The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Sep. 12, 2016, is named 44854-718_201_SL.txt and is 7,841 bytes in size.
The cornerstone of synthetic biology is the design, build, and test process—an iterative process that requires DNA, to be made accessible for rapid and affordable generation and optimization of these custom pathways and organisms. In the design phase, the A, C, T and G nucleotides that constitute DNA are formulated into the various gene sequences that would comprise the locus or the pathway of interest, with each sequence variant representing a specific hypothesis that will be tested. These variant gene sequences represent subsets of sequence space, a concept that originated in evolutionary biology and pertains to the totality of sequences that make up genes, genomes, transcriptome and proteome.
Many different variants are typically designed for each design-build-test cycle to enable adequate sampling of sequence space and maximize the probability of an optimized design. Though straightforward in concept, process bottlenecks around speed, throughput and quality of conventional synthesis methods dampen the pace at which this cycle advances, extending development time. The inability to sufficiently explore sequence space due to the high cost of acutely accurate DNA and the limited throughput of current synthesis technologies remains the rate-limiting step.
Beginning with the build phase, two processes are noteworthy: oligonucleic acid synthesis and gene synthesis. Historically, synthesis of different gene variants was accomplished through molecular cloning. While robust, this approach is not scalable. Early chemical gene synthesis efforts focused on producing a large number of oligonucleic acids with overlapping sequence homology. These were then pooled and subjected to multiple rounds of polymerase chain reaction (PCR), enabling concatenation of the overlapping oligonucleic acids into a full length double stranded gene. A number of factors hinder this method, including time-consuming and labor-intensive construction, requirement of high volumes of phosphoramidites, an expensive raw material, and production of nanomole amounts of the final product, significantly less than required for downstream steps, and a large number of separate oligonucleic acids required one 96 well plate to set up the synthesis of one gene.
Synthesizing oligonucleic acids on microarrays provided a significant increase in the throughput of gene synthesis. A large number of oligonucleic acids could be synthesized on the microarray surface, then cleaved off and pooled together. Each oligonucleic acid destined for a specific gene contains a unique barcode sequence that enabled that specific subpopulation of oligonucleotides to be depooled and assembled into the gene of interest. In this phase of the process, each subpool is transferred into one well in a 96 well plate, increasing throughput to 96 genes. While this is two orders of magnitude higher in throughput than the classical method, it still does not adequately support the design, build, test cycles that require thousands of sequences at one time due to a lack of cost efficiency and slow turnaround times.
Provided herein are methods for modulating protein activity, comprising: providing predetermined sequences encoding for at least about 30,000 non-identical oligonucleic acids, wherein each of the at least about 30,000 non-identical oligonucleic encodes for a variant codon sequence compared to a single reference sequence; providing a structure having a surface; synthesizing the at least about 30,000 non-identical oligonucleic acids, wherein each of the at least about 30,000 non-identical oligonucleic acids extends from the surface; mixing the least about 30,000 non-identical oligonucleic acids with a DNA polymerase and the single reference sequence to form a library of variant nucleic acids; transferring the library of variant nucleic acids to cells and expressing a plurality of variant proteins; and identifying an activity associated with a variant protein of the plurality of variant proteins, wherein the activity is modulated relative to a protein encoded by the single reference sequence. Further provided herein are methods wherein the activity comprises cellular reproduction, growth, adhesion, death, migration, energy production, oxygen utilization, metabolic activity, cell signaling, aging, response to free radical damage, or any combination thereof. Further provided herein are methods wherein the cells are eukaryotic cells or prokaryotic cells. Further provided herein are methods wherein the cells are bacterial, plant, mouse, or primate cells. Further provided herein are methods wherein the library of variant nucleic acids encodes sequences for variant genes or fragments thereof. Further provided herein are methods wherein the variant protein is an antibody, enzyme or peptide. Further provided herein are methods wherein the variant protein has enhanced or reduced binding affinity for another molecule. Further provided herein are methods wherein the variant protein has enhanced or reduced enzymatic activity. Further provided herein are methods wherein single variant nucleic acid encoded by the library of variant nucleic acids is administered to a subject in need thereof. Further provided herein are methods wherein the at least about 30,000 non-identical oligonucleic acids have an aggregate error rate of less than 1 in 1000 bases compared to predetermined sequences for the plurality of non-identical oligonucleic acids.
Provided herein are methods for modulating cellular activity, comprising: providing predetermined sequences encoding for at least about 30,000 non-identical oligonucleic acids, wherein each of the at least about 30,000 non-identical oligonucleic encodes for a predetermined variant sequence compared to a single reference sequence; providing a structure having a surface; synthesizing the at least about 30,000 non-identical oligonucleic acids, wherein each of the at least about 30,000 non-identical oligonucleic acids extends from the surface, and wherein the at least about 30,000 non-identical oligonucleic acids have an aggregate error rate of less than 1 in 1000 bases compared to predetermined sequences for the plurality of non-identical oligonucleic acids; mixing the least about 30,000 non-identical oligonucleic acids with a DNA polymerase and the single reference sequence to form a library of variant nucleic acids; transferring the library of variant nucleic acids to a first set of cells; and measuring a change in a cellular activity, wherein the cellular activity is measured for the first set of cells or a second set of cells, wherein the second set of cells are treated at least one expression product isolated from the first set of cells. Further provided herein are methods wherein the cellular activity comprises reproduction, growth, adhesion, death, migration, energy production, oxygen utilization, metabolic activity, cell signaling, response to free radical damage, or any combination thereof. Further provided herein are methods wherein the first set of cells or the second set of cells are eukaryotic cells or prokaryotic cells. Further provided herein are methods wherein the first set of cells or the second set of cells are bacterial, plant, mouse, or primate cells. Further provided herein are methods wherein the library of variant nucleic acids encodes sequences for variant genes or fragments thereof. Further provided herein are methods comprising translation of each of the variant genes to form a protein. Further provided herein are methods wherein the protein is an antibody, enzyme, or peptide. Further provided herein are methods wherein the library of variant nucleic acids encodes for at least a portion of a variable region or constant region of the antibody. Further provided herein are methods wherein the library of variant nucleic acids encodes for at least one CDR region of the antibody. Further provided herein are methods wherein the protein has enhanced or reduced binding affinity for another molecule, or wherein the protein has enhanced or reduced enzymatic activity. Further provided herein are methods wherein the library of variant nucleic acids encodes for a transcription regulatory sequence. Further provided herein are methods wherein the transcription regulatory sequence is a promoter, UTR, or a terminator sequence. Further provided herein are methods wherein the library of variant nucleic acids encodes for a sequence that, when transcribed, encodes for mRNA, miRNA, or shRNA.
Provided herein are methods for treatment or reduction of a disease state, comprising: providing predetermined sequences encoding for at least about 30,000 non-identical oligonucleic acids, wherein each of the at least about 30,000 non-identical oligonucleic encodes for a variant codon sequence compared to a single reference sequence; providing a structure having a surface; synthesizing the at least about 30,000 non-identical oligonucleic acids, wherein each of the at least about 30,000 non-identical oligonucleic acids extends from the surface; mixing the least about 30,000 non-identical oligonucleic acids with a DNA polymerase and the single reference sequence to form a library of variant nucleic acids; transferring the library of variant nucleic acids to cells obtained from a subject; identifying a reduction in harmful activity associated with a variant nucleic acid encoded by the library of variant nucleic acids; and administering the variant nucleic acid encoded by the library of variant nucleic acids to a subject in need thereof, thereby treating or reducing the disease state. Further provided herein are methods wherein the disease state is associated with a cell proliferative, autoimmune, viral, or bacterial disorder. Further provided herein are methods wherein the at least about 30,000 non-identical oligonucleic acids have an aggregate error rate of less than 1 in 1000 bases compared to predetermined sequences for the plurality of non-identical oligonucleic acids.
Provided herein are methods for nucleic acid synthesis, comprising: providing predetermined sequences encoding for a plurality of non-identical oligonucleic acids, wherein each of the non-identical oligonucleic acids is at least 20 bases in length, and wherein the plurality of non-identical oligonucleic acids encodes for about 19 variants for each of at least 3 codons for at least one sequence, and wherein the plurality of non-identical oligonucleic acids collectively encodes for at least one gene and variants thereof; providing a structure having a surface; synthesizing the plurality of non-identical oligonucleic acids, wherein each of the non-identical oligonucleic acids extends from the surface; and assembling a library of variant nucleic acids from the plurality of non-identical oligonucleic acids. Further provided herein are methods wherein the plurality of non-identical oligonucleic acids comprises at least 75,000 non-identical oligonucleic acids. Further provided herein are methods wherein a subset of the plurality of non-identical oligonucleic acids collectively encodes for a single gene and variants thereof is located within a single cluster on the surface of the structure. Further provided herein are methods wherein the surface of the structure comprises at least 6000 of the single clusters. Further provided herein are methods wherein each cluster is located within a channel about 0.5 to 2 mm in diameter. Further provided herein are methods wherein the single cluster comprises 50 to 500 loci for nucleic acid extension. Further provided herein are methods wherein the plurality of non-identical oligonucleic acids collectively encode for variants of more than one gene. Further provided herein are methods wherein the plurality of non-identical oligonucleic acids collectively encode for variants of at least 5,000 genes. Further provided herein are methods wherein the library of variant nucleic acids encodes for at least a portion of an enzyme, peptide, or antibody. Further provided herein are methods wherein each variant nucleic acid encodes sequence for at least 85% of a gene. Further provided herein are methods wherein are protein libraries generated by expression of a plurality of expression constructs collectively comprising a non-identical oligonucleic acid described herein.
Provided herein are oligonucleic acid libraries, comprising a plurality of non-identical oligonucleic acids, wherein each of the non-identical oligonucleic acids is at least 12 bases in length, wherein the plurality of non-identical oligonucleic acids encodes for about 19 variants for each of at least 3 codons, and wherein the plurality of non-identical oligonucleic acids has an aggregate error rate of less than 1 in 1000 bases compared to predetermined sequences for the plurality of non-identical oligonucleic acids. Further provided herein are oligonucleic acid libraries, wherein the plurality of non-identical oligonucleic acids has an aggregate error rate of less than 1 in 1500 bases compared to predetermined sequences for the plurality of non-identical oligonucleic acids. Further provided herein are oligonucleic acid libraries, wherein the plurality of non-identical oligonucleic acids has an aggregate error rate of less than 1 in 2000 bases compared to predetermined sequences for the plurality of non-identical oligonucleic acids. Further provided herein are oligonucleic acid libraries, wherein each of the plurality of non-identical oligonucleic acids is at least 30 bases in length. Further provided herein are oligonucleic acid libraries, wherein each of the plurality of non-identical oligonucleic acids is at least 50 bases in length. Further provided herein are oligonucleic acid libraries, wherein each of the plurality of non-identical oligonucleic acids is 12 to 100 bases in length. Further provided herein are oligonucleic acid libraries, wherein the plurality of non-identical oligonucleic acids collectively encodes sequence for at least 85% of a gene. Further provided herein are oligonucleic acid libraries, wherein the plurality of non-identical oligonucleic acids collectively encodes sequence for a plurality of exons in a gene. Further provided herein are oligonucleic acid libraries, wherein the gene encodes for at least a portion of an antibody, enzyme, or peptide. Further provided herein are oligonucleic acid libraries, wherein the plurality of non-identical oligonucleic acids comprises oligonucleic acids that encode for a variable region or constant region of the antibody. Further provided herein are oligonucleic acid libraries, wherein the plurality of non-identical oligonucleic acids comprises oligonucleic acids that encode for at least one CDR region of the antibody. Further provided herein are oligonucleic acid libraries, wherein the plurality of non-identical oligonucleic acids collectively encodes sequence for one or more segments of an expression cassette. Further provided herein are oligonucleic acid libraries, wherein the expression cassette comprises at least one promoter region and the plurality of non-identical oligonucleic acids comprises oligonucleic acids that encode for at least a portion of the promoter region. Further provided herein are oligonucleic acid libraries, wherein the expression cassette comprises two promoter regions. Further provided herein are oligonucleic acid libraries, wherein the at least 3 codons are consecutive. Further provided herein are oligonucleic acid libraries, wherein the at least 3 codons are not consecutive. Further provided herein are oligonucleic acid libraries, wherein at least 2 of the at least 3 codons are separated by at least one codon position from each other. Further provided herein are oligonucleic acid libraries, wherein the library comprises non-identical oligonucleic acids encoding for codon variants in 4, 5, 6, 7, 8, 9 or 10 codons. Further provided herein are oligonucleic acid libraries, wherein the plurality of non-identical oligonucleic acids encodes for all possible codon variants in at least 4 codons. Further provided herein are oligonucleic acid libraries, wherein none of the non-identical oligonucleic acids encode codons for more than three histidine residues. Further provided herein are oligonucleic acid libraries, wherein none of the non-identical oligonucleic acids encode codons for more than four histidine residues.
