuclease:RNA complex. Typically, the bound RNA(s) is referred to as a guide RNA (gRNA). gRNAs can exist as a complex of two or more RNAs, or as a single RNA molecule. gRNAs that exist as a single RNA molecule may be referred to as single-guide RNAs (sgRNAs), though “gRNA” is used interchangeably to refer to guide RNAs that exist as either single molecules or as a complex of two or more molecules. Typically, gRNAs that exist as single RNA species comprise two domains: (1) a domain that shares homology to a target nucleic acid (e.g., and directs binding of a Cas9 complex to the target); and (2) a domain that binds a Cas9 protein. In some embodiments, domain (2) corresponds to a sequence known as a tracrRNA, and comprises a stem-loop structure. For example, in some embodiments, domain (2) is identical or homologous to a tracrRNA as provided in Jinek et al., Science 337:816-821 (2012), the entire contents of which is incorporated herein by reference. Other examples of gRNAs (e.g., those including domain 2) can be found in U.S. Provisional Patent Application, U.S. Ser. No. 61/874,682, filed Sep. 6, 2013, entitled “Switchable Cas9 Nucleases And Uses Thereof,” and U.S. Provisional Patent Application, U.S. Ser. No. 61/874,746, filed Sep. 6, 2013, entitled “Delivery System For Functional Nucleases,” the entire contents of each are hereby incorporated by reference in their entirety. In some embodiments, a gRNA comprises two or more of domains (1) and (2), and may be referred to as an “extended gRNA.” For example, an extended gRNA will, e.g., bind two or more Cas9 proteins and bind a target nucleic acid at two or more distinct regions, as described herein. The gRNA comprises a nucleotide sequence that complements a target site, which mediates binding of the nuclease/RNA complex to said target site, providing the sequence specificity of the nuclease:RNA complex. In some embodiments, the RNA-programmable nuclease is the (CRISPR-associated system) Cas9 endonuclease, for example Cas9 (Csn1) from Streptococcus pyogenes (see, e.g., “Complete genome sequence of an M1 strain of Streptococcus pyogenes.” Ferretti J. J., McShan W. M., Ajdic D. J., Savic D. J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A. N., Kenton S., Lai H. S., Lin S. P., Qian Y., Jia H. G., Najar F. Z., Ren Q., Zhu H., Song L., White J., Yuan X., Clifton S. W., Roe B. A., McLaughlin R. E., Proc. Natl. Acad. Sci. U.S.A. 98:4658-4663 (2001); “CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III.” Deltcheva E., Chylinski K., Sharma C. M., Gonzales K., Chao Y., Pirzada Z. A., Eckert M. R., Vogel J., Charpentier E., Nature 471:602-607 (2011); and “A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.” Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. Science 337:816-821 (2012), the entire contents of each of which are incorporated herein by reference.
Because RNA-programmable nucleases (e.g., Cas9) use RNA:DNA hybridization to target DNA cleavage sites, these proteins are able to be targeted, in principle, to any sequence specified by the guide RNA. Methods of using RNA-programmable nucleases, such as Cas9, for site-specific cleavage (e.g., to modify a genome) are known in the art (see e.g., Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013); Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826 (2013); Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature biotechnology 31, 227-229 (2013); Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013); Dicarlo, J. E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic acids research (2013); Jiang, W. et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature biotechnology 31, 233-239 (2013); the entire contents of each of which are incorporated herein by reference).
The term “subject,” as used herein, refers to an individual organism, for example, an individual mammal. In some embodiments, the subject is a human. In some embodiments, the subject is a non-human mammal. In some embodiments, the subject is a non-human primate. In some embodiments, the subject is a rodent. In some embodiments, the subject is a sheep, a goat, a cattle, a cat, or a dog. In some embodiments, the subject is a vertebrate, an amphibian, a reptile, a fish, an insect, a fly, or a nematode. In some embodiments, the subject is a research animal. In some embodiments, the subject is genetically engineered, e.g., a genetically engineered non-human subject. The subject may be of either sex and at any stage of development.
The term “target site” refers to a sequence within a nucleic acid molecule that is deaminated by a deaminase or a fusion protein comprising a deaminase, (e.g., a dCas9-deaminase fusion protein provided herein).
The terms “treatment,” “treat,” and “treating,” refer to a clinical intervention aimed to reverse, alleviate, delay the onset of, or inhibit the progress of a disease or disorder, or one or more symptoms thereof, as described herein. As used herein, the terms “treatment,” “treat,” and “treating” refer to a clinical intervention aimed to reverse, alleviate, delay the onset of, or inhibit the progress of a disease or disorder, or one or more symptoms thereof, as described herein. In some embodiments, treatment may be administered after one or more symptoms have developed and/or after a disease has been diagnosed. In other embodiments, treatment may be administered in the absence of symptoms, e.g., to prevent or delay onset of a symptom or inhibit onset or progression of a disease. For example, treatment may be administered to a susceptible individual prior to the onset of symptoms (e.g., in light of a history of symptoms and/or in light of genetic or other susceptibility factors). Treatment may also be continued after symptoms have resolved, for example, to prevent or delay their recurrence.
The term “recombinant” as used herein in the context of proteins or nucleic acids refers to proteins or nucleic acids that do not occur in nature, but are the product of human engineering. For example, in some embodiments, a recombinant protein or nucleic acid molecule comprises an amino acid or nucleotide sequence that comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations as compared to any naturally occurring sequence.
The term “nucleobase editors (NBEs)” or “base editors (BEs),” as used herein, refers to the Cas9 fusion proteins described herein. In some embodiments, the fusion protein comprises a nuclease-inactive Cas9 (dCas9) fused to a deaminase. In some embodiments, the fusion protein comprises a Cas9 nickase fused to a deaminase. In some embodiments, the fusion protein comprises a nuclease-inactive Cas9 fused to a deaminase and further fused to a UGI domain. In some embodiments, the fusion protein comprises a Cas9 nickase fused to a deaminase and further fused to a UGI domain. In some embodiments, the dCas9 of the fusion protein comprises a D10A and a H840A mutation of SEQ ID NO: 10, or a corresponding mutation in any of SEQ ID NOs: 11-260, which inactivates nuclease activity of the Cas9 protein. In some embodiments, the fusion protein comprises a D10A mutation and comprises a histidine at residue 840 of SEQ ID NO: 10, or a corresponding mutation in any of SEQ ID NOs: 11-260, which renders Cas9 capable of cleaving only one strand of a nucleic acid duplex. An example of a Cas9 nickase is shown below in SEQ ID NO: 674. The terms “nucleobase editors (NBEs)” and “base editors (BEs)” may be used interchangeably.
The term “uracil glycosylase inhibitor” or “UGI,” as used herein, refers to a protein that is capable of inhibiting a uracil-DNA glycosylase base-excision repair enzyme.
The term “Cas9 nickase,” as used herein, refers to a Cas9 protein that is capable of cleaving only one strand of a duplexed nucleic acid molecule (e.g., a duplexed DNA molecule). In some embodiments, a Cas9 nickase comprises a D10A mutation and has a histidine at position H840 of SEQ ID NO: 10, or a corresponding mutation in any of SEQ ID NOs: 11-260. For example, a Cas9 nickase may comprise the amino acid sequence as set forth in SEQ ID NO: 674. Such a Cas9 nickase has an active HNH nuclease domain and is able to cleave the non-targeted strand of DNA, i.e., the strand bound by the gRNA. Further, such a Cas9 nickase has an inactive RuvC nuclease domain and is not able to cleave the targeted strand of the DNA, i.e., the strand where base editing is desired.
Exemplary Cas9 nickase (Cloning vector pPlatTET-gRNA2; Accession No. BAV54124).
Some aspects of this disclosure provide fusion proteins that comprise a domain capable of binding to a nucleotide sequence (e.g., a Cas9, or a Cpf1 protein) and an enzyme domain, for example, a DNA-editing domain, such as, e.g., a deaminase domain. The deamination of a nucleobase by a deaminase can lead to a point mutation at the respective residue, which is referred to herein as nucleic acid editing. Fusion proteins comprising a Cas9 variant or domain and a DNA editing domain can thus be used for the targeted editing of nucleic acid sequences. Such fusion proteins are useful for targeted editing of DNA in vitro, e.g., for the generation of mutant cells or animals; for the introduction of targeted mutations, e.g., for the correction of genetic defects in cells ex vivo, e.g., in cells obtained from a subject that are subsequently re-introduced into the same or another subject; and for the introduction of targeted mutations, e.g., the correction of genetic defects or the introduction of deactivating mutations in disease-associated genes in a subject. Typically, the Cas9 domain of the fusion proteins described herein does not have any nuclease activity but instead is a Cas9 fragment or a dCas9 protein or domain. Methods for the use of Cas9 fusion proteins as described herein are also provided.
Cas9 Domains of Nucleobase Editors
Non-limiting, exemplary Cas9 domains are provided herein. The Cas9 domain may be a nuclease active Cas9 domain, a nuclease inactive Cas9 domain, or a Cas9 nickase. In some embodiments, the Cas9 domain is a nuclease active domain. For example, the Cas9 domain may be a Cas9 domain that cuts both strands of a duplexed nucleic acid (e.g., both strands of a duplexed DNA molecule). In some embodiments, the Cas9 domain comprises any one of the amino acid sequences as set forth in SEQ ID NOs: 10-263. In some embodiments the Cas9 domain comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the amino acid sequences set forth in SEQ ID NOs: 10-263. In some embodiments, the Cas9 domain comprises an amino acid sequence that has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 or more or more mutations compared to any one of the amino acid sequences set forth in SEQ ID NOs: 10-263. In some embodiments, the Cas9 domain comprises an amino acid sequence that has at least 10, at least 15, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 150, at least 200, at least 250, at least 300, at least 350, at least 400, at least 500, at least 600, at least 700, at least 800, at least 900, at least 1000, at least 1100, or at least 1200 identical contiguous amino acid residues as compared to any one of the amino acid sequences set forth in SEQ ID NOs: 10-263.
In some embodiments, the Cas9 domain is a nuclease-inactive Cas9 domain (dCas9). For example, the dCas9 domain may bind to a duplexed nucleic acid molecule (e.g., via a gRNA molecule) without cleaving either strand of the duplexed nucleic acid molecule. In some embodiments, the nuclease-inactive dCas9 domain comprises a D10X mutation and a H840X mutation of the amino acid sequence set forth in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid change. In some embodiments, the nuclease-inactive dCas9 domain comprises a D10A mutation and a H840A mutation of the amino acid sequence set forth in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. As one example, a nuclease-inactive Cas9 domain comprises the amino acid sequence set forth in SEQ ID NO: 263 (Cloning vector pPlatTET-gRNA2, Accession No. BAV54124).
263; see, e.g., Qi et al., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013; 152(5):1173-83, the entire contents of which are incorporated herein by reference).
Additional suitable nuclease-inactive dCas9 domains will be apparent to those of skill in the art based on this disclosure and knowledge in the field, and are within the scope of this disclosure. Such additional exemplary suitable nuclease-inactive Cas9 domains include, but are not limited to, D10A/H840A, D10A/D839A/H840A, and D10A/D839A/H840A/N863A mutant domains (See, e.g., Prashant et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology. 2013; 31(9): 833-838, the entire contents of which are incorporated herein by reference). In some embodiments the dCas9 domain comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the dCas9 domains provided herein. In some embodiments, the Cas9 domain comprises an amino acid sequences that has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 or more or more mutations compared to any one of the amino acid sequences set forth in SEQ ID NOs: 10-263. In some embodiments, the Cas9 domain comprises an amino acid sequence that has at least 10, at least 15, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 150, at least 200, at least 250, at least 300, at least 350, at least 400, at least 500, at least 600, at least 700, at least 800, at least 900, at least 1000, at least 1100, or at least 1200 identical contiguous amino acid residues as compared to any one of the amino acid sequences set forth in SEQ ID NOs: 10-263.
In some embodiments, the Cas9 domain is a Cas9 nickase. The Cas9 nickase may be a Cas9 protein that is capable of cleaving only one strand of a duplexed nucleic acid molecule (e.g., a duplexed DNA molecule). In some embodiments the Cas9 nickase cleaves the target strand of a duplexed nucleic acid molecule, meaning that the Cas9 nickase cleaves the strand that is base paired to (complementary to) a gRNA (e.g., an sgRNA) that is bound to the Cas9. In some embodiments, a Cas9 nickase comprises a D10A mutation and has a histidine at position 840 of SEQ ID NO: 10, or a mutation in any of SEQ ID NOs: 11-260. For example, a Cas9 nickase may comprise the amino acid sequence as set forth in SEQ ID NO: 674. In some embodiments the Cas9 nickase cleaves the non-target, non-base-edited strand of a duplexed nucleic acid molecule, meaning that the Cas9 nickase cleaves the strand that is not base paired to a gRNA (e.g., an sgRNA) that is bound to the Cas9. In some embodiments, a Cas9 nickase comprises an H840A mutation and has an aspartic acid residue at position 10 of SEQ ID NO: 10, or a corresponding mutation in any of SEQ ID NOs: 11-260. In some embodiments the Cas9 nickase comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the Cas9 nickases provided herein. Additional suitable Cas9 nickases will be apparent to those of skill in the art based on this disclosure and knowledge in the field, and are within the scope of this disclosure.
Cas9 Domains with Reduced PAM Exclusivity
Some aspects of the disclosure provide Cas9 domains that have different PAM specificities. Typically, Cas9 proteins, such as Cas9 from S. pyogenes (spCas9), require a canonical NGG PAM sequence to bind a particular nucleic acid region. This may limit the ability to edit desired bases within a genome. In some embodiments, the base editing fusion proteins provided herein may need to be placed at a precise location, for example where a target base is placed within a 4 base region (e.g., a “deamination window”), which is approximately 15 bases upstream of the PAM. See Komor, A. C., et al., “Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage” Nature 533, 420-424 (2016), the entire contents of which are hereby incorporated by reference. Accordingly, in some embodiments, any of the fusion proteins provided herein may contain a Cas9 domain that is capable of binding a nucleotide sequence that does not contain a canonical (e.g., NGG) PAM sequence. Cas9 domains that bind to non-canonical PAM sequences have been described in the art and would be apparent to the skilled artisan. For example, Cas9 domains that bind non-canonical PAM sequences have been described in Kleinstiver, B. P., et al., “Engineered CRISPR-Cas9 nucleases with altered PAM specificities” Nature 523, 481-485 (2015); and Kleinstiver, B. P., et al., “Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition” Nature Biotechnology 33, 1293-1298 (2015); the entire contents of each are hereby incorporated by reference.
In some embodiments, the Cas9 domain is a Cas9 domain from Staphylococcus aureus (SaCas9). In some embodiments, the SaCas9 domain is a nuclease active SaCas9, a nuclease inactive SaCas9 (SaCas9d), or a SaCas9 nickase (SaCas9n). In some embodiments, the SaCas9 comprises the amino acid sequence SEQ ID NO: 4273. In some embodiments, the SaCas9 comprises a N579X mutation of SEQ ID NO: 4273, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid except for N. In some embodiments, the SaCas9 comprises a N579A mutation of SEQ ID NO: 4273, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the SaCas9 domain, the SaCas9d domain, or the SaCas9n domain can bind to a nucleic acid sequence having a non-canonical PAM. In some embodiments, the SaCas9 domain, the SaCas9d domain, or the SaCas9n domain can bind to a nucleic acid sequence having a NNGRRT PAM sequence. In some embodiments, the SaCas9 domain comprises one or more of a E781X, a N967X, and a R1014X mutation of SEQ ID NO: 4273, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid. In some embodiments, the SaCas9 domain comprises one or more of a E781K, a N967K, and a R1014H mutation of SEQ ID NO: 4273, or one or more corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the SaCas9 domain comprises a E781K, a N967K, or a R1014H mutation of SEQ ID NO: 4273, or corresponding mutations in any of the amino acid sequences provided in SEQ ID NOs: 11-260.
In some embodiments, the Cas9 domain of any of the fusion proteins provided herein comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 4273-4275. In some embodiments, the Cas9 domain of any of the fusion proteins provided herein comprises the amino acid sequence of any one of SEQ ID NOs: 4273-4275. In some embodiments, the Cas9 domain of any of the fusion proteins provided herein consists of the amino acid sequence of any one of SEQ ID NOs: 4273-4275.
Residue N579 of SEQ ID NO: 4273, which is underlined and in bold, may be mutated (e.g., to a A579) to yield a SaCas9 nickase.
Residue A579 of SEQ ID NO: xx, which can be mutated from N579 of SEQ ID NO: 4274 to yield a SaCas9 nickase, is underlined and in bold.
Residue A579 of SEQ ID NO: 4275, which can be mutated from N579 of SEQ ID NO: 4275 to yield a SaCas9 nickase, is underlined and in bold. Residues K781, K967, and H1014 of SEQ ID NO: 4275, which can be mutated from E781, N967, and R1014 of SEQ ID NO: 4275 to yield a SaKKH Cas9 are underlined and in italics.
In some embodiments, the Cas9 domain is a Cas9 domain from Streptococcus pyogenes (SpCas9). In some embodiments, the SpCas9 domain is a nuclease active SpCas9, a nuclease inactive SpCas9 (SpCas9d), or a SpCas9 nickase (SpCas9n). In some embodiments, the SpCas9 comprises the amino acid sequence SEQ ID NO: 4276. In some embodiments, the SpCas9 comprises a D9X mutation of SEQ ID NO: 4276, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid except for D. In some embodiments, the SpCas9 comprises a D9A mutation of SEQ ID NO: 4276, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the SpCas9 domain, the SpCas9d domain, or the SpCas9n domain can bind to a nucleic acid sequence having a non-canonical PAM. In some embodiments, the SpCas9 domain, the SpCas9d domain, or the SpCas9n domain can bind to a nucleic acid sequence having a NGG, a NGA, or a NGCG PAM sequence. In some embodiments, the SpCas9 domain comprises one or more of a D1134X, a R1334X, and a T1336X mutation of SEQ ID NO: 4276, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid. In some embodiments, the SpCas9 domain comprises one or more of a D1134E, R1334Q, and T1336R mutation of SEQ ID NO: 4276, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the SpCas9 domain comprises a D1134E, a R1334Q, and a T1336R mutation of SEQ ID NO: 4276, or corresponding mutations in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the SpCas9 domain comprises one or more of a D1134X, a R1334X, and a T1336X mutation of SEQ ID NO: 4276, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid. In some embodiments, the SpCas9 domain comprises one or more of a D1134V, a R1334Q, and a T1336R mutation of SEQ ID NO: 4276, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the SpCas9 domain comprises a D1134V, a R1334Q, and a T1336R mutation of SEQ ID NO: 4276, or corresponding mutations in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the SpCas9 domain comprises one or more of a D1134X, a G1217X, a R1334X, and a T1336X mutation of SEQ ID NO: 4276, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid. In some embodiments, the SpCas9 domain comprises one or more of a D1134V, a G1217R, a R1334Q, and a T1336R mutation of SEQ ID NO: 4276, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the SpCas9 domain comprises a D1134V, a G1217R, a R1334Q, and a T1336R mutation of SEQ ID NO: 4276, or corresponding mutations in any of the amino acid sequences provided in SEQ ID NOs: 11-260.
In some embodiments, the Cas9 domain of any of the fusion proteins provided herein comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 4276-4280. In some embodiments, the Cas9 domain of any of the fusion proteins provided herein comprises the amino acid sequence of any one of SEQ ID NOs: 4276-4280. In some embodiments, the Cas9 domain of any of the fusion proteins provided herein consists of the amino acid sequence of any one of SEQ ID NOs: 4276-4280.
Residues E1134, Q1334, and R1336 of SEQ ID NO: 4278, which can be mutated from D1134, R1334, and T1336 of SEQ ID NO: 4278 to yield a SpEQR Cas9, are underlined and in bold.
I
TGLYETRIDLSQLGGD
Residues V1134, Q1334, and R1336 of SEQ ID NO: 4279, which can be mutated from D1134, R1334, and T1336 of SEQ ID NO: 4279 to yield a SpVQR Cas9, are underlined and in bold.
Residues V1134, R1217, Q1334, and R1336 of SEQ ID NO: 4280, which can be mutated from D1134, G1217, R1334, and T1336 of SEQ ID NO: 4280 to yield a SpVRER Cas9, are underlined and in bold.
The following are exemplary fusion proteins (e.g., base editing proteins) capable of binding to a nucleic acid sequence having a non-canonical (e.g., a non-NGG) PAM sequence:
LGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRL
KRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFS
AALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLE
RLKKDGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLE
TRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLY
NALNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIAKEILVN
EEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILT
IYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDE
LWHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRSFIQ
SIKVINAIIKKYGLPNDIIIELAREKNSKDAQKMINEMQKRNRQTNERIE
EIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVD
HIIPRSVSFDNSFNNKVLVKQEEASKKGNRTPFQYLSSSDSKISYETFKK
HILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTRYATRGL
MNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHHAEDAL
IIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFIT
PHQIKHIKDFKDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTLIVNNLN
GLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYK
YYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVK
LSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAKKLKKI
SNQAEFIASFYNNDLIKINGELYRVIGVNNDLLNRIEVNMIDITYREYLE
NMNDKRPPRIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKKGSGG
LGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRGARRL
KRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEEEFS
AALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQLE
RLKKDGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLLE
TRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLY
NALNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIAKEILVN
EEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILT
IYQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDE
LWHTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRSFIQ
SIKVINAIIKKYGLPNDIIIELAREKNSKDAQKMINEMQKRNRQTNERIE
EIIRTTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVD
HIIPRSVSFDNSFNNKVLVKQEEASKKGNRTPFQYLSSSDSKISYETFKK
HILNLAKGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTRYATRGL
MNLLRSYFRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHHAEDAL
IIANADFIFKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFIT
PHQIKHIKDFKDYKYSHRVDKKPNRKLINDTLYSTRKDDKGNTLIVNNLN
GLYDKDNDKLKKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYK
YYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVK
LSLKPYRFDVYLDNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAKKLKKI
SNQAEFIASFYKNDLIKINGELYRVIGVNNDLLNRIEVNMIDITYREYLE
NMNDKRPPHIIKTIASKTQSIKKYSTDILGNLYEVKSKKHPQIIKKGSGG
IGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSG
ETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL
VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYL
ALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGV
DAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNF
DLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDIL
NGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFD
NGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLA
RGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEK
VLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTN
RKVTVKQLKEDYFKKIECFDSVETSGVEDRFNASLGTYHDLLKIIKDKDF
LDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRY
TGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKE
DIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKP
ENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL
QNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKV
LTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERG
GLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVI
TLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLES
EFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGE
IRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFS
KESILPKRNSDKLIARKKDWDPKKYGGFESPTVAYSVLVVAKVEKGKSKK
LKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFEL
ENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQ
LFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQA
ENIIHLFTLTNLGAPAAFKYFDTTIDRKQYRSTKEVLDATLIHQSITGLY
ETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGN
IGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSG
ETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL
VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYL
ALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGV
DAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNF
DLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDIL
RVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSK
NGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFD
NGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLA
RGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEK
VLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTN
RKVTVKQLKDYFKKIECFDSVETSGVEDRFNASLGTYHDLLKIIKDKDFL
DNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYT
GWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKED
IQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPE
NIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQ
NEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVL
TRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGG
LSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVIT
LKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESE
FVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEI
RKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSK
ESILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVVAKVEKGKSKKL
KSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELE
NGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQL
FVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAE
NIIHLFTLTNLGAPAAFKYFDTTIDRKQYRSTKEVLDATLIHQSITGLYE
TRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNK
IGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSG
ETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFL
VEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYL
ALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGV
DAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNF
DLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDIL
RVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSK
NGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFD
NGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLA
RGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEK
VLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTN
RKVTVKQLKEDYFKKIECFDSVETSGVEDRFNASLGTYHDLLKIIKDKDF
LDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRY
TGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKE
DIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKP
ENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL
QNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKV
LTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERG
GLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVI
TLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLES
EFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGE
IRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFS
KESILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVVAKVEKGKSKK
LKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFEL
ENGRKRMLASARELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQ
LFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQA
ENIIHLFTLTNLGAPAAFKYFDTTIDRKEYRSTKEVLDATLIHQSITGLY
ETRIDLSQLGGDSGGSTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGN
High Fidelity Base Editors
Some aspects of the disclosure provide Cas9 fusion proteins (e.g., any of the fusion proteins provided herein) comprising a Cas9 domain that has high fidelity. Additional aspects of the disclosure provide Cas9 fusion proteins (e.g., any of the fusion proteins provided herein) comprising a Cas9 domain with decreased electrostatic interactions between the Cas9 domain and a sugar-phosphate backbone of a DNA, as compared to a wild-type Cas9 domain. In some embodiments, a Cas9 domain (e.g., a wild type Cas9 domain) comprises one or more mutations that decreases the association between the Cas9 domain and a sugar-phosphate backbone of a DNA. In some embodiments, any of the Cas9 fusion proteins provided herein comprise one or more of a N497X, a R661X, a Q695X, and/or a Q926X mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, wherein X is any amino acid. In some embodiments, any of the Cas9 fusion proteins provided herein comprise one or more of a N497A, a R661A, a Q695A, and/or a Q926A mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the Cas9 domain comprises a D10A mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the Cas9 domain (e.g., of any of the fusion proteins provided herein) comprises the amino acid sequence as set forth in SEQ ID NO: 325. In some embodiments, the fusion protein comprises the amino acid sequence as set forth in SEQ ID NO: 285. Cas9 domains with high fidelity are known in the art and would be apparent to the skilled artisan. For example, Cas9 domains with high fidelity have been described in Kleinstiver, B. P., et al. “High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.” Nature 529, 490-495 (2016); and Slaymaker, I. M., et al. “Rationally engineered Cas9 nucleases with improved specificity.” Science 351, 84-88 (2015); the entire contents of each are incorporated herein by reference.
It should be appreciated that the base editors provided herein, for example base editor 2 (BE2) or base editor 3 (BE3), may be converted into high fidelity base editors by modifying the Cas9 domain as described herein to generate high fidelity base editors, for example high fidelity base editor 2 (HF-BE2) or high fidelity base editor 3 (HF-BE3). In some embodiments, base editor 2 (BE2) comprises a deaminase domain, a dCas9, and a UGI domain. In some embodiments, base editor 3 (BE3) comprises a deaminase domain an nCas9 domain and a UGI domain.
Cas9 Fusion Proteins
Any of the Cas9 domains (e.g., a nuclease active Cas9 protein, a nuclease-inactive dCas9 protein, or a Cas9 nickase protein) disclosed herein may be fused to a second protein, thus fusion proteins provided herein comprise a Cas9 domain as provided herein and a second protein, or a “fusion partner”. In some embodiments, the second protein is fused to the N-terminus of the Cas9 domain. However, in other embodiments, the second protein is fused to the C-terminus of the Cas9 domain. In some embodiments, the second protein that is fused to the Cas9 domain is a nucleic acid editing domain. In some embodiments, the Cas9 domain and the nucleic acid editing domain are fused via a linker, while in other embodiments the Cas9 domain and the nucleic acid editing domain are fused directly to one another. In some embodiments, the linker comprises (GGGS)n (SEQ ID NO: 265), (GGGGS)n (SEQ ID NO: 5), (G)n, (EAAAK)n (SEQ ID NO: 6), (GGS)n, (SGGS)n (SEQ ID NO: 4288), SGSETPGTSESATPES (SEQ ID NO: 7), or (XP)n motif, or a combination of any of these, wherein n is independently an integer between 1 and 30, and wherein X is any amino acid. In some embodiments, the linker comprises a (GGS)n motif, wherein n is 1, 3, or 7. In some embodiments, the linker comprises a (GGS)n motif, wherein n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, the linker comprises an amino acid sequence of SGSETPGTSESATPES (SEQ ID NO: 7), also referred to as the XTEN linker in the Examples). The length of the linker can influence the base to be edited, as illustrated in the Examples. For example, a linker of 3-amino-acid long (e.g., (GGS)1) may give a 2-5, 2-4, 2-3, 3-4 base editing window relative to the PAM sequence, while a 9-amino-acid linker (e.g., (GGS)3 (SEQ ID NO: 596)) may give a 2-6, 2-5, 2-4, 2-3, 3-6, 3-5, 3-4, 4-6, 4-5, 5-6 base editing window relative to the PAM sequence. A 16-amino-acid linker (e.g., the XTEN linker) may give a 2-7, 2-6, 2-5, 2-4, 2-3, 3-7, 3-6, 3-5, 3-4, 4-7, 4-6, 4-5, 5-7, 5-6, 6-7 base window relative to the PAM sequence with exceptionally strong activity, and a 21-amino-acid linker (e.g., (GGS)7 (SEQ ID NO: 597)) may give a 3-8, 3-7, 3-6, 3-5, 3-4, 4-8, 4-7, 4-6, 4-5, 5-8, 5-7, 5-6, 6-8, 6-7, 7-8 base editing window relative to the PAM sequence. The novel finding that varying linker length may allow the dCas9 fusion proteins of the disclosure to edit nucleobases different distances from the PAM sequence affords significant clinical importance, since a PAM sequence may be of varying distance to the disease-causing mutation to be corrected in a gene. It is to be understood that the linker lengths described as examples here are not meant to be limiting.
In some embodiments, the second protein comprises an enzymatic domain. In some embodiments, the enzymatic domain is a nucleic acid editing domain. Such a nucleic acid editing domain may be, without limitation, a nuclease, a nickase, a recombinase, a deaminase, a methyltransferase, a methylase, an acetylase, or an acetyltransferase. Non-limiting exemplary binding domains that may be used in accordance with this disclosure include transcriptional activator domains and transcriptional repressor domains.
Deaminase Domains
In some embodiments, second protein comprises a nucleic acid editing domain. In some embodiments, the nucleic acid editing domain can catalyze a C to U base change. In some embodiments, the nucleic acid editing domain is a deaminase domain. In some embodiments, the deaminase is a cytidine deaminase or a cytidine deaminase. In some embodiments, the deaminase is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the deaminase is an APOBEC1 deaminase. In some embodiments, the deaminase is an APOBEC2 deaminase. In some embodiments, the deaminase is an APOBEC3 deaminase. In some embodiments, the deaminase is an APOBEC3A deaminase. In some embodiments, the deaminase is an APOBEC3B deaminase. In some embodiments, the deaminase is an APOBEC3C deaminase. In some embodiments, the deaminase is an APOBEC3D deaminase. In some embodiments, the deaminase is an APOBEC3E deaminase. In some embodiments, the deaminase is an APOBEC3F deaminase. In some embodiments, the deaminase is an APOBEC3G deaminase. In some embodiments, the deaminase is an APOBEC3H deaminase. In some embodiments, the deaminase is an APOBEC4 deaminase. In some embodiments, the deaminase is an activation-induced deaminase (AID). In some embodiments, the deaminase is a vertebrate deaminase. In some embodiments, the deaminase is an invertebrate deaminase. In some embodiments, the deaminase is a human, chimpanzee, gorilla, monkey, cow, dog, rat, or mouse deaminase. In some embodiments, the deaminase is a human deaminase. In some embodiments, the deaminase is a rat deaminase, e.g., rAPOBEC1. In some embodiments, the deaminase is a Petromyzon marinus cytidine deaminase 1 (pmCDA1). In some embodiments, the deminase is a human APOBEC3G (SEQ ID NO: 275). In some embodiments, the deaminase is a fragment of the human APOBEC3G (SEQ ID NO: 5740). In some embodiments, the deaminase is a human APOBEC3G variant comprising a D316R_D317R mutation (SEQ ID NO: 5739). In some embodiments, the deaminase is a frantment of the human APOBEC3G and comprising mutations corresponding to the D316R_D317R mutations in SEQ ID NO: 275 (SEQ ID NO: 5741).
In some embodiments, the nucleic acid editing domain is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the deaminase domain of any one of SEQ ID NOs: 266-284, 607-610, 5724-5736, or 5738-5741. In some embodiments, the nucleic acid editing domain comprises the amino acid sequence of any one of SEQ ID NOs: 266-284, 607-610, 5724-5736, or 5738-5741.
Deaminase Domains that Modulate the Editing Window of Base Editors
Some aspects of the disclosure are based on the recognition that modulating the deaminase domain catalytic activity of any of the fusion proteins provided herein, for example by making point mutations in the deaminase domain, affect the processivity of the fusion proteins (e.g., base editors). For example, mutations that reduce, but do not eliminate, the catalytic activity of a deaminase domain within a base editing fusion protein can make it less likely that the deaminase domain will catalyze the deamination of a residue adjacent to a target residue, thereby narrowing the deamination window. The ability to narrow the deaminataion window may prevent unwanted deamination of residues adjacent of specific target residues, which may decrease or prevent off-target effects.
In some embodiments, any of the fusion proteins provided herein comprise a deaminase domain (e.g., a cytidine deaminase domain) that has reduced catalytic deaminase activity. In some embodiments, any of the fusion proteins provided herein comprise a deaminase domain (e.g., a cytidine deaminase domain) that has a reduced catalytic deaminase activity as compared to an appropriate control. For example, the appropriate control may be the deaminase activity of the deaminase prior to introducing one or more mutations into the deaminase. In other embodiments, the appropriate control may be a wild-type deaminase. In some embodiments, the appropriate control is a wild-type apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the appropriate control is an APOBEC1 deaminase, an APOBEC2 deaminase, an APOBEC3A deaminase, an APOBEC3B deaminase, an APOBEC3C deaminase, an APOBEC3D deaminase, an APOBEC3F deaminase, an APOBEC3G deaminase, or an APOBEC3H deaminase. In some embodiments, the appropriate control is an activation induced deaminase (AID). In some embodiments, the appropriate control is a cytidine deaminase 1 from Petromyzon marinus (pmCDA1). In some embodiments, the deaminse domain may be a deaminase domain that has at least 1%, at least 5%, at least 15%, at least 20%, at least 25%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 95% less catalytic deaminase activity as compared to an appropriate control.
In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising one or more mutations selected from the group consisting of H121X, H122X, R126X, R126X, R118X, W90X, W90X, and R132X of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase, wherein X is any amino acid. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising one or more mutations selected from the group consisting of H121R, H122R, R126A, R126E, R118A, W90A, W90Y, and R132E of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase.
In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising one or more mutations selected from the group consisting of D316X, D317X, R320X, R320X, R313X, W285X, W285X, R326X of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase, wherein X is any amino acid. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising one or more mutations selected from the group consisting of D316R, D317R, R320A, R320E, R313A, W285A, W285Y, R326E of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase.
In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a H121R and a H122R mutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R126A mutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R126E mutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R118A mutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90A mutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90Y mutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R132E mutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90Y and a R126E mutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R126E and a R132E mutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90Y and a R132E mutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W90Y, R126E, and R132E mutation of rAPOBEC1 (SEQ ID NO: 284), or one or more corresponding mutations in another APOBEC deaminase.
In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a D316R and a D317R mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R320A mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R320E mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R313A mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285A mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285Y mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R326E mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285Y and a R320E mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a R320E and a R326E mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285Y and a R326E mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase. In some embodiments, any of the fusion proteins provided herein comprise an APOBEC deaminase comprising a W285Y, R320E, and R326E mutation of hAPOBEC3G (SEQ ID NO: 275), or one or more corresponding mutations in another APOBEC deaminase.
Some aspects of this disclosure provide fusion proteins comprising (i) a nuclease-inactive Cas9 domain; and (ii) a nucleic acid editing domain. In some embodiments, a nuclease-inactive Cas9 domain (dCas9), comprises an amino acid sequence that is at least 80%, at least 85%, at least 90%, at least 92%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to the amino acid sequence of a Cas9 as provided by any one of SEQ ID NOs: 10-263, and comprises mutations that inactivate the nuclease activity of Cas9. Mutations that render the nuclease domains of Cas9 inactive are well-known in the art. For example, the DNA cleavage domain of Cas9 is known to include two subdomains, the HNH nuclease subdomain and the RuvC1 subdomain. The HNH subdomain cleaves the strand complementary to the gRNA, whereas the RuvC1 subdomain cleaves the non-complementary strand. Mutations within these subdomains can silence the nuclease activity of Cas9. For example, the mutations D10A and H840A completely inactivate the nuclease activity of S. pyogenes Cas9 (Jinek et al., Science. 337:816-821 (2012); Qi et al., Cell. 28; 152(5):1173-83 (2013)). In some embodiments, the dCas9 of this disclosure comprises a D10A mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the dCas9 of this disclosure comprises a H840A mutation of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the dCas9 of this disclosure comprises both D10A and H840A mutations of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. In some embodiments, the Cas9 further comprises a histidine residue at position 840 of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. The presence of the catalytic residue H840 restores the activity of the Cas9 to cleave the non-edited strand containing a G opposite the targeted C. Restoration of H840 does not result in the cleavage of the target strand containing the C. In some embodiments, the dCas9 comprises an amino acid sequence of SEQ ID NO: 263. It is to be understood that other mutations that inactivate the nuclease domains of Cas9 may also be included in the dCas9 of this disclosure.
The Cas9 or dCas9 domains comprising the mutations disclosed herein, may be a full-length Cas9, or a fragment thereof. In some embodiments, proteins comprising Cas9, or fragments thereof, are referred to as “Cas9 variants.” A Cas9 variant shares homology to Cas9, or a fragment thereof. For example a Cas9 variant is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% to wild type Cas9. In some embodiments, the Cas9 variant comprises a fragment of Cas9 (e.g., a gRNA binding domain or a DNA-cleavage domain), such that the fragment is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to the corresponding fragment of wild type Cas9, e.g., a Cas9 comprising the amino acid sequence of SEQ ID NO: 10.
Any of the Cas9 fusion proteins of this disclosure may further comprise a nucleic acid editing domain (e.g., an enzyme that is capable of modifying nucleic acid, such as a deaminase). In some embodiments, the nucleic acid editing domain is a DNA-editing domain. In some embodiments, the nucleic acid editing domain has deaminase activity. In some embodiments, the nucleic acid editing domain comprises or consists of a deaminase or deaminase domain. In some embodiments, the deaminase is a cytidine deaminase. In some embodiments, the deaminase is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the deaminase is an APOBEC1 family deaminase. In some embodiments, the deaminase is an activation-induced cytidine deaminase (AID). Some nucleic-acid editing domains as well as Cas9 fusion proteins including such domains are described in detail herein. Additional suitable nucleic acid editing domains will be apparent to the skilled artisan based on this disclosure and knowledge in the field.
Some aspects of the disclosure provide a fusion protein comprising a Cas9 domain fused to a nucleic acid editing domain, wherein the nucleic acid editing domain is fused to the N-terminus of the Cas9 domain. In some embodiments, the Cas9 domain and the nucleic acid editing-editing domain are fused via a linker. In some embodiments, the linker comprises a (GGGS)n (SEQ ID NO: 265), a (GGGGS)n (SEQ ID NO: 5), a (G)n, an (EAAAK)n (SEQ ID NO: 6), a (GGS)n, (SGGS)n (SEQ ID NO: 4288), an SGSETPGTSESATPES (SEQ ID NO: 7) motif (see, e.g., Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82; the entire contents are incorporated herein by reference), or an (XP)n motif, or a combination of any of these, wherein n is independently an integer between 1 and 30. In some embodiments, n is independently 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30, or, if more than one linker or more than one linker motif is present, any combination thereof. In some embodiments, the linker comprises a (GGS)n motif, wherein n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15. In some embodiments, the linker comprises a (GGS)n motif, wherein n is 1, 3, or 7. In some embodiments, the linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 7). Additional suitable linker motifs and linker configurations will be apparent to those of skill in the art. In some embodiments, suitable linker motifs and configurations include those described in Chen et al., Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013; 65(10):1357-69, the entire contents of which are incorporated herein by reference. Additional suitable linker sequences will be apparent to those of skill in the art based on the instant disclosure. In some embodiments, the general architecture of exemplary Cas9 fusion proteins provided herein comprises the structure:
The fusion proteins of the present disclosure may comprise one or more additional features. For example, in some embodiments, the fusion protein comprises a nuclear localization sequence (NLS). In some embodiments, the NLS of the fusion protein is localized between the nucleic acid editing domain and the Cas9 domain. In some embodiments, the NLS of the fusion protein is localized C-terminal to the Cas9 domain.
Other exemplary features that may be present are localization sequences, such as cytoplasmic localization sequences, export sequences, such as nuclear export sequences, or other localization sequences, as well as sequence tags that are useful for solubilization, purification, or detection of the fusion proteins. Suitable protein tags provided herein include, but are not limited to, biotin carboxylase carrier protein (BCCP) tags, myc-tags, calmodulin-tags, FLAG-tags, hemagglutinin (HA)-tags, polyhistidine tags, also referred to as histidine tags or His-tags, maltose binding protein (MBP)-tags, nus-tags, glutathione-S-transferase (GST)-tags, green fluorescent protein (GFP)-tags, thioredoxin-tags, S-tags, Softags (e.g., Softag 1, Softag 3), strep-tags, biotin ligase tags, FlAsH tags, V5 tags, and SBP-tags. Additional suitable sequences will be apparent to those of skill in the art. In some embodiments, the fusion protein comprises one or more His tags.
In some embodiments, the nucleic acid editing domain is a deaminase. For example, in some embodiments, the general architecture of exemplary Cas9 fusion proteins with a deaminase domain comprises the structure:
One exemplary suitable type of nucleic acid editing domain is a cytidine deaminase, for example, of the APOBEC family. The apolipoprotein B mRNA-editing complex (APOBEC) family of cytidine deaminase enzymes encompasses eleven proteins that serve to initiate mutagenesis in a controlled and beneficial manner.29 One family member, activation-induced cytidine deaminase (AID), is responsible for the maturation of antibodies by converting cytosines in ssDNA to uracils in a transcription-dependent, strand-biased fashion.30 The apolipoprotein B editing complex 3 (APOBEC3) enzyme provides protection to human cells against a certain HIV-1 strain via the deamination of cytosines in reverse-transcribed viral ssDNA.31 These proteins all require a Zn2+-coordinating motif (His-X-Glu-X23-26-Pro-Cys-X2-4-Cys; SEQ ID NO: 598) and bound water molecule for catalytic activity. The Glu residue acts to activate the water molecule to a zinc hydroxide for nucleophilic attack in the deamination reaction. Each family member preferentially deaminates at its own particular “hotspot”, ranging from WRC (W is A or T, R is A or G) for hAID, to TTC for hAPOBEC3F.32 A recent crystal structure of the catalytic domain of APOBEC3G revealed a secondary structure comprised of a five-stranded β-sheet core flanked by six α-helices, which is believed to be conserved across the entire family.33 The active center loops have been shown to be responsible for both ssDNA binding and in determining “hotspot” identity.34 Overexpression of these enzymes has been linked to genomic instability and cancer, thus highlighting the importance of sequence-specific targeting.35
Some aspects of this disclosure relate to the recognition that the activity of cytidine deaminase enzymes such as APOBEC enzymes can be directed to a specific site in genomic DNA. Without wishing to be bound by any particular theory, advantages of using Cas9 as a recognition agent include (1) the sequence specificity of Cas9 can be easily altered by simply changing the sgRNA sequence; and (2) Cas9 binds to its target sequence by denaturing the dsDNA, resulting in a stretch of DNA that is single-stranded and therefore a viable substrate for the deaminase. It should be understood that other catalytic domains, or catalytic domains from other deaminases, can also be used to generate fusion proteins with Cas9, and that the disclosure is not limited in this regard.
Some aspects of this disclosure are based on the recognition that Cas9:deaminase fusion proteins can efficiently deaminate nucleotides at positions 3-11 according to the numbering scheme in
In some embodiments, the deaminase domain and the Cas9 domain are fused to each other via a linker. Various linker lengths and flexibilities between the deaminase domain (e.g., AID) and the Cas9 domain can be employed (e.g., ranging from very flexible linkers of the form (GGGGS)n (SEQ ID NO: 5), (GGS)n, and (G)n to more rigid linkers of the form (EAAAK)n (SEQ ID NO: 6), (SGGS)n (SEQ ID NO: 4288), SGSETPGTSESATPES (SEQ ID NO: 7) (see, e.g., Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82; the entire contents are incorporated herein by reference) and (XP)n)36 in order to achieve the optimal length for deaminase activity for the specific application. In some embodiments, the linker comprises a (GGS)n motif, wherein n is 1, 3, or 7. In some embodiments, the linker comprises a (an SGSETPGTSESATPES (SEQ ID NO: 7) motif.
Some exemplary suitable nucleic-acid editing domains, e.g., deaminases and deaminase domains, that can be fused to Cas9 domains according to aspects of this disclosure are provided below. It should be understood that, in some embodiments, the active domain of the respective sequence can be used, e.g., the domain without a localizing signal (nuclear localization sequence, without nuclear export signal, cytoplasmic localizing signal).
MDSLLMNRRKFLYQFKNVRWAKGRRETYLCYVVKRRDSATSFSLDFGYLRNKNGC
MDSLLMKQKKFLYHFKNVRWAKGRHETYLCYVVKRRDSATSCSLDFGHLRNKSGC
MDSLLMKQRKFLYHFKNVRWAKGRHETYLCYVVKRRDSATSFSLDFGHLRNKSGC
MDSLLKKQRQFLYQFKNVRWAKGRHETYLCYVVKRRDSPTSFSLDFGHLRNKAGC
MAVGSKPKAALVGPHWERERIWCFLCSTGLGTQQTGQTSRWLRPAATQDPVSPPRS
YEVDDLRDAFRTLGL
HAEILFLDKIRSMELSQVTITCYLTWSPCPNCAWQLAAFKRDRPDLILHIYTSRLYFHWK
AEILFLDKIRSMELSQVIITCYLTWSPCPNCAWQLAAFKRDRPDLILHIYTSRLYFHWKR
MVEPMDPRTFVSNFNNRPILSGLNTVWLCCEVKTKDPSGPPLDAKIFQGKVYSKAKY
HPEM
RFLRWFHKWRQLHHDQEYKVTWYVSWSPCTRCANSVATFLAKDPKVTLTIFVA
CAQEMAKFISNNEHVSLCIFAARIYDDQGRYQEGLRALHRDGAKIAMMNYSEFEYC
MKPHFRNPVERMYQDTFSDNFYNRPILSHRNTVWLCYEVKTKGPSRPPLDAKIFRGQ
VYSKLKYHPEMRFFHWFSKWRKLHRDQEYEVIWYISWSPCTKCTRDVATFLAEDPKV
WSPCFSCAQEMAKFISNNKHVSLCIFAARIYDDQGRCQEGLRTLAKAGAKISIMTYSE
MNPQIRNMVEQMEPDIFVYYFNNRPILSGRNTVWLCYEVKTKDPSGPPLDANIFQGK
LYPEAKDHPEMKFLHWFRKWRQLHRDQEYEVTWYVSWSPCTRCANSVATFLAEDPKV
SWSPCFSCAQKMAKFISNNKHVSLCIFAARIYDDQGRCQEGLRTLHRDGAKIAVMNY
MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPPLDAKIFRGQ
VYSELKYHPEMRFFHWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDMATFLAEDPKV
WSPCFSCAQEMAKFISKNKHVSLCIFTARIYDDQGRCQEGLRTLAEAGAKISIMTYSE
PCFSWGCAGEVRAFLQENTHVRLRIFAARIYDYDPLYKEALQMLRDAGAQVSIMTY
AELYFLGKIHSWNLDRNQHYRLTCFISWSPCYDCAQKLTTFLKENHHISLHILASRIYTH
CFINEIKSMGLDETQCYQVTCYLTWSPCSSCAWELVDFIKAHDHLNLGIFASRLYYHWC
EVTWYTSWSPCPECAGEVAEFLARHSNVNLTIFTARLCYFWDTDYQEGLCSLSQEGAS
Petromyzon marinus CDA1 (pmCDA1)
In some embodiments, fusion proteins as provided herein comprise the full-length amino acid of a nucleic acid editing enzyme, e.g., one of the sequences provided above. In other embodiments, however, fusion proteins as provided herein do not comprise a full-length sequence of a nucleic acid editing enzyme, but only a fragment thereof. For example, in some embodiments, a fusion protein provided herein comprises a Cas9 domain and a fragment of a nucleic acid editing enzyme, e.g., wherein the fragment comprises a nucleic acid editing domain. Exemplary amino acid sequences of nucleic acid editing domains are shown in the sequences above as italicized letters, and additional suitable sequences of such domains will be apparent to those of skill in the art.
Additional suitable nucleic-acid editing enzyme sequences, e.g., deaminase enzyme and domain sequences, that can be used according to aspects of this invention, e.g., that can be fused to a nuclease-inactive Cas9 domain, will be apparent to those of skill in the art based on this disclosure. In some embodiments, such additional enzyme sequences include deaminase enzyme or deaminase domain sequences that are at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% similar to the sequences provided herein. Additional suitable Cas9 domains, variants, and sequences will also be apparent to those of skill in the art. Examples of such additional suitable Cas9 domains include, but are not limited to, D10A, D10A/D839A/H840A, and D10A/D839A/H840A/N863A mutant domains (See, e.g., Prashant et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology. 2013; 31(9): 833-838 the entire contents of which are incorporated herein by reference). In some embodiments, the Cas9 comprises a histidine residue at position 840 of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260. The presence of the catalytic residue H840 restores the activity of the Cas9 to cleave the non-edited strand containing a G opposite the targeted C. Restoration of H840 does not result in the cleavage of the target strand containing the C.
Additional suitable strategies for generating fusion proteins comprising a Cas9 domain and a deaminase domain will be apparent to those of skill in the art based on this disclosure in combination with the general knowledge in the art. Suitable strategies for generating fusion proteins according to aspects of this disclosure using linkers or without the use of linkers will also be apparent to those of skill in the art in view of the instant disclosure and the knowledge in the art. For example, Gilbert et al., CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013; 154(2):442-51, showed that C-terminal fusions of Cas9 with VP64 using 2 NLS's as a linker (SPKKKRKVEAS, SEQ ID NO: 599), can be employed for transcriptional activation. Mali et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013; 31(9):833-8, reported that C-terminal fusions with VP64 without linker can be employed for transcriptional activation. And Maeder et al., CRISPR RNA-guided activation of endogenous human genes. Nat Methods. 2013; 10: 977-979, reported that C-terminal fusions with VP64 using a Gly4Ser (SEQ ID NO: 5) linker can be used as transcriptional activators. Recently, dCas9-FokI nuclease fusions have successfully been generated and exhibit improved enzymatic specificity as compared to the parental Cas9 enzyme (In Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82, and in Tsai S Q, Wyvekens N, Khayter C, Foden J A, Thapar V, Reyon D, Goodwin M J, Aryee M J, Joung J K. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. 2014; 32(6):569-76. PMID: 24770325 a SGSETPGTSESATPES (SEQ ID NO: 7) or a GGGGS (SEQ ID NO: 5) linker was used in FokI-dCas9 fusion proteins, respectively).
Some aspects of this disclosure provide fusion proteins comprising (i) a Cas9 enzyme or domain (e.g., a first protein); and (ii) a nucleic acid-editing enzyme or domain (e.g., a second protein). In some aspects, the fusion proteins provided herein further include (iii) a programmable DNA-binding protein, for example, a zinc-finger domain, a TALE, or a second Cas9 protein (e.g., a third protein). Without wishing to be bound by any particular theory, fusing a programmable DNA-binding protein (e.g., a second Cas9 protein) to a fusion protein comprising (i) a Cas9 enzyme or domain (e.g., a first protein); and (ii) a nucleic acid-editing enzyme or domain (e.g., a second protein) may be useful for improving specificity of the fusion protein to a target nucleic acid sequence, or for improving specificity or binding affinity of the fusion protein to bind target nucleic acid sequence that does not contain a canonical PAM (NGG) sequence. In some embodiments, the third protein is a Cas9 protein (e.g., a second Cas9 protein). In some embodiments, the third protein is any of the Cas9 proteins provided herein. In some embodiments, the third protein is fused to the fusion protein N-terminal to the Cas9 protein (e.g., the first protein). In some embodiments, the third protein is fused to the fusion protein C-terminal to the Cas9 protein (e.g., the first protein). In some embodiments, the Cas9 domain (e.g., the first protein) and the third protein (e.g., a second Cas9 protein) are fused via a linker (e.g., a second linker). In some embodiments, the linker comprises a (GGGGS)n (SEQ ID NO: 5), a (G)n, an (EAAAK)n (SEQ ID NO: 6), a (GGS)n, (SGGS)n (SEQ ID NO: 4288), an SGSETPGTSESATPES (SEQ ID NO: 7), or an (XP)n motif, or a combination of any of these, wherein n is independently an integer between 1 and 30. In some embodiments, the general architecture of exemplary Cas9 fusion proteins provided herein comprises the structure:
Some aspects of the disclosure relate to fusion proteins that comprise a uracil glycosylase inhibitor (UGI) domain. In some embodiments, any of the fusion proteins provided herein that comprise a Cas9 domain (e.g., a nuclease active Cas9 domain, a nuclease inactive dCas9 domain, or a Cas9 nickase) may be further fused to a UGI domain either directly or via a linker. Some aspects of this disclosure provide deaminase-dCas9 fusion proteins, deaminase-nuclease active Cas9 fusion proteins and deaminase-Cas9 nickase fusion proteins with increased nucleobase editing efficiency. Without wishing to be bound by any particular theory, cellular DNA-repair response to the presence of U:G heteroduplex DNA may be responsible for the decrease in nucleobase editing efficiency in cells. For example, uracil DNA glycosylase (UDG) catalyzes removal of U from DNA in cells, which may initiate base excision repair, with reversion of the U:G pair to a C:G pair as the most common outcome. As demonstrated in the Examples below, Uracil DNA Glycosylase Inhibitor (UGI) may inhibit human UDG activity. Thus, this disclosure contemplates a fusion protein comprising dCas9-nucleic acid editing domain further fused to a UGI domain. This disclosure also contemplates a fusion protein comprising a Cas9 nickase-nucleic acid editing domain further fused to a UGI domain. It should be understood that the use of a UGI domain may increase the editing efficiency of a nucleic acid editing domain that is capable of catalyzing a C to U change. For example, fusion proteins comprising a UGI domain may be more efficient in deaminating C residues. In some embodiments, the fusion protein comprises the structure:
[deaminase]-[optional linker sequence]-[dCas9]-[optional linker sequence]-[UGI];
[deaminase]-[optional linker sequence]-[UGI]-[optional linker sequence]-[dCas9];
[UGI]-[optional linker sequence]-[deaminase]-[optional linker sequence]-[dCas9];
[UGI]-[optional linker sequence]-[dCas9]-[optional linker sequence]-[deaminase];
[dCas9]-[optional linker sequence]-[deaminase]-[optional linker sequence]-[UGI]; or
[dCas9]-[optional linker sequence]-[UGI]-[optional linker sequence]-[deaminase].
In other embodiments, the fusion protein comprises the structure:
[deaminase]-[optional linker sequence]-[Cas9 nickase]-[optional linker sequence]-[UGI];
[deaminase]-[optional linker sequence]-[UGI]-[optional linker sequence]-[Cas9 nickase];
[UGI]-[optional linker sequence]-[deaminase]-[optional linker sequence]-[Cas9 nickase];
[UGI]-[optional linker sequence]-[Cas9 nickase]-[optional linker sequence]-[deaminase];
[Cas9 nickase]-[optional linker sequence]-[deaminase]-[optional linker sequence]-[UGI]; or
[Cas9 nickase]-[optional linker sequence]-[UGI]-[optional linker sequence]-[deaminase].
In some embodiments, the fusion proteins provided herein do not comprise a linker sequence. In some embodiments, one or both of the optional linker sequences are present.
In some embodiments, the “-” used in the general architecture above indicates the presence of an optional linker sequence. In some embodiments, the fusion proteins comprising a UGI further comprise a nuclear targeting sequence, for example a nuclear localization sequence. In some embodiments, fusion proteins provided herein further comprise a nuclear localization sequence (NLS). In some embodiments, the NLS is fused to the N-terminus of the fusion protein. In some embodiments, the NLS is fused to the C-terminus of the fusion protein. In some embodiments, the NLS is fused to the N-terminus of the UGI protein. In some embodiments, the NLS is fused to the C-terminus of the UGI protein. In some embodiments, the NLS is fused to the N-terminus of the Cas9 protein. In some embodiments, the NLS is fused to the C-terminus of the Cas9 protein. In some embodiments, the NLS is fused to the N-terminus of the deaminase. In some embodiments, the NLS is fused to the C-terminus of the deaminase. In some embodiments, the NLS is fused to the N-terminus of the second Cas9. In some embodiments, the NLS is fused to the C-terminus of the second Cas9. In some embodiments, the NLS is fused to the fusion protein via one or more linkers. In some embodiments, the NLS is fused to the fusion protein without a linker. In some embodiments, the NLS comprises an amino acid sequence of any one of the NLS sequences provided or referenced herein. In some embodiments, the NLS comprises an amino acid sequence as set forth in SEQ ID NO: 741 or SEQ ID NO: 742.
In some embodiments, a UGI domain comprises a wild-type UGI or a UGI as set forth in SEQ ID NO: 600. In some embodiments, the UGI proteins provided herein include fragments of UGI and proteins homologous to a UGI or a UGI fragment. For example, in some embodiments, a UGI domain comprises a fragment of the amino acid sequence set forth in SEQ ID NO: 600. In some embodiments, a UGI fragment comprises an amino acid sequence that comprises at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% of the amino acid sequence as set forth in SEQ ID NO: 600. In some embodiments, a UGI comprises an amino acid sequence homologous to the amino acid sequence set forth in SEQ ID NO: 600 or an amino acid sequence homologous to a fragment of the amino acid sequence set forth in SEQ ID NO: 600. In some embodiments, proteins comprising UGI or fragments of UGI or homologs of UGI or UGI fragments are referred to as “UGI variants.” A UGI variant shares homology to UGI, or a fragment thereof. For example a UGI variant is at least 70% identical, at least 75% identical, at least 80% identical, at least 85% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, at least 99.5% identical, or at least 99.9% identical to a wild type UGI or a UGI as set forth in SEQ ID NO: 600. In some embodiments, the UGI variant comprises a fragment of UGI, such that the fragment is at least 70% identical, at least 80% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, at least 99.5% identical, or at least 99.9% to the corresponding fragment of wild-type UGI or a UGI as set forth in SEQ ID NO: 600. In some embodiments, the UGI comprises the following amino acid sequence:
Suitable UGI protein and nucleotide sequences are provided herein and additional suitable UGI sequences are known to those in the art, and include, for example, those published in Wang et al., Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J. Biol. Chem. 264:1163-1171 (1989); Lundquist et al., Site-directed mutagenesis and characterization of uracil-DNA glycosylase inhibitor protein. Role of specific carboxylic amino acids in complex formation with Escherichia coli uracil-DNA glycosylase. J. Biol. Chem. 272:21408-21419 (1997); Ravishankar et al., X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG. Nucleic Acids Res. 26:4880-4887 (1998); and Putnam et al., Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J. Mol. Biol. 287:331-346 (1999), the entire contents of each are incorporated herein by reference.
It should be appreciated that additional proteins may be uracil glycosylase inhibitors. For example, other proteins that are capable of inhibiting (e.g., sterically blocking) a uracil-DNA glycosylase base-excision repair enzyme are within the scope of this disclosure. Additionally, any proteins that block or inhibit base-excision repair as also within the scope of this disclosure. In some embodiments, a protein that binds DNA is used. In another embodiment, a substitute for UGI is used. In some embodiments, a uracil glycosylase inhibitor is a protein that binds single-stranded DNA. For example, a uracil glycosylase inhibitor may be a Erwinia tasmaniensis single-stranded binding protein. In some embodiments, the single-stranded binding protein comprises the amino acid sequence (SEQ ID NO: 322). In some embodiments, a uracil glycosylase inhibitor is a protein that binds uracil. In some embodiments, a uracil glycosylase inhibitor is a protein that binds uracil in DNA. In some embodiments, a uracil glycosylase inhibitor is a catalytically inactive uracil DNA-glycosylase protein. In some embodiments, a uracil glycosylase inhibitor is a catalytically inactive uracil DNA-glycosylase protein that does not excise uracil from the DNA. For example, a uracil glycosylase inhibitor is a UdgX. In some embodiments, the UdgX comprises the amino acid sequence (SEQ ID NO: 323). As another example, a uracil glycosylase inhibitor is a catalytically inactive UDG. In some embodiments, a catalytically inactive UDG comprises the amino acid sequence (SEQ ID NO: 324). It should be appreciated that other uracil glycosylase inhibitors would be apparent to the skilled artisan and are within the scope of this disclosure. In some embodiments, a uracil glycosylase inhibitor is a protein that is homologous to any one of SEQ ID NOs: 322-324. In some embodiments, a uracil glycosylase inhibitor is a protein that is at least 50% identical, at least 55% identical at least 60% identical, at least 65% identical, at least 70% identical, at least 75% identical, at least 80% identical at least 85% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 98% identical, at least 99% identical, or at least 99.5% identical to any one of SEQ ID NOs: 322-324.
In some embodiments, the nucleic acid editing domain is a deaminase domain. In some embodiments, the deaminase is a cytosine deaminase or a cytidine deaminase. In some embodiments, the deaminase is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the deaminase is an APOBEC1 deaminase. In some embodiments, the deaminase is an APOBEC2 deaminase. In some embodiments, the deaminase is an APOBEC3 deaminase. In some embodiments, the deaminase is an APOBEC3A deaminase. In some embodiments, the deaminase is an APOBEC3B deaminase. In some embodiments, the deaminase is an APOBEC3C deaminase. In some embodiments, the deaminase is an APOBEC3D deaminase. In some embodiments, the deaminase is an APOBEC3E deaminase. In some embodiments, the deaminase is an APOBEC3F deaminase. In some embodiments, the deaminase is an APOBEC3G deaminase. In some embodiments, the deaminase is an APOBEC3H deaminase. In some embodiments, the deaminase is an APOBEC4 deaminase. In some embodiments, the deaminase is an activation-induced deaminase (AID). In some embodiments, the demianse is a rat APOBEC1 (SEQ ID NO: 282). In some embodiments, the deminase is a human APOBEC1 (SEQ ID No: 284). In some embodiments, the deaminase is a Petromyzon marinus cytidine deaminase 1 (pmCDA1). In some embodiments, the deminase is a human APOBEC3G (SEQ ID NO: 275). In some embodiments, the deaminase is a fragment of the human APOBEC3G (SEQ ID NO: 5740). In some embodiments, the deaminase is a human APOBEC3G variant comprising a D316R_D317R mutation (SEQ ID NO: 5739). In some embodiments, the deaminase is a frantment of the human APOBEC3G and comprising mutations corresponding to the D316R_D317R mutations in SEQ ID NO: 275 (SEQ ID NO: 5741).
In some embodiments, the linker comprises a (GGGS)n (SEQ ID NO: 265), (GGGGS)n (SEQ ID NO: 5), a (G)n, an (EAAAK)n (SEQ ID NO: 6), a (GGS)n, an SGSETPGTSESATPES (SEQ ID NO: 7), or an (XP)n motif, or a combination of any of these, wherein n is independently an integer between 1 and 30.
Suitable UGI protein and nucleotide sequences are provided herein and additional suitable UGI sequences are known to those in the art, and include, for example, those published in Wang et al., Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J. Biol. Chem. 264:1163-1171 (1989); Lundquist et al., Site-directed mutagenesis and characterization of uracil-DNA glycosylase inhibitor protein. Role of specific carboxylic amino acids in complex formation with Escherichia coli uracil-DNA glycosylase. J. Biol. Chem. 272:21408-21419 (1997); Ravishankar et al., X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG. Nucleic Acids Res. 26:4880-4887 (1998); and Putnam et al., Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J. Mol. Biol. 287:331-346 (1999), the entire contents of which are incorporated herein by reference. In some embodiments, the optional linker comprises a (GGS)n motif, wherein n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20. In some embodiments, the optional linker comprises a (GGS)n motif, wherein n is 1, 3, or 7. In some embodiments, the optional linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 7), which is also referred to as the XTEN linker in the Examples.
In some embodiments, a Cas9 nickase may further facilitate the removal of a base on the non-edited strand in an organism whose genome is edited in vivo. The Cas9 nickase, as described herein, may comprise a D10A mutation in SEQ ID NO: 10, or a corresponding mutation in any of SEQ ID NOs: 11-260. In some embodiments, the Cas9 nickase of this disclosure may comprise a histidine at mutation 840 of SEQ ID NO: 10, or a corresponding residue in any of SEQ ID NOs: 11-260. Such fusion proteins comprising the Cas9 nickase, can cleave a single strand of the target DNA sequence, e.g., the strand that is not being edited. Without wishing to be bound by any particular theory, this cleavage may inhibit mis-match repair mechanisms that reverse a C to U edit made by the deaminase.
Cas9 Complexes with Guide RNAs
Some aspects of this disclosure provide complexes comprising any of the fusion proteins provided herein, and a guide RNA bound to a Cas9 domain (e.g., a dCas9, a nuclease active Cas9, or a Cas9 nickase) of fusion protein.
In some embodiments, the guide RNA is from 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence. In some embodiments, the guide RNA is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides long. In some embodiments, the guide RNA comprises a sequence of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 contiguous nucleotides that is complementary to a target sequence. In some embodiments, the target sequence is a DNA sequence. In some embodiments, the target sequence is a sequence in the genome of a mammal. In some embodiments, the target sequence is a sequence in the genome of a human. In some embodiments, the 3′ end of the target sequence is immediately adjacent to a canonical PAM sequence (NGG). In some embodiments, the guide RNA is complementary to a sequence associated with a disease or disorder. In some embodiments, the guide RNA is complementary to a sequence associated with a disease or disorder having a mutation in a gene selected from the genes disclosed in any one of Tables 1-3. In some embodiments, the guide RNA comprises a nucleotide sequence of any one of the guide sequences provided in Table 2 or Table 3. Exemplary sequences in the human genome that may be targeted by the complexes of this disclosure are provided herein in Tables 1-3.
Methods of Using Cas9 Fusion Proteins
Some aspects of this disclosure provide methods of using the Cas9 proteins, fusion proteins, or complexes provided herein. For example, some aspects of this disclosure provide methods comprising contacting a DNA molecule (a) with any of the the Cas9 proteins or fusion proteins provided herein, and with at least one guide RNA, wherein the guide RNA is about 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence; or (b) with a Cas9 protein, a Cas9 fusion protein, or a Cas9 protein or fusion protein complex with at least one gRNA as provided herein. In some embodiments, the 3′ end of the target sequence is not immediately adjacent to a canonical PAM sequence (NGG). In some embodiments, the 3′ end of the target sequence is immediately adjacent to an AGC, GAG, TTT, GTG, or CAA sequence.
In some embodiments, the target DNA sequence comprises a sequence associated with a disease or disorder. In some embodiments, the target DNA sequence comprises a point mutation associated with a disease or disorder. In some embodiments, the activity of the Cas9 protein, the Cas9 fusion protein, or the complex results in a correction of the point mutation. In some embodiments, the target DNA sequence comprises a T→C point mutation associated with a disease or disorder, and wherein the deamination of the mutant C base results in a sequence that is not associated with a disease or disorder. In some embodiments, the target DNA sequence encodes a protein and wherein the point mutation is in a codon and results in a change in the amino acid encoded by the mutant codon as compared to the wild-type codon. In some embodiments, the deamination of the mutant C results in a change of the amino acid encoded by the mutant codon. In some embodiments, the deamination of the mutant C results in the codon encoding the wild-type amino acid. In some embodiments, the contacting is in vivo in a subject. In some embodiments, the subject has or has been diagnosed with a disease or disorder. In some embodiments, the disease or disorder is cystic fibrosis, phenylketonuria, epidermolytic hyperkeratosis (EHK), Charcot-Marie-Toot disease type 4J, neuroblastoma (NB), von Willebrand disease (vWD), myotonia congenital, hereditary renal amyloidosis, dilated cardiomyopathy (DCM), hereditary lymphedema, familial Alzheimer's disease, HIV, Prion disease, chronic infantile neurologic cutaneous articular syndrome (CINCA), desmin-related myopathy (DRM), a neoplastic disease associated with a mutant PI3KCA protein, a mutant CTNNB1 protein, a mutant HRAS protein, or a mutant p53 protein.
Some embodiments provide methods for using the Cas9 DNA editing fusion proteins provided herein. In some embodiments, the fusion protein is used to introduce a point mutation into a nucleic acid by deaminating a target nucleobase, e.g., a C residue. In some embodiments, the deamination of the target nucleobase results in the correction of a genetic defect, e.g., in the correction of a point mutation that leads to a loss of function in a gene product. In some embodiments, the genetic defect is associated with a disease or disorder, e.g., a lysosomal storage disorder or a metabolic disease, such as, for example, type I diabetes. In some embodiments, the methods provided herein are used to introduce a deactivating point mutation into a gene or allele that encodes a gene product that is associated with a disease or disorder. For example, in some embodiments, methods are provided herein that employ a Cas9 DNA editing fusion protein to introduce a deactivating point mutation into an oncogene (e.g., in the treatment of a proliferative disease). A deactivating mutation may, in some embodiments, generate a premature stop codon in a coding sequence, which results in the expression of a truncated gene product, e.g., a truncated protein lacking the function of the full-length protein.
In some embodiments, the purpose of the methods provide herein is to restore the function of a dysfunctional gene via genome editing. The Cas9 deaminase fusion proteins provided herein can be validated for gene editing-based human therapeutics in vitro, e.g., by correcting a disease-associated mutation in human cell culture. It will be understood by the skilled artisan that the fusion proteins provided herein, e.g., the fusion proteins comprising a Cas9 domain and a nucleic acid deaminase domain can be used to correct any single point T→C or A→G mutation. In the first case, deamination of the mutant C back to U corrects the mutation, and in the latter case, deamination of the C that is base-paired with the mutant G, followed by a round of replication, corrects the mutation.
An exemplary disease-relevant mutation that can be corrected by the provided fusion proteins in vitro or in vivo is the H1047R (A3140G) polymorphism in the PI3KCA protein. The phosphoinositide-3-kinase, catalytic alpha subunit (PI3KCA) protein acts to phosphorylate the 3-OH group of the inositol ring of phosphatidylinositol. The PI3KCA gene has been found to be mutated in many different carcinomas, and thus it is considered to be a potent oncogene.37 In fact, the A3140G mutation is present in several NCI-60 cancer cell lines, such as, for example, the HCT116, SKOV3, and T47D cell lines, which are readily available from the American Type Culture Collection (ATCC).38
In some embodiments, a cell carrying a mutation to be corrected, e.g., a cell carrying a point mutation, e.g., an A3140G point mutation in exon 20 of the PI3KCA gene, resulting in a H1047R substitution in the PI3KCA protein, is contacted with an expression construct encoding a Cas9 deaminase fusion protein and an appropriately designed sgRNA targeting the fusion protein to the respective mutation site in the encoding PI3KCA gene. Control experiments can be performed where the sgRNAs are designed to target the fusion enzymes to non-C residues that are within the PI3KCA gene. Genomic DNA of the treated cells can be extracted, and the relevant sequence of the PI3KCA genes PCR amplified and sequenced to assess the activities of the fusion proteins in human cell culture.
It will be understood that the example of correcting point mutations in PI3KCA is provided for illustration purposes and is not meant to limit the instant disclosure. The skilled artisan will understand that the instantly disclosed DNA-editing fusion proteins can be used to correct other point mutations and mutations associated with other cancers and with diseases other than cancer including other proliferative diseases.
The successful correction of point mutations in disease-associated genes and alleles opens up new strategies for gene correction with applications in therapeutics and basic research. Site-specific single-base modification systems like the disclosed fusions of Cas9 and deaminase enzymes or domains also have applications in “reverse” gene therapy, where certain gene functions are purposely suppressed or abolished. In these cases, site-specifically mutating Trp (TGG), Gln (CAA and CAG), or Arg (CGA) residues to premature stop codons (TAA, TAG, TGA) can be used to abolish protein function in vitro, ex vivo, or in vivo.
The instant disclosure provides methods for the treatment of a subject diagnosed with a disease associated with or caused by a point mutation that can be corrected by a Cas9 DNA editing fusion protein provided herein. For example, in some embodiments, a method is provided that comprises administering to a subject having such a disease, e.g., a cancer associated with a PI3KCA point mutation as described above, an effective amount of a Cas9 deaminase fusion protein that corrects the point mutation or introduces a deactivating mutation into the disease-associated gene. In some embodiments, the disease is a proliferative disease. In some embodiments, the disease is a genetic disease. In some embodiments, the disease is a neoplastic disease. In some embodiments, the disease is a metabolic disease. In some embodiments, the disease is a lysosomal storage disease. Other diseases that can be treated by correcting a point mutation or introducing a deactivating mutation into a disease-associated gene will be known to those of skill in the art, and the disclosure is not limited in this respect.
The instant disclosure provides methods for the treatment of additional diseases or disorders, e.g., diseases or disorders that are associated or caused by a point mutation that can be corrected by deaminase-mediated gene editing. Some such diseases are described herein, and additional suitable diseases that can be treated with the strategies and fusion proteins provided herein will be apparent to those of skill in the art based on the instant disclosure. Exemplary suitable diseases and disorders are listed below. It will be understood that the numbering of the specific positions or residues in the respective sequences depends on the particular protein and numbering scheme used. Numbering might be different, e.g., in precursors of a mature protein and the mature protein itself, and differences in sequences from species to species may affect numbering. One of skill in the art will be able to identify the respective residue in any homologous protein and in the respective encoding nucleic acid by methods well known in the art, e.g., by sequence alignment and determination of homologous residues. Exemplary suitable diseases and disorders include, without limitation, cystic fibrosis (see, e.g., Schwank et al., Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell stem cell. 2013; 13: 653-658; and Wu et. al., Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell stem cell. 2013; 13: 659-662, neither of which uses a deaminase fusion protein to correct the genetic defect); phenylketonuria—e.g., phenylalanine to serine mutation at position 835 (mouse) or 240 (human) or a homologous residue in phenylalanine hydroxylase gene (T>C mutation)—see, e.g., McDonald et al., Genomics. 1997; 39:402-405; Bernard-Soulier syndrome (BSS)—e.g., phenylalanine to serine mutation at position 55 or a homologous residue, or cysteine to arginine at residue 24 or a homologous residue in the platelet membrane glycoprotein IX (T>C mutation)—see, e.g., Noris et al., British Journal of Haematology. 1997; 97: 312-320, and Ali et al., Hematol. 2014; 93: 381-384; epidermolytic hyperkeratosis (EHK)—e.g., leucine to proline mutation at position 160 or 161 (if counting the initiator methionine) or a homologous residue in keratin 1 (T>C mutation)—see, e.g., Chipev et al., Cell. 1992; 70: 821-828, see also accession number P04264 in the UNIPROT database at www[dot]uniprot[dot]org; chronic obstructive pulmonary disease (COPD)—e.g., leucine to proline mutation at position 54 or 55 (if counting the initiator methionine) or a homologous residue in the processed form of α1-antitrypsin or residue 78 in the unprocessed form or a homologous residue (T>C mutation)—see, e.g., Poller et al., Genomics. 1993; 17: 740-743, see also accession number P01011 in the UNIPROT database; Charcot-Marie-Toot disease type 4J—e.g., isoleucine to threonine mutation at position 41 or a homologous residue in FIG4 (T>C mutation)—see, e.g., Lenk et al., PLoS Genetics. 2011; 7: e1002104; neuroblastoma (NB)—e.g., leucine to proline mutation at position 197 or a homologous residue in Caspase-9 (T>C mutation)—see, e.g., Kundu et al., 3 Biotech. 2013, 3:225-234; von Willebrand disease (vWD)—e.g., cysteine to arginine mutation at position 509 or a homologous residue in the processed form of von Willebrand factor, or at position 1272 or a homologous residue in the unprocessed form of von Willebrand factor (T>C mutation)—see, e.g., Lavergne et al., Br. J. Haematol. 1992, see also accession number P04275 in the UNIPROT database; 82: 66-72; myotonia congenital—e.g., cysteine to arginine mutation at position 277 or a homologous residue in the muscle chloride channel gene CLCN1 (T>C mutation)—see, e.g., Weinberger et al., The J. of Physiology. 2012; 590: 3449-3464; hereditary renal amyloidosis—e.g., stop codon to arginine mutation at position 78 or a homologous residue in the processed form of apolipoprotein AII or at position 101 or a homologous residue in the unprocessed form (T>C mutation)—see, e.g., Yazaki et al., Kidney Int. 2003; 64: 11-16; dilated cardiomyopathy (DCM)—e.g., tryptophan to Arginine mutation at position 148 or a homologous residue in the FOXD4 gene (T>C mutation), see, e.g., Minoretti et. al., Int. J. of Mol. Med. 2007; 19: 369-372; hereditary lymphedema—e.g., histidine to arginine mutation at position 1035 or a homologous residue in VEGFR3 tyrosine kinase (A>G mutation), see, e.g., Irrthum et al., Am. J. Hum. Genet. 2000; 67: 295-301; familial Alzheimer's disease—e.g., isoleucine to valine mutation at position 143 or a homologous residue in presenilin1 (A>G mutation), see, e.g., Gallo et. al., J. Alzheimer's disease. 2011; 25: 425-431; Prion disease—e.g., methionine to valine mutation at position 129 or a homologous residue in prion protein (A>G mutation)—see, e.g., Lewis et. al., J. of General Virology. 2006; 87: 2443-2449; chronic infantile neurologic cutaneous articular syndrome (CINCA)—e.g., Tyrosine to Cysteine mutation at position 570 or a homologous residue in cryopyrin (A>G mutation)—see, e.g., Fujisawa et. al. Blood. 2007; 109: 2903-2911; and desmin-related myopathy (DRM)—e.g., arginine to glycine mutation at position 120 or a homologous residue in αβ crystallin (A>G mutation)—see, e.g., Kumar et al., J. Biol. Chem. 1999; 274: 24137-24141. The entire contents of all references and database entries is incorporated herein by reference.
The instant disclosure provides lists of genes comprising pathogenic T>C or A>G mutations. Provided herein, are the names of these genes, their respective SEQ ID NOs, their gene IDs, and sequences flanking the mutation site. (Tables 2 and 3). In some instances, the gRNA sequences that can be used to correct the mutations in these genes are disclosed (Tables 2 and 3).
In some embodiments, a Cas9-deaminase fusion protein recognizes canonical PAMs and therefore can correct the pathogenic T>C or A>G mutations with canonical PAMs, e.g., NGG (listed in Tables 2 and 3, SEQ ID NOs: 2540-2702 and 5084-5260), respectively, in the flanking sequences. For example, the Cas9 proteins that recognize canonical PAMs comprise an amino acid sequence that is at least 90% identical to the amino acid sequence of Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 10, or to a fragment thereof comprising the RuvC and HNH domains of SEQ ID NO: 10.
It will be apparent to those of skill in the art that in order to target a Cas9:nucleic acid editing enzyme/domain fusion protein as disclosed herein to a target site, e.g., a site comprising a point mutation to be edited, it is typically necessary to co-express the Cas9:nucleic acid editing enzyme/domain fusion protein together with a guide RNA, e.g., an sgRNA. As explained in more detail elsewhere herein, a guide RNA typically comprises a tracrRNA framework allowing for Cas9 binding, and a guide sequence, which confers sequence specificity to the Cas9:nucleic acid editing enzyme/domain fusion protein. In some embodiments, the guide RNA comprises a structure 5′-[guide sequence]-guuuuagagcuagaaauagcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu-3′ (SEQ ID NO: 601), wherein the guide sequence comprises a sequence that is complementary to the target sequence. The guide sequence is typically 20 nucleotides long. The sequences of suitable guide RNAs for targeting Cas9:nucleic acid editing enzyme/domain fusion proteins to specific genomic target sites will be apparent to those of skill in the art based on the instant disclosure. Such suitable guide RNA sequences typically comprise guide sequences that are complementary to a nucleic sequence within 50 nucleotides upstream or downstream of the target nucleotide to be edited. Some exemplary guide RNA sequences suitable for targeting Cas9:nucleic acid editing enzyme/domain fusion proteins to specific target sequences are provided below.
Base Editor Efficiency
Some aspects of the disclosure are based on the recognition that any of the base editors provided herein are capable of modifying a specific nucleotide base without generating a significant proportion of indels. An “indel”, as used herein, refers to the insertion or deletion of a nucleotide base within a nucleic acid. Such insertions or deletions can lead to frame shift mutations within a coding region of a gene. In some embodiments, it is desirable to generate base editors that efficiently modify (e.g. mutate or deaminate) a specific nucleotide within a nucleic acid, without generating a large number of insertions or deletions (i.e., indels) in the nucleic acid. In certain embodiments, any of the base editors provided herein are capable of generating a greater proportion of intended modifications (e.g., point mutations or deaminations) versus indels. In some embodiments, the base editors provided herein are capable of generating a ratio of intended point mutations to indels that is greater than 1:1. In some embodiments, the base editors provided herein are capable of generating a ratio of intended point mutations to indels that is at least 1.5:1, at least 2:1, at least 2.5:1, at least 3:1, at least 3.5:1, at least 4:1, at least 4.5:1, at least 5:1, at least 5.5:1, at least 6:1, at least 6.5:1, at least 7:1, at least 7.5:1, at least 8:1, at least 10:1, at least 12:1, at least 15:1, at least 20:1, at least 25:1, at least 30:1, at least 40:1, at least 50:1, at least 100:1, at least 200:1, at least 300:1, at least 400:1, at least 500:1, at least 600:1, at least 700:1, at least 800:1, at least 900:1, or at least 1000:1, or more. The number of intended mutations and indels may be determined using any suitable method, for example the methods used in the below Examples.
In some embodiments, the base editors provided herein are capable of limiting formation of indels in a region of a nucleic acid. In some embodiments, the region is at a nucleotide targeted by a base editor or a region within 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides of a nucleotide targeted by a base editor. In some embodiments, any of the base editors provided herein are capable of limiting the formation of indels at a region of a nucleic acid to less than 1%, less than 1.5%, less than 2%, less than 2.5%, less than 3%, less than 3.5%, less than 4%, less than 4.5%, less than 5%, less than 6%, less than 7%, less than 8%, less than 9%, less than 10%, less than 12%, less than 15%, or less than 20%. The number of indels formed at a nucleic acid region may depend on the amount of time a nucleic acid (e.g., a nucleic acid within the genome of a cell) is exposed to a base editor. In some embodiments, an number or proportion of indels is determined after at least 1 hour, at least 2 hours, at least 6 hours, at least 12 hours, at least 24 hours, at least 36 hours, at least 48 hours, at least 3 days, at least 4 days, at least 5 days, at least 7 days, at least 10 days, or at least 14 days of exposing a nucleic acid (e.g., a nucleic acid within the genome of a cell) to a base editor.
Some aspects of the disclosure are based on the recognition that any of the base editors provided herein are capable of efficiently generating an intended mutation, such as a point mutation, in a nucleic acid (e.g. a nucleic acid within a genome of a subject) without generating a significant number of unintended mutations, such as unintended point mutations. In some embodiments, a intended mutation is a mutation that is generated by a specific base editor bound to a gRNA, specifically designed to generate the intended mutation. In some embodiments, the intended mutation is a mutation associated with a disease or disorder. In some embodiments, the intended mutation is a cytosine (C) to thymine (T) point mutation associated with a disease or disorder. In some embodiments, the intended mutation is a guanine (G) to adenine (A) point mutation associated with a disease or disorder. In some embodiments, the intended mutation is a cytosine (C) to thymine (T) point mutation within the coding region of a gene. In some embodiments, the intended mutation is a guanine (G) to adenine (A) point mutation within the coding region of a gene. In some embodiments, the intended mutation is a point mutation that generates a stop codon, for example, a premature stop codon within the coding region of a gene. In some embodiments, the intended mutation is a mutation that eliminates a stop codon. In some embodiments, the intended mutation is a mutation that alters the splicing of a gene. In some embodiments, the intended mutation is a mutation that alters the regulatory sequence of a gene (e.g., a gene promotor or gene repressor). In some embodiments, any of the base editors provided herein are capable of generating a ratio of intended mutations to unintended mutations (e.g., intended point mutations:unintended point mutations) that is greater than 1:1. In some embodiments, any of the base editors provided herein are capable of generating a ratio of intended mutations to unintended mutations (e.g., intended point mutations:unintended point mutations) that is at least 1.5:1, at least 2:1, at least 2.5:1, at least 3:1, at least 3.5:1, at least 4:1, at least 4.5:1, at least 5:1, at least 5.5:1, at least 6:1, at least 6.5:1, at least 7:1, at least 7.5:1, at least 8:1, at least 10:1, at least 12:1, at least 15:1, at least 20:1, at least 25:1, at least 30:1, at least 40:1, at least 50:1, at least 100:1, at least 150:1, at least 200:1, at least 250:1, at least 500:1, or at least 1000:1, or more. It should be appreciated that the characterstics of the base editors described in the “Base Editor Efficiency” section, herein, may be applied to any of the fusion proteins, or methods of using the fusion proteins provided herein.
Methods for Editing Nucleic Acids
Some aspects of the disclosure provide methods for editing a nucleic acid. In some embodiments, the method is a method for editing a nucleobase of a nucleic acid (e.g., a base pair of a double-stranded DNA sequence). In some embodiments, the method comprises the steps of: a) contacting a target region of a nucleic acid (e.g., a double-stranded DNA sequence) with a complex comprising a base editor (e.g., a Cas9 domain fused to a cytidine deaminase domain) and a guide nucleic acid (e.g., gRNA), wherein the target region comprises a targeted nucleobase pair, b) inducing strand separation of said target region, c) converting a first nucleobase of said target nucleobase pair in a single strand of the target region to a second nucleobase, and d) cutting no more than one strand of said target region, where a third nucleobase complementary to the first nucleobase base is replaced by a fourth nucleobase complementary to the second nucleobase; and the method results in less than 20% indel formation in the nucleic acid. It should be appreciated that in some embodiments, step b is omitted. In some embodiments, the first nucleobase is a cytosine. In some embodiments, the second nucleobase is a deaminated cytosine, or a uracil. In some embodiments, the third nucleobase is a guanine. In some embodiments, the fourth nucleobase is an adenine. In some embodiments, the first nucleobase is a cytosine, the second nucleobase is a deaminated cytosine, or a uracil, the third nucleobase is a guanine, and the fourth nucleobase is an adenine. In some embodiments, the method results in less than 19%, 18%, 16%, 14%, 12%, 10%, 8%, 6%, 4%, 2%, 1%, 0.5%, 0.2%, or less than 0.1% indel formation. In some embodiments, the method further comprises replacing the second nucleobase with a fifth nucleobase that is complementary to the fourth nucleobase, thereby generating an intended edited base pair (e.g., C:G→T:A). In some embodiments, the fifth nucleobase is a thymine. In some embodiments, at least 5% of the intended basepaires are edited. In some embodiments, at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% of the intended basepaires are edited.
In some embodiments, the ratio of intended products to unintended products in the target nucleotide is at least 2:1, 5:1, 10:1, 20:1, 30:1, 40:1, 50:1, 60:1, 70:1, 80:1, 90:1, 100:1, or 200:1, or more. In some embodiments, the ratio of intended point mutation to indel formation is greater than 1:1, 10:1, 50:1, 100:1, 500:1, or 1000:1, or more. In some embodiments, the cut single strand (nicked strand) is hybridized to the guide nucleic acid. In some embodiments, the cut single strand is opposite to the strand comprising the first nucleobase. In some embodiments, the base editor comprises a Cas9 domain. In some embodiments, the first base is cytosine, and the second base is not a G, C, A, or T. In some embodiments, the second base is uracil. In some embodiments, the first base is cytosine. In some embodiments, the second base is not a G, C, A, or T. In some embodiments, the second base is uracil. In some embodiments, the base editor inhibits base escision repair of the edited strand. In some embodiments, the base editor protects or binds the non-edited strand. In some embodiments, the base editor comprises UGI activity. In some embodiments, the base editor comprises nickase activity. In some embodiments, the intended edited basepair is upstream of a PAM site. In some embodiments, the intended edited base pair is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides upstream of the PAM site. In some embodiments, the intended edited basepair is downstream of a PAM site. In some embodiments, the intended edited base pair is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides downstream stream of the PAM site. In some embodiments, the method does not require a canonical (e.g., NGG) PAM site. In some embodiments, the nucleobase editor comprises a linker. In some embodiments, the linker is 1-25 amino acids in length. In some embodiments, the linker is 5-20 amino acids in length. In some embodiments, linker is 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acids in length. In some embodiments, the target region comprises a target window, wherein the target window comprises the target nucleobase pair. In some embodiments, the target window comprises 1-10 nucleotides. In some embodiments, the target window is 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, or 1 nucleotides in length. In some embodiments, the target window is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides in length. In some embodiments, the intended edited base pair is within the target window. In some embodiments, the target window comprises the intended edited base pair. In some embodiments, the method is performed using any of the base editors provided herein. In some embodiments, a target window is a deamination window
In some embodiments, the disclosure provides methods for editing a nucleotide. In some embodiments, the disclosure provides a method for editing a nucleobase pair of a double-stranded DNA sequence. In some embodiments, the method comprises a) contacting a target region of the double-stranded DNA sequence with a complex comprising a base editor and a guide nucleic acid (e.g., gRNA), where the target region comprises a target nucleobase pair, b) inducing strand separation of said target region, c) converting a first nucleobase of said target nucleobase pair in a single strand of the target region to a second nucleobase, d) cutting no more than one strand of said target region, wherein a third nucleobase complementary to the first nucleobase base is replaced by a fourth nucleobase complementary to the second nucleobase, and the second nucleobase is replaced with a fifth nucleobase that is complementary to the fourth nucleobase, thereby generating an intended edited basepair, wherein the efficiency of generating the intended edited basepair is at least 5%. It should be appreciated that in some embodiments, step b is omitted. In some embodiments, at least 5% of the intended basepaires are edited. In some embodiments, at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% of the intended basepaires are edited. In some embodiments, the method causes less than 19%, 18%, 16%, 14%, 12%, 10%, 8%, 6%, 4%, 2%, 1%, 0.5%, 0.2%, or less than 0.1% indel formation. In some embodiments, the ratio of intended product to unintended products at the target nucleotide is at least 2:1, 5:1, 10:1, 20:1, 30:1, 40:1, 50:1, 60:1, 70:1, 80:1, 90:1, 100:1, or 200:1, or more. In some embodiments, the ratio of intended point mutation to indel formation is greater than 1:1, 10:1, 50:1, 100:1, 500:1, or 1000:1, or more. In some embodiments, the cut single strand is hybridized to the guide nucleic acid. In some embodiments, the cut single strand is opposite to the strand comprising the first nucleobase. In some embodiments, the first base is cytosine. In some embodiments, the second nucleobase is not G, C, A, or T. In some embodiments, the second base is uracil. In some embodiments, the base editor inhibits base escision repair of the edited strand. In some embodiments, the base editor protects or binds the non-edited strand. In some embodiments, the nucleobase editor comprises UGI activity. In some embodiments, the nucleobase edit comprises nickase activity. In some embodiments, the intended edited basepair is upstream of a PAM site. In some embodiments, the intended edited base pair is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides upstream of the PAM site. In some embodiments, the intended edited basepair is downstream of a PAM site. In some embodiments, the intended edited base pair is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides downstream stream of the PAM site. In some embodiments, the method does not require a canonical (e.g., NGG) PAM site. In some embodiments, the nucleobase editor comprises a linker. In some embodiments, the linker is 1-25 amino acids in length. In some embodiments, the linker is 5-20 amino acids in length. In some embodiments, the linker is 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acids in length. In some embodiments, the target region comprises a target window, wherein the target window comprises the target nucleobase pair. In some embodiments, the target window comprises 1-10 nucleotides. In some embodiments, the target window is 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, or 1 nucleotides in length. In some embodiments, the target window is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides in length. In some embodiments, the intended edited base pair occurs within the target window. In some embodiments, the target window comprises the intended edited base pair. In some embodiments, the nucleobase editor is any one of the base editors provided herein.
Kits, Vectors, Cells
Some aspects of this disclosure provide kits comprising a nucleic acid construct, comprising (a) a nucleotide sequence encoding a Cas9 protein or a Cas9 fusion protein as provided herein; and (b) a heterologous promoter that drives expression of the sequence of (a). In some embodiments, the kit further comprises an expression construct encoding a guide RNA backbone, wherein the construct comprises a cloning site positioned to allow the cloning of a nucleic acid sequence identical or complementary to a target sequence into the guide RNA backbone.
Some aspects of this disclosure provide polynucleotides encoding a Cas9 protein of a fusion protein as provided herein. Some aspects of this disclosure provide vectors comprising such polynucleotides. In some embodiments, the vector comprises a heterologous promoter driving expression of polynucleotide.
Some aspects of this disclosure provide cells comprising a Cas9 protein, a fusion protein, a nucleic acid molecule encoding the fusion protein, a complex comprise the Cas9 protein and the gRNA, and/or a vector as provided herein.
The description of exemplary embodiments of the reporter systems above is provided for illustration purposes only and not meant to be limiting. Additional reporter systems, e.g., variations of the exemplary systems described in detail above, are also embraced by this disclosure.
A number of Cas9:Deaminase fusion proteins were generated and deaminase activity of the generated fusions was characterized. The following deaminases were tested:
Deaminase Activity on ssDNA. A USER (Uracil-Specific Excision Reagent) Enzyme-based assay for deamination was employed to test the activity of various deaminases on single-stranded DNA (ssDNA) substrates. USER Enzyme was obtained from New England Biolabs. An ssDNA substrate was provided with a target cytosine residue at different positions. Deamination of the ssDNA cytosine target residue results in conversion of the target cytosine to a uracil. The USER Enzyme excises the uracil base and cleaves the ssDNA backbone at that position, cutting the ssDNA substrate into two shorter fragments of DNA. In some assays, the ssDNA substrate is labeled on one end with a dye, e.g., with a 5′ Cy3 label (the * in the scheme below). Upon deamination, excision, and cleavage of the strand, the substrate can be subjected to electrophoresis, and the substrate and any fragment released from it can be visualized by detecting the label. Where Cy5 is images, only the fragment with the label will be visible via imaging.
In one USER Enzyme assay, ssDNA substrates were used that matched the target sequences of the various deaminases tested. Expression cassettes encoding the deaminases tested were inserted into a CMV backbone plasmid that has been used previously in the lab (Addgene plasmid 52970). The deaminase proteins were expressed using a TNT Quick Coupled Transcription/Translation System (Promega) according to the manufacturers recommendations. After 90 min of incubation, 5 mL of lysate was incubated with 5′ Cy3-labeled ssDNA substrate and 1 unit of USER Enzyme (NEB) for 3 hours. The DNA was resolved on a 10% TBE PAGE gel and the DNA was imaged using Cy-dye imaging. A schematic representation of the USER Enzyme assay is shown in
rAPOBEC1-GGS-dCas9 primary sequence
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNT
NKHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIAR
LYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLW
rAPOBEC1-(GGS)3-dCas9 primary sequence
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNT
NKHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIAR
LYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLW
VDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHVEVNFI
EKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHADPR
NRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLEL
YCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLK
ETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKH
VEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYH
HADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRL
YVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLK
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNT
NKHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIAR
LYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLW
GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGTA
ATATTAATTTAT
*In all substrates except for “8U”, the top strand in
The data further indicates that a linker of only 3 amino acids (GGS) is not optimal for allowing the deaminase to access the single stranded portion of the DNA. The 9 amino acid linker [(GGS)3] (SEQ ID NO: 596) and the more structured 16 amino acid linker (XTEN) allow for more efficient deamination.
DNA sequence 8:
GTAGGTAGTTAGGATGAATGGAAGGTTGGTATAGCC
ATTATTCCGCGGATTT
Exemplary deamination targets. The dCas9:deaminase fusion proteins described herein can be delivered to a cell in vitro or ex vivo or to a subject in vivo and can be used to effect C to T or G to A transitions when the target nucleotide is in positions 3-11 with respect to a PAM. Exemplary deamination targets include, without limitation, the following: CCR5 truncations: any of the codons encoding Q93, Q102, Q186, R225, W86, or Q261 of CCR5 can be deaminated to generate a STOP codon, which results in a nonfunctional truncation of CCR5 with applications in HIV treatment. APOE4 mutations: mutant codons encoding C11R and C57R mutant APOE4 proteins can be deaminated to revert to the wild-type amino acid with applications in Alzheimer's treatment. eGFP truncations: any of the codons encoding Q158, Q184, Q185 can be deaminated to generate a STOP codon, or the codon encoding M1 can be deaminated to encode I, all of which result in loss of eGFP fluorescence, with applications in reporter systems. eGFP restoration: a mutant codon encoding T65A or Y66C mutant GFP, which does not exhibit substantial fluorescence, can be deaminated to restore the wild-type amino acid and confer fluorescence. PIK3CA mutation: a mutant codon encoding K111E mutant PIK3CA can be deaminated to restore the wild-type amino acid residue with applications in cancer. CTNNB1 mutation: a mutant codon encoding T41A mutant CTNNB1 can be deaminated to restore the wild-type amino acid residue with applications in cancer. HRAS mutation: a mutant codon encoding Q61R mutant HRAS can be deaminated to restore the wild-type amino acid residue with applications in cancer. P53 mutations: any of the mutant codons encoding Y163C, Y236C, or N239D mutant p53 can be deaminated to encode the wild type amino acid sequence with applications in cancer.
The feasibility of deaminating these target sequences in double-stranded DNA is demonstrated in
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAACTAT
GCTGCCGCC
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAAAATA
CAATGTGT
GTAGGTAGTTAGGATGAATGGAAGGTTGGTATTTTC
CATACAGT
GTAGGTAGTTAGGATGAATGGAAGGTTGGTATCCTG
AACACCTT
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAGACAT
GGAGGAC
GTAGGTAGTTAGGATGAATGGAAGGTTGGTACCTCG
CCCTTGCTCA
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAAAGCA
CTGCACTC
GTAGGTAGTTAGGATGAATGGAAGGTTGGTATTCTC
GATTG
GTAGGTAGTTAGGATGAATGGAAGGTTGGTAAGGAG
CTGTGG
Direct programmable nucleobase editing efficiencies in mammalian cells by dCas9:deaminase fusion proteins can be improved significantly by fusing a uracil glycosylase inhibitor (UGI) to the dCas9:deaminase fusion protein.
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNT
NKHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIAR
LYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWV
RLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLK
SGSETP
KV
Protospacer sequences were as follows:
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNT
NKHVEVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIAR
LYHHADPRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWV
RLYVLELYCIILGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLK
SGSETP
IIEKETGKOLVICIESILMLPEEVEEVIGNKPESDILVHTAYDESTDENVMLLTSDAP
EYKPWALVICIDSNGENKIKML
SGGSPKKKRKV
The percentages in
When a uracil glycosylase inhibitor (UGI) was fused to the dCas9:deaminase fusion protein (e.g., rAPOBEC1-XTEN-dCas9-[UGI]-NLS), a significant increase in editing efficiency in cells was observed. This result indicates that in mammalian cells, the DNA repair machinery that cuts out the uracil base in a U:G base pair is a rate-limiting process in DNA editing. Tethering UGI to the dVas9:deaminase fusion proteins greatly increases editing yields.
Without UGI, typical editing efficiencies in human cells were in the ˜2-14% yield range (
Current genome-editing technologies introduce double-stranded DNA breaks at a target locus of interest as the first step to gene correction.39,40 Although most genetic diseases arise from mutation of a single nucleobase to a different nucleobase, current approaches to revert such changes are very inefficient and typically induce an abundance of random insertions and deletions (indels) at the target locus as a consequence of the cellular response to double-stranded DNA breaks.39,40 Reported herein is the development of nucleobase editing, a new strategy for genome editing that enables the direct conversion of one target nucleobase into another in a programmable manner, without requiring double-stranded DNA backbone cleavage. Fusions of CRISPR/Cas9 were engineered and the cytidine deaminase enzyme APOBEC1 that retain the ability to be programmed with a guide RNA, do not induce double-stranded DNA breaks, and mediate the direct conversion of cytidine to uracil, thereby effecting a C→T (or G→A) substitution following DNA replication, DNA repair, or transcription if the template strand is targeted. The resulting “nucleobase editors” convert cytidines within a window of approximately five nucleotides, and can efficiently correct a variety of point mutations relevant to human disease in vitro. In four transformed human and murine cell lines, second- and third-generation nucleobase editors that fuse uracil glycosylase inhibitor (UGI), and that use a Cas9 nickase targeting the non-edited strand, respectively, can overcome the cellular DNA repair response to nucleobase editing, resulting in permanent correction of up to 37% or (˜15-75%) of total cellular DNA in human cells with minimal (typically ≤1%) indel formation. In contrast, canonical Cas9-mediated HDR on the same targets yielded an average of 0.7% correction with 4% indel formation. Nucleobase editors were used to revert two oncogenic p53 mutations into wild-type alleles in human breast cancer and lymphoma cells, and to convert an Alzheimer's Disease associated Arg codon in ApoE4 into a non-disease-associated Cys codon in mouse astrocytes. Base editing expands the scope and efficiency of genome editing of point mutations.
The clustered regularly interspaced short palindromic repeat (CRISPR) system is a prokaryotic adaptive immune system that has been adapted to mediate genome engineering in a variety of organisms and cell lines.41 CRISPR/Cas9 protein-RNA complexes localize to a target DNA sequence through base pairing with a guide RNA, and natively create a DNA double-stranded break (DSB) at the locus specified by the guide RNA. In response to DSBs, endogenous DNA repair processes mostly result in random insertions or deletions (indels) at the site of DNA cleavage through non-homologous end joining (NHEJ). In the presence of a homologous DNA template, the DNA surrounding the cleavage site can be replaced through homology-directed repair (HDR). When simple disruption of a disease-associated gene is sufficient (for example, to treat some gain-of-function diseases), targeted DNA cleavage followed by indel formation can be effective. For most known genetic diseases, however, correction of a point mutation in the target locus, rather than stochastic disruption of the gene, is needed to address or study the underlying cause of the disease.68
Motivated by this need, researchers have invested intense effort to increase the efficiency of HDR and suppress NHEJ. For example, a small-molecule inhibitor of ligase IV, an essential enzyme in the NHEJ pathway, has been shown to increase HDR efficiency.42,43 However, this strategy is challenging in post-mitotic cells, which typically down-regulate HDR, and its therapeutic relevance is limited by the potential risks of inhibiting ligase IV in non-target cells. Enhanced HDR efficiency can also be achieved by the timed delivery of Cas9-guide RNA complexes into chemically synchronized cells, as HDR efficiency is highly cell-cycle dependent.44 Such an approach, however, is limited to research applications in cell culture since synchronizing cells is highly disruptive. Despite these developments, current strategies to replace point mutations using HDR in most contexts are very inefficient (typically ˜0.1 to 5%),42,43,45,46,75 especially in unmodified, non-dividing cells. In addition, HDR competes with NHEJ during the resolution of double-stranded breaks, and indels are generally more abundant outcomes than gene replacement. These observations highlight the need to develop alternative approaches to install specific modifications in genomic DNA that do not rely on creating double-stranded DNA breaks. A small-molecule inhibitor of ligase IV, an essential enzyme in the NHEJ pathway, has been shown to increase HDR efficiency.42,43 However, this strategy is challenging in post-mitotic cells, which typically down-regulate HDR, and its therapeutic relevance is limited by the potential risks of inhibiting ligase IV in non-target cells. Enhanced HDR efficiency can also be achieved by the timed delivery of Cas9-guide RNA complexes into chemically synchronized cells, as HDR efficiency is highly cell-cycle dependent.44 Such an approach, however, is limited to research applications in cell culture since synchronizing cells is highly disruptive. In some cases, it is possible to design HDR templates such that the product of successful HDR contains mutations in the PAM sequence and therefore is no longer a substrate for subsequent Cas9 modification, increasing the overall yield of HDR products,75 although such an approach imposes constraints on the product sequences. Recently, this strategy has been coupled to the use of ssDNA donors that are complementary to the non-target strand and high-efficiency ribonucleoprotein (RNP) delivery to substantially increase the efficiency of HDR, but even in these cases the ratio of HDR to NHEJ outcomes is relatively low (<2).83
It was envisioned that direct catalysis of the conversion of one nucleobase to another at a programmable target locus without requiring DNA backbone cleavage could increase the efficiency of gene correction relative to HDR without introducing undesired random indels at the locus of interest. Catalytically dead Cas9 (dCas9), which contains Asp10Ala and His840Ala mutations that inactivate its nuclease activity, retains its ability to bind DNA in a guide RNA-programmed manner but does not cleave the DNA backbone.16,47 In principle, conjugation of dCas9 with an enzymatic or chemical catalyst that mediates the direct conversion of one nucleobase to another could enable RNA-programmed nucleobase editing. The deamination of cytosine (C) is catalyzed by cytidine deaminases29 and results in uracil (U), which has the base pairing properties of thymine (T). dCas9 was fused to cytidine deaminase enzymes in order to test their ability to convert C to U at a guide RNA-specified DNA locus. Most known cytidine deaminases operate on RNA, and the few examples that are known to accept DNA require single-stranded DNA.48 Recent studies on the dCas9-target DNA complex reveal that at least nine nucleotides of the displaced DNA strand are unpaired upon formation of the Cas9:guide RNA:DNA “R-loop” complex.12 Indeed, in the structure of the Cas9 R-loop complex the first 11 nucleotides of the protospacer on the displaced DNA strand are disordered, suggesting that their movement is not highly restricted.76 It has also been speculated that Cas9 nickase-induced mutations at cytosines in the non-template strand might arise from their accessibility by cellular cytidine deaminase enzymes.77 Recent studies on the dCas9-target DNA complex have revealed that at least 26 bases on the non-template strand are unpaired when Cas9 binds to its target DNA sequence.49 It was reasoned that a subset of this stretch of single-stranded DNA in the R-loop might serve as a substrate for a dCas9-tethered cytidine deaminase to effect direct, programmable conversion of C to U in DNA (
Four different cytidine deaminase enzymes (hAID, hAPOBEC3G, rAPOBEC1, and pmCDA1) were expressed in a mammalian cell lysate-derived in vitro transcription-translation system and evaluated for ssDNA deamination. Of the four enzymes, rAPOBEC1 showed the highest deaminase activity under the tested conditions and was chosen for dCas9 fusion experiments (
Efficient, sequence-specific, sgRNA-dependent C to U conversion was observed in vitro (
Elected were seven mutations relevant to human disease that in theory could be corrected by C to T nucleobase editing, synthesized double-stranded DNA 80-mers of the corresponding sequences, and assessed the ability of NBE1 to correct these mutations in vitro (
While BE1 efficiently processes substrates in a test tube, in cells a tree of possible DNA repair outcomes determines the fate of the initial U:G product of base editing (
It was asked whether the cellular DNA repair response to the presence of U:G heteroduplex DNA was responsible for the large decrease in nucleobase editing efficiency in cells (
Similar editing efficiencies were observed when a separate plasmid overexpressing UGI was co-transfected with NBE1 (
The permanence of nucleobase editing in human cells was confirmed by monitoring editing efficiencies over multiple cell divisions in HEK293T cells at two of the tested genomic loci. Genomic DNA was harvested at two time points: three days after transfection with plasmids expressing NBE2 and appropriate sgRNAs, and after passaging the cells and growing them for four additional days (approximately five subsequent cell divisions). No significant change in editing efficiency was observed between the non-passaged cells (editing observed in 4.6% to 6.6% of targeted strands for three different target Cs) and passaged cells (editing observed in 4.6% to 6.4% of targeted strands for the same three target Cs), confirming that the nucleobase edits became permanent following cell division (
To further increase the efficiency of nucleobase editing in cells, it was anticipated that nicking the non-edited strand may result in a smaller fraction of edited Us being removed by the cell, since eukaryotic mismatch repair machinery uses strand discontinuity to direct DNA repair to any broken strand of a mismatched duplex (
Next, the off-target activity of NBE1, NBE2, and NBE3 in human cells was evaluated. The off-target activities of Cas9, dCas9, and Cas9 nickase have been extensively studied (
Finally, the potential of nucleobase editing to correct three disease-relevant mutations in mammalian cells was tested. The apolipoprotein E gene variant APOE4 encodes two Arg residues at amino acid positions 112 and 158, and is the largest and most common genetic risk factor for late-onset Alzheimer's disease.64 ApoE variants with Cys residues in positions 112 or 158, including APOE2 (Cys112/Cys158), APOE3 (Cys112/Arg158), and APOE3′ (Arg112/Cys158) have been shown65 or are presumed81 to confer substantially lower Alzheimer's disease risk than APOE4. Encouraged by the ability of NBE1 to convert APOE4 to APOE3′ in vitro (
The dominant-negative p53 mutations Tyr163Cys and Asn239Asp are strongly associated with several types of cancer.66-67 Both of these mutations can be corrected by a C to T conversion on the template strand (
To illuminate the potential relevance of nucleobase editors to address human genetic diseases, the NCBI ClinVar database68 was searched for known genetic diseases that could in principle be corrected by this approach. ClinVar was filtered by first examining only single nucleotide polymorphisms (SNPs), then removing any nonpathogenic variants. Out of the 24,670 pathogenic SNPs, 3,956 are caused by either a T to C, or an A to G, substitution. This list was further filtered to only include variants with a nearby NGG PAM that would position the SNP within the deamination activity window, resulting in 1,089 clinically relevant pathogenic gene variants that could in principle be corrected by the nucleobase editors described here (
In some embodiments, any of the base editors provided herein may be used to treat a disease or disorder. For example, any base editors provided herein may be used to correct one or more mutations associated with any of the diseases or disorders provided herein. Exemplary diseases or disorders that may be treated include, without limitation, 3-Methylglutaconic aciduria type 2, 46,XY gonadal dysgenesis, 4-Alpha-hydroxyphenylpyruvate hydroxylase deficiency, 6-pyruvoyl-tetrahydropterin synthase deficiency, achromatopsia, Acid-labile subunit deficiency, Acrodysostosis, acroerythrokeratoderma, ACTH resistance, ACTH-independent macronodular adrenal hyperplasia, Activated PI3K-delta syndrome, Acute intermittent porphyria, Acute myeloid leukemia, Adams-Oliver syndrome 1/5/6, Adenylosuccinate lyase deficiency, Adrenoleukodystrophy, Adult neuronal ceroid lipofuscinosis, Adult onset ataxia with oculomotor apraxia, Advanced sleep phase syndrome, Age-related macular degeneration, Alagille syndrome, Alexander disease, Allan-Herndon-Dudley syndrome, Alport syndrome, X-linked recessive, Alternating hemiplegia of childhood, Alveolar capillary dysplasia with misalignment of pulmonary veins, Amelogenesis imperfecta, Amyloidogenic transthyretin amyloidosis, Amyotrophic lateral sclerosis, Anemia (nonspherocytic hemolytic, due to G6PD deficiency), Anemia (sideroblastic, pyridoxine-refractory, autosomal recessive), Anonychia, Antithrombin III deficiency, Aortic aneurysm, Aplastic anemia, Apolipoprotein C2 deficiency, Apparent mineralocorticoid excess, Aromatase deficiency, Arrhythmogenic right ventricular cardiomyopathy, Familial hypertrophic cardiomyopathy, Hypertrophic cardiomyopathy, Arthrogryposis multiplex congenital, Aspartylglycosaminuria, Asphyxiating thoracic dystrophy, Ataxia with vitamin E deficiency, Ataxia (spastic), Atrial fibrillation, Atrial septal defect, atypical hemolytic-uremic syndrome, autosomal dominant CD11C+/CD1C+ dendritic cell deficiency, Autosomal dominant progressive external ophthalmoplegia with mitochondrial DNA deletions, Baraitser-Winter syndrome, Bartter syndrome, Basa ganglia calcification, Beckwith-Wiedemann syndrome, Benign familial neonatal seizures, Benign scapuloperoneal muscular dystrophy, Bernard Soulier syndrome, Beta thalassemia intermedia, Beta-D-mannosidosis, Bietti crystalline corneoretinal dystrophy, Bile acid malabsorption, Biotinidase deficiency, Borjeson-Forssman-Lehmann syndrome, Boucher Neuhauser syndrome, Bowen-Conradi syndrome, Brachydactyly, Brown-Vialetto-Van laere syndrome, Brugada syndrome, Cardiac arrhythmia, Cardiofaciocutaneous syndrome, Cardiomyopathy, Carnevale syndrome, Carnitine palmitoyltransferase II deficiency, Carpenter syndrome, Cataract, Catecholaminergic polymorphic ventricular tachycardia, Central core disease, Centromeric instability of chromosomes 1,9 and 16 and immunodeficiency, Cerebral autosomal dominant arteriopathy, Cerebro-oculo-facio-skeletal syndrome, Ceroid lipofuscinosis, Charcot-Marie-Tooth disease, Cholestanol storage disease, Chondrocalcinosis, Chondrodysplasia, Chronic progressive multiple sclerosis, Coenzyme Q10 deficiency, Cohen syndrome, Combined deficiency of factor V and factor VIII, Combined immunodeficiency, Combined oxidative phosphorylation deficiency, Combined partial 17-alpha-hydroxylase/17,20-lyase deficiency, Complement factor d deficiency, Complete combined 17-alpha-hydroxylase/17,20-lyase deficiency, Cone-rod dystrophy, Congenital contractural arachnodactyly, Congenital disorder of glycosylation, Congenital lipomatous overgrowth, Neoplasm of ovary, PIK3CA Related Overgrowth Spectrum, Congenital long QT syndrome, Congenital muscular dystrophy, Congenital muscular hypertrophy-cerebral syndrome, Congenital myasthenic syndrome, Congenital myopathy with fiber type disproportion, Eichsfeld type congenital muscular dystrophy, Congenital stationary night blindness, Corneal dystrophy, Cornelia de Lange syndrome, Craniometaphyseal dysplasia, Crigler Najjar syndrome, Crouzon syndrome, Cutis laxa with osteodystrophy, Cyanosis, Cystic fibrosis, Cystinosis, Cytochrome-c oxidase deficiency, Mitochondrial complex I deficiency, D-2-hydroxyglutaric aciduria, Danon disease, Deafness with labyrinthine aplasia microtia and microdontia (LAMM), Deafness, Deficiency of acetyl-CoA acetyltransferase, Deficiency of ferroxidase, Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase, Dejerine-Sottas disease, Desbuquois syndrome, DFNA, Diabetes mellitus type 2, Diabetes-deafness syndrome, Diamond-Blackfan anemia, Diastrophic dysplasia, Dihydropteridine reductase deficiency, Dihydropyrimidinase deficiency, Dilated cardiomyopathy, Disseminated atypical mycobacterial infection, Distal arthrogryposis, Distal hereditary motor neuronopathy, Donnai Barrow syndrome, Duchenne muscular dystrophy, Becker muscular dystrophy, Dyschromatosis universalis hereditaria, Dyskeratosis congenital, Dystonia, Early infantile epileptic encephalopathy, Ehlers-Danlos syndrome, Eichsfeld type congenital muscular dystrophy, Emery-Dreifuss muscular dystrophy, Enamel-renal syndrome, Epidermolysis bullosa dystrophica inversa, Epidermolysis bullosa herpetiformis, Epilepsy, Episodic ataxia, Erythrokeratodermia variabilis, Erythropoietic protoporphyria, Exercise intolerance, Exudative vitreoretinopathy, Fabry disease, Factor V deficiency, Factor VII deficiency, Factor xiii deficiency, Familial adenomatous polyposis, breast cancer, ovarian cancer, cold urticarial, chronic infantile neurological, cutaneous and articular syndrome, hemiplegic migraine, hypercholesterolemia, hypertrophic cardiomyopathy, hypoalphalipoproteinemia, hypokalemia-hypomagnesemia, juvenile gout, hyperlipoproteinemia, visceral amyloidosis, hypophosphatemic vitamin D refractory rickets, FG syndrome, Fibrosis of extraocular muscles, Finnish congenital nephrotic syndrome, focal epilepsy, Focal segmental glomerulosclerosis, Frontonasal dysplasia, Frontotemporal dementia, Fructose-biphosphatase deficiency, Gamstorp-Wohlfart syndrome, Ganglioside sialidase deficiency, GATA-1-related thrombocytopenia, Gaucher disease, Giant axonal neuropathy, Glanzmann thrombasthenia, Glomerulocystic kidney disease, Glomerulopathy, Glucocorticoid resistance, Glucose-6-phosphate transport defect, Glutaric aciduria, Glycogen storage disease, Gorlin syndrome, Holoprosencephaly, GRACILE syndrome, Haemorrhagic telangiectasia, Hemochromatosis, Hemoglobin H disease, Hemolytic anemia, Hemophagocytic lymphohistiocytosis, Carcinoma of colon, Myhre syndrome, leukoencephalopathy, Hereditary factor IX deficiency disease, Hereditary factor VIII deficiency disease, Hereditary factor XI deficiency disease, Hereditary fructosuria, Hereditary Nonpolyposis Colorectal Neoplasm, Hereditary pancreatitis, Hereditary pyropoikilocytosis, Elliptocytosis, Heterotaxy, Heterotopia, Histiocytic medullary reticulosis, Histiocytosis-lymphadenopathy plus syndrome, HNSHA due to aldolase A deficiency, Holocarboxylase synthetase deficiency, Homocysteinemia, Howel-Evans syndrome, Hydatidiform mole, Hypercalciuric hypercalcemia, Hyperimmunoglobulin D, Mevalonic aciduria, Hyperinsulinemic hypoglycemia, Hyperkalemic Periodic Paralysis, Paramyotonia congenita of von Eulenburg, Hyperlipoproteinemia, Hypermanganesemia, Hypermethioninemia, Hyperphosphatasemia, Hypertension, hypomagnesemia, Hypobetalipoproteinemia, Hypocalcemia, Hypogonadotropic hypogonadism, Hypogonadotropic hypogonadism, Hypohidrotic ectodermal dysplasia, Hyper-IgM immunodeficiency, Hypohidrotic X-linked ectodermal dysplasia, Hypomagnesemia, Hypoparathyroidism, Idiopathic fibrosing alveolitis, Immunodeficiency, Immunoglobulin A deficiency, Infantile hypophosphatasia, Infantile Parkinsonism-dystonia, Insulin-dependent diabetes mellitus, Intermediate maple syrup urine disease, Ischiopatellar dysplasia, Islet cell hyperplasia, Isolated growth hormone deficiency, Isolated lutropin deficiency, Isovaleric acidemia, Joubert syndrome, Juvenile polyposis syndrome, Juvenile retinoschisis, Kallmann syndrome, Kartagener syndrome, Kugelberg-Welander disease, Lattice corneal dystrophy, Leber congenital amaurosis, Leber optic atrophy, Left ventricular noncompaction, Leigh disease, Mitochondrial complex I deficiency, Leprechaunism syndrome, Arthrogryposis, Anterior horn cell disease, Leukocyte adhesion deficiency, Leukodystrophy, Leukoencephalopathy, Ovarioleukodystrophy, L-ferritin deficiency, Li-Fraumeni syndrome, Limb-girdle muscular dystrophy-dystroglycanopathy, Loeys-Dietz syndrome, Long QT syndrome, Macrocephaly/autism syndrome, Macular corneal dystrophy, Macular dystrophy, Malignant hyperthermia susceptibility, Malignant tumor of prostate, Maple syrup urine disease, Marden Walker like syndrome, Marfan syndrome, Marie Unna hereditary hypotrichosis, Mast cell disease, Meconium ileus, Medium-chain acyl-coenzyme A dehydrogenase deficiency, Melnick-Fraser syndrome, Mental retardation, Merosin deficient congenital muscular dystrophy, Mesothelioma, Metachromatic leukodystrophy, Metaphyseal chondrodysplasia, Methemoglobinemia, methylmalonic aciduria, homocystinuria, Microcephaly, chorioretinopathy, lymphedema, Microphthalmia, Mild non-PKU hyperphenylalanemia, Mitchell-Riley syndrome, mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency, Mitochondrial complex I deficiency, Mitochondrial complex III deficiency, Mitochondrial myopathy, Mucolipidosis III, Mucopolysaccharidosis, Multiple sulfatase deficiency, Myasthenic syndrome, Mycobacterium tuberculosis, Myeloperoxidase deficiency, Myhre syndrome, Myoclonic epilepsy, Myofibrillar myopathy, Myoglobinuria, Myopathy, Myopia, Myotonia congenital, Navajo neurohepatopathy, Nemaline myopathy, Neoplasm of stomach, Nephrogenic diabetes insipidus, Nephronophthisis, Nephrotic syndrome, Neurofibromatosis, Neutral lipid storage disease, Niemann-Pick disease, Non-ketotic hyperglycinemia, Noonan syndrome, Noonan syndrome-like disorder, Norum disease, Macular degeneration, N-terminal acetyltransferase deficiency, Oculocutaneous albinism, Oculodentodigital dysplasia, Ohdo syndrome, Optic nerve aplasia, Ornithine carbamoyltransferase deficiency, Orofaciodigital syndrome, Osteogenesis imperfecta, Osteopetrosis, Ovarian dysgenesis, Pachyonychia, Palmoplantar keratoderma, nonepidermolytic, Papillon-Lef\xc3\xa8vre syndrome, Haim-Munk syndrome, Periodontitis, Peeling skin syndrome, Pendred syndrome, Peroxisomal fatty acyl-coa reductase 1 disorder, Peroxisome biogenesis disorder, Pfeiffer syndrome, Phenylketonuria, Phenylketonuria, Hyperphenylalaninemia, non-PKU, Pituitary hormone deficiency, Pityriasis rubra pilaris, Polyarteritis nodosa, Polycystic kidney disease, Polycystic lipomembranous osteodysplasia, Polymicrogyria, Pontocerebellar hypoplasia, Porokeratosis, Posterior column ataxia, Primary erythromelalgia, hyperoxaluria, Progressive familial intrahepatic cholestasis, Progressive pseudorheumatoid dysplasia, Propionic acidemia, Pseudohermaphroditism, Pseudohypoaldosteronism, Pseudoxanthoma elasticum-like disorder, Purine-nucleoside phosphorylase deficiency, Pyridoxal 5-phosphate-dependent epilepsy, Renal dysplasia, retinal pigmentary dystrophy, cerebellar ataxia, skeletal dysplasia, Reticular dysgenesis, Retinitis pigmentosa, Usher syndrome, Retinoblastoma, Retinopathy, RRM2B-related mitochondrial disease, Rubinstein-Taybi syndrome, Schnyder crystalline corneal dystrophy, Sebaceous tumor, Severe congenital neutropenia, Severe myoclonic epilepsy in infancy, Severe X-linked myotubular myopathy, onychodysplasia, facial dysmorphism, hypotrichosis, Short-rib thoracic dysplasia, Sialic acid storage disease, Sialidosis, Sideroblastic anemia, Small fiber neuropathy, Smith-Magenis syndrome, Sorsby fundus dystrophy, Spastic ataxia, Spastic paraplegia, Spermatogenic failure, Spherocytosis, Sphingomyelin/cholesterol lipidosis, Spinocerebellar ataxia, Split-hand/foot malformation, Spondyloepimetaphyseal dysplasia, Platyspondylic lethal skeletal dysplasia, Squamous cell carcinoma of the head and neck, Stargardt disease, Sucrase-isomaltase deficiency, Sudden infant death syndrome, Supravalvar aortic stenosis, Surfactant metabolism dysfunction, Tangier disease, Tatton-Brown-rahman syndrome, Thoracic aortic aneurysms and aortic dissections, Thrombophilia, Thyroid hormone resistance, TNF receptor-associated periodic fever syndrome (TRAPS), Tooth agenesis, Torsades de pointes, Transposition of great arteries, Treacher Collins syndrome, Tuberous sclerosis syndrome, Tyrosinase-negative oculocutaneous albinism, Tyrosinase-positive oculocutaneous albinism, Tyrosinemia, UDPglucose-4-epimerase deficiency, Ullrich congenital muscular dystrophy, Bethlem myopathy Usher syndrome, UV-sensitive syndrome, Van der Woude syndrome, popliteal pterygium syndrome, Very long chain acyl-CoA dehydrogenase deficiency, Vesicoureteral reflux, Vitreoretinochoroidopathy, Von Hippel-Lindau syndrome, von Willebrand disease, Waardenburg syndrome, Warsaw breakage syndrome, WFS1-Related Disorders, Wilson disease, Xeroderma pigmentosum, X-linked agammaglobulinemia, X-linked hereditary motor and sensory neuropathy, X-linked severe combined immunodeficiency, and Zellweger syndrome.
The development of nucleobase editing advances both the scope and effectiveness of genome editing. The nucleobase editors described here offer researchers a choice of editing with virtually no indel formation (NBE2), or more efficient editing with a low frequency (here, typically ≤1%) of indel formation (NBE3). That the product of base editing is, by definition, no longer a substrate likely contributes to editing efficiency by preventing subsequent product transformation, which can hamper traditional Cas9 applications. By removing the reliance on double-stranded DNA cleavage and stochastic DNA repair processes that vary greatly by cell state and cell type, nucleobase editing has the potential to expand the type of genome modifications that can be cleanly installed, the efficiency of these modifications, and the type of cells that are amenable to editing. It is likely that recent engineered Cas9 variants69,70,82 or delivery methods71 with improved DNA specificity, as well as Cas9 variants with altered PAM specificities,72 can be integrated into this strategy to provide additional nucleobase editors with improved DNA specificity or that can target an even wider range of disease-associated mutations. These findings also suggest that engineering additional fusions of dCas9 with enzymes that catalyze additional nucleobase transformations will increase the fraction of the possible DNA base changes that can be made through nucleobase editing. These results also suggest architectures for the fusion of other DNA-modifying enzymes, including methylases and demathylases, that mau enable additional types of programmable genome and epigenome base editing.
Materials and Methods
Cloning. DNA sequences of all constructs and primers used in this paper are listed in the Supplementary Sequences. Plasmids containing genes encoding NBE1, NBE2, and NBE3 will be available from Addgene. PCR was performed using VeraSeq ULtra DNA polymerase (Enzymatics), or Q5 Hot Start High-Fidelity DNA Polymerase (New England Biolabs). NBE plasmids were constructed using USER cloning (New England Biolabs). Deaminase genes were synthesized as gBlocks Gene Fragments (Integrated DNA Technologies), and Cas9 genes were obtained from previously reported plasmids.18 Deaminase and fusion genes were cloned into pCMV (mammalian codon-optimized) or pET28b (E. coli codon-optimized) backbones. sgRNA expression plasmids were constructed using site-directed mutagenesis. Briefly, the primers listed in the Supplementary Sequences were 5′ phosphorylated using T4 Polynucleotide Kinase (New England Biolabs) according to the manufacturer's instructions. Next, PCR was performed using Q5 Hot Start High-Fidelity Polymerase (New England Biolabs) with the phosphorylated primers and the plasmid pFYF1320 (EGFP sgRNA expression plasmid) as a template according to the manufacturer's instructions. PCR products were incubated with DpnI (20 U, New England Biolabs) at 37° C. for 1 h, purified on a QIAprep spin column (Qiagen), and ligated using QuickLigase (New England Biolabs) according to the manufacturer's instructions. DNA vector amplification was carried out using Mach1 competent cells (ThermoFisher Scientific).
In vitro deaminase assay on ssDNA. Sequences of all ssDNA substrates are listed in the Supplementary Sequences. All Cy3-labelled substrates were obtained from Integrated DNA Technologies (IDT). Deaminases were expressed in vitro using the TNT T7 Quick Coupled Transcription/Translation Kit (Promega) according to the manufacturer's instructions using 1 μg of plasmid. Following protein expression, 5 μL of lysate was combined with 35 μL of ssDNA (1.8 μM) and USER enzyme (1 unit) in CutSmart buffer (New England Biolabs) (50 mM potassium acetate, 29 mM Trisacetate, 10 mM magnesium acetate, 100 ug/mL BSA, pH 7.9) and incubated at 37° C. for 2 h. Cleaved U-containing substrates were resolved from full-length unmodified substrates on a 10% TBE-urea gel (Bio-Rad).
Expression and purification of His6-rAPOBEC1-linker-dCas9 fusions. E. Coli BL21 STAR (DE3)-competent cells (ThermoFisher Scientific) were transformed with plasmids encoding pET28b-His6-rAPOBEC-linker-dCas9 with GGS, (GGS)3, (SEQ ID NO: 596) XTEN, or (GGS)7 (SEQ ID NO: 597) linkers. The resulting expression strains were grown overnight in Luria-Bertani (LB) broth containing 100 μg/mL of kanamycin at 37° C. The cells were diluted 1:100 into the same growth medium and grown at 37° C. to OD600=˜0.6. The culture was cooled to 4° C. over a period of 2 h, and isopropyl-β-D-1-thiogalactopyranoside (IPTG) was added at 0.5 mM to induce protein expression. After ˜16 h, the cells were collected by centrifugation at 4,000 g and resuspended in lysis buffer (50 mM tris(hydroxymethyl)-aminomethane (Tris)-HCl, pH 7.0, 1 M NaCl, 20% glycerol, 10 mM tris(2-carboxyethyl)phosphine (TCEP, Soltec Ventures)). The cells were lysed by sonication (20 s pulse-on, 20 s pulse-off for 8 min total at 6 W output) and the lysate supernatant was isolated following centrifugation at 25,000 g for 15 min. The lysate was incubated with His-Pur nickel-nitriloacetic acid (nickel-NTA) resin (ThermoFisher Scientific) at 4° C. for 1 h to capture the His-tagged fusion protein. The resin was transferred to a column and washed with 40 mL of lysis buffer. The His-tagged fusion protein was eluted in lysis buffer supplemented with 285 mM imidazole, and concentrated by ultrafiltration (Amicon-Millipore, 100-kDa molecular weight cut-off) to 1 mL total volume. The protein was diluted to 20 mL in low-salt purification buffer containing 50 mM tris(hydroxymethyl)-aminomethane (Tris)-HCl, pH 7.0, 0.1 M NaCl, 20% glycerol, 10 mM TCEP and loaded onto SP Sepharose Fast Flow resin (GE Life Sciences). The resin was washed with 40 mL of this low-salt buffer, and the protein eluted with 5 mL of activity buffer containing 50 mM tris(hydroxymethyl)-aminomethane (Tris)-HCl, pH 7.0, 0.5 M NaCl, 20% glycerol, 10 mM TCEP. The eluted proteins were quantified on a SDSPAGE gel.
In vitro transcription of sgRNAs. Linear DNA fragments containing the T7 promoter followed by the 20-bp sgRNA target sequence were transcribed in vitro using the primers listed in the Supplementary Sequences with the TranscriptAid T7 High Yield Transcription Kit (ThermoFisher Scientific) according to the manufacturer's instructions. sgRNA products were purified using the MEGAclear Kit (ThermoFisher Scientific) according to the manufacturer's instructions and quantified by UV absorbance.