Provided herein are oligonucleic acid libraries, comprising at least 75,000 non-identical oligonucleic acids, wherein each of the at least 75,000 non-identical oligonucleic acids is at least 30 bases in length, wherein the at least 75,000 of non-identical oligonucleic acids encode for at least 3 variants for each of at least 3 codons for at least one sequence, and wherein the at least 75,000 of non-identical oligonucleic acids have an aggregate error rate of less than 1 in 1000 bases compared to predetermined sequences for the plurality of non-identical oligonucleic acids. Further provided herein are oligonucleic acid libraries, wherein the at least 75,000 of non-identical oligonucleic acids has an aggregate error rate of less than 1 in 1500 bases compared to predetermined sequences for the at least 75,000 of non-identical oligonucleic acids. Further provided herein are oligonucleic acid libraries, wherein each of the at least 75,000 of non-identical oligonucleic acids comprises at least 50 bases in length. Further provided herein are oligonucleic acid libraries, wherein the at least 75,000 of non-identical oligonucleic acids collectively encodes sequence for at least 85% of a gene. Further provided herein are oligonucleic acid libraries, wherein the at least 75,000 of non-identical oligonucleic acids collectively encodes sequence for a plurality of exons in the same gene. Further provided herein are oligonucleic acid libraries, wherein the gene encodes for at least a portion of an antibody, enzyme, or adaptor protein. Further provided herein are oligonucleic acid libraries, wherein the at least 75,000 of non-identical oligonucleic acids comprise oligonucleic acids that encode for a variable region or constant region of the antibody. Further provided herein are oligonucleic acid libraries, wherein the at least 75,000 of non-identical oligonucleic acids comprises oligonucleic acids that encode for at least one complementarity-determining region (CDR) of the antibody. Further provided herein are oligonucleic acid libraries, wherein the at least 75,000 of non-identical oligonucleic acids collectively encodes sequence for one or more segments of an expression cassette. Further provided herein are oligonucleic acid libraries, wherein the expression cassette comprises at least one promoter region and the at least 75,000 of non-identical oligonucleic acids comprises oligonucleic acids that encode for at least a portion of the promoter region. Further provided herein are oligonucleic acid libraries, wherein the expression cassette comprises two promoter regions. Further provided herein are oligonucleic acid libraries, wherein the at least 3 codons are consecutive. Further provided herein are oligonucleic acid libraries, wherein the at least 3 codons are not consecutive. Further provided herein are oligonucleic acid libraries, wherein at least 2 of the at least 3 codons are separated by at least one codon position from each other. Further provided herein are oligonucleic acid libraries, wherein the at least 75,000 of non-identical oligonucleic acids encodes for all possible codon variants in at least 3 codons. Further provided herein are oligonucleic acid libraries, wherein none of the non-identical oligonucleic acids encode codons for more than three histidine residues. Further provided herein are oligonucleic acid libraries, wherein none of the non-identical oligonucleic acids encode codons for more than four histidine residues. Further provided herein are oligonucleic acid libraries, wherein the library comprises at least 100,000 non-identical oligonucleic acids. Further provided herein are oligonucleic acid libraries, wherein the library comprises at least 700,000 non-identical oligonucleic acids. Further provided herein are oligonucleic acid libraries, wherein the library comprises at least 1,000,000 non-identical oligonucleic acids.
Provided herein are oligonucleic acid libraries, comprising a plurality of non-identical oligonucleic acids, wherein each non-identical oligonucleic acid is about 20 to 130 bases in length, wherein the plurality of non-identical oligonucleic acids collectively encode for about 19 variants for each of at least 3 codons for at least one sequence, and wherein the plurality of non-identical oligonucleic acids has an aggregate error rate of less than 1 in 1000 bases compared to predetermined sequences for the plurality of non-identical oligonucleic acids. Further provided herein are oligonucleic acid libraries, wherein the plurality of non-identical oligonucleic acids comprises 50 to 500 non-identical oligonucleic acids. Further provided herein are oligonucleic acid libraries, wherein the plurality of non-identical oligonucleic acids collectively encode for at least 50 variant genes. Further provided herein are oligonucleic acid libraries, wherein the 50 to 500 non-identical oligonucleic acids are attached to a surface of a structure and located within a discrete cluster. Further provided herein are oligonucleic acid libraries, wherein the 50 to 500 non-identical oligonucleic acids collectively encode at least 50 variant genes.
All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
The present disclosure employs, unless otherwise indicated, conventional molecular biology techniques, which are within the skill of the art. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art.
Definitions
Throughout this disclosure, various embodiments are presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of any embodiments. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range to the tenth of the unit of the lower limit unless the context clearly dictates otherwise. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual values within that range, for example, 1.1, 2, 2.3, 5, and 5.9. This applies regardless of the breadth of the range. The upper and lower limits of these intervening ranges may independently be included in the smaller ranges, and are also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure, unless the context clearly dictates otherwise.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of any embodiment. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Unless specifically stated or obvious from context, as used herein, the term “about” in reference to a number or range of numbers is understood to mean the stated number and numbers +/−10% thereof, or 10% below the lower listed limit and 10% above the higher listed limit for the values listed for a range.
Variant Library Synthesis
Methods described herein provide for synthesis of a library of oligonucleic acids each encoding for a predetermined variant of at least one predetermined reference nucleic acid sequence. In some cases, the predetermined reference sequence is nucleic acid sequence encoding for a protein, and the variant library comprises sequences encoding for variation of at least a single codon such that a plurality of different variants of a single residue in the subsequent protein encoded by the synthesized nucleic acid are generated by standard translation processes. The synthesized specific alterations in the nucleic acid sequence can be introduced by incorporating nucleotide changes into overlapping or blunt ended oligonucleic acid primers. Alternatively, a population of oligonucleic acids may collectively encode for a long nucleic acid (e.g., a gene) and variants thereof. In this arrangement, the population of oligonucleic acids can be hybridized and subject to standard molecular biology techniques to form the long nucleic acid (e.g., a gene) and variants thereof. When the long nucleic acid (e.g., a gene) and variants thereof are expressed in cells, a variant protein library is generated. Similarly, provided here are methods for synthesis of variant libraries encoding for RNA sequences (e.g., miRNA, shRNA, and mRNA) or DNA sequences (e.g., enhancer, promoter, UTR, and terminator regions). Also provided here are downstream applications for variants selected out of the libraries synthesized using methods describer here. Downstream applications include identification of variant nucleic acid or protein sequences with enhanced biologically relevant functions, e.g., biochemical affinity, enzymatic activity, changes in cellular activity, and for the treatment or prevention of a disease state.
Synthesis Followed by PCR Mutagenesis
A first process for synthesis of a variant library of oligonucleic acids is for PCR mutagenesis methods. In this workflow, a plurality of oligonucleic acids are synthesized, wherein each oligonucleic acid encodes for a predetermined sequence which is a predetermined variant of a reference nucleic acid sequence. Referring to the figures, an exemplary workflow in depicted in
A de novo synthesized oligonucleic acid library described herein may comprise a plurality of oligonucleic acids, each with at least one variant sequence at first position, position “x”, and each variant oligonucleic acid is used as a primer in a first round of PCR to generate a first extension product. In this example, position “x” in a first oligonucleic acid 220 encodes for a variant codon sequence, i.e., one of 19 possible variants from a reference sequence. See
In alternative mutagenesis PCR method is depicted in
De Novo Synthesis of a Population with Variant and Non-Variant Portions of a Long Nucleic Acid
In a second process for synthesis of a variant library, a surface is used for de novo synthesis of multiple fragments of a long nucleic acid, wherein at least one of the fragments is synthesized in multiple versions, each version being of a different variant sequence. In this arrangement, all of the fragments needed to assemble a library of variant long range nucleic acids are de novo synthesized. The synthesized fragments may have overlapping sequence such that, following synthesis, the fragment library is subject to hybridization. Following hybridization, an extension reaction may be performed to fill in any complementary gaps.
Alternatively, the synthesized fragments may be amplified with primers and then subject to either blunt end ligation or overlapping hybridization. In some instances, the device comprises a cluster of loci, wherein each locus is a site for oligonucleic acid extension. In some instances, a single cluster comprises all the oligonucleic acid variants and other fragment sequences of a predetermined long nucleic acid to generate a desired variant nucleic acid sequence library. The cluster may comprise about 50 to 500 loci. In some arrangements, a cluster comprises greater than 500 loci.
Each individual oligonucleic acid in the first oligonucleic acid population may be generated on a separate, individually addressable locus of a cluster. One oligonucleic acid variant may be represented by a plurality of individually addressable loci. Each variant in the first oligonucleic acid population may be represented 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more times. In some instances, each variant in the first oligonucleic acid population is represented at 3 or less loci. In some instances, each variant in the first oligonucleic acid population is represented at two loci. In some instances, each variant in the first oligonucleic acid population is represented at only a single locus.
Methods are provided herein to generate nucleic acid libraries with reduced redundancy. In some instances, variant oligonucleotides may be generated without the need to synthesize the variant oligonucleotide more than 1 time to obtain the desired variant oligonucleotide. In some instances, the present disclosure provides methods to generate variant oligonucleotides without the need to synthesize the variant oligonucleotide more than 1, 2, 3, 4, 5 times, 6, 7, 8, 9, 10, or more times to generate the desired variant oligonucleotide.
Variant oligonucleotides may be generated without the need to synthesize the variant oligonucleotide at more than 1 discrete site to obtain the desired variant oligonucleotide. The present disclosure provides methods to generate variant oligonucleotides without the need to synthesize the variant oligonucleotide at more than 1 site, 2 sites, 3 sites, 4 sites, 5 sites, 6 sites, 7 sites, 8 sites, 9 sites, or 10 sites, to generate the desired variant oligonucleotide. In some instances, an oligonucleotide is synthesized in at most 6, 5, 4, 3, 2, or 1 discrete sites. The same oligonucleotide may be synthesized in 1, 2, or 3 discrete loci on a surface.
In some instances, the amount of loci representing a single variant oligonucleotide is a function of the amount of nucleic acid material required for downstream processing, e.g., an amplification reaction or cellular assay. In some instances, the amount of loci representing a single variant oligonucleotide is a function of the available loci in a single cluster.
Provided herein are methods for generation of a library of oligonucleic acids comprising variant oligonucleic acids differing at a plurality of sites in a reference nucleic acid. In such cases, each variant library is generated on an individually addressable locus within a cluster of loci. It will be understood that the number of variant sites represented by the oligonucleic acid library will be determined by the number of individually addressable loci in the cluster and the number of desired variants at each site. In some instances, each cluster comprises about 50 to 500 loci. In some instances, each cluster comprises 100 to 150 loci.
In an exemplary arrangement, 19 variants are represented at a variant site corresponding codons encoding for each of the 19 possible variant amino acids. In another exemplary case, 61 variants are represented at a variant site corresponding triplets encoding for each of the 19 possible variant amino acids. In a non-limiting example, a cluster comprises 121 individually addressable loci. In this example, an oligonucleic acid population comprises 6 replicates each of a single-site variant (6 replicates×1 variant site×19 variants=114 loci), 3 replicates each of a double-site variant (3 replicates×2 variant sites×19 variants=114 loci), or 2 replicates each of a triple-site variant (2 replicates×3 variant sites×19 variants=114 loci). In some instances, an oligonucleic acid population comprises variants at four, five, six or more than six variant sites.
Codon Variation
Variant oligonucleic acid libraries described herein may comprise a plurality of oligonucleic acids, wherein each oligonucleic acid encodes for a variant codon sequence compared to a reference nucleic acid sequence. In some instances, each oligonucleic acid of a first oligonucleic acid population contains a variant at a single variant site. In some instances, the first oligonucleic acid population contains a plurality of variants at a single variant site such that the first oligonucleic acid population contains more than one variant at the same variant site. The first oligonucleic acid population may comprise oligonucleic acids collectively encoding multiple codon variants at the same variant site. The first oligonucleic acid population may comprise oligonucleic acids collectively encoding up to 19 or more codons at the same position. The first oligonucleic acid population may comprise oligonucleic acids collectively encoding up to 60 variant triplets at the same position, or the first oligonucleic acid population may comprise oligonucleic acids collectively encoding up to 61 different triplets of codons at the same position. Each variant may encode for a codon that results in a different amino acid during translation. Table 1 provides a listing of each codon possible (and the representative amino acid) for a variant site.
An oligonucleic acid population may comprise varied oligonucleic acids collectively encoding up to 20 codon variations at multiple positions. In such cases, each oligonucleic acid in the population comprises variation for codons at more than one position in the same oligonucleic acid. In some instances, each oligonucleic acid in the population comprises variation for codons at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more codons in a single oligonucleic acid. In some instances, each variant long nucleic acid comprises variation for codons at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more codons in a single long nucleic acid. In some instances, the variant oligonucleic acid population comprises variation for codons at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more codons in a single oligonucleic acid. In some instances, the variant oligonucleic acid population comprises variation for codons in at least about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 or more codons in a single long nucleic acid.
Provided herein are processes where a second oligonucleic acid population is generated on a second cluster containing a plurality of individually addressable loci. The second oligonucleic acid population may comprise a plurality of second oligonucleic acids that are constant for each codon position (i.e., encode the same amino acid at each position). The second oligonucleic acid may overlap with at least a portion of the first oligonucleic acids. In some instances, the second oligonucleic acids do not contain the variant site represented on the first oligonucleic acids. Alternatively, the second oligonucleic acid population may comprise a plurality of second oligonucleic acids that variant for one or more codon positions.
Provided herein are methods for synthesizing a library of oligonucleic acids where a single population of oligonucleic acids is generated comprising variants at multiple codon positions. A first oligonucleic acid population may be generated on a first cluster containing a plurality of individually addressable loci. In such cases, the first oligonucleic acid population comprises variants at a different codon positions. In some instances, the different sites are consecutive (i.e., encoding consecutive amino acids). A first oligonucleotide acid population may comprise varied oligonucleic acids collectively encoding up to 19 codon variants at the same, or additional variant site. A first oligonucleotide acid population may include a plurality of first oligonucleic acids that contains up to 19 variants at position x, up to 19 variants at position y, and up to 19 variants at position z. In such an arrangement, each variant encodes a different amino acid such that up to 19 amino acid variants are encoded at each of the different variant sites. In an additional instance, a second oligonucleic acid population is generated on a second cluster containing a plurality of individually addressable loci. The second oligonucleic acid population may comprise a plurality of second oligonucleic acids that are constant for each codon position (i.e., encode the same amino acid at each position). The second oligonucleic acids may overlap with at least a portion of the first oligonucleic acids. The second oligonucleic acids may not contain the variant site represented on the first oligonucleic acids.