Preparation of Cy3-conjugated dsDNA substrates. Sequences of 80-nucleotide unlabeled strands are listed in the Supplementary Sequences and were ordered as PAGE-purified oligonucleotides from IDT. The 25-nt Cy3-labeled primer listed in the Supplementary Sequences is complementary to the 3′ end of each 80-nt substrate. This primer was ordered as an HPLC-purified oligonucleotide from IDT. To generate the Cy3-labeled dsDNA substrates, the 80-nt strands (5 μL of a 100 μM solution) were combined with the Cy3-labeled primer (5 μL of a 100 μM solution) in NEBuffer 2 (38.25 μL of a 50 mM NaCl, 10 mMTris-HCl, 10 mM MgCl2, 1 mM DTT, pH 7.9 solution, New England Biolabs) with dNTPs (0.75 μL of a 100 mM solution) and heated to 95° C. for 5 min, followed by a gradual cooling to 45° C. at a rate of 0.1° C./s. After this annealing period, Klenow exo− (5 U, New England Biolabs) was added and the reaction was incubated at 37° C. for 1 h. The solution was diluted with Buffer PB (250 Qiagen) and isopropanol (50 μL) and purified on a QIAprep spin column (Qiagen), eluting with 50 μL of Tris buffer.
Deaminase assay on dsDNA. The purified fusion protein (20 μL of 1.9 μM in activity buffer) was combined with 1 equivalent of appropriate sgRNA and incubated at ambient temperature for 5 min. The Cy3-labeled dsDNA substrate was added to final concentration of 125 nM and the resulting solution was incubated at 37° C. for 2 h. The dsDNA was separated from the fusion by the addition of Buffer PB (100 μL, Qiagen) and isopropanol (25 μL) and purified on a EconoSpin micro spin column (Epoch Life Science), eluting with 20 μL of CutSmart buffer (New England Biolabs). USER enzyme (1 U, New England Biolabs) was added to the purified, edited dsDNA and incubated at 37° C. for 1 h. The Cy3-labeled strand was fully denatured from its complement by combining 5 μL of the reaction solution with 15 μL of a DMSO-based loading buffer (5 mM Tris, 0.5 mM EDTA, 12.5% glycerol, 0.02% bromophenol blue, 0.02% xylene cyan, 80% DMSO). The full-length C-containing substrate was separated from any cleaved, U-containing edited substrates on a 10% TBE-urea gel (Bio-Rad) and imaged on a GE Amersham Typhoon imager.
Preparation of in vitro-edited dsDNA for high-throughput sequencing (HTS). The oligonucleotides listed in the Supplementary Sequences were obtained from IDT. Complementary sequences were combined (5 μL of a 100 μM solution) in Tris buffer and annealed by heating to 95° C. for 5 min, followed by a gradual cooling to 45° C. at a rate of 0.1° C./s to generate 60-bp dsDNA substrates. Purified fusion protein (20 μL of 1.9 μM in activity buffer) was combined with 1 equivalent of appropriate sgRNA and incubated at ambient temperature for 5 min. The 60-mer dsDNA substrate was added to final concentration of 125 nM and the resulting solution was incubated at 37° C. for 2 h. The dsDNA was separated from the fusion by the addition of Buffer PB (100 μL, Qiagen) and isopropanol (25 μL) and purified on a EconoSpin micro spin column (Epoch Life Science), eluting with 20 μL of Tris buffer. The resulting edited DNA (1 μL was used as a template) was amplified by PCR using the HTS primer pairs specified in the Supplementary Sequences and VeraSeq Ultra (Enzymatics) according to the manufacturer's instructions with 13 cycles of amplification. PCR reaction products were purified using RapidTips (Diffinity Genomics), and the purified DNA was amplified by PCR with primers containing sequencing adapters, purified, and sequenced on a MiSeq high-throughput DNA sequencer (IIlumina) as previously described.73
Cell culture. HEK293T (ATCC CRL-3216), U2OS (ATCC-HTB-96) and ST486 cells (ATCC) were maintained in Dulbecco's Modified Eagle's Medium plus GlutaMax (ThermoFisher) supplemented with 10% (v/v) fetal bovine serum (FBS) and penicillin/streptomycin (1×, Amresco), at 37° C. with 5% CO2. HCC1954 cells (ATCC CRL-2338) were maintained in RPMI-1640 medium (ThermoFisher Scientific) supplemented as described above. Immortalized rat astrocytes containing the ApoE4 isoform of the APOE gene (Taconic Biosciences) were cultured in Dulbecco's Modified Eagle's Medium plus GlutaMax (ThermoFisher Scientific) supplemented with 10% (v/v) fetal bovine serum (FBS) and 200 m/mL Geneticin (ThermoFisher Scientific).
Transfections. HEK293T cells were seeded on 48-well collagen-coated BioCoat plates (Corning) and transfected at approximately 85% confluency. Briefly, 750 ng of NBE and 250 ng of sgRNA expression plasmids were transfected using 1.5 μl of Lipofectamine 2000 (ThermoFisher Scientific) per well according to the manufacturer's protocol. Astrocytes, U2OS, HCC1954, HEK293T and ST486 cells were transfected using appropriate AMAXA NUCLEOFECTOR™ II programs according to manufacturer's instructions. 40 ng of infrared RFP (Addgene plasmid 45457)74 was added to the nucleofection solution to assess nucleofection efficiencies in these cell lines. For astrocytes, U2OS, and ST486 cells, nucleofection efficiencies were 25%, 74%, and 92%, respectively. For HCC1954 cells, nucleofection efficiency was <10%. Therefore, following trypsinization, the HCC1954 cells were filtered through a 40 micron strainer (Fisher Scientific), and the nucleofected HCC1954 cells were collected on a Beckman Coulter MoFlo XDP Cell Sorter using the iRFP signal (abs 643 nm, em 670 nm). The other cells were used without enrichment of nucleofected cells.
High-throughput DNA sequencing of genomic DNA samples. Transfected cells were harvested after 3 d and the genomic DNA was isolated using the Agencourt DNAdvance Genomic DNA Isolation Kit (Beckman Coulter) according to the manufacturer's instructions. On-target and off-target genomic regions of interest were amplified by PCR with flanking HTS primer pairs listed in the Supplementary Sequences. PCR amplification was carried out with Phusion high-fidelity DNA polymerase (ThermoFisher) according to the manufacturer's instructions using 5 ng of genomic DNA as a template. Cycle numbers were determined separately for each primer pair as to ensure the reaction was stopped in the linear range of amplification (30, 28, 28, 28, 32, and 32 cycles for EMX1, FANCF, HEK293 site 2, HEK293 site 3, HEK293 site 4, and RNF2 primers, respectively). PCR products were purified using RapidTips (Diffinity Genomics). Purified DNA was amplified by PCR with primers containing sequencing adaptors. The products were gel-purified and quantified using the QUANT-IT™ PicoGreen dsDNA Assay Kit (ThermoFisher) and KAPA Library Quantification Kit-Illumina (KAPA Biosystems). Samples were sequenced on an Illumina MiSeq as previously described.73
Data analysis. Sequencing reads were automatically demultiplexed using MiSeq Reporter (Illumina), and individual FASTQ files were analyzed with a custom Matlab script provided in the Supplementary Notes. Each read was pairwise aligned to the appropriate reference sequence using the Smith-Waterman algorithm. Base calls with a Q-score below 31 were replaced with N's and were thus excluded in calculating nucleotide frequencies. This treatment yields an expected MiSeq base-calling error rate of approximately 1 in 1,000. Aligned sequences in which the read and reference sequence contained no gaps were stored in an alignment table from which base frequencies could be tabulated for each locus.
Indel frequencies were quantified with a custom Matlab script shown in the Supplementary Notes using previously described criteria71. Sequencing reads were scanned for exact matches to two 10-bp sequences that flank both sides of a window in which indels might occur. If no exact matches were located, the read was excluded from analysis. If the length of this indel window exactly matched the reference sequence the read was classified as not containing an indel. If the indel window was two or more bases longer or shorter than the reference sequence, then the sequencing read was classified as an insertion or deletion, respectively.
All publications, patents, patent applications, publication, and database entries (e.g., sequence database entries) mentioned herein, e.g., in the Background, Summary, Detailed Description, Examples, and/or References sections, are hereby incorporated by reference in their entirety as if each individual publication, patent, patent application, publication, and database entry was specifically and individually incorporated herein by reference. In case of conflict, the present application, including any definitions herein, will control.
Supplementary Sequences
Primers used for generating sgRNA transfection plasmids. rev_sgRNA_plasmid was used in all cases. The pFYF1320 plasmid was used as template as noted in Materials and Methods section. SEQ ID NOs: 329-338 appear from top to bottom below, respectively.
Sequences of all ssDNA substrates used in in vitro deaminase assays. SEQ ID NOs: 339-341 appear from top to bottom below, respectively.
Primers used for generating PCR products to serve as substrates for T7 transcription of sgRNAs for gel-based deaminase assay. rev_gRNA_T7 was used in all cases. The pFYF1320 plasmid was used as template as noted in Materials and Methods section. SEQ ID NOs: 342-365 appear from top to bottom below, respectively.
Sequences of 80-nucleotide unlabeled strands and Cy3-labeled universal primer used in gel-based dsDNA deaminase assays. SEQ ID NOs: 366-390 appear from top to bottom below, respectively.
Primers used for generating PCR products to serve as substrates for T7 transcription of sgRNAs for high-throughput sequencing. rev_gRNA_T7 (above) was used in all cases. The pFYF1320 plasmid was used as template as noted in Materials and Methods section. SEQ ID NOs: 391-442 appear from top to bottom below, respectively.
Sequences of in vitro-edited dsDNA for high-throughput sequencing (HTS). Shown are the sequences of edited strands. Reverse complements of all sequences shown were also obtained. dsDNA substrates were obtained by annealing complementary strands as described in Materials and Methods. Oligonucleotides representing the EMX1, FANCF, HEK293 site 2, HEK293 site 3, HEK293 site 4, and RNF2 loci were originally designed for use in the gel-based deaminase assay and therefore have the same 25-nt sequence on their 5′-ends (matching that of the Cy3-primer). SEQ ID NOs: 443-494 appear from top to bottom below, respectively.
Primers for HTS of in vitro edited dsDNA. SEQ ID NOs: 495-503 appear from top to bottom below, respectively.
Primers for HTS of on-target and off-target sites from all mammalian cell culture experiments. SEQ ID NOs: 504-579 and 1869-1900 appear from top to bottom below, respectively.
Sequences of Single-Stranded Oligonucleotide Donor Templates (ssODNs) Used in HDR Studies.
Deaminase Gene gBlocks Gene Fragments
Amino Acid Sequences of NBE1, NBE2, and NBE3.
Base Calling Matlab Script
INDEL Detection Matlab Script
The disclosure provides Cas9 variants, for example Cas9 proteins from one or more organisms, which may comprise one or more mutations (e.g., to generate dCas9 or Cas9 nickase). In some embodiments, one or more of the amino acid residues, identified below by an asterek, of a Cas9 protein may be mutated. In some embodiments, the D10 and/or H840 residues of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, are mutated. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is mutated to any amino acid residue, except for D. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is mutated to an A. In some embodiments, the H840 residue of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding residue in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is an H. In some embodiments, the H840 residue of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is mutated to any amino acid residue, except for H. In some embodiments, the H840 residue of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is mutated to an A. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 10, or a corresponding residue in any of the amino acid sequences provided in SEQ ID NOs: 11-260, is a D.
A number of Cas9 sequences from various species were aligned to determine whether corresponding homologous amino acid residues of D10 and H840 of SEQ ID NO: 10 or SEQ ID NO: 11 can be identified in other Cas9 proteins, allowing the generation of Cas9 variants with corresponding mutations of the homologous amino acid residues. The alignment was carried out using the NCBI Constraint-based Multiple Alignment Tool (COBALT (accessible at st-va.ncbi.nlm.nih.gov/tools/cobalt), with the following parameters. Alignment parameters: Gap penalties −11,−1; End-Gap penalties −5,−1. CDD Parameters: Use RPS BLAST on; Blast E-value 0.003; Find Conserved columns and Recompute on. Query Clustering Parameters: Use query clusters on; Word Size 4; Max cluster distance 0.8; Alphabet Regular.
An exemplary alignment of four Cas9 sequences is provided below. The Cas9 sequences in the alignment are: Sequence 1 (S1): SEQ ID NO: 11|WP_010922251|gi 499224711|type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]; Sequence 2 (S2): SEQ ID NO: 12|WP_039695303|gi 746743737|type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus]; Sequence 3 (S3): SEQ ID NO: 13|WP_045635197|gi 782887988|type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis]; Sequence 4 (S4): SEQ ID NO: 14|5AXW_A|gi 924443546|Staphylococcus aureus Cas9. The HNH domain (bold and underlined) and the RuvC domain (boxed) are identified for each of the four sequences. Amino acid residues 10 and 840 in S1 and the homologous amino acids in the aligned sequences are identified with an asterisk following the respective amino acid residue.
KRIEEGIKELGSQIL-------KEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSD----YDVDH*IVPQSFLKDD
KKLQNSLKELGSNILNEEKPSYIEDKVENSHLQNDQLFLYYIQNGKDMYTGDELDIDHLSD----YDIDH*IIPQAFIKDD
KRIEDSLKILASGL---DSNILKENPTDNNQLQNDRLFLYYLQNGKDMYTGEALDINQLSS----YDIDH*IIPQAFIKDD
ERIEEIIRTTGK---------------ENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVDH*IIPRSVSFDN
The alignment demonstrates that amino acid sequences and amino acid residues that are homologous to a reference Cas9 amino acid sequence or amino acid residue can be identified across Cas9 sequence variants, including, but not limited to Cas9 sequences from different species, by identifying the amino acid sequence or residue that aligns with the reference sequence or the reference residue using alignment programs and algorithms known in the art. This disclosure provides Cas9 variants in which one or more of the amino acid residues identified by an asterisk in SEQ ID NOs: 11-14 (e.g., S1, S2, S3, and S4, respectively) are mutated as described herein. The residues D10 and H840 in Cas9 of SEQ ID NO: 10 that correspond to the residues identified in SEQ ID NOs: 11-14 by an asterisk are referred to herein as “homologous” or “corresponding” residues. Such homologous residues can be identified by sequence alignment, e.g., as described above, and by identifying the sequence or residue that aligns with the reference sequence or residue. Similarly, mutations in Cas9 sequences that correspond to mutations identified in SEQ ID NO: 10 herein, e.g., mutations of residues 10, and 840 in SEQ ID NO: 10, are referred to herein as “homologous” or “corresponding” mutations. For example, the mutations corresponding to the D10A mutation in SEQ ID NO: 10 or 51 (SEQ ID NO: 11) for the four aligned sequences above are D11A for S2, D10A for S3, and D13A for S4; the corresponding mutations for H840A in SEQ ID NO: 10 or S1 (SEQ ID NO: 11) are H850A for S2, H842A for S3, and H560A for S4.
A total of 250 Cas9 sequences (SEQ ID NOs: 11-260) from different species were aligned using the same algorithm and alignment parameters outlined above. Amino acid residues homologous to residues 10, and 840 of SEQ ID NO: 10 were identified in the same manner as outlined above. The alignments are provided below. The HNH domain (bold and underlined) and the RuvC domain (boxed) are identified for each of the four sequences. Single residues corresponding to amino acid residues 10, and 840 in SEQ ID NO: 10 are boxed in SEQ ID NO: 11 in the alignments, allowing for the identification of the corresponding amino acid residues in the aligned sequences.
--EATRLKRTARRRYT
V-DEVAYHEKYPTIY
LRKKLV
KL--FIQLVQTYNQL--FEEN-- INASGVDAK---AI
---KLQ--LSKDTYDDDLDN
NLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
IPHQIHLGEL
VVDKGA
QKKAIVDLLFK--TNR-KVTV
RLSRKLINGIRDK QSGKTILDFLK -DGf---ANRNF
QLIHDDSL
RENQ TTQKGQKNS
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP S--EEVVKKMKN-YWRQLLNAKLITQRKEDNLTK
A--ERG
GGFSK ESIL-PKR-
LQKGNELALPSKYVNFLYLA
TI--DRK--R-YTSTKEVL DATLIHQSITGLYETRIDLSQL--
Other families of cytidine deaminases as alternatives to base etitor 3 (BE3) constructs were examined. The different C to T editors were developed to have a narrow or different editing window, alternate sequence specificity to expand targetable substrates, and to have higher activity.
Using the methods described in Example 4, the pmCDA1 (cytidine deaminase 1 from Petromyzon marinus) activity at the HeK-3 site is evaluated (
The pmCDA1 activity at the HeK-2 site is given in
The percent of total sequencing reads with target C converted to T (
The huAPOBEC3G activity at the HeK-2 site is shown in
LacZ selection optimization for the A to I conversion was performed using a bacterial strain with lacZ encoded on the F plasmid. A critical glutamic acid residue was mutated (e.g., GAG to GGG, Glu to Gly mutation) so that G to A by a cytidine deaminase would restore lacZ activity (
To evaluate the effect of copy number of the plasmids encoding the deaminase constructs on lacZ reversion frequency, the CDA and APOBEC1 deaminases were cloned into 4 plasmids with different replication origins (hence different copy numbers), SC101, CloDF3, RSF1030, and PUC (copy number: PUC>RSF1030>CloDF3>SC101) and placed under an inducible promoter. The plasmids were individually transformed into E. coli cells harboring F plasmid containing the mutated LacZ gene. The expression of the deaminases were induced and LacZ activity was detected for each construct (
LacZ reversions were confirmed by sequencing of the genomic DNA at the lacZ locus. To obtain the genomic DNA containing the corrected LacZ gene, cells were grown media containing X-gal, where cells having LacZ activity form blue colonies. Blue colonies were selected and grown in minimal media containing lactose. The cells were spun down, washed, and re-plated on minimal media plates (lactose). The blue colony at the highest dilution was then selected, and its genomic DNA was sequenced at the lacZ locus (
A chloramphenicol reversion assay was designed to test the activity of different cytidine deaminases (e.g., CDA, and APOBEC1). A plasmid harboring a mutant CAT1 gene which confers chloramphenicol resistance to bacteria is constructed with RSF1030 as the replication origin. The mutant CAT1 gene encodings a CAT1 protein that has a H195R (CAC to CGC) mutation, rendering the protein inactive (
Next, the huAPOBEC3G-XTEN-dCas9-UGI protein was tested in the same assay. Interestingly, huAPOBEC3G-XTEN-dCas9-UGI exhibited different sequence specificity than the rAPOBEC1-XTEN-dCas9-UGI fusion protein. Only position 8 was edited with APOBEC3G-XTEN-dCas9-UGI fusion, as compared to the rAPOBEC11-XTEN-dCas9-UGIfusion (in which positions 3, 6, and 8 were edited) (
Current base editing technologies allow for the sequence-specific conversion of a C:G base pair into a T:A base pair in genomic DNA. This is done via the direct catalytic conversion of cytosine to uracil by a cytidine deaminase enzyme and thus, unlike traditional genome editing technologies, does not introduce double-stranded DNA breaks (DSBs) into the DNA as a first step. See, Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., and Liu, D. R. (2016), “Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.” Nature 533, 420-424; the entire contents of which are incorporated by reference herein. Instead, catalytically dead SpCas9 (dCas9) or a SpCas9 nickase (dCas9(A840H)) is tethered to a cytidine deaminase enzyme such as rAPOBEC1, pmCDA1, or hAPOBEC3G. The genomic locus of interest is encoded by an sgRNA, and DNA binding and local denaturation is facilitated by the dCas9 portion of the fusion. However, just as wt dCas9 and wt Cas9 exhibit off-target DNA binding and cleavage, current base editors also exhibit C to T editing at Cas9 off-target loci, which limits their therapeutic usefulness.
It has been reported that the introduction of just three to four mutations into SpCas9 that neutralize nonspecific electrostatic interactions between the protein and the sugar-phosphate backbone of its target DNA, increases the DNA binding specificity of SpCas9. See, Kleinstiver, B. P., Pattanayak, V., Prew, M. S., Tsai, S. Q., Nguyen, N. T., Zheng, Z., and Joung, J. K. (2016) “High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.” Nature 529, 490-495; and Slaymaker, I. M., Gao, L., Zetsche, B., Scott, D. A., Yan, W. X., and Zhang, F. (2015) “Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84-88; the entire contents of each are hereby incorporated by reference herein. Four reported neutralizing mutations were therefore incorporated into the initially reported base editor BE3 (SEQ ID NO: 285), and found that off-target C to T editing of this enzyme is also drastically reduced (
As shown in
In
Primary Protein Sequence of HF-BE3 (SEQ ID NO: 285):
Unlike traditional genome editing platforms, base editing technology allows precise single nucleotide changes in the DNA without inducing double-stranded breaks (DSBs). See, Komor, A. C. et al. Nature 533, 420-424 (2016). The current generation of base editor uses the NGG PAM exclusively. This limits its ability to edit desired bases within the genome, as the base editor needs to be placed at a precise location where the target base is placed within a 4-base region (the ‘deamination window’), approximately 15 bases upstream of the PAM. See, Komor, A. C. et al. Nature 533, 420-424 (2016). Moreover, due to the high processivity of cytidine deaminase, the base editor may convert all cytidines within its deamination window into thymidines, which could induce amino acid changes other than the one desired by the researcher. See, Komor, A. C. et al. Nature 533, 420-424 (2016).
Expanding the Scope of Base Editing Through the Development of Base Editors with Cas9 Variants
Cas9 homologs and other RNA-guided DNA binders that have different PAM specificities were incorporated into the base editor architecture. See, Kleinstiver, B. P. et al. Nature 523, 481-485 (2015); Kleinstiver, B. P. et al. Nature Biotechnology 33, 1293-1298 (2015); and Zetsche, B. et al. Cell 163, 759-771 (2015); the entire contents of each are incorporated by reference herein. Furthermore, innovations that have broadened the PAM specificities of various Cas9 proteins were also incorporated to expand the target reach of the base editor even more. See, Kleinstiver, B. P. et al. Nature 523, 481-485 (2015); and Kleinstiver, B. P. et al. Nature Biotechnology 33, 1293-1298 (2015). The current palette of base editors is summarized in Table 4.
S. pyogenes
S. aureus
L.
bacterium
Modulating Base Editor's Processivity Through Site-Directed Mutagenesis of rAPOBEC1
It was reasoned that the processivity of the base editor could be modulated by making point mutations in the deaminase enzyme. The incorporation of mutations that slightly reduce the catalytic activity of deaminase in which the base editor could still catalyze on average one round of cytidine deamination but was unlikely to access and catalyze another deamination within the relevant timescale were pursued. In effect, the resulting base editor would have a narrower deamination window.
rAPOBEC1 mutations probed in this work are listed in Table 5. Some of the mutations resulted in slight apparent impairment of rAPOBEC1 catalysis, which manifested as preferential editing of one cytidine over another when multiple cytidines are found within the deamination window. Combining some of these mutations had an additive effect, allowing the base editor to discriminate substrate cytidines with higher stringency. Some of the double mutants and the triple mutant allowed selective editing of one cytidine among multiple cytidines that are right next to one another (
Base Editor PAM Expansion and Processivity Modulation
The next generation of base editors were designed to expand editable cytidines in the genome by using other RNA-guided DNA binders (
The effect of various mutations on the deamination window was then investigated in cell culture using spacers with multiple cytidines (
Further, the effect of various mutations on different genomic sites with limited numbers of cytidines was examined (
Base Editing Using Cpf1
Cpf1, a Cas9 homolog, can be obtained as AsCpf1, LbCpf1, or from any other species. Schematics of fusion constructs, including BE2 and BE3 equivalents, are shown in
Full Protein Sequence of Cpf1 (SEQ ID NO: 313):
Examining the difference between plasmid delivery of BE3 and HF-BE3, it was found that the two edit on-target loci with comparable efficiency (
Delivery of BE3 Protein via Micro-Injection to Zebrafish
TYR guide RNAs were tested in an in vitro assay for sgRNA activity (
The delivery of BE3 protein in was tested in vivo in zebrafish. Zebrafish embryos (n=16-24) were injected with either scrambled sgRNA, sgHR_13, sgHR_16, or sgHR_17 and purified BE3. Three embryos from each condition were analyzed independently (single embryo) and for each condition, all of the injected embryos were pooled and sequenced as a pool. The results are shown in
Base editors or complexes provided herein (e.g., BE3) may be used to modify nucleic acids. For example, base editors may be used to change a cytosine to a thymine in a nucleic acid (e.g., DNA). Such changes may be made to, inter alia, alter the amino acid sequence of a protein, to destroy or create a start codon, to create a stop codon, to disrupt splicing donors, to disrupt splicing acceptors or edit regulatory sequences. Examples of possible nucleotide changes are shown in
Base editors or complexes provided herein (e.g., BE3) may be used to edit an isoform of Apolipoprotein E in a subject. For example, an Apolipoprotein E isoform may be edited to yield an isoform associated with a lower risk of developing Alzheimer's disease. Apolipoprotein E has four isoforms that differ at amino acids 112 and 158. APOE4 is the largest and most common genetic risk factor for late-onset Alzheimer's disease. Arginine residue 158 of APOE4, encoded by the nucleic acid sequence CGC, may be changed to a cysteine by using a base editor (e.g., BE3) to change the CGC nucleic acid sequence to TGC, which encodes cysteine at residue 158. This change yields an APOE3r isoform, which is associated with lower Alzheimer's disease risk. See
It was tested whether base editor BE3 could be used to edit APOE4 to APOE3r in mouse astrocytes (
Base editors or complexes provided herein may be used to treat prion protein diseases such as Creutzfeldt-Jakob disease and fatal familial insomnia, for example, by introducing mutations into a PRNP gene. Reverting PRNP mutations may not yield therapeutic results, and intels in PRNP may be pathogenic. Accordingly, it was tested whether PRNP could be mutated using base editors (e.g., BE3) to introduce a premature stop codon in the PRNP gene. BE3, associated with its guide RNA, was introduced into HEK cells or glioblastoma cells and was capable of editing the PRNP gene to change the encoded arginine at residue 37 to a stop codon. BE3 yielded 41% editing (
Additional genes that may be edited include the following: APOE editing of Arg 112 and Arg 158 to treat increased Alzheimer's risk; APP editing of Ala 673 to decrease Alzheimer's risk; PRNP editing of Arg 37 to treat fatal familial insomnia and other prion protein diseases; DMD editing of the exons 23 and 51 splice sites to treat Duchenne muscular dystrophy; FTO editing of intron 1 to treat obesity risk; PDS editing of exon 8 to treat Pendred syndrome (genetic deafness); TMC1 editing of exon 8 to treat congenital hearing loss; CYBB editing of various patient-relevant mutations to treat chronic granulomatous disease. Additional diseases that may be treated using the base editors provided herein are shown in Table 6, below.
UGI also plays a key role. Knocking out UDG (which UGI inhibits) was shown to dramatically improve the cleanliness and efficiency of C to T base editing (
Base editing is a new approach to genome editing that uses a fusion protein containing a catalytically defective Streptococcus pyogenes Cas9, a cytidine deaminase, and an inhibitor of base excision repair to induce programmable, single-nucleotide C→T (or G→A) changes in DNA without generating double-strand DNA breaks, without requiring a donor DNA template, and without inducing an excess of stochastic insertions and deletions1. The development of five new C→T (or G→A) base editors that use natural and engineered Cas9 variants with different protospacer-adjacent motif (PAM) specificities to expand the number of sites that can be targeted by base editing by 2.5-fold are described herein. Additionally, new base editors containing mutated cytidine deaminase domains that narrow the width of the apparent editing window from approximately 5 nucleotides to 1 or 2 nucleotides were engineered, enabling the discrimination of neighboring C nucleotides that would previously be edited with comparable efficiency. Together, these developments substantially increase the targeting scope of base editing.
CRISPR-Cas9 nucleases have been widely used to mediate targeted genome editing2. In most genome editing applications, Cas9 forms a complex with a single guide RNA (sgRNA) and induces a double-stranded DNA break (DSB) at the target site specified by the sgRNA sequence. Cells primarily respond to this DSB through the non-homologuous end-joining (NHEJ) repair pathway, which results in stochastic insertions or deletions (indels) that can cause frameshift mutations that disrupt the gene. In the presence of a donor DNA template with a high degree of homology to the sequences flanking the DSB, gene correction can be achieved through an alternative pathway known as homology directed repair (HDR).3,4 Unfortunately, under most non-perturbative conditions HDR is inefficient, dependent on cell state and cell type, and dominated by a larger frequency of indels.3,4 As most of the known genetic variations associated with human disease are point mutations, methods that can more efficiently and cleanly make precise point mutations are needed.
Base editing, which enables targeted replacement of a C:G base pair with a T:A base pair in a programmable manner without inducing DSBs1, has been recently described. Base editing uses a fusion protein between a catalytically inactivated (dCas9) or nickase form of Streptococcus pyogenes Cas9 (SpCas9), a cytidine deaminase such as APOBEC1, and an inhibitor of base excision repair such as uracil glycosylase inhibitor (UGI) to convert cytidines into uridines within a five-nucleotide window specified by the sgRNA.1 The third-generation base editor, BE3, converts C:G base pairs to T:A base pairs, including disease-relevant point mutations, in a variety of cell lines with higher efficiency and lower indel frequency than what can be achieved using other genome editing methods1. Subsequent studies have validated the deaminase-dCas9 fusion approach in a variety of settings6,7.
Efficient editing by BE3 requires the presence of an NGG PAM that places the target C within a five-nucleotide window near the PAM-distal end of the protospacer (positions 4-8, counting the PAM as positions 21-23)1. This PAM requirement substantially limits the number of sites in the human genome that can be efficiently targeted by BE3, as many sites of interest lack an NGG 13- to 17-nucleotides downstream of the target C. Moreover, the high activity and processivity of BE3 results in conversion of all Cs within the editing window to Ts, which can potentially introduce undesired changes to the target locus. Herein, new C:G to T:A base editors that address both of these limitations are described.
It was thought that any Cas9 homolog that binds DNA and forms an “R-loop” complex8 containing a single-stranded DNA bubble could in principle be converted into a base editor. These new base editors would expand the number of targetable loci by allowing non-NGG PAM sites to be edited. The Cas9 homolog from Staphylococcus aureus (SaCas9) is considerably smaller than SpCas9 (1053 vs. 1368 residues), can mediate efficient genome editing in mammalian cells, and requires an NNGRRT PAM9. SpCas9 was replaced with SaCas9 in BE3 to generate SaBE3 and transfected HEK293T cells with plasmids encoding SaBE3 and sgRNAs targeting six human genomic loci (
The targeting range of base editors was further expanded by applying recently engineered Cas9 variants that expand or alter PAM specificities. Joung and coworkers recently reported three SpCas9 mutants that accept NGA (VQR-Cas9), NGAG (EQR-Cas9), or NGCG(VRER-Cas9) PAM sequences11. In addition, Joung and coworkers engineered a SaCas9 variant containing three mutations (SaKKH-Cas9) that relax its PAM requirement to NNNRRT12. The SpCas9 portion of BE3 was replaced with these four Cas9 variants to produce VQR-BE3, EQR-BE3, VRER-BE3, and SaKKH-BE3, which target NNNRRT,NGA, NGAG, and NGCG PAMs respectively. HEK293T cells were transfected with plasmids encoding these constructs and sgRNAs targeting six genomic loci for each new base editor, and measured C to T base conversions using HTS.
SaKKH-BE3 edited sites with NNNRRT PAMs with efficiencies up to 62% of treated, non-enriched cells (
Collectively, the properties of SaBE3, SaKKH-BE3, VQR-BE3, EQR-BE3, and VRER-BE3 establish that base editors exhibit a modularity that facilitates their ability to exploit Cas9 homologs and engineered variants.
Next, base editors with altered activity window widths were developed. All Cs within the activity window of BE3 can be efficiently converted to Ts1. The ability to modulate the width of this window would be useful in cases in which it is important to edit only a subset of Cs present in the BE3 activity window.
The length of the linker between APOBEC1 and dCas9 was previously observed to modulate the number of bases that are accessible by APOBEC1 in vitro1. In HEK293T cells, however, varying the linker length did not significantly modulate the width of the editing window, suggesting that in the complex cellular milieu, the relative orientation and flexibility of dCas9 and the cytidine deaminase are not strongly determined by linker length (
As an alternative approach, it was thought that mutations to the deaminase domain might narrow the width of the editing window through multiple possible mechanisms. First, some mutations may alter substrate binding, the conformation of bound DNA, or substrate accessibility to the active site in ways that reduce tolerance for non-optimal presentation of a C to the deaminase active site. Second, because the high activity of APOBEC1 likely contributes to the deamination of multiple Cs per DNA binding event,1,13,14 mutations that reduce the catalytic efficiency of the deaminase domain of a base editor might prevent it from catalyzing successive rounds of deamination before dissociating from the DNA. Once any C:G to T:A editing event has taken place, the sgRNA no longer perfectly matches the target DNA sequence and re-binding of the base editor to the target locus should be less favorable. Both strategies were tested in an effort to discover new base editors that distinguish among multiple cytidines within the original editing window.
Given the absence of an available APOBEC1 structure, several mutations previously reported to modulate the catalytic activity of APOBEC3G, a cytidine deaminase from the same family that shares 42% sequence similarity of its active site-containing domain to that of APOBEC1, were identified15. Corresponding APOBEC1 mutations were incorporated into BE3 and evaluated their effect on base editing efficiency and editing window width in HEK293T cells at two C-rich genomic sites containing Cs at positions 3, 4, 5, 6, 8, 9, 10, 12, 13, and 14 (site A); or containing Cs at positions 5, 6, 7, 8, 9, 10, 11, and 13 (site B).
The APOBEC1 mutations R118A and W90A each led to dramatic loss of base editing efficiency (
R126 in APOBEC1 is predicted to interact with the phosphate backbone of ssDNA13. Previous studies have shown that introducing the corresponding mutation into APOBEC3G decreased catalysis by at least 5-fold14. Interestingly, when introduced into APOBEC1 in BE3, R126A and R126E increased or maintained activity relative to BE3 at the most strongly edited positions (C5, C6, and C7), while decreasing editing activity at other positions (
W90 in APOBEC1 (corresponding to W285 in APOBEC3G) is predicted to form a hydrophobic pocket in the APOBEC3G active site and assist in substrate binding13. Mutating this residue to Ala abrogated APOBEC3G's catalytic activity13. In BE3, W90A almost completely abrogated base editing efficiency (
W90Y, R126E, and R132E, the three mutations that narrowed the editing window without drastically reducing base editing activity, were combined into doubly and triply mutated base editors. The double mutant W90Y+R126E resulted in a base editor (YE1-BE3) with BE3-like maximal editing efficiencies, but substantially narrowed editing window width (width at site A and site B=2.9 and 3.0 nucleotides, respectively (
The base editing outcomes of BE3, YE1-BE3, YE2-BE3, EE-BE3, and YEE-BE3 were further compared in HEK293T cells targeting four well-studied human genomic sites that contain multiple Cs within the BE3 activity window1. These target loci contained target Cs at positions 4 and 5 (HEK site 3), positions 4 and 6 (HEK site 2), positions 5 and 6 (EMX1), or positions 6, 7, 8, and 11 (FANCF). BE3 exhibited little (<1.2-fold) preference for editing any Cs within the position 4-8 activity window. In contrast, YE1-BE3, exhibited a 1.3-fold preference for editing C5 over C4 (HEK site 3), 2.6-fold preference for C6 over C4 (HEK site 2), 2.0-fold preference for C5 over C6 (EMX1), and 1.5-fold preference for C6 over C7 (FANCF) (
The product distributions of these four mutants and BE3 were further analyzed by HTS to evaluate their apparent processivity. BE3 generated predominantly T4-T5 (HEK site 3), T4-T6 (HEK site 2), and T5-T6 (EMX1) products in treated HEK293T cells, resulting in, on average, 7.4-fold more products containing two Ts, than products containing a single T. In contrast, YE1-BE3, YE2-BE3, EE-BE3, and YEE-BE3 showed substantially higher preferences for singly edited C4-T5, C4-T6, and T5-C6 products (
The window-modulating mutations in APOBEC1 were applied to VQR-BE3, allowing selective base editing of substrates at sites targeted by NGA PAM (
The five base editors with altered PAM specificities described in this study together increase the number of disease-associated mutations in the ClinVar database that can in principle be corrected by base editing by 2.5-fold (
In summary, the targeting scope of base editing was substantially expanded by developing base editors that use Cas9 variants with different PAM specificities, and by developing a collection of deaminase mutants with varying editing window widths. In theory, base editing should be possible using other programmable DNA-binding proteins (such as Cpf116) that create a bubble of single-stranded DNA that can serve as a substrate for a single-strand-specific nucleotide deaminase enzyme.
Materials and Methods
Cloning. PCR was performed using Q5 Hot Start High-Fidelity DNA Polymerase (New England Biolabs). Plasmids for BE and sgRNA were constructed using USER cloning (New England Biolabs), obtained from previously reported plasmids1. DNA vector amplification was carried out using NEB 10beta competent cells (New England Biolabs).
Cell culture. HEK293T (ATCC CRL-3216) were cultured in Dulbecco's Modified Eagle's Medium plus GlutaMax (ThermoFisher) supplemented with 10% (v/v) fetal bovine serum (FBS), at 37° C. with 5% CO2. Immortalized rat astrocytes containing the ApoE4 isoform of the APOE gene (Taconic Biosciences) were maintained in Dulbecco's Modified Eagle's Medium plus GlutaMax (ThermoFisher Scientific) supplemented with 10% (v/v) fetal bovine serum (FBS) and 200 μg/mL Geneticin (ThermoFisher Scientific).
Transfections. HEK293T cells were seeded on 48-well collagen-coated BioCoat plates (Corning) and transfected at approximately 85% confluency. 750 ng of BE and 250 ng of sgRNA expression plasmids were transfected using 1.5 μl of Lipofectamine 2000 (ThermoFisher Scientific) per well according to the manufacturer's protocol.
High-throughput DNA sequencing of genomic DNA samples. Transfected cells were harvested after 3 d and the genomic DNA was isolated using the Agencourt DNAdvance Genomic DNA Isolation Kit (Beckman Coulter) according to the manufacturer's instructions. Genomic regions of interest were amplified by PCR with flanking HTS primer pairs listed in the Supplementary Sequences. PCR amplification was carried out with Phusion hot-start II DNA polymerase (ThermoFisher) according to the manufacturer's instructions. PCR products were purified using RapidTips (Diffinity Genomics). Secondary PCR was performed to attach sequencing adaptors. The products were gel-purified and quantified using the KAPA Library Quantification Kit-Illumina (KAPA Biosystems). Samples were sequenced on an Illumina MiSeq as previously described1.
Data analysis. Nucleotide frequencies were assessed using a previously described MATLAB script 1. Briefly, the reads were aligned to the reference sequence via the Smith-Waterman algorithm. Base calls with Q-scores below 30 were replaced with a placeholder nucleotide (N). This quality threshold results in nucleotide frequencies with an expected theoretical error rate of 1 in 1000.
Analyses of base editing processivity were performed using a custom python script. This program trims sequencing reads to the 20 nucleotide protospacer sequence as determined by a perfect match for the 7 nucleotide sequences that should flank the target site. These targets were then consolidated and sorted by abundance to assess the frequency of base editing products.
Bioinformatic analysis of the ClinVar database of human disease-associated mutations was performed in a manner similar to that previously described but with small adjustments1. These adjustments enable the identification of targets with PAMs of customizable length and sequence. In addition, this improved script includes a priority ranking of target C positions (C5>C6>C7>C8≈C4), thus enabling the identification of target sites in which the on-target C is either the only cytosine within the window or is placed at a position with higher predicted editing efficiency than any off-target C within the editing window.
Using improved transfection procedures and better plasmids, biological replicates (n=3) were used to install the four HF mutations into the Cas9 portion of BE3. The mutations do not significantly effect on-targeting editing with plasmid delivery (
Both lipofection and installing HF mutations were shown to decrease off-target deamination events. For the four sites shown in
Purified proteins HF-BE3 and BE3 were analyzed in vitro for their capabilities to convert C to T residues at different positions in the spacer with the most permissive motif. Both BE3 and HF-BE3 proteins were found to have the same “window” for base editing (
A list of the disease targets is given in Table 9. The base to be edited in Table 9 is indicated in bold and underlined.
Additional exemplary genes in the human genome that may be targeted by the base editors or complexes of this disclosure are provided herein in Tables 7 and 8. Table 7 includes gene mutations that may be correcteded by changing a cytosine (C) to a thymine (T), for example, using a BE3 nucleobase editor. Table 8 includes gene mutations that may be corrected by changing a guanine (G) to an adenine (A), for example, using a BE3 nucleobase editor.
Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents of the embodiments described herein. The scope of the present disclosure is not intended to be limited to the above description, but rather is as set forth in the appended claims.
Articles such as “a,” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between two or more members of a group are considered satisfied if one, more than one, or all of the group members are present, unless indicated to the contrary or otherwise evident from the context. The disclosure of a group that includes “or” between two or more group members provides embodiments in which exactly one member of the group is present, embodiments in which more than one members of the group are present, and embodiments in which all of the group members are present. For purposes of brevity those embodiments have not been individually spelled out herein, but it will be understood that each of these embodiments is provided herein and may be specifically claimed or disclaimed.
It is to be understood that the invention encompasses all variations, combinations, and permutations in which one or more limitation, element, clause, or descriptive term, from one or more of the claims or from one or more relevant portion of the description, is introduced into another claim. For example, a claim that is dependent on another claim can be modified to include one or more of the limitations found in any other claim that is dependent on the same base claim. Furthermore, where the claims recite a composition, it is to be understood that methods of making or using the composition according to any of the methods of making or using disclosed herein or according to methods known in the art, if any, are included, unless otherwise indicated or unless it would be evident to one of ordinary skill in the art that a contradiction or inconsistency would arise.
Where elements are presented as lists, e.g., in Markush group format, it is to be understood that every possible subgroup of the elements is also disclosed, and that any element or subgroup of elements can be removed from the group. It is also noted that the term “comprising” is intended to be open and permits the inclusion of additional elements or steps. It should be understood that, in general, where an embodiment, product, or method is referred to as comprising particular elements, features, or steps, embodiments, products, or methods that consist, or consist essentially of, such elements, features, or steps, are provided as well. For purposes of brevity those embodiments have not been individually spelled out herein, but it will be understood that each of these embodiments is provided herein and may be specifically claimed or disclaimed.
Where ranges are given, endpoints are included. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and/or the understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value within the stated ranges in some embodiments, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise. For purposes of brevity, the values in each range have not been individually spelled out herein, but it will be understood that each of these values is provided herein and may be specifically claimed or disclaimed. It is also to be understood that unless otherwise indicated or otherwise evident from the context and/or the understanding of one of ordinary skill in the art, values expressed as ranges can assume any subrange within the given range, wherein the endpoints of the subrange are expressed to the same degree of accuracy as the tenth of the unit of the lower limit of the range.
In addition, it is to be understood that any particular embodiment of the present invention may be explicitly excluded from any one or more of the claims. Where ranges are given, any value within the range may explicitly be excluded from any one or more of the claims. Any embodiment, element, feature, application, or aspect of the compositions and/or methods of the invention, can be excluded from any one or more claims. For purposes of brevity, all of the embodiments in which one or more elements, features, purposes, or aspects is excluded are not set forth explicitly herein.
This application is a continuation of and claims priority under 35 U.S.C. § 120 to international PCT Application, PCT/US2016/058344, filed Oct. 22, 2016, and is a continuation of and claims priority under 35 U.S.C. § 120 to U.S. Application, U.S. Ser. No. 15/331,852, filed Oct. 22, 2016, which claims priority under 35 U.S.C. § 119(e) to U.S. provisional patent applications, U.S. Ser. No. 62/245,828 filed Oct. 23, 2015, U.S. Ser. No. 62/279,346 filed Jan. 15, 2016, U.S. Ser. No. 62/311,763 filed Mar. 22, 2016, U.S. Ser. No. 62/322,178 filed Apr. 13, 2016, U.S. Ser. No. 62/357,352 filed Jun. 30, 2016, U.S. Ser. No. 62/370,700 filed Aug. 3, 2016, U.S. Ser. No. 62/398,490 filed Sep. 22, 2016, U.S. Ser. No. 62/408,686 filed Oct. 14, 2016, and U.S. Ser. No. 62/357,332 filed Jun. 30, 2016; each of which is incorporated herein by reference.
This invention was made with government support under grant number R01 EB022376 (formerly R01 GM065400) awarded by the National Institutes of Health, under training grant numbers F32 GM 112366-2 and F32 GM 106601-2 awarded by the National Institutes of Health, and Harvard Biophysics NIH training grant T32 GM008313 awarded by the National Institutes of Health. The government has certain rights in the invention.
| Number | Name | Date | Kind |
|---|---|---|---|
| 4182449 | Kozlow | Jan 1980 | A |
| 4186183 | Steck et al. | Jan 1980 | A |
| 4217344 | Vanlerberghe et al. | Aug 1980 | A |
| 4235871 | Papahadjopoulos et al. | Nov 1980 | A |
| 4261975 | Fullerton et al. | Apr 1981 | A |
| 4485054 | Mezei et al. | Nov 1984 | A |
| 4501728 | Geho et al. | Feb 1985 | A |
| 4663290 | Weis et al. | May 1987 | A |
| 4737323 | Martin et al. | Apr 1988 | A |
| 4774085 | Fidler | Sep 1988 | A |
| 4797368 | Carter et al. | Jan 1989 | A |
| 4837028 | Allen | Jun 1989 | A |
| 4873316 | Meade et al. | Oct 1989 | A |
| 4880635 | Janoff et al. | Nov 1989 | A |
| 4889818 | Gelfand et al. | Dec 1989 | A |
| 4897355 | Eppstein et al. | Jan 1990 | A |
| 4906477 | Kurono et al. | Mar 1990 | A |
| 4911928 | Wallach | Mar 1990 | A |
| 4917951 | Wallach | Apr 1990 | A |
| 4920016 | Allen et al. | Apr 1990 | A |
| 4921757 | Wheatley et al. | May 1990 | A |
| 4946787 | Eppstein et al. | Aug 1990 | A |
| 4965185 | Grischenko et al. | Oct 1990 | A |
| 5017492 | Kotewicz et al. | May 1991 | A |
| 5047342 | Chatterjee | Sep 1991 | A |
| 5049386 | Eppstein et al. | Sep 1991 | A |
| 5079352 | Gelfand et al. | Jan 1992 | A |
| 5139941 | Muzyczka et al. | Aug 1992 | A |
| 5173414 | Lebkowski et al. | Dec 1992 | A |
| 5223409 | Ladner et al. | Jun 1993 | A |
| 5244797 | Kotewicz et al. | Sep 1993 | A |
| 5270179 | Chatterjee | Dec 1993 | A |
| 5374553 | Gelfand et al. | Dec 1994 | A |
| 5405776 | Kotewicz et al. | Apr 1995 | A |
| 5436149 | Barnes | Jul 1995 | A |
| 5449639 | Wei et al. | Sep 1995 | A |
| 5496714 | Comb et al. | Mar 1996 | A |
| 5512462 | Cheng | Apr 1996 | A |
| 5580737 | Polisky et al. | Dec 1996 | A |
| 5614365 | Tabor et al. | Mar 1997 | A |
| 5658727 | Barbas et al. | Aug 1997 | A |
| 5668005 | Kotewicz et al. | Sep 1997 | A |
| 5677152 | Birch et al. | Oct 1997 | A |
| 5767099 | Harris et al. | Jun 1998 | A |
| 5780053 | Ashley et al. | Jul 1998 | A |
| 5830430 | Unger et al. | Nov 1998 | A |
| 5834247 | Comb et al. | Nov 1998 | A |
| 5835699 | Kimura | Nov 1998 | A |
| 5851548 | Dattagupta et al. | Dec 1998 | A |
| 5855910 | Ashley et al. | Jan 1999 | A |
| 5962313 | Podsakoff et al. | Oct 1999 | A |
| 5981182 | Jacobs, Jr. et al. | Nov 1999 | A |
| 6057153 | George et al. | May 2000 | A |
| 6063608 | Kotewicz et al. | May 2000 | A |
| 6156509 | Schellenberger | Dec 2000 | A |
| 6183998 | Ivanov et al. | Feb 2001 | B1 |
| 6429298 | Ellington et al. | Aug 2002 | B1 |
| 6453242 | Eisenberg et al. | Sep 2002 | B1 |
| 6479264 | Louwrier | Nov 2002 | B1 |
| 6503717 | Case et al. | Jan 2003 | B2 |
| 6534261 | Cox, III et al. | Mar 2003 | B1 |
| 6589768 | Kotewicz et al. | Jul 2003 | B1 |
| 6599692 | Case et al. | Jul 2003 | B1 |
| 6607882 | Cox, III et al. | Aug 2003 | B1 |
| 6610522 | Kotewicz et al. | Aug 2003 | B1 |
| 6689558 | Case | Feb 2004 | B2 |
| 6824978 | Cox, III et al. | Nov 2004 | B1 |
| 6933113 | Case et al. | Aug 2005 | B2 |
| 6979539 | Cox, III et al. | Dec 2005 | B2 |
| 7013219 | Case et al. | Mar 2006 | B2 |
| 7078208 | Smith et al. | Jul 2006 | B2 |
| 7163824 | Cox, III et al. | Jan 2007 | B2 |
| 7479573 | Chu et al. | Jan 2009 | B2 |
| 7595179 | Chen et al. | Sep 2009 | B2 |
| 7670807 | Lampson et al. | Mar 2010 | B2 |
| 7794931 | Breaker et al. | Sep 2010 | B2 |
| 7919277 | Russell et al. | Apr 2011 | B2 |
| 7993672 | Huang et al. | Aug 2011 | B2 |
| 8067556 | Hogrefe et al. | Nov 2011 | B2 |
| 8361725 | Russell et al. | Jan 2013 | B2 |
| 8394604 | Liu et al. | Mar 2013 | B2 |
| 8440431 | Voytas et al. | May 2013 | B2 |
| 8440432 | Voytas et al. | May 2013 | B2 |
| 8450471 | Voytas et al. | May 2013 | B2 |
| 8492082 | De Franciscis et al. | Jul 2013 | B2 |
| 8546553 | Terns et al. | Oct 2013 | B2 |
| 8569256 | Heyes et al. | Oct 2013 | B2 |
| 8586363 | Voytas et al. | Nov 2013 | B2 |
| 8680069 | de Fougerolles et al. | Mar 2014 | B2 |
| 8691750 | Constien et al. | Apr 2014 | B2 |
| 8697359 | Zhang | Apr 2014 | B1 |
| 8697853 | Voytas et al. | Apr 2014 | B2 |
| 8709466 | Coady et al. | Apr 2014 | B2 |
| 8728526 | Heller | May 2014 | B2 |
| 8748667 | Budzik et al. | Jun 2014 | B2 |
| 8758810 | Okada et al. | Jun 2014 | B2 |
| 8759103 | Kim et al. | Jun 2014 | B2 |
| 8759104 | Unciti-Broceta et al. | Jun 2014 | B2 |
| 8771728 | Huang et al. | Jul 2014 | B2 |
| 8790664 | Pitard et al. | Jul 2014 | B2 |
| 8795965 | Zhang | Aug 2014 | B2 |
| 8822663 | Schrum et al. | Sep 2014 | B2 |
| 8846578 | McCray et al. | Sep 2014 | B2 |
| 8900814 | Yasukawa et al. | Dec 2014 | B2 |
| 8993233 | Zhang et al. | Mar 2015 | B2 |
| 8999641 | Zhang et al. | Apr 2015 | B2 |
| 9023594 | Liu et al. | May 2015 | B2 |
| 9068179 | Liu et al. | Jun 2015 | B1 |
| 9163284 | Liu et al. | Oct 2015 | B2 |
| 9181535 | Liu et al. | Nov 2015 | B2 |
| 9228207 | Liu et al. | Jan 2016 | B2 |
| 9234213 | Wu | Jan 2016 | B2 |
| 9267127 | Liu et al. | Feb 2016 | B2 |
| 9322006 | Liu et al. | Apr 2016 | B2 |
| 9322037 | Liu et al. | Apr 2016 | B2 |
| 9340799 | Liu et al. | May 2016 | B2 |
| 9340800 | Liu et al. | May 2016 | B2 |
| 9359599 | Liu et al. | Jun 2016 | B2 |
| 9388430 | Liu et al. | Jul 2016 | B2 |
| 9394537 | Liu et al. | Jul 2016 | B2 |
| 9458484 | Ma et al. | Oct 2016 | B2 |
| 9512446 | Joung et al. | Dec 2016 | B1 |
| 9526724 | Oshiack et al. | Dec 2016 | B2 |
| 9526784 | Liu et al. | Dec 2016 | B2 |
| 9534210 | Park et al. | Jan 2017 | B2 |
| 9580698 | Xu et al. | Feb 2017 | B1 |
| 9637739 | {hacek over (S)}ik{hacek over (s)}nys et al. | May 2017 | B2 |
| 9737604 | Liu et al. | Aug 2017 | B2 |
| 9738693 | Telford et al. | Aug 2017 | B2 |