Variant nucleic acid libraries generated by processes described herein provide for the generation of variant protein libraries. In a first exemplary arrangement, a template oligonucleic acid encodes for sequence that, when transcribed and translated, results in a reference amino acid sequence (
Provided herein are methods to generate a library of oligonucleic acid variants, wherein each variant comprises a single position codon variant. In one instance, a template oligonucleic acid has a number of codon positions wherein exemplary amino acid residues are indicated by circles with their respective one letter code protein codon,
In some arrangements, a library is generated with multiple sites of single position variants. As depicted in
Provided herein are methods to generate a library having a stretch of multiple site, single position variants. Each stretch of oligonucleic acid may have 1, 2, 3, 4, 5, or more variants. Each stretch of oligonucleic acid may have at least 1 variants. Each stretch of oligonucleic acid may have at least 2 variants. Each stretch of oligonucleic acid may have at least 3 variants. For example, a stretch of 5 oligonucleic acids may have 1 variant. A stretch of 5 oligonucleic acids may have 2 variants. A stretch of 5 oligonucleic acids may have 3 variants. A stretch of 5 oligonucleic acids may have 4 variants. For example, a stretch of 4 oligonucleic acids may have 1 variant. A stretch of 4 oligonucleic acids may have 2 variants. A stretch of 4 oligonucleic acids may have 3 variants. A stretch of 4 oligonucleic acids may have 4 variants.
In some instances, single position variants may all encode for the same amino acid, e.g. a histidine. As depicted in
In some instances, a variant library of nucleic acids generated by methods described herein provides for expression of amino acid sequences have separate stretches of variation. A template amino acid sequence is depicted in
Provided herein are methods and devices to synthesize oligonucleic acid libraries with 1, 2, 3, or more codon variants, wherein the variant for each site is selectively controlled. The ratio of two amino acids for a single site variant may be about 1:100, 1:50, 1:10, 1:5, 1:3, 1:2, 1:1. The ratio of three amino acids for a single site variant may be about 1:1:100, 1:1:50, 1:1:20, 1:1:10, 1:1:5, 1:1:3, 1:1:2, 1:1:1, 1:10:10, 1:5:5, 1:3:3, or 1:2:2.
In some instances, a synthesized variant library is generated which encodes for nucleic acid sequence that is ultimately translated into amino acid sequence of a protein. Exemplary into amino acid sequence includes those encoding for small peptides as well as at least a portion of large peptides, e.g., antibody sequence. In some instances, the oligonucleic acids synthesized each encode for a variant codon in a portion of an antibody sequence. Exemplary antibody sequence for which the portion of variant synthesized oligonucleic acid encodes includes the antigen-binding or variable region thereof, or a fragment thereof. Examples antibody fragments for which the oligonucleic acids described herein encode a portion of include, without limitation, Fab, Fab′, F(ab′)2 and Fv fragments, diabodies, linear antibodies, single-chain antibody molecules, and multispecific antibodies formed from antibody fragments. Examples antibody regions for which the oligonucleic acids described herein encode a portion of include, without limitation, Fc region, Fab region, variable region of the Fab region, constant region of the Fab region, variable domain of the heavy chain or light chain (VH or VL), or specific complementarity-determining regions (CDRs) of VH or VL. Variant libraries generated by methods disclosed herein can result in variation of one or more of the antibody regions described herein. In one exemplary process, a variant library is generated for nucleic acids encoding for a several CDRs. See
Variation in Expression Cassettes
In some instances, a synthesized variant library is generated which encodes for a portion of an expression construct. Exemplary portions of an expression construct include the promoter, open reading frame, and termination region. In some instances, the expression construct encodes for one, two, three or more expression cassettes. An oligonucleotide library may be generated, encoding for codon variation at a single site or multiple sites separate regions that make up potions of an expression construct cassette, as depicted in
Expression vectors for inserting nucleic acids disclosed herein comprise eukaryotic (e.g., bacterial and fungal) and prokaryotic (e.g., mammalian, plant and insect expression vectors). Exemplary expression vectors include, without limitation, mammalian expression vectors: pSF-CMV-NEO-NH2-PPT-3XFLAG, pSF-CMV-NEO-COOH-3XFLAG, pSF-CMV-PURO-NH2-GST-TEV, pSF-OXB20-COOH-TEV-FLAG(R)-6His, pCEP4 pDEST27, pSF-CMV-Ub-KrYFP, pSF-CMV-FMDV-daGFP, pEFla-mCherry-N1 Vector, pEFla-tdTomato Vector, pSF-CMV-FMDV-Hygro, pSF-CMV-PGK-Puro, pMCP-tag(m), and pSF-CMV-PURO-NH2-CMYC; bacterial expression vectors: pSF-OXB20-BetaGa1,pSF-OXB20-Fluc, pSF-OXB20, and pSF-Tac; plant expression vectors: pRI 101-AN DNA and pCambia2301; and yeast expression vectors: pTYB21 and pKLAC2, and insect vectors: pAc5.1/V5-His A and pDEST8. Exemplary cells include without limitation, prokaryotic and eukaryotic cells. Exemplary eukaryotic cells include, without limitation, animal, plant, and fungal cells. Exemplary animal cells include, without limitation, insect, fish and mammalian cells. Exemplary mammalian cells include mouse, human, and primate cells. Nucleic acids synthesized by methods described herein may be transferred into cells done by various methods known in the art, including, without limitation, transfection, transduction, and electroporation. Exemplary cellular functions tested include, without limitation, changes in cellular proliferation, migration/adhesion, metabolic, and cell-signaling activity.
Highly Parallel Nucleic Acid Synthesis
Provided herein is a platform approach utilizing miniaturization, parallelization, and vertical integration of the end-to-end process from oligonucleic acid synthesis to gene assembly within nanowells on silicon to create a revolutionary synthesis platform. Devices described herein provide, with the same footprint as a 96-well plate, a silicon synthesis platform is capable of increasing throughput by a factor of up to 1,000 or more compared to traditional synthesis methods, with production of up to approximately 1,000,000 or more oligonucleic acids, or 10,000 or more genes in a single highly-parallelized run.
With the advent of next-generation sequencing, high resolution genomic data has become an important factor for studies that delve into the biological roles of various genes in both normal biology and disease pathogenesis. At the core of this research is the central dogma of molecular biology and the concept of “residue-by-residue transfer of sequential information.” Genomic information encoded in the DNA is transcribed into a message that is then translated into the protein that is the active product within a given biological pathway.
Another exciting area of study is on the discovery, development and manufacturing of therapeutic molecules focused on a highly-specific cellular target. High diversity DNA sequence libraries are at the core of development pipelines for targeted therapeutics. Gene mutants are used to express proteins in a design, build, and test protein engineering cycle that ideally culminates in an optimized gene for high expression of a protein with high affinity for its therapeutic target. As an example, consider the binding pocket of a receptor. The ability to test all sequence permutations of all residues within the binding pocket simultaneously will allow for a thorough exploration, increasing chances of success. Saturation mutagenesis, in which a researcher attempts to generate all possible mutations at a specific site within the receptor, represents one approach to this development challenge. Though costly and time and labor-intensive, it enables each variant to be introduced into each position. In contrast, combinatorial mutagenesis, where a few selected positions or short stretch of DNA may be modified extensively, generates an incomplete repertoire of variants with biased representation.
To accelerate the drug development pipeline, a library with the desired variants available at the intended frequency in the right position available for testing—in other words, a precision library, enables reduced costs as well as turnaround time for screening. Provided herein are methods for synthesizing oligonucleic acid synthetic variant libraries which provide for precise introduction of each intended variant at the desired frequency. To the end user, this translates to the ability to not only thoroughly sample sequence space but also be able to query these hypotheses in an efficient manner, reducing cost and screening time. Genome-wide editing can elucidate important pathways, libraries where each variant and sequence permutation can be tested for optimal functionality, and thousands of genes can be used to reconstruct entire pathways and genomes to re-engineer biological systems for drug discovery.
In a first example, a drug itself can is optimized using methods described herein. For example, to improve a specified function of an antibody, a variant oligonucleic acid library encoding for a portion of the antibody is designed and synthesized. A variant nucleic acid library for the antibody can then be generated by processes described herein (e.g., PCR mutagenesis followed by insertion into a vector). The antibody is then expressed in a production cell line and screened for enhanced activity. Example screens include examining modulation in binding affinity to an antigen, stability, or effector function (e.g., ADCC, complement, or apoptosis). Exemplary regions to optimize the antibody include, without limitation, the Fc region, Fab region, variable region of the Fab region, constant region of the Fab region, variable domain of the heavy chain or light chain (VH or VL), and specific complementarity-determining regions (CDRs) of VH or VL.
Alternatively, the molecule to optimize is a receptor binding epitope for use as an activating agent or competitive inhibitor. Subsequent to synthesis of a variant library of nucleic acids, the variant library of nucleic acids may be inserted into vector sequence and then expressed in cells. The receptor antigen may be expressed in cells (e.g., insect, mammalian or bacterial) and then purified, or it may be expressed in cells (e.g., mammalian) to examine functional consequence from variation the sequence. Functional consequences include, without limitation, a change in the proteins expression, binding affinity and stability. Cellular functional consequence include, without limitation, a change in reproduction, growth, adhesion, death, migration, energy production, oxygen utilization, metabolic activity, cell signaling, aging, response to free radical damage, or any combination thereof. In some embodiments, the type of protein selected for optimization is an enzyme, transporter proteins, G-protein coupled receptors, voltage-gated ion channels, transcription factors, polymerases, adaptor proteins (proteins without enzymatic activity the serve to bring two other proteins together), and cytoskeletal proteins. Exemplary types of enyzme include, without limitation, signalling enzymes (such as protein kinases, protein phosphatases, phosphodiesterases, histone deacteylases, and GTPases).
Provided herein are variant nucleic acid libraries comprising variants for molecules involved in an entire pathway or an entire genome. Exemplary pathways include, without limitation a metabolic, cell death, cell cycle progression, immune cell activation, inflammatory response, angiogenesis, lymphogenesis, hypoxia and oxidative stress response, or cell adhesion/migration pathway. Exemplary proteins in a cell death pathway include, without limitation, Fas, Cadd, Caspase 3, Caspase 6, Caspase 8, Caspase 9, Caspase 10, IAP, TNFR1, TNF, TNFR2, NF-kB, TRAFs, ASK, BAD, and Akt. Exemplary proteins in a cell cycle pathway include, without limitation, NFkB, E2F, Rb, p53, p21, cyclin A, cyclin B, cyclin D, cyclin E, and cdc 25. Exemplary proteins in a cell migration pathway include, without limitation, Ras, Raf, PLC, cofilin, MEK, ERK, MLP,LIMK, ROCK, RhoA, Src, Rac, Myosin II, ARP2/3, MAPK, PIP2, integrins, talin, kindlin, migfilin and filamin.
Nucleic acid libraries synthesized by methods described herein may be expressed in various cell types. Exemplary cell types include prokaryotes (e.g., bacteria and fungi) and eukaryotes (e.g., plants and animals). Exemplary animals include, without limitation, mice, rabbits, primates, fish, and insects. Exemplary plants include, without limitation, a monocot and dicot. Exemplary plants also include, without limitation, microalgae, kelp, cyanobacteria, and green, brown and red algae, wheat, tobacco, and corn, rice, cotton, vegetables, and fruit.
Nucleic acid libraries synthesized by methods described herein may be expressed in various cells associated with a disease state. Cells associated with a disease state include cell lines, tissue samples, primary cells from a subject, cultured cells expanded from a subject, or cells in a model system. Exemplary model systems include, without limitation, plant and animal models of a disease state.
Nucleic acid libraries synthesized by methods described herein may be expressed in various cell types assess a change in cellular activity. Exemplary cellular activities include, without limitation, proliferation, cycle progression, cell death, adhesion, migration, reproduction, cell signaling, energy production, oxygen utilization, metabolic activity, and aging, response to free radical damage, or any combination thereof.
To identify a variant molecule associated with prevention, reduction or treatment of a disease state, a variant nucleic acid library described herein is expressed in a cell associated with a disease state, or one in which a cell a disease state can be induced. In some instances, an agent is used to induce a disease state in cells. Exemplary tools for disease state induction include, without limitation, a Cre/Lox recombination system, LPS inflammation induction, and streptozotocin to induce hypoglycemia. The cells associated with a disease state may be cells from a model system or cultured cells, as well as cells from a subject having a particular disease condition. Exemplary disease conditions include a bacterial, fungal, viral, autoimmune, or proliferative disorder (e.g., cancer). In some instances, the variant nucleic acid library is expressed in the model system, cell line, or primary cells derived from a subject, and screened for changes in at least one cellular activity. Exemplary cellular activities include, without limitation, proliferation, cycle progression, cell death, adhesion, migration, reproduction, cell signaling, energy production, oxygen utilization, metabolic activity, and aging, response to free radical damage, or any combination thereof.
Substrates
Provided herein are substrates comprising a plurality of clusters, wherein each cluster comprises a plurality of loci that support the attachment and synthesis of oligonucleic acids. The term “locus” as used herein refers to a discrete region on a structure which provides support for oligonucleotides encoding for a single predetermined sequence to extend from the surface. In some instances, a locus is on a two dimensional surface, e.g., a substantially planar surface. In some instances, a locus refers to a discrete raised or lowered site on a surface e.g., a well, microwell, channel, or post. In some instances, a surface of a locus comprises a material that is actively functionalized to attach to at least one nucleotide for oligonucleic acid synthesis, or preferably, a population of identical nucleotides for synthesis of a population of oligonucleic acids. In some instances, oligonucleic acid refers to a population of oligonucleic acids encoding for the same nucleic acid sequence. In some instances, a surface of a device is inclusive of one or a plurality of surfaces of a substrate.
Average error rates for oligonucleic acids synthesized within a library using the systems and methods provided may be less than 1 in 1000, less than 1 in 1250, less than 1 in 1500, less than 1 in 2000, less than 1 in 3000 or less often. In some instances, average error rates for oligonucleic acids synthesized within a library using the systems and methods provided are less than 1/500, 1/600, 1/700, 1/800, 1/900, 1/1000, 1/1100, 1/1200, 1/1250, 1/1300, 1/1400, 1/1500, 1/1600, 1/1700, 1/1800, 1/1900, 1/2000, 1/3000, or less. In some instances, average error rates for oligonucleic acids synthesized within a library using the systems and methods provided are less than 1/1000.