| 9771574 | Liu et al. | Sep 2017 | B2 |
| 9783791 | Hogrefe et al. | Oct 2017 | B2 |
| 9816093 | Donohoue et al. | Nov 2017 | B1 |
| 9840538 | Telford et al. | Dec 2017 | B2 |
| 9840690 | Karli et al. | Dec 2017 | B2 |
| 9840699 | Liu et al. | Dec 2017 | B2 |
| 9840702 | Collingwood et al. | Dec 2017 | B2 |
| 9850521 | Braman et al. | Dec 2017 | B2 |
| 9873907 | Zeiner et al. | Jan 2018 | B2 |
| 9879270 | Hittinger et al. | Jan 2018 | B2 |
| 9932567 | Xu et al. | Apr 2018 | B1 |
| 9938288 | Kishi et al. | Apr 2018 | B1 |
| 9944933 | Storici et al. | Apr 2018 | B2 |
| 9982279 | Gill et al. | May 2018 | B1 |
| 9999671 | Liu et al. | Jun 2018 | B2 |
| 10059940 | Zhong | Aug 2018 | B2 |
| 10077453 | Liu et al. | Sep 2018 | B2 |
| 10113163 | Liu et al. | Oct 2018 | B2 |
| 10150955 | Lambowitz et al. | Dec 2018 | B2 |
| 10167457 | Liu et al. | Jan 2019 | B2 |
| 10179911 | Liu et al. | Jan 2019 | B2 |
| 10189831 | Arrington et al. | Jan 2019 | B2 |
| 10202658 | Parkin et al. | Feb 2019 | B2 |
| 10227581 | Liu et al. | Mar 2019 | B2 |
| 10323236 | Liu et al. | Jun 2019 | B2 |
| 10336997 | Liu et al. | Jul 2019 | B2 |
| 10358670 | Janulaitis et al. | Jul 2019 | B2 |
| 10392674 | Liu et al. | Aug 2019 | B2 |
| 10407697 | Doudna et al. | Sep 2019 | B2 |
| 10465176 | Liu et al. | Nov 2019 | B2 |
| 10508298 | Liu et al. | Dec 2019 | B2 |
| 10597679 | Liu et al. | Mar 2020 | B2 |
| 10612011 | Liu et al. | Apr 2020 | B2 |
| 10682410 | Liu et al. | Jun 2020 | B2 |
| 10704062 | Liu et al. | Jul 2020 | B2 |
| 10745677 | Maianti et al. | Aug 2020 | B2 |
| 10858639 | Liu et al. | Dec 2020 | B2 |
| 10912833 | Liu et al. | Feb 2021 | B2 |
| 10947530 | Liu et al. | Mar 2021 | B2 |
| 10954548 | Liu et al. | Mar 2021 | B2 |
| 20030082575 | Schultz et al. | May 2003 | A1 |
| 20030087817 | Cox et al. | May 2003 | A1 |
| 20030096337 | Hillman et al. | May 2003 | A1 |
| 20030108885 | Schultz et al. | Jun 2003 | A1 |
| 20030119764 | Loeb et al. | Jun 2003 | A1 |
| 20030167533 | Yadav et al. | Sep 2003 | A1 |
| 20030203480 | Kovesdi et al. | Oct 2003 | A1 |
| 20040003420 | Kuhn et al. | Jan 2004 | A1 |
| 20040115184 | Smith et al. | Jun 2004 | A1 |
| 20040203109 | Lal et al. | Oct 2004 | A1 |
| 20050136429 | Guarente et al. | Jun 2005 | A1 |
| 20050222030 | Allison | Oct 2005 | A1 |
| 20060088864 | Smolke et al. | Apr 2006 | A1 |
| 20060104984 | Littlefield et al. | May 2006 | A1 |
| 20060246568 | Honjo et al. | Nov 2006 | A1 |
| 20070264692 | Liu et al. | Nov 2007 | A1 |
| 20070269817 | Shapero | Nov 2007 | A1 |
| 20080051317 | Church et al. | Feb 2008 | A1 |
| 20080124725 | Barrangou et al. | May 2008 | A1 |
| 20080182254 | Hall et al. | Jul 2008 | A1 |
| 20080220502 | Schellenberger et al. | Sep 2008 | A1 |
| 20090130718 | Short | May 2009 | A1 |
| 20090215878 | Tan et al. | Aug 2009 | A1 |
| 20090234109 | Han et al. | Sep 2009 | A1 |
| 20100076057 | Sontheimer et al. | Mar 2010 | A1 |
| 20100093617 | Barrangou et al. | Apr 2010 | A1 |
| 20100104690 | Barrangou et al. | Apr 2010 | A1 |
| 20100273857 | Thakker et al. | Oct 2010 | A1 |
| 20100305197 | Che | Dec 2010 | A1 |
| 20100316643 | Eckert et al. | Dec 2010 | A1 |
| 20110016540 | Weinstein et al. | Jan 2011 | A1 |
| 20110059160 | Essner et al. | Mar 2011 | A1 |
| 20110059502 | Chalasani | Mar 2011 | A1 |
| 20110104787 | Church et al. | May 2011 | A1 |
| 20110177495 | Liu et al. | Jul 2011 | A1 |
| 20110189776 | Terns et al. | Aug 2011 | A1 |
| 20110217739 | Terns et al. | Sep 2011 | A1 |
| 20110301073 | Gregory et al. | Dec 2011 | A1 |
| 20120129759 | Liu et al. | May 2012 | A1 |
| 20120141523 | Castado et al. | Jun 2012 | A1 |
| 20120244601 | Bertozzi et al. | Sep 2012 | A1 |
| 20120270273 | Zhang et al. | Oct 2012 | A1 |
| 20130059931 | Petersen-Mahrt et al. | Mar 2013 | A1 |
| 20130117869 | Duchateau et al. | May 2013 | A1 |
| 20130130248 | Haurwitz et al. | May 2013 | A1 |
| 20130158245 | Russell et al. | Jun 2013 | A1 |
| 20130165389 | Schellenberger et al. | Jun 2013 | A1 |
| 20130309720 | Schultz et al. | Nov 2013 | A1 |
| 20130344117 | Mirosevich et al. | Dec 2013 | A1 |
| 20130345064 | Liu et al. | Dec 2013 | A1 |
| 20140004280 | Loomis | Jan 2014 | A1 |
| 20140005269 | Ngwuluka et al. | Jan 2014 | A1 |
| 20140017214 | Cost | Jan 2014 | A1 |
| 20140018404 | Chen et al. | Jan 2014 | A1 |
| 20140044793 | Goll et al. | Feb 2014 | A1 |
| 20140065711 | Liu et al. | Mar 2014 | A1 |
| 20140068797 | Doudna et al. | Mar 2014 | A1 |
| 20140127752 | Zhou et al. | May 2014 | A1 |
| 20140141094 | Smyth et al. | May 2014 | A1 |
| 20140141487 | Feldman et al. | May 2014 | A1 |
| 20140179770 | Zhang et al. | Jun 2014 | A1 |
| 20140186843 | Zhang et al. | Jul 2014 | A1 |
| 20140186958 | Zhang et al. | Jul 2014 | A1 |
| 20140201858 | Ostertag et al. | Jul 2014 | A1 |
| 20140234289 | Liu et al. | Aug 2014 | A1 |
| 20140248702 | Zhang et al. | Sep 2014 | A1 |
| 20140273037 | Wu | Sep 2014 | A1 |
| 20140273226 | Wu | Sep 2014 | A1 |
| 20140273230 | Chen et al. | Sep 2014 | A1 |
| 20140295556 | Joung et al. | Oct 2014 | A1 |
| 20140295557 | Joung et al. | Oct 2014 | A1 |
| 20140342456 | Mali et al. | Nov 2014 | A1 |
| 20140342457 | Mali et al. | Nov 2014 | A1 |
| 20140342458 | Mali et al. | Nov 2014 | A1 |
| 20140349400 | Jakimo et al. | Nov 2014 | A1 |
| 20140356867 | Peter et al. | Dec 2014 | A1 |
| 20140356956 | Church et al. | Dec 2014 | A1 |
| 20140356958 | Mali et al. | Dec 2014 | A1 |
| 20140356959 | Church et al. | Dec 2014 | A1 |
| 20140357523 | Zeiner et al. | Dec 2014 | A1 |
| 20140377868 | Joung et al. | Dec 2014 | A1 |
| 20150010526 | Liu et al. | Jan 2015 | A1 |
| 20150031089 | Lindstrom | Jan 2015 | A1 |
| 20150031132 | Church et al. | Jan 2015 | A1 |
| 20150031133 | Church et al. | Jan 2015 | A1 |
| 20150044191 | Liu et al. | Feb 2015 | A1 |
| 20150044192 | Liu et al. | Feb 2015 | A1 |
| 20150044772 | Zhao | Feb 2015 | A1 |
| 20150050699 | Siksnys et al. | Feb 2015 | A1 |
| 20150056177 | Liu et al. | Feb 2015 | A1 |
| 20150056629 | Guthrie-Honea | Feb 2015 | A1 |
| 20150064138 | Lu et al. | Mar 2015 | A1 |
| 20150064789 | Paschon et al. | Mar 2015 | A1 |
| 20150071898 | Liu et al. | Mar 2015 | A1 |
| 20150071899 | Liu et al. | Mar 2015 | A1 |
| 20150071900 | Liu et al. | Mar 2015 | A1 |
| 20150071901 | Liu et al. | Mar 2015 | A1 |
| 20150071902 | Liu et al. | Mar 2015 | A1 |
| 20150071903 | Liu et al. | Mar 2015 | A1 |
| 20150071906 | Liu et al. | Mar 2015 | A1 |
| 20150079680 | Bradley et al. | Mar 2015 | A1 |
| 20150079681 | Zhang | Mar 2015 | A1 |
| 20150098954 | Hyde et al. | Apr 2015 | A1 |
| 20150118216 | Liu et al. | Apr 2015 | A1 |
| 20150132269 | Orkin et al. | May 2015 | A1 |
| 20150140664 | Byrne et al. | May 2015 | A1 |
| 20150159172 | Miller et al. | Jun 2015 | A1 |
| 20150165054 | Liu et al. | Jun 2015 | A1 |
| 20150166980 | Liu et al. | Jun 2015 | A1 |
| 20150166981 | Liu et al. | Jun 2015 | A1 |
| 20150166982 | Liu et al. | Jun 2015 | A1 |
| 20150166984 | Liu et al. | Jun 2015 | A1 |
| 20150166985 | Liu et al. | Jun 2015 | A1 |
| 20150191744 | Wolfe et al. | Jul 2015 | A1 |
| 20150197759 | Xu et al. | Jul 2015 | A1 |
| 20150211058 | Carstens | Jul 2015 | A1 |
| 20150218573 | Loque et al. | Aug 2015 | A1 |
| 20150225773 | Farmer et al. | Aug 2015 | A1 |
| 20150252358 | Maeder et al. | Sep 2015 | A1 |
| 20150275202 | Liu et al. | Oct 2015 | A1 |
| 20150307889 | Petolino et al. | Oct 2015 | A1 |
| 20150315252 | Haugwitz et al. | Nov 2015 | A1 |
| 20160015682 | Cawthorne et al. | Jan 2016 | A2 |
| 20160017393 | Jacobson et al. | Jan 2016 | A1 |
| 20160017396 | Cann et al. | Jan 2016 | A1 |
| 20160032292 | Storici et al. | Feb 2016 | A1 |
| 20160032353 | Braman et al. | Feb 2016 | A1 |
| 20160040155 | Maizels et al. | Feb 2016 | A1 |
| 20160046952 | Hittinger et al. | Feb 2016 | A1 |
| 20160046961 | Jinek et al. | Feb 2016 | A1 |
| 20160046962 | May et al. | Feb 2016 | A1 |
| 20160053272 | Wurtzel et al. | Feb 2016 | A1 |
| 20160053304 | Wurtzel et al. | Feb 2016 | A1 |
| 20160074535 | Ranganathan et al. | Mar 2016 | A1 |
| 20160076093 | Shendure et al. | Mar 2016 | A1 |
| 20160090603 | Carnes et al. | Mar 2016 | A1 |
| 20160090622 | Liu et al. | Mar 2016 | A1 |
| 20160115488 | Zhang et al. | Apr 2016 | A1 |
| 20160138046 | Wu | May 2016 | A1 |
| 20160186214 | Brouns et al. | Jun 2016 | A1 |
| 20160200779 | Liu et al. | Jul 2016 | A1 |
| 20160201040 | Liu et al. | Jul 2016 | A1 |
| 20160201089 | Gersbach et al. | Jul 2016 | A1 |
| 20160206566 | Lu et al. | Jul 2016 | A1 |
| 20160208243 | Zhang et al. | Jul 2016 | A1 |
| 20160208288 | Liu et al. | Jul 2016 | A1 |
| 20160215275 | Zhong | Jul 2016 | A1 |
| 20160215276 | Liu et al. | Jul 2016 | A1 |
| 20160215300 | May et al. | Jul 2016 | A1 |
| 20160244784 | Jacobson et al. | Aug 2016 | A1 |
| 20160244829 | Bang et al. | Aug 2016 | A1 |
| 20160264934 | Giallourakis et al. | Sep 2016 | A1 |
| 20160272965 | Zhang et al. | Sep 2016 | A1 |
| 20160281072 | Zhang | Sep 2016 | A1 |
| 20160298136 | Chen et al. | Oct 2016 | A1 |
| 20160304846 | Liu et al. | Oct 2016 | A1 |
| 20160304855 | Stark et al. | Oct 2016 | A1 |
| 20160312304 | Sorrentino et al. | Oct 2016 | A1 |
| 20160319262 | Doudna et al. | Nov 2016 | A1 |
| 20160333389 | Liu et al. | Nov 2016 | A1 |
| 20160340622 | Abdou | Nov 2016 | A1 |
| 20160340662 | Zhang et al. | Nov 2016 | A1 |
| 20160345578 | Barrangou et al. | Dec 2016 | A1 |
| 20160346360 | Quake et al. | Dec 2016 | A1 |
| 20160346361 | Quake et al. | Dec 2016 | A1 |
| 20160346362 | Quake et al. | Dec 2016 | A1 |
| 20160348074 | Quake et al. | Dec 2016 | A1 |
| 20160348096 | Liu et al. | Dec 2016 | A1 |
| 20160350476 | Quake et al. | Dec 2016 | A1 |
| 20160355796 | Davidson et al. | Dec 2016 | A1 |
| 20160369262 | Reik et al. | Dec 2016 | A1 |
| 20170009224 | Liu et al. | Jan 2017 | A1 |
| 20170009242 | McKinley et al. | Jan 2017 | A1 |
| 20170014449 | Bangera et al. | Jan 2017 | A1 |
| 20170020922 | Wagner et al. | Jan 2017 | A1 |
| 20170037432 | Donohoue et al. | Feb 2017 | A1 |
| 20170044520 | Liu et al. | Feb 2017 | A1 |
| 20170044592 | Peter et al. | Feb 2017 | A1 |
| 20170053729 | Kotani et al. | Feb 2017 | A1 |
| 20170058271 | Joung et al. | Mar 2017 | A1 |
| 20170058272 | Carter et al. | Mar 2017 | A1 |
| 20170058298 | Kennedy et al. | Mar 2017 | A1 |
| 20170073663 | Wang et al. | Mar 2017 | A1 |
| 20170073670 | Nishida et al. | Mar 2017 | A1 |
| 20170087224 | Quake | Mar 2017 | A1 |
| 20170087225 | Quake | Mar 2017 | A1 |
| 20170088587 | Quake | Mar 2017 | A1 |
| 20170088828 | Quake | Mar 2017 | A1 |
| 20170107536 | Zhang et al. | Apr 2017 | A1 |
| 20170107560 | Peter et al. | Apr 2017 | A1 |
| 20170114367 | Hu et al. | Apr 2017 | A1 |
| 20170121693 | Liu et al. | May 2017 | A1 |
| 20170145394 | Yeo et al. | May 2017 | A1 |
| 20170145405 | Tang et al. | May 2017 | A1 |
| 20170145438 | Kantor | May 2017 | A1 |
| 20170152528 | Zhang | Jun 2017 | A1 |
| 20170152787 | Kubo et al. | Jun 2017 | A1 |
| 20170159033 | Kamtekar et al. | Jun 2017 | A1 |
| 20170166928 | Vyas et al. | Jun 2017 | A1 |
| 20170175104 | Doudna et al. | Jun 2017 | A1 |
| 20170175142 | Zhang et al. | Jun 2017 | A1 |
| 20170191047 | Terns et al. | Jul 2017 | A1 |
| 20170191078 | Zhang et al. | Jul 2017 | A1 |
| 20170198269 | Zhang et al. | Jul 2017 | A1 |
| 20170198277 | Kmiec et al. | Jul 2017 | A1 |
| 20170198302 | Feng et al. | Jul 2017 | A1 |
| 20170226522 | Hu et al. | Aug 2017 | A1 |
| 20170233703 | Xie et al. | Aug 2017 | A1 |
| 20170233756 | Begemann et al. | Aug 2017 | A1 |
| 20170247671 | Yung et al. | Aug 2017 | A1 |
| 20170247703 | Sloan et al. | Aug 2017 | A1 |
| 20170268022 | Liu et al. | Sep 2017 | A1 |
| 20170275665 | Silas et al. | Sep 2017 | A1 |
| 20170283797 | Robb et al. | Oct 2017 | A1 |
| 20170283831 | Zhang et al. | Oct 2017 | A1 |
| 20170314016 | Kim et al. | Nov 2017 | A1 |
| 20170362635 | Chamberlain et al. | Dec 2017 | A1 |
| 20180064077 | Dunham et al. | Mar 2018 | A1 |
| 20180066258 | Powell | Mar 2018 | A1 |
| 20180068062 | Zhang et al. | Mar 2018 | A1 |
| 20180073012 | Liu et al. | Mar 2018 | A1 |
| 20180080051 | Sheikh et al. | Mar 2018 | A1 |
| 20180087046 | Badran et al. | Mar 2018 | A1 |
| 20180100147 | Yates et al. | Apr 2018 | A1 |
| 20180105867 | Xiao et al. | Apr 2018 | A1 |
| 20180119118 | Lu et al. | May 2018 | A1 |
| 20180127780 | Liu et al. | May 2018 | A1 |
| 20180155708 | Church et al. | Jun 2018 | A1 |
| 20180155720 | Donohoue et al. | Jun 2018 | A1 |
| 20180163213 | Aneja et al. | Jun 2018 | A1 |
| 20180170984 | Harris et al. | Jun 2018 | A1 |
| 20180179503 | Maianti et al. | Jun 2018 | A1 |
| 20180179547 | Zhang et al. | Jun 2018 | A1 |
| 20180201921 | Malcolm | Jul 2018 | A1 |
| 20180230464 | Zhong | Aug 2018 | A1 |
| 20180230471 | Storici et al. | Aug 2018 | A1 |
| 20180236081 | Liu et al. | Aug 2018 | A1 |
| 20180237758 | Liu et al. | Aug 2018 | A1 |
| 20180237787 | Maianti et al. | Aug 2018 | A1 |
| 20180245066 | Yao et al. | Aug 2018 | A1 |
| 20180258418 | Kim | Sep 2018 | A1 |
| 20180265864 | Li et al. | Sep 2018 | A1 |
| 20180273939 | Yu et al. | Sep 2018 | A1 |
| 20180282722 | Jakimo et al. | Oct 2018 | A1 |
| 20180298391 | Jakimo et al. | Oct 2018 | A1 |
| 20180305688 | Zhong | Oct 2018 | A1 |
| 20180305704 | Zhang | Oct 2018 | A1 |
| 20180312822 | Lee et al. | Nov 2018 | A1 |
| 20180312825 | Liu et al. | Nov 2018 | A1 |
| 20180312828 | Liu et al. | Nov 2018 | A1 |
| 20180312835 | Yao et al. | Nov 2018 | A1 |
| 20180327756 | Zhang et al. | Nov 2018 | A1 |
| 20190010481 | Joung et al. | Jan 2019 | A1 |
| 20190055543 | Tran et al. | Feb 2019 | A1 |
| 20190093099 | Liu et al. | Mar 2019 | A1 |
| 20190185883 | Liu et al. | Jun 2019 | A1 |
| 20190225955 | Liu et al. | Jul 2019 | A1 |
| 20190233847 | Savage et al. | Aug 2019 | A1 |
| 20190241633 | Fotin-Mleczek et al. | Aug 2019 | A1 |
| 20190256842 | Liu et al. | Aug 2019 | A1 |
| 20190264202 | Church et al. | Aug 2019 | A1 |
| 20190276816 | Liu et al. | Sep 2019 | A1 |
| 20190322992 | Liu et al. | Oct 2019 | A1 |
| 20190352632 | Liu et al. | Nov 2019 | A1 |
| 20190367891 | Liu et al. | Dec 2019 | A1 |
| 20200010818 | Liu et al. | Jan 2020 | A1 |
| 20200010835 | Maianti et al. | Jan 2020 | A1 |
| 20200063127 | Lu et al. | Feb 2020 | A1 |
| 20200071722 | Liu et al. | Mar 2020 | A1 |
| 20200172931 | Liu et al. | Jun 2020 | A1 |
| 20200181619 | Tang et al. | Jun 2020 | A1 |
| 20200190493 | Liu et al. | Jun 2020 | A1 |
| 20200216833 | Liu et al. | Jul 2020 | A1 |
| 20200255868 | Liu et al. | Aug 2020 | A1 |
| 20200277587 | Liu et al. | Sep 2020 | A1 |
| 20200323984 | Liu et al. | Oct 2020 | A1 |
| 20200399619 | Maianti et al. | Dec 2020 | A1 |
| 20200399626 | Liu et al. | Dec 2020 | A1 |
| 20210054416 | Liu et al. | Feb 2021 | A1 |
| Number | Date | Country |
|---|---|---|
| 2012244264 | Nov 2012 | AU |
| 2012354062 | Jul 2014 | AU |
| 2015252023 | Nov 2015 | AU |
| 2015101792 | Jan 2016 | AU |
| 112015013786 | Jul 2017 | BR |
| 2894668 | Jun 2014 | CA |
| 2894681 | Jun 2014 | CA |
| 2894684 | Jun 2014 | CA |
| 2 852 593 | Nov 2015 | CA |
| 1069962 | Mar 1993 | CN |
| 103224947 | Jul 2013 | CN |
| 103233028 | Aug 2013 | CN |
| 103388006 | Nov 2013 | CN |
| 103614415 | Mar 2014 | CN |
| 103642836 | Mar 2014 | CN |
| 103668472 | Mar 2014 | CN |
| 103820441 | May 2014 | CN |
| 103820454 | May 2014 | CN |
| 103911376 | Jul 2014 | CN |
| 103923911 | Jul 2014 | CN |
| 103981211 | Aug 2014 | CN |
| 103981212 | Aug 2014 | CN |
| 104004778 | Aug 2014 | CN |
| 104004782 | Aug 2014 | CN |
| 104017821 | Sep 2014 | CN |
| 104109687 | Oct 2014 | CN |
| 104178461 | Dec 2014 | CN |
| 104342457 | Feb 2015 | CN |
| 104404036 | Mar 2015 | CN |
| 104450774 | Mar 2015 | CN |
| 104480144 | Apr 2015 | CN |
| 104498493 | Apr 2015 | CN |
| 104504304 | Apr 2015 | CN |
| 104531704 | Apr 2015 | CN |
| 104531705 | Apr 2015 | CN |
| 104560864 | Apr 2015 | CN |
| 104561095 | Apr 2015 | CN |
| 104593418 | May 2015 | CN |
| 104593422 | May 2015 | CN |
| 104611370 | May 2015 | CN |
| 104651392 | May 2015 | CN |
| 104651398 | May 2015 | CN |
| 104651399 | May 2015 | CN |
| 104651401 | May 2015 | CN |
| 104673816 | Jun 2015 | CN |
| 104725626 | Jun 2015 | CN |
| 104726449 | Jun 2015 | CN |
| 104726494 | Jun 2015 | CN |
| 104745626 | Jul 2015 | CN |
| 104762321 | Jul 2015 | CN |
| 104805078 | Jul 2015 | CN |
| 104805099 | Jul 2015 | CN |
| 104805118 | Jul 2015 | CN |
| 104846010 | Aug 2015 | CN |
| 104894068 | Sep 2015 | CN |
| 104894075 | Sep 2015 | CN |
| 104928321 | Sep 2015 | CN |
| 105039339 | Nov 2015 | CN |
| 105039399 | Nov 2015 | CN |
| 105063061 | Nov 2015 | CN |
| 105087620 | Nov 2015 | CN |
| 105112422 | Dec 2015 | CN |
| 105112445 | Dec 2015 | CN |
| 105112519 | Dec 2015 | CN |
| 105121648 | Dec 2015 | CN |
| 105132427 | Dec 2015 | CN |
| 105132451 | Dec 2015 | CN |
| 105177038 | Dec 2015 | CN |
| 105177126 | Dec 2015 | CN |
| 105210981 | Jan 2016 | CN |
| 105219799 | Jan 2016 | CN |
| 105238806 | Jan 2016 | CN |
| 105255937 | Jan 2016 | CN |
| 105274144 | Jan 2016 | CN |
| 105296518 | Feb 2016 | CN |
| 105296537 | Feb 2016 | CN |
| 105316324 | Feb 2016 | CN |
| 105316327 | Feb 2016 | CN |
| 105316337 | Feb 2016 | CN |
| 105331607 | Feb 2016 | CN |
| 105331608 | Feb 2016 | CN |
| 105331609 | Feb 2016 | CN |
| 105331627 | Feb 2016 | CN |
| 105400773 | Mar 2016 | CN |
| 105400779 | Mar 2016 | CN |
| 105400810 | Mar 2016 | CN |
| 105441451 | Mar 2016 | CN |
| 105462968 | Apr 2016 | CN |
| 105463003 | Apr 2016 | CN |
| 105463027 | Apr 2016 | CN |
| 105492608 | Apr 2016 | CN |
| 105492609 | Apr 2016 | CN |
| 105505976 | Apr 2016 | CN |
| 105505979 | Apr 2016 | CN |
| 105518134 | Apr 2016 | CN |
| 105518135 | Apr 2016 | CN |
| 105518137 | Apr 2016 | CN |
| 105518138 | Apr 2016 | CN |
| 105518139 | Apr 2016 | CN |
| 105518140 | Apr 2016 | CN |
| 105543228 | May 2016 | CN |
| 105543266 | May 2016 | CN |
| 105543270 | May 2016 | CN |
| 105567688 | May 2016 | CN |
| 105567689 | May 2016 | CN |
| 105567734 | May 2016 | CN |
| 105567735 | May 2016 | CN |
| 105567738 | May 2016 | CN |
| 105593367 | May 2016 | CN |
| 105594664 | May 2016 | CN |
| 105602987 | May 2016 | CN |
| 105624146 | Jun 2016 | CN |
| 105624187 | Jun 2016 | CN |
| 105646719 | Jun 2016 | CN |
| 105647922 | Jun 2016 | CN |
| 105647962 | Jun 2016 | CN |
| 105647968 | Jun 2016 | CN |
| 105647969 | Jun 2016 | CN |
| 105671070 | Jun 2016 | CN |
| 105671083 | Jun 2016 | CN |
| 105695485 | Jun 2016 | CN |
| 105779448 | Jul 2016 | CN |
| 105779449 | Jul 2016 | CN |
| 105802980 | Jul 2016 | CN |
| 105821039 | Aug 2016 | CN |
| 105821040 | Aug 2016 | CN |
| 105821049 | Aug 2016 | CN |
| 105821072 | Aug 2016 | CN |
| 105821075 | Aug 2016 | CN |
| 105821116 | Aug 2016 | CN |
| 105838733 | Aug 2016 | CN |
| 105861547 | Aug 2016 | CN |
| 105861552 | Aug 2016 | CN |
| 105861554 | Aug 2016 | CN |
| 105886498 | Aug 2016 | CN |
| 105886534 | Aug 2016 | CN |
| 105886616 | Aug 2016 | CN |
| 105907758 | Aug 2016 | CN |
| 105907785 | Aug 2016 | CN |
| 105925608 | Sep 2016 | CN |
| 105950560 | Sep 2016 | CN |
| 105950626 | Sep 2016 | CN |
| 105950633 | Sep 2016 | CN |
| 105950639 | Sep 2016 | CN |
| 105985985 | Oct 2016 | CN |
| 106011104 | Oct 2016 | CN |
| 106011150 | Oct 2016 | CN |
| 106011167 | Oct 2016 | CN |
| 106011171 | Oct 2016 | CN |
| 106032540 | Oct 2016 | CN |
| 106047803 | Oct 2016 | CN |
| 106047877 | Oct 2016 | CN |
| 106047930 | Oct 2016 | CN |
| 106086008 | Nov 2016 | CN |
| 106086028 | Nov 2016 | CN |
| 106086061 | Nov 2016 | CN |
| 106086062 | Nov 2016 | CN |
| 106109417 | Nov 2016 | CN |
| 106119275 | Nov 2016 | CN |
| 106119283 | Nov 2016 | CN |
| 106148286 | Nov 2016 | CN |
| 106148370 | Nov 2016 | CN |
| 106148416 | Nov 2016 | CN |
| 106167525 | Nov 2016 | CN |
| 106167808 | Nov 2016 | CN |
| 106167810 | Nov 2016 | CN |
| 106167821 | Nov 2016 | CN |
| 106172238 | Dec 2016 | CN |
| 106190903 | Dec 2016 | CN |
| 106191057 | Dec 2016 | CN |
| 106191061 | Dec 2016 | CN |
| 106191062 | Dec 2016 | CN |
| 106191064 | Dec 2016 | CN |
| 106191071 | Dec 2016 | CN |
| 106191099 | Dec 2016 | CN |
| 106191107 | Dec 2016 | CN |
| 106191113 | Dec 2016 | CN |
| 106191114 | Dec 2016 | CN |
| 106191116 | Dec 2016 | CN |
| 106191124 | Dec 2016 | CN |
| 106222177 | Dec 2016 | CN |
| 106222193 | Dec 2016 | CN |
| 106222203 | Dec 2016 | CN |
| 106244555 | Dec 2016 | CN |
| 106244591 | Dec 2016 | CN |
| 106244609 | Dec 2016 | CN |
| 106282241 | Jan 2017 | CN |
| 106318934 | Jan 2017 | CN |
| 106318973 | Jan 2017 | CN |
| 106350540 | Jan 2017 | CN |
| 106367435 | Feb 2017 | CN |
| 106399306 | Feb 2017 | CN |
| 106399311 | Feb 2017 | CN |
| 106399360 | Feb 2017 | CN |
| 106399367 | Feb 2017 | CN |
| 106399375 | Feb 2017 | CN |
| 106399377 | Feb 2017 | CN |
| 106434651 | Feb 2017 | CN |
| 106434663 | Feb 2017 | CN |
| 106434688 | Feb 2017 | CN |
| 106434737 | Feb 2017 | CN |
| 106434748 | Feb 2017 | CN |
| 106434752 | Feb 2017 | CN |
| 106434782 | Feb 2017 | CN |
| 106446600 | Feb 2017 | CN |
| 106479985 | Mar 2017 | CN |
| 106480027 | Mar 2017 | CN |
| 106480036 | Mar 2017 | CN |
| 106480067 | Mar 2017 | CN |
| 106480080 | Mar 2017 | CN |
| 106480083 | Mar 2017 | CN |
| 106480097 | Mar 2017 | CN |
| 106544351 | Mar 2017 | CN |
| 106544353 | Mar 2017 | CN |
| 106544357 | Mar 2017 | CN |
| 106554969 | Apr 2017 | CN |
| 106566838 | Apr 2017 | CN |
| 106701763 | May 2017 | CN |
| 106701808 | May 2017 | CN |
| 106701818 | May 2017 | CN |
| 106701823 | May 2017 | CN |
| 106701830 | May 2017 | CN |
| 106754912 | May 2017 | CN |
| 106755026 | May 2017 | CN |
| 106755077 | May 2017 | CN |
| 106755088 | May 2017 | CN |
| 106755091 | May 2017 | CN |
| 106755097 | May 2017 | CN |
| 106755424 | May 2017 | CN |
| 106801056 | Jun 2017 | CN |
| 106834323 | Jun 2017 | CN |
| 106834341 | Jun 2017 | CN |
| 106834347 | Jun 2017 | CN |
| 106845151 | Jun 2017 | CN |
| 106868008 | Jun 2017 | CN |
| 106868031 | Jun 2017 | CN |
| 106906240 | Jun 2017 | CN |
| 106906242 | Jun 2017 | CN |
| 106916820 | Jul 2017 | CN |
| 106916852 | Jul 2017 | CN |
| 106939303 | Jul 2017 | CN |
| 106947750 | Jul 2017 | CN |
| 106947780 | Jul 2017 | CN |
| 106957830 | Jul 2017 | CN |
| 106957831 | Jul 2017 | CN |
| 106957844 | Jul 2017 | CN |
| 106957855 | Jul 2017 | CN |
| 106957858 | Jul 2017 | CN |
| 106967697 | Jul 2017 | CN |
| 106967726 | Jul 2017 | CN |
| 106978428 | Jul 2017 | CN |
| 106987570 | Jul 2017 | CN |
| 106987757 | Jul 2017 | CN |
| 107012164 | Aug 2017 | CN |
| 107012174 | Aug 2017 | CN |
| 107012213 | Aug 2017 | CN |
| 107012250 | Aug 2017 | CN |
| 107022562 | Aug 2017 | CN |
| 107034188 | Aug 2017 | CN |
| 107034218 | Aug 2017 | CN |
| 107034229 | Aug 2017 | CN |
| 107043775 | Aug 2017 | CN |
| 107043779 | Aug 2017 | CN |
| 107043787 | Aug 2017 | CN |
| 107058320 | Aug 2017 | CN |
| 107058328 | Aug 2017 | CN |
| 107058358 | Aug 2017 | CN |
| 107058372 | Aug 2017 | CN |
| 107083392 | Aug 2017 | CN |
| 107099533 | Aug 2017 | CN |
| 107099850 | Aug 2017 | CN |
| 107119053 | Sep 2017 | CN |
| 107119071 | Sep 2017 | CN |
| 107129999 | Sep 2017 | CN |
| 107130000 | Sep 2017 | CN |
| 107142272 | Sep 2017 | CN |
| 107142282 | Sep 2017 | CN |
| 107177591 | Sep 2017 | CN |
| 107177595 | Sep 2017 | CN |
| 107177631 | Sep 2017 | CN |
| 107190006 | Sep 2017 | CN |
| 107190008 | Sep 2017 | CN |
| 107217042 | Sep 2017 | CN |
| 107217075 | Sep 2017 | CN |
| 107227307 | Oct 2017 | CN |
| 107227352 | Oct 2017 | CN |
| 107236737 | Oct 2017 | CN |
| 107236739 | Oct 2017 | CN |
| 107236741 | Oct 2017 | CN |
| 107245502 | Oct 2017 | CN |
| 107254485 | Oct 2017 | CN |
| 107266541 | Oct 2017 | CN |
| 107267515 | Oct 2017 | CN |
| 107287245 | Oct 2017 | CN |
| 107298701 | Oct 2017 | CN |
| 107299114 | Oct 2017 | CN |
| 107304435 | Oct 2017 | CN |
| 107312785 | Nov 2017 | CN |
| 107312793 | Nov 2017 | CN |
| 107312795 | Nov 2017 | CN |
| 107312798 | Nov 2017 | CN |
| 107326042 | Nov 2017 | CN |
| 107326046 | Nov 2017 | CN |
| 107354156 | Nov 2017 | CN |
| 107354173 | Nov 2017 | CN |
| 107356793 | Nov 2017 | CN |
| 107362372 | Nov 2017 | CN |
| 107365786 | Nov 2017 | CN |
| 107365804 | Nov 2017 | CN |
| 107384894 | Nov 2017 | CN |
| 107384922 | Nov 2017 | CN |
| 107384926 | Nov 2017 | CN |
| 107400677 | Nov 2017 | CN |
| 107418974 | Dec 2017 | CN |
| 107435051 | Dec 2017 | CN |
| 107435069 | Dec 2017 | CN |
| 107446922 | Dec 2017 | CN |
| 107446923 | Dec 2017 | CN |
| 107446924 | Dec 2017 | CN |
| 107446932 | Dec 2017 | CN |
| 107446951 | Dec 2017 | CN |
| 107446954 | Dec 2017 | CN |
| 107460196 | Dec 2017 | CN |
| 107474129 | Dec 2017 | CN |
| 107475300 | Dec 2017 | CN |
| 107488649 | Dec 2017 | CN |
| 107502608 | Dec 2017 | CN |
| 107502618 | Dec 2017 | CN |
| 107513531 | Dec 2017 | CN |
| 107519492 | Dec 2017 | CN |
| 107523567 | Dec 2017 | CN |
| 107523583 | Dec 2017 | CN |
| 107541525 | Jan 2018 | CN |
| 107557373 | Jan 2018 | CN |
| 107557378 | Jan 2018 | CN |
| 107557381 | Jan 2018 | CN |
| 107557390 | Jan 2018 | CN |
| 107557393 | Jan 2018 | CN |
| 107557394 | Jan 2018 | CN |
| 107557455 | Jan 2018 | CN |
| 107574179 | Jan 2018 | CN |
| 107586777 | Jan 2018 | CN |
| 107586779 | Jan 2018 | CN |
| 107604003 | Jan 2018 | CN |
| 107619829 | Jan 2018 | CN |
| 107619837 | Jan 2018 | CN |
| 107630006 | Jan 2018 | CN |
| 107630041 | Jan 2018 | CN |
| 107630042 | Jan 2018 | CN |
| 107630043 | Jan 2018 | CN |
| 107641631 | Jan 2018 | CN |
| 107653256 | Feb 2018 | CN |
| 107686848 | Feb 2018 | CN |
| 206970581 | Feb 2018 | CN |
| 107760652 | Mar 2018 | CN |
| 107760663 | Mar 2018 | CN |
| 107760684 | Mar 2018 | CN |
| 107760715 | Mar 2018 | CN |
| 107784200 | Mar 2018 | CN |
| 107794272 | Mar 2018 | CN |
| 107794276 | Mar 2018 | CN |
| 107815463 | Mar 2018 | CN |
| 107828738 | Mar 2018 | CN |
| 107828794 | Mar 2018 | CN |
| 107828826 | Mar 2018 | CN |
| 107828874 | Mar 2018 | CN |
| 107858346 | Mar 2018 | CN |
| 107858373 | Mar 2018 | CN |
| 107880132 | Apr 2018 | CN |
| 107881184 | Apr 2018 | CN |
| 107893074 | Apr 2018 | CN |
| 107893075 | Apr 2018 | CN |
| 107893076 | Apr 2018 | CN |
| 107893080 | Apr 2018 | CN |
| 107893086 | Apr 2018 | CN |
| 107904261 | Apr 2018 | CN |
| 107937427 | Apr 2018 | CN |
| 107937432 | Apr 2018 | CN |
| 107937501 | Apr 2018 | CN |
| 107974466 | May 2018 | CN |
| 107988229 | May 2018 | CN |
| 107988246 | May 2018 | CN |
| 107988256 | May 2018 | CN |
| 107988268 | May 2018 | CN |
| 108018316 | May 2018 | CN |
| 108034656 | May 2018 | CN |
| 108048466 | May 2018 | CN |
| 108102940 | Jun 2018 | CN |
| 108103092 | Jun 2018 | CN |
| 108103098 | Jun 2018 | CN |
| 108103586 | Jun 2018 | CN |
| 108148835 | Jun 2018 | CN |
| 108148837 | Jun 2018 | CN |
| 108148873 | Jun 2018 | CN |
| 108192956 | Jun 2018 | CN |
| 108251423 | Jul 2018 | CN |
| 108251451 | Jul 2018 | CN |
| 108251452 | Jul 2018 | CN |
| 108342480 | Jul 2018 | CN |
| 108359691 | Aug 2018 | CN |
| 108359712 | Aug 2018 | CN |
| 108384784 | Aug 2018 | CN |
| 108396027 | Aug 2018 | CN |
| 108410877 | Aug 2018 | CN |
| 108410906 | Aug 2018 | CN |
| 108410907 | Aug 2018 | CN |
| 108410911 | Aug 2018 | CN |
| 108424931 | Aug 2018 | CN |
| 108441519 | Aug 2018 | CN |
| 108441520 | Aug 2018 | CN |
| 108486108 | Sep 2018 | CN |
| 108486111 | Sep 2018 | CN |
| 108486145 | Sep 2018 | CN |
| 108486146 | Sep 2018 | CN |
| 108486154 | Sep 2018 | CN |
| 108486159 | Sep 2018 | CN |
| 108486234 | Sep 2018 | CN |
| 108504657 | Sep 2018 | CN |
| 108504685 | Sep 2018 | CN |
| 108504693 | Sep 2018 | CN |
| 108546712 | Sep 2018 | CN |
| 108546717 | Sep 2018 | CN |
| 108546718 | Sep 2018 | CN |
| 108559730 | Sep 2018 | CN |
| 108559732 | Sep 2018 | CN |
| 108559745 | Sep 2018 | CN |
| 108559760 | Sep 2018 | CN |
| 108570479 | Sep 2018 | CN |
| 108588071 | Sep 2018 | CN |
| 108588123 | Sep 2018 | CN |
| 108588128 | Sep 2018 | CN |
| 108588182 | Sep 2018 | CN |
| 108610399 | Oct 2018 | CN |
| 108611364 | Oct 2018 | CN |
| 108624622 | Oct 2018 | CN |
| 108642053 | Oct 2018 | CN |
| 108642055 | Oct 2018 | CN |
| 108642077 | Oct 2018 | CN |
| 108642078 | Oct 2018 | CN |
| 108642090 | Oct 2018 | CN |
| 108690844 | Oct 2018 | CN |
| 108707604 | Oct 2018 | CN |
| 108707620 | Oct 2018 | CN |
| 108707621 | Oct 2018 | CN |
| 108707628 | Oct 2018 | CN |
| 108707629 | Oct 2018 | CN |
| 108715850 | Oct 2018 | CN |
| 108728476 | Nov 2018 | CN |
| 108728486 | Nov 2018 | CN |
| 108753772 | Nov 2018 | CN |
| 108753783 | Nov 2018 | CN |
| 108753813 | Nov 2018 | CN |
| 108753817 | Nov 2018 | CN |
| 108753832 | Nov 2018 | CN |
| 108753835 | Nov 2018 | CN |
| 108753836 | Nov 2018 | CN |
| 108795902 | Nov 2018 | CN |
| 108822217 | Nov 2018 | CN |
| 108823248 | Nov 2018 | CN |
| 108823249 | Nov 2018 | CN |
| 108823291 | Nov 2018 | CN |
| 108841845 | Nov 2018 | CN |
| 108853133 | Nov 2018 | CN |
| 108866093 | Nov 2018 | CN |
| 108893529 | Nov 2018 | CN |
| 108913664 | Nov 2018 | CN |
| 108913691 | Nov 2018 | CN |
| 108913714 | Nov 2018 | CN |
| 108913717 | Nov 2018 | CN |
| 109 517 841 | Mar 2019 | CN |
| 0264166 | Apr 1988 | EP |
| 2604255 | Jun 2013 | EP |
| 2840140 | Feb 2015 | EP |
| 2966170 | Jan 2016 | EP |
| 3009511 | Apr 2016 | EP |
| 3031921 | Jun 2016 | EP |
| 3045537 | Jul 2016 | EP |
| 3 115 457 | Jan 2017 | EP |
| 3144390 | Mar 2017 | EP |
| 3199632 | Aug 2017 | EP |
| 3216867 | Sep 2017 | EP |
| 3252160 | Dec 2017 | EP |
| 3450553 | Dec 2019 | EP |
| 2740248 | Feb 2020 | ES |
| 2528177 | Jan 2016 | GB |
| 2531454 | Apr 2016 | GB |
| 2542653 | Mar 2017 | GB |
| 1208045 | Feb 2016 | HK |
| 2007-501626 | Feb 2007 | JP |
| 2008-515405 | May 2008 | JP |
| 2010-539929 | Dec 2010 | JP |
| 2011-081011 | Apr 2011 | JP |
| 2011-523353 | Aug 2011 | JP |
| 2012-525146 | Oct 2012 | JP |
| 2012-531909 | Dec 2012 | JP |
| 101584933 | Jan 2016 | KR |
| 20160133380 | Nov 2016 | KR |
| 20170037025 | Apr 2017 | KR |
| 20170037028 | Apr 2017 | KR |
| 101748575 | Jun 2017 | KR |
| 2018-0022465 | Mar 2018 | KR |
| 2016104674 | Aug 2017 | RU |
| 2634395 | Oct 2017 | RU |
| 2652899 | May 2018 | RU |
| 2015128057 | Mar 2019 | RU |
| 2015128098 | Mar 2019 | RU |
| 2687451 | May 2019 | RU |
| 2019112514 | Jun 2019 | RU |
| 2019127300 | Sep 2019 | RU |
| 2701850 | Oct 2019 | RU |
| 1608100 | Dec 2017 | TW |
| 2018-29773 | Aug 2018 | TW |
| WO 9002809 | Mar 1990 | WO |
| WO 9116024 | Oct 1991 | WO |
| WO 9117271 | Nov 1991 | WO |
| WO 9117424 | Nov 1991 | WO |
| WO 9206188 | Apr 1992 | WO |
| WO 9206200 | Apr 1992 | WO |
| WO 9324641 | Dec 1993 | WO |
| WO 9418316 | Aug 1994 | WO |
| WO 94026877 | Nov 1994 | WO |
| WO 9604403 | Feb 1996 | WO |
| WO 9610640 | Apr 1996 | WO |
| WO 9832845 | Jul 1998 | WO |
| WO 2001036452 | May 2001 | WO |
| WO 2001038547 | May 2001 | WO |
| WO 2002059296 | Aug 2002 | WO |
| WO 2002068676 | Sep 2002 | WO |
| WO 2002103028 | Dec 2002 | WO |
| WO 2004007684 | Jan 2004 | WO |
| WO 0514791 | Feb 2005 | WO |
| WO 2005014791 | Feb 2005 | WO |
| WO 2005019415 | Mar 2005 | WO |
| WO 2006002547 | Jan 2006 | WO |
| WO 2006042112 | Apr 2006 | WO |
| WO 2007025097 | Mar 2007 | WO |
| WO 07066923 | Jun 2007 | WO |
| WO 2007136815 | Nov 2007 | WO |
| WO 2007143574 | Dec 2007 | WO |
| WO 08005529 | Jan 2008 | WO |
| WO 2008108989 | Sep 2008 | WO |
| WO 2009134808 | Nov 2009 | WO |
| WO 2010011961 | Jan 2010 | WO |
| WO 2010028347 | Mar 2010 | WO |
| WO 2010054108 | May 2010 | WO |
| WO 2010054154 | May 2010 | WO |
| WO 2010068289 | Jun 2010 | WO |
| WO 2010075424 | Jul 2010 | WO |
| WO 2010102257 | Sep 2010 | WO |
| WO 2010129019 | Nov 2010 | WO |
| WO 2010129023 | Nov 2010 | WO |
| WO 2010132092 | Nov 2010 | WO |
| WO 2010144150 | Dec 2010 | WO |
| WO 2011002503 | Jan 2011 | WO |
| WO 2011017293 | Feb 2011 | WO |
| WO 2011053868 | May 2011 | WO |
| WO 2011053982 | May 2011 | WO |
| WO 2011068810 | Jun 2011 | WO |
| WO 2011075627 | Jun 2011 | WO |
| WO 2011091311 | Jul 2011 | WO |
| WO 2011109031 | Sep 2011 | WO |
| WO 2011143124 | Nov 2011 | WO |
| WO 2011147590 | Dec 2011 | WO |
| WO 2011159369 | Dec 2011 | WO |
| WO 2012054726 | Apr 2012 | WO |
| WO 2012065043 | May 2012 | WO |
| WO 2012088381 | Jun 2012 | WO |
| WO 2012125445 | Sep 2012 | WO |
| WO 2012138927 | Oct 2012 | WO |
| WO 2012149470 | Nov 2012 | WO |
| WO 2012158985 | Nov 2012 | WO |
| WO 2012158986 | Nov 2012 | WO |
| WO 2012164565 | Dec 2012 | WO |
| WO 2012170930 | Dec 2012 | WO |
| WO 2013012674 | Jan 2013 | WO |
| WO 2013013105 | Jan 2013 | WO |
| WO 2013013105 | Jan 2013 | WO |
| WO 2013039857 | Mar 2013 | WO |
| WO 2013039861 | Mar 2013 | WO |
| WO 2013045632 | Apr 2013 | WO |
| WO 2013047844 | Apr 2013 | WO |
| WO 2013066438 | May 2013 | WO |
| WO 2013098244 | Jul 2013 | WO |
| WO 2013119602 | Aug 2013 | WO |
| WO 2013126794 | Aug 2013 | WO |
| WO 2013130824 | Sep 2013 | WO |
| WO 2013141680 | Sep 2013 | WO |
| WO 2013142578 | Sep 2013 | WO |
| WO 2013152359 | Oct 2013 | WO |
| WO 2013160230 | Oct 2013 | WO |
| WO 2013166315 | Nov 2013 | WO |
| WO 2013169398 | Nov 2013 | WO |
| WO 2013169802 | Nov 2013 | WO |
| WO 2013176772 | Nov 2013 | WO |
| WO 2013176915 | Nov 2013 | WO |
| WO 2013176916 | Nov 2013 | WO |
| WO 2013181440 | Dec 2013 | WO |
| WO 2013186754 | Dec 2013 | WO |
| WO 2013188037 | Dec 2013 | WO |
| WO 2013188522 | Dec 2013 | WO |
| WO 2013188638 | Dec 2013 | WO |
| WO 2013192278 | Dec 2013 | WO |
| WO 2013142378 | Jan 2014 | WO |
| WO 2014004336 | Jan 2014 | WO |
| WO 2014005042 | Jan 2014 | WO |
| WO 2014011237 | Jan 2014 | WO |
| WO 2014011901 | Jan 2014 | WO |
| WO 2014018423 | Jan 2014 | WO |
| WO 2014020608 | Feb 2014 | WO |
| WO 2014022120 | Feb 2014 | WO |
| WO 2014022702 | Feb 2014 | WO |
| WO 2014036219 | Mar 2014 | WO |
| WO 2014039513 | Mar 2014 | WO |
| WO 2014039523 | Mar 2014 | WO |
| WO 2014039585 | Mar 2014 | WO |
| WO 2014039684 | Mar 2014 | WO |
| WO 2014039692 | Mar 2014 | WO |
| WO 2014039702 | Mar 2014 | WO |
| WO 2014039872 | Mar 2014 | WO |
| WO 2014039970 | Mar 2014 | WO |
| WO 2014041327 | Mar 2014 | WO |
| WO 2014043143 | Mar 2014 | WO |
| WO 2014047103 | Mar 2014 | WO |
| WO 2014055782 | Apr 2014 | WO |
| WO 2014059173 | Apr 2014 | WO |
| WO 2014059255 | Apr 2014 | WO |
| WO 2014065596 | May 2014 | WO |
| WO 2014066505 | May 2014 | WO |
| WO 2014068346 | May 2014 | WO |
| WO 2014070887 | May 2014 | WO |
| WO 2014071006 | May 2014 | WO |
| WO 2014071219 | May 2014 | WO |
| WO 2014071235 | May 2014 | WO |
| WO 2014072941 | May 2014 | WO |
| WO 2014081729 | May 2014 | WO |
| WO 2014081730 | May 2014 | WO |
| WO 2014081855 | May 2014 | WO |
| WO 2014082644 | Jun 2014 | WO |
| WO 2014085261 | Jun 2014 | WO |
| WO 2014085593 | Jun 2014 | WO |
| WO 2014085830 | Jun 2014 | WO |
| WO 2014089212 | Jun 2014 | WO |
| WO 2014089290 | Jun 2014 | WO |
| WO 2014089348 | Jun 2014 | WO |
| WO 2014089513 | Jun 2014 | WO |
| WO 2014089533 | Jun 2014 | WO |
| WO 2014089541 | Jun 2014 | WO |
| WO 2014093479 | Jun 2014 | WO |
| WO 2014093595 | Jun 2014 | WO |
| WO 2014093622 | Jun 2014 | WO |
| WO 2014093635 | Jun 2014 | WO |
| WO 2014093655 | Jun 2014 | WO |
| WO 2014093661 | Jun 2014 | WO |
| WO 2014093694 | Jun 2014 | WO |
| WO 2014093701 | Jun 2014 | WO |
| WO 2014093709 | Jun 2014 | WO |
| WO 2014093712 | Jun 2014 | WO |
| WO 2014093718 | Jun 2014 | WO |
| WO 2014093736 | Jun 2014 | WO |
| WO 2014093768 | Jun 2014 | WO |
| WO 2014093852 | Jun 2014 | WO |
| WO 2014096972 | Jun 2014 | WO |
| WO 2014099744 | Jun 2014 | WO |
| WO 2014099750 | Jun 2014 | WO |
| WO 2014104878 | Jul 2014 | WO |
| WO 2014110006 | Jul 2014 | WO |
| WO 2014110552 | Jul 2014 | WO |
| WO 2014113493 | Jul 2014 | WO |
| WO 2014123967 | Aug 2014 | WO |
| WO 2014124226 | Aug 2014 | WO |
| WO 2014125668 | Aug 2014 | WO |
| WO 2014127287 | Aug 2014 | WO |
| WO 2014128324 | Aug 2014 | WO |
| WO 2014128659 | Aug 2014 | WO |
| WO 2014130706 | Aug 2014 | WO |
| WO 2014130955 | Aug 2014 | WO |
| WO 2014131833 | Sep 2014 | WO |
| WO 2014138379 | Sep 2014 | WO |
| WO 2014143381 | Sep 2014 | WO |
| WO 2014144094 | Sep 2014 | WO |
| WO 2014144155 | Sep 2014 | WO |
| WO 2014144288 | Sep 2014 | WO |
| WO 2014144592 | Sep 2014 | WO |
| WO 2014144761 | Sep 2014 | WO |
| WO 2014144951 | Sep 2014 | WO |
| WO 2014145599 | Sep 2014 | WO |
| WO 2014145736 | Sep 2014 | WO |
| WO 2014150624 | Sep 2014 | WO |
| WO 2014152432 | Sep 2014 | WO |
| WO 2014152940 | Sep 2014 | WO |
| WO 2014153118 | Sep 2014 | WO |
| WO 2014153470 | Sep 2014 | WO |
| WO 2014158593 | Oct 2014 | WO |
| WO 2014161821 | Oct 2014 | WO |
| WO 2014164466 | Oct 2014 | WO |
| WO 2014165177 | Oct 2014 | WO |
| WO 2014165349 | Oct 2014 | WO |
| WO 2014165612 | Oct 2014 | WO |
| WO 2014165707 | Oct 2014 | WO |
| WO 2014165825 | Oct 2014 | WO |
| WO 2014172458 | Oct 2014 | WO |
| WO 2014172470 | Oct 2014 | WO |
| WO 2014172489 | Oct 2014 | WO |
| WO 2014173955 | Oct 2014 | WO |
| WO 2014182700 | Nov 2014 | WO |
| WO 2014183071 | Nov 2014 | WO |
| WO 2014184143 | Nov 2014 | WO |
| WO 2014184741 | Nov 2014 | WO |
| WO 2014184744 | Nov 2014 | WO |
| WO 2014186585 | Nov 2014 | WO |
| WO 2014186686 | Nov 2014 | WO |
| WO 2014190181 | Nov 2014 | WO |
| WO 2014191128 | Dec 2014 | WO |
| WO 2014191518 | Dec 2014 | WO |
| WO 2014191521 | Dec 2014 | WO |
| WO 2014191525 | Dec 2014 | WO |
| WO 2014191527 | Dec 2014 | WO |
| WO 2014193583 | Dec 2014 | WO |
| WO 2014194190 | Dec 2014 | WO |
| WO 2014197568 | Dec 2014 | WO |
| WO 2014197748 | Dec 2014 | WO |
| WO 2014199358 | Dec 2014 | WO |
| WO 2014200659 | Dec 2014 | WO |
| WO 2014201015 | Dec 2014 | WO |
| WO 2014204578 | Dec 2014 | WO |
| WO 2014204723 | Dec 2014 | WO |
| WO 2014204724 | Dec 2014 | WO |
| WO 2014204725 | Dec 2014 | WO |
| WO 2014204726 | Dec 2014 | WO |
| WO 2014204727 | Dec 2014 | WO |
| WO 2014204728 | Dec 2014 | WO |
| WO 2014204729 | Dec 2014 | WO |
| WO 2014205192 | Dec 2014 | WO |
| WO 2014207043 | Dec 2014 | WO |
| WO 2015002780 | Jan 2015 | WO |
| WO 2015004241 | Jan 2015 | WO |
| WO 2015006290 | Jan 2015 | WO |
| WO 2015006294 | Jan 2015 | WO |
| WO 2015006437 | Jan 2015 | WO |
| WO 2015006498 | Jan 2015 | WO |
| WO 2015006747 | Jan 2015 | WO |
| WO 2015007194 | Jan 2015 | WO |
| WO 2015010114 | Jan 2015 | WO |
| WO 2015011483 | Jan 2015 | WO |
| WO 2015013583 | Jan 2015 | WO |
| WO 2015017866 | Feb 2015 | WO |
| WO 2015018503 | Feb 2015 | WO |
| WO 2015021353 | Feb 2015 | WO |
| WO 2015021426 | Feb 2015 | WO |
| WO 2015021990 | Feb 2015 | WO |
| WO 2015024017 | Feb 2015 | WO |
| WO 2015024986 | Feb 2015 | WO |
| WO 2015026883 | Feb 2015 | WO |
| WO 2015026885 | Feb 2015 | WO |
| WO 2015026886 | Feb 2015 | WO |
| WO 2015026887 | Feb 2015 | WO |
| WO 2015027134 | Feb 2015 | WO |
| WO 2015028969 | Mar 2015 | WO |
| WO 2015030881 | Mar 2015 | WO |
| WO 2015031619 | Mar 2015 | WO |
| WO 2015031775 | Mar 2015 | WO |
| WO 2015032494 | Mar 2015 | WO |
| WO 2015033293 | Mar 2015 | WO |
| WO 2015034872 | Mar 2015 | WO |
| WO 2015034885 | Mar 2015 | WO |
| WO 2015035136 | Mar 2015 | WO |
| WO 2015035139 | Mar 2015 | WO |
| WO 2015035162 | Mar 2015 | WO |
| WO 2015040075 | Mar 2015 | WO |
| WO 2015040402 | Mar 2015 | WO |
| WO 2015042585 | Mar 2015 | WO |
| WO 2015048577 | Apr 2015 | WO |
| WO 2015048690 | Apr 2015 | WO |
| WO 2015048707 | Apr 2015 | WO |
| WO 2015048801 | Apr 2015 | WO |
| WO 2015049897 | Apr 2015 | WO |
| WO 2015051191 | Apr 2015 | WO |
| WO 2015052133 | Apr 2015 | WO |
| WO 2015052231 | Apr 2015 | WO |
| WO 2015052335 | Apr 2015 | WO |
| WO 2015053995 | Apr 2015 | WO |
| WO 2015054253 | Apr 2015 | WO |
| WO 2015054315 | Apr 2015 | WO |
| WO 2015057671 | Apr 2015 | WO |
| WO 2015057834 | Apr 2015 | WO |
| WO 2015057852 | Apr 2015 | WO |
| WO 2015057976 | Apr 2015 | WO |
| WO 2015057980 | Apr 2015 | WO |
| WO 2015059265 | Apr 2015 | WO |
| WO 2015065964 | May 2015 | WO |
| WO 2015066119 | May 2015 | WO |
| WO 2015066634 | May 2015 | WO |
| WO 2015066636 | May 2015 | WO |
| WO 2015066637 | May 2015 | WO |
| WO 2015066638 | May 2015 | WO |
| WO 2015066643 | May 2015 | WO |
| WO 2015069682 | May 2015 | WO |
| WO 2015070083 | May 2015 | WO |
| WO 2015070193 | May 2015 | WO |
| WO 2015070212 | May 2015 | WO |
| WO 2015071474 | May 2015 | WO |
| WO 2015073683 | May 2015 | WO |
| WO 2015073867 | May 2015 | WO |
| WO 2015073990 | May 2015 | WO |
| WO 2015075056 | May 2015 | WO |
| WO 2015075154 | May 2015 | WO |
| WO 2015075175 | May 2015 | WO |
| WO 2015075195 | May 2015 | WO |
| WO 2015075557 | May 2015 | WO |
| WO 2015077058 | May 2015 | WO |
| WO 2015077290 | May 2015 | WO |
| WO 2015077318 | May 2015 | WO |
| WO 2015079056 | Jun 2015 | WO |
| WO 2015079057 | Jun 2015 | WO |
| WO 2015086795 | Jun 2015 | WO |
| WO 2015086798 | Jun 2015 | WO |
| WO 2015088643 | Jun 2015 | WO |
| WO 2015089046 | Jun 2015 | WO |
| WO 2015089077 | Jun 2015 | WO |
| WO 2015089277 | Jun 2015 | WO |
| WO 2015089351 | Jun 2015 | WO |
| WO 2015089354 | Jun 2015 | WO |
| WO 2015089364 | Jun 2015 | WO |
| WO 2015089406 | Jun 2015 | WO |
| WO 2015089419 | Jun 2015 | WO |
| WO 2015089427 | Jun 2015 | WO |
| WO 2015089462 | Jun 2015 | WO |
| WO 2015089465 | Jun 2015 | WO |
| WO 2015089473 | Jun 2015 | WO |
| WO 2015089486 | Jun 2015 | WO |
| WO 2015095804 | Jun 2015 | WO |
| WO 2015099850 | Jul 2015 | WO |
| WO 2015100929 | Jul 2015 | WO |
| WO 2015103057 | Jul 2015 | WO |
| WO 2015103153 | Jul 2015 | WO |
| WO 2015105928 | Jul 2015 | WO |
| WO 2015108993 | Jul 2015 | WO |
| WO 2015109752 | Jul 2015 | WO |
| WO 2015110474 | Jul 2015 | WO |
| WO 2015112790 | Jul 2015 | WO |
| WO 2015112896 | Jul 2015 | WO |
| WO 2015113063 | Jul 2015 | WO |
| WO 2015114365 | Aug 2015 | WO |
| WO 2015115903 | Aug 2015 | WO |
| WO 2015116686 | Aug 2015 | WO |
| WO 2015116969 | Aug 2015 | WO |
| WO 2015117021 | Aug 2015 | WO |
| WO 2015117041 | Aug 2015 | WO |
| WO 2015117081 | Aug 2015 | WO |
| WO 2015118156 | Aug 2015 | WO |
| WO 2015119941 | Aug 2015 | WO |
| WO 2015121454 | Aug 2015 | WO |
| WO 2015122967 | Aug 2015 | WO |
| WO 2015123339 | Aug 2015 | WO |
| WO 2015124715 | Aug 2015 | WO |
| WO 2015124718 | Aug 2015 | WO |
| WO 2015126927 | Aug 2015 | WO |
| WO 2015127428 | Aug 2015 | WO |
| WO 2015127439 | Aug 2015 | WO |
| WO 2015129686 | Sep 2015 | WO |
| WO 2015131101 | Sep 2015 | WO |
| WO 2015133554 | Sep 2015 | WO |
| WO 2015134121 | Sep 2015 | WO |
| WO 2015134812 | Sep 2015 | WO |
| WO 2015136001 | Sep 2015 | WO |
| WO 2015138510 | Sep 2015 | WO |
| WO 2015138739 | Sep 2015 | WO |
| WO 2015138855 | Sep 2015 | WO |
| WO 2015138870 | Sep 2015 | WO |
| WO 2015139008 | Sep 2015 | WO |
| WO 2015139139 | Sep 2015 | WO |
| WO 2015143046 | Sep 2015 | WO |
| WO 2015143177 | Sep 2015 | WO |
| WO 2015145417 | Oct 2015 | WO |
| WO 2015148431 | Oct 2015 | WO |
| WO 2015148670 | Oct 2015 | WO |
| WO 2015148680 | Oct 2015 | WO |
| WO 2015148761 | Oct 2015 | WO |
| WO 2015148860 | Oct 2015 | WO |
| WO 2015148863 | Oct 2015 | WO |
| WO 2015153760 | Oct 2015 | WO |
| WO 2015153780 | Oct 2015 | WO |
| WO 2015153789 | Oct 2015 | WO |
| WO 2015153791 | Oct 2015 | WO |
| WO 2015153889 | Oct 2015 | WO |
| WO 2015153940 | Oct 2015 | WO |
| WO 2015155341 | Oct 2015 | WO |
| WO 2015155686 | Oct 2015 | WO |
| WO 2015157070 | Oct 2015 | WO |
| WO 2015157534 | Oct 2015 | WO |
| WO 2015159068 | Oct 2015 | WO |
| WO 2015159086 | Oct 2015 | WO |
| WO 2015159087 | Oct 2015 | WO |
| WO 2015160683 | Oct 2015 | WO |
| WO 2015161276 | Oct 2015 | WO |
| WO 2015163733 | Oct 2015 | WO |
| WO 2015164740 | Oct 2015 | WO |
| WO 2015164748 | Oct 2015 | WO |
| WO 2015165274 | Nov 2015 | WO |
| WO 2015165275 | Nov 2015 | WO |
| WO 2015165276 | Nov 2015 | WO |
| WO 2015166272 | Nov 2015 | WO |
| WO 2015167766 | Nov 2015 | WO |
| WO 2015167956 | Nov 2015 | WO |
| WO 2015168125 | Nov 2015 | WO |
| WO 2015168158 | Nov 2015 | WO |
| WO 2015168404 | Nov 2015 | WO |
| WO 2015168547 | Nov 2015 | WO |
| WO 2015168800 | Nov 2015 | WO |
| WO 2015171603 | Nov 2015 | WO |
| WO 2015171894 | Nov 2015 | WO |
| WO 2015171932 | Nov 2015 | WO |
| WO 2015172128 | Nov 2015 | WO |
| WO 2015173436 | Nov 2015 | WO |
| WO 2015175642 | Nov 2015 | WO |
| WO 2015179540 | Nov 2015 | WO |
| WO 2015183025 | Dec 2015 | WO |
| WO 2015183026 | Dec 2015 | WO |
| WO 2015183885 | Dec 2015 | WO |
| WO 2015184259 | Dec 2015 | WO |
| WO 2015184262 | Dec 2015 | WO |
| WO 2015184268 | Dec 2015 | WO |
| WO 2015188056 | Dec 2015 | WO |
| WO 2015188065 | Dec 2015 | WO |
| WO 2015188094 | Dec 2015 | WO |
| WO 2015188109 | Dec 2015 | WO |
| WO 2015188132 | Dec 2015 | WO |
| WO 2015188135 | Dec 2015 | WO |
| WO 2015188191 | Dec 2015 | WO |
| WO 2015189693 | Dec 2015 | WO |
| WO 2015191693 | Dec 2015 | WO |
| WO 2015191899 | Dec 2015 | WO |
| WO 2015191911 | Dec 2015 | WO |
| WO 2015193858 | Dec 2015 | WO |
| WO 2015195547 | Dec 2015 | WO |
| WO 2015195621 | Dec 2015 | WO |
| WO 2015195798 | Dec 2015 | WO |
| WO 2015198020 | Dec 2015 | WO |
| WO 2015200334 | Dec 2015 | WO |
| WO 2015200378 | Dec 2015 | WO |
| WO 2015200555 | Dec 2015 | WO |
| WO 2015200805 | Dec 2015 | WO |
| WO 2016001978 | Jan 2016 | WO |
| WO 2016004010 | Jan 2016 | WO |
| WO 2016004318 | Jan 2016 | WO |
| WO 2016007347 | Jan 2016 | WO |
| WO 2016007604 | Jan 2016 | WO |
| WO 2016007948 | Jan 2016 | WO |
| WO 2016011080 | Jan 2016 | WO |
| WO 2016011210 | Jan 2016 | WO |
| WO 2016011428 | Jan 2016 | WO |
| WO 2016012544 | Jan 2016 | WO |
| WO 2016012552 | Jan 2016 | WO |
| WO 2016014409 | Jan 2016 | WO |
| WO 2016014565 | Jan 2016 | WO |
| WO 2016014794 | Jan 2016 | WO |
| WO 2016014837 | Jan 2016 | WO |
| WO 2016016119 | Feb 2016 | WO |
| WO 2016016358 | Feb 2016 | WO |
| WO 2016019144 | Feb 2016 | WO |
| WO 2016020399 | Feb 2016 | WO |
| WO 2016021972 | Feb 2016 | WO |
| WO 2016021973 | Feb 2016 | WO |
| WO 2016022363 | Feb 2016 | WO |
| WO 2016022866 | Feb 2016 | WO |
| WO 2016022931 | Feb 2016 | WO |
| WO 2016025131 | Feb 2016 | WO |
| WO 2016025469 | Feb 2016 | WO |
| WO 2016025759 | Feb 2016 | WO |
| WO 2016026444 | Feb 2016 | WO |
| WO 2016028682 | Feb 2016 | WO |
| WO 2016028843 | Feb 2016 | WO |
| WO 2016028887 | Feb 2016 | WO |
| WO 2016033088 | Mar 2016 | WO |
| WO 2016033230 | Mar 2016 | WO |
| WO 2016033246 | Mar 2016 | WO |
| WO 2016033298 | Mar 2016 | WO |
| WO 2016035044 | Mar 2016 | WO |
| WO 2016036754 | Mar 2016 | WO |
| WO 2016037157 | Mar 2016 | WO |
| WO 2016040030 | Mar 2016 | WO |
| WO 2016040594 | Mar 2016 | WO |
| WO 2016044182 | Mar 2016 | WO |
| WO 2016044416 | Mar 2016 | WO |
| WO 2016046635 | Mar 2016 | WO |
| WO 2016049024 | Mar 2016 | WO |
| WO 2016049163 | Mar 2016 | WO |
| WO 2016049230 | Mar 2016 | WO |
| WO 2016049251 | Mar 2016 | WO |
| WO 2016049258 | Mar 2016 | WO |
| WO 2016053397 | Apr 2016 | WO |
| WO 2016054326 | Apr 2016 | WO |
| WO 2016057061 | Apr 2016 | WO |
| WO 2016057821 | Apr 2016 | WO |
| WO 2016057835 | Apr 2016 | WO |
| WO 2016057850 | Apr 2016 | WO |
| WO 2016057951 | Apr 2016 | WO |
| WO 2016057961 | Apr 2016 | WO |
| WO 2016061073 | Apr 2016 | WO |
| WO 2016061374 | Apr 2016 | WO |
| WO 2016061481 | Apr 2016 | WO |
| WO 2016061523 | Apr 2016 | WO |
| WO 2016064894 | Apr 2016 | WO |
| WO 2016069282 | May 2016 | WO |
| WO 2016069283 | May 2016 | WO |
| WO 2016069591 | May 2016 | WO |
| WO 2016069774 | May 2016 | WO |
| WO 2016069910 | May 2016 | WO |
| WO 2016069912 | May 2016 | WO |
| WO 2016070037 | May 2016 | WO |
| WO 2016070070 | May 2016 | WO |
| WO 2016070129 | May 2016 | WO |
| WO 2016072399 | May 2016 | WO |
| WO 2016072936 | May 2016 | WO |
| WO 2016073433 | May 2016 | WO |
| WO 2016073559 | May 2016 | WO |
| WO 2016073990 | May 2016 | WO |
| WO 2016075662 | May 2016 | WO |
| WO 2016076672 | May 2016 | WO |
| WO 2016077273 | May 2016 | WO |
| WO 2016077350 | May 2016 | WO |
| WO 2016080097 | May 2016 | WO |
| WO 2016080795 | May 2016 | WO |
| WO 2016081923 | May 2016 | WO |
| WO 2016081924 | May 2016 | WO |
| WO 2016082135 | Jun 2016 | WO |
| WO 2016083811 | Jun 2016 | WO |
| WO 2016084084 | Jun 2016 | WO |
| WO 2016084088 | Jun 2016 | WO |
| WO 2016086177 | Jun 2016 | WO |
| WO 2016089433 | Jun 2016 | WO |
| WO 2016089866 | Jun 2016 | WO |
| WO 2016089883 | Jun 2016 | WO |
| WO 2016090385 | Jun 2016 | WO |
| WO 2016094679 | Jun 2016 | WO |
| WO 2016094845 | Jun 2016 | WO |
| WO 2016094867 | Jun 2016 | WO |
| WO 2016094872 | Jun 2016 | WO |
| WO 2016094874 | Jun 2016 | WO |
| WO 2016094880 | Jun 2016 | WO |
| WO 2016094888 | Jun 2016 | WO |
| WO 2016097212 | Jun 2016 | WO |
| WO 2016097231 | Jun 2016 | WO |
| WO 2016097751 | Jun 2016 | WO |
| WO 2016099887 | Jun 2016 | WO |
| WO 2016100272 | Jun 2016 | WO |
| WO 2016100389 | Jun 2016 | WO |
| WO 2016100568 | Jun 2016 | WO |
| WO 2016100571 | Jun 2016 | WO |
| WO 2016100951 | Jun 2016 | WO |
| WO 2016100955 | Jun 2016 | WO |
| WO 2016100974 | Jun 2016 | WO |
| WO 2016103233 | Jun 2016 | WO |
| WO 2016104716 | Jun 2016 | WO |
| WO 2016106236 | Jun 2016 | WO |
| WO 2016106239 | Jun 2016 | WO |
| WO 2016106244 | Jun 2016 | WO |
| WO 2016106338 | Jun 2016 | WO |
| WO 2016108926 | Jul 2016 | WO |
| WO 2016109255 | Jul 2016 | WO |
| WO 2016109840 | Jul 2016 | WO |
| WO 2016110214 | Jul 2016 | WO |
| WO 2016110453 | Jul 2016 | WO |
| WO 2016110511 | Jul 2016 | WO |
| WO 2016110512 | Jul 2016 | WO |
| WO 2016111546 | Jul 2016 | WO |
| WO 2016112242 | Jul 2016 | WO |
| WO 2016112351 | Jul 2016 | WO |
| WO 2016112963 | Jul 2016 | WO |
| WO 2016114972 | Jul 2016 | WO |
| WO 2016115179 | Jul 2016 | WO |
| WO 2016115326 | Jul 2016 | WO |
| WO 2016115355 | Jul 2016 | WO |
| WO 2016116032 | Jul 2016 | WO |
| WO 2016120480 | Aug 2016 | WO |
| WO 2016123071 | Aug 2016 | WO |
| WO 2016123230 | Aug 2016 | WO |
| WO 2016123243 | Aug 2016 | WO |
| WO 2016123578 | Aug 2016 | WO |
| WO 2016126747 | Aug 2016 | WO |
| WO 2016130600 | Aug 2016 | WO |
| WO 2016130697 | Aug 2016 | WO |
| WO 2016131009 | Aug 2016 | WO |
| WO 2016132122 | Aug 2016 | WO |
| WO 2016133165 | Aug 2016 | WO |
| WO 2016135507 | Sep 2016 | WO |
| WO 2016135557 | Sep 2016 | WO |
| WO 2016135558 | Sep 2016 | WO |
| WO 2016135559 | Sep 2016 | WO |
| WO 2016137774 | Sep 2016 | WO |
| WO 2016137949 | Sep 2016 | WO |
| WO 2016141224 | Sep 2016 | WO |
| WO 2016141893 | Sep 2016 | WO |
| WO 2016142719 | Sep 2016 | WO |
| WO 2016145150 | Sep 2016 | WO |
| WO 2016148994 | Sep 2016 | WO |
| WO 2016149484 | Sep 2016 | WO |
| WO 2016149547 | Sep 2016 | WO |
| WO 2016150336 | Sep 2016 | WO |
| WO 2016150855 | Sep 2016 | WO |
| WO 2016154016 | Sep 2016 | WO |
| WO 2016154579 | Sep 2016 | WO |
| WO 2016154596 | Sep 2016 | WO |
| WO 2016155482 | Oct 2016 | WO |
| WO 2016161004 | Oct 2016 | WO |
| WO 2016161207 | Oct 2016 | WO |
| WO 2016161260 | Oct 2016 | WO |
| WO 2016161380 | Oct 2016 | WO |
| WO 2016161446 | Oct 2016 | WO |
| WO 2016164356 | Oct 2016 | WO |
| WO 2016164797 | Oct 2016 | WO |
| WO 2016166340 | Oct 2016 | WO |
| WO 2016167300 | Oct 2016 | WO |
| WO 2016168631 | Oct 2016 | WO |
| WO 2016170484 | Oct 2016 | WO |
| WO 2016172359 | Oct 2016 | WO |
| WO 2016172727 | Oct 2016 | WO |
| WO 2016174056 | Nov 2016 | WO |
| WO 2016174151 | Nov 2016 | WO |
| WO 2016174250 | Nov 2016 | WO |
| WO 2016176191 | Nov 2016 | WO |
| WO 2016176404 | Nov 2016 | WO |
| WO 2016176690 | Nov 2016 | WO |
| WO 2016177682 | Nov 2016 | WO |
| WO 2016178207 | Nov 2016 | WO |
| WO 2016179038 | Nov 2016 | WO |
| WO 2016179112 | Nov 2016 | WO |
| WO 2016181357 | Nov 2016 | WO |
| WO 2016182893 | Nov 2016 | WO |
| WO 2016182917 | Nov 2016 | WO |
| WO 2016182959 | Nov 2016 | WO |
| WO 2016183236 | Nov 2016 | WO |
| WO 2016183298 | Nov 2016 | WO |
| WO 2016183345 | Nov 2016 | WO |
| WO 2016183402 | Nov 2016 | WO |
| WO 2016183438 | Nov 2016 | WO |
| WO 2016183448 | Nov 2016 | WO |
| WO 2016184955 | Nov 2016 | WO |
| WO 2016184989 | Nov 2016 | WO |
| WO 2016185411 | Nov 2016 | WO |
| WO 2016186745 | Nov 2016 | WO |
| WO 2016186772 | Nov 2016 | WO |
| WO 2016186946 | Nov 2016 | WO |
| WO 2016186953 | Nov 2016 | WO |
| WO 2016187717 | Dec 2016 | WO |
| WO 2016187904 | Dec 2016 | WO |
| WO 2016191684 | Dec 2016 | WO |
| WO 2016191869 | Dec 2016 | WO |
| WO 2016196273 | Dec 2016 | WO |
| WO 2016196282 | Dec 2016 | WO |
| WO 2016196308 | Dec 2016 | WO |
| WO 2016196361 | Dec 2016 | WO |
| WO 2016196499 | Dec 2016 | WO |
| WO 2016196539 | Dec 2016 | WO |
| WO 2016196655 | Dec 2016 | WO |
| WO 2016196805 | Dec 2016 | WO |
| WO 2016196887 | Dec 2016 | WO |
| WO 2016197132 | Dec 2016 | WO |
| WO 2016197133 | Dec 2016 | WO |
| WO 2016197354 | Dec 2016 | WO |
| WO 2016197355 | Dec 2016 | WO |
| WO 2016197356 | Dec 2016 | WO |
| WO 2016197357 | Dec 2016 | WO |
| WO 2016197358 | Dec 2016 | WO |
| WO 2016197359 | Dec 2016 | WO |
| WO 2016197360 | Dec 2016 | WO |
| WO 2016197361 | Dec 2016 | WO |
| WO 2016197362 | Dec 2016 | WO |
| WO 2016198361 | Dec 2016 | WO |
| WO 2016198500 | Dec 2016 | WO |
| WO 2016200263 | Dec 2016 | WO |
| WO 2016201047 | Dec 2016 | WO |
| WO 2016201138 | Dec 2016 | WO |
| WO 2016201152 | Dec 2016 | WO |
| WO 2016201153 | Dec 2016 | WO |
| WO 2016201155 | Dec 2016 | WO |
| WO 2016205276 | Dec 2016 | WO |
| WO 2016205613 | Dec 2016 | WO |
| WO 2016205623 | Dec 2016 | WO |
| WO 2016205680 | Dec 2016 | WO |
| WO 2016205688 | Dec 2016 | WO |
| WO 2016205703 | Dec 2016 | WO |
| WO 2016205711 | Dec 2016 | WO |
| WO 2016205728 | Dec 2016 | WO |
| WO 2016205745 | Dec 2016 | WO |
| WO 2016205749 | Dec 2016 | WO |
| WO 2016205759 | Dec 2016 | WO |
| WO 2016205764 | Dec 2016 | WO |
| WO 2017001572 | Jan 2017 | WO |
| WO 2017001988 | Jan 2017 | WO |
| WO 2017004261 | Jan 2017 | WO |
| WO 2017004279 | Jan 2017 | WO |
| WO 2017004616 | Jan 2017 | WO |
| WO 2017005807 | Jan 2017 | WO |
| WO 2017009399 | Jan 2017 | WO |
| WO 2017010556 | Jan 2017 | WO |
| WO 2017011519 | Jan 2017 | WO |
| WO 2017011721 | Jan 2017 | WO |
| WO 2017011804 | Jan 2017 | WO |
| WO 2017015015 | Jan 2017 | WO |
| WO 2017015101 | Jan 2017 | WO |
| WO 2017015545 | Jan 2017 | WO |
| WO 2017015567 | Jan 2017 | WO |
| WO 2017015637 | Jan 2017 | WO |
| WO 2017017016 | Feb 2017 | WO |
| WO 2017019867 | Feb 2017 | WO |
| WO 2017019895 | Feb 2017 | WO |
| WO 2017023803 | Feb 2017 | WO |
| WO 2017023974 | Feb 2017 | WO |
| WO 2017024047 | Feb 2017 | WO |
| WO 2017024319 | Feb 2017 | WO |
| WO 2017024343 | Feb 2017 | WO |
| WO 2017024602 | Feb 2017 | WO |
| WO 2017025323 | Feb 2017 | WO |
| WO 2017027423 | Feb 2017 | WO |
| WO 2017028768 | Feb 2017 | WO |
| WO 2017029664 | Feb 2017 | WO |
| WO 2017031360 | Feb 2017 | WO |
| WO 2017031483 | Feb 2017 | WO |
| WO 2017035416 | Mar 2017 | WO |
| WO 2017040348 | Mar 2017 | WO |
| WO 2017040511 | Mar 2017 | WO |
| WO 2017040709 | Mar 2017 | WO |
| WO 2017040786 | Mar 2017 | WO |
| WO 2017040793 | Mar 2017 | WO |
| WO 2017040813 | Mar 2017 | WO |
| WO 2017043573 | Mar 2017 | WO |
| WO 2017043656 | Mar 2017 | WO |
| WO 2017044419 | Mar 2017 | WO |
| WO 2017044776 | Mar 2017 | WO |
| WO 2017044857 | Mar 2017 | WO |
| WO 2017048390 | Mar 2017 | WO |
| WO 2017049129 | Mar 2017 | WO |
| WO 2017050963 | Mar 2017 | WO |
| WO 2017053312 | Mar 2017 | WO |
| WO 2017053431 | Mar 2017 | WO |
| WO 2017053713 | Mar 2017 | WO |
| WO 2017053729 | Mar 2017 | WO |
| WO 2017053753 | Mar 2017 | WO |
| WO 2017053762 | Mar 2017 | WO |
| WO 2017053879 | Mar 2017 | WO |
| WO 2017054721 | Apr 2017 | WO |
| WO 2017058658 | Apr 2017 | WO |
| WO 2017059241 | Apr 2017 | WO |
| WO 2017062605 | Apr 2017 | WO |
| WO 2017062723 | Apr 2017 | WO |
| WO 2017062754 | Apr 2017 | WO |
| WO 2017062855 | Apr 2017 | WO |
| WO 2017062886 | Apr 2017 | WO |
| WO 2017062983 | Apr 2017 | WO |
| WO 2017064439 | Apr 2017 | WO |
| WO 2017064546 | Apr 2017 | WO |
| WO 2017064566 | Apr 2017 | WO |
| WO 2017066175 | Apr 2017 | WO |
| WO 2017066497 | Apr 2017 | WO |
| WO 2017066588 | Apr 2017 | WO |
| WO 2017066707 | Apr 2017 | WO |
| WO 2017066781 | Apr 2017 | WO |
| WO 2017068077 | Apr 2017 | WO |