In some instances, aggregate error rates for oligonucleic acids synthesized within a library using the systems and methods provided are less than 1/500, 1/600, 1/700, 1/800, 1/900, 1/1000, 1/1100, 1/1200, 1/1250, 1/1300, 1/1400, 1/1500, 1/1600, 1/1700, 1/1800, 1/1900, 1/2000, 1/3000, or less compared to the predetermined sequences. In some instances, aggregate error rates for oligonucleic acids synthesized within a library using the systems and methods provided are less than 1/500, 1/600, 1/700, 1/800, 1/900, or 1/1000. In some instances, aggregate error rates for oligonucleic acids synthesized within a library using the systems and methods provided are less than 1/1000.
In some instances, an error correction enzyme may be used for oligonucleic acids synthesized within a library using the systems and methods provided can use. In some instances, aggregate error rates for oligonucleic acids with error correction can be less than 1/500, 1/600, 1/700, 1/800, 1/900, 1/1000, 1/1100, 1/1200, 1/1300, 1/1400, 1/1500, 1/1600, 1/1700, 1/1800, 1/1900, 1/2000, 1/3000, or less compared to the predetermined sequences. In some instances, aggregate error rates with error correction for oligonucleic acids synthesized within a library using the systems and methods provided can be less than 1/500, 1/600, 1/700, 1/800, 1/900, or 1/1000. In some instances, aggregate error rates with error correction for oligonucleic acids synthesized within a library using the systems and methods provided can be less than 1/1000.
Error rate may limit the value of gene synthesis for the production of libraries of gene variants. With an error rate of 1/300, about 0.7% of the clones in a 1500 base pair gene will be correct. As most of the errors from oligonucleotide synthesis result in frame-shift mutations, over 99% of the clones in such a library will not produce a full-length protein. Reducing the error rate by 75% would increase the fraction of clones that are correct by a factor of 40. The methods and compositions of the disclosure allow for fast de novo synthesis of large oligonucleotide and gene libraries with error rates that are lower than commonly observed gene synthesis methods both due to the improved quality of synthesis and the applicability of error correction methods that are enabled in a massively parallel and time-efficient manner. Accordingly, libraries may be synthesized with base insertion, deletion, substitution, or total error rates that are under 1/300, 1/400, 1/500, 1/600, 1/700, 1/800, 1/900, 1/1000, 1/1250, 1/1500, 1/2000, 1/2500, 1/3000, 1/4000, 1/5000, 1/6000, 1/7000, 1/8000, 1/9000, 1/10000, 1/12000, 1/15000, 1/20000, 1/25000, 1/30000, 1/40000, 1/50000, 1/60000, 1/70000, 1/80000, 1/90000, 1/100000, 1/125000, 1/150000, 1/200000, 1/300000, 1/400000, 1/500000, 1/600000, 1/700000, 1/800000, 1/900000, 1/1000000, or less, across the library, or across more than 80%, 85%, 90%, 93%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.8%, 99.9%, 99.95%, 99.98%, 99.99%, or more of the library. The methods and compositions of the disclosure further relate to large synthetic oligonucleotide and gene libraries with low error rates associated with at least 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 93%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.8%, 99.9%, 99.95%, 99.98%, 99.99%, or more of the oligonucleotides or genes in at least a subset of the library to relate to error free sequences in comparison to a predetermined/preselected sequence. In some instances, at least 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 93%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.8%, 99.9%, 99.95%, 99.98%, 99.99%, or more of the oligonucleotides or genes in an isolated volume within the library have the same sequence. In some instances, at least 30%, 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 93%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.8%, 99.9%, 99.95%, 99.98%, 99.99%, or more of any oligonucleotides or genes related with more than 95%, 96%, 97%, 98%, 99%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9% or more similarity or identity have the same sequence. In some instances, the error rate related to a specified locus on an oligonucleotide or gene is optimized. Thus, a given locus or a plurality of selected loci of one or more oligonucleotides or genes as part of a large library may each have an error rate that is less than 1/300, 1/400, 1/500, 1/600, 1/700, 1/800, 1/900, 1/1000, 1/1250, 1/1500, 1/2000, 1/2500, 1/3000, 1/4000, 1/5000, 1/6000, 1/7000, 1/8000, 1/9000, 1/10000, 1/12000, 1/15000, 1/20000, 1/25000, 1/30000, 1/40000, 1/50000, 1/60000, 1/70000, 1/80000, 1/90000, 1/100000, 1/125000, 1/150000, 1/200000, 1/300000, 1/400000, 1/500000, 1/600000, 1/700000, 1/800000, 1/900000, 1/1000000, or less. In various instances, such error optimized loci may comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 30000, 50000, 75000, 100000, 500000, 1000000, 2000000, 3000000 or more loci. The error optimized loci may be distributed to at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 30000, 75000, 100000, 500000, 1000000, 2000000, 3000000 or more oligonucleotides or genes.
The error rates can be achieved with or without error correction. The error rates can be achieved across the library, or across more than 80%, 85%, 90%, 93%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.8%, 99.9%, 99.95%, 99.98%, 99.99%, or more of the library.
Provided herein are structures that may comprise a surface that supports the synthesis of a plurality of oligonucleic acids having different predetermined sequences at addressable locations on a common support. In some instances, a device provides support for the synthesis of more than 2,000; 5,000; 10,000; 20,000; 30,000; 50,000; 75,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; 10,000,000 or more non-identical oligonucleic acids. In some instances, the device provides support for the synthesis of more than 2,000; 5,000; 10,000; 20,000; 30,000; 50,000; 75,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; 10,000,000 or more oligonucleic acids encoding for distinct sequences. In some instances, at least a portion of the oligonucleic acids have an identical sequence or are configured to be synthesized with an identical sequence.
Provided herein are methods and devices for manufacture and growth of oligonucleic acids about 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, or 2000 bases in length. In some instances, the length of the oligonucleic acid formed is about 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 125, 150, 175, 200, or 225 bases in length. An oligonucleic acid may be at least 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 bases in length. An oligonucleic acid may be from 10 to 225 bases in length, from 12 to 100 bases in length, from 20 to 150 bases in length, from 20 to 130 bases in length, or from 30 to 100 bases in length.
In some instances, oligonucleic acids are synthesized on distinct loci of a substrate, wherein each locus supports the synthesis of a population of oligonucleic acids. In some instances, each locus supports the synthesis of a population of oligonucleic acids having a different sequence than a population of oligonucleic acids grown on another locus. In some instances, the loci of a device are located within a plurality of clusters. In some instances, a device comprises at least 10, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000, 14000, 15000, 20000, 30000, 40000, 50000 or more clusters. In some instances, a device comprises more than 2,000; 5,000; 10,000; 100,000; 200,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,100,000; 1,200,000; 1,300,000; 1,400,000; 1,500,000; 1,600,000; 1,700,000; 1,800,000; 1,900,000; 2,000,000; 300,000; 400,000; 500,000; 600,000; 700,000; 800,000; 900,000; 1,000,000; 1,200,000; 1,400,000; 1,600,000; 1,800,000; 2,000,000; 2,500,000; 3,000,000; 3,500,000; 4,000,000; 4,500,000; 5,000,000; or 10,000,000 or more distinct loci. In some instances, a device comprises about 10,000 distinct loci. The amount of loci within a single cluster is varied in different instances. In some instances, each cluster includes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 130, 150, 200, 300, 400, 500 or more loci. In some instances, each cluster includes about 50-500 loci. In some instances, each cluster includes about 100-200 loci. In some instances, each cluster includes about 100-150 loci. In some instances, each cluster includes about 109, 121, 130 or 137 loci. In some instances, each cluster includes about 19, 20, 61, 64 or more loci.
The number of distinct oligonucleic acids synthesized on a device may be dependent on the number of distinct loci available in the substrate. In some instances, the density of loci within a cluster of a device is at least or about 1 locus per mm2, 10 loci per mm2, 25 loci per mm2, 50 loci per mm2, 65 loci per mm2, 75 loci per mm2, 100 loci per mm2, 130 loci per mm2, 150 loci per mm2, 175 loci per mm2, 200 loci per mm2, 300 loci per mm2, 400 loci per mm2, 500 loci per mm2, 1,000 loci per mm2 or more. In some instances, a device comprises from about 10 loci per mm2 to about 500 mm2, from about 25 loci per mm2 to about 400 mm2, from about 50 loci per mm2 to about 500 mm2, from about 100 loci per mm2 to about 500 mm2, from about 150 loci per mm2 to about 500 mm2, from about 10 loci per mm2 to about 250 mm2, from about 50 loci per mm2 to about 250 mm2, from about 10 loci per mm2 to about 200 mm2, or from about 50 loci per mm2 to about 200 mm2. In some instances, the distance from the centers of two adjacent loci within a cluster is from about 10 um to about 500 um, from about 10 um to about 200 um, or from about 10 um to about 100 um. In some instances, the distance from two centers of adjacent loci is greater than about 10 um, 20 um, 30 um, 40 um, 50 um, 60 um, 70 um, 80 um, 90 um or 100 um. In some instances, the distance from the centers of two adjacent loci is less than about 200 um, 150 um, 100 um, 80 um, 70 um, 60 um, 50 um, 40 um, 30 um, 20 um or 10 um. In some instances, each locus has a width of about 0.5 um, 1 um, 2 um, 3 um, 4 um, 5 um, 6 um, 7 um, 8 um, 9 um, 10 um, 20 um, 30 um, 40 um, 50 um, 60 um, 70 um, 80 um, 90 um or 100 um. In some instances, the each locus is has a width of about 0.5 um to 100 um, about 0.5 um to 50 um, about 10 um to 75 um, or about 0.5 um to 50 um.
In some instances, the density of clusters within a device is at least or about 1 cluster per 100 mm2, 1 cluster per 10 mm2, 1 cluster per 5 mm2, 1 cluster per 4 mm2, 1 cluster per 3 mm2, 1 cluster per 2 mm2, 1 cluster per 1 mm2, 2 clusters per 1 mm2, 3 clusters per 1 mm2, 4 clusters per 1 mm2, 5 clusters per 1 mm2, 10 clusters per 1 mm2, 50 clusters per 1 mm2 or more. In some instances, a device comprises from about 1 cluster per 10 mm2 to about 10 clusters per 1 mm2. In some instances, the distance from the centers of two adjacent clusters is less than about 50 um, 100 um, 200 um, 500 um, 1000 um, or 2000 um or 5000 um. In some instances, the distance from the centers of two adjacent clusters is from about 50 um and about 100 um, from about 50 um and about 200 um, from about 50 um and about 300 um, from about 50 um and about 500 um, and from about 100 um to about 2000 um. In some instances, the distance from the centers of two adjacent clusters is from about 0.05 mm to about 50 mm, from about 0.05 mm to about 10 mm, from about 0.05 mm and about 5 mm, from about 0.05 mm and about 4 mm, from about 0.05 mm and about 3 mm, from about 0.05 mm and about 2 mm, from about 0.1 mm and 10 mm, from about 0.2 mm and 10 mm, from about 0.3 mm and about 10 mm, from about 0.4 mm and about 10 mm, from about 0.5 mm and 10 mm, from about 0.5 mm and about 5 mm, or from about 0.5 mm and about 2 mm. In some instances, each cluster has a diameter or width along one dimension of about 0.5 to 2 mm, about 0.5 to 1 mm, or about 1 to 2 mm. In some instances, each cluster has a diameter or width along one dimension of about 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 or 2 mm. In some instances, each cluster has an interior diameter or width along one dimension of about 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.15, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 or 2 mm.
A device may be about the size of a standard 96 well plate, for example from about 100 and 200 mm by from about 50 and 150 mm. In some instances, a device has a diameter less than or equal to about 1000 mm, 500 mm, 450 mm, 400 mm, 300 mm, 250 nm, 200 mm, 150 mm, 100 mm or 50 mm. In some instances, the diameter of a device is from about 25 mm and 1000 mm, from about 25 mm and about 800 mm, from about 25 mm and about 600 mm, from about 25 mm and about 500 mm, from about 25 mm and about 400 mm, from about 25 mm and about 300 mm, or from about 25 mm and about 200. Non-limiting examples of device size include about 300 mm, 200 mm, 150 mm, 130 mm, 100 mm, 76 mm, 51 mm and 25 mm. In some instances, a device has a planar surface area of at least about 100 mm2; 200 mm2; 500 mm2; 1,000 mm2; 2,000 mm2; 5,000 mm2; 10,000 mm2; 12,000 mm2; 15,000 mm2; 20,000 mm2; 30,000 mm2; 40,000 mm2; 50,000 mm2 or more. In some instances, the thickness of a device is from about 50 mm and about 2000 mm, from about 50 mm and about 1000 mm, from about 100 mm and about 1000 mm, from about 200 mm and about 1000 mm, or from about 250 mm and about 1000 mm. Non-limiting examples of device thickness include 275 mm, 375 mm, 525 mm, 625 mm, 675 mm, 725 mm, 775 mm and 925 mm. In some instances, the thickness of a device varies with diameter and depends on the composition of the substrate. For example, a device comprising materials other than silicon has a different thickness than a silicon device of the same diameter. Device thickness may be determined by the mechanical strength of the material used and the device must be thick enough to support its own weight without cracking during handling. In some instances, a structure comprises a plurality of devices described herein.