| WO 2017068377 | Apr 2017 | WO |
| WO 2017069829 | Apr 2017 | WO |
| WO 2017070029 | Apr 2017 | WO |
| WO 2017070032 | Apr 2017 | WO |
| WO 2017070169 | Apr 2017 | WO |
| WO 2017070284 | Apr 2017 | WO |
| WO 2017070598 | Apr 2017 | WO |
| WO 2017070605 | Apr 2017 | WO |
| WO 2017070632 | Apr 2017 | WO |
| WO 2017070633 | Apr 2017 | WO |
| WO 2017072590 | May 2017 | WO |
| WO 2017074526 | May 2017 | WO |
| WO 2017074962 | May 2017 | WO |
| WO 2017075261 | May 2017 | WO |
| WO 2017075335 | May 2017 | WO |
| WO 2017075475 | May 2017 | WO |
| WO 2017077135 | May 2017 | WO |
| WO 2017077329 | May 2017 | WO |
| WO 2017078751 | May 2017 | WO |
| WO 2017079400 | May 2017 | WO |
| WO 2017079428 | May 2017 | WO |
| WO 2017079673 | May 2017 | WO |
| WO 2017079724 | May 2017 | WO |
| WO 2017081097 | May 2017 | WO |
| WO 2017081288 | May 2017 | WO |
| WO 2017083368 | May 2017 | WO |
| WO 2017083722 | May 2017 | WO |
| WO 2017083766 | May 2017 | WO |
| WO 2017087395 | May 2017 | WO |
| WO 2017090724 | Jun 2017 | WO |
| WO 2017091510 | Jun 2017 | WO |
| WO 2017091630 | Jun 2017 | WO |
| WO 2017092201 | Jun 2017 | WO |
| WO 2017093370 | Jun 2017 | WO |
| WO 2017093969 | Jun 2017 | WO |
| WO 2017095111 | Jun 2017 | WO |
| WO 2017096041 | Jun 2017 | WO |
| WO 2017096237 | Jun 2017 | WO |
| WO 2017100158 | Jun 2017 | WO |
| WO 2017100431 | Jun 2017 | WO |
| WO 2017104404 | Jun 2017 | WO |
| WO 2017105251 | Jun 2017 | WO |
| WO 2017105350 | Jun 2017 | WO |
| WO 2017105991 | Jun 2017 | WO |
| WO 2017106414 | Jun 2017 | WO |
| WO 2017106528 | Jun 2017 | WO |
| WO 2017106537 | Jun 2017 | WO |
| WO 2017106569 | Jun 2017 | WO |
| WO 2017106616 | Jun 2017 | WO |
| WO 2017106657 | Jun 2017 | WO |
| WO 2017106767 | Jun 2017 | WO |
| WO 2017109134 | Jun 2017 | WO |
| WO 2017109757 | Jun 2017 | WO |
| WO 2017112620 | Jun 2017 | WO |
| WO 2017115268 | Jul 2017 | WO |
| WO 2017117395 | Jul 2017 | WO |
| WO 2017118598 | Jul 2017 | WO |
| WO 2017118720 | Jul 2017 | WO |
| WO 2017123609 | Jul 2017 | WO |
| WO 2017123910 | Jul 2017 | WO |
| WO 2017124086 | Jul 2017 | WO |
| WO 2017124100 | Jul 2017 | WO |
| WO 2017124652 | Jul 2017 | WO |
| WO 2017126987 | Jul 2017 | WO |
| WO 2017127807 | Jul 2017 | WO |
| WO 2017131237 | Aug 2017 | WO |
| WO 2017132112 | Aug 2017 | WO |
| WO 2017132580 | Aug 2017 | WO |
| WO 2017136520 | Aug 2017 | WO |
| WO 2017136629 | Aug 2017 | WO |
| WO 2017136794 | Aug 2017 | WO |
| WO 2017139264 | Aug 2017 | WO |
| WO 2017139505 | Aug 2017 | WO |
| WO 2017141173 | Aug 2017 | WO |
| WO 2017142835 | Aug 2017 | WO |
| WO 2017142999 | Aug 2017 | WO |
| WO 2017143042 | Aug 2017 | WO |
| WO 2017147278 | Aug 2017 | WO |
| WO 2017147432 | Aug 2017 | WO |
| WO 2017147446 | Aug 2017 | WO |
| WO 2017147555 | Aug 2017 | WO |
| WO 2017151444 | Sep 2017 | WO |
| WO 2017151719 | Sep 2017 | WO |
| WO 2017152015 | Sep 2017 | WO |
| WO 2017155717 | Sep 2017 | WO |
| WO 2017157422 | Sep 2017 | WO |
| WO 2017158153 | Sep 2017 | WO |
| WO 2017160689 | Sep 2017 | WO |
| WO 2017160752 | Sep 2017 | WO |
| WO 2017160890 | Sep 2017 | WO |
| WO 2017161068 | Sep 2017 | WO |
| WO 2017165826 | Sep 2017 | WO |
| WO 2017165862 | Sep 2017 | WO |
| WO 2017172644 | Oct 2017 | WO |
| WO 2017172645 | Oct 2017 | WO |
| WO 2017172860 | Oct 2017 | WO |
| WO 2017173004 | Oct 2017 | WO |
| WO 2017173054 | Oct 2017 | WO |
| WO 2017173092 | Oct 2017 | WO |
| WO 2017174329 | Oct 2017 | WO |
| WO 2017176529 | Oct 2017 | WO |
| WO 2017176806 | Oct 2017 | WO |
| WO 2017178590 | Oct 2017 | WO |
| WO 2017180694 | Oct 2017 | WO |
| WO 2017180711 | Oct 2017 | WO |
| WO 2017180915 | Oct 2017 | WO |
| WO 2017180926 | Oct 2017 | WO |
| WO 2017181107 | Oct 2017 | WO |
| WO 2017181735 | Oct 2017 | WO |
| WO 2017182468 | Oct 2017 | WO |
| WO 2017184334 | Oct 2017 | WO |
| WO 2017184768 | Oct 2017 | WO |
| WO 2017184786 | Oct 2017 | WO |
| WO 2017186550 | Nov 2017 | WO |
| WO 2017189308 | Nov 2017 | WO |
| WO 2017189336 | Nov 2017 | WO |
| WO 2017190257 | Nov 2017 | WO |
| WO 2017190664 | Nov 2017 | WO |
| WO 2017191210 | Nov 2017 | WO |
| WO 2017192172 | Nov 2017 | WO |
| WO 2017192512 | Nov 2017 | WO |
| WO 2017192544 | Nov 2017 | WO |
| WO 2017192573 | Nov 2017 | WO |
| WO 2017193029 | Nov 2017 | WO |
| WO 2017193053 | Nov 2017 | WO |
| WO 2017196768 | Nov 2017 | WO |
| WO 2017197038 | Nov 2017 | WO |
| WO 2017197238 | Nov 2017 | WO |
| WO 2017197301 | Nov 2017 | WO |
| WO 2017201476 | Nov 2017 | WO |
| WO 2017205290 | Nov 2017 | WO |
| WO 2017205423 | Nov 2017 | WO |
| WO 2017207589 | Dec 2017 | WO |
| WO 2017208247 | Dec 2017 | WO |
| WO 2017209809 | Dec 2017 | WO |
| WO 2017213896 | Dec 2017 | WO |
| WO 2017213898 | Dec 2017 | WO |
| WO 2017214460 | Dec 2017 | WO |
| WO 2017216392 | Dec 2017 | WO |
| WO 2017216771 | Dec 2017 | WO |
| WO 2017218185 | Dec 2017 | WO |
| WO 2017219027 | Dec 2017 | WO |
| WO 2017219033 | Dec 2017 | WO |
| WO 2017220751 | Dec 2017 | WO |
| WO 2017222370 | Dec 2017 | WO |
| WO 2017222773 | Dec 2017 | WO |
| WO 2017222834 | Dec 2017 | WO |
| WO 2017223107 | Dec 2017 | WO |
| WO 2017223330 | Dec 2017 | WO |
| WO 2018000657 | Jan 2018 | WO |
| WO 2018002719 | Jan 2018 | WO |
| WO 2018005117 | Jan 2018 | WO |
| WO 2018005289 | Jan 2018 | WO |
| WO 2018005691 | Jan 2018 | WO |
| WO 2018005782 | Jan 2018 | WO |
| WO 2018005873 | Jan 2018 | WO |
| WO 201806693 | Jan 2018 | WO |
| WO 2018009520 | Jan 2018 | WO |
| WO 2018009562 | Jan 2018 | WO |
| WO 2018009822 | Jan 2018 | WO |
| WO 2018013821 | Jan 2018 | WO |
| WO 2018013990 | Jan 2018 | WO |
| WO 2018014384 | Jan 2018 | WO |
| WO 2018015444 | Jan 2018 | WO |
| WO 2018015936 | Jan 2018 | WO |
| WO 2018017754 | Jan 2018 | WO |
| WO 2018018979 | Feb 2018 | WO |
| WO 2018020248 | Feb 2018 | WO |
| WO 2018021878 | Feb 2018 | WO |
| WO 2018022480 | Feb 2018 | WO |
| WO 2018022634 | Feb 2018 | WO |
| WO 2018025206 | Feb 2018 | WO |
| WO 2018026723 | Feb 2018 | WO |
| WO 2018026976 | Feb 2018 | WO |
| WO 2018027078 | Feb 2018 | WO |
| WO 2018030608 | Feb 2018 | WO |
| WO 2018031683 | Feb 2018 | WO |
| WO 2018035250 | Feb 2018 | WO |
| WO 2018035300 | Feb 2018 | WO |
| WO 2018035423 | Feb 2018 | WO |
| WO 2018035503 | Feb 2018 | WO |
| WO 2018039145 | Mar 2018 | WO |
| WO 2018039438 | Mar 2018 | WO |
| WO 2018039440 | Mar 2018 | WO |
| WO 2018039448 | Mar 2018 | WO |
| WO 2018045630 | Mar 2018 | WO |
| WO 2018048827 | Mar 2018 | WO |
| WO 2018049168 | Mar 2018 | WO |
| WO 2018051347 | Mar 2018 | WO |
| WO 2018058064 | Mar 2018 | WO |
| WO 2018062866 | Apr 2018 | WO |
| WO 2018064352 | Apr 2018 | WO |
| WO 2018064371 | Apr 2018 | WO |
| WO 2018064516 | Apr 2018 | WO |
| WO 2018067546 | Apr 2018 | WO |
| WO 2018067846 | Apr 2018 | WO |
| WO 2018068053 | Apr 2018 | WO |
| WO 2018069474 | Apr 2018 | WO |
| WO 2018071623 | Apr 2018 | WO |
| WO 2018071663 | Apr 2018 | WO |
| WO 2018071868 | Apr 2018 | WO |
| WO 2018071892 | Apr 2018 | WO |
| WO 2018074979 | Apr 2018 | WO |
| WO 2018079134 | May 2018 | WO |
| WO 2018080573 | May 2018 | WO |
| WO 2018081504 | May 2018 | WO |
| WO 2018081535 | May 2018 | WO |
| WO 2018081728 | May 2018 | WO |
| WO 2018083128 | May 2018 | WO |
| WO 2018083606 | May 2018 | WO |
| WO 2018085288 | May 2018 | WO |
| WO 2018086623 | May 2018 | WO |
| WO 2018089664 | May 2018 | WO |
| WO 2018093990 | May 2018 | WO |
| WO 2018098383 | May 2018 | WO |
| WO 2018098480 | May 2018 | WO |
| WO 2018098587 | Jun 2018 | WO |
| WO 2018099256 | Jun 2018 | WO |
| WO 2018103686 | Jun 2018 | WO |
| WO 2018106268 | Jun 2018 | WO |
| WO 2018107028 | Jun 2018 | WO |
| WO 2018107103 | Jun 2018 | WO |
| WO 2018107129 | Jun 2018 | WO |
| WO 2018-108272 | Jun 2018 | WO |
| WO 2018109101 | Jun 2018 | WO |
| WO 2018111946 | Jun 2018 | WO |
| WO 2018111947 | Jun 2018 | WO |
| WO 2018112336 | Jun 2018 | WO |
| WO 2018112446 | Jun 2018 | WO |
| WO 2018119354 | Jun 2018 | WO |
| WO 2018119359 | Jun 2018 | WO |
| WO 2018120283 | Jul 2018 | WO |
| WO 2018130830 | Jul 2018 | WO |
| WO 2018135838 | Jul 2018 | WO |
| WO 2018136396 | Jul 2018 | WO |
| WO 2018138385 | Aug 2018 | WO |
| WO 2018148246 | Aug 2018 | WO |
| WO 2018148256 | Aug 2018 | WO |
| WO 2018148647 | Aug 2018 | WO |
| WO 2018149418 | Aug 2018 | WO |
| WO 2018149888 | Aug 2018 | WO |
| WO 2018152197 | Aug 2018 | WO |
| WO 2018152418 | Aug 2018 | WO |
| WO 2018154380 | Aug 2018 | WO |
| WO 2018154387 | Aug 2018 | WO |
| WO 2018154412 | Aug 2018 | WO |
| WO 2018154413 | Aug 2018 | WO |
| WO 2018154418 | Aug 2018 | WO |
| WO 2018154439 | Aug 2018 | WO |
| WO 2018154459 | Aug 2018 | WO |
| WO 2018154462 | Aug 2018 | WO |
| WO 2018156372 | Aug 2018 | WO |
| WO 2018161009 | Sep 2018 | WO |
| WO 2018165504 | Sep 2018 | WO |
| WO 2018165629 | Sep 2018 | WO |
| WO 2018170015 | Sep 2018 | WO |
| WO 2018170340 | Sep 2018 | WO |
| WO 2018175502 | Sep 2018 | WO |
| WO 2018176009 | Sep 2018 | WO |
| WO 2018177351 | Oct 2018 | WO |
| WO 2018179578 | Oct 2018 | WO |
| WO 2018183403 | Oct 2018 | WO |
| WO 2018195402 | Oct 2018 | WO |
| WO 2018195545 | Oct 2018 | WO |
| WO 2018195555 | Oct 2018 | WO |
| WO 2018197020 | Nov 2018 | WO |
| WO 2018197495 | Nov 2018 | WO |
| WO 2018202800 | Nov 2018 | WO |
| WO 2018204493 | Nov 2018 | WO |
| WO 2018208755 | Nov 2018 | WO |
| WO 2018208998 | Nov 2018 | WO |
| WO 2018209158 | Nov 2018 | WO |
| WO 2018209320 | Nov 2018 | WO |
| WO 2018213708 | Nov 2018 | WO |
| WO 2018213726 | Nov 2018 | WO |
| WO 2018213771 | Nov 2018 | WO |
| WO 2018213791 | Nov 2018 | WO |
| WO 2018217852 | Nov 2018 | WO |
| WO 2018217981 | Nov 2018 | WO |
| WO 2018218166 | Nov 2018 | WO |
| WO 2018218188 | Nov 2018 | WO |
| WO 2018218206 | Nov 2018 | WO |
| WO 2019005886 | Jan 2019 | WO |
| WO 2019010384 | Jan 2019 | WO |
| WO 2019023680 | Jan 2019 | WO |
| WO 2019051097 | Mar 2019 | WO |
| WO 2019079347 | Apr 2019 | WO |
| WO 2019118949 | Jun 2019 | WO |
| WO 2019139645 | Jul 2019 | WO |
| WO 2019139951 | Jul 2019 | WO |
| WO 2019226953 | Nov 2019 | WO |
| WO 2020014261 | Jan 2020 | WO |
| WO 2020041751 | Feb 2020 | WO |
| WO 2020051360 | Mar 2020 | WO |
| WO 2020086908 | Apr 2020 | WO |
| WO 2020092453 | May 2020 | WO |
| WO 2020102659 | May 2020 | WO |
| WO 2020154500 | Jul 2020 | WO |
| WO 2020181178 | Sep 2020 | WO |
| WO 2020181180 | Sep 2020 | WO |
| WO 2020181193 | Sep 2020 | WO |
| WO 2020181195 | Sep 2020 | WO |
| WO 2020181202 | Sep 2020 | WO |
| WO 2020191153 | Sep 2020 | WO |
| WO 2020191171 | Sep 2020 | WO |
| WO 2020191233 | Sep 2020 | WO |
| WO 2020191234 | Sep 2020 | WO |
| WO 2020191239 | Sep 2020 | WO |
| WO 2020191241 | Sep 2020 | WO |
| WO 2020191242 | Sep 2020 | WO |
| WO 2020191243 | Sep 2020 | WO |
| WO 2020191245 | Sep 2020 | WO |
| WO 2020191246 | Sep 2020 | WO |
| WO 2020191248 | Sep 2020 | WO |
| WO 2020191249 | Sep 2020 | WO |
| WO 2020210751 | Oct 2020 | WO |
| WO 2020214842 | Oct 2020 | WO |
| WO 2020236982 | Nov 2020 | WO |
| WO 2021025750 | Feb 2021 | WO |
| WO 2021030666 | Feb 2021 | WO |
| Entry |
|---|
| Wijesinghe et al. (Nucleic Acids Research, 2012, 40:9206-9217) (Year: 2012). |
| EP 123845790.0, Mar. 18, 2015, Partial Supplementary European Search Report. |
| EP 123845790.0, Oct. 12, 2015, Supplementary European Search Report. |
| PCT/US2012/047778, May 30, 2013, International Search Report and Written Opinion. |
| PCT/US2012/047778, Feb. 6, 2014, International Preliminary Report on Patentability. |
| PCT/US2014/052231, Dec. 4, 2014, International Search Report and Written Opinion. |
| PCT/US2014/052231, Jan. 30, 2015, International Search Report and Written Opinion (Corrected Version). |
| PCT/US2014/052231, Mar. 3, 2016, International Preliminary Report on Patentability. |
| PCT/US2014/050283, Nov. 6, 2014, International Search Report and Written Opinion. |
| PCT/US2014/050283, Feb. 18, 2016, International Preliminary Report on Patentability. |
| PCT/US2014/054247, Mar. 27, 2015, International Search Report and Written Opinion. |
| PCT/US2014/054247, Mar. 17, 2016, International Preliminary Report on Patentability. |
| PCT/US2014/054291, Dec. 18, 2014, Invitation to Pay Additional Fees. |
| PCT/US2014/054291, Mar. 27, 2015, International Search Report and Written Opinion. |
| PCT/US2014/054291, Mar. 17, 2016, International Preliminary Report on Patentability. |
| PCT/US2014/054252, Mar. 5, 2015, International Search Report and Written Opinion. |
| PCT/US2014/054252, Mar. 17, 2016, International Preliminary Report on Patentability. |
| PCT/US2014/070038, Apr. 14, 2015, International Search Report and Written Opinion. |
| PCT/US2014/070038, Jun. 23, 2016, International Preliminary Report on Patentability. |
| EP 15830407.1, Mar. 2, 2018, Extended European Search Report. |
| PCT/US2015/042770, Feb. 23, 2016, International Search Report and Written Opinion. |
| PCT/US2015/042770, Dec. 19, 2016, International Preliminary Report on Patentability. |
| PCT/US2015/058479, Feb. 11, 2016, International Search Report and Written Opinion. |
| PCT/US2015/058479, May 11, 2017, International Preliminary Report on Patentability. |
| PCT/US2016/044546, Dec. 28, 2016, International Search Report and Written Opinion. |
| PCT/US2016/058344, Mar. 1, 2017, Invitation to Pay Additional Fees. |
| PCT/US2016/058344, Apr. 20, 2017, International Search Report and Written Opinion. |
| PCT/US2016/058344, May 3, 2018, International Preliminary Report on Patentability. |
| PCT/US2018/025887, Jun. 21, 2018, International Search Report and Written Opinion. |
| PCT/US2017/48390, Nov. 7, 2017, Invitation to Pay Additional Fees. |
| PCT/US2017/48390, Jan. 9, 2018, International Search Report and Written Opinion. |
| PCT/US2017/068114, Mar. 20, 2018, International Search Report and Written Opinion. |
| PCT/US2017/068105, Apr. 4, 2018, International Search Report and Written Opinion. |
| PCT/US2018/021880, Jun. 20, 2018, International Search Report and Written Opinion. |
| PCT/US2017/046144, Oct. 10, 2017, International Search Report and Written Opinion. |
| PCT/US2017/045381, Oct. 26, 2017, International Search Report and Written Opinion. |
| PCT/US2018/021664, Jun. 21, 2018, International Search Report and Written Opinion. |
| PCT/US2017/056671, Dec. 21, 2017, Invitation to Pay Additional Fees. |
| PCT/US2017/056671, Feb. 20, 2018, International Search Report and Written Opinion. |
| PCT/US2018/021878, Jun. 8, 2018, Invitation to Pay Additional Fees. |
| PCT/US2018/021878, Aug. 20, 2018, International Search Report and Written Opinion. |
| PCT/US2018/024208, Aug. 23, 2018, International Search Report and Written Opinion. |
| PCT/US2018/032460, Jul. 11, 2018, International Search Report and Written Opinion. |
| U.S. Appl. No. 61/838,178, filed Jun. 21, 2013, Joung et al. |
| U.S. Appl. No. 62/288,661, filed Jan. 29, 2016, Muir et al. |
| U.S. Appl. No. 62/357,332, filed Jun. 30, 2016, Liu et al. |
| [No Author Listed] Score result for SEQ 355 to W02017032580. Muir et al. 2016. |
| Bershtein et al., Advances in laboratory evolution of enzymes. Curr Opin; Chem Biol. Apr. 2008;12(2):151-8. doi: 10.1016/j.cbpa.2008.01.027. Epub Mar. 7, 2008. Review. |
| Böck et al., Selenocysteine: the 21st amino acid. Mol Microbiol. Mar. 1991;5(3):515-20. |
| Bogdanove et al., TAL effectors: customizable proteins for DNA targeting. Science. Sep. 30, 2011;333(6051):1843-6. doi: 10.1126/science.1204094. |
| Bohlke et al., Sense codon emancipation for proteome-wide incorporation of noncanonical amino acids: rare isoleucine codon AUA as a target for genetic code expansion. FEMS Microbiol Lett. Feb. 2014;351(2):133-44. doi: 10.1111/1574-6968.12371. Epub Jan. 27, 2014. |
| Budisa et al., Residue-specific bioincorporation of non-natural, biologically active amino acids into proteins as possible drug carriers: structure and stability of the per-thiaproline mutant of annexin V. Proc Natl Acad Sci U S A. Jan. 20, 1998;95(2):455-9. |
| Carroll, Genome engineering with zinc-finger nucleases. Genetics. Aug. 2011;188(4):773-82. doi: 10.1534/genetics.111.131433. Review. |
| Chavez et al., Precise Cas9 targeting enables genomic mutation prevention. bioRxiv. Jun. 14, 2016; http://dx/doi.oreg/10.1101/058974. 6 pages. |
| D'Adda di Fagagna et al., The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku. EMBO Rep. Jan. 2003;4(1):47-52. |
| Dumas et al., Designing logical codon reassignment—Expanding the chemistry in biology. Chem Sci. Jan. 1, 2015;6(1):50-69. doi: 10.1039/c4sc01534g. Epub Jul. 14, 2014. Review. |
| Edwards et al., An Escherichia coli tyrosine transfer RNA is a leucine-specific transfer RNA in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. Feb. 15, 1991;88(4):1153-6. |
| Fagerlund et al., The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biology Nov. 17, 2015;16:251. https://doi.org/10.1186/s13059-015-0824-9. |
| Farhood et al., Codelivery to mammalian cells of a transcriptional factor with cis-acting element using cationic liposomes. Anal Biochem. Feb. 10, 1995;225(l):89-93. |
| Hamano-Takaku et al., A mutant Escherichia coli tyrosyl-tRNA synthetase utilizes the unnatural amino acid azatyrosine more efficiently than tyrosine. J Biol Chem. Dec. 22, 2000;275(51):40324-8. |
| Hayes et al., Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli. Proc Natl Acad Sci U S A. Mar. 19, 2002;99(6):3440-5. Epub Mar. 12, 2002. |
| Hida et al., Directed evolution for drug and nucleic acid; delivery. Adv Drug Deliv Rev. Dec. 22, 2007;59(15):1562-78. Epub Aug. 28, 2007.; Review. |
| Hirano et al., Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9. Mol Cell. Mar. 17, 2016;61(6):886-94. doi: 10.1016/j.molcel.2016.02.018. |
| Husimi, Selection and evolution of bacteriophages in cellstat. Adv Biophys. ; 1989;25:1-43. Review. |
| Kakiyama et al., A peptide release system using a photo-cleavable linker in a cell array format for cell-toxicity analysis. Polymer J. Feb. 27, 2013;45:535-9. |
| Kiga et al., An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system. Proc Natl Acad Sci U S A. Jul. 23, 2002;99(15):9715-20. Epub Jul. 3, 2002. |
| Köhrer et al., A possible approach to site-specific insertion of two different unnatural amino acids into proteins in mammalian cells via nonsense suppression. Chem Biol. Nov. 2003;10(11):1095-102. |
| Köhrer et al., Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells. Nucleic Acids Res. Dec. 1, 2004;32(21):6200-11. Print 2004. |
| Kowal et al., Exploiting unassigned codons in Micrococcus luteus for tRNA-based amino acid mutagenesis. Nucleic Acids Res. Nov. 15, 1997;25(22):4685-9. |
| Link et al., Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches. Gene Ther. Oct. 2009;16(10):1189-201. doi: 10.1038/gt.2009.81. Epub Jul. 9, 2009. Review. |
| Liu et al., Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo. Proc Natl Acad Sci U S A. Sep. 16, 1997;94(19):10092-7. |
| Liu et al., Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew Chem. Dec. 16, 2006;45(1):90-4. DOI: 10.1002/anie.200502589. |
| Monahan et al., Site-specific incorporation of unnatural amino acids into receptors expressed in Mammalian cells. Chem Biol. Jun. 2003;10(6):573-80. |
| Nelson et al., Filamentous phage DNA cloning vectors: a noninfective mutant with a nonpolar deletion in gene III. Virology. 1981; 108(2): 338-50. |
| Oakes et al., Protein engineering of Cas9 for enhanced function. Methods Enzymol. 2014;546:491-511. |
| Pelletier, CRISPR-Cas systems for the study of the immune function. Nov. 15, 2016. https://doi.org/10.1002/9780470015902.a0026896. |
| Rakonjac et al., Roles of PIII in filamentous phage assembly. J Mol Biol. 1998; 282(1)25-41. |
| Riechmann et al.,. The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli. Cell. 1997; 90(2):351-60. PMID:9244308. |
| Rudolph et al., Synthetic riboswitches for the conditional control of gene expression in Streptomyces coelicolor. Microbiology. Jul. 2013;159(Pt 7):1416-22. doi: 10.1099/mic.0.067322-0. Epub May 15, 2013. |
| Sharma et al., Efficient introduction of aryl bromide functionality into proteins in vivo. FEBS Lett. Feb. 4, 2000;467(1):37-40. |
| Smith, Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. Jun. 14, 1985;228(4705):1315-7. |
| Wals et al., Unnatural amino acid incorporation in E. coli: current and future applications in the design of therapeutic proteins. Front Chem. Apr. 1, 2014;2:15. doi: 10.3389/fchem.2014.00015. eCollection 2014. |
| Yang et al., APOBEC: From mutator to editor. J Genet Genomics. Sep. 20, 2017;44(9):423-437. doi: 10.1016/j.jgg.2017.04.009. Epub Aug. 7, 2017. |
| Young et al., Beyond the canonical 20 amino acids: expanding the genetic lexicon. J Biol Chem. Apr. 9, 2010;285(15):11039-44. doi:10.1074/jbc.R109.091306. Epub Feb. 10, 2010. |
| Yuan et al., Laboratory-directed protein evolution. Microbiol Mol Biol Rev. 2005; 69(3):373-92. PMID: 16148303. |
| Partial European Search Report for Application No. EP 19187331.4, dated Dec. 19, 2019. |
| Extended European Search Report for EP 19181479.7, dated Oct. 31, 2019. |
| International Preliminary Report on Patentability for PCT/US2017/068114, dated Jul. 4, 2019. |
| International Preliminary Report on Patentability for PCT/US2017/068105, dated Jul. 4, 2019. |
| International Preliminary Report on Patentability for PCT/US2018/021880, dated Sep. 19, 2019. |
| International Preliminary Report on Patentability for PCT/US2018/021664, dated Sep. 19, 2019. |
| International Preliminary Report on Patentability for PCT/US2018/021878, dated Sep. 19, 2019. |
| International Preliminary Report on Patentability for PCT/US2018/024208, dated Oct. 3, 2019. |
| International Search Report for PCT/US2018/048969, dated Jul. 31, 2019. |
| International Prelminary Report on Patentability for PCT/US2018/048969, dated Mar. 12, 2020. |
| International Preliminary Report on Patentability for PCT/US2018/032460, dated Nov. 21, 2019. |
| International Search Report and Written Opinion for PCT/US2018/044242, dated Nov. 21, 2019. |
| International Preliminary Report on Patentability for PCT/US2018/044242, dated Feb. 6, 2020. |
| U.S. Appl. No. 61/716,256, filed Oct. 19, 2012, Jinek et al. |
| U.S. Appl. No. 61/717,324, filed Oct. 23, 2012, Cho et al. |
| U.S. Appl. No. 61/734,256, filed Dec. 6, 2012, Chen et al. |
| U.S. Appl. No. 61/758,624, filed Jan. 30, 2013, Chen et al. |
| U.S. Appl. No. 61/761,046, filed Feb. 5, 2013, Knight et al. |
| U.S. Appl. No. 61/794,422, filed Mar. 15, 2013, Knight et al. |
| U.S. Appl. No. 61/803,599, filed Mar. 20, 2013, Kim et al. |
| U.S. Appl. No. 61/837,481, filed Jun. 20, 2013, Cho et al. |
| U.S. Appl. No. 61/874,682. |
| U.S. Appl. No. 61/874,746. |
| [No Author Listed], EMBL Accession No. Q99ZW2. Nov. 2012. 2 pages. |
| [No Author Listed], Invitrogen Lipofectamine™ 2000 product sheets, 2002. 2 pages. |
| [No Author Listed], Invitrogen Lipofectamine™ 2000 product sheets, 2005. 3 pages. |
| [No Author Listed], Invitrogen Lipofectamine™ LTX product sheets, 2011. 4 pages. |
| [No Author Listed], Thermo Fisher Scientific—How Cationic Lipid Mediated Transfection Works, retrieved from the internet Aug. 27, 2015. 2 pages. |
| Abudayyeh et al., C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science Aug. 2016;353(6299):aaf5573. DOI: 10.1126/science.aaf5573. |
| Addgene Plasmid # 44246. pdCas9-humanized, 2017, Stanley Qi. |
| Addgene Plasmid # 73021. PCMV-BE3, 2017, David Liu. |
| Addgene Plasmid # 79620. pcDNA3.1_pCMV-nCas-PmCDA1-ugi pH1-gRNA(HPRT), 2017, Akihiko Kondo. |
| Adrian et al., Targeted SAINT-O-Somes for improved intracellular delivery of siRNA and cytotoxic drugs into endothelial cells. J Control Release. Jun. 15, 2010;144(3):341-9. doi: 10.1016/j.jconrel.2010.03.003. Epub Mar. 11, 2010. |
| Aguilera et al., Systemic in vivo distribution of activatable cell penetrating peptides is superior to that of cell penetrating peptides. Integr Biol (Camb). Jun. 2009;1(5-6):371-81. doi: 10.1039/b904878b. Epub May 11, 2009. |
| Aihara et al., A conformational switch controls the DNA cleavage activity of lambda integrase. Mol Cell. Jul. 2003;12(1):187-98. |
| Akinc et al., A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol. May 2008;26(5):561-9. doi: 10.1038/nbt1402. Epub Apr. 27, 2008. |
| Akopian et al., Chimeric recombinases with designed DNA sequence recognition. Proc Natl Acad Sci U S A. Jul. 22, 2003;100(15):8688-91. Epub Jul. 1, 2003. |
| Al-Taei et al., Intracellular traffic and fate of protein transduction domains HIV-1 TAT peptide and octaarginine. Implications for their utilization as drug delivery vectors. Bioconjug Chem. Jan.-Feb. 2006;17(1):90-100. |
| Alexandrov et al., Signatures of mutational processes in human cancer. Nature. Aug. 22, 2013;500(7463):415-21. doi: 10.1038/nature12477. Epub Aug. 14, 2013. |
| Ali et al., Novel genetic abnormalities in Bernard-Soulier syndrome in India. Ann Hematol. Mar. 2014;93(3):381-4. doi: 10.1007/s00277-013-1895-x. Epub Sep. 1, 2013. |
| Allen et al., Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. Jan. 2013;65(1):36-48. doi: 10.1016/j.addr.2012.09.037. Epub Oct. 1, 2012. |
| Ames et al., A eubacterial riboswitch class that senses the coenzyme tetrahydrofolate. Chem Biol. Jul. 30, 2010;17(7):681-5. doi: 10.1016/j.chembiol.2010.05.020. |
| Anders et al., Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature. Sep. 25, 2014;513(7519):569-73. doi: 10.1038/nature13579. Epub Jul. 27, 2014. |
| Arnold et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. EMBO J. Mar. 1, 1999;18(5):1407-14. |
| Badran et al., In vivo continuous directed evolution. Curr Opin Chem Biol. Feb. 2015;24:1-10. doi: 10.1016/j.cbpa.2014.09.040. Epub Nov. 7, 2014. |
| Bae et al., Protective anti-tumour immune responses by murine dendritic cells pulsed with recombinant Tat-carcinoembryonic antigen derived from Escherichia coli. Clin Exp Immunol. Jul. 2009;157(1):128-38. doi: 10.1111/j.1365-2249.2009.03943.x. |
| Barnes et al., Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet. 2004;38:445-76. |
| Barrangou et al., CRISPR provides acquired resistance against viruses in prokaryotes. Science. Mar. 23, 2007;315(5819):1709-12. |
| Barrangou, RNA-mediated programmable DNA cleavage. Nat Biotechnol. Sep. 2012;30(9):836-8. doi: 10.1038/nbt.2357. |
| Basha et al., Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells. Mol Ther. Dec. 2011;19(12):2186-200. doi: 10.1038/mt.2011.190. Epub Oct. 4, 2011. |
| Batey et al., Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature. Nov. 18, 2004;432(7015):411-5. |
| Beale et al., Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo. J Mol Biol. Mar. 26, 2004;337(3):585-96. |
| Bedell et al., In vivo genome editing using a high-efficiency TALEN system. Nature. Nov. 1, 2012;491(7422):114-8. Doi: 10.1038/nature11537. Epub Sep. 23, 2012. |
| Begley, Scientists unveil the ‘most clever CRISPR gadget’ so far. STAT, Apr. 20, 2016. https://www.statnews.com/2016/04/20/clever-crispr-advance-unveiled/. |
| Beumer et al., Efficient gene targeting in Drosophila with zinc-ftnger nucleases. Genetics. Apr. 2006;172(4):2391-403. Epub Feb. 1, 2006. |
| Bhagwat, DNA-cytosine deaminases: from antibody maturation to antiviral defense. DNA Repair (Amst). Jan. 5, 2004;3(1):85-9. |
| Bibikova et al., Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol. Jan. 2001;21(1):289-97. |
| Bibikova et al., Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. Jul. 2002;161(3):1169-75. |
| Billon et al., CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons. Mol Cell. Sep. 21, 2017;67(6):1068-1079.e4. doi: 10.1016/j.molcel.2017.08.008. Epub Sep. 7, 2017. |
| Birling et al., Site-specific recombinases for manipulation of the mouse genome. Methods Mol Biol. 2009;561:245-63. doi: 10.1007/978-1-60327-019-9_16. |
| Bitinaite et al., FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10570-5. |
| Boch et al., Breaking the code of DNA binding specificity of TAL-type III effectors. Science. Dec. 11, 2009;326(5959):1509-12. Doi: 10.1126/science.1178811. |
| Boch, TALEs of genome targeting. Nat Biotechnol. Feb. 2011;29(2):135-6. Doi: 10.1038/nbt.1767. |
| Boeckle et al., Melittin analogs with high lytic activity at endosomal pH enhance transfection with purified targeted PEI polyplexes. J Control Release. May 15, 2006;112(2):240-8. Epub Mar. 20, 2006. |
| Bolotin et al., Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. Aug. 2005;151(Pt 8):2551-61. |
| Borman, Improved route to single-base genome editing. Chemical & Engineering News, Apr. 25, 2016;94(17)p5. http://cen.acs.org/articles/94/i17/Improved-route-single-base-genome.html. |
| Branden and Tooze, Introduction to Protein Structure. 1999; 2nd edition. Garland Science Publisher: 3-12. |
| Briner et al., Guide RNA functional modules direct Cas9 activity and orthogonality. Mol Cell. Oct. 23, 2014;56(2):333-339. doi: 10.1016/j.molcel.2014.09.019. |
| Britt et al., Re-engineering plant gene targeting. Trends Plant Sci. Feb. 2003;8(2):90-5. |
| Brouns et al., Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. Aug. 15, 2008;321(5891):960-4. doi: 10.1126/science.1159689. |
| Brown et al., Serine recombinases as tools for genome engineering. Methods. Apr. 2011;53(4):372-9. doi: 10.1016/j.ymeth.2010.12.031. Epub Dec. 30, 2010. |
| Brusse et al., Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): A new phenotype. Mov Disord. Mar. 2006;21(3):396-401. |
| Buchholz et al., Alteration of Cre recombinase site specificity by substrate-linked protein evolution. Nat Biotechnol. Nov. 2001;19(11):1047-52. |
| Buchwald et al., Long-term, continuous intravenous heparin administration by an implantable infusion pump in ambulatory patients with recurrent venous thrombosis. Surgery. Oct. 1980;88(4):507-16. |
| Bulow et al., Multienzyme systems obtained by gene fusion. Trends Biotechnol. Jul. 1991;9(7):226-31. |
| Bulyk et al., Exploring the DNA-binding specificities of zinc fingers with DNA microarrays. Proc Natl Acad Sci U S A. Jun. 19, 2001;98(13):7158-63. Epub Jun. 12, 2001. |
| Burke et al., Activating mutations of Tn3 resolvase marking interfaces important in recombination catalysis and its regulation. Mol Microbiol. Feb. 2004;51(4):937-48. |
| Burstein et al., New CRISPR-Cas systems from uncultivated microbes. Nature Feb. 2017;542(7640):237-240. |
| Buskirk et al., Directed evolution of ligand dependence: small-molecule-activated protein splicing. Proc Natl Acad Sci U S A. Jul. 20, 2004;101(29):10505-10. Epub Jul. 9, 2004. |
| Cade et al., Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res. Sep. 2012;40(16):8001-10. Doi: 10.1093/nar/gks518. Epub Jun. 7, 2012. |
| Caldecott et al., Single-strand break repair and genetic disease. Nat Rev Genet. Aug. 2008;9(8):619-31. doi: 10.1038/nrg2380. |
| Cameron, Recent advances in transgenic technology. Mol Biotechnol. Jun. 1997;7(3):253-65. |
| Cargill et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. Jul. 1999;22(3):231-8. |
| Caron et al., Intracellular delivery of a Tat-eGFP fusion protein into muscle cells. Mol Ther. Mar. 2001;3(3):310-8. |
| Carroll et al., Gene targeting in Drosophila and Caenorhabditis elegans with zinc-finger nucleases. Methods Mol Biol. 2008;435:63-77. doi: 10.1007/978-1-59745-232-8_5. |
| Carroll et al., Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther. Nov. 2008;15(22):1463-8. doi: 10.1038/gt.2008.145. Epub Sep. 11, 2008. |
| Carroll, A CRISPR approach to gene targeting. Mol Ther. Sep. 2012;20(9):1658-60. doi: 10.1038/mt.2012.171. |
| Cermak et al., Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. Jul. 2011;39(12):e82. Doi: 10.1093/nar/gkr218. Epub Apr. 14, 2011. |
| Chadwick et al., In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing. Arterioscler Thromb Vase Biol. Sep. 2017;37(9):1741-1747. doi: 10.1161/ATVBAHA.117.309881. Epub Jul. 27, 2017. |
| Chaikind et al., A programmable Cas9-serine recombinase fusion protein that operates on DNA sequences in mammalian cells. Nucleic Acids Res. Nov. 16, 2016;44(20):9758-9770. Epub Aug. 11, 2016. |
| Chang et al., Modification of DNA ends can decrease end joining relative to homologous recombination in mammalian cells. Proc Natl Acad Sci U S A. Jul. 1987;84(14):4959-63. |
| Charpentier et al., Biotechnology: Rewriting a genome. Nature. Mar. 7, 2013;495(7439):50-1. doi: 10.1038/495050a. |
| Chavez et al., Highly efficient Cas9-mediated transcriptional programming. Nat Methods. Apr. 2015;12(4):326-8. doi: 10.1038/nmeth.3312. Epub Mar. 2, 2015. |
| Chavez et al., Precise Cas9 targeting enables genomic mutation prevention. Jun. 14, 2016. doi:https://doi.org/10.1101/058974. [Preprint]. |
| Chavez et al., Precise Cas9 targeting enables genomic mutation prevention. Proc Natl Acad Sci U S A. Apr. 3, 2018;115(14):3669-3673. doi: 10.1073/pnas.1718148115. Epub Mar. 19, 2018. |
| Chavez et al., Therapeutic applications of the ΦC31 integrase system. Curr Gene Ther. Oct. 2011;11(5):375-81. Review. |
| Chavez et al., Therapeutic applications of the PhiC31 integrase system. Curr Gene Ther. Oct. 2011;11(5):375-81. Review. |
| Chelico et al., Biochemical basis of immunological and retroviral responses to DNA-targeted cytosine deamination by activation-induced cytidine deaminase and APOBEC3G. J Biol Chem. Oct. 9, 2009;284(41):27761-5. doi: 10.1074/jbc.R109.052449. Epub Aug. 13, 2009. |
| Chelico et al., Stochastic properties of processive cytidine DNA deaminases AID and APOBEC3G. Philos Trans R Soc Lond B Biol Sci. Mar. 12, 2009;364(1517):583-93. doi: 10.1098/rstb.2008.0195. |
| Chen et al., Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. Oct. 2013;65(10):1357-69. doi:10.1016/j.addr.2012.09.039. Epub Sep. 29, 2012. |
| Chen et al., Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature. Mar. 6, 2008;452(7183):116-9. doi: 10.1038/nature06638. Epub Feb. 20, 2008. |
| Chesnoy et al., Structure and function of lipid-DNA complexes for gene delivery. Annu Rev Biophys Biomol Struct. 2000;29:27-47. |
| Chew et al., A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. Oct. 2016;13(10):868-74. doi: 10.1038/nmeth.3993. Epub Sep. 5, 2016. |
| Chichili et al., Linkers in the structural biology of protein-protein interactions. Protein Science. 2013;22:153-67. |
| Chipev et al., A leucine—proline mutation in the H1 subdomain of keratin 1 causes epidermolytic hyperkeratosis. Cell. Sep. 4, 1992;70(5):821-8. |
| Cho et al., Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. Jan. 2014;24(1):132-41. doi: 10.1101/gr.162339.113. Epub Nov. 19, 2013. |
| Cho et al., Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. Mar. 2013;31(3):230-2. doi: 10.1038/nbt.2507. Epub Jan. 29, 2013. |
| Christian et al., Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues. PLoS One. 2012;7(9):e45383. doi: 10.1371/journal.pone.0045383. Epub Sep. 24, 2012. |
| Christian et al., Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. Oct. 2010;186(2):757-61. Doi: 10.1534/genetics.110.120717. Epub Jul. 26, 2010. |
| Chu et al., Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotech. Feb. 13, 2015;33:543-8. |
| Chung-Il et al., Artificial control of gene expression in mammalian cells by modulating RNA interference through aptamer-small molecule interaction. RNA. May 2006;12(5):710-6. Epub Apr. 10, 2006. |
| Chylinski et al., The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol. May 2013;10(5):726-37. doi: 10.4161/rna.24321. Epub Apr. 5, 2013. |
| Cobb et al., Directed evolution as a powerful synthetic biology tool. Methods. Mar. 15, 2013;60(1):81-90. doi: 10.1016/j.ymeth.2012.03.009. Epub Mar. 23, 2012. |
| Cobb et al., Directed evolution: an evolving and enabling synthetic biology tool. Curr Opin Chem Biol. Aug. 2012;16(3-4):285-91. doi:10.1016/j.cbpa.2012.05.186. Epub Jun. 4, 2012. Review. |
| Coelho et al., Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med. Aug. 29, 2013;369(9):819-29. doi: 10.1056/NEJMoa1208760. |
| Cole-Strauss et al., Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science. Sep. 6, 1996;273(5280):1386-9. |
| Colletier et al., Protein encapsulation in liposomes: efficiency depends on interactions between protein and phospholipid bilayer. BMC Biotechnol. May 10, 2002;2:9. |
| Cong et al., Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun. Jul. 24, 2012;3:968. doi: 10.1038/ncomms1962. |
| Cong et al., Multiplex genome engineering using CRISPR/Cas systems. Science. Feb. 15, 2013;339(6121):819-23. doi: 10.1126/science.1231143. Epub Jan. 3, 2013. |
| Conticello, The AID/APOBEC family of nucleic acid mutators. Genome Biol. 2008;9(6):229. doi: 10.1186/gb-2008-9-6-229. Epub Jun. 17, 2008. |
| Cornu et al., DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther. Feb. 2008;16(2):352-8. Epub Nov. 20, 2007. |
| Covino et al., The CCL2/CCR2 Axis in the Pathogenesis of HIV-1 Infection: A New Cellular Target for Therapy? Current Drug Targets Dec. 2016;17(1):76-110. DOI : 10.2174/138945011701151217110917. |
| Cox et al., Conditional gene expression in the mouse inner ear using Cre-loxP. J Assoc Res Otolaryngol. Jun. 2012;13(3):295-322. doi: 10.1007/s10162-012-0324-5. Epub Apr. 24, 2012. |
| Cox et al., Therapeutic genome editing: prospects and challenges. Nat Med. Feb. 2015;21(2):121-31. doi: 10.1038/nm.3793. |
| Cradick et al., CRISPR/Cas9 systems targeting B-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. Nov. 1, 2013;41(20):9584-92. doi: 10.1093/nar/gkt714. Epub Aug. 11, 2013. |
| Cradick et al., ZFN-site searches genomes for zinc finger nuclease target sites and off-target sites. BMC Bioinformatics. May 13, 2011;12:152. doi: 10.1186/1471-2105-12-152. |
| Cradick et al., Zinc-finger nucleases as a novel therapeutic strategy for targeting hepatitis B virus DNAs. Mol Ther. May 2010;18(5):947-54. Doi: 10.1038/mt.2010.20. Epub Feb. 16, 2010. |
| Cronican et al., A class of human proteins that deliver functional proteins into mammalian cells in vitro and in vivo. Chem Biol. Jul. 29, 2011;18(7):833-8. doi: 10.1016/j.chembiol.2011.07.003. |
| Cronican et al., Potent delivery of functional proteins into mammalian cells in vitro and in vivo using a supercharged protein. ACS Chem Biol. Aug. 20, 2010;5(8):747-52. doi: 10.1021/cb1001153. |
| Cui et al., Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol. Jan. 2011;29(1):64-7. Doi: 10.1038/nbt.1731. Epub Dec. 12, 2010. |
| Cunningham et al., Ensembl 2015. Nucleic Acids Res. Jan. 2015;43(Database issue):D662-9. doi: 10.1093/nar/gku1010. Epub Oct. 28, 2014. |
| Czerwinski et al., Cytotoxic agents directed to peptide hormone receptors: defining the requirements for a successful drug. Proc Natl Acad Sci U S A. Sep. 29, 1998;95(20):11520-5. |
| Dahlem et al., Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet. 2012;8(8):e1002861. doi: 10.1371/journal.pgen.1002861. Epub Aug. 16, 2012. |
| Daniels et al., Intrinsically cell-permeable miniature proteins based on a minimal cationic PPII motif. J Am Chem Soc. Nov. 28, 2007;129(47):14578-9. Epub Nov. 6, 2007. |
| Davis et al., DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. Jun. 2013;2(3):130-143. |
| Davis et al., Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol. May 2015;11(5):316-8. doi: 10.1038/nchembio.1793. Epub Apr. 6, 2015. |
| De Souza, Primer: genome editing with engineered nucleases. Nat Methods. Jan. 2012;9(1):27. |
| Deltcheva et al., CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. Mar. 31, 2011;471(7340):602-7. doi: 10.1038/nature09886. |
| Dicarlo et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research Apr. 2013;41(7):4336-43. |
| Ding et al., A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell. Feb. 7, 2013;12(2):238-51. Doi: 10.1016/j.stem.2012.11.011. Epub Dec. 13, 2012. |
| Ding et al., Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. Aug. 15, 2014;115(5):488-92. doi: 10.1161/CIRCRESAHA.115.304351. Epub Jun. 10, 2014. |
| Dixon et al., Reengineering orthogonally selective riboswitches. Proc Natl Acad Sci U S A. Feb. 16, 2010;107(7):2830-5. doi: 10.1073/pnas.0911209107. Epub Jan. 26, 2010. |
| Doench et al., Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. Feb. 2016;34(2):184-191. doi: 10.1038/nbt.3437. |
| Dormiani et al., Long-term and efficient expression of human β-globin gene in a hematopoietic cell line using a new site-specific integrating non-viral system. Gene Ther. Aug. 2015;22(8):663-74. doi: 10.1038/gt.2015.30. Epub Apr. 1, 2015. |
| Doudna et al., Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. Nov. 28, 2014;346(6213):1258096. doi: 10.1126/science.1258096. |
| Doyon et al., Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods. Jan. 2011;8(1):74-9. Doi: 10.1038/nmeth.1539. Epub Dec. 5, 2010. |
| Doyon et al., Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol. Jun. 2008;26(6):702-8. Doi: 10.1038/nbt1409. Epub May 25, 2008. |
| Dunaime, Breakthrough method means CRISPR just got a lot more relevant to human health. The Verge. Apr. 20, 2016. http://www.theverge.com/2016/4/20/11450262/crispr-base-editing-single-nucleotides-dna-gene-liu-harvard. |
| During et al., Controlled release of dopamine from a polymeric brain implant: in vivo characterization. Ann Neurol. Apr. 1989;25(4):351-6. |
| East-Seletsky et al., Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature Oct. 2016;538(7624):270-3. |
| Edwards et al., Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. Structure. Sep. 2006;14(9):1459-68. |
| Edwards et al., Structural basis for recognition of S-adenosylhomocysteine by riboswitches. RNA. Nov. 2010; 16(11):2144-55. doi:10.1261/rna.2341610. Epub Sep. 23, 2010. |
| Ellington et al., In vitro selection of RNA molecules that bind specific ligands. Nature. Aug. 30, 1990;346(6287):818-22. |
| Eltoukhy et al., Nucleic acid-mediated intracellular protein delivery by lipid-like nanoparticles. Biomaterials. Aug. 2014;35(24):6454-61. doi: 10.1016/j.biomaterials.2014.04.014. Epub May 13, 2014. |
| Esvelt et al., A system for the continuous directed evolution of biomolecules. Nature. Apr. 28, 2011;472(7344):499-503. doi: 10.1038/nature09929. Epub Apr. 10, 2011. |
| Esvelt et al., Genome-scale engineering for systems and synthetic biology. Mol Syst Biol. 2013;9:641. doi: 10.1038/msb.2012.66. |
| Esvelt et al., Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods. Nov. 2013;10(11):1116-21. doi: 10.1038/nmeth.2681. Epub Sep. 29, 2013. |
| Extended European Search Report for EP 15830407.1, dated Mar. 2, 2018. |
| Fang et al., Synthetic Studies Towards Halichondrins: Synthesis of the Left Halves of Norhalichondrins and Homohalichondrins. Tetrahedron Letters 1992;33(12):1557-1560. |
| Ferry et al., Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs. Nat Commun. Mar. 3, 2017;8:14633. doi: 10.1038/ncomms14633. |
| Fine et al., Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes. Scientific Reports 2015;5(1):Article No. 10777. doi:10.1038/srep10777. With Supplementary Information. |
| Fischer et al., Cryptic epitopes induce high-titer humoral immune response in patients with cancer. J Immunol. Sep. 1, 2010;185(5):3095-102. doi: 10.4049/jimmunol.0902166. Epub Jul. 26, 2010. |
| Fonfara et al., Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. Feb. 2014;42(4):2577-90. doi: 10.1093/nar/gktl074. Epub Nov. 22, 2013. |
| Freshney, Culture of Animal Cells. A Manual of Basic Technique. Alan R. Liss, Inc. New York. 1983;4. |
| Fu et al., Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. Mar. 2014;32(3):279-84. doi: 10.1038/nbt.2808. Epub Jan. 26, 2014. |
| Fu et al., High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. Sep. 2013;31(9):822-6. doi: 10.1038/nbt.2623. Epub Jun. 23, 2013. |
| Fuchs et al., Polyarginine as a multifunctional fusion tag. Protein Sci. Jun. 2005;14(6):1538-44. |
| Fujisawa et al., Disease-associated mutations in CIAS1 induce cathepsin B-dependent rapid cell death of human THP-1 monocytic cells. Blood. Apr. 1, 2007;109(7):2903-11. |
| Fukui et al., DNA Mismatch Repair in Eukaryotes and Bacteria. J Nucleic Acids. Jul. 27, 2010;2010. pii: 260512. doi: 10.4061/2010/260512. |
| Fung et al., Repair at single targeted DNA double-strand breaks in pluripotent and differentiated human cells. PLoS One. 2011;6(5):e20514. doi: 10.1371/journal.pone.0020514. Epub May 25, 2011. |
| Gabriel et al., An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol. Aug. 7, 2011;29(9):816-23. doi: 10.1038/nbt.1948. |
| Gaj et al., A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells. Nucleic Acids Res. Feb. 6, 2013;41(6):3937-46. |
| Gaj et al., Enhancing the specificity of recombinase-mediated genome engineering through dimer interface redesign. J Am Chem Soc. Apr. 2, 2014;136(13):5047-56. doi: 10.1021/ja4130059. Epub Mar. 20, 2014. |
| Gaj et al., Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Biotechnol Bioeng. Jan. 2014;111(1):1-15. doi: 10.1002/bit.25096. Epub Sep. 13, 2013. |
| Gaj et al., Structure-guided reprogramming of serine recombinase DNA sequence specificity. Proc Natl Acad Sci U S A. Jan. 11, 2011;108(2):498-503. doi: 10.1073/pnas.1014214108. Epub Dec. 27, 2010. |
| Gaj et al., ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. Jul. 2013;31(7):397-405. doi: 10.1016/j.tibtech.2013.04.004. Epub May 9, 2013. |
| Gallo et al., A novel pathogenic PSEN1 mutation in a family with Alzheimer's disease: phenotypical and neuropathological features. J Alzheimers Dis. 2011;25(3):425-31. doi: 10.3233/JAD-2011-110185. |
| Gao et al., Crystal structure of a TALE protein reveals an extended N-terminal DNA binding region. Cell Res. Dec. 2012;22(12):1716-20. doi: 10.1038/cr.2012.156. Epub Nov. 13, 2012. |
| Gao et al., DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat Biotechnol. Jul. 2016;34(7):768-73. doi: 10.1038/nbt.3547. Epub May 2, 2016. |
| Gardlik et al., Vectors and delivery systems in gene therapy. Med Sci Monit. Apr. 2005;11(4):RA110-21. Epub Mar. 24, 2005. |
| Garneau et al., The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. Nov. 4, 2010;468(7320):67-71. doi: 10.1038/nature09523. |
| Gasiunas et al., Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A. Sep. 25, 2012;109(39):E2579-86. Epub Sep. 4, 2012. Supplementary materials included. |
| Gasiunas et al., RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing? Trends Microbiol. Nov. 2013;21(11):562-7. doi: 10.1016/j.tim.2013.09.001. Epub Oct. 1, 2013. |
| Genbank Submission; NIH/NCBI, Accession No. J04623. Kita et al., Apr. 26, 1993. 2 pages. |
| Genbank Submission; NIH/NCBI, Accession No. NC_002737.1. Ferretti et al., Jun. 27, 2013. 1 page. |
| Genbank Submission; NIH/NCBI, Accession No. NC_015683.1. Trost et al., Jul. 6, 2013. 1 page. |
| Genbank Submission; NIH/NCBI, Accession No. NC_016782.1. Trost et al., Jun. 11, 2013. 1 page. |
| Genbank Submission; NIH/NCBI, Accession No. NC_016786.1. Trost et al., Aug. 28, 2013. 1 page. |
| Genbank Submission; NIH/NCBI, Accession No. NC_017053.1. Fittipaldi et al., Jul. 6, 2013. 1 page. |
| Genbank Submission; NIH/NCBI, Accession No. NC_017317.1. Trost et al., Jun. 11, 2013. 1 page. |
| Genbank Submission; NIH/NCBI, Accession No. NC_017861.1. Heidelberg et al., Jun. 11, 2013. 1 page. |
| Genbank Submission; NIH/NCBI, Accession No. NC_018010.1. Lucas et al., Jun. 11, 2013. 2 pages. |
| Genbank Submission; NIH/NCBI, Accession No. NC_018721.1. Feng et al., Jun. 11, 2013. 1 pages. |
| Genbank Submission; NIH/NCBI, Accession No. NC_021284.1. Ku et al., Jul. 12, 2013. 1 page. |
| Genbank Submission; NIH/NCBI, Accession No. NC_021314.1. Zhang et al., Jul. 15, 2013. 1 page. |
| Genbank Submission; NIH/NCBI, Accession No. NC_021846.1. Lo et al., Jul. 22, 2013. 1 page. |
| Genbank Submission; NIH/NCBI, Accession No. NP_472073.1. Glaser et al., Jun. 27, 2013. 2 pages. |
| Genbank Submission; NIH/NCBI, Accession No. P42212. Prasher et al., Mar. 19, 2014. 7 pages. |
| Genbank Submission; NIH/NCBI, Accession No. YP_002342100.1. Bernardini et al., Jun. 10, 2013. 2 pages. |
| Genbank Submission; NIH/NCBI, Accession No. YP_002344900.1. Gundogdu et al., Mar. 19, 2014. 2 pages. |
| Genbank Submission; NIH/NCBI, Accession No. YP_820832.1. Makarova et al., Aug. 27, 2013. 2 pages. |
| Gerber et al., RNA editing by base deamination: more enzymes, more targets, new mysteries. Trends Biochem Sci. Jun. 2001;26(6):376-84. |
| Gersbach et al., Directed evolution of recombinase specificity by split gene reassembly. Nucleic Acids Res. Jul. 2010;38(12):4198-206. doi: 10.1093/nar/gkq125. Epub Mar. 1, 2010. |
| Gersbach et al., Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase. Nucleic Acids Res. Sep. 1, 2011;39(17):7868-78. doi: 10.1093/nar/gkr421. Epub Jun. 7, 2011. |
| Gilbert et al., CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013 154(2):442-51. |
| Gilleron et al., Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol. Jul. 2013;31(7):638-46. doi: 10.1038/nbt.2612. Epub Jun. 23, 2013. |
| Gonzalez et al., An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell. Aug. 7, 2014;15(2):215-26. doi: 10.1016/j.stem.2014.05.018. Epub Jun. 12, 2014. |
| Gordley et al., Evolution of programmable zinc finger-recombinases with activity in human cells. J Mol Biol. Mar. 30, 2007;367(3):802-13. Epub Jan. 12, 2007. |
| Gordley et al., Synthesis of programmable integrases. Proc Natl Acad Sci U S A. Mar. 31, 2009;106(13):5053-8. doi: 10.1073/pnas.0812502106. Epub Mar. 12, 2009. |
| Grundy et al., The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc Natl Acad Sci U S A. Oct. 14, 2003;100(21):12057-62. Epub Oct. 1, 2003. |
| Guilinger et al., Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods. Apr. 2014;11(4):429-35. doi: 10.1038/nmeth.2845. Epub Feb. 16, 2014. |
| Guilinger et al., Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol. Jun. 2014;32(6):577-82. doi: 10.1038/nbt.2909. Epub Apr. 25, 2014. |
| Guo et al., Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases. J Mol Biol. Jul. 2, 2010;400(1):96-107. doi: 10.1016/j.jmb.2010.04.060. Epub May 4, 2010. |
| Guo et al., Protein tolerance to random amino acid change. Proc Natl Acad Sci U S A. Jun. 22, 2004;101(25):9205-10. Epub Jun. 14, 2004. |
| Guo et al., Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature. Sep. 4, 1997;389(6646):40-6. |
| Gupta et al., Zinc finger protein-dependent and -independent contributions to the in vivo off-target activity of zinc finger nucleases. Nucleic Acids Res. Jan. 2011;39(1):381-92. doi: 10.1093/nar/gkq787. Epub Sep. 14, 2010. |
| Haeussler et al., Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. Jul. 5, 2016;17(1):148. doi: 10.1186/S13059-016-1012-2. |
| Hale et al., RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell. Nov. 25, 2009;139(5):945-56. doi: 10.1016/j.cell.2009.07.040. |
| Hampel et al., Evidence for preorganization of the glmS ribozyme ligand binding pocket. Biochemistry. 2006; 45(25):7861-71. |
| Han, New CRISPR/Cas9-based Tech Edits Single Nucleotides Without Breaking DNA. Genome Web, Apr. 20, 2016. https://www.genomeweb.com/gene-silencinggene-editing/new-crisprcas9-based-tech-edits-single-nucleotides-without-breaking-dna. |
| Harris et al., RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol Cell. Nov. 2002;10(5): 1247-53. |
| Hartung et al., Correction of metabolic, craniofacial, and neurologic abnormalities in MPS I mice treated at birth with adeno-associated virus vector transducing the human alpha-L-iduronidase gene. Mol Ther. Jun. 2004;9(6):866-75. |
| Hartung et al., Cre mutants with altered DNA binding properties. J Biol Chem. Sep. 4, 1998;273(36):22884-91. |
| Hasadsri et al., Functional protein delivery into neurons using polymeric nanoparticles. J Biol Chem. Mar. 13, 2009;284(11):6972-81. doi: 10.1074/jbc.M805956200. Epub Jan. 7, 2009. |
| Heitz et al., Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol. May 2009;157(2):195-206. doi: 10.1111/j.1476-5381.2009.00057.x. Epub Mar. 20, 2009. |
| Heller et al., Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol. Dec. 2006;7(12):932-43. Epub Nov. 8, 2006. |
| Hess et al., Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods. Dec. 2016;13(12):1036-1042. doi: 10.1038/nmeth.4038. Epub Oct. 31, 2016. |
| Hickford et al., Antitumour polyether macrolides: four new halichondrins from the New Zealand deep-water marine sponge Lissodendoryx sp. Bioorg Med Chem. Mar. 15, 2009;17(6):2199-203. doi: 10.1016/j.bmc.2008.10.093. Epub Nov. 19, 2008. |
| Hill et al., Functional analysis of conserved histidines in ADP-glucose pyrophosphorylase from Escherichia coli.Biochem Biophys Res Commun. Mar. 17, 1998;244(2):573-7. |
| Hilton et al., Enabling functional genomics with genome engineering. Genome Res. Oct. 2015;25(10):1442-55. doi: 10.1101/gr.190124.115. |
| Hirano et al., Site-specific recombinases as tools for heterologous gene integration. Appl Microbiol Biotechnol. Oct. 2011;92(2):227-39. doi: 10.1007/s00253-011-3519-5. Epub Aug. 7, 2011. Review. |
| Hockemeyer et al., Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. Sep. 2009;27(9):851-7. doi: 10.1038/nbt.1562. Epub Aug. 13, 2009. |
| Hockemeyer et al., Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. Jul. 7, 2011;29(8):731-4. doi: 10.1038/nbt.1927. |
| Holden et al., Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature. Nov. 6, 2008;456(7218):121-4. doi: 10.1038/nature07357. Epub Oct. 12, 2008. |
| Hondares et al., Peroxisome Proliferator-activated Receptor α (PPARα) Induces PPARγ Coactivator 1α (PGC-1α) Gene Expression and Contributes to Thermogenic Activation of Brown Fat. J Biol. Chem Oct. 2011;286(50):43112-22. doi: 10.1074/jbc.M111.252775. |
| Hope et al., Cationic lipids, phosphatidylethanolamine and the intracellular delivery of polymeric, nucleic acid-based drugs (review). Mol Membr Biol. Jan.-Mar. 1998;15(1):1-14. |
| Horvath et al., CRISPR/Cas, the immune system of bacteria and archaea. Science. Jan. 8, 2010;327(5962):167-70. doi: 10.1126/science.1179555. |
| Hou et al., Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A. Sep. 24, 2013;110(39):15644-9. doi: 10.1073/pnas.1313587110. Epub Aug. 12, 2013. |
| Houdebine, The methods to generate transgenic animals and to control transgene expression. J Biotechnol. Sep. 25, 2002;98(2-3):145-60. |
| Howard et al., Intracerebral drug delivery in rats with lesion-induced memory deficits. J Neurosurg. Jul. 1989;71(1):105-12. |
| Hower et al., Shape-based peak identification for ChIP-Seq. BMC Bioinformatics. Jan. 12, 2011;12:15. doi: 10.1186/1471-2105-12-15. |
| Hsu et al., DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. Sep. 2013;31(9):827-32. doi: 10.1038/nbt.2647. Epub Jul. 21, 2013. |
| Hu et al., Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases. Cell Chem Biol. Jan. 21, 2016;23(1):57-73. doi: 10.1016/j.chembiol.2015.12.009. |
| Huang et al., Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):699-700. doi: 10.1038/nbt.1939. |
| Huang et al., Long-range pseudoknot interactions dictate the regulatory response in the tetrahydrofolate riboswitch. Proc Natl Acad Sci U S A. Sep. 6, 2011;108(36):14801-6. doi: 10.1073/pnas.1111701108. Epub Aug. 22, 2011. |
| Humbert et al., Targeted gene therapies: tools, applications, optimization. Crit Rev Biochem Mol Biol. May-Jun. 2012;47(3):264-81. doi: 10.3109/10409238.2012.658112. |
| Hurt et al., Highly specific zinc finger proteins obtained by directed domain shuffling and cellbased selection. Proc Natl Acad Sci U S A. Oct. 14, 2003;100(21):12271-6. Epub Oct. 3, 2003. |
| Hwang et al., Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. Mar. 2013;31(3):227-9. doi: 10.1038/nbt.2501. Epub Jan. 29, 2013. |