Surface Materials
Substrates, devices and reactors provided herein are fabricated from any variety of materials suitable for the methods and compositions described herein. In certain instances, device materials are fabricated to exhibit a low level of nucleotide binding. In some instances, device materials are modified to generate distinct surfaces that exhibit a high level of nucleotide binding. In some instances, device materials are transparent to visible and/or UV light. In some instances, device materials are sufficiently conductive, e.g., are able to form uniform electric fields across all or a portion of a substrate. In some instances, conductive materials are connected to an electric ground. In some instances, the device is heat conductive or insulated. In some instances, the materials are chemical resistant and heat resistant to support chemical or biochemical reactions, for example oligonucleic acid synthesis reaction processes. In some instances, a device comprises flexible materials. Flexible materials include, without limitation, modified nylon, unmodified nylon, nitrocellulose, polypropylene, and the like. In some instances, a device comprises rigid materials. Rigid materials include, without limitation, glass, fuse silica, silicon, silicon dioxide, silicon nitride, plastics (for example, polytetraflouroethylene, polypropylene, polystyrene, polycarbonate, and blends thereof, and the like), and metals (for example, gold, platinum, and the like). In some instances, a device is fabricated from a material comprising silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, polydimethylsiloxane (PDMS), glass, or any combination thereof. In some instances, a device is manufactured with a combination of materials listed herein or any other suitable material known in the art.
Surface Architecture
Provided herein are devices comprising raised and/or lowered features. One benefit of having such features is an increase in surface area to support oligonucleic acid synthesis. In some instances, a device having raised and/or lowered features is referred to as a three-dimensional substrate. In some instances, a three-dimensional device comprises one or more channels. In some instances, one or more loci comprise a channel. In some instances, the channels are accessible to reagent deposition via a deposition device such as an oligonucleic acid synthesizer. In some instances, reagents and/or fluids collect in a larger well in fluid communication one or more channels. For example, a device comprises a plurality of channels corresponding to a plurality of loci with a cluster, and the plurality of channels are in fluid communication with one well of the cluster. In some methods, a library of oligonucleic acids is synthesized in a plurality of loci of a cluster.
In some instances, the structure is configured to allow for controlled flow and mass transfer paths for oligonucleic acid synthesis on a surface. In some instances, the configuration of a device allows for the controlled and even distribution of mass transfer paths, chemical exposure times, and/or wash efficacy during oligonucleic acid synthesis. In some instances, the configuration of a device allows for increased sweep efficiency, for example by providing sufficient volume for a growing an oligonucleic acid such that the excluded volume by the growing oligonucleic acid does not take up more than 50, 45, 40, 35, 30, 25, 20, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1%, or less of the initially available volume that is available or suitable for growing the oligonucleic acid. In some instances, a three-dimensional structure allows for managed flow of fluid to allow for the rapid exchange of chemical exposure.
Provided herein are methods to synthesize an amount of DNA of 1 fM, 5 fM, 10 fM, 25 fM, 50 fM, 75 fM, 100 fM, 200 fM, 300 fM, 400 fM, 500 fM, 600 fM, 700 fM, 800 fM, 900 fM, 1 pM, 5 pM, 10 pM, 25 pM, 50 pM, 75 pM, 100 pM, 200 pM, 300 pM, 400 pM, 500 pM, 600 pM, 700 pM, 800 pM, 900 pM, or more. In some instances, an oligonucleotide library may span the length of about 1% 2%, 3%, 4%, 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100% of a gene. A gene may be varied up to about 1%, 2%, 3%, 4% , 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, or 100%.
Non-identical oligonucleic acids may collectively encode a sequence for at least 1%, 2% 3%, 4%, 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, or 100% of a gene. In some instances, an oligonucleic acid may encode a sequence of 50%, 60% , 70%, 80%, 85%, 90%, 95%, or more of a gene. In some instances, an oligonucleic acid may encode a sequence of 80%, 85%, 90%, 95%, or more of a gene.
In some instances, segregation is achieved by physical structure. In some instances, segregation is achieved by differential functionalization of the surface generating active and passive regions for oligonucleic acid synthesis. Differential functionalization is also be achieved by alternating the hydrophobicity across the device surface, thereby creating water contact angle effects that cause beading or wetting of the deposited reagents. Employing larger structures can decrease splashing and cross-contamination of distinct oligonucleic acid synthesis locations with reagents of the neighboring spots. In some instances, a device, such as an oligonucleic acid synthesizer, is used to deposit reagents to distinct oligonucleic acid synthesis locations. Substrates having three-dimensional features are configured in a manner that allows for the synthesis of a large number of oligonucleic acids (e.g., more than about 10,000) with a low error rate (e.g., less than about 1:500, 1:1000, 1:1500, 1:2,000; 1:3,000; 1:5,000; or 1:10,000). In some instances, a device comprises features with a density of about or greater than about 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400 or 500 features per mm2.
A well of a device may have the same or different width, height, and/or volume as another well of the substrate. A channel of a device may have the same or different width, height, and/or volume as another channel of the substrate. In some instances, the width of a cluster is from about 0.05 mm to about 50 mm, from about 0.05 mm to about 10 mm, from about 0.05 mm and about 5 mm, from about 0.05 mm and about 4 mm, from about 0.05 mm and about 3 mm, from about 0.05 mm and about 2 mm, from about 0.05 mm and about 1 mm, from about 0.05 mm and about 0.5 mm, from about 0.05 mm and about 0.1 mm, from about 0.1 mm and 10 mm, from about 0.2 mm and 10 mm, from about 0.3 mm and about 10 mm, from about 0.4 mm and about 10 mm, from about 0.5 mm and 10 mm, from about 0.5 mm and about 5 mm, or from about 0.5 mm and about 2 mm. In some instances, the width of a well comprising a cluster is from about 0.05 mm to about 50 mm, from about 0.05 mm to about 10 mm, from about 0.05 mm and about 5 mm, from about 0.05 mm and about 4 mm, from about 0.05 mm and about 3 mm, from about 0.05 mm and about 2 mm, from about 0.05 mm and about 1 mm, from about 0.05 mm and about 0.5 mm, from about 0.05 mm and about 0.1 mm, from about 0.1 mm and 10 mm, from about 0.2 mm and 10 mm, from about 0.3 mm and about 10 mm, from about 0.4 mm and about 10 mm, from about 0.5 mm and 10 mm, from about 0.5 mm and about 5 mm, or from about 0.5 mm and about 2 mm. In some instances, the width of a cluster is less than or about 5 mm, 4 mm, 3 mm, 2 mm, 1 mm, 0.5 mm, 0.1 mm, 0.09 mm, 0.08 mm, 0.07 mm, 0.06 mm or 0.05 mm. In some instances, the width of a cluster is from about 1.0 and 1.3 mm. In some instances, the width of a cluster is about 1.150 mm. In some instances, the width of a well is less than or about 5 mm, 4 mm, 3 mm, 2 mm, 1 mm, 0.5 mm, 0.1 mm, 0.09 mm, 0.08 mm, 0.07 mm, 0.06 mm or 0.05 mm. In some instances, the width of a well is from about 1.0 and 1.3 mm. In some instances, the width of a well is about 1.150 mm. In some instances, the width of a cluster is about 0.08 mm. In some instances, the width of a well is about 0.08 mm. The width of a cluster may refer to clusters within a two-dimensional or three-dimensional substrate.
In some instances, the height of a well is from about 20 um to about 1000 um, from about 50 um to about 1000 um, from about 100 um to about 1000 um, from about 200 um to about 1000 um, from about 300 um to about 1000 um, from about 400 um to about 1000 um, or from about 500 um to about 1000 um. In some instances, the height of a well is less than about 1000 um, less than about 900 um, less than about 800 um, less than about 700 um, or less than about 600 um.
In some instances, a device comprises a plurality of channels corresponding to a plurality of loci within a cluster, wherein the height or depth of a channel is from about 5 um to about 500 um, from about 5 um to about 400 um, from about 5 um to about 300 um, from about 5 um to about 200 um, from about 5 um to about 100 um, from about 5 um to about 50 um, or from about 10 um to about 50 um. In some instances, the height of a channel is less than 100 um, less than 80 um, less than 60 um, less than 40 um or less than 20 um.
In some instances, the diameter of a channel, locus (e.g., in a substantially planar substrate) or both channel and locus (e.g., in a three-dimensional device wherein a locus corresponds to a channel) is from about 1 um to about 1000 um, from about 1 um to about 500 um, from about 1 um to about 200 um, from about 1 um to about 100 um, from about 5 um to about 100 um, or from about 10 um to about 100 um, for example, about 90 um, 80 um, 70 um, 60 um, 50 um, 40 um, 30 um, 20 um or 10 um. In some instances, the diameter of a channel, locus, or both channel and locus is less than about 100 um, 90 um, 80 um, 70 um, 60 um, 50 um, 40 um, 30 um, 20 um or 10 um. In some instances, the distance from the center of two adjacent channels, loci, or channels and loci is from about 1 um to about 500 um, from about 1 um to about 200 um, from about 1 um to about 100 um, from about 5 um to about 200 um, from about 5 um to about 100 um, from about 5 um to about 50 um, or from about 5 um to about 30 um, for example, about 20 um.
Surface Modifications
In various instances, surface modifications are employed for the chemical and/or physical alteration of a surface by an additive or subtractive process to change one or more chemical and/or physical properties of a device surface or a selected site or region of a device surface. For example, surface modifications include, without limitation, (1) changing the wetting properties of a surface, (2) functionalizing a surface, i.e., providing, modifying or substituting surface functional groups, (3) defunctionalizing a surface, i.e., removing surface functional groups, (4) otherwise altering the chemical composition of a surface, e.g., through etching, (5) increasing or decreasing surface roughness, (6) providing a coating on a surface, e.g., a coating that exhibits wetting properties that are different from the wetting properties of the surface, and/or (7) depositing particulates on a surface.
In some instances, the addition of a chemical layer on top of a surface (referred to as adhesion promoter) facilitates structured patterning of loci on a surface of a substrate. Exemplary surfaces for application of adhesion promotion include, without limitation, glass, silicon, silicon dioxide and silicon nitride. In some instances, the adhesion promoter is a chemical with a high surface energy. In some instances, a second chemical layer is deposited on a surface of a substrate. In some instances, the second chemical layer has a low surface energy. In some instances, surface energy of a chemical layer coated on a surface supports localization of droplets on the surface. Depending on the patterning arrangement selected, the proximity of loci and/or area of fluid contact at the loci are alterable.
In some instances, a device surface, or resolved loci, onto which nucleic acids or other moieties are deposited, e.g., for oligonucleic acid synthesis, are smooth or substantially planar (e.g., two-dimensional) or have irregularities, such as raised or lowered features (e.g., three-dimensional features). In some instances, a device surface is modified with one or more different layers of compounds. Such modification layers of interest include, without limitation, inorganic and organic layers such as metals, metal oxides, polymers, small organic molecules and the like. Non-limiting polymeric layers include peptides, proteins, nucleic acids or mimetics thereof (e.g., peptide nucleic acids and the like), polysaccharides, phospholipids, polyurethanes, polyesters, polycarbonates, polyureas, polyamides, polyetheyleneamines, polyarylene sulfides, polysiloxanes, polyimides, polyacetates, and any other suitable compounds described herein or otherwise known in the art. In some instances, polymers are heteropolymeric. In some instances, polymers are homopolymeric. In some instances, polymers comprise functional moieties or are conjugated.
In some instances, resolved loci of a device are functionalized with one or more moieties that increase and/or decrease surface energy. In some instances, a moiety is chemically inert. In some instances, a moiety is configured to support a desired chemical reaction, for example, one or more processes in an oligonucleic acid synthesis reaction. The surface energy, or hydrophobicity, of a surface is a factor for determining the affinity of a nucleotide to attach onto the surface. In some instances, a method for device functionalization may comprise: (a) providing a device having a surface that comprises silicon dioxide; and (b) silanizing the surface using, a suitable silanizing agent described herein or otherwise known in the art, for example, an organofunctional alkoxysilane molecule.
In some instances, the organofunctional alkoxysilane molecule comprises dimethylchloro-octodecyl-silane, methyldichloro-octodecyl-silane, trichloro-octodecyl-silane, trimethyl-octodecyl-silane, triethyl-octodecyl-silane, or any combination thereof. In some instances, a device surface comprises functionalized with polyethylene/polypropylene (functionalized by gamma irradiation or chromic acid oxidation, and reduction to hydroxyalkyl surface), highly crosslinked polystyrene-divinylbenzene (derivatized by chloromethylation, and aminated to benzylamine functional surface), nylon (the terminal aminohexyl groups are directly reactive), or etched with reduced polytetrafluoroethylene. Other methods and functionalizing agents are described in U.S. Pat. No. 5474796, which is herein incorporated by reference in its entirety.
In some instances, a device surface is functionalized by contact with a derivatizing composition that contains a mixture of silanes, under reaction conditions effective to couple the silanes to the device surface, typically via reactive hydrophilic moieties present on the device surface. Silanization generally covers a surface through self-assembly with organofunctional alkoxysilane molecules.
A variety of siloxane functionalizing reagents can further be used as currently known in the art, e.g., for lowering or increasing surface energy. The organofunctional alkoxysilanes can be classified according to their organic functions.
Provided herein are devices that may contain patterning of agents capable of coupling to a nucleoside. In some instances, a device may be coated with an active agent. In some instances, a device may be coated with a passive agent. Exemplary active agents for inclusion in coating materials described herein includes, without limitation, N-(3-triethoxysilylpropyl)-4-hydroxybutyramide (HAPS), 11-acetoxyundecyltriethoxysilane, n-decyltriethoxysilane, (3-aminopropyl)trimethoxysilane, (3-aminopropyl)triethoxysilane, 3-glycidoxypropyltrimethoxysilane (GOPS), 3-iodo-propyltrimethoxysilane, butyl-aldehydr-trimethoxysilane, dimeric secondary aminoalkyl siloxanes, (3-aminopropyl)-diethoxy-methylsilane, (3-aminopropyl)-dimethyl-ethoxysilane, and (3-aminopropyl)-trimethoxysilane, (3-glycidoxypropyl)-dimethyl-ethoxysilane, glycidoxy-trimethoxysilane, (3-mercaptopropyl)-trimethoxysilane, 3-4 epoxycyclohexyl-ethyltrimethoxysilane, and (3-mercaptopropyl)-methyl-dimethoxysilane, ally! trichlorochlorosilane, 7-oct-1-enyl trichlorochlorosilane, or bis (3-trimethoxysilylpropyl) amine.