| Hwang et al., Efficient In Vivo Genome Editing Using RNA-Guided Nucleases. Nat Biotechnol. Mar. 2013;31(3): 227-229. doi: 10.1038/nbt.2501. Epub Jan. 29, 2013. |
| Händel et al., Expanding or restricting the target site repertoire of zinc-finger nucleases: the inter-domain linker as a major determinant of target site selectivity. Mol Ther. Jan. 2009;17(1):104-11. doi: 10.1038/mt.2008.233. Epub Nov. 11, 2008. |
| Ikediobi et al., Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther. Nov. 2006;5(11):2606-12. Epub Nov. 6, 2006. |
| International Preliminary Report on Patentability for PCT/US2016/058344, dated May 3, 2018. |
| International Preliminary Report on Patentability for PCT/US2012/047778, dated Feb. 6, 2014. |
| International Preliminary Report on patentability for PCT/US2014/050283, dated Feb. 18, 2016. |
| International Preliminary Report on Patentability for PCT/US2014/052231, dated Mar. 3, 2016. |
| International Preliminary Report on Patentability for PCT/US2014/054247, dated Mar. 17, 2016. |
| International Preliminary Report on Patentability for PCT/US2014/054291, dated Mar. 17, 2016. |
| International Preliminary Report on Patentability for PCT/US2014/070038, dated Jun. 23, 2016. |
| International Preliminary Report on Patentability for PCT/US2015/042770, dated Dec. 19, 2016. |
| International Preliminary Report on Patentability for PCT/US2015/058479, dated May 11, 2017. |
| International Preliminary Report on Patentability or PCT/US2014/054252, dated Mar. 17, 2016. |
| International Search Report and Written Opinion for PCT/US2012/047778, dated May 30, 2013. |
| International Search Report and Written Opinion for PCT/US2014/050283, dated Nov. 6, 2014. |
| International Search Report and Written Opinion for PCT/US2014/052231, dated Dec. 4, 2014. |
| International Search Report and Written Opinion for PCT/US2014/052231, dated Jan. 30, 2015 (Corrected Version). |
| International Search Report and Written Opinion for PCT/US2014/054247, dated Mar. 27, 2015. |
| International Search Report and Written Opinion for PCT/US2014/054252, dated Mar. 5, 2015. |
| International Search Report and Written Opinion for PCT/US2014/054291, dated Mar. 27, 2015. |
| International Search Report and Written Opinion for PCT/US2014/070038, dated Apr. 14, 2015. |
| International Search Report and Written Opinion for PCT/US2015/042770, dated Feb. 23, 2016. |
| International Search Report and Written Opinion for PCT/US2015/058479, dated Feb. 11, 2016. |
| International Search Report and Written Opinion for PCT/US2016/044546, dated Dec. 28, 2016. |
| International Search Report and Written Opinion for PCT/US2016/058344, dated Apr. 20, 2017. |
| International Search Report and Written Opinion for PCT/US2017/045381, dated Oct. 26, 2017. |
| International Search Report and Written Opinion for PCT/US2017/046144, dated Oct. 10, 2017. |
| International Search Report and Written Opinion for PCT/US2017/056671, dated Feb. 20, 2018. |
| International Search Report and Written Opinion for PCT/US2017/068105, dated Apr. 4, 2018. |
| International Search Report and Written Opinion for PCT/US2017/068114, dated Mar. 20, 2018. |
| International Search Report and Written Opinion for PCT/US2017/48390, dated Jan. 9, 2018. |
| International Search Report for PCT/US2013/032589, dated Jul. 26, 2013. |
| International Search Report for PCT/US2018/021664, dated Jun. 21, 2018. |
| International Search Report for PCT/US2018/021878, dated Aug. 20, 2018. |
| International Search Report for PCT/US2018/021880, dated Jun. 20, 2018. |
| International Search Report for PCT/US2018/024208, dated Aug. 23, 2018. |
| International Search Report for PCT/US2018/025887, dated Jun. 21, 2018. |
| International Search Report for PCT/US2018/032460, dated Jul. 11, 2018. |
| Invitation to Pay Additional Fees for PCT/US2014/054291, dated Dec. 18, 2014. |
| Invitation to Pay Additional Fees for PCT/US2016/058344, dated Mar. 1, 2017. |
| Invitation to Pay Additional Fees for PCT/US2017/056671, dated Dec. 21, 2017. |
| Invitation to Pay Additional Fees for PCT/US2017/48390, dated Nov. 7, 2017. |
| Invitation to Pay Additional Fees for PCT/US2018/021878, dated Jun. 8, 2018. |
| Irrthum et al., Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am J Hum Genet. Aug. 2000;67(2):295-301. Epub Jun. 9, 2000. |
| Ishino et al., Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. Dec. 1987;169(12):5429-33. |
| Jamieson et al., Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov. May 2003;2(5):361-8. |
| Jansen et al., Backbone and nucleobase contacts to glucosamine-6-phosphate in the glmS ribozyme. Nat Struct Mol Biol. Jun. 2006;13(6):517-23. Epub May 14, 2006. |
| Jansen et al., Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. Mar. 2002;43(6): 1565-75. |
| Jenkins et al., Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation. J Biol Chem. Jul. 15, 2011;286(28):24626-37. doi: 10.1074/jbc.M111.230375. Epub May 18, 2011. |
| Jiang et al., RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. Mar. 2013;31(3):233-9. doi: 10.1038/nbt.2508. Epub Jan. 29, 2013. |
| Jiang et al., Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science. Feb. 19, 2016;351(6275):867-71. doi: 10.1126/science.aad8282. Epub Jan. 14, 2016. |
| Jinek et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. Aug. 17, 2012;337(6096):816-21. doi: 10.1126/science.1225829. Epub Jun. 28, 2012. |
| Jinek et al., RNA-programmed genome editing in human cells. Elife. Jan. 29, 2013;2:e00471. doi: 10.7554/eLife.00471. |
| Jinek et al., Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. Mar. 14, 2014;343(6176):1247997. doi: 10.1126/science.1247997. Epub Feb. 6, 2014. |
| Jore et al., Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol. May 2011;18(5):529-36. doi: 10.1038/nsmb.2019. Epub Apr. 3, 2011. |
| Joung et al.,TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. Jan. 2013;14(1):49-55. doi: 10.1038/nrm3486. Epub Nov. 21, 2012. |
| Kaiser et al., Gene therapy. Putting the fingers on gene repair. Science. Dec. 23, 2005;310(5756):1894-6. |
| Kandavelou et al., Targeted manipulation of mammalian genomes using designed zinc finger nucleases. Biochem Biophys Res Commun. Oct. 9, 2009;388(1):56-61. doi: 10.1016/j.bbrc.2009.07.112. Epub Jul. 25, 2009. |
| Kang et al., Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA. Mol Cell. Mar. 27, 2009;33(6):784-90. doi: 10.1016/j.molcel.2009.02.019. Epub Mar. 12, 2009. |
| Kappel et al., Regulating gene expression in transgenic animals.Curr Opin Biotechnol. Oct. 1992;3(5):548-53. |
| Karpenshif et al., From yeast to mammals: recent advances in genetic control of homologous recombination. DNA Repair (Amst). Oct. 1, 2012;11(10):781-8. doi: 10.1016/j.dnarep.2012.07.001. Epub Aug. 11, 2012. Review. |
| Karpinsky et al., Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity. Nat Biotechnol. Apr. 2016;34(4):401-9. doi: 10.1038/nbt.3467. Epub Feb. 22, 2016. |
| Kaya et al., A bacterial Argonaute with noncanonical guide RNA specificity. Proc. Natl. Acad. Sci. USA Apr. 2016;113(15):4057-62. |
| Kellendonk et al., Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. Apr. 15, 1996;24(8):1404-11. |
| Kilbride et al., Determinants of product topology in a hybrid Cre-Tn3 resolvase site-specific recombination system. J Mol Biol. Jan. 13, 2006;355(2):185-95. Epub Nov. 9, 2005. |
| Kim et al., A library of TAL effector nucleases spanning the human genome. Nat Biotechnol. Mar. 2013;31(3):251-8. Doi: 10.1038/nbt.2517. Epub Feb. 17, 2013. |
| Kim et al., Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol. May 2017;35(5):475-480. doi: 10.1038/nbt.3852. Epub Apr. 10, 2017. |
| Kim et al., Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol. May 2017;35(5):435-437. doi: 10.1038/nbt.3816. Epub Feb. 27, 2017. |
| Kim et al., Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. Jun. 2014;24(6):1012-9. doi: 10.1101/gr.171322.113. Epub Apr. 2, 2014. |
| Kim et al., Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A. Feb. 6, 1996;93(3):1156-60. |
| Kim et al., Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol. Apr. 2017;35(4):371-376. doi: 10.1038/nbt.3803. Epub Feb. 13, 2017. |
| Kim et al., TALENs and ZFNs are associated with different mutationsignatures. Nat Methods. Mar. 2013;10(3):185. doi: 10.1038/nmeth.2364. Epub Feb. 10, 2013. |
| Kim et al., Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. Jul. 2009;19(7):1279-88. doi: 10.1101/gr.089417.108. Epub May 21, 2009. |
| Kim et al., The role of apolipoprotein E in Alzheimer's disease. Neuron. Aug. 13, 2009;63(3):287-303. doi: 10.1016/j.neuron.2009.06.026. |
| Kim et al., Transcriptional repression by zinc finger peptides. Exploring the potential for applications in gene therapy. J Biol Chem. Nov. 21, 1997;272(47):29795-800. |
| Kitamura et al., Uracil DNA glycosylase counteracts APOBEC3G-induced hypermutation of hepatitis B viral genomes: excision repair of covalently closed circular DNA. PLoS Pathog. 2013;9(5):e1003361. doi: 10.1371/journal.ppat.1003361. Epub May 16, 2013. |
| Klauser et al., An engineered small RNA-mediated genetic switch based on a ribozyme expression platform. Nucleic Acids Res. May 1, 2013;41(10):5542-52. doi: 10.1093/nar/gkt253. Epub Apr. 12, 2013. |
| Klein et al., Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase. Nat Struct Mol Biol. Mar. 2009;16(3):343-4. doi: 10.1038/nsmb.1563.Epub Feb. 22, 2009. |
| Kleinstiver et al., Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol. Dec. 2015;33(12):1293-1298. doi: 10.1038/nbt.3404. Epub Nov. 2, 2015. |
| Kleinstiver et al., Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. Jul. 23, 2015;523(7561):481-5. doi: 10.1038/nature14592. Epub Jun. 22, 2015. |
| Kleinstiver et al., High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. Jan. 28, 2016;529(7587):490-5. doi: 10.1038/nature16526. Epub Jan. 6, 2016. |
| Kleinstiver et al., Monomeric site-specific nucleases for genome editing. Proc Natl Acad Sci U S A. May 22, 2012;109(21):8061-6. doi: 10.1073/pnas.1117984109. Epub May 7, 2012. |
| Klippel et al., Isolation and characterization of unusual gin mutants. EMBO J. Dec. 1, 1988;7(12):3983-9. |
| Klippel et al., The DNA invertase Gin of phage Mu: formation of a covalent complex with DNA via a phosphoserine at amino acid position 9. EMBO J. Apr. 1988;7(4):1229-37. |
| Klug et al., Zinc fingers: a novel protein fold for nucleic acid recognition. Cold Spring Harb Symp Quant Biol. 1987;52:473-82. |
| Kohli et al., Local sequence targeting in the AID/APOBEC family differentially impacts retroviral restriction and antibody diversification. J Biol Chem. Dec. 24, 2010;285(52):40956-64. doi: 10.1074/jbc.M110.177402. Epub Oct. 6, 2010. |
| Komor et al., CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell. Jan. 12, 2017;168(1-2):20-36. doi: 10.1016/j.cell.2016.10.044. |
| Komor et al., Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv. Aug. 30, 2017;3(8):eaao4774. doi: 10.1126/sciadv.aao4774. eCollection Aug. 2017. |
| Komor et al., Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. Apr. 20, 2016;533(7603):420-4. doi: 10.1038/nature17946. |
| Kouzminova et al., Patterns of chromosomal fragmentation due to uracil-DNA incorporation reveal a novel mechanism of replication-dependent double-stranded breaks. Mol Microbiol. Apr. 2008;68(1):202-15. doi: 10.1111/j.1365-2958.2008.06149.x. |
| Krishna et al., Structural classification of zinc fingers: survey and summary. Nucleic Acids Res. Jan. 15, 2003;31(2):532-50. |
| Kumar et al., Structural and functional consequences of the mutation of a conserved arginine residue in alphaA and alphaB crystallins. J Biol Chem. Aug. 20, 1999;274(34):24137-41. |
| Kundu et al., Leucine to proline substitution by SNP at position 197 in Caspase-9 gene expression leads to neuroblastoma: a bioinformatics analysis. 3 Biotech. 2013; 3:225-34. |
| Kunz et al., DNA Repair in mammalian cells: Mismatched repair: variations on a theme. Cell Mol Life Sci. Mar. 2009;66(6):1021-38. doi: 10.1007/s00018-009-8739-9. |
| Kury et al., De Novo Disruption of the Proteasome Regulatory Subunit PSMD12 Causes a Syndromic Neurodevelopmental Disorder. Am J Hum Genet. Feb. 2, 2017;100(2):352-363. doi: 10.1016/j.ajhg.2017.01.003. Epub Jan. 26, 2017. |
| Kuscu et al., CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat Methods. Jul. 2017;14(7):710-712. doi: 10.1038/nmeth.4327. Epub Jun. 5, 2017. |
| Kuscu et al., Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol. Jul. 2014;32(7):677-83. doi: 10.1038/nbt.2916. Epub May 18, 2014. |
| Kwon et al., Chemical basis of glycine riboswitch cooperativity. RNA. Jan. 2008;14(1):25-34. Epub Nov. 27, 2007. |
| Landrum et al., ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. Jan. 4, 2016;44(D1):D862-8. doi: 10.1093/nar/gkv1222. Epub Nov. 17, 2015. |
| Langer et al., Chemical and Physical Structure of Polymers as Carriers for Controlled Release of Bioactive Agents: A Review. Journal of Macromolecular Science, 2006;23(1):61-126. DOI: 10.1080/07366578308079439. |
| Langer et al., New methods of drug delivery. Science. Sep. 28, 1990;249(4976):1527-33. |
| Larson et al., CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc. Nov. 2013;8(11):2180-96. doi: 10.1038/nprot.2013.132. Epub Oct. 17, 2013. |
| Lau et al., Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proc Natl Acad Sci U S A. Dec. 5, 2000;97(25):13573-8. |
| Lavergne et al., Defects in type IIA von Willebrand disease: a cysteine 509 to arginine substitution in the mature von Willebrand factor disrupts a disulphide loop involved in the interaction with platelet glycoprotein Ib-IX. Br J Haematol. Sep. 1992;82(1):66-72. |
| Lawrence et al., Supercharging proteins can impart unusual resilience. J Am Chem Soc. Aug. 22, 2007;129(33):10110-2. Epub Aug. 1, 2007. |
| Lazar et al., Transforming growth factor alpha: mutation of aspartic acid 47 and leucine 48 results in different biological activities. Mol Cell Biol. Mar. 1988;8(3):1247-52. |
| Ledford, Gene-editing hack yields pinpoint precision. Nature, Apr. 20, 2016. http://www.nature.com/news/gene-editing-hack-yields-pinpoint-precision-1.19773. |
| Lee et al., A chimeric thyroid hormone receptor constitutively bound to DNA requires retinoid X receptor for hormone-dependent transcriptional activation in yeast. Mol Endocrinol. Sep. 1994;8(9):1245-52. |
| Lee et al., An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science. Aug. 13, 2010;329(5993):845-8. doi: 10.1126/science.1190713. |
| Lee et al., Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute. Nat Biotechnol. Nov. 28, 2016;35(1):17-18. doi: 10.1038/nbt.3753. |
| Lee et al., PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene. Feb. 17, 2005;24(8):1477-80. |
| Lee et al., Recognition of liposomes by cells: in vitro binding and endocytosis mediated by specific lipid headgroups and surface charge density. Biochim Biophys Acta. Jan. 31, 1992;1103(2):185-97. |
| Lee et al., Ribozyme Mediated gRNA Generation for In Vitro and In Vivo CRISPR/Cas9 Mutagenesis. PLoS One. Nov. 10, 2016;11(11):e0166020. doi: 10.1371/journal.pone.0166020. eCollection 2016. |
| Lei et al., Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A. Oct. 23, 2012;109(43):17484-9. Doi: 10.1073/pnas.1215421109. Epub Oct. 8, 2012. |
| Lenk et al., Pathogenic mechanism of the FIG4 mutation responsible for Charcot-Marie-Tooth disease CMT4J. PLoS Genet. Jun. 2011;7(6):e1002104. doi: 10.1371/journal.pgen.1002104. Epub Jun. 2, 2011. |
| Levy et al., Inhibition of calcification of bioprosthetic heart valves by local controlled-release diphosphonate. Science. Apr. 12, 1985;228(4696):190-2. |
| Lewis et al., A serum-resistant cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmid DNA. Proc Natl Acad Sci U S A. Apr. 16, 1996;93(8):3176-81. |
| Lewis et al., Codon 129 polymorphism of the human prion protein influences the kinetics of amyloid formation. J Gen Virol. Aug. 2006;87(Pt 8):2443-9. |
| Li et al., Base editing with a Cpf1-cytidine deaminase fusion. Nat Biotechnol. Apr. 2018;36(4):324-327. doi: 10.1038/nbt.4102. Epub Mar. 19, 2018. |
| Li et al., Current approaches for engineering proteins with diverse biological properties. Adv Exp Med Biol. 2007;620:18-33. |
| Li et al., Generation of Targeted Point Mutations in Rice by a Modified CRISPR/Cas9 System. Mol Plant. Mar. 6, 2017;10(3):526-529. doi: 10.1016/j.molp.2016.12.001. Epub Dec. 8, 2016. |
| Li et al., Highly efficient and precise base editing in discarded human tripronuclear embryos. Protein Cell. Aug. 19, 2017. doi: 10.1007/s13238-017-0458-7. [Epub ahead of print]. |
| Li et al., Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. Aug. 2011;39(14):6315-25. doi: 10.1093/nar/gkr188. Epub Mar. 31, 2011. |
| Li et al., Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. Aug. 2013;31(8):688-91. doi: 10.1038/nbt.2654. |
| Li et al., TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. Jan. 2011;39(1):359-72. doi: 10.1093/nar/gkq704. Epub Aug. 10, 2010. |
| Liang et al., Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. Send to; J Biotechnol. Aug. 20, 2015;208:44-53. doi: 10.1016/j.jbiotec.2015.04.024. |
| Lieber et al., Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol. Sep. 2003;4(9):712-20. |
| Lin et al., Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. Dec. 15, 2014;3:e04766. doi: 10.7554/eLife.04766. |
| Liu et al., C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism. Molecular Cell Jan. 2017;65(2):310-22. |
| Liu et al., Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. Feb. 2013;9(2):106-18. doi: 10.1038/nrneurol.2012.263. Epub Jan. 8, 2013. |
| Liu et al., Balancing AID and DNA repair during somatic hypermutation. Trends Immunol. Apr. 2009;30(4):173-81. doi: 10.1016/j.it.2009.01.007. |
| Liu et al., Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS One. Jan. 20, 2014;9(1):e85755. doi: 10.1371/journal.pone.0085755. eCollection 2014. |
| Liu et al., Design of polydactyl zinc-ftnger proteins for unique addressing within complex genomes. Proc Natl Acad Sci U S A. May 27, 1997;94(11):5525-30. |
| Liu et al., Distance determination by GIY-YIG intron endonucleases: discrimination between repression and cleavage functions. Nucleic Acids Res. Mar. 31, 2006;34(6):1755-64. Print 2006. |
| Liu et al., Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew Chem. 2006;118(1):96-100. |
| Lombardo et al., Gene editing in human stem cells using zinc finger nucleases and integrasedefective lentiviral vector delivery. Nat Biotechnol. Nov. 2007;25(11):1298-306. Epub Oct. 28, 2007. |
| Losey et al., Crystal structure of Staphylococcus sureus tRNA adenosine deaminase tadA in complex with RNA. Nature Struct. Mol. Biol. Feb. 2006;13(2):153-9. |
| Lu et al., Precise Editing of a Target Base in the Rice Genome Using a Modified CRISPR/Cas9 System. Mol Plant. Mar. 6, 2017;10(3):523-525. doi: 10.1016/j.molp.2016.11.013. Epub Dec. 6, 2016. |
| Lundberg et al., Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB J. Sep. 2007;21(11):2664-71. Epub Apr. 26, 2007. |
| Lundquist et al., Site-directed mutagenesis and characterization of uracil-DNA glycosylase inhibitor protein. Role of specific carboxylic amino acids in complex formation with Escherichia coli uracil-DNA glycosylase. J Biol Chem. Aug. 22, 1997;272(34):21408-19. |
| Lyons et al., Efficient Recognition of an Unpaired Lesion by a DNA Repair Glycosylase. J. Am. Chem. Soc., 2009;131(49):17742-3. DOI: 10.1021/ja908378y. |
| Ma et al., Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nature Methods. Oct. 2016;13:1029-35. doi:10.1038/nmeth.4027. |
| Maeder et al., CRISPR RNA-guided activation of endogenous human genes. Nat Methods. Oct. 2013;10(10):977-9. doi: 10.1038/nmeth.2598. Epub Jul. 25, 2013. |
| Maeder et al., Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell. Jul. 25, 2008;31(2):294-301. doi:10.1016/j.molcel.2008.06.016. |
| Maeder et al., Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods. Mar. 2013;10(3):243-5. doi: 10.1038/nmeth.2366. Epub Feb. 10, 2013. |
| Mahfouz et al., De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci U S A. Feb. 8, 2011;108(6):2623-8. doi: 10.1073/pnas. 1019533108. Epub Jan. 24, 2011. |
| Mak et al., The crystal structure of TAL effector PthXo1 bound to its DNA target. Science. Feb. 10, 2012;335(6069):716-9. doi: 10.1126/science.1216211. Epub Jan. 5, 2012. |
| Makarova et al., Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biology Direct 2009;4:29. |
| Makarova et al., An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. Nov. 2015;13(11):722-36. doi: 10.1038/nrmicro3569. Epub Sep. 28, 2015. |
| Makarova et al., Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. Jun. 2011;9(6):467-77. doi: 10.1038/nrmicro2577. Epub May 9, 2011. |
| Mali et al., Cas9 as a versatile tool for engineering biology. Nat Methods. Oct. 2013;10(10):957-63. doi: 10.1038/nmeth.2649. |
| Mali et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. Sep. 2013;31(9):833-8. doi: 10.1038/nbt.2675. Epub Aug. 1, 2013. |
| Mali et al., RNA-guided human genome engineering via Cas9. Science. Feb. 15, 2013;339(6121):823-6. doi: 10.1126/science. 1232033. Epub Jan. 3, 2013. |
| Mandal et al., A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science. Oct. 8, 2004;306(5694):275-9. |
| Mandal et al., Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol. Jan. 2004;11(1):29-35. Epub Dec. 29, 2003. |
| Mani et al., Design, engineering, and characterization of zinc finger nucleases. Biochem Biophys Res Commun. Sep. 23, 2005;335(2):447-57. |
| Marioni et al., DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. Jan. 30, 2015;16:25. doi: 10.1186/s13059-015-0584-6. |
| Marraffini et al., CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. Dec. 19, 2008;322(5909):1843-5. doi: 10.1126/science.1165771. |
| Maruyama et al., Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. May 2015;33(5):538-42. doi: 10.1038/nbt.3190. Epub Mar. 23, 2015. |
| McNaughton et al., Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins. Proc Natl Acad Sci U S A. Apr. 14, 2009;106(15):6111-6. doi: 10.1073/pnas.0807883106. Epub Mar. 23, 2009. |
| Meckler et al., Quantitative analysis of TALE-DNA interactions suggests polarity effects. Nucleic Acids Res. Apr. 2013;41(7):4118-28. doi: 10.1093/nar/gkt085. Epub Feb. 13, 2013. |
| Mei et al., Recent Progress in CRISPR/Cas9 Technology. J Genet Genomics. Feb. 20, 2016;43(2):63-75. doi: 10.1016/j.jgg.2016.01.001. Epub Jan. 18, 2016. |
| Meng et al., Profiling the DNA-binding specificities of engineered Cys2His2 zinc finger domains using a rapid cell-based method. Nucleic Acids Res. 2007;35(11):e81. Epub May 30, 2007. |
| Meng et al., Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol. Jun. 2008;26(6):695-701. doi: 10.1038/nbt1398. Epub May 25, 2008. |
| Mercer et al., Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res. Nov. 2012;40(21):11163-72. doi: 10.1093/nar/gks875. Epub Sep. 26, 2012. |
| Meyer et al., Breathing life into polycations: functionalization with pH-responsive endosomolytic peptides and polyethylene glycol enables siRNA delivery. J Am Chem Soc. Mar. 19, 2008;130(11):3272-3. doi: 10.1021/ja710344v. Epub Feb. 21, 2008. |
| Meyer et al., Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria. RNA. Apr. 2008;14(4):685-95. doi: 10.1261/rna.937308. Epub Feb. 27, 2008. |
| Midoux et al., Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol. May 2009;157(2):166-78. doi: 10.1111/j.1476-5381.2009.00288.x. |
| Miller et al., A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. Feb. 2011;29(2):143-8. doi:10.1038/nbt.1755. Epub Dec. 22, 2010. |
| Miller et al., An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol. Jul. 2007;25(7):778-85. Epub Jul. 1, 2007. |
| Minoche et al., Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol. Nov. 8, 2011;12(11):R112. doi: 10.1186/gb-2011-12-11-r112. |
| Minoretti et al., A W148R mutation in the human FOXD4 gene segregating with dilated cardiomyopathy, obsessive-compulsive disorder, and suicidality. Int J Mol Med. Mar. 2007;19(3):369-72. |
| Mojica et al., Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. Feb. 2005;60(2):174-82. |
| Mol et al., Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell. Sep. 8, 1995;82(5):701-8. |
| Montange et al., Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature. Jun. 29, 2006;441(7097):1172-5. |
| Moore et al., Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PloS One. 2012;7(5):e37877. Doi: 10.1371/journal.pone.0037877. Epub May 24, 2012. |
| Mootz et al., Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo. J Am Chem Soc. Sep. 3, 2003;125(35):10561-9. |
| Mootz et al., Protein splicing triggered by a small molecule. J Am Chem Soc. Aug. 7, 2002;124(31):9044-5. |
| Morbitzer et al., Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res. Jul. 2011;39(13):5790-9. doi: 10.1093/nar/gkr151. Epub Mar. 18, 2011. |
| Morris et al., A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol. Dec. 2001;19(12):1173-6. |
| Moscou et al., A simple cipher governs DNA recognition by TAL effectors. Science. Dec. 11, 2009;326(5959):1501. doi: 10.1126/science.1178817. |
| Mullins et al., Transgenesis in nonmurine species. Hypertension. Oct. 1993;22(4):630-3. |
| Murphy, Phage recombinases and their applications. Adv Virus Res. 2012;83:367-414. doi: 10.1016/B978-0-12-394438-2.00008-6. Review. |
| Mussolino et al., A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. Nov. 2011;39(21):9283-93. Doi: 10.1093/nar/gkr597. Epub Aug. 3, 2011. |
| Mussolino et al., TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol. Oct. 2012;23(5):644-50. doi: 10.1016/j.copbio.2012.01.013. Epub Feb. 17, 2012. |
| Nahvi et al., Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res. Jan. 2, 2004;32(1):143-50. |
| Narayanan et al., Clamping down on weak terminal base pairs: oligonucleotides with molecular caps as fidelity-enhancing elements at the 5′- and 3′-terminal residues. Nucleic Acids Res. May 20, 2004;32(9):2901-11. Print 2004. |
| Navaratnam et al., An overview of cytidine deaminases. Int J Hematol. Apr. 2006;83(3):195-200. |
| NCBI Reference Sequence: NM_002427.3. Wu et al., May 3, 2014. 5 pages. |
| Neel et al., Riboswitches: Classification, function and in silico approach, International Journal of Pharma Sciences and Research. 2010;1(9):409-420. |
| Ni et al., Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem. 2011;18(27):4206-14. Review. |
| Nishida et al., Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. Sep. 16, 2016;353(6305). pii: aaf8729. doi: 10.1126/science.aaf8729. Epub Aug. 4, 2016. |
| Nishida et al., Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. Sep. 16, 2016;353(6305):1248. pii: aaf8729. doi: 10.1126/science.aaf8729. Epub Aug. 4, 2016. |
| Nishimasu et al., Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. Feb. 27, 2014;156(5):935-49. doi: 10.1016/j.cell.2014.02.001. Epub Feb. 13, 2014. |
| Nomura et al., Synthetic mammalian riboswitches based on guanine aptazyme. Chem Commun (Camb). Jul. 21, 2012;48(57):7215-7. doi: 10.1039/c2cc33140c. Epub Jun. 13, 2012. |
| Noris et al., A phenylalanine-55 to serine amino-acid substitution in the human glycoprotein IX leucine-rich repeat is associated with Bernard-Soulier syndrome. Br J Haematol. May 1997;97(2):312-20. |
| O'Connell et al., Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature. Dec. 11, 2014;516(7530):263-6. doi: 10.1038/nature13769. Epub Sep. 28, 2014. |
| Offord, Advances in Genome Editing. The Scientist, Apr. 20, 2016. http://www.the-scientist.com/7articles.view/articleNo/45903/title/Advances-in-Genome-Editing/. |
| Olorunniji et al., Synapsis and catalysis by activated Tn3 resolvase mutants. Nucleic Acids Res. Dec. 2008;36(22):7181-91. doi: 10.1093/nar/gkn885. Epub Nov. 10, 2008. |
| Osborn et al., TALEN-based gene correction for epidermolysis bullosa. Mol Ther. Jun. 2013;21(6):1151-9. doi: 10.1038/mt.2013.56. Epub Apr. 2, 2013. |
| Pabo et al., Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem. 2001;70:313-40. |
| Pan et al., Biological and biomedical applications of engineered nucleases. Mol Biotechnol. Sep. 2013;55(1):54-62. doi: 10.1007/s12033-012-9613-9. |
| Parker et al., Admixture mapping identifies a quantitative trait locus associated with FEV1/FVC in the COPDGene Study. Genet Epidemiol. Nov. 2014;38(7):652-9. doi: 10.1002/gepi.21847. Epub Aug. 11, 2014. |
| Partial Supplementary European Search Report for Application No. EP 12845790.0, dated Mar. 18, 2015. |
| Pattanayak et al., Determining the specificities of TALENs, Cas9, and other genomeediting enzymes. Methods Enzymol. 2014;546:47-78. doi: 10.1016/B978-0-12-801185-0.00003-9. |
| Pattanayak et al., High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. Sep. 2013;31(9):839-43. doi: 10.1038/nbt.2673. Epub Aug. 11, 2013. |
| Pattanayak et al., Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods. Aug. 7, 2011;8(9):765-70. doi: 10.1038/nmeth.1670. |
| Pavletich et al., Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. May 10, 1991;252(5007):809-17. |
| Pearl, Structure and function in the uracil-DNA glycosylase superfamily. Mutat Res. Aug. 30, 2000;460(3-4):165-81. |
| Peck et al., Directed evolution of a small-molecule-triggered intein with improved splicing properties in mammalian cells. Chem Biol. May 27, 2011;18(5):619-30. doi: 10.1016/j.chembiol.2011.02.014. |
| Pennisi et al., The CRISPR craze. Science. Aug. 23, 2013;341(6148):833-6. doi: 10.1126/science.341.6148.833. |
| Pennisi et al., The tale of the TALEs. Science. Dec. 14, 2012;338(6113):1408-11. doi: 10.1126/science.338.6113.1408. |
| Perez et al., Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. Jul. 2008;26(7):808-16. Doi: 10.1038/nbt1410. Epub Jun. 29, 2008. |
| Perez-Pinera et al., Advances in targeted genome editing. Curr Opin Chem Biol. Aug. 2012;16(3-4):268-77. doi: 10.1016/j.cbpa.2012.06.007. Epub Jul. 20, 2012. |
| Perez-Pinera et al., RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. Oct. 2013;10(10):973-6. doi: 10.1038/nmeth.2600. Epub Jul. 25, 2013. |
| Petek et al., Frequent endonuclease cleavage at off-target locations in vivo. Mol Ther. May 2010;18(5):983-6. Doi: 10.1038/mt.2010.35. Epub Mar. 9, 2010. |
| Petolino et al., Editing Plant Genomes: a new era of crop improvement. Plant Biotechnol J. Feb. 2016;14(2):435-6. doi: 10.1111/pbi.12542. |
| Pham et al., Reward versus risk: DNA cytidine deaminases triggering immunity and disease. Biochemistry. Mar. 1, 2005;44(8):2703-15. |
| Phillips, The challenge of gene therapy and DNA delivery. J Pharm Pharmacol. Sep. 2001;53(9):1169-74. |
| Plasterk et al., DNA inversions in the chromosome of Escherichia coli and in bacteriophage Mu: relationship to other site-specific recombination systems. Proc Natl Acad Sci U S A. Sep. 1983;80(17):5355-8. |
| Plosky et al., CRISPR-Mediated Base Editing without DNA Double-Strand Breaks. Mol Cell. May 19, 2016;62(4):477-8. doi: 10.1016/j.molcel.2016.05.006. |
| Pluciennik et al., PCNA function in the activation and strand direction of MutLα endonuclease in mismatch repair. Proc Natl Acad Sci U S A. Sep. 14, 2010;107(37):16066-71. doi: 10.1073/pnas.1010662107. Epub Aug. 16, 2010. |
| Poller et al., A leucine-to-proline substitution causes a defective alpha 1-antichymotrypsin allele associated with familial obstructive lung disease. Genomics. Sep. 1993;17(3):740-3. |
| Porteus, Design and testing of zinc finger nucleases for use in mammalian cells. Methods Mol Biol. 2008;435:47-61. doi: 10.1007/978-1-59745-232-8_4. |
| Pourcel et al., CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. Mar. 2005;151(Pt 3):653-63. |
| Prashant et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology 2013;31(9):833-8. |
| Prorocic et al., Zinc-ftnger recombinase activities in vitro. Nucleic Acids Res. Nov. 2011;39(21):9316-28. doi: 10.1093/nar/gkr652. Epub Aug. 17, 2011. |
| Proudfoot et al., Zinc finger recombinases with adaptable DNA sequence specificity. PLoS One. Apr. 29, 2011;6(4):e19537. doi: 10.1371/journal.pone.0019537. |
| Prykhozhij et al., CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One. Mar. 5, 2015;10(3):e0119372. doi: 10.1371/journal.pone.0119372. eCollection 2015. |
| Putnam et al., Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J Mol Biol. Mar. 26, 1999;287(2):331-46. |
| Putney et al., Improving protein therapeutics with sustained-release formulations. Nat Biotechnol. Feb. 1998;16(2):153-7. |
| Qi et al., Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals. Nucleic Acids Res. Jul. 2012;40(12):5775-86. doi: 10.1093/nar/gks168. Epub Mar. 1, 2012. |
| Qi et al., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. Feb. 28, 2013;152(5):1173-83. doi: 10.1016/j.cell.2013.02.022. |
| Ramakrishna et al., Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. Jun. 2014;24(6):1020-7. doi: 10.1101/gr.171264.113. Epub Apr. 2, 2014. |
| Ramirez et al., Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res. Jul. 2012;40(12):5560-8. doi: 10.1093/nar/ks179. Epub Feb. 28, 2012. |
| Ramirez et al., Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods. May 2008;5(5):374-5. Doi: 10.1038/nmeth0508-374. |
| Ran et al., Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. Sep. 12, 2013;154(6):1380-9. doi: 10.1016/j.cell.2013.08.021. Epub Aug. 29, 2013. |
| Ran et al., Genome engineering using the CRISPR-Cas9 system. Nat Protoc. Nov. 2013;8(11):2281-308. doi: 10.1038/nprot.2013.143. Epub Oct. 24, 2013. |
| Ran et al., In vivo genome editing using Staphylococcus aureus Cas9. Nature. Apr. 9, 2015;520(7546):186-91. doi: 10.1038/nature14299. Epub Apr. 1, 2015. |
| Rath et al., Fidelity of end joining in mammalian episomes and the impact of Metnase on joint processing. BMC Mol Biol. Mar. 22, 2014;15:6. doi: 10.1186/1471-2199-15-6. |
| Ravishankar et al., X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG. Nuclei Acids Res. 26 (21): 4880-4887 (1998). |
| Ray et al., Homologous recombination: ends as the means. Trends Plant Sci. Oct. 2002;7(10):435-40. |
| Rebuzzini et al., New mammalian cellular systems to study mutations introduced at the break site by non-homologous end-joining. DNA Repair (Amst). May 2, 2005;4(5):546-55. |
| Rees et al., Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat Commun. Jun. 6, 2017;8:15790. doi: 10.1038/ncomms15790. |
| Reynaud et al., What role for AID: mutator, or assembler of the immunoglobulin mutasome? Nat Immunol. Jul. 2003;4(7):631-8. |
| Richardson et al., Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol. Mar. 2016;34(3):339-44. doi: 10.1038/nbt.3481. Epub Jan. 20, 2016. |
| Richter et al., Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR associated (Cas) systems. Viruses. Oct. 19, 2012;4(10):2291-311. doi: 10.3390/v4102291. |
| Rizk et al., An engineered substance P variant for receptor-mediated delivery of synthetic antibodies into tumor cells. Proc Natl Acad Sci U S A. Jul. 7, 2009; 106(27):11011-5. doi: 10.1073/pnas.0904907106. Epub Jun. 22, 2009. |
| Rong et al., Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template. Protein Cell. Apr. 2014;5(4):258-60. doi: 10.1007/s13238-014-0032-5. |
| Rongrong et al., Effect of deletion mutation on the recombination activity of Cre recombinase. Acta Biochim Pol. 2005;52(2):541-4. Epub May 15, 2005. |
| Roth et al., A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain. Nat Struct Mol Biol. Apr. 2007;14(4):308-17. Epub Mar. 25, 2007. |
| Rowland et al., Regulatory mutations in Sin recombinase support a structure-based model of the synaptosome. Mol Microbiol. Oct. 2009;74(2):282-98. doi: 10.1111/j.1365-2958.2009.06756.x. Epub Jun. 8, 2009. |
| Sadelain et al., Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer. Dec. 1, 2011;12(1):51-8. doi: 10.1038/nrc3179. |
| Sage et al., Proliferation of functional hair cells in vivo in the absence of the retinoblastoma protein. Science. Feb. 18, 2005;307(5712):1114-8. Epub Jan. 13, 2005. |
| Saleh-Gohari et al., Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res. Jul. 13, 2004;32(12):3683-8. Print 2004. |
| Samal et al., Cationic polymers and their therapeutic potential. Chem Soc Rev. Nov. 7, 2012;41(21):7147-94. doi: 10.1039/c2cs35094g. Epub Aug. 10, 2012. |
| Sander et al., CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. Apr. 2014;32(4):347-55. doi: 10.1038/nbt.2842. Epub Mar. 2, 2014. |
| Sander et al., In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites. Nucleic Acids Res. Oct. 2013;41(19):e181. doi: 10.1093/nar/gkt716. Epub Aug. 14, 2013. |
| Sander et al., Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):697-8. doi: 10.1038/nbt.1934. |
| Sang, Prospects for transgenesis in the chick. Meeh Dev. Sep. 2004;121(9):1179-86. |
| Sanjana et al., A transcription activator-like effector toolbox for genome engineering. Nat Protoc. Jan. 5, 2012;7(1):171-92. doi: 10.1038/nprot.2011.431. |
| Santiago et al., Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A. Apr. 15, 2008;105(15):5809-14. doi: 10.1073/pnas.0800940105. Epub Mar. 21, 2008. |
| Sapranauskas et al., The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. Nov. 2011;39(21):9275-82. doi: 10.1093/nar/gkr606. Epub Aug. 3, 2011. |
| Saraconi et al., The RNA editing enzyme APOBEC1 induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas. Genome Biol. Jul. 31, 2014;15(7):417. doi: 10.1186/s13059-014-0417-z. |
| Sashital et al., Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol Cell. Jun. 8, 2012;46(5):606-15. doi: 10.1016/j.molcel.2012.03.020. Epub Apr. 19, 2012. |
| Saudek et al., A preliminary trial of the programmable implantable medication system for insulin delivery. N Engl J Med. Aug. 31, 1989;321(9):574-9. |
| Schellenberger et al., A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat Biotechnol. Dec. 2009;27(12):1186-90. doi: 10.1038/nbt.1588. |
| Schriefer et al., Low pressure DNA shearing: a method for random DNA sequence analysis. Nucleic Acids Res. Dec. 25, 1990;18(24):7455-6. |
| Schwank et al., Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. Dec. 5, 2013;13(6):653-8. doi: 10.1016/j.stem.2013.11.002. |
| Schwartz et al., Post-translational enzyme activation in an animal via optimized conditional protein splicing. Nat Chem Biol. Jan. 2007;3(1):50-4. Epub Nov. 26, 2006. |
| Schwarze et al., In vivo protein transduction: delivery of a biologically active protein into the mouse. Science. Sep. 3, 1999;285(5433):1569-72. |
| Sclimenti et al., Directed evolution of a recombinase for improved genomic integration at a native human sequence. Nucleic Acids Res. Dec. 15, 2001;29(24):5044-51. |
| Sefton et al., Implantable pumps. Crit Rev Biomed Eng. 1987;14(3):201-40. |
| Segal et al., Evaluation of a modular strategy for the construction of novel polydactyl zinc finger DNA-binding proteins. Biochemistry. Feb. 25, 2003;42(7):2137-48. |
| Segal et al., Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc Natl Acad Sci U S A. Mar. 16, 1999;96(6):2758-63. |
| Sells et al., Delivery of protein into cells using polycationic liposomes. Biotechniques. Jul. 1995;19(1):72-6, 78. |
| Semenova et al., Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci U S A. Jun. 21, 2011;108(25):10098-103. doi: 10.1073/pnas.1104144108. Epub Jun. 6, 2011. |
| Semple et al., Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. Feb. 2010;28(2):172-6. doi: 10.1038/nbt.1602. Epub Jan. 17, 2010. |
| Serganov et al., Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature. Mar. 12, 2009;458(7235):233-7. doi: 10.1038/nature07642. Epub Jan. 25, 2009. |
| Serganov et al., Structural basis for discriminative regulation of gene expression by adenine-and guanine-sensing mRNAs. Chem Biol. Dec. 2004;11(12):1729-41. |
| Serganov et al., Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature. Jun. 29, 2006;441(7097):1167-71. Epub May 21, 2006. |
| Seripa et al., The missing ApoE allele. Ann Hum Genet. Jul. 2007;71(Pt 4):496-500. Epub Jan. 22, 2007. |
| Shah et al., Inteins: nature's gift to protein chemists. Chem Sci. 2014;5(1):446-461. |
| Shah et al., Kinetic control of one-pot trans-splicing reactions by using a wild-type and designed split intein. Angew Chem Int Ed Engl. Jul. 11, 2011;50(29):6511-5. doi: 10.1002/anie.201102909. Epub Jun. 8, 2011. |
| Shah et al., Target-specific variants of Flp recombinase mediate genome engineering reactions in mammalian cells. FEBS J. Sep. 2015;282(17):3323-33. doi: 10.1111/febs.13345. Epub Jul. 1, 2015. |
| Shaikh et al., Chimeras of the Flp and Cre recombinases: tests of the mode of cleavage by Flp and Cre. J Mol Biol. Sep. 8, 2000;302(1):27-48. |
| Shalem et al., Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. Jan. 3, 2014;343(6166):84-7. doi: 10.1126/science.1247005. Epub Dec. 12, 2013. |
| Sharbeen et al., Ectopic restriction of DNA repair reveals that UNG2 excises AID-induced uracils predominantly or exclusively during G1 phase. J Exp Med. May 7, 2012;209(5):965-74. doi: 10.1084/jem.20112379. Epub Apr. 23, 2012. |
| Shcherbakova et al., Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods. Aug. 2013;10(8):751-4. doi: 10.1038/nmeth.2521. Epub Jun. 16, 2013. |
| Shee et al., Engineered proteins detect spontaneous DNA breakage in human and bacterial cells. Elife. Oct. 29, 2013;2:e01222. doi: 10.7554/eLife.01222. |
| Sheridan, First CRISPR-Cas patent opens race to stake out intellectual property. Nat Biotechnol. 2014;32(7):599-601. |
| Sheridan, Gene therapy finds its niche. Nat Biotechnol. Feb. 2011;29(2):121-8. doi: 10.1038/nbt.1769. |
| Shimantani et al., Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol. May 2017;35(5):441-443. doi: 10.1038/nbt.3833. Epub Mar. 27, 2017. |
| Shimizu et al., Adding fingers to an engineered zinc finger nuclease can reduce activity. Biochemistry. Jun. 7, 2011;50(22):5033-41. doi: 10.1021/bi200393g. Epub May 11, 2011. |
| Shimojima et al., Spinocerebellar ataxias type 27 derived from a disruption of the fibroblast growth factor 14 gene with mimicking phenotype of paroxysmal non-kinesigenic dyskinesia. Brain Dev. Mar. 2012;34(3):230-3. doi: 10.1016/j.braindev.2011.04.014. Epub May 19, 2011. |
| Shmakov et al., Discovery and Functional Characterization of Diverse Class 2 CRISPR Cas Systems. Molecular Cell Nov. 2015;60(3):385-97. |
| Siebert et al., An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. Mar. 25, 1995;23(6): 1087-8. |
| Simonelli et al., Base excision repair intermediates are mutagenic in mammalian cells. Nucleic Acids Res. Aug. 2, 2005;33(14):4404-11. Print 2005. |
| Sirk et al., Expanding the zinc-ftnger recombinase repertoire: directed evolution and mutational analysis of serine recombinase specificity determinants. Nucleic Acids Res. Apr. 2014;42(7):4755-66. doi: 10.1093/nar/gkt1389. Epub Jan. 21, 2014. |
| Sjoblom et al., The consensus coding sequences of human breast and colorectal cancers. Science. Oct. 13, 2006;314(5797):268-74. Epub Sep. 7, 2006. |
| Skretas et al., Regulation of protein activity with small-molecule-controlled inteins. Protein Sci. Feb. 2005;14(2):523-32. Epub Jan. 4, 2005. |
| Slaymaker et al., Rationally engineered Cas9 nucleases with improved specificity. Science. Jan. 1, 2016;351(6268):84-8. doi: 10.1126/science.aad5227. Epub Dec. 1, 2015. |
| Smith et al., Diversity in the serine recombinases. Mol Microbiol. Apr. 2002;44(2):299-307. Review. |
| Smith et al., Expression of a dominant negative retinoic acid receptor γ in Xenopus embryos leads to partial resistance to retinoic acid. Roux Arch Dev Biol. Mar. 1994;203(5):254-265. doi: 10.1007/BF00360521. |
| Song et al., Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol. Jun. 2005;23(6):709-17. Epub May 22, 2005. |
| Stenglein et al., APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nat Struct Mol Biol. Feb. 2010;17(2):222-9. doi: 10.1038/nsmb.1744. Epub Jan. 10, 2010. |
| Stephens et al., The landscape of cancer genes and mutational processes in breast cancer. Nature Jun. 2012;486:400-404. doi:10.1038/nature11017. |
| Sternberg et al., DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature.Mar. 6, 2014;507(7490):62-7. doi: 10.1038/nature13011. Epub Jan. 29, 2014. |
| Stevens et al., Design of a Split Intein with Exceptional Protein-Splicing Activity. J Am Chem Soc. Feb. 24, 2016; 138(7):2162-5. doi: 10.1021/jacs.5b13528. Epub Feb. 8, 2016. |
| Sudarsan et al., An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev. Nov. 1, 2003 ;17(21):2688-97. |
| Sudarsan et al., Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science. Jul. 18, 2008;321(5887):411-3. doi: 10.1126/science.1159519. |
| Suess et al., A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res. Mar. 5, 2004;32(4):1610-4. |
| Sun et al., Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol Biosyst. Apr. 2012;8(4):1255-63. doi: 10.1039/c2mb05461b. Epub Feb. 3, 2012. |
| Supplementary European Search Report for Application No. EP 12845790.0, dated Oct. 12, 2015. |
| Swarts et al., Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res. May 26, 2015;43(10):5120-9. doi: 10.1093/nar/gkv415. Epub Apr. 29, 2015. |
| Swarts et al., DNA-guided DNA interference by a prokaryotic Argonaute. Nature. Mar. 13, 2014;507(7491):258-61. doi: 10.1038/nature12971. Epub Feb. 16, 2014. |
| Swarts et al., The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol. Sep. 2014;21(9):743-53. doi: 10.1038/nsmb.2879. |
| Szczepek et al., Structure-based redesign of the dimerization interface reduces the toxicity of zinc-ftnger nucleases. Nat Biotechnol. Jul. 2007;25(7):786-93. Epub Jul. 1, 2007. |
| Tagalakis et al., Lack of RNA-DNA oligonucleotide (chimeraplast) mutagenic activity in mouse embryos. Mol Reprod Dev. Jun. 2005;71(2):140-4. |
| Tang et al., Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation. Nat Commun. Jun. 28, 2017;8:15939. doi: 10.1038/ncomms15939. |
| Tebas et al., Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. Mar. 6, 2014;370(10):901-10. doi: 10.1056/NEJMoa1300662. |
| Tessarollo et al., Targeted mutation in the neurotrophin-3 gene results in loss of muscle sensory neurons. Proc Natl Acad Sci U S A. Dec. 6, 1994;91(25):11844-8. |
| Tesson et al., Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):695-6. doi: 10.1038/nbt.1940. |
| Thompson et al., Cellular uptake mechanisms and endosomal trafficking of supercharged proteins. Chem Biol. Jul. 27, 2012;19(7):831-43. doi: 10.1016/j.chembiol.2012.06.014. |
| Thompson et al., Engineering and identifying supercharged proteins for macromolecule delivery into mammalian cells. Methods Enzymol. 2012;503:293-319. doi: 10.1016/B978-0-12-396962-0.00012-4. |
| Thorpe et al., Functional correction of episomal mutations with short DNA fragments and RNA-DNA oligonucleotides. J Gene Med. Mar.-Apr. 2002;4(2):195-204. |
| Thyagarajan et al., Mammalian genomes contain active recombinase recognition sites. Gene. Feb. 22, 2000;244(1-2):47-54. |
| Thyagarajan et al., Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol. Jun. 2001;21(12):3926-34. |
| Tirumalai et al., Recognition of core-type DNA sites by lambda integrase. J Mol Biol. Jun. 12, 1998;279(3):513-27. |
| Trausch et al., The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure. Oct. 12, 2011;19(10):1413-23. doi: 10.1016/j.str.2011.06.019. Epub Sep. 8, 2011. |
| Truong et al., Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. Jul. 27, 2015;43(13):6450-8. doi: 10.1093/nar/gkv601. Epub Jun. 16, 2015. |
| Truong et al., Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. Jul. 27, 2015;43(13):6450-8. doi: 10.1093/nar/gkv601. Epub Jun. 16, 2015. With Supplementary Data. |
| Tsai et al., Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. Jun. 2014;32(6):569-76. doi: 10.1038/nbt.2908. Epub Apr. 25, 2014. |
| Tsai et al., GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. Feb. 2015;33(2):187-97. doi: 10.1038/nbt.3117. Epub Dec. 16, 2014. |
| Turan et al., Recombinase-mediated cassette exchange (RMCE)—a rapidly-expanding toolbox for targeted genomic modifications. Gene. Feb. 15, 2013;515(1):1-27. doi: 10.1016/j.gene.2012.11.016. Epub Nov. 29, 2012. |
| Turan et al., Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol. Mar. 25, 2011;407(2):193-221. doi: 10.1016/j.jmb.2011.01.004. Epub Jan. 15, 2011. |
| Turan et al., Site-specific recombinases: from tag-and-target- to tag-and-exchange-based genomic modifications. FASEB J. Dec. 2011;25(12):4088-107. doi: 10.1096/fj.11-186940. Epub Sep. 2, 2011. Review. |
| Tyszkiewicz et al., Activation of protein splicing with light in yeast. Nat Methods. Apr. 2008;5(4):303-5. doi: 10.1038/nmeth.1189. Epub Feb. 13, 2008. |
| UniProt Submission; UniProt, Accession No. P01011. Last modified Jun. 11, 2014, version 2. 15 pages. |
| UniProt Submission; UniProt, Accession No. P01011. Last modified Sep. 18, 2013, version 2. 15 pages. |
| UniProt Submission; UniProt, Accession No. P04264. Last modified Jun. 11, 2014, version 6. 15 pages. |
| UniProt Submission; UniProt, Accession No. P04275. Last modified Jul. 9, 2014, version 107. 29 pages. |
| Urnov et al., Genome editing with engineered zinc finger nucleases. Nat Rev Genet. Sep. 2010;11(9):636-46. doi: 10.1038/nrg2842. |
| Urnov et al., Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. Jun. 2, 2005;435(7042):646-51. Epub Apr. 3, 2005. |
| Vagner et al., Efficiency of homologous DNA recombination varies along the Bacillus subtilis chromosome. J Bacteriol. Sep. 1988;170(9):3978-82. |
| Van Duyne et al., Teaching Cre to follow directions. Proc Natl Acad Sci U S A. Jan. 6, 2009;106(1):4-5. doi: 10.1073/pnas.0811624106. Epub Dec. 31, 2008. |
| Van Swieten et al., A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia [corrected]. Am J Hum Genet. Jan. 2003;72(1):191-9. Epub Dec. 13, 2002. |
| Vanamee et al., FokI requires two specific DNA sites for cleavage. J Mol Biol. May 25, 2001;309(1):69-78. |
| Venken et al., Genome-wide manipulations of Drosophila melanogaster with transposons, Flp recombinase, and ΦC31 integrase. Methods Mol Biol. 2012;859:203-28. doi: 10.1007/978-1-61779-603-6_12. |
| Vitreschak et al., Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element. RNA. Sep. 2003;9(9):1084-97. |
| Wacey et al., Disentangling the perturbational effects of amino acid substitutions in the DNA-binding domain of p53. Hum Genet. Jan. 1999;104(1):15-22. |
| Wadia et al., Modulation of cellular function by TAT mediated transduction of full length proteins. Curr Protein Pept Sci. Apr. 2003;4(2):97-104. |
| Wadia et al., Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med. Mar. 2004;10(3):310-5. Epub Feb. 8, 2004. |
| Wah et al., Structure of FokI has implications for DNA cleavage. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10564-9. |
| Wang et al., CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report. Arterioscler Thromb Vase Biol. May 2016;36(5):783-6. doi: 10.1161/ATVBAHA.116.307227. Epub Mar. 3, 2016. |
| Wang et al., Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci U S A. Feb. 29, 2016. pii: 201520244. [Epub ahead of print]. |
| Wang et al., Genetic screens in human cells using the CRISPR-Cas9 system. Science. Jan. 3, 2014;343(6166):80-4. doi: 10.1126/science.1246981. Epub Dec. 12, 2013. |
| Wang et al., Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature. Oct. 8, 2009;461(7265):754-61. doi: 10.1038/nature08434. |
| Wang et al., One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. May 9, 2013;153(4):910-8. doi: 10.1016/j.cell.2013.04.025. Epub May 2, 2013. |
| Wang et al., Recombinase technology: applications and possibilities. Plant Cell Rep. Mar. 2011;30(3):267-85. doi: 10.1007/s00299-010-0938-1. Epub Oct. 24, 2010. |
| Wang et al., Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell. Mar. 28, 2008;29(6):691-702. doi: 10.1016/j.molcel.2008.01.012. |
| Wang et al., Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Res. Jul. 2012;22(7):1316-26. doi: 10.1101/gr.122879.111. Epub Mar. 20, 2012. |
| Wang et al., Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J Biol Chem. Jan. 15, 1989;264(2):1163-71. |
| Warren et al., A chimeric Cre recombinase with regulated directionality. Proc Natl Acad Sci U S A. Nov. 25, 2008;105(47):18278-83. doi: 10.1073/pnas.0809949105. Epub Nov. 14, 2008. |
| Warren et al., Mutations in the amino-terminal domain of lambda-integrase have differential effects on integrative and excisive recombination. Mol Microbiol. Feb. 2005;55(4):1104-12. |
| Weber et al., Assembly of designer TAL effectors by Golden Gate cloning. PLoS One. 2011;6(5):e19722. doi:10.1371/journal.pone.0019722. Epub May 19, 2011. |
| Weinberg et al., The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. RNA. May 2008;14(5):822-8. doi: 10.1261/rna.988608. Epub Mar. 27, 2008. |
| Weinberger et al., Disease-causing mutations C277R and C277Y modify gating of human C1C-1 chloride channels in myotonia congenita. J Physiol. Aug. 1, 2012;590(Pt 15):3449-64. doi: 0.1113/jphysiol.2012.232785. Epub May 28, 2012. |
| Wiedenheft et al., RNA-guided genetic silencing systems in bacteria and archaea. Nature. Feb. 15, 2012;482(7385):331-8. doi: 10.1038/nature10886. Review. |
| Wijnker et al., Managing meiotic recombination in plant breeding. Trends Plant Sci. Dec. 2008;13(12):640-6. doi: 10.1016/j.tplants.2008.09.004. Epub Oct. 22, 2008. |
| Winkler et al., An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci U S A. Dec. 10, 2002;99(25):15908-13. Epub Nov. 27, 2002. |
| Winkler et al., An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat Struct Biol.Sep. 2003;10(9):701-7. Epub Aug. 10, 2003. |
| Winkler et al., Control of gene expression by a natural metabolite-responsive ribozyme. Nature. Mar. 18, 2004;428(6980):281-6. |
| Winkler et al., Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature. Oct. 31, 2002;419(6910):952-6. Epub Oct. 16, 2002. |
| Wolf et al., tadA, an essential tRNA-specific adenosine deaminase from Escherichia coli. EMBO J. Jul. 15, 2002;21(14):3841-51. |
| Wolfe et al., Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. J Mol Biol. Feb. 5, 1999;285(5):1917-34. |
| Wood et al., Targeted genome editing across species using ZFNs and TALENs. Science. Jul. 15, 2011;333(6040):307. doi: 10.1126/science.1207773. Epub Jun. 23, 2011. |
| Wu et al., Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell. Dec. 5, 2013;13(6):659-62. doi: 10.1016/j.stem.2013.10.016. |
| Wu et al., Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol. Jul. 2014;32(7):670-6. doi: 10.1038/nbt.2889. Epub Apr. 20, 2014. |
| Xu et al., Sequence determinants of improved CRISPR sgRNA design. Genome Res. Aug. 2015;25(8):1147-57. doi: 10.1101/gr.191452.115. Epub Jun. 10, 2015. |
| Yahata et al., Unified, Efficient, and Scalable Synthesis of Halichondrins: Zirconium/Nickel-Mediated One-Pot Ketone Synthesis as the Final Coupling Reaction. Angew Chem Int Ed Engl. Aug. 28, 2017;56(36):10796-10800. doi: 10.1002/anie.201705523. Epub Jul. 28, 2017. |
| Yamamoto et al., Virological and immunological bases for HIV-1 vaccine design. Uirusu 2007;57(2):133-139. https://doi.org/10.2222/jsv.57.133. |
| Yamano et al., Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell May 2016;165(4)949-62. |
| Yang et al., Engineering and optimising deaminase fusions for genome editing. Nat Commun. Nov. 2, 2016;7:13330. doi: 10.1038/ncomms13330. |
| Yang et al., Genome editing with targeted deaminases. BioRxiv. Preprint. First posted online Jul. 28, 2016. |