Exemplary passive agents for inclusion in a coating material described herein includes, without limitation, perfluorooctyltrichlorosilane; tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane; 1H, 1H, 2H, 2H-fluorooctyltriethoxysilane (FOS); trichloro(1H, 1H, 2H, 2H-perfluorooctyl)silane; tert-butyl45-fluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-y)indol-1-yl1-dimethyl-silane; CYTOP™; Fluorinert™; perfluoroctyltrichlorosilane (PFOTCS); perfluorooctyldimethylchlorosilane (PFODCS); perfluorodecyltriethoxysilane (PFDTES); pentafluorophenyl-dimethylpropylchloro-silane (PFPTES); perfluorooctyltriethoxysilane; perfluorooctyltrimethoxysilane; octylchlorosilane; dimethylchloro-octodecyl-silane; methyldichloro-octodecyl-silane; trichloro-octodecyl-silane; trimethyl-octodecyl-silane; triethyl-octodecyl-silane; or octadecyltrichlorosilane.
In some instances, a functionalization agent comprises a hydrocarbon silane such as octadecyltrichlorosilane. In some instances, the functionalizing agent comprises 11-acetoxyundecyltriethoxysilane, n-decyltriethoxysilane, (3-aminopropyl)trimethoxysilane, (3-aminopropyl)triethoxysilane, glycidyloxypropyl/trimethoxysilane and N-(3-triethoxysilylpropyl)-4-hydroxybutyramide.
Oligonucleotide Synthesis
Methods of the current disclosure for oligonucleic acid synthesis may include processes involving phosphoramidite chemistry. In some instances, oligonucleic acid synthesis comprises coupling a base with phosphoramidite. Oligonucleic acid synthesis may comprise coupling a base by deposition of phosphoramidite under coupling conditions, wherein the same base is optionally deposited with phosphoramidite more than once, i.e., double coupling. Oligonucleic acid synthesis may comprise capping of unreacted sites. In some instances, capping is optional. Oligonucleic acid synthesis may also comprise oxidation or an oxidation step or oxidation steps. Oligonucleic acid synthesis may comprise deblocking, detritylation, and sulfurization. In some instances, oligonucleic acid synthesis comprises either oxidation or sulfurization. In some instances, between one or each step during an oligonucleic acid synthesis reaction, the device is washed, for example, using tetrazole or acetonitrile. Time frames for any one step in a phosphoramidite synthesis method may be less than about 2 min, 1 min, 50 sec, 40 sec, 30 sec, 20 sec and 10 sec.
Oligonucleic acid synthesis using a phosphoramidite method may comprise a subsequent addition of a phosphoramidite building block (e.g., nucleoside phosphoramidite) to a growing oligonucleic acid chain for the formation of a phosphite triester linkage. Phosphoramidite oligonucleic acid synthesis proceeds in the 3′ to 5′ direction. Phosphoramidite oligonucleic acid synthesis allows for the controlled addition of one nucleotide to a growing nucleic acid chain per synthesis cycle. In some instances, each synthesis cycle comprises a coupling step. Phosphoramidite coupling involves the formation of a phosphite triester linkage between an activated nucleoside phosphoramidite and a nucleoside bound to the substrate, for example, via a linker. In some instances, the nucleoside phosphoramidite is provided to the device activated. In some instances, the nucleoside phosphoramidite is provided to the device with an activator. In some instances, nucleoside phosphoramidites are provided to the device in a 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100-fold excess or more over the substrate-bound nucleosides. In some instances, the addition of nucleoside phosphoramidite is performed in an anhydrous environment, for example, in anhydrous acetonitrile. Following addition of a nucleoside phosphoramidite, the device is optionally washed. In some instances, the coupling step is repeated one or more additional times, optionally with a wash step between nucleoside phosphoramidite additions to the substrate. In some instances, an oligonucleic acid synthesis method used herein comprises 1, 2, 3 or more sequential coupling steps. Prior to coupling, in many cases, the nucleoside bound to the device is de-protected by removal of a protecting group, where the protecting group functions to prevent polymerization. A common protecting group is 4,4′-dimethoxytrityl (DMT).
Following coupling, phosphoramidite oligonucleic acid synthesis methods optionally comprise a capping step. In a capping step, the growing oligonucleic acid is treated with a capping agent. A capping step is useful to block unreacted substrate-bound 5′-OH groups after coupling from further chain elongation, preventing the formation of oligonucleic acids with internal base deletions. Further, phosphoramidites activated with 1H-tetrazole may react, to a small extent, with the O6 position of guanosine. Without being bound by theory, upon oxidation with I2 /water, this side product, possibly via O6-N7 migration, may undergo depurination. The apurinic sites may end up being cleaved in the course of the final deprotection of the oligonucleotide thus reducing the yield of the full-length product. The O6 modifications may be removed by treatment with the capping reagent prior to oxidation with I2/water. In some instances, inclusion of a capping step during oligonucleic acid synthesis decreases the error rate as compared to synthesis without capping. As an example, the capping step comprises treating the substrate-bound oligonucleic acid with a mixture of acetic anhydride and 1-methylimidazole. Following a capping step, the device is optionally washed.
In some instances, following addition of a nucleoside phosphoramidite, and optionally after capping and one or more wash steps, the device bound growing nucleic acid is oxidized. The oxidation step comprises the phosphite triester is oxidized into a tetracoordinated phosphate triester, a protected precursor of the naturally occurring phosphate diester internucleoside linkage. In some instances, oxidation of the growing oligonucleic acid is achieved by treatment with iodine and water, optionally in the presence of a weak base (e.g., pyridine, lutidine, collidine). Oxidation may be carried out under anhydrous conditions using, e.g. tert-Butyl hydroperoxide or (1S)-(+)-(10-camphorsulfonyl)-oxaziridine (CSO). In some methods, a capping step is performed following oxidation. A second capping step allows for device drying, as residual water from oxidation that may persist can inhibit subsequent coupling. Following oxidation, the device and growing oligonucleic acid is optionally washed. In some instances, the step of oxidation is substituted with a sulfurization step to obtain oligonucleotide phosphorothioates, wherein any capping steps can be performed after the sulfurization. Many reagents are capable of the efficient sulfur transfer, including but not limited to 3-(Dimethylaminomethylidene)amino)-3H-1,2,4-dithiazole-3-thione, DDTT, 3H-1,2-benzodithiol-3-one 1,1-dioxide, also known as Beaucage reagent, and N,N,N′N′-Tetraethylthiuram disulfide (TETD).
In order for a subsequent cycle of nucleoside incorporation to occur through coupling, the protected 5′ end of the device bound growing oligonucleic acid is removed so that the primary hydroxyl group is reactive with a next nucleoside phosphoramidite. In some instances, the protecting group is DMT and deblocking occurs with trichloroacetic acid in dichloromethane. Conducting detritylation for an extended time or with stronger than recommended solutions of acids may lead to increased depurination of solid support-bound oligonucleotide and thus reduces the yield of the desired full-length product. Methods and compositions of the disclosure described herein provide for controlled deblocking conditions limiting undesired depurination reactions. In some instances, the device bound oligonucleic acid is washed after deblocking. In some instances, efficient washing after deblocking contributes to synthesized oligonucleic acids having a low error rate.
Methods for the synthesis of oligonucleic acids typically involve an iterating sequence of the following steps: application of a protected monomer to an actively functionalized surface (e.g., locus) to link with either the activated surface, a linker or with a previously deprotected monomer; deprotection of the applied monomer so that it is reactive with a subsequently applied protected monomer; and application of another protected monomer for linking. One or more intermediate steps include oxidation or sulfurization. In some instances, one or more wash steps precede or follow one or all of the steps.
Methods for phosphoramidite-based oligonucleic acid synthesis comprise a series of chemical steps. In some instances, one or more steps of a synthesis method involve reagent cycling, where one or more steps of the method comprise application to the device of a reagent useful for the step. For example, reagents are cycled by a series of liquid deposition and vacuum drying steps. For substrates comprising three-dimensional features such as wells, microwells, channels and the like, reagents are optionally passed through one or more regions of the device via the wells and/or channels.
Methods and systems described herein relate to oligonucleotide synthesis devices for the synthesis of oligonucleotides. The synthesis may be in parallel. For example at least or about at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 1000, 10000, 50000, 75000, 100000 or more oligonucleotides can be synthesized in parallel. The total number oligonucleic acids that may be synthesized in parallel may be from 2-100000, 3-50000, 4-10000, 5-1000, 6-900, 7-850, 8-800, 9-750, 10-700, 11-650, 12-600, 13-550, 14-500, 15-450, 16-400, 17-350, 18-300, 19-250, 20-200, 21-150,22-100, 23-50, 24-45, 25-40, 30-35. Those of skill in the art appreciate that the total number of oligonucleotides synthesized in parallel may fall within any range bound by any of these values, for example 25-100. The total number of oligonucleotides synthesized in parallel may fall within any range defined by any of the values serving as endpoints of the range. Total molar mass of oligonucleotides synthesized within the device or the molar mass of each of the oligonucleotides may be at least or at least about 10, 20, 30, 40, 50, 100, 250, 500, 750, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 25000, 50000, 75000, 100000 picomoles, or more. The length of each of the oligonucleotides or average length of the oligonucleotides within the device may be at least or about at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 150, 200, 300, 400, 500 nucleotides, or more. The length of each of the oligonucleotides or average length of the oligonucleotides within the device may be at most or about at most 500, 400, 300, 200, 150, 100, 50, 45, 35, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10 nucleotides, or less. The length of each of the oligonucleotides or average length of the oligonucleotides within the device may fall from 10-500, 9-400, 11-300, 12-200, 13-150, 14-100, 15-50, 16-45, 17-40, 18-35, 19-25. Those of skill in the art appreciate that the length of each of the oligonucleotides or average length of the oligonucleotides within the device may fall within any range bound by any of these values, for example 100-300. The length of each of the oligonucleotides or average length of the oligonucleotides within the device may fall within any range defined by any of the values serving as endpoints of the range.
Methods for oligonucleic acid synthesis on a surface provided herein allow for synthesis at a fast rate. As an example, at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 125, 150, 175, 200 nucleotides per hour, or more are synthesized. Nucleotides include adenine, guanine, thymine, cytosine, uridine building blocks, or analogs/modified versions thereof. In some instances, libraries of oligonucleic acids are synthesized in parallel on substrate. For example, a device comprising about or at least about 100; 1,000; 10,000; 30,000; 75,000; 100,000; 1,000,000; 2,000,000; 3,000,000; 4,000,000; or 5,000,000 resolved loci is able to support the synthesis of at least the same number of distinct oligonucleic acids, wherein oligonucleic acid encoding a distinct sequence is synthesized on a resolved locus. In some instances, a library of oligonucleic acids are synthesized on a device with low error rates described herein in less than about three months, two months, one month, three weeks, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 days, 24 hours or less. In some instances, larger nucleic acids assembled from an oligonucleic acid library synthesized with low error rate using the substrates and methods described herein are prepared in less than about three months, two months, one month, three weeks, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 days, 24 hours or less.
In some instances, methods described herein provide for generation of a library of oligonucleic acids comprising variant oligonucleic acids differing at a plurality of codon sites. In some instances, an oligonucleic acid may have 1 site, 2 sites, 3 sites, 4 sites, 5 sites, 6 sites, 7 sites, 8 sites, 9 sites, 10 sites, 11 sites, 12 sites, 13 sites, 14 sites, 15 sites, 16 sites, 17 sites 18 sites, 19 sites, 20 sites, 30 sites, 40 sites, 50 sites, or more of variant codon sites.
In some instances, the one or more sites of variant codon sites may be adjacent. In some instances, the one or more sites of variant codon sites may be not be adjacent and separated by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more codons.
In some instances, an oligonucleic acid may comprise multiple sites of variant codon sites, wherein all the variant codon sites are adjacent to one another, forming a stretch of variant codon sites. In some instances, an oligonucleic acid may comprise multiple sites of variant codon sites, wherein none the variant codon sites are adjacent to one another. In some instances, an oligonucleic acid may comprise multiple sites of variant codon sites, wherein some the variant codon sites are adjacent to one another, forming a stretch of variant codon sites, and some of the variant codon sites are not adjacent to one another.
Referring to the Figures,
Once large oligonucleic acids for generation are selected, a predetermined library of oligonucleic acids is designed for de novo synthesis. Various suitable methods are known for generating high density oligonucleic acid arrays. In the workflow example, a device surface layer 1201 is provided. In the example, chemistry of the surface is altered in order to improve the oligonucleic acid synthesis process. Areas of low surface energy are generated to repel liquid while areas of high surface energy are generated to attract liquids. The surface itself may be in the form of a planar surface or contain variations in shape, such as protrusions or microwells which increase surface area. In the workflow example, high surface energy molecules selected serve a dual function of supporting DNA chemistry, as disclosed in International Patent Application Publication WO/2015/021080, which is herein incorporated by reference in its entirety.
In situ preparation of oligonucleic acid arrays is generated on a solid support and utilizes single nucleotide extension process to extend multiple oligomers in parallel. A material deposition device, such as an oligonucleic acid synthesizer, is designed to release reagents in a step wise fashion such that multiple oligonucleic acids extend, in parallel, one residue at a time to generate oligomers with a predetermined nucleic acid sequence 1202. In some instances, oligonucleic acids are cleaved from the surface at this stage. Cleavage includes gas cleavage, e.g., with ammonia or methylamine.
The generated oligonucleic acid libraries are placed in a reaction chamber. In this exemplary workflow, the reaction chamber (also referred to as “nanoreactor”) is a silicon coated well, containing PCR reagents and lowered onto the oligonucleic acid library 1203. Prior to or after the sealing 1204 of the oligonucleic acids, a reagent is added to release the oligonucleic acids from the substrate. In the exemplary workflow, the oligonucleic acids are released subsequent to sealing of the nanoreactor 1205. Once released, fragments of single stranded oligonucleic acids hybridize in order to span an entire long range sequence of DNA. Partial hybridization 1205 is possible because each synthesized oligonucleic acid is designed to have a small portion overlapping with at least one other oligonucleic acid in the pool.
After hybridization, a PCA reaction is commenced. During the polymerase cycles, the oligonucleic acids anneal to complementary fragments and gaps are filled in by a polymerase. Each cycle increases the length of various fragments randomly depending on which oligonucleic acids find each other. Complementarity amongst the fragments allows for forming a complete large span of double stranded DNA 1206.
After PCA is complete, the nanoreactor is separated from the device 1207 and positioned for interaction with a device having primers for PCR 1208. After sealing, the nanoreactor is subject to PCR 1209 and the larger nucleic acids are amplified. After PCR 1210, the nanochamber is opened 1211, error correction reagents are added 1212, the chamber is sealed 1213 and an error correction reaction occurs to remove mismatched base pairs and/or strands with poor complementarity from the double stranded PCR amplification products 1214. The nanoreactor is opened and separated 1215. Error corrected product is next subject to additional processing steps, such as PCR and molecular bar coding, and then packaged 1222 for shipment 1223.
In some instances, quality control measures are taken. After error correction, quality control steps include for example interaction with a wafer having sequencing primers for amplification of the error corrected product 1216, sealing the wafer to a chamber containing error corrected amplification product 1217, and performing an additional round of amplification 1218. The nanoreactor is opened 1219 and the products are pooled 1220 and sequenced 1221. After an acceptable quality control determination is made, the packaged product 1222 is approved for shipment 1223.
In some instances, a nucleic acid generate by a workflow such as that in
Computer Systems
Any of the systems described herein, may be operably linked to a computer and may be automated through a computer either locally or remotely. In various instances, the methods and systems of the disclosure may further comprise software programs on computer systems and use thereof. Accordingly, computerized control for the synchronization of the dispense/vacuum/refill functions such as orchestrating and synchronizing the material deposition device movement, dispense action and vacuum actuation are within the bounds of the disclosure. The computer systems may be programmed to interface between the user specified base sequence and the position of a material deposition device to deliver the correct reagents to specified regions of the substrate.
The computer system 1300 illustrated in
As illustrated in
Software and data are stored in external storage 1424 and can be loaded into RAM 1410 and/or cache 1404 for use by the processor. The system 1400 includes an operating system for managing system resources; non-limiting examples of operating systems include: Linux, Windows™, MACOS™, BlackBerry OS™, iOS™, and other functionally-equivalent operating systems, as well as application software running on top of the operating system for managing data storage and optimization in accordance with example instances of the present disclosure. In this example, system 1400 also includes network interface cards (NICs) 1420 and 1421 connected to the peripheral bus for providing network interfaces to external storage, such as Network Attached Storage (NAS) and other computer systems that can be used for distributed parallel processing.
The above computer architectures and systems are examples only, and a wide variety of other computer, cell phone, and personal data assistant architectures and systems can be used in connection with example instances, including systems using any combination of general processors, co-processors, FPGAs and other programmable logic devices, system on chips (SOCs), application specific integrated circuits (ASICs), and other processing and logic elements. In some instances, all or part of the computer system can be implemented in software or hardware. Any variety of data storage media can be used in connection with example instances, including random access memory, hard drives, flash memory, tape drives, disk arrays, Network Attached Storage (NAS) and other local or distributed data storage devices and systems.
In example instances, the computer system can be implemented using software modules executing on any of the above or other computer architectures and systems. In other instances, the functions of the system can be implemented partially or completely in firmware, programmable logic devices such as field programmable gate arrays (FPGAs) as referenced in
The following examples are set forth to illustrate more clearly the principle and practice of embodiments disclosed herein to those skilled in the art and are not to be construed as limiting the scope of any claimed embodiments. Unless otherwise stated, all parts and percentages are on a weight basis.
The following examples are given for the purpose of illustrating various embodiments of the disclosure and are not meant to limit the present disclosure in any fashion. The present examples, along with the methods described herein are presently representative of preferred embodiments, are exemplary, and are not intended as limitations on the scope of the disclosure. Changes therein and other uses which are encompassed within the spirit of the disclosure as defined by the scope of the claims will occur to those skilled in the art.
A device was functionalized to support the attachment and synthesis of a library of oligonucleic acids. The device surface was first wet cleaned using a piranha solution comprising 90% H2SO4 and 10% H2O2 for 20 minutes. The device was rinsed in several beakers with DI water, held under a DI water gooseneck faucet for 5 min, and dried with N2. The device was subsequently soaked in NH4OH (1:100; 3 mL:300 mL) for 5 min, rinsed with DI water using a handgun, soaked in three successive beakers with DI water for 1 min each, and then rinsed again with DI water using the handgun. The device was then plasma cleaned by exposing the device surface to O2. A SAMCO PC-300 instrument was used to plasma etch O2 at 250 watts for 1 min in downstream mode.
The cleaned device surface was actively functionalized with a solution comprising N-(3-triethoxysilylpropyl)-4-hydroxybutyramide using a YES-1224P vapor deposition oven system with the following parameters: 0.5 to 1 torr, 60 min, 70° C., 135° C. vaporizer. The device surface was resist coated using a Brewer Science 200× spin coater. SPR™ 3612 photoresist was spin coated on the device at 2500 rpm for 40 sec. The device was pre-baked for 30 min at 90° C. on a Brewer hot plate. The device was subjected to photolithography using a Karl Suss MA6 mask aligner instrument. The device was exposed for 2.2 sec and developed for 1 min in MSF 26A. Remaining developer was rinsed with the handgun and the device soaked in water for 5 min. The device was baked for 30 min at 100° C. in the oven, followed by visual inspection for lithography defects using a Nikon L200. A descum process was used to remove residual resist using the SAMCO PC-300 instrument to O2 plasma etch at 250 watts for 1 min.
The device surface was passively functionalized with a 100 μL solution of perfluorooctyltrichlorosilane mixed with 10 μL light mineral oil. The device was placed in a chamber, pumped for 10 min, and then the valve was closed to the pump and left to stand for 10 min. The chamber was vented to air. The device was resist stripped by performing two soaks for 5 min in 500 mL NMP at 70° C. with ultrasonication at maximum power (9 on Crest system). The device was then soaked for 5 min in 500 mL isopropanol at room temperature with ultrasonication at maximum power. The device was dipped in 300 mL of 200 proof ethanol and blown dry with N2. The functionalized surface was activated to serve as a support for oligonucleic acid synthesis.
A two dimensional oligonucleotide synthesis device was assembled into a flowcell, which was connected to a flowcell (Applied Biosystems (ABI394 DNA Synthesizer“). The two-dimensional oligonucleotide synthesis device was uniformly functionalized with N-(3-TRIETHOXYSILYLPROPYL)-4-HYDROXYBUTYRAMIDE (Gelest) was used to synthesize an exemplary oligonucleotide of 50 by (“50-mer oligonucleotide”) using oligonucleotide synthesis methods described herein.
The sequence of the 50-mer was as described in SEQ ID NO.: 20. 5′AGACAATCAACCATTTGGGGTGGACAGCCTTGACCTCTAGACTTCGGCAT##TTTTTTTTTT3′ (SEQ ID NO.: 20), where # denotes Thymidine-succinyl hexamide CED phosphoramidite (CLP-2244 from ChemGenes), which is a cleavable linker enabling the release of oligos from the surface during deprotection.
The synthesis was done using standard DNA synthesis chemistry (coupling, capping, oxidation, and deblocking) according to the protocol in Table 2 and an ABI synthesizer. Table 2:
The phosphoramidite/activator combination was delivered similar to the delivery of bulk reagents through the flowcell. No drying steps were performed as the environment stays “wet” with reagent the entire time.
The flow restrictor was removed from the ABI 394 synthesizer to enable faster flow. Without flow restrictor, flow rates for amidites (0.1M in ACN), Activator, (0.25M Benzoylthiotetrazole (“BTT”; 30-3070-xx from GlenResearch) in ACN), and Ox (0.02M 12 in 20% pyridine, 10% water, and 70% THF) were roughly ˜100 uL/sec, for acetonitrile (“ACN”) and capping reagents (1:1 mix of CapA and CapB, wherein CapA is acetic anhydride in THF/Pyridine and CapB is 16% 1-methylimidizole in THF), roughly ˜200 uL/sec, and for Deblock (3% dichloroacetic acid in toluene), roughly ˜300 uL/sec (compared to ˜50 uL/sec for all reagents with flow restrictor). The time to completely push out Oxidizer was observed, the timing for chemical flow times was adjusted accordingly and an extra ACN wash was introduced between different chemicals. After oligonucleotide synthesis, the chip was deprotected in gaseous ammonia overnight at 75 psi. Five drops of water were applied to the surface to recover oligonucleic acids. The recovered oligonucleic acids were then analyzed on a BioAnalyzer small RNA chip (data not shown).
The same process as described in Example 2 for the synthesis of the 50-mer sequence was used for the synthesis of a 100-mer oligonucleotide (“100-mer oligonucleotide”; 5′ CGGGATCCTTATCGTCATCGTCGTACAGATCCCGACCCATTTGCTGTCCACCAGTCAT GCTAGCCATACCATGATGATGATGATGATGAGAACCCCGCAT##TTTTTTTTTT3′, where # denotes Thymidine-succinyl hexamide CED phosphoramidite (CLP-2244 from ChemGenes); SEQ ID NO.: 21) on two different silicon chips, the first one uniformly functionalized with N-(3-TRIETHOXYSILYLPROPYL)-4-HYDROXYBUTYRAMIDE and the second one functionalized with 5/95 mix of 11-acetoxyundecyltriethoxysilane and n-decyltriethoxysilane, and the oligonucleic acids extracted from the surface were analyzed on a BioAnalyzer instrument (data not shown).
All ten samples from the two chips were further PCR amplified using a forward (5′ATGCGGGGTTCTCATCATC3; SEQ ID NO.: 22) and a reverse (5′CGGGATCCTTATCGTCATCG3; SEQ ID NO.: 23) primer in a 50uL PCR mix (25 uL NEB Q5 mastermix, 2.5 uL 10 uM Forward primer, 2.5 uL 10 uM Reverse primer, 1 uL oligonucleic acid extracted from the surface, and water up to 50 uL) using the following thermalcycling program:
98 C, 30 sec
98 C, 10 sec; 63 C, 10 sec; 72 C, 10 sec; repeat 12 cycles
72C, 2 min
The PCR products were also run on a BioAnalyzer (data not shown), demonstrating sharp peaks at the 100-mer position. Next, the PCR amplified samples were cloned, and Sanger sequenced. Table 3 summarizes the results from the Sanger sequencing for samples taken from spots 1-5 from chip 1 and for samples taken from spots 6-10 from chip 2.
Thus, the high quality and uniformity of the synthesized oligonucleotides were repeated on two chips with different surface chemistries. Overall, 89%, corresponding to 233 out of 262 of the 100-mers that were sequenced were perfect sequences with no errors.
Finally, Table 4 summarizes error characteristics for the sequences obtained from the oligonucleotides samples from spots 1-10.
Oligonucleic acid primers were de novo synthesized for use in a series of PCR reactions to generate a library of oligonucleic acid variants of a template nucleic acid, see
Oligonucleic acid synthesis was performed on a device having at least two clusters, each cluster having 121 individually addressable loci.
The inner 5′ primer 225 and the inner 3′ primer 220 were synthesized in separate clusters. The inner 5′ primer 225 was replicated 121 times, extending on 121 loci within a single cluster. For inner 3′ primer 220, each of the 19 primers of variant sequences were each extended on 6 different loci, resulting in the extension of 114 oligonucleic acids on 114 different loci.
Synthesized oligonucleic acids were cleaved from the surface of the device and transferred to a plastic vial. A first PCR reaction was performed, using fragments of the long nucleic acid sequence 235, 240 to amplify the template nucleic acid, as illustrated in
Four sets of primers, as generally shown in
Four sets of primers, as generally shown in
An example of codon variation design is provided in Table 3 for Yellow Fluorescent Protein. In this case, a single codon from a 50-mer of the sequence is varied 19 times. Variant nucleic acid sequence is indicated by bold letters. The wild type primer sequence is:
In this case, the wild type codon encodes for valine, indicated by underline in SEQ ID NO.: 1. Therefore the 19 variants below excludes a codon encoding for valine. In an alternative example, if all triplets are to be considered, then all 60 variants would be generated, including alternative sequence for the wild type codon.
De novo oligonucleic acid synthesis was performed under conditions similar to those described in Example 2. A single cluster on a device was generated which contained synthesized predetermined variants of an oligonucleic acid for 2 consecutive codon positions at a single site, each position being a codon encoding for an amino acid. In this arrangement, 19 variants/per position were generated for 2 positions with 3 replicates of each oligonucleic acid, resulting in 114 oligonucleic acids synthesized.
De novo oligonucleic acid synthesis was performed under conditions similar to those described in Example 2. A single cluster on a device was generated which contained synthesized predetermined variants of an oligonucleic acid for 2 non-consecutive codon positions, each position being a codon encoding for an amino acid. In this arrangement, 19 variants/per position were generated for 2 positions.
De novo oligonucleic acid synthesis was performed under conditions similar to those described in Example 2. A single cluster on a device was generated which contained synthesized predetermined variants of a reference oligonucleic acid for 3 consecutive codon positions. In the 3 consecutive codon position arrangement, 19 variants/per position were generated for 3 positions with 2 replicates of each oligonucleic acid, and resulted in 114 oligonucleic acids synthesized.