| Yang et al., New CRISPR-Cas systems discovered. Cell Res. Mar. 2017;27(3):313-314. doi: 10.1038/cr.2017.21. Epub Feb. 21, 2017. |
| Yang et al., PAM-dependent Target DNA Recognition and Cleavage by C2C1 CRISPR-Cas endonuclease. Cell Dec. 2016;167(7):1814-28. |
| Yanover et al., Extensive protein and DNA backbone sampling improves structure-based specificity prediction for C2H2 zinc fingers. Nucleic Acids Res. Jun. 2011;39(11):4564-76. doi: 10.1093/nar/gkr048. Epub Feb. 22, 2011. |
| Yazaki et al., Hereditary systemic amyloidosis associated with a new apolipoprotein AII stop codon mutation Stop78Arg. Kidney Int. Jul. 2003;64(1):11-6. |
| Yin et al., Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. Jun. 2014;32(6):551-3. doi: 10.1038/nbt.2884. Epub Mar. 30, 2014. |
| Yuan et al., Tetrameric structure of a serine integrase catalytic domain. Structure. Aug. 6, 2008;16(8):1275-86. doi: 10.1016/j.str.2008.04.018. |
| Yuen et al., Control of transcription factor activity and osteoblast differentiation in mammalian cells using an evolved small-molecule-dependent intein. J Am Chem Soc. Jul. 12, 2006;128(27):8939-46. |
| Zelphati et al., Intracellular delivery of proteins with a new lipid-mediated delivery system. J Biol Chem. Sep. 14, 2001;276(37):35103-10. Epub Jul. 10, 2001. |
| Zetsche et al., A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol. Feb. 2015;33(2):139-42. doi: 10.1038/nbt.3149. |
| Zetsche et al., Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. Oct. 22, 2015;163(3):759-71. doi: 10.1016/j.cell.2015.09.038. Epub Sep. 25, 2015. |
| Zhang et al., Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Sci Rep. Jun. 2014;4:5405. |
| Zhang et al., Conditional gene manipulation: Cre-ating a new biological era. J Zhejiang Univ Sci B. Jul. 2012;13(7):511-24. doi: 10.1631/jzus.B1200042. Review. |
| Zhang et al., CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. Sep. 15, 2014;23(R1):R40-6. doi: 10.1093/hmg/ddu125. Epub Mar. 20, 2014. |
| Zhang et al., Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol. Feb. 2011;29(2):149-53. doi: 10.1038/nbt.1775. Epub Jan. 19, 2011. |
| Zhang et al., Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nat Commun. Jul. 25, 2017;8(1):118. doi: 10.1038/s41467-017-00175-6. |
| Zhang et al., Stabilized plasmid-lipid particles for regional gene therapy: formulation and transfection properties. Gene Ther. Aug. 1999;6(8):1438-47. |
| Zheng et al., DNA editing in DNA/RNA hybrids by adenosine deaminases that act on RNA. Nucleic Acids Res. Apr. 7, 2017;45(6):3369-3377. doi: 10.1093/nar/gkx050. |
| Zimmermann et al., Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer. RNA. May 2000;6(5):659-67. |
| Zong et al., Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol. May 2017;35(5):438-440. doi: 10.1038/nbt.3811. Epub Feb. 27, 2017. |
| Zorko et al., Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev. Feb. 28, 2005;57(4):529-45. Epub Jan. 22, 2005. |
| Zou et al., Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell. Jul. 2, 2009;5(1):97-110. doi: 10.1016/j.stem.2009.05.023. Epub Jun. 18, 2009. |
| Zuris et al., Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33:73-80. |
| EP 19181479.7, Oct. 31, 2019, Extended European Search Report. |
| EP 19187331.4, Dec. 19, 2019, Partial European Search Report. |
| PCT/US2017/068114, Jul. 4, 2019, International Preliminary Report on Patentability. |
| PCT/US2017/068105, Jul. 4, 2019, International Preliminary Report on Patentability. |
| PCT/US2018/021880, Sep. 19, 2019, International Preliminary Report on Patentability. |
| PCT/US2018/021664, Sep. 19, 2019, International Preliminary Report on Patentability. |
| PCT/US2018/021878, Sep. 19, 2019, International Preliminary Report on Patentability. |
| PCT/US2018/024208, Oct. 3, 2019, International Preliminary Report on Patentability. |
| PCT/US2018/048969, Jul. 31, 2019, International Search Report and Written Opinion. |
| PCT/US2018/048969, Mar. 12, 2020, International Preliminary Report on Patentability. |
| PCT/US2018/032460, Nov. 21, 2019, International Preliminary Report on Patentability. |
| PCT/US2018/044242, Nov. 21, 2019, International Search Report and Written Opinion. |
| PCT/US2018/044242, Feb. 6, 2020, International Preliminary Report on Patentability. |
| U.S. Appl. No. 16/374,634, filed Apr. 30, 2019, Liu et al. |
| U.S. Appl. No. 16/492,548, filed Sep. 9, 2019, Liu et al. |
| Banerjee et al., Cadmium inhibits mismatch repair by blocking the ATPase activity of the MSH2-MSH6 complex [published correction appears in Nucleic Acids Res. 2005;33(5):1738]. Nucleic Acids Res. 2005;33(4):1410-1419. Published Mar. 3, 2005. doi:10.1093/nar/gki291. |
| Burke et al., RNA Aptamers to the Adenosine Moiety of S-adenosyl Methionine: Structural Inferences From Variations on a Theme and the Reproducibility of SELEX. Nucleic Acids Res. May 15, 1997;25(10):2020-4. doi: 10.1093/nar/25.10.2020. |
| Eiler et al., Structural Basis for the Fast Self-Cleavage Reaction Catalyzed by the Twister Ribozyme. Proc Natl Acad Sci U S A. Sep. 9, 2014; 111(36):13028-33. doi: 10.1073/pnas.1414571111. Epub Aug. 25, 2014. |
| Endo et al., Toward establishing an efficient and versatile gene targeting system in higher plants. Biocatalysis and Agricultural Biotechnology 2014;3,(1):2-6. |
| Felletti et al., Twister Ribozymes as Highly Versatile Expression Platforms for Artificial Riboswitches. Nat Commun. Sep. 27, 2016;7:12834. doi: 10.1038/ncomms12834. |
| Genbank Submission; NIH/NCBI, Accession No. NM_174936. Guo et al., Oct. 28, 2015. 6 pages. |
| Harrington et al., Recent developments and current status of gene therapy using viral vectors in the United Kingdom. BMJ. 2004;329(7470):839?842. doi:10.1136/bmj.329.7470.839. |
| Horvath et al., Diversity, Activity, and Evolution of CRISPR Loci in Streptococcus thermophilus. J Bacteriol. Feb. 2008;190(4):1401-12. doi: 10.1128/JB.01415-07. Epub Dec. 7, 2007. |
| Jiang et al., Structural Biology. A Cas9-guide RNA Complex Preorganized for Target DNA Recognition. Science. Jun. 26, 2015;348(6242):1477-81. doi: 10.1126/science.aab1452. |
| Kobori et al., Deep Sequencing Analysis of Aptazyme Variants Based on a Pistol Ribozyme. ACS Synth Biol. Jul. 21, 2017;6(7):1283-1288. doi: 10.1021/acssynbio.7b00057. Epub Apr. 14, 2017. |
| Koonin et al., Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 2017;37:67?78. doi:10.1016/j.mib.2017.05.008. |
| Lewis et al., Building the Class 2 CRISPR-Cas Arsenal. Mol Cell 2017;65(3);377-379. |
| Lilley, D.M. The Varkud Satellite Ribozyme. RNA. Feb. 2004;10(2):151-8.doi: 10.1261/rna.5217104. |
| Liu et al., Functional Nucleic Acid Sensors. Chem Rev. May 2009;109(5):1948-98. doi: 10.1021/cr030183i. |
| Ma et al., Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes. Mol Cell. Nov. 5, 2015;60(3):398-407. doi: 10.1016/j.molcel.2015.10.030. |
| Mandal et al., Riboswitches Control Fundamental Biochemical Pathways in Bacillus Subtilis and Other Bacteria. Cell. May 30, 2003;113(5):577-86. doi: 10.1016/s0092-8674(03)00391-x. |
| Mir et al., Two Active Site Divalent Ions in the Crystal Structure of the Hammerhead Ribozyme Bound to a Transition State Analogue. Biochemistry. . . Feb. 2, 2016;55(4):633-6. doi: 10.1021/acs.biochem.5b01139. Epub Jan. 19, 2016. |
| Ni et al., A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo. J Lipid Res. 2011;52:76-86. |
| Nishikura, Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem. 2010;79:321-349. doi:10.1146/annurev-biochem-060208-105251. |
| Nishimasu et al., Crystal Structure of Staphylococcus aureus Cas9. Cell. Aug. 27, 2015;162(5):1113-26. doi: 10.1016/j.cell.2015.08.007. |
| Nomura et al., Controlling Mammalian Gene Expression by Allosteric Hepatitis Delta Virus Ribozymes. ACS Synth Biol. Dec. 20, 2013;2(12):684-9. doi: 10.1021/sb400037a. Epub May 22, 2013. |
| Nowak et al., Guide RNA Engineering for Versatile Cas9 Functionality. Nucleic Acids Res. Nov. 16, 2016;44(20):9555-9564. doi: 10.1093/nar/gkw908. Epub Oct. 12, 2016. |
| Pospsílová et al., Hydrolytic cleavage of N6-substituted adenine derivatives by eukaryotic adenine and adenosine deaminases. Biosci Rep. 2008;28(6):335-347. doi:10.1042/BSR20080081. |
| Ren et al., In-line Alignment and Mg2? Coordination at the Cleavage Site of the env22 Twister Ribozyme. Nat Commun. Nov. 20, 2014;5:5534. doi: 10.1038/ncomms6534. |
| Ren et al., Pistol Ribozyme Adopts a Pseudoknot Fold Facilitating Site-Specific In-Line Cleavage. Nat Chem Biol. Sep. 2016;12(9):702-8. doi: 10.1038/nchembio.2125. Epub Jul. 11, 2016. |
| Sasidharan et al., The selection of acceptable protein mutations. PNAS; Jun. 12, 2007;104(24):10080-5. www.pnas.org/cgi/doi/10.1073.pnas.0703737104. |
| Tourdot et al., A general strategy to enhance immunogenicity of low-affinity HLA-A2. 1-associated peptides: implication in the identification of cryptic tumor epitopes. Eur J Immunol. Dec. 2000;30(12):3411-21. |
| Wang et al. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae. Appl Environ Microbiol. 2018;84(23):e01834-18. Published Nov. 15, 2018. doi:10.1128/AEM.01834-18. |
| Wang et al., Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. Cell Res. Oct. 2017;27(1): 1289-92. doi: 10.1038/cr.2017.111. Epub Aug. 29, 2017. |
| Weinberg et al., New Classes of Self-Cleaving Ribozymes Revealed by Comparative Genomics Analysis. Nat Chem Biol. Aug. 2015;11(8):606-10. doi: 10.1038/nchembio.1846. Epub Jul. 13, 2015. |
| Wijesinghe et al., Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G. Nucleic Acids Res. Oct. 2012;40(18):9206-17. doi: 10.1093/nar/gks685. Epub Jul. 13, 2012. |
| Wilson et al., Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores. J Mol Biol 2000;297:233-49. |
| Wilson et al., In Vitro Selection of Functional Nucleic Acids. Annu Rev Biochem. 1999;68:611-47. doi: 10.1146/annurev.biochem.68.1.611. |
| Zhang et al., Ribozymes and Riboswitches: Modulation of RNA Function by Small Molecules. Biochemistry. Nov. 2, 2010;49(43):9123-31. doi: 10.1021/bi1012645. |
| Zhong et al., Rational Design of Aptazyme Riboswitches for Efficient Control of Gene Expression in Mammalian Cells. Elife. Nov. 2, 2016;5:e18858. doi: 10.7554/eLife.18858. |
| Rogozin et al., Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID-APOBEC family cytosine deaminase. Nat Immunol. Jun. 2007;8(6):647-56. doi: 10.1038/ni1463. Epub Apr. 29, 2007. |
| [No Author Listed] “FokI” from New England Biolabs Inc. Last accessed online via https://www.neb.eom/products/r0109-foki#Product%20Information on Mar. 19, 2021. 1 page. |
| [No Author Listed] “Nucleic Acids Sizes and Molecular Weights.” Printed Mar. 19, 2021. 2 pages. |
| [No Author Listed] “Zinc Finger Nuclease” from Wikipedia. Retrieved from https://en.wikipedia.org/w/index.php?title=Zinc_finger_nuclease&oldid= 1007053318. Page last edited Feb. 16, 2021. Printed on Mar. 19, 2021. |
| [No Author Listed] HyPhy—Hypothesis testing using Phylogenies. Last modified Apr. 21, 2017. Accessed online via http://hyphy.org/w/index.php/Main_Page on Apr. 28, 2021. |
| [No Author Listed] Theoretical Biochemistry Group. Institute for Theoretical Chemistry. The ViennaRNA Package. Universitat Wien. https://www.tbi.univie.ac.at/RNA/. Last accessed Apr. 28, 2021. |
| Abremski et al., Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J Biol Chem. Feb. 10, 1984;259(3):1509-14. |
| Abudayyeh et al., RNA targeting with CRISPR-Cas13. Nature. Oct. 12, 2017;550(7675):280-284. doi: 10.1038/nature24049. Epub Oct. 4, 2017. |
| Ada et al., Carbohydrate-protein conjugate vaccines. Clin Microbiol Infect. Feb. 2003;9(2):79-85. doi: 10.1046/j.1469-0691.2003.00530.x. |
| Adamala et al., Programmable RNA-binding protein composed of repeats of a single modular unit. Proc Natl Acad Sci U S A. May 10, 2016;113(19):E2579-88. doi: 10.1073/pnas.1519368113. Epub Apr. 26, 2016. |
| Adli, The CRISPR tool kit for genome editing and beyond. Nat Commun. May 15, 2018;9(1):1911. doi: 10.1038/s41467-018-04252-2. |
| Aguilo et al., Coordination of m(6)A mRNA Methylation and Gene Transcription by ZFP217 Regulates Pluripotency and Reprogramming. Cell Stem Cell. Dec. 3, 2015;17(6):689-704. doi: 10.1016/j.stem.2015.09.005. Epub Oct. 29, 2015. |
| Ahmad et al., Antibody-mediated specific binding and cytotoxicity of liposome-entrapped doxorubicin to lung cancer cells in vitro. Cancer Res. Sep. 1, 1992;52(17):4817-20. |
| Aik et al., Structure of human RNA N?-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res. Apr. 2014;42(7):4741-54. doi: 10.1093/nar/gku085. Epub Jan. 30, 2014. |
| Akinsheye et al., Fetal hemoglobin in sickle cell anemia. Blood. Jul. 7, 2011;118(1):19-27. doi: 10.1182/blood-2011-03-325258. Epub Apr. 13, 2011. |
| Alarcón et al., HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events. Cell. Sep. 10, 2015;162(6):1299-308. doi: 10.1016/j.cell.2015.08.011. Epub Aug. 27, 2015. |
| Alarcón et al., N6-methyladenosine marks primary microRNAs for processing. Nature. Mar. 26, 2015;519(7544):482-5. doi: 10.1038/nature14281. Epub Mar. 18, 2015. |
| Alexander, HFE-associated hereditary hemochromatosis. Genet Med. May 2009;11(5):307-13. doi: 10.1097/GIM.0b013e31819d30f2. |
| Altschul et al., Basic local alignment search tool. J Mol Biol. Oct. 5, 1990;215(3):403-10. doi: 10.1016/S0022-2836(05)80360-2. |
| Amato et al., Interpreting elevated fetal hemoglobin in pathology and health at the basic laboratory level: new and known ?- gene mutations associated with hereditary persistence of fetal hemoglobin. Int J Lab Hematol. Feb. 2014;36(1):13-9. doi: 10.1111/ijlh.12094. Epub Apr. 29, 2013. |
| Anzalone et al., Reprogramming eukaryotic translation with ligand-responsive synthetic RNA switches. Nat Methods. May 2016;13(5):453-8. doi: 10.1038/nmeth.3807. Epub Mar. 21, 2016. |
| Anzalone et al., Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. Dec. 2019;576(7785):149-157. doi: 10.1038/s41586-019-1711-4. Epub Oct. 21, 2019. |
| Aplan, Causes of oncogenic chromosomal translocation. Trends Genet. Jan. 2006;22(1):46-55. doi: 10.1016/j.tig.2005.10.002. Epub Oct. 28, 2005. |
| Arakawa et al., A method to convert mRNA into a gRNA library for CRISPR/Cas9 editing of any organism. Sci Adv. Aug. 24, 2016;2(8):e1600699. doi: 10.1126/sciadv.1600699. |
| Araki et al., Comparative analysis of right element mutant lox sites on recombination efficiency in embryonic stem cells. BMC Biotechnol. Mar. 31, 2010;10:29. doi: 10.1186/1472-6750-10-29. |
| Araki et al., Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res. Feb. 15, 1997;25(4):868-72. doi: 10.1093/nar/25.4.868. |
| Arambula et al., Surface display of a massively variable lipoprotein by a Legionella diversity-generating retroelement. Proc Natl Acad Sci U S A. May 14, 2013;110(20):8212-7. doi: 10.1073/pnas.1301366110. Epub Apr. 30, 2013. |
| Arazoe et al., Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering. Biotechnol J. Sep. 2018;13(9):e1700596. doi: 10.1002/biot.201700596. Epub Jun. 19, 2018. |
| Arbab et al., Cloning-free CRISPR. Stem Cell Reports. Nov. 10, 2015;5(5):908-917. doi: 10.1016/j.stemcr.2015.09.022. Epub Oct. 29, 2015. |
| Arezi et al., Novel mutations in Moloney Murine Leukemia Virus reverse transcriptase increase thermostability through tighter binding to template-primer. Nucleic Acids Res. Feb. 2009;37(2):473-81. doi: 10.1093/nar/gkn952. Epub Dec. 4, 2008. |
| Asante et al., A naturally occurring variant of the human prion protein completely prevents prion disease. Nature. Jun. 25, 2015;522(7557):478-81. doi: 10.1038/nature14510. Epub Jun. 10, 2015. |
| Belshaw et al., Controlling protein association and subcellular localization with a synthetic ligand that induces heterodimerization of proteins. Proc Natl Acad Sci U S A. May 14, 1996;93(10):4604-7. doi: 10.1073/pnas.93.10.4604. |
| Berkhout et al., Identification of an active reverse transcriptase enzyme encoded by a human endogenous HERV-K retrovirus. J Virol. Mar. 1999;73(3):2365-75. doi: 10.1128/JVI.73.3.2365-2375.1999. |
| Bernhart et al., Local RNA base pairing probabilities in large sequences. Bioinformatics. Mar. 1, 2006;22(5):614-5. doi: 10.1093/bioinformatics/btk014. Epub Dec. 20, 2005. |
| Bertolotti et al., Toward genosafe endonuclease-boosted gene targeting using breakthrough CRISP/Cas9 for next generation stem cell gene therapy culminating in efficient ex VIVO in VIVO gene repair/genomic editing. Molecular Therapy. May 2015;23(Suppl1):S139. Abstract 350. 18th Ann Meeting of the American Society of Gene and Cell Therapy. ASGCT 2015. New Orleans, LA. May 13, 2015-May 16, 2015. |
| Bertrand et al., Localization of ASH1 mRNA particles in living yeast. Mol Cell. Oct. 1998;2(4):437-45. doi: 10.1016/s1097-2765(00)80143-4. |
| Bi et al., Pseudo attP sites in favor of transgene integration and expression in cultured porcine cells identified by Streptomyces phage phiC31 integrase. BMC Mol Biol. Sep. 8, 2013;14:20. doi: 10.1186/1471-2199-14-20. |
| Bibb et al., Integration and excision by the large serine recombinase phiRv1 integrase. Mol Microbiol. Mar. 2005;55(6): 1896-910. doi: 10.1111/j.1365-2958.2005.04517.x. |
| Biehs et al., DNA Double-Strand Break Resection Occurs during Non-homologous End Joining in G1 but Is Distinct from Resection during Homologous Recombination. Mol Cell. Feb. 16, 2017;65(4):671-684.e5. doi: 10.1016/j.molcel.2016.12.016. Epub Jan. 26, 2017. |
| Biswas et al., A structural basis for allosteric control of DNA recombination by lambda integrase. Nature. Jun. 23, 2005;435(7045):1059-66. doi: 10.1038/nature03657. |
| Blain et al., Nuclease activities of Moloney murine leukemia virus reverse transcriptase. Mutants with altered substrate specificities. J Biol Chem. Nov. 5, 1993;268(31):23585-92. |
| Blau et al., A proliferation switch for genetically?modified?cells. PNAS Apr. 1, 1997 94 (7) 3076-3081; https://doi.org/10.1073/pnas.94.7.3076. |
| Bodi et al., Yeast m6A Methylated mRNAs Are Enriched on Translating Ribosomes during Meiosis, and under Rapamycin Treatment. PLoS One. Jul. 17, 2015;10(7):e0132090. doi: 10.1371/journal.pone.0132090. |
| Bogdanove et al., Engineering altered protein-DNA recognition specificity. Nucleic Acids Res. Jun. 1, 2018;46(10):4845-4871. doi: 10.1093/nar/gky289. |
| Borchardt et al., Controlling mRNA stability and translation with the CRISPR endoribonuclease Csy4. RNA. Nov. 2015;21(11):1921-30. doi: 10.1261/rna.051227.115. Epub Sep. 9, 2015. |
| Boutabout et al., DNA synthesis fidelity by the reverse transcriptase of the yeast retrotransposon Tyl. Nucleic Acids Res. Jun. 1, 2001;29(11):2217-22. doi: 10.1093/nar/29.11.2217. |
| Box et al., A multi-domain protein system based on the HC fragment of tetanus toxin for targeting DNA to neuronal cells. J Drug Target. Jul. 2003;11(6):333-43. doi: 10.1080/1061186310001634667. |
| Braun et al., Immunogenic duplex nucleic acids are nuclease resistant. J Immunol. Sep. 15, 1988;141(6):2084-9. |
| Brown et al., Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea. J Bacteriol. Apr. 1990;172(4):1877-88. doi: 10.1128/jb.172.4.1877-1888.1990. |
| Brown et al., Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat Struct Mol Biol. Jul. 2014;21(7):633-40. doi: 10.1038/nsmb.2844. Epub Jun. 22, 2014. |
| Brzezicha et al., Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA). Nucleic Acids Res. 2006;34(20):6034-43. doi: 10.1093/nar/gkl765. Epub Oct. 27, 2006. |
| Buchschacher et al., Human immunodeficiency virus vectors for inducible expression of foreign genes. J Virol. May 1992;66(5):2731-9. doi: 10.1128/JVI.66.5.2731-2739.1992. |
| Budker et al., Protein/amphipathic polyamine complexes enable highly efficient transfection with minimal toxicity. Biotechniques. Jul. 1997;23(1):139, 142-7. doi: 10.2144/97231rr02. |
| Budworth et al., A brief history of triplet repeat diseases. Methods Mol Biol. 2013; 1010:3-17. doi: 10.1007/978-1-62703-411-1_1. |
| Byrne et al., Multiplex gene regulation: a two-tiered approach to transgene regulation in transgenic mice. Proc Natl Acad Sci U S A. Jul. 1989;86(14):5473-7. doi: 10.1073/pnas.86.14.5473. |
| Cadwell et al., Randomization of genes by PCR mutagenesis. PCR Methods Appl. Aug. 1992;2(1):28-33. doi: 10.1101/gr.2.1.28. |
| Cai et al., Reconstruction of ancestral protein sequences and its applications. BMC Evol Biol. Sep. 17, 2004;4:33. doi: 10.1186/1471-2148-4-33. |
| Camper et al., Postnatal repression of the alpha-fetoprotein gene is enhancer independent. Genes Dev. Apr. 1989;3(4):537-46. doi: 10.1101/gad.3.4.537. |
| Camps et al., Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I. Proc Natl Acad Sci U S A. Aug. 19, 2003;100(17):9727-32. Epub Aug. 8, 2003. |
| Canchaya et al., Genome analysis of an inducible prophage and prophage remnants integrated in the Streptococcus pyogenes strain SF370. Virology. Oct. 25, 2002;302(2):245-58. doi: 10.1006/viro.2002.1570. |
| Canver et al., Customizing the genome as therapy for the ?-hemoglobinopathies. Blood. May 26, 2016;127(21):2536-45. doi: 10.1182/blood-2016-01-678128. Epub Apr. 6, 2016. |
| Carlson et al., Negative selection and stringency modulation in phage-assisted continuous evolution. Nat Chem Biol. Mar. 2014;10(3):216-22. doi: 10.1038/nchembio.1453. Epub Feb. 2, 2014. With Supplementary Results. |
| Carvalho et al., Evolution in health and medicine Sackler colloquium: Genomic disorders: a window into human gene and genome evolution. Proc Natl Acad Sci U S A. Jan. 26, 2010;107 Suppl 1(Suppl 1):1765-71. doi: 10.1073/pnas.0906222107. Epub Jan. 13, 2010. |
| Caspi et al., Distribution of split DnaE inteins in cyanobacteria. Mol Microbiol. Dec. 2003;50(5):1569-77. doi: 10.1046/j.1365-2958.2003.03825.x. |
| Cattaneo et al., SEL1L affects human pancreatic cancer cell cycle and invasiveness through modulation of PTEN and genes related to cell-matrix interactions. Neoplasia. 2005;7(11):1030-1038. |
| Ceccaldi et al., Repair Pathway Choices and Consequences at the Double-Strand Break. Trends Cell Biol. Jan. 2016;26(1):52-64. doi: 10.1016/j.tcb.2015.07.009. Epub Oct. 1, 2015. |
| Chadalavada et al., Wild-type is the optimal sequence of the HDV ribozyme under cotranscriptional conditions. RNA. Dec. 2007;13(12):2189-201. doi: 10.1261/rna.778107. Epub Oct. 23, 2007. |
| Chalberg et al., phiC31 integrase confers genomic integration and long-term transgene expression in rat retina. Invest Ophthalmol Vis Sci. Jun. 2005;46(6):2140-6. doi: 10.1167/iovs.04-1252. |
| Chan et al., Molecular recording of mammalian embryogenesis. Nature. Jun. 2019;570(7759):77-82. doi: 10.1038/s41586-019-1184-5. Epub May 13, 2019. |
| Chapman et al., Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. Aug. 24, 2012;47(4):497-510. doi: 10.1016/j.molcel.2012.07.029. |
| Chaturvedi et al., Stabilization of triple-stranded oligonucleotide complexes: use of probes containing alternating phosphodiester and stereo-uniform cationic phosphoramidate linkages. Nucleic Acids Res. Jun. 15, 1996;24(12):2318-23. |
| Chen et al., Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature. Oct. 19, 2017;550(7676):407-410. doi: 10.1038/nature24268. Epub Sep. 20, 2017. |
| Chen et al., Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes. J Biol Chem. Jul. 8, 2016;291(28):14457-67. doi: 10.1074/jbc.M116.733154. Epub May 5, 2016. |
| Chen et al., m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell. Mar. 5, 2015;16(3):289-301. doi: 10.1016/j.stem.2015.01.016. Epub Feb. 12, 2015. |
| Chew et al., A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. Oct. 2016;13(10):868-74. doi: 10.1038/nmeth.3993. Epub Sep. 5, 2016. Supplementary Information. |
| Chin, Expanding and reprogramming the genetic code of cells and animals. Annu Rev Biochem. 2014;83:379-408. doi: 10.1146/annurev-biochem-060713-035737. Epub Feb. 10, 2014. |
| Cho et al., Site-specific recombination of bacteriophage P22 does not require integration host factor. J Bacteriol. Jul. 1999;181(14):4245-9. doi: 10.1128/JB.181.14.4245-4249.1999. |
| Choe et al., Forging Ahead through Darkness: PCNA, Still the Principal Conductor at the Replication Fork. Mol Cell. Feb. 2, 2017;65(3):380-392. doi: 10.1016/j.molcel.2016.12.020. |
| Choi et al., N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat Struct Mol Biol. Feb. 2016;23(2):110-5. doi: 10.1038/nsmb.3148. Epub Jan. 11, 2016. |
| Chong et al., Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein. J Biol Chem. Apr. 24, 1998;273(17):10567-77. doi: 10.1074/jbc.273.17.10567. |
| Chong et al., Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. Nucleic Acids Res. Nov. 15, 1998;26(22):5109-15. doi: 10.1093/nar/26.22.5109. |
| Chong et al., Protein splicing involving the Saccharomyces cerevisiae VMA intein. The steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. J Biol Chem. Sep. 6, 1996;271(36):22159-68. doi: 10.1074/jbc.271.36.22159. |
| Chong et al., Protein splicing of the Saccharomyces cerevisiae VMA intein without the endonuclease motifs. J Biol Chem. Jun. 20, 1997;272(25):15587-90. doi: 10.1074/jbc.272.25.15587. |
| Choudhury et al., Engineering RNA endonucleases with customized sequence specificities. Nat Commun. 2012;3:1147. doi: 10.1038/ncomms2154. |
| Christiansen et al., Characterization of the lactococcal temperate phage TP901-1 and its site-specific integration. J Bacteriol. Feb. 1994;176(4):1069-76. doi: 10.1128/jb.176.4.1069-1076.1994. |
| Chuai et al., DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Genome Biol. Jun. 26, 2018;19(1):80. doi: 10.1186/s13059-018-1459-4. |
| Chuai et al., In Silico Meets In Vivo: Towards Computational CRISPR-Based sgRNA Design. Trends Biotechnol. Jan. 2017;35(1):12-21. doi: 10.1016/j.tibtech.2016.06.008. Epub Jul. 11, 2016. |
| Chuang et al., Novel Heterotypic Rox Sites for Combinatorial Dre Recombination Strategies. G3 (Bethesda). Dec. 29, 2015;6(3):559-71. doi: 10.1534/g3.115.025841. |
| Chujo et al., Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. RNA. Dec. 2012;18(12):2269-76. doi: 10.1261/rna.035600.112. Epub Oct. 24, 2012. |
| Clackson et al., Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10437-42. doi: 10.1073/pnas.95.18.10437. |
| Clement et al., CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat Biotechnol. Mar. 2019;37(3):224-226. doi: 10.1038/s41587-019-0032-3. |
| Coffey et al., The Economic Impact of BSE on the U.S. Beef Industry: Product Value Losses, Regulatory Costs, and Consumer Reactions. Kansas State University Agricultural Experiment Station and Cooperative Extension Service. MF-2678. May 2005. 68 pages. Accessed via https://bookstore.ksre.ksu.edu/pubs/MF2678.pdf. |
| Cokol et al., Finding nuclear localization signals. EMBO Rep. Nov. 2000;1(5):411-5. doi: 10.1093/embo-reports/kvd092. |
| Conrad et al., A Kaposi's sarcoma virus RNA element that increases the nuclear abundance of intronless transcripts. EMBO J. May 18, 2005;24(10):1831-41. doi: 10.1038/sj.emboj.7600662. Epub Apr. 28, 2005. |
| Cornu et al., Refining strategies to translate genome editing to the clinic. Nat Med. Apr. 3, 2017;23(4):415-423. doi: 10.1038/nm.4313. |
| Costa et al., Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. Mar. 15, 1995;14(6):1276-85. |
| Cui et al., Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res. May 19, 2016;44(9):4243-51. doi: 10.1093/nar/gkw223. Epub Apr. 8, 2016. |
| Cui et al., m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cell Rep. Mar. 14, 2017;18(11):2622-2634. doi: 10.1016/j.celrep.2017.02.059. |
| Cui et al., Review of CRISPR/Cas9 sgRNA Design Tools. Interdiscip Sci. Jun. 2018;10(2):455-465. doi: 10.1007/s12539-018-0298-z. Epub Apr. 11, 2018. |
| Cupples et al., A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci U S A. Jul. 1989;86(14):5345-9. |
| Dahlgren et al., A novel mutation in ribosomal protein S4 that affects the function of a mutated RF1. Biochimie. Aug. 2000;82(8):683-91. |
| Dahlman et al., Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat Biotechnol. Nov. 2015;33(11):1159-61. doi: 10.1038/nbt.3390. |
| Dang et al., Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol. Dec. 15, 2015;16:280. doi: 10.1186/s13059-015-0846-3. |
| Das et al.,The crystal structure of the monomeric reverse transcriptase from Moloney murine leukemia virus. Structure. May 2004;12(5):819-29. doi: 10.1016/j.str.2004.02.032. |
| Dassa et al., Fractured genes: a novel genomic arrangement involving new split inteins and a new homing endonuclease family. Nucleic Acids Res. May 2009;37(8):2560-73. doi: 10.1093/nar/gkp095. Epub Mar. 5, 2009. |
| Datsenko et al., One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. Jun. 6, 2000;97(12):6640-5. |
| De Felipe et al., Co-translational, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide. J Biol Chem. Mar. 28, 2003;278(13):11441-8. doi: 10.1074/jbc.M211644200. Epub Jan. 8, 2003. |
| De Wit et al., The Human CD4+ T Cell Response against Mumps Virus Targets a Broadly Recognized Nucleoprotein Epitope. J Virol. Mar. 5, 2019;93(6):e01883-18. doi: 10.1128/JVI.01883-18. |
| Dean et al., Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science. Sep. 27, 1996;273(5283):1856-62. doi: 10.1126/science.273.5283.1856. |
| Deng et al., Widespread occurrence of N6-methyladenosine in bacterial mRNA. Nucleic Acids Res. Jul. 27, 2015;43(13):6557-67. doi: 10.1093/nar/gkv596. Epub Jun. 11, 2015. |
| Deriano et al., Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet. 2013;47:433-55. doi: 10.1146/annurev-genet-110711-155540. Epub Sep. 11, 2013. |
| Deussing, Targeted mutagenesis tools for modelling psychiatric disorders. Cell Tissue Res. Oct. 2013;354(1):9-25. doi: 10.1007/s00441-013-1708-5. Epub Sep. 10, 2013. |
| Dever et al., CRISPR/Cas9 ?-globin gene targeting in human haematopoietic stem cells. Nature. Nov. 17, 2016;539(7629):384-389. doi: 10.1038/nature20134. Epub Nov. 7, 2016. |
| Dicarlo et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. Apr. 2013;41(7):4336-43. doi: 10.1093/nar/gkt135. Epub Mar. 4, 2013. |
| Dicarlo et al., Safeguarding CRISPR-Cas9 gene drives in yeast. Nat Biotechnol. Dec. 2015;33(12):1250-1255. doi: 10.1038/nbt.3412. Epub Nov. 16, 2015. |
| Dickinson et al., Experimental interrogation of the path dependence and stochasticity of protein evolution using phage-assisted continuous evolution. Proc Natl Acad Sci USA. May 2013;110(22):9007-12. |
| Doman et al., Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat Biotechnol. May 2020;38(5):620-628. doi: 10.1038/s41587-020-0414-6. Epub Feb. 10, 2020. |
| Dove et al., Conversion of the omega subunit of Escherichia coli RNA polymerase into a transcriptional activator or an activation target. Genes Dev. Mar. 1, 1998;12(5):745-54. |
| Doyon et al., Directed evolution and substrate specificity profile of homing endonuclease I-SceI. J Am Chem Soc. Feb. 22, 2006;128(7):2477-84. |
| Drake, A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A. Aug. 15, 1991;88(16):7160-4. |
| Dubois et al., Retroviral RNA Dimerization: From Structure to Functions. Front Microbiol. Mar. 22, 2018;9:527. doi: 10.3389/fmicb.2018.00527. |
| Durai et al., A bacterial one-hybrid selection system for interrogating zinc finger-DNA interactions. Comb Chem High Throughput Screen. May 2006;9(4):301-11. |
| Durai et al., Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. Oct. 26, 2005;33(18):5978-90. doi: 10.1093/nar/gki912. |
| Eick et al., Robustness of Reconstructed Ancestral Protein Functions to Statistical Uncertainty. Mol Biol Evol. Feb. 1, 2017;34(2):247-261. doi: 10.1093/molbev/msw223. |
| Engel et al., The emerging role of mRNA methylation in normal and pathological behavior. Genes Brain Behav. Mar. 2018;17(3):e12428. doi: 10.1111/gbb.12428. Epub Nov. 17, 2017. |
| Engelward et al., Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase. Proc Natl Acad Sci U S A. Nov. 25, 1997;94(24):13087-92. |
| Enyeart et al., Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis. Mobile DNA 5, 2 (2014). https://doi.org/10.1186/1759-8753-5-2. https://doi.org/10.1186/1759-8753-5-2. |
| Evans et al., Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J Biol Chem. Mar. 31, 2000;275(13):9091-4. doi: 10.1074/jbc.275.13.9091. |
| Evans et al., Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci. Nov. 1998;7(11):2256-64. doi: 10.1002/pro.5560071103. |
| Evans et al., The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. J Biol Chem. Jun. 25, 1999;274(26):18359-63. doi: 10.1074/jbc.274.26.18359. |
| Evans et al., The in vitro ligation of bacterially expressed proteins using an intein from Methanobacterium thermoautotrophicum. J Biol Chem. Feb. 12, 1999;274(7):3923-6. doi: 10.1074/jbc.274.7.3923. |
| Evers et al., CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat Biotechnol. Jun. 2016;34(6):631-3. doi: 10.1038/nbt.3536. Epub Apr. 25, 2016. |
| Falnes et al., DNA repair by bacterial AlkB proteins. Res Microbiol. Oct. 2003;154(8):531-8. doi: 10.1016/S0923-2508(03)00150-5. |
| Falnes et al., Repair of methyl lesions in DNA and RNA by oxidative demethylation. Neuroscience. Apr. 14, 2007;145(4):1222-32. doi: 10.1016/j.neuroscience.2006.11.018. Epub Dec. 18, 2006. |
| Feng et al., Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition. J Biol Chem. Apr. 25, 2014;289(17):11571-11583. doi: 10.1074/jbc.M113.546168. Epub Mar. 10, 2014. |
| Feng et al., Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell. Nov. 29, 1996;87(5):905-16. doi: 10.1016/s0092-8674(00)81997-2. |
| Feuk, Inversion variants in the human genome: role in disease and genome architecture. Genome Med. Feb. 12, 2010;2(2):11. doi: 10.1186/gm132. |
| Fitzjohn, Diversitree: comparative phylogenetic analyses of diversification in R. Methods in Evology and Evolution. Dec. 2012;3(6):1084-92 .doi: 10.1111/j.2041-210X.2012.00234.x. |
| Flajolet et al., Woodchuck hepatitis virus enhancer I and enhancer II are both involved in N-myc2 activation in woodchuck liver tumors. J Virol. Jul. 1998;72(7):6175-80. doi: 10.1128/JVI.72.7.6175-6180.1998. |
| Flaman et al., A rapid PCR fidelity assay. Nucleic Acids Res. Aug. 11, 1994;22(15):3259-60. doi: 10.1093/nar/22.15.3259. |
| Fogg et al., New applications for phage integrases. J Mol Biol. Jul. 29, 2014;426(15):2703-16. doi: 10.1016/j.jmb.2014.05.014. Epub May 22, 2014. |
| Fogg et al., Genome Integration and Excision by a New Streptomyces Bacteriophage, ?Joe. Appl Environ Microbiol. Feb. 15, 2017;83(5):e02767-16. doi: 10.1128/AEM.02767-16. |
| Fouts et al., Sequencing Bacillus anthracis typing phages gamma and cherry reveals a common ancestry. J Bacteriol. May 2006;188(9):3402-8. doi: 10.1128/JB.188.9.3402-3408.2006. |
| Freitas et al., Mechanisms and signals for the nuclear import of proteins. Curr Genomics. Dec. 2009;10(8):550-7. doi: 10.2174/138920209789503941. |
| Fu et al., Promises and Pitfalls of Intracellular Delivery of Proteins. Bioconjugate Chemistry. Aug. 2014;25:1602-8. |
| Furukawa et al., In vitro selection of allosteric ribozymes that sense the bacterial second messenger c-di-GMP. Methods Mol Biol. 2014;1111:209-20. doi: 10.1007/978-1-62703-755-6_15. |
| Gajula, Designing an Elusive CoG?GoC CRISPR Base Editor. Trends Biochem Sci. Feb. 2019;44(2):91-94. doi: 10.1016/j.tibs.2018.10.004. Epub Nov. 13, 2018. |
| Gao et al., Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature. Jan. 11, 2018;553(7687):217-221. doi: 10.1038/nature25164. Epub Dec. 20, 2017. |
| Garcia et al., Transglycosylation: a mechanism for RNA modification (and editing?). Bioorg Chem. Jun. 2005;33(3):229-51. doi: 10.1016/j.bioorg.2005.01.001. Epub Feb. 23, 2005. |
| Garibyan et al., Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair (Amst). May 13, 2003;2(5):593-608. |
| Gaudelli et al., Programmable base editing of AoT to GoC in genomic DNA without DNA cleavage. Nature. Nov. 23, 2017;551(7681):464-471. doi: 10.1038/nature24644. Epub Oct. 25, 2017. Erratum in: Nature. May 2, 2018. |
| Gehrke et al., An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat Biotechnol. Nov. 2018;36(10):977-982. doi: 10.1038/nbt.4199. Epub Jul. 30, 2018. |
| GenBank Accession No. J01600.1. Brooks et al., E.coli dam gene coding for DNA adenine methylase. Apr. 26, 1993. |
| GenBank Submission; NIH/NCBI Accession No. NM_001319224.2. Umar et al., Apr. 21, 2021. 7 pages. |
| GenBank Submission; NIH/NCBI Accession No. NM_006027.4. Umar et al., Apr. 10, 2021. 7 pages. |
| GenBank Submission; NIH/NCBI, Accession No. AAA66622.1. Martinelli et al., May 18, 1995. 2 pages. |
| GenBank Submission; NIH/NCBI, Accession No. AGT42196. Farzadfar et al., Nov. 2, 2013. 2 pages. |
| GenBank Submission; NIH/NCBI, Accession No. APG80656.1. Burstein et al., Dec. 10, 2016. 1 pages. |
| GenBank Submission; NIH/NCBI, Accession No. AYD60528.1. Ram et al., Oct. 2, 2018. 1 page. |
| GenBank Submission; NIH/NCBI, Accession No. BDB43378. Zhang et al., Aug. 11, 2016. 2 pages. |
| GenBank Submission; NIH/NCBI, Accession No. KR710351.1. Sahni et al., Jun. 1, 2015. 2 pages. |
| GenBank Submission; NIH/NCBI, Accession No. NC 002737.2. Nasser et al., Feb. 7, 2021. 2 pages. |
| GenBank Submission; NIH/NCBI, Accession No. NM_000311.5. Alves et al., Mar. 7, 2021. 5 pages. |
| GenBank Submission; NIH/NCBI, Accession No. NM_001319224. Umar et al., Apr. 21, 2021. 7 pages. |
| GenBank Submission; NIH/NCBI, Accession No. NM_003686.4. Umar et al., Apr. 9, 2021. 7 pages. |
| GenBank Submission; NIH/NCBI, Accession No. NM_006027. Umar et al., Apr. 10, 2021. 7 pages. |
| GenBank Submission; NIH/NCBI, Accession No. NM_174936.3. Bernardini et al., Oct. 28, 2015. 2 pages. |
| GenBank Submission; NIH/NCBI, Accession No. NP_000302.1. Alves et al., Mar. 7, 2021. 4 pages. |
| GenBank Submission; NIH/NCBI, Accession No. NP_955579.1. Chen et al., Aug. 13, 2018. 5 pages. |
| GenBank Submission; NIH/NCBI, Accession No. QBJ66766. Duan et al. Aug. 12, 2020. 2 pages. |
| GenBank Submission; NIH/NCBI, Accession No. RFF81513.1. Zhou et al., Aug. 21, 2018. 2 pages. |
| GenBank Submission; NIH/NCBI, Accession No. SNX31424.1. Weckx, S., Feb. 16, 2018. 2 pages. |
| GenBank Submission; NIH/NCBI, Accession No. TGH57013. Xu et al., Apr. 9, 2019. 2 pages. |
| GenBank Submission; NIH/NCBI, Accession No. WP_016631044.1. Haft et al., Sep. 22, 2020. 1 page. |
| GenBank Submission; NIH/NCBI, Accession No. WP_031386437. No Author Listed., Sep. 23, 2019. 1 page. |
| GenBank Submission; NIH/NCBI, Accession No. WP_0315 89969.1. Haft et al., Oct. 9, 2019. 2 pages. |
| GenBank Submission; NIH/NCBI, Accession No. WP_044924278.1. Haft et al., Oct. 9, 2019. 2 pages. |
| GenBank Submission; NIH/NCBI, Accession No. WP_047338501.1. Haft et al., Oct. 9, 2019. 2 pages. |
| GenBank Submission; NIH/NCBI, Accession No. WP_060798984.1. Haft et al., Oct. 9, 2019. 2 pages. |
| GenBank Submission; NIH/NCBI, Accession No. WP_062913273.1. Haft et al., Oct. 9, 2019, 2 pages. |
| GenBank Submission; NIH/NCBI, Accession No. WP_072754838. No Author Listed., Sep. 23, 2019. 1 page. |
| GenBank Submission; NIH/NCBI, Accession No. WP_095142515.1. No Author Listed., Sep. 23, 2019. 1 page. |
| GenBank Submission; NIH/NCBI, Accession No. WP_118538418.1. No Author Listed., Oct. 13, 2019. 1 page. |
| GenBank Submission; NIH/NCBI, Accession No. WP_119223642.1. No Author Listed., Oct. 13, 2019. 1 page. |
| GenBank Submission; NIH/NCBI, Accession No. WP_119227726.1. No Author Listed., Oct. 13, 2019. 1 page. |
| GenBank Submission; NIH/NCBI, Accession No. WP_119623382.1. No Author Listed., Oct. 13, 2019. 1 page. |
| GenBank Submission; NIH/NCBI, Accession No. WP_132221894.1. No Author Listed., Sep. 23, 2019. 1 page. |
| GenBank Submission; NIH/NCBI, Accession No. WP_133478044.1. Haft et al., Oct. 9, 2019. 2 pages. |
| GenBank Submission; NIH/NCBI, Accession No. YP_009283008.1. Bernardini et al., Sep. 23, 2016. 2 pages. |
| George et al., Adenosine deaminases acting on RNA, RNA editing, and interferon action. J Interferon Cytokine Res. Jan. 2011;31(1):99-117. doi: 10.1089/jir.2010.0097. Epub Dec. 23, 2010. PMID: 21182352; PMCID: PMC3034097. |
| Gerard et al., Purification and characterization of the DNA polymerase and RNase H activities in Moloney murine sarcoma-leukemia virus. J Virol. Apr. 1975;15(4):785-97. doi: 10.1128/JVI.15.4.785-797.1975. |
| Gerard et al., The role of template-primer in protection of reverse transcriptase from thermal inactivation. Nucleic Acids Res. Jul. 15, 2002;30(14):3118-29. doi: 10.1093/nar/gkf417. |
| Gerber et al., An adenosine deaminase that generates inosine at the wobble position of tRNAs. Science. Nov. 5, 1999;286(5442):1146-9. doi: 10.1126/science.286.5442.1146. |
| Ghahfarokhi et al., Blastocyst Formation Rate and Transgene Expression are Associated with Gene Insertion into Safe and Non-Safe Harbors in the Cattle Genome. Sci Rep. Nov. 13, 2017;7(1):15432. doi: 10.1038/s41598-017-15648-3. |
| Glasgow et al.,DNA-binding properties of the Hin recombinase. J Biol Chem. Jun. 15, 1989;264(17):10072-82. |
| Glassner et al., Generation of a strong mutator phenotype in yeast by imbalanced base excision repair. Proc Natl Acad Sci U S A. Aug. 18, 1998;95(17):9997-10002. |
| Goldberg et al., Epigenetics: a landscape takes shape. Cell. Feb. 23, 2007;128(4):635-8. doi: 10.1016/j.cell.2007.02.006. |
| Gong et al., Active DNA demethylation by oxidation and repair. Cell Res. Dec. 2011;21(12):1649-51. doi: 10.1038/cr.2011.140. Epub Aug. 23, 2011. |
| Goodnough et al., Development of a delivery vehicle for intracellular transport of botulinum neurotoxin antagonists. FEBS Lett. Feb. 27, 2002;513(2-3):163-8. |
| Grainge et al., The integrase family of recombinase: organization and function of the active site. Mol Microbiol. Aug. 1999;33(3):449-56. |
| Gregory et al., Integration site for Streptomyces phage phiBT1 and development of sitespecific integrating vectors. J Bacteriol. Sep. 2003;185(17):5320-3. doi: 10.1128/jb.185.17.5320-5323.2003. |
| Griffiths, Endogenous retroviruses in the human genome sequence. Genome Biol. 2001;2(6):REVIEWS1017. doi: 10.1186/gb-2001-2-6-reviews1017. Epub Jun. 5, 2001. |
| Grishok et al., Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing. Jul. 13, 2001:106(1):P23-4. |
| Groth et al., Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics. Apr. 2004;166(4):1775-82. doi: 10.1534/genetics.166.4.1775. |
| Gruber et al., Strategies for measuring evolutionary conservation of RNA secondary structures. BMC Bioinformatics. Feb. 26, 2008;9:122. doi: 10.1186/1471-2105-9-122. |
| Grunebaum et al., Recent advances in understanding and managing adenosine deaminase and purine nucleoside phosphorylase deficiencies. Curr Opin Allergy Clin Immunol. Dec. 2013;13(6):630-8. doi: 10.1097/ACI.0000000000000006. |
| Grünewald et al., Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature. May 2019;569(7756):433-437. doi: 10.1038/s41586-019-1161-z. Epub Apr. 17, 2019. |
| Gupta et al., Sequences in attB that affect the ability of phiC31 integrase to synapse and to activate DNA cleavage. Nucleic Acids Res. 2007;35(10):3407-19. doi: 10.1093/nar/gkm206. Epub May 3, 2007. |
| Guzman et al., Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 1995;177(14):4121-4130. |
| Halmai et al., Targeted CRIPSR/dCas9-mediated reactivation of epigenetically silenced genes suggests limited escape from the inactive X chromosome. 2nd Inti Conf on Epigenetics and Bioengineering. Oct. 4, 2018; Retrieved from the Internet: https://aiche.confex.com/aiche/epibiol8/webprogram/paper544785.html. Retrieved Jun. 29, 2020. |
| Halperin et al., CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature. Aug. 2018;560(7717):248-252. doi: 10.1038/s41586-018-0384-8. Epub Aug. 1, 2018. |
| Halvas et al., Role of murine leukemia virus reverse transcriptase deoxyribonucleoside triphosphate-binding site in retroviral replication and in vivo fidelity. J Virol. Nov. 2000;74(22):10349-58. doi: 10.1128/jvi.74.22.10349-10358.2000. |
| Handa et al., Template-assisted synthesis of adenine-mutagenized cDNA by a retroelement protein complex. Nucleic Acids Res. Oct. 12, 2018;46(18):9711-9725. doi: 10.1093/nar/gky620. |
| Hanson et al., Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol. Jan. 2018;19(1):20-30. doi: 10.1038/nrm.2017.91. Epub Oct. 11, 2017. |
| Harms et al., Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nat Rev Genet. Aug. 2013;14(8):559-71. doi: 10.1038/nrg3540. |
| Harrington et al., A thermostable Cas9 with increased lifetime in human plasma. Nat Commun. Nov. 10, 2017;8(1):1424. doi: 10.1038/s41467-017-01408-4. |
| Hasegawa et al., Spontaneous mutagenesis associated with nucleotide excision repair in Escherichia coli. Genes Cells. May 2008;13(5):459-69. doi: 10.1111/j.1365-2443.2008.01185.x. |
| Heidenreich et al., Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells. EMBO J. May 1, 2003;22(9):2274-83. doi: 10.1093/emboj/cdg203. |
| Held et al., In vivo correction of murine hereditary tyrosinemia type I by phiC31 integrase-mediated gene delivery. Mol Ther. Mar. 2005;11(3):399-408. doi: 10.1016/j.ymthe.2004.11.001. |
| Hermonat et al., Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci U S A. Oct. 1984;81(20):6466-70. doi: 10.1073/pnas.81.20.6466. |
| Herzig et al., A Novel Leu92 Mutant of HIV-1 Reverse Transcriptase with a Selective Deficiency in Strand Transfer Causes a Loss of Viral Replication. J Virol. Aug. 2015;89(16):8119-29. doi: 10.1128/JVI.00809-15. Epub May 20, 2015. |
| Hille et al., The Biology of CRISPR-Cas: Backward and Forward. Cell. Mar. 8, 2018;172(6):1239-1259. doi: 10.1016/j.cell.2017.11.032. |
| Hoang et al., UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol Biol Evol. Feb. 1, 2018;35(2):518-522. doi: 10.1093/molbev/msx281. |
| Hoernes et al., Translating the epitranscriptome. Wiley Interdiscip Rev RNA. Jan. 2017;8(1):e1375. doi: 10.1002/wrna.1375. Epub Jun. 27, 2016. |
| Hollis et al., Phage integrases for the construction and manipulation of transgenic mammals. Reprod Biol Endocrinol. Nov. 7, 2003;1:79. doi: 10.1186/1477-7827-1-79. |
| Holsinger et al., Signal transduction in T lymphocytes using a conditional allele of Sos. Proc Natl Acad Sci U S A. Oct. 10, 1995;92(21):9810-4. doi: 10.1073/pnas.92.21.9810. |
| Hoogenboom et al., Natural and designer binding sites made by phage display technology. Immunol Today. Aug. 2000;21(8):371-8. |
| Hsu et al., DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. Sep. 2013;31(9):827-32. doi: 10.1038/nbt.2647. Epub Jul. 21, 2013. Supplementary Information. 27 pages. |
| Hu et al., Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. Apr. 5, 2018;556(7699):57-63. doi: 10.1038/nature26155. Epub Feb. 28, 2018. |
| Huang et al., Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat Biotechnol. Jun. 2019;37(6):626-631. doi: 10.1038/s41587-019-0134-y. Epub May 20, 2019. Including Supplementary Information. |
| Hung et al., Protein localization in disease and therapy. J Cell Sci. Oct. 15, 2011;124(Pt 20):3381-92. doi: 10.1242/jcs.089110. |
| Hwang et al., Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics. Dec. 27, 2018;19(1):542. doi: 10.1186/s12859-018-2585-4. |
| Iida et al., A site-specific, conservative recombination system carried by bacteriophage P1. Mapping the recombinase gene cin and the cross-over sites cix for the inversion of the C segment. EMBO J. 1982;1(11):1445-53. |
| Imburgio et al., Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants. Biochemistry. Aug. 29, 2000;39(34):10419-30. |
| Iwai et al., Circular beta-lactamase: stability enhancement by cyclizing the backbone. FEBS Lett. Oct. 8, 1999;459(2): 166-72. doi: 10.1016/s0014-5793(99)01220-x. |
| Iwai et al., Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett. Mar. 20, 2006;580(7):1853-8. doi: 10.1016/j.febslet.2006.02.045. Epub Feb. 24, 2006. |
| Jaffrey et al., Emerging links between m6A and misregulated mRNA methylation in cancer. Genome Med. Jan. 12, 2017;9(1):2. doi: 10.1186/s13073-016-0395-8. |
| Jasin et al., Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol. Nov. 1, 2013;5(11):a012740. doi: 10.1101/cshperspect.a012740. |
| Jemielity et al., Novel “anti-reverse” cap analogs with superior translational properties. RNA. Sep. 2003;9(9): 1108-22. doi: 10.1261/rna.5430403. |
| Jiang et al., CRISPR-Cas9 Structures and Mechanisms. Annu Rev Biophys. May 22, 2017;46:505-529. doi: 10.1146/annurev-biophys-062215-010822. Epub Mar. 30, 2017. |
| Johann et al., GLVR1, a receptor for gibbon ape leukemia virus, is homologous to a phosphate permease of Neurospora crassa and is expressed at high levels in the brain and thymus. J Virol. Mar. 1992;66(3):1635-40. doi: 10.1128/JVI.66.3.1635-1640.1992. |
| Johns et al., The promise and peril of continuous in vitro evolution. J Mol Evol. Aug. 2005;61(2):253-63. Epub Jun. 27, 2005. |
| Joho et al., Identification of a region of the bacteriophage T3 and T7 RNA polymerases that determines promoter specificity. J Mol Biol. Sep. 5, 1990;215(1):31-9. |
| Joyce et al., Amplification, mutation and selection of catalytic RNA. Gene. Oct. 15, 1989;82(1):83-7. doi: 10.1016/0378-1119(89)90033-4. |
| Kaczmarczyk et al., Manipulating the Prion Protein Gene Sequence and Expression Levels with CRISPR/Cas9. PLoS One. Apr. 29, 2016;11(4):e0154604. doi: 10.1371/journal.pone.0154604. |
| Kadoch et al., Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell. Mar. 28, 2013; 153(1):71-85. doi: 10.1016/j.cell.2013.02.036. |
| Kahmann et al., G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor. Cell. Jul. 1985;41(3):771-80. doi: 10.1016/s0092-8674(85)80058-1. |
| Kalyaanamoorthy et al., ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. Jun. 2017;14(6):587-589. doi: 10.1038/nmeth.4285. Epub May 8, 2017. |
| Karimova et al., Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering. Sci Rep. Jul. 22, 2016;6:30130. doi: 10.1038/srep30130. |
| Karimova et al., Vika/vox, a novel efficient and specific Cre/loxP-like site-specific recombination system. Nucleic Acids Res. Jan. 2013;41(2):e37. doi: 10.1093/nar/gks1037. Epub Nov. 9, 2012. |
| Kaufman et al., Translational efficiency of polycistronic mRNAs and their utilization to express heterologous genes in mammalian cells. EMBO J. Jan. 1987;6(1):187-93. |
| Kawarasaki et al., Enhanced crossover SCRATCHY: construction and high-throughput screening of a combinatorial library containing multiple non-homologous crossovers. Nucleic Acids Res. Nov. 1, 2003;31(21):e126. |
| Keijzers et al., Human exonuclease 1 (EXO1) activity characterization and its function on flap structures. Biosci Rep. Apr. 25, 2015;35(3):e00206. doi: 10.1042/BSR20150058. |
| Kelman, PCNA: structure, functions and interactions. Oncogene. Feb. 13, 1997;14(6):629-40. doi: 10.1038/sj.onc.1200886. |
| Kessler et al., Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci U S A. Nov. 26, 1996;93(24):14082-7. doi: 10.1073/pnas.93.24.14082. |
| Kilcher et al., Brochothrix thermosphacta bacteriophages feature heterogeneous and highly mosaic genomes and utilize unique prophage insertion sites. J Bacteriol. Oct. 2010;192(20):5441-53. doi: 10.1128/JB.00709-10. Epub Aug. 13, 2010. |
| Kim et al., DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell. 2005;7(3):263-273. |
| Kim et al., High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One. 2011;6(4):e18556. doi: 10.1371/journal.pone.0018556. Epub Apr. 29, 2011. |
| Kim et al., In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat Methods. Feb. 2017;14(2):153-159. doi: 10.1038/nmeth.4104. Epub Dec. 19, 2016. |
| Kim et al., Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Mol Microbiol. Oct. 2003;50(2):463-73. doi: 10.1046/j.1365-2958.2003.03723.x. |
| Kim et al., Rescue of high-specificity Cas9 variants using sgRNAs with matched 5′ nucleotides. Genome Biol. Nov. 15, 2017;18(1):218. doi: 10.1186/s13059-017-1355-3. |
| Kim et al., Structural and kinetic characterization of Escherichia coli TadA, the wobble-specific tRNA deaminase. Biochemistry. May 23, 2006;45(20):6407-16. doi: 10.1021/bi0522394. PMID: 16700551. |
| Klapacz et al., Frameshift mutagenesis and micro satellite instability induced by human alkyladenine DNA glycosylase. Mol Cell. Mar. 26, 2010;37(6):843-53. doi: 10.1016/j.molcel.2010.01.038. |
| Klement et al., Discrimination between bacteriophage T3 and T7 promoters by the T3 and T7 RNA polymerases depends primarily upon a three base-pair region located 10 to 12 base-pairs upstream from the start site. J Mol Biol. Sep. 5, 1990;215(1):21-9. |
| Knott et al., Guide-bound structures of an RNA-targeting A-cleaving CRISPR-Cas13a enzyme. Nat Struct Mol Biol. Oct. 2017;24(10):825-833. doi: 10.1038/nsmb.3466. Epub Sep. 11, 2017. |
| Koblan et al., Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol. Oct. 2018;36(9):843-846. doi: 10.1038/nbt.4172. Epub May 29, 2018. |
| Kohli et al., A portable hot spot recognition loop transfers sequence preferences from APOBEC family members to activation-induced cytidine deaminase. J Biol Chem. Aug. 21, 2009;284(34):22898-904. doi: 10.1074/jbc.M109.025536. Epub Jun. 26, 2009. |
| Koike-Yusa et al., Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol. Mar. 2014;32(3):267-73. doi: 10.1038/nbt.2800. Epub Dec. 23, 2013. |
| Komor, Editing the Genome Without Double-Stranded DNA Breaks. ACS Chem Biol. Feb. 16, 2018;13(2):383-388. doi: 10.1021/acschembio.7b00710. Epub Oct. 9, 2017. |
| Kosicki et al., Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. Sep. 2018;36(8):765-771. doi: 10.1038/nbt.4192. Epub Jul. 16, 2018. |
| Kotewicz et al., Isolation of cloned Moloney murine leukemia virus reverse transcriptase lacking ribonuclease H activity. Nucleic Acids Res. Jan. 11, 1988;16(1):265-77. doi: 10.1093/nar/16.1.265. |
| Kowalski et al., Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol Ther. Apr. 10, 2019;27(4):710-728. doi: 10.1016/j.ymthe.2019.02.012. Epub Feb. 19, 2019. |
| Kozak, An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. Oct. 26, 1987;15(20):8125-48. doi: 10.1093/nar/15.20.8125. |
| Kraft et al., Deletions, Inversions, Duplications: Engineering of Structural Variants using CRISPR/Cas in Mice. Cell Rep. Feb. 10, 2015;10(5):833-839. doi: 10.1016/j.celrep.2015.01.016. Epub Feb. 7, 2015. |
| Krokan et al., Base excision repair. Cold Spring Harb Perspect Biol. Apr. 1, 2013;5(4):a012583. doi: 10.1101/cshperspect.a012583. |
| Krokan et al., Uracil in DNA—occurrence, consequences and repair. Oncogene. Dec. 16, 2002;21(58):8935-48. doi: 10.1038/sj.onc.1205996. |
| Krzywkowski et al., Limited reverse transcriptase activity of phi29 DNA polymerase. Nucleic Acids Res. Apr. 20, 2018;46(7):3625-3632. doi: 10.1093/nar/gky190. |
| Kuscu et al., CRISPR-Cas9-AID base editor is a powerful gain-of-function screening tool. Nat Methods. Nov. 29, 2016; 13(12):983-984. doi: 10.1038/nmeth.4076. |
| Kwart et al., Precise and efficient scarless genome editing in stem cells using CORRECT. Nat Protoc. Feb. 2017;12(2):329-354. doi: 10.1038/nprot.2016.171. Epub Jan. 19, 2017. |
| Lada et al., Mutator effects and mutation signatures of editing deaminases produced in bacteria and yeast. Biochemistry (Mose). Jan. 2011;76(1):131-46. |
| Lauer et al., Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J Bacteriol. Aug. 2002;184(15):4177-86. doi: 10.1128/jb.184.15.4177-4186.2002. |
| Lawyer et al., High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5′ to 3′ exonuclease activity. PCR Methods Appl. May 1993;2(4):275-87. doi: 10.1101/gr.2.4.275. |
| Lazarevic et al., Nucleotide sequence of the Bacillus subtilis temperate bacteriophage SPbetac2. Microbiology (Reading). May 1999;145 ( Pt 5):1055-1067. doi: 10.1099/13500872-145-5-1055. |
| Le Grice et al., Purification and characterization of recombinant equine infectious anemia virus reverse transcriptase. J Virol. Dec. 1991;65(12):7004-7. doi: 10.1128/JVI.65.12.7004-7007.1991. |
| Leaver-Fay et al., ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 2011;487:545-74. doi: 10.1016/B978-0-12-381270-4.00019-6. |
| Leconte et al., A population-based experimental model for protein evolution: effects of mutation rate and selection stringency on evolutionary outcomes. Biochemistry. Feb. 26, 2013;52(8):1490-9. doi: 10.1021/bi3016185. Epub Feb. 14, 2013. |
| Lee et al., Site-specific integration of my cobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guerin. Proc Natl Acad Sci U S A. Apr. 15, 1991;88(8):3111-5. doi: 10.1073/pnas.88.8.3111. |
| Lee et al., Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering. Elife. May 2, 2017;6:e25312. doi: 10.7554/eLife.25312. |
| Lee et al., Transcriptional regulation and its misregulation in disease. Cell. Mar. 14, 2013;152(6):1237-51. doi: 10.1016/j.cell.2013.02.014. |
| Lemos et al., CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strandspecific insertion/deletion profiles. Proc Natl Acad Sci U S A. Feb. 27, 2018;115(9):E2040-E2047. doi: 10.1073/pnas.1716855115. Epub Feb. 13, 2018. |
| Levy et al., Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat Biomed Eng. 2020;4(1):97-110. doi:10.1038/s41551-019-0501-5. |
| Levy et al., Membrane-associated guanylate kinase dynamics reveal regional and developmental specificity of synapse stability. J Physiol. Mar. 1, 2017;595(5):1699-1709. doi: 10.1113/JP273147. Epub Jan. 18, 2017. |
| Lew et al., Protein splicing in vitro with a semisynthetic two-component minimal intein. J Biol Chem. Jun. 26, 1998;273(26):15887-90. doi: 10.1074/jbc.273.26.15887. |
| Lewis et al., Cytosine deamination and the precipitous decline of spontaneous mutation during Earth's history. Proc Natl Acad Sci U S A. Jul. 19, 2016;113(29):8194-9. doi: 10.1073/pnas.1607580113. Epub Jul. 5, 2016. |
| Li et al., A Radioactivity-Based Assay for Screening Human m6A-RNA Methyltransferase, METTL3-METTL14 Complex, and Demethylase ALKBH5. J Biomol Screen. Mar. 2016;21(3):290-7. doi: 10.1177/1087057115623264. Epub Dec. 23, 2015. |
| Li et al., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. Jul. 15, 2009;25(14):1754-60. doi: 10.1093/bioinformatics/btp324. Epub May 18, 2009. |
| Li et al., Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J Biol Chem. Sep. 22, 1995;270(38):22109-12. doi: 10.1074/jbc.270.38.22109. |
| Li et al., Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy. Hum Gene Ther. Sep. 2008;19(9):958-64. doi: 10.1089/hum.2008.009. |
| Liang et al., Correction of ?-thalassemia mutant by base editor in human embryos. Protein Cell. Nov. 2017;8(11):811-822. doi: 10.1007/s13238-017-0475-6. Epub Sep. 23, 2017. |
| Lienert et al., Two- and three-input TALE-based and logic computation in embryonic stem cells. Nucleic Acids Res. Nov. 2013;41(21):9967-75. doi: 10.1093/nar/gkt758. Epub Aug. 27, 2013. |
| Lim et al., Crystal structure of the moloney murine leukemia virus RNase H domain. J Virol. Sep. 2006;80(17):8379-89. doi: 10.1128/JVI.00750-06. |
| Liu et al., Split dnaE genes encoding multiple novel inteins in Trichodesmium erythraeum. J Biol Chem. Jul. 18, 2003;278(29):26315-8. doi: 10.1074/jbc.C300202200. Epub May 24, 2003. |
| Liu et al., A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. Feb. 2014;10(2):93-5. doi: 10.1038/nchembio.1432. Epub Dec. 6, 2013. |
| Liu et al., CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature. Feb. 2019;566(7743):218-223. doi: 10.1038/s41586-019-0908-x. Epub Feb. 4, 2019. |
| Liu et al., Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell. Apr. 5, 2018;173(2):430-442.e17. doi: 10.1016/j.cell.2018.03.016. Epub Mar. 29, 2018. |
| Liu et al., Editing DNA Methylation in the Mammalian Genome. Cell. Sep. 22, 2016;167(1):233-247.e17. doi: 10.1016/j.cell.2016.08.056. |
| Liu et al., Highly efficient RNA-guided base editing in rabbit. Nat Commun. Jul. 13, 2018;9(1):2717. doi: 10.1038/s41467-018-05232-2. |
| Liu et al., N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. Feb. 26, 2015;518(7540):560-4. doi: 10.1038/nature14234. |
| Liu et al., Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA. Dec. 2013;19(12):1848-56. doi: 10.1261/ma.041178.113. Epub Oct. 18, 2013. |
| Liu et al., The Molecular Architecture for RNA-Guided RNA Cleavage by Cas13a. Cell. Aug. 10, 2017;170(4):714-726.e10. doi: 10.1016/j.cell.2017.06.050. Epub Jul. 27, 2017. |
| Loessner et al., Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Mol Microbiol. Jan. 2000;35(2):324-40. doi: 10.1046/j.1365-2958.2000.01720.x. |
| Long et al., Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. Jan. 22, 2016;351(6271):400-3. doi: 10.1126/science.aad5725. Epub Dec. 31, 2015. |
| Lynch, Evolution of the mutation rate. Trends Genet. Aug. 2010;26(8):345-52. doi: 10.1016/j.tig.2010.05.003. Epub Jun. 30, 2010. |
| Maas et al., Identification and characterization of a human tRNA-specific adenosine deaminase related to the ADAR family of pre-mRNA editing enzymes. Proc Natl Acad Sci U S A. Aug. 3, 1999;96(16):8895-900. doi: 10.1073/pnas.96.16.8895. |
| Macbeth et al., Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science. Sep. 2, 2005;309(5740):1534-9. doi: 10.1126/science.1113150. |
| Magin et al., Corf, the Rev/Rex homologue of HTDV/HERV-K, encodes an arginine-rich nuclear localization signal that exerts a trans-dominant phenotype when mutated. Virology. Aug. 15, 2000;274(1):11-6. doi: 10.1006/viro.2000.0438. |
| Makarova et al., Classification and Nomenclature of CRISPR-Cas Systems: Where from Here? CRISPR J. Oct. 2018;1(5):325-336. doi: 10.1089/crispr.2018.0033. |
| Makeyev et al., Evolutionary potential of an RNA virus. J Virol. Feb. 2004;78(4):2114-20. |
| Malashkevich et al., Crystal structure of tRNA adenosine deaminase TadA from Escherichia coli. Deposited: Mar. 10, 2005 Released: Feb. 21, 2006 doi:10.2210/pdb1z3a/pdb (2006). |
| Malito et al., Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proc Natl Acad Sci U S A. Apr. 3, 2012;109(14):5229-34. doi: 10.1073/pnas.1201964109. Epub Mar. 19, 2012. |
| Mandal et al., Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell. Nov. 6, 2014;15(5):643-52. doi: 10.1016/j.stem.2014.10.004. Epub Nov. 6, 2014. |
| Martinez et al., Hypermutagenesis of RNA using human immunodeficiency virus type 1 reverse transcriptase and biased dN'IP concentrations. Proc Natl Acad Sci U S A. Dec. 6, 1994;91(25):11787-91. doi: 10.1073/pnas.91.25.11787. |
| Mascola et al., HIV-1 neutralizing antibodies: understanding nature's pathways. Immunol Rev. Jul. 2013;254(1):225-44. doi: 10.1111/imr.12075. |
| Matthews, Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity. Nat Struct Mol Biol. May 2016;23(5):426-33. doi: 10.1038/nsmb.3203. Epub Apr. 11, 2016. |
| May et al., Emergent lineages of mumps virus suggest the need for a polyvalent vaccine. Int J Infect Dis. Jan. 2018;66:1-4. doi: 10.1016/j.ijid.2017.09.024. Epub Oct. 4, 2017. |
| McInerney et al., Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase. Mol Biol Int. 2014;2014:287430. doi: 10.1155/2014/287430. Epub Aug. 17, 2014. |
| McKenna et al., Recording development with single cell dynamic lineage tracing. Development. Jun. 27, 2019;146(12):dev169730. doi: 10.1242/dev.169730. |
| McKenna et al., Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science. Jul. 29, 2016;353(6298):aaf7907. doi: 10.1126/science.aaf7907. Epub May 26, 2016. |
| McVey et al., MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet. Nov. 2008;24(11):529-38. doi: 10.1016/j.tig.2008.08.007. Epub Sep. 21, 2008. |
| Menéndez-Arias, Mutation rates and intrinsic fidelity of retroviral reverse transcriptases. Viruses. Dec. 2009;1(3):1137-65. doi: 10.3390/v1031137. Epub Dec. 4, 2009. |
| Mertens et al., Site-specific recombination in bacteriophage Mu: characterization of binding sites for the DNA invertase Gin. EMBO J. Apr. 1988;7(4):1219-27. |
| Meyer et al., Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. Jun. 22, 2012;149(7):1635-46. doi: 10.1016/j.cell.2012.05.003. Epub May 17, 2012. |
| Meyer et al., Library generation by gene shuffling. Curr Protoc Mol Biol. Jan. 6, 2014;105:Unit 15.12.. doi: 10.1002/0471142727.mb1512s105. |
| Meyer et al., The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol. May 2014;15(5):313-26. doi: 10.1038/nrm3785. Epub Apr. 9, 2014. |
| Mihai et al., PTEN inhibition improves wound healing in lung epithelia through changes in cellular mechanics that enhance migration. Am J Physiol Lung Cell Mol Physiol. 2012;302(3):L287-L299. |
| Miller et al., Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J Virol. May 1991;65(5):2220-4. doi: 10.1128/JVI.65.5.2220-2224.1991. |
| Mishina et al., Conditional gene targeting on the pure C57BL/6 genetic background. Neurosci Res. Jun. 2007;58(2):105-12. doi: 10.1016/j.neures.2007.01.004. Epub Jan. 18, 2007. |
| Mitton-Fry et al., Poly(A) tail recognition by a viral RNA element through assembly of a triple helix. Science. Nov. 26, 2010;330(6008):1244-7. doi: 10.1126/science.1195858. |
| Moede et al., Identification of a nuclear localization signal, RRMKWKK, in the homeodomain transcription factor PDX-1. FEBS Lett. Nov. 19, 1999;461(3):229-34. doi: 10.1016/s0014-5793(99)01446-5. |
| Mohr et al., A Reverse Transcriptase-Cas1 Fusion Protein Contains a Cas6 Domain Required for Both CRISPR RNA Biogenesis and RNA Spacer Acquisition. Mol Cell. Nov. 15, 2018;72(4):700-714.e8. doi: 10.1016/j.molcel.2018.09.013. Epub Oct. 18, 2018. |
| Mohr et al., Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing. RNA. Jul. 2013;19(7):958-70. doi: 10.1261/ma.039743.113. Epub May 22, 2013. |
| Monot et al., The specificity and flexibility of l1 reverse transcription priming at imperfect T-tracts. PLoS Genet. May 2013;9(5):e1003499. doi: 10.1371/journal.pgen.1003499. Epub May 9, 2013. |
| Morita et al., The site-specific recombination system of actinophage TGI. FEMS Microbiol Lett. Aug. 2009;297(2):234-40. doi: 10.1111/j.1574-6968.2009.01683.x. |
| Muller et al., Nucleotide exchange and excision technology (NExT) DNA shuffling: a robust method for DNA fragmentation and directed evolution. Nucleic Acids Res. Aug. 1, 2005;33(13):e117. doi: 10.1093/nar/gni116. PMID: 16061932; PMCID: PMC1182171. |
| Muzyczka et al., Adeno-associated virus (AAV) vectors: will they work? J Clin Invest. Oct. 1994;94(4):1351. doi: 10.1172/JCI117468. |
| Myerowiiz et al., The major defect in Ashkenazi Jews with Tay-Sachs disease is an insertion in the gene for the alpha-chain of beta-hexosaminidase. J Biol Chem. Dec. 15, 1988;263(35):18587-9. |
| Nakade et al., Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun. Nov. 20, 2014;5:5560. doi: 10.1038/ncomms6560. |
| Nakamura et al., Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res. Jan. 1, 2000;28(1):292. doi: 10.1093/nar/28.1.292. |
| Naorem et al., DGR mutagenic transposition occurs via hypermutagenic reverse transcription primed by nicked template RNA. Proc Natl Acad Sci U S A. Nov. 21, 2017;114(47):E10187-E10195. doi: 10.1073/pnas. 1715952114. Epub Nov. 6, 2017. |
| Nern et al., Multiple new site-specific recombinases for use in manipulating animal genomes. Proc Natl Acad Sci U S A. Aug. 23, 2011;108(34):14198-203. doi: 10.1073/pnas.1111704108. Epub Aug. 9, 2011. |
| Nguyen et al., Evolutionary drivers of thermoadaptation in enzyme catalysis. Science. Jan. 20, 2017;355(6322):289-294. doi: 10.1126/science.aah3717. Epub Dec. 22, 2016. |
| Nguyen et al., IQ-TREE: a fast and effective stochastic algorithm for estimating maximumlikelihood phylogenies. Mol Biol Evol. Jan. 2015;32(1):268-74. doi: 10.1093/molbev/msu300. Epub Nov. 3, 2014. |
| Nishimasu et al., Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science. Sep. 21, 2018;361(6408):1259-1262. doi: 10.1126/science.aas9129. Epub Aug. 30, 2018. |
| Nottingham et al., RNA-seq of human reference RNA samples using a thermostable group II intron reverse transcriptase. RNA. Apr. 2016;22(4):597-613. doi: 10.1261/ma.055558.115. Epub Jan. 29, 2016. |
| Nowak et al., Structural analysis of monomeric retroviral reverse transcriptase in complex with an RNA/DNA hybrid. Nucleic Acids Res. Apr. 1, 2013;41(6):3874-87. doi: 10.1093/nar/gkt053. Epub Feb. 4, 2013. |
| Numrych et al., A comparison of the effects of single-base and triple-base changes in the integrase arm-type binding sites on the site-specific recombination of bacteriophage lambda. Nucleic Acids Res. Jul. 11, 1990;18(13):3953-9. doi: 10.1093/nar/18.13.3953. |
| Nyerges et al., A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc Natl Acad Sci U S A. Mar. 1, 2016;113(9):2502-7. doi: 10.1073/pnas.1520040113. Epub Feb. 16, 2016. |
| Oakes et al., CRISPR-Cas9 Circular Permutants as Programmable Scaffolds for Genome Modification. Cell. Jan. 10, 2019; 176(1-2):254-267.e16. doi: 10.1016/j.cell.2018.11.052. |
| Odsbu et al., Specific N-terminal interactions of the Escherichia coli SeqA protein are required to form multimers that restrain negative supercoils and form foci. Genes Cells. Nov. 2005;10(11):1039-49. |
| Oeemig et al., Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification. FEBS Lett. May 6, 2009;583(9):1451-6. |
| Oh et al., Positional cloning of a gene for Hermansky-Pudlak syndrome, a disorder of cytoplasmic organelles. Nat Genet. Nov. 1996;14(3):300-6. doi: 10.1038/ng1196-300. |
| O'Maille et al., Structure-based combinatorial protein engineering (SCOPE). J Mol Biol. Aug. 23, 2002;321(4):677-91. |
| Orlando et al., Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res. Aug. 2010;38(15):e152. doi: 10.1093/nar/gkq512. Epub Jun. 8, 2010. |
| Orthwein et al., A mechanism for the suppression of homologous recombination in G1 cells. Nature. Dec. 17, 2015;528(7582):422-6. doi: 10.1038/nature16142. Epub Dec. 9, 2015. |
| Ostermeier et al., A combinatorial approach to hybrid enzymes independent of DNA homology. Nat Biotechnol. Dec. 1999;17(12):1205-9. |
| Otto et al., The probability of fixation in populations of changing size. Genetics. Jun. 1997;146(2):723-33. |
| Paige et al., RNA mimics of green fluorescent protein. Science. Jul. 29, 2011;333(6042):642-6. doi: 10.1126/science.1207339. |
| Paquet et al., Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. May 5, 2016;533(7601):125-9. doi: 10.1038/nature17664. Epub Apr. 27, 2016. |
| Park et al., Digenome-seq web tool for profiling CRISPR specificity. Nat Methods. May 30, 2017;14(6):548-549. doi: 10.1038/nmeth.4262. |
| Park et al., Highly efficient editing of the ?-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Res. Sep. 5, 2019;47(15):7955-7972. doi: 10.1093/nar/gkz475. |
| Park et al., Sendai virus, an RNA virus with no risk of genomic integration, delivers CRISPR/Cas9 for efficient gene editing. Mol Ther Methods Clin Dev. Aug. 24, 2016;3:16057. doi: 10.1038/mtm.2016.57. |
| Patel et al., Flap endonucleases pass 5′-flaps through a flexible arch using a disorder-thread-order mechanism to confer specificity for free 5′-ends. Nucleic Acids Res. May 2012;40(10):4507-19. doi: 10.1093/nar/gks051. Epub Feb. 8, 2012. |
| Pawson et al., Protein phosphorylation in signaling—50 years and counting. Trends Biochem Sci. Jun. 2005;30(6):286-90. doi: 10.1016/j.tibs.2005.04.013. |
| Pellenz et al., New human chromosomal safe harbor sites for genome engineering with CRISPR/Cas9, TAL effector and homing endonucleases. Aug. 20, 2018. bioRxiv doi: https://doi.org/10.1101/396390. |
| Perach et al., Catalytic features of the recombinant reverse transcriptase of bovine leukemia virus expressed in bacteria. Virology. Jun. 20, 1999;259(1):176-89. doi: 10.1006/viro.1999.9761. |
| Perler et al., Protein splicing elements: inteins and exteins—a definition of terms and recommended nomenclature. Nucleic Acids Res. Apr. 11, 1994;22(7):1125-7. doi: 10.1093/nar/22.7.1125. |
| Perler, InBase, the New England Biolabs Intein Database. Nucleic Acids Res. Jan. 1, 1999;27(1):346-7. doi: 10.1093/nar/27.1.346. |
| Perler, Protein splicing of inteins and hedgehog autoproteolysis: structure, function, and evolution. Cell. Jan. 9, 1998;92(1):1-4. doi: 10.1016/s0092-8674(00)80892-2. |
| Petersen-Mahrt et al., AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature. Jul. 4, 2002;418(6893):99-103. |
| Peyroties et al., Oligodeoxynucleoside phosphoramidates (P-NH2): synthesis and thermal stability of duplexes with DNA and RNA targets. Nucleic Acids Res. May 15, 1996;24(10):1841-8. |
| Pfeiffer et al., Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis. Jul. 2000;15(4):289-302. doi: 10.1093/mutage/15.4.289. |
| Pickart et al., Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta. Nov. 29, 2004;1695(1-3):55-72. doi: 10.1016/j.bbamcr.2004.09.019. |
| Pinkert et al., An albumin enhancer located 10 kb upstream functions along with its promoter to direct efficient, liver-specific expression in transgenic mice. Genes Dev. May 1987;1(3):268-76. doi: 10.1101/gad.1.3.268. |
| Pirakitikulr et al., PCRless library mutagenesis via oligonucleotide recombination in yeast. Protein Sci. Dec. 2010;19(12):2336-46. doi: 10.1002/pro.513. |
| Posnick et al., Imbalanced base excision repair increases spontaneous mutation and alkylation sensitivity in Escherichia coli. J Bacteriol. Nov. 1999;181(21):6763-71. |
| Pu et al., Evolution of a split RNA polymerase as a versatile biosensor platform. Nat Chem Biol. Apr. 2017;13(4):432-438. doi: 10.1038/nchembio.2299. Epub Feb. 13, 2017. |
| Qu et al., Global mapping of binding sites for phic31 integrase in transgenic maden-darby bovine kidney cells using ChIP-seq. Hereditas. Jan. 14, 2019;156:3. doi: 10.1186/s41065-018-0079-z. |
| Radany et al., Increased spontaneous mutation frequency in human cells expressing the phage PBS2-encoded inhibitor of uracil-DNA glycosylase. Mutat Res. Sep. 15, 2000;461(1):41-58. doi: 10.1016/s0921-8777(00)00040-9. |
| Ranzau et al., Genome, Epigenome, and Transcriptome Editing via Chemical Modification of Nucleobases in Living Cells. Biochemistry. Feb. 5, 2019;58(5):330-335. doi: 10.1021/acs.biochem.8b00958. Epub Dec. 12, 2018. |
| Rasila et al., Critical evaluation of random mutagenesis by error-prone polymerase chain reaction protocols, Escherichia coli mutator strain, and hydroxylamine treatment. Anal Biochem. May 1, 2009;388(1):71-80. doi: 10.1016/j.ab.2009.02.008. Epub Feb. 10, 2009. |
| Raskin et al., Substitution of a single bacteriophage T3 residue in bacteriophage T7 RNA polymerase at position 748 results in a switch in promoter specificity. J Mol Biol. Nov. 20, 1992;228(2):506-15. |
| Raskin et al., T7 RNA polymerase mutants with altered promoter specificities. Proc Natl Acad Sci U S A. Apr. 15, 1993;90(8):3147-51. |
| Rauch et al., Programmable RNA Binding Proteins for Imaging and Therapeutics. Biochemistry. Jan. 30, 2018;57(4):363-364. doi: 10.1021/acs.biochem.7b01101. Epub Nov. 17, 2017. |
| Ray et al., A compendium of RNA-binding motifs for decoding gene regulation. Nature. Jul. 11, 2013;499(7457):172-7. doi: 10.1038/nature12311. |
| Rebar et al., Phage display methods for selecting zinc finger proteins with novel DNA-binding specificities. Methods Enzymol. 1996;267:129-49. |
| Rees et al., Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci Adv. May 8, 2019;5(5):eaax5717. doi: 10.1126/sciadv.aax5717. |
| Rees et al., Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. Dec. 2018;19(12):770-788. doi: 10.1038/s41576-018-0059-1. |
| Rees et al., Development of hRad51-Cas9 nickase fusions that mediate HDR without doublestranded breaks. Nat Commun. May 17, 2019;10(1):2212. doi: 10.1038/s41467-019-09983-4. |
| Reyon et al., FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol. May 2012;30(5):460-5. doi: 10.1038/nbt.2170. |
| Ribeiro et al., Protein Engineering Strategies to Expand CRISPR-Cas9 Applications. Int J Genomics. Aug. 2, 2018;2018:1652567. doi: 10.1155/2018/1652567. |
| Ringrose et al., The Kw recombinase, an integrase from Kluyveromyces waltii. Eur J Biochem. Sep. 15, 1997;248(3):903-12. doi: 10.1111/j.1432-1033.1997.00903.x. |
| Roth et al., Purification and characterization of murine retroviral reverse transcriptase expressed in Escherichia coli. J Biol Chem. Aug. 5, 1985;260(16):9326-35. |
| Rouet et al., Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A. Jun. 21, 1994;91(13):6064-8. doi: 10.1073/pnas.91.13.6064. |
| Rouet et al., Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol. Dec. 1994;14(12):8096-106. doi: 10.1128/mcb.14.12.8096. |
| Rouet et al., Receptor-Mediated Delivery of CRISPR-Cas9 Endonuclease for Cell-Type-Specific Gene Editing. J Am Chem Soc. May 30, 2018;140(21):6596-6603. doi: 10.1021/jacs.8b01551. Epub May 18, 2018. |
| Roundtree et al.,YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife. Oct. 6, 2017;6:e31311. doi: 10.7554/eLife.31311. |
| Rowland et al., Sin recombinase from Staphylococcus aureus: synaptic complex architecture and transposon targeting. Mol Microbiol. May 2002;44(3):607-19. doi: 10.1046/j.1365-2958.2002.02897.x. |
| Rubio et al., An adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U deamination of DNA. Proc Natl Acad Sci U S A. May 8, 2007;104(19):7821-6. doi: 10.1073/pnas.0702394104. Epub May 1, 2007. PMID: 17483465; PMCID: PMC1876531. |
| Rüfer et al., Non-contact positions impose site selectivity on Cre recombinase. Nucleic Acids Res. Jul. 1, 2002;30(13):2764-71. doi: 10.1093/nar/gkf399. |
| Rutherford et al., Attachment site recognition and regulation of directionality by the serine integrases. Nucleic Acids Res. Sep. 2013;41(17):8341-56. doi: 10.1093/nar/gkt580. Epub Jul. 2, 2013. |
| Sakuma et al., MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc Jan. 2016;11(1):118-33. doi: 10.1038/nprot.2015.140. Epub Dec. 17, 2015. |
| Samulski et al., Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol. Sep. 1989;63(9):3822-8. doi: 10.1128/JVI.63.9.3822-3828.1989. |
| Santoro et al., Directed evolution of the site specificity of Cre recombinase. Proc Natl Acad Sci U S A. Apr. 2, 2002;99(7):4185-90. Epub Mar. 19, 2002. |
| Saparbaev et al., Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases. Proc Natl Acad Sci U S A. Jun. 21, 1994;91(13):5873-7. doi: 10.1073/pnas.91.13.5873. |
| Satomura et al., Precise genome-wide base editing by the CRISPR Nickase system in yeast. Sci Rep. May 18, 2017;7(1):2095. doi: 10.1038/s41598-017-02013-7. |
| Sauer et al., DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res. Nov. 18, 2004;32(20):6086-95. doi: 10.1093/nar/gkh941. |
| Schaaper et al., Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J Biol Chem. Nov. 15, 1993;268(32):23762-5. |
| Schaaper et al., Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: the nature of in vivo DNA replication errors. Proc Natl Acad Sci U S A. Sep. 1987;84(17):6220-4. |
| Schaefer et al., Understanding RNA modifications: the promises and technological bottlenecks of the ‘epitranscriptome’. Open Biol. May 2017;7(5):170077. doi: 10.1098/rsob.170077. |
| Schechner et al., Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods. Jul. 2015;12(7):664-70. doi: 10.1038/nmeth.3433. Epub Jun. 1, 2015. |
| Schek et al., Definition of the upstream efficiency element of the simian virus 40 late polyadenylation signal by using in vitro analyses. Mol Cell Biol. Dec. 1992;12(12):5386-93. doi: 10.1128/mcb.12.12.5386. |
| Schenk et al., MPDU1 mutations underlie a novel human congenital disorder of glycosylation, designated type If. J Clin Invest. Dec. 2001;108(11):1687-95. doi: 10.1172/JCI13419. |
| Schmitz et al., Behavioral abnormalities in prion protein knockout mice and the potential relevance of PrP(C) for the cytoskeleton. Prion. 2014;8(6):381-6. doi: 10.4161/19336896.2014.983746. |
| Schöller et al., Interactions, localization, and phosphorylation of the m6A generating METTL3-METTL14-WTAP complex. RNA. Apr. 2018;24(4):499-512. doi: 10.1261/ma.064063.117. Epub Jan. 18, 2018. |
| Schultz et al., Oligo-2′-fluoro-2′-deoxynucleotide N3′—>P5′ phosphoramidates: synthesis and properties. Nucleic Acids Res. Aug. 1, 1996;24(15):2966-73. |
| Scott et al., Production of cyclic peptides and proteins in vivo. Proc Natl Acad Sci U S A. Nov. 23, 1999;96(24):13638-43. doi: 10.1073/pnas.96.24.13638. |
| Sebastían-Martín et al., Transcriptional inaccuracy threshold attenuates differences in RNA-dependent DNA synthesis fidelity between retroviral reverse transcriptases. Sci Rep. Jan. 12, 2018;8(1):627. doi: 10.1038/s41598-017-18974-8. |
| Serrano-Heras et al., Protein p56 from the Bacillus subtilis phage phi29 inhibits DNA-binding ability of uracil-DNA glycosylase. Nucleic Acids Res. 2007;35(16):5393-401. Epub Aug. 13, 2007. |
| Severinov et al., Expressed protein ligation, a novel method for studying protein-protein interactions in transcription. J Biol Chem. Jun. 26, 1998;273(26):16205-9. doi: 10.1074/jbc.273.26.16205. |
| Shah et al., Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol. May 2013;10(5):891-9. doi: 10.4161/rna.23764. Epub Feb. 12, 2013. |
| Shalem et al., High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet. May 2015;16(5):299-311. doi: 10.1038/nrg3899. Epub Apr. 9, 2015. |
| Sharer et al., The ARF-like 2 (ARL2)-binding protein, BART. Purification, cloning, and initial characterization. J Biol Chem. Sep. 24, 1999;274(39):27553-61. doi: 10.1074/jbc.274.39.27553. |
| Sharon et al., Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing. Cell. Oct. 4, 2018;175(2):544-557.e16. doi: 10.1016/j.cell.2018.08.057. Epub Sep. 20, 2018. |
| Shaw et al., Implications of human genome architecture for rearrangement-based disorders: the genomic basis of disease. Hum Mol Genet. Apr. 1, 2004 ;13 Spec No. 1:R57-64. doi: 10.1093/hmg/ddh073. Epub Feb. 5, 2004. |
| Shen et al., Predictable and precise template-free CRISPR editing of pathogenic variants. Nature. Nov. 2018;563(7733):646-651. doi: 10.1038/s41586-018-0686-x. Epub Nov. 7, 2018. Erratum in: Nature. Mar. 2019;567(7746):E1-E2. |
| Sherwood et al., Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat Biotechnol. Feb. 2014;32(2):171-178. doi: 10.1038/nbt.2798. Epub Jan. 19, 2014. |
| Shi et al., Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nat Struct Mol Biol. Feb. 2017;24(2):131-139. doi: 10.1038/nsmb.3344. Epub Dec. 19, 2016. |
| Shi et al., YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. Mar. 2017;27(3):315-328. doi: 10.1038/cr.2017.15. Epub Jan. 20, 2017. |
| Shindo et al., A Comparison of Two Single-Stranded DNA Binding Models by Mutational Analysis of APOBEC3G. Biology (Basel). Aug. 2, 2012;1(2):260-76. doi: 10.3390/biology1020260. |
| Shmakov et al., Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol. Mar. 2017;15(3):169-182. doi: 10.1038/nrmicro.2016.184. Epub Jan. 23, 2017. |
| Shultz et al., A genome-wide analysis of FRT-like sequences in the human genome. PLoS One. Mar. 23, 2011;6(3):e18077. doi: 10.1371/journal.pone.0018077. |
| Silas et al., Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science. Feb. 26, 2016;351(6276):aad4234. doi: 10.1126/science.aad4234. |
| Silva et al., Selective disruption of the DNA polymerase III α-β complex by the umuD gene products. Nucleic Acids Res. Jul. 2012;40(12):5511-22. doi: 10.1093/nar/gks229. Epub Mar. 9, 2012. |
| Sivalingam et al., Biosafety assessment of site-directed transgene integration in human umbilical cord-lining cells. Mol Ther. Jul. 2010;18(7):1346-56. doi: 10.1038/mt.2010.61. Epub Apr. 27, 2010. |
| Sledz et al., Structural insights into the molecular mechanism of the m(6)A writer complex. Elife. Sep. 14, 2016;5:e18434. doi: 10.7554/eLife.18434. |
| Smargon et al., Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Mol Cell. Feb. 16, 2017;65(4):618-630.e7. doi: 10.1016/j.molcel.2016.12.023. Epub Jan. 5, 2017. |
| Smith et al., Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol. Dec. 1983;3(12):2156-65. doi: 10.1128/mcb.3.12.2156. |
| Smith, Phage-encoded Serine Integrases and Other Large Serine Recombinases. Microbiol Spectr. Aug. 2015;3(4). doi: 10.1128/microbiolspec.MDNA3-0059-2014. |
| Southworth et al., Control of protein splicing by intein fragment reassembly. EMBO J. Feb. 16, 1998;17(4):918-26. doi: 10.1093/emboj/17.4.918. |
| Southworth et al., Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. Biotechniques. Jul. 1999;27(1):110-4, 116, 118-20. doi: 10.2144/99271st04. |
| Spencer et al., A general strategy for producing conditional alleles of Src-like tyrosine kinases. Proc Natl Acad Sci U S A. Oct. 10, 1995;92(21):9805-9. doi: 10.1073/pnas.92.21.9805. |
| Spencer et al., Functional analysis of Fas signaling in vivo using synthetic inducers of dimerization. CurrBiol. Jul. 1, 1996;6(7):839-47. doi: 10.1016/s0960-9822(02)00607-3. |
| Srivastava et al., An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell. Dec. 21, 2012;151(7):1474-87. doi: 10.1016Zj.cell.2012.11.054. |
| Stamos et al., Structure of a Thermostable Group II Intron Reverse Transcriptase with Template-Primer and Its Functional and Evolutionary Implications. Mol Cell. Dec. 7, 2017;68(5):926-939.e4. doi: 10.1016/j.molcel.2017.10.024. Epub Nov. 16, 2017. |
| Steele et al., The prion protein knockout mouse: a phenotype under challenge. Prion. Apr.-Jun. 2007;1(2):83-93. doi: 10.4161/pri.1.2.4346. Epub Apr. 25, 2007. |
| Sterne-Weiler et al., Exon identity crisis: disease-causing mutations that disrupt the splicing code. Genome Biol. Jan. 23, 2014;15(1):201. doi: 10.1186/gb4150. |
| Stevens et al., A promiscuous split intein with expanded protein engineering applications. Proc Natl Acad Sci U S A. Aug. 8, 2017; 114(32):8538-8543. doi: 10.1073/pnas.1701083114. Epub Jul. 24, 2017. |
| Stockwell et al., Probing the role of homomeric and heteromeric receptor interactions in TGF-beta signaling using small molecule dimerizers. Curr Biol. Jun. 18, 1998;8(13):761-70. doi: 10.1016/s0960-9822(98)70299-4. |
| Strecker et al., RNA-guided DNA insertion with CRISPR-associated transposases. Science. Jul. 5, 2019;365(6448):48-53. doi: 10.1126/science.aax9181. Epub Jun. 6, 2019. |
| Strutt et al., RNA-dependent RNA targeting by CRISPR-Cas9. Elife. Jan. 5, 2018;7:e32724. doi: 10.7554/eLife.32724. |
| Su et al., Human DNA polymerase ? has reverse transcriptase activity in cellular environments. J Biol Chem. Apr. 12, 2019;294(15):6073-6081. doi: 10.1074/jbc.RA119.007925. Epub Mar. 6, 2019. |
| Sun et al., The CRISPR/Cas9 system for gene editing and its potential application in pain research. Transl Periop & Pain Med. Aug. 3, 2016;1(3):22-33. |
| Surun et al., High Efficiency Gene Correction in Hematopoietic Cells by Donor-Template-Free CRISPR/Cas9 Genome Editing. Mol Ther Nucleic Acids. Mar. 2, 2018;10:1-8. doi: 10.1016/j.omtn.2017.11.001. Epub Nov. 10, 2017. |
| Suzuki et al., In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. Dec. 1, 2016;540(7631):144-149. doi: 10.1038/nature20565. Epub Nov. 16, 2016. |
| Suzuki et al., VCre/VloxP and SCre/SloxP: new site-specific recombination systems for genome engineering. Nucleic Acids Res. Apr. 2011;39(8):e49. doi: 10.1093/nar/gkq1280. Epub Feb. 1, 2011. |
| Tabebordbar et al., In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. Jan. 22, 2016;351(6271):407-411. doi: 10.1126/science.aad5177. Epub Dec. 31, 2015. |
| Tahara et al., Potent and Selective Inhibitors of 8-Oxoguanine DNA Glycosylase. J Am Chem Soc. Feb. 14, 2018;140(6):2105-2114. doi: 10.1021/jacs.7b09316. Epub Feb. 5, 2018. |
| Tajiri et al., Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli. Mutat Res. May 1995;336(3):257-67. doi: 10.1016/0921-8777(94)00062-b. |
| Tambunan et al., Vaccine Design for H5N1 Based on B- and T-cell Epitope Predictions. Bioinform Biol Insights. Apr. 28, 2016;10:27-35. doi: 10.4137/BBI.S38378. |
| Tang et al., Evaluation of Bioinformatic Programmes for the Analysis of Variants within Splice Site Consensus Regions. Adv Bioinformatics. 2016;2016:5614058. doi: 10.1155/2016/5614058. Epub May 24, 2016. |
| Tang et al., Rewritable multi-event analog recording in bacterial and mammalian cells. Science. Apr. 13, 2018;360(6385):eaap8992. doi: 10.1126/science.aap8992. Epub Feb. 15, 2018. |
| Tassabehji, Williams-Beuren syndrome: a challenge for genotype-phenotype correlations. Hum Mol Genet. Oct. 15, 2003;12 Spec No. 2:R229-37. doi: 10.1093/hmg/ddg299. Epub Sep. 2, 2003. |
| Taube et al., Reverse transcriptase of mouse mammary tumour virus: expression in bacteria, purification and biochemical characterization. Biochem J. Feb. 1, 1998;329 ( Pt 3)(Pt 3):579-87. doi: 10.1042/bj3290579. Erratum in: Biochem J Jun. 15, 1998;332(Pt 3):808. |
| Tee et al., Polishing the craft of genetic diversity creation in directed evolution. Biotechnol Adv. Dec. 2013;31(8):1707-21. doi: 10.1016/j.biotechadv.2013.08.021. Epub Sep. 6, 2013. |
| Telenti et al., The Mycobacterium xenopi GyrA protein splicing element: characterization of a minimal intein. J Bacteriol. Oct. 1997;179(20):6378-82. doi: 10.1128/jb.179.20.6378-6382.1997. |
| Telesnitsky et al., RNase H domain mutations affect the interaction between Moloney murine leukemia virus reverse transcriptase and its primer-template. Proc Natl Acad Sci U S A. Feb. 15, 1993;90(4): 1276-80. doi: 10.1073/pnas.90.4.1276. |
| Thuronyi et al., Continuous evolution of base editors with expanded target compatibility and improved activity. Nat Biotechnol. Sep. 2019;37(9):1070-1079. doi: 10.1038/s41587-019-0193-0. Epub Jul. 22, 2019. |
| Thyagarajan et al., Creation of engineered human embryonic stem cell lines using phiC31 integrase. Stem Cells. Jan. 2008;26(1):119-26. doi: 10.1634/stemcells.2007-0283. Epub Oct. 25, 2007. |
| Tinland et al., The T-DNA-linked VirD2 protein contains two distinct functional nuclear localization signals. Proc Natl Acad Sci U S A. Aug. 15, 1992;89(16):7442-6. doi: 10.1073/pnas.89.16.7442. |
| Tom et al., Mechanism whereby proliferating cell nuclear antigen stimulates flap endonuclease 1. J Biol Chem. Apr. 7, 2000;275(14):10498-505. doi: 10.1074/jbc.275.14.10498. |
| Toor et al., Crystal structure of a self-spliced group II intron. Science. Apr. 4, 2008;320(5872):77-82. doi: 10.1126/science. 1153803. |
| Torres et al., Non-integrative lentivirus drives high-frequency cre-mediated cassette exchange in human cells. PLoS One. 2011;6(5):e19794. doi: 10.1371/journal.pone.0019794. Epub May 23, 2011. |
| Townsend et al., Role of HFE in iron metabolism, hereditary haemochromatosis, anaemia of chronic disease, and secondary iron overload. Lancet. Mar. 2, 2002;359(9308):786-90. doi: 10.1016/S0140-6736(02)07885-6. Erratum in: Lancet Jul. 13, 2002;360(9327):176. |
| Tracewell et al., Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr Opin Chem Biol. Feb. 2009;13(1):3-9. doi: 10.1016/j.cbpa.2009.01.017. Epub Feb. 25, 2009. |
| Tratschin et al., A human parvovirus, adeno-associated virus, as a eucaryotic vector: transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase. Mol Cell Biol. Oct. 1984;4(10):2072-81. doi: 10.1128/mcb.4.10.2072. |
| Tratschin et al., Adeno-associated virus vector for high-frequency integration, expression, and rescue of genes in mammalian cells. Mol Cell Biol. Nov. 1985;5(11):3251-60. doi: 10.1128/mcb.5.11.3251. |
| Traxler et al., A genome-editing strategy to treat ?-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med. Sep. 2016;22(9):987-90. doi: 10.1038/nm.4170. Epub Aug. 15, 2016. |
| Trudeau et al., On the Potential Origins of the High Stability of Reconstructed Ancestral Proteins. Mol Biol Evol. Oct. 2016;33(10):2633-41. doi: 10.1093/molbev/msw138. Epub Jul. 12, 2016. |
| Tsai et al., CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat Methods. Jun. 2017;14(6):607-614. doi: 10.1038/nmeth.4278. Epub May 1, 2017. |
| Tsang et al., Specialization of the DNA-cleaving activity of a group I ribozyme through in vitro evolution. J Mol Biol. Sep. 13, 1996;262(1):31-42. doi: 10.1006/jmbi.1996.0496. |
| Tsutakawa et al., Human flap endonuclease structures, DNA double-base flipping, and a unified understanding of the FEN1 superfamily. Cell. Apr. 15, 2011;145(2):198-211. doi: 10.1016/j.cell.2011.03.004. |
| Tycko et al., Pairwise library screen systematically interrogates Staphylococcus aureus Cas9 specificity in human cells. bioRxiv. doi: https://doi.org/10.1101/269399 Posted Feb. 22, 2018. |
| UniProt Consortium, UniProt: the universal protein knowledgebase. Nucleic Acids Res. Mar. 16, 2018;46(5):2699. doi: 10.1093/nar/gky092. |
| UniProTKB Submission; Accession No. F0NH53. May 3, 2011. 4 pages. |
| UniProTKB Submission; Accession No. F0NN87. May 3, 2011. 4 pages. |
| UniProTKB Submission; Accession No. G3ECR1.2. No Author Listed., Aug. 12, 2020, 8 pages. |
| UniProTKB Submission; Accession No. P04264. No Author Listed., Apr. 7, 2021. 12 pages. |
| UniProTKB Submission; Accession No. T0D7A2. Oct. 16, 2013. 10 pages. |
| UniProTKB Submission; Accession No. U2UMQ6. No Author Listed., Apr. 7, 2021, 11 pages. |
| Urasaki et al., Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics. Oct. 2006;174(2):639-49. doi: 10.1534/genetics.106.060244. Epub Sep. 7, 2006. |
| Van Brunt et al., Molecular Farming: Transgenic Animals as Bioreactors. Biotechnology (N Y). 1988;6(10):1149-1154. doi: 10.1038/nbt1088-1149. |
| Van Overbeek et al., DNA Repair Profiling Reveals Nonrandom Outcomes at Cas9-Mediated Breaks. Mol Cell. Aug. 18, 2016;63(4):633-646. doi: 10.1016/j.molcel.2016.06.037. Epub Aug. 4, 2016. |
| Vik et al., Endonuclease V cleaves at inosines in RNA. Nat Commun. 2013;4:2271. doi: 10.1038/ncomms3271. |
| Voigt et al., Rational evolutionary design: the theory of in vitro protein evolution. Adv Protein Chem. 2000;55:79-160. |
| Wang et al., AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance limiting DNA deaminase activity. Nat Struct Mol Biol. Jul. 2009;16(7):769-76. doi: 10.1038/nsmb.1623. Epub Jun. 21, 2009. |
| Wang et al., Continuous directed evolutions of proteins with improved soluble expression. Nature Chemical Biology. Nat Publishing Group. Aug. 20, 2018; 14(10):972-980. |
| Wang et al., Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci U S A. Nov. 30, 2004;101(48):16745-9. Epub Nov. 19, 2004. |
| Wang et al., N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. Jun. 4, 2015;161(6):1388-99. doi: 10.1016/j.cell.2015.05.014. |
| Wang et al., Programming cells by multiplex genome engineering and accelerated evolution. Nature. Aug. 13, 2009;460(7257):894-8. Epub Jul. 26, 2009. |
| Wang et al., Reading RNA methylation codes through methyl-specific binding proteins. RNA Biol. 2014;11(6):669-72. doi: 10.4161/rna.28829. Epub Apr. 24, 2014. |
| Wang et al., Staphylococcus aureus protein SAUGI acts as a uracil-DNA glycosylase inhibitor. Nucleic Acids Res. Jan. 2014;42(2):1354-64. doi: 10.1093/nar/gkt964. Epub Oct. 22, 2013. |
| Watowich, The erythropoietin receptor: molecular structure and hematopoietic signaling pathways. J Investig Med. Oct. 2011;59(7):1067-72. doi: 10.2310/JIM.0b013e31820fb28c. |
| Wharton et al., A new-specificity mutant of 434 repressor that defines an amino acid-base pair contact. Nature. Apr. 30-May 6, 1987;326(6116):888-91. |
| Wharton et al., Changing the binding specificity of a repressor by redesigning an alpha-helix. Nature. Aug. 15-21, 1985;316(6029):601-5. |
| Wheeler et al., The thermostability and specificity of ancient proteins. Curr Opin Struct Biol. Jun. 2016;38:37-43. doi: 10.1016/j.sbi.2016.05.015. Epub Jun. 9, 2016. |
| Wienert et al., KLF1 drives the expression of fetal hemoglobin in British HPFH. Blood. Aug. 10, 2017;130(6):803-807. doi: 10.1182/blood-2017-02-767400. Epub Jun. 28, 2017. |
| Williams et al., Assessing the accuracy of ancestral protein reconstruction methods. PLoS Comput Biol. Jun. 23, 2006;2(6):e69. doi: 10.1371/journal.pcbi.0020069. Epub Jun. 23, 2006. |
| Wilson et al., Formation of infectious hybrid virions with gibbon ape leukemia virus and human T-cell leukemia virus retroviral envelope glycoproteins and the gag and pol proteins of Moloney murine leukemia virus. J Virol. May 1989;63(5):2374-8. doi: 10.1128/JVI.63.5.2374-2378.1989. |
| Wilson et al., Kinase dynamics. Using ancient protein kinases to unravel a modern cancer drug's mechanism. Science. Feb. 20, 2015;347(6224):882-6. doi: 10.1126/science.aaa1823. |
| Winoto et al., A novel, inducible and T cell-specific enhancer located at the 3′ end of the T cell receptor alpha locus. EMBO J. Mar. 1989;8(3):729-33. |
| Wong et al., A statistical analysis of random mutagenesis methods used for directed protein evolution. J Mol Biol. Jan. 27, 2006;355(4):858-71. Epub Nov. 17, 2005. |
| Wong et al., The Diversity Challenge in Directed Protein Evolution. Comb Chem High Throughput Screen. May 2006;9(4):271-88. |
| Wright et al., Continuous in vitro evolution of catalytic function. Science. Apr. 25, 1997;276(5312):614-7. |
| Wright et al., Rational design of a split-Cas9 enzyme complex. Proc Natl Acad Sci U S A. Mar. 10, 2015;112(10):2984-9. doi: 10.1073/pnas.1501698112. Epub Feb. 23, 2015. |
| Wu et al., Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A. Aug. 4, 1998;95(16):9226-31. doi: 10.1073/pnas.95.16.9226. |
| Xiang et al., RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature. Mar. 23, 2017;543(7646):573-576. doi: 10.1038/nature21671. Epub Mar. 15, 2017. |
| Xiao et al., Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing. Mol Cell. Feb. 18, 2016;61(4):507-519. doi: 10.1016/j.molcel.2016.01.012. Epub Feb. 11, 2016. |
| Xiong et al., Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. Oct. 1990;9(10):3353-62. |
| Xu et al., Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc Natl Acad Sci U S A. Jan. 19, 1999;96(2):388-93. doi: 10.1073/pnas.96.2.388. |
| Xu et al., Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome. BMC Biotechnol. Oct. 20, 2013;13:87. doi: 10.1186/1472-6750-13-87. |
| Xu et al., Protein splicing: an analysis of the branched intermediate and its resolution by succinimide formation. EMBO J. Dec. 1, 1994;13(23):5517-22. |
| Xu et al., Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation. J Biol Chem. Jun. 20, 2014;289(25):17299-311. doi: 10.1074/jbc.M114.550350. Epub Apr. 28, 2014. |
| Xu et al., The mechanism of protein splicing and its modulation by mutation. EMBO J. Oct. 1, 1996;15(19):5146-53. |
| Yamamoto et al., The ons and offs of inducible transgenic technology: a review. Neurobiol Dis. Dec. 2001;8(6):923-32. |
| Yan et al., Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein. Mol Cell. Apr. 19, 2018;70(2):327-339.e5. doi: 10.1016/j.molcel.2018.02.028. Epub Mar. 15, 2018. |
| Yang et al., Construction of an integration-proficient vector based on the site-specific recombination mechanism of enterococcal temperate phage phiFC1. J Bacteriol. Apr. 2002;184(7):1859-64. doi: 10.1128/jb.184.7.1859-1864.2002. |
| Yang et al., Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein Cell. Sep. 2018;9(9):814-819. doi: 10.1007/s13238-018-0568-x. |
| Yang et al., One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. Sep. 12, 2013;154(6):1370-9. doi: 10.1016/j.cell.2013.08.022. Epub Aug. 29, 2013. |
| Yang et al., Permanent genetic memory with >1-byte capacity. Nat Methods. Dec. 2014;11(12):1261-6. doi: 10.1038/nmeth.3147. Epub Oct. 26, 2014. |
| Yang et al., Small-molecule control of insulin and PDGF receptor signaling and the role of membrane attachment. CurrBiol. Jan. 1, 1998;8(1):11-8. doi: 10.1016/s0960-9822(98)70015-6. |
| Yang, PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. Aug. 2007;24(8):1586-91. doi: 10.1093/molbev/msm088. Epub May 4, 2007. |
| Yang, Phylogenetic Analysis by Maximum Likelihood (PAML). //abacus.gene.ucl.ac.uk/software/paml.html Last accessed Apr. 28, 2021. |
| Yasui et al., Miscoding Properties of 2′-Deoxyinosine, a Nitric Oxide-Derived DNA Adduct, during Translesion Synthesis Catalyzed by Human DNA Polymerases. J Molec Biol. Apr. 4, 2008;377(4):1015-23. |
| Yasukawa et al., Characterization of Moloney murine leukaemia virus/avian myeloblastosis virus chimeric reverse transcriptases. J Biochem. Mar. 2009;145(3):315-24. doi: 10.1093/jb/mvn166. Epub Dec. 6, 2008. |
| Yu et al., Circular permutation: a different way to engineer enzyme structure and function. Trends Biotechnol. Jan. 2011;29(1):18-25. doi: 10.1016/j.tibtech.2010.10.004. Epub Nov. 17, 2010. |
| Yu et al., Liposome-mediated in vivo E1 A gene transfer suppressed dissemination of ovarian cancer cells that overexpress HER-2/neu. Oncogene. Oct. 5, 1995;11(7):1383-8. |
| Yu et al., Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell. Feb. 5, 2015;16(2): 142-7. doi: 10.1016/j.stem.2015.01.003. |
| Yu et al., Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acids Res. Sep. 2010;38(17):5706-17. doi: 10.1093/nar/gkq379. Epub May 11, 2010. |
| Zakas et al., Enhancing the pharmaceutical properties of protein drugs by ancestral sequence reconstruction. Nat Biotechnol. Jan. 2017;35(1):35-37. doi: 10.1038/nbt.3677. Epub Sep. 26, 2016. |
| Zalatan et al., Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell. Jan. 15, 2015;160(1-2):339-50. doi: 10.1016/j.cell.2014.11.052. Epub Dec. 18, 2014. |
| Zettler et al., The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett. Mar. 4, 2009;583(5):909-14. doi: 10.1016/j.febslet.2009.02.003. Epub Feb. 10, 2009. |
| Zhang et al., Circular intronic long noncoding RNAs. Mol Cell. Sep. 26, 2013;51(6):792-806. doi: 10.1016/j.molcel.2013.08.017. Epub Sep. 12, 2013. |
| Zhang et al., Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet. 2009;10:451-81. doi: 10.1146/annurev.genom.9.081307.164217. |
| Zhang et al., II-Clamp-mediated cysteine conjugation. Nat Chem. Feb. 2016;8(2):120-8. doi: 10.1038/nchem.2413. Epub Dec. 21, 2015. |
| Zhao et al., An ultraprocessive, accurate reverse transcriptase encoded by a metazoan group II intron. RNA. Feb. 2018;24(2):183-195. doi: 10.1261/ma.063479.117. Epub Nov. 6, 2017. |
| Zhao et al., Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution. Nat Struct Mol Biol. Jun. 2016;23(6):558-65. doi: 10.1038/nsmb.3224. Epub May 2, 2016. |
| Zhao et al., Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. Jan. 2017;18(1):31-42. doi: 10.1038/nrm.2016.132. Epub Nov. 3, 2016. |
| Zheng et al., ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. Jan. 10, 2013;49(1):18-29. doi: 10.1016/j.molcel.2012.10.015. Epub Nov. 21, 2012. |
| Zheng et al., Highly efficient base editing in bacteria using a Cas9-cytidine deaminase fusion. CommunBiol. Apr. 19, 2018;1:32. doi: 10.1038/s42003-018-0035-5. |
| Zhou et al., Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature. Oct. 22, 2015;526(7574):591-4. doi: 10.1038/nature15377. Epub Oct. 12, 2015. |
| Zhou et al., Protective VI27 prion variant prevents prion disease by interrupting the formation of dimer and fibril from molecular dynamics simulations. Sci Rep. Feb. 24, 2016;6:21804. doi: 10.1038/srep21804. |
| Zimmerly et al., An Unexplored Diversity of Reverse Transcriptases in Bacteria. Microbiol Spectr. Apr. 2015;3(2):MDNA3-0058-2014. doi: 10.1128/microbiolspec.MDNA3-0058-2014. |
| Zlmmerly et al., Group II intron mobility occurs by target DNA-primed reverse transcription. Cell. Aug. 25, 1995;82(4):545-54. doi: 10.1016/0092-8674(95)90027-6. |
| Zufferey et al., Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol. Apr. 1999;73(4):2886-92. doi: 10.1128/JVI.73.4.2886-2892.1999. |
| Zuker et al., Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. Jan. 10, 1981;9(1):133-48. doi: 10.1093/nar/9.1.133. |
| Zuo et al., Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science. Apr. 19, 2019;364(6437):289-292. doi: 10.1126/science.aav9973. Epub Feb. 28, 2019. |
| Atkins et al., Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res. Sep. 6, 2016;44(15):7007-78. doi: 10.1093/nar/gkw530. Epub Jul. 19, 2016. |
| Autieri et al., IRT-1, a novel interferon-gamma-responsive transcript encoding a growth-suppressing basic leucine zipper protein. J Biol Chem. Jun. 12, 1998;273(24):14731-7. doi: 10.1074/jbc.273.24.14731. |
| Avidan et al., The processivity and fidelity of DNA synthesis exhibited by the reverse transcriptase of bovine leukemia virus. Eur J Biochem. Feb. 2002;269(3):859-67. doi: 10.1046/j.0014-2956.2001.02719.x. |
| Babacic et al., CRISPR-cas gene-editing as plausible treatment of neuromuscular and nucleotide-repeat-expansion diseases: a systematic review. PLoS One. Feb. 22, 2019;14(2):e0212198. doi: 10.1371/journal.pone.0212198. |
| Badran et al., Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature. May 5, 2016;533(7601):58-63. doi: 10.1038/nature17938. Epub Apr. 27, 2016. |
| Badran et al., Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat Commun. Oct. 7, 2015;6:8425. doi: 10.1038/ncomms9425. |
| Bae et al., Microhomology-based choice of Cas9 nuclease target sites. Nat Methods. Jul. 2014;11(7):705-6. doi: 10.1038/nmeth.3015. |
| Bagyinszky et al., Characterization of mutations in PRNP (prion) gene and their possible roles in neurodegenerative diseases. Neuropsychiatr Dis Treat. Aug. 14, 2018;14:2067-2085. doi: 10.2147/NDT.S165445. |
| Balakrishnan et al., Flap endonuclease 1. Annu Rev Biochem. 2013;82:119-38. doi: 10.1146/annurev-biochem-072511-122603. Epub Feb. 28, 2013. |
| Baranauskas et al., Generation and characterization of new highly thermostable and processive M-MuLV reverse transcriptase variants. Protein Eng Des Sel. Oct. 2012;25(10):657-68. doi: 10.1093/protein/gzs034. Epub Jun. 12, 2012. |
| Bartlett et al., Efficient expression of protein coding genes from the murine U1 small nuclear RNA promoters. Proc Natl Acad Sci U S A. Aug. 20, 1996;93(17):8852-7. doi: 10.1073/pnas.93.17.8852. |
| Bartosovic et al., N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucleic Acids Res. Nov. 2, 2017;45(19):11356-11370. doi: 10.1093/nar/gkx778. |
| Basturea et al., Substrate specificity and properties of the Escherichia coli 16S rRNA methyltransferase, RsmE. RNA. Nov. 2007;13(11):1969-76. doi: 10.1261/rna.700507. Epub Sep. 13, 2007. |
| Bebenek et al., Error-prone polymerization by HIV-1 reverse transcriptase. Contribution of template-primer misalignment, miscoding, and termination probability to mutational hot spots. J Biol Chem. May 15, 1993;268(14):10324-34. |
| Belshaw et al., Controlling programmed cell death with a cyclophilin-cyclosporin-based chemical inducer of dimerization. Chem Biol. Sep. 1996;3(9):731-8. doi: 10.1016/s1074-5521(96)90249-5. |
| U.S. Appl. No. 14/234,031, filed Mar. 24, 2014, Liu et al. |
| U.S. Appl. No. 14/320,271, filed Jun. 30, 2014, Liu et al. |
| U.S. Appl. No. 16/441,751, filed Jun. 14, 2019, Liu et al. |
| U.S. Appl. No. 14/320,519, filed Jun. 30, 2014, Liu et al. |
| U.S. Appl. No. 14/913,458, filed Feb. 22, 2016, Liu et al. |
| U.S. Appl. No. 16/266,937, filed Feb. 4, 2019, Liu et al. |
| U.S. Appl. No. 14/320,370, filed Jun. 30, 2014, Liu et al. |
| U.S. Appl. No. 14/320,413, filed Jun. 30, 2014, Liu et al. |
| U.S. Appl. No. 14/874,123, filed Oct. 2, 2015, Liu et al. |
| U.S. Appl. No. 14/911,117, filed Feb. 9, 2016, Liu et al. |
| U.S. Appl. No. 17/160,329, filed Jan. 27, 2021, Liu et al. |
| U.S. Appl. No. 14/462,163, filed Aug. 18, 2014, Liu et al. |
| U.S. Appl. No. 14/462,189, filed Aug. 18, 2014, Liu et al. |
| U.S. Appl. No. 14/916,679, filed Mar. 4, 2016, Liu et al. |
| U.S. Appl. No. 16/860,639, filed Apr. 28, 2020, Liu et al. |
| U.S. Appl. No. 14/320,498, filed Jun. 30, 2014, Liu et al. |
| U.S. Appl. No. 14/320,467, filed Jun. 30, 2014, Liu et al. |
| U.S. Appl. No. 14/916,681, filed Mar. 4, 2016, Liu et al. |
| U.S. Appl. No. 17/103,233, filed Nov. 24, 2020, Liu et al. |
| U.S. Appl. No. 14/326,329, filed Jul. 8, 2014, Liu et al. |
| U.S. Appl. No. 14/326,340, filed Jul. 8, 2014, Liu et al. |
| U.S. Appl. No. 14/326,361, filed Jul. 8, 2014, Liu et al. |
| U.S. Appl. No. 14/916,683, filed Mar. 4, 2016, Liu et al. |
| U.S. Appl. No. 16/796,323, filed Feb. 20, 2020, Liu et al. |
| U.S. Appl. No. 14/325,815, filed Jul. 8, 2014, Liu et al. |
| U.S. Appl. No. 14/326,109, filed Jul. 8, 2014, Liu et al. |
| U.S. Appl. No. 14/326,140, filed Jul. 8, 2014, Liu et al. |
| U.S. Appl. No. 14/326,269, filed Jul. 8, 2014, Liu et al. |
| U.S. Appl. No. 14/326,290, filed Jul. 8, 2014, Liu et al. |
| U.S. Appl. No. 14/326,318, filed Jul. 8, 2014, Liu et al. |
| U.S. Appl. No. 14/326,303, filed Jul. 8, 2014, Liu et al. |
| U.S. Appl. No. 15/103,608, filed Jun. 10, 2016, Liu et al. |
| U.S. Appl. No. 16/374,634, filed Apr. 3, 2019, Liu et al. |
| U.S. Appl. No. 15/329,925, filed Jan. 27, 2017, Liu et al. |
| U.S. Appl. No. 16/132,276, filed Sep. 14, 2018, Liu et al. |
| U.S. Appl. No. 16/888,646, filed May 29, 2020, Liu et al. |
| U.S. Appl. No. 14/529,010, filed Oct. 30, 2014, Liu et al. |
| U.S. Appl. No. 15/958,721, filed Apr. 20, 2018, Liu et al. |
| U.S. Appl. No. 17/130,812, filed Dec. 22, 2020, Liu et al. |
| U.S. Appl. No. 15/331,852, filed Oct. 22, 2016, Liu et al. |
| U.S. Appl. No. 15/770,076, filed Apr. 20, 2018, Liu et al. |
| U.S. Appl. No. 16/327,744, filed Feb. 22, 2019, Maianti et al. |
| U.S. Appl. No. 15/852,891, filed Dec. 22, 2017, Maianti et al. |
| U.S. Appl. No. 16/926,436, filed Jul. 10, 2020, Maianti et al. |
| U.S. Appl. No. 15/852,526, filed Dec. 22, 2017, Maianti et al. |
| U.S. Appl. No. 16/492,534, filed Sep. 9, 2019, Liu et al. |
| U.S. Appl. No. 16/324,476, filed Feb. 8, 2019, Liu et al. |
| U.S. Appl. No. 15/791,085, filed Oct. 23, 2017, Liu et al. |
| U.S. Appl. No. 16/143,370, filed Sep. 26, 2018, Liu et al. |
| U.S. Appl. No. 17/148,059, filed Jan. 13, 2021, Liu et al. |
| U.S. Appl. No. 16/492,548, filed Sep. 9, 2019, Maianti et al. |
| U.S. Appl. No. 15/784,033, filed Oct. 13, 2017, Liu et al. |
| U.S. Appl. No. 16/492,553, filed Sep. 9, 2019, Liu et al. |
| U.S. Appl. No. 15/934,945, filed Mar. 23, 2018, Liu et al. |
| U.S. Appl. No. 16/643,376, filed Feb. 28, 2020, Liu et al. |
| U.S. Appl. No. 16/612,988, filed Nov. 12, 2019, Liu et al. |
| U.S. Appl. No. 16/634,405, filed Jan. 27, 2020, Liu et al. |
| U.S. Appl. No. 16/976,047, filed Aug. 26, 2020, Liu et al. |
| U.S. Appl. No. 17/289,665, filed Apr. 28, 2021, Liu et al. |
| U.S. Appl. No. 16/756,432, filed Apr. 15, 2020, Liu et al. |
| U.S. Appl. No. 16/772,747, filed Jun. 12, 2020, Shen et al. |
| U.S. Appl. No. 17/057,398, filed Nov. 20, 2020, Liu et al. |
| U.S. Appl. No. 17/259,147, filed Jan. 8, 2021, Liu et al. |
| U.S. Appl. No. 17/270,396, filed Feb. 22, 2021, Liu et al. |
| U.S. Appl. No. 17/273,688, filed Mar. 4, 2021, Liu et al. |
| U.S. Appl. No. 17/288,504, filed Apr. 23, 2021, Liu et al. |
| U.S. Appl. No. 17/219,590, filed Mar. 31, 2021, Liu et al. |
| U.S. Appl. No. 17/219,635, filed Mar. 31, 2021, Liu et al. |
| U.S. Appl. No. 17/219,672, filed Mar. 31, 2021, Liu et al. |
| Number | Date | Country | |
|---|---|---|---|
| 20180312825 A1 | Nov 2018 | US |
| Number | Date | Country | |
|---|---|---|---|
| 62408686 | Oct 2016 | US | |
| 62398490 | Sep 2016 | US | |
| 62370700 | Aug 2016 | US | |
| 62357332 | Jun 2016 | US | |
| 62357352 | Jun 2016 | US | |
| 62322178 | Apr 2016 | US | |
| 62311763 | Mar 2016 | US | |
| 62279346 | Jan 2016 | US | |
| 62245828 | Oct 2015 | US |
| Number | Date | Country | |
|---|---|---|---|
| Parent | PCT/US2016/058344 | Oct 2016 | US |
| Child | 15960171 | US | |
| Parent | 15331852 | Oct 2016 | US |
| Child | PCT/US2016/058344 | US |