De novo oligonucleic acid synthesis was performed under conditions similar to those described in Example 2. A single cluster on a device was generated which contains synthesized predetermined variants of a reference oligonucleic acid for at least 3 non-consecutive codon positions. Within a predetermined region, the location of codons encoding for 3 histidine residuess were varied.
De novo oligonucleic acid synthesis was performed under conditions similar to those described in Example 2. A single cluster on a device was generated which contained synthesized predetermined variants of a reference oligonucleic acid for 1 or more codon positions in 1 or more stretches. Five positions were varied in the library. The first position encoded codons for a resultant 50/50 K/R ratio in the expressed protein; the second position encoded codons for a resultant 50/25/25 V/L/S ratio in the expressed protein, the third position encoded codons for a resultant a 50/25/25 Y/R/D ratio in the expressed protein, the fourth position encoded codons for a resultant an equal ratio for all amino acids in the expressed protein, and the fifth position encoded codons for a resultant a 75/25 G/P ratio in the expressed protein.
An oligonucleotide library is generated as in Examples 4-6 and 8-12, encoding for codon variation at a single site or multiple sites where variants are preselected at each position. The variant region encodes for at least a portion of a CDR. See, for example,
An oligonucleotide library is generated as in Examples 4-6 and 8-12, encoding for codon variation at a single site or multiple sites for each of separate regions that make up potions of an expression construct cassette, as depicted in
An oligonucleotide library is generated as in Examples 4-6 and 8-12, encoding for codon variation at a single site or multiple sites in a region encoding for at least a portion of nucleic acid. A library of oligonucleic acid variants is generated, wherein the library consists of multiple site, single position variants. See, for example,
De novo oligonucleic acid synthesis is performs under conditions similar to those described in Example 2. At least 30,000 non-identical oligonucleic acids are de novo synthesized, wherein each of the non-identical oligonucleic acids encodes for a different codon variant of an amino acid sequence. The synthesized at least 30,000 non-identical oligonucleic acids have an aggregate error rate of less than 1 in 1:000 bases compared to predetermined sequences for each of the at least 30,000 non-identical oligonucleic acids. The library is used for PCR mutagenesis of a long nucleic acid and at least 30,000 non-identical variant nucleic acids are formed.
De novo oligonucleic acid synthesis is performs under conditions similar to those described in Example 2. A single cluster on a device is generated which contained synthesized predetermined variants of a reference oligonucleic acid for 2 codon positions. In the 2 consecutive codon position arrangement, 19 variants/per position were generated for the 2 positions with 2 replicates of each oligonucleic acid, and resulted in 38 oligonucleic acids synthesized. Each variant sequence is 40 bases in length. In the same cluster, additional non-variant oligonucleic acids sequence are generated, where the additional non-variant oligonucleic acids and the variant nucleic acids collective encode for 38 variants of the coding sequence of a gene. Each of the oligonucleic acids has at least one region reverse complementary to another of the oligonucleic acids. The oligonucleic acids in the cluster are released by gaseous ammonia cleavage. A pin comprising water contacts the cluster, picks up the oligonucleic acids, and moves the oligonucleic acids to a small vial. The vial also contains DNA polymerase reagents for a polymerase cycling assembly (PCA) reaction. The oligonucleic acids anneal, gaps are filled in by an extension reaction, and resultant double-stranded DNA molecules are formed, forming a variant nucleic acid library. The variant nucleic acid library is, optionally, subjected to restriction enzyme is then ligated into expression vectors.
A plurality of expression vectors are generated as described in Examples 16 or 17. In this example, the expression vector is a HIS-tagged bacterial expression vector. The vector library is electroporated into bacterial cells and then clones are selected for expression and purification of HIS-tagged variant proteins. The variant proteins are screened for a change binding affinity to a target molecule.
Affinity is examined by methods such as using metal affinity chromatography (IMAC), where a metal ion coated resin (e.g., IDA-agarose or NTA-agarose) is used to isolate HIS-tagged proteins. Expressed His-tagged proteins can be purified and detected because the string of histidine residues binds to several types of immobilized metal ions, including nickel, cobalt and copper, under specific buffer conditions. An example binding/wash buffer consists of Tris-buffer saline (TBS) pH 7.2, containing 10-25 mM imidazole. Elution and recovery of captured His-tagged protein from an IMAC column is accomplished with a high concentration of imidazole (at least 200 mM) (the elution agent), low pH (e.g., 0.1M glycine-HCl, pH 2.5) or an excess of strong chelator (e.g., EDTA).
Alternatively, anti-His-tag antibodies are commercially available for use in assay methods involving His-tagged proteins, such as a pull-down assay to isolate His-tagged proteins or an immunoblotting assay to detect His-tagged proteins.
A plurality of expression vectors are generated as described in Examples 16 or 17. In this example, the expression vector is a GFP-tagged mammalian expression vector. Isolated clones from the library are transiently transfected into mammalian cells. Alternatively, proteins are expressed and isolated from cells containing the expression constructs, and then the proteins are delivered to cells for further measurements. Immunofluorescent assays are conducted to assess changes in cellular localization of the GFP-tagged variant expression products. FACS assays are conduct to assess changes in the conformational state of a transmembrane protein that interacts with a non-variant version of a GFP-tagged variant protein expression product. Wound healing assays are conducted to assess changes in the ability of cells expressing a GFP-tagged variant protein to invade space created by a scrape on a cell culture dish. Cells expressing GFP-tagged proteins are identified and tracked using a fluorescent light source and a camera.
A plurality of expression vectors are generated as described in Examples 16 or 17. In this example, the expression vector is a FLAG-tagged mammalian expression vector and the variant nucleic acid library encodes for peptide sequences. Primary mammalian cells are obtained from a subject suffering from a viral disorder. Alternatively, primary cells from a healthy subject are infected with a virus. Cells are plated on a series of microwell dishes. Isolated clones from the variant library are transiently transfected into the cells. Alternatively, proteins are expressed and isolated from cells containing the expression constructs, and then the proteins are delivered to cells for further measurements. Cell survival assays are performed to assess infected cells for enhanced survival associated with a variant peptide. Exemplary viruses include, without limitation, avian flu, zika virus, Hantavirus, Hepatitis C, smallpox,
One example assay is the neutral red cytotoxicity assay which uses neutral red dye, that, when added to cells, diffuses across the plasma membrane and accumulates in the acidic lysosomal compartment due to the mildly cationic properties of neutral red. Virus-induced cell degeneration leads to membrane fragmentation and loss of lysosome ATP-driven proton translocating activity. The consequent reduction of intracellular neutral red can be assessed spectrophotometrically in a multi-well plate format. Cells expressing variant peptides are scored by an increase in intracellular neutral red in a gain-of-signal color assay. Cells are assessed for peptides inhibiting virus-induced cell degeneration.
A plurality of expression vectors are generated as described in Examples 16 or 17 for the purpose of identifying expression products that result in a change in metabolic activity of a cell. In this example, the expression vectors are transferred (e.g., via transfection or transduction) into cells plated on a series of microwell dishes. Cells are then screened for one or more changes in metabolic activity. Alternatively, proteins are expressed and isolated from cells containing the expression constructs, and then the proteins are delivered to cells for measuring metabolic activity. Optionally, cells for measuring metabolic activity are treated with a toxin prior to screening for one or more changes metabolic activity. Exemplary toxins administered included, without limitation, botulinum toxin (including immunological types: A, B, C1, C2, D, E, F, and G), staphylococcus enterotoxin B, Yersinia pestis, Hepatitis C, Mustard agents, heavy metals, cyanide, endotoxin, Bacillus anthraces, zika virus, avian flu, herbicides, pesticides, mercury, organophosphates, and ricin.
The basal energy requirements are derived from the oxidation of metabolic substrates, e.g., glucose, either by oxidative phosphorylation involving the aerobic tricarboxylic acid (TCA) or Kreb's cycle or anaerobic glycolysis. When glycolysis is the major source of energy, the metabolic activity of cells can be estimated by monitoring the rate at which the cells excrete acidic products of metabolism, e.g., lactate and CO2. In the case of aerobic metabolism, the consumption of extracellular oxygen and the production of oxidative free radicals are reflective of the energy requirements of the cell. Intracellular oxidation-reduction potential can be measured by autofluorescent measurement of the NADH and NAD+. The amount of energy, e.g., heat, released by the cell is derived from analytical values for substances produced and/or consumed during metabolism which under normal settings can be predicted from the amount of oxygen consumed (e.g., 4.8 kcal/l O2). The coupling between heat production and oxygen utilization can be disturbed by toxins. Direct microcalorimetry measures the temperature rise of a thermally isolated sample. Thus when combined with measurements of oxygen consumption calorimetry can be used to detect the uncoupling activity of toxins.
Various methods and devices are known in the art for measuring changes in various marker of metabolic activity. For example, such methods, devices, and markers are discussed in U.S. Pat. No. 7,704,745, which is herein incorporated by reference in its entirety. Briefly, measurement of the any of the following characteristics is recorded for each cell population: glucose, lactate, CO2, NADH and NAD+ ratio, heat, O2 consumption, and free-radical production. Cells screened can include hepatocyte, macrophages or neuroblastoma cells. Cells screened can cell lines, primary cells from a subject, or cells from a model system (e.g., a mouse model).
Various techniques are available for measurement of the oxygen consumption rates of single cells, or a population of cells located within a chamber of a multiwell plate. For example, chambers comprising the cells can have sensors for recording changes in temperature, current or fluorescence, as well as optical systems, e.g., a fiber-coupled optical system, coupled to each chamber to monitor fluorescent light. In this example, each chamber has a window for an illumination source to excite molecules inside the chamber. The fiber-coupled optical system can detect autofluoresence to measure intracellular NADH/NAD ratios and voltage and calcium-sensitive dyes to determine transmembrane potential and intracellular calcium. In addition, changes in CO2 and/or O2 sensitive fluorescent dye signal is detected.
A plurality of expression vectors are generated as described in Examples 16 or 17. In this example, the expression vector is a FLAG-tagged mammalian expression vector and the variant nucleic acid library encodes for peptide sequences. Isolated clones from the variant library are transiently transfected separately into a cancer cells and non-cancer cells. Cell survival and cell death assays are performed on both the cancer and non-cancer cells, each expressing a variant peptide encoded by the variant nucleic. Cells are assessed for selective cancer cell killing associated with a variant peptide. The cancer cells are, optionally, a cancer cell line or primary cancer cells from a subject diagnosed with cancer. In the case of primary cancer cells from a subject diagnosed with cancer, a variant peptide identified in the screening assay is, optionally, selected for administration to the subject. Alternatively, proteins are expressed and isolated from cells containing the protein expression constructs, and then the proteins are delivered to cancer cells and non-cancer cells for further measurements.
While preferred embodiments of the present disclosure have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the disclosure. It should be understood that various alternatives to the embodiments of the disclosure described herein may be employed in practicing the disclosure. It is intended that the following claims define the scope of the disclosure and that methods and structures within the scope of these claims and their equivalents be covered thereby.
This application claims the benefit of U.S. Provisional Application No. 62/220,879, filed Sep. 18, 2015, U.S. Provisional Application No. 62/263,548, filed Dec. 4, 2015, and U.S. Provisional Application No. 62/354,034, filed Jun. 23, 2016, all of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3549368 | Robert et al. | Dec 1970 | A |
3920714 | Streck | Nov 1975 | A |
4123661 | Wolf et al. | Oct 1978 | A |
4415732 | Caruthers et al. | Nov 1983 | A |
4613398 | Chiong et al. | Sep 1986 | A |
4726877 | Fryd et al. | Feb 1988 | A |
4808511 | Holmes | Feb 1989 | A |
4837401 | Hirose et al. | Jun 1989 | A |
4863557 | Kokaku et al. | Sep 1989 | A |
4981797 | Jessee et al. | Jan 1991 | A |
4988617 | Landegren et al. | Jan 1991 | A |
5102797 | Tucker et al. | Apr 1992 | A |
5118605 | Urdea | Jun 1992 | A |
5137814 | Rashtchian et al. | Aug 1992 | A |
5143854 | Pirrung et al. | Sep 1992 | A |
5242794 | Whiteley et al. | Sep 1993 | A |
5242974 | Holmes | Sep 1993 | A |
5288514 | Ellman | Feb 1994 | A |
5299491 | Kawada | Apr 1994 | A |
5384261 | Winkler et al. | Jan 1995 | A |
5387541 | Hodge et al. | Feb 1995 | A |
5395753 | Prakash | Mar 1995 | A |
5431720 | Nagai et al. | Jul 1995 | A |
5445934 | Fodor et al. | Aug 1995 | A |
5449754 | Nishioka | Sep 1995 | A |
5459039 | Modrich et al. | Oct 1995 | A |
5474796 | Brennan | Dec 1995 | A |
5476930 | Letsinger et al. | Dec 1995 | A |
5487993 | Herrnstadt et al. | Jan 1996 | A |
5494810 | Barany et al. | Feb 1996 | A |
5501893 | Laermer et al. | Mar 1996 | A |
5508169 | Deugau et al. | Apr 1996 | A |
5510270 | Fodor et al. | Apr 1996 | A |
5514789 | Kempe | May 1996 | A |
5527681 | Holmes | Jun 1996 | A |
5530516 | Sheets | Jun 1996 | A |
5556750 | Modrich et al. | Sep 1996 | A |
5586211 | Dumitrou et al. | Dec 1996 | A |
5641658 | Adams et al. | Jun 1997 | A |
5677195 | Winkler et al. | Oct 1997 | A |
5679522 | Modrich et al. | Oct 1997 | A |
5683879 | Laney et al. | Nov 1997 | A |
5688642 | Chrisey et al. | Nov 1997 | A |
5700637 | Southern | Dec 1997 | A |
5700642 | Monforte et al. | Dec 1997 | A |
5702894 | Modrich et al. | Dec 1997 | A |
5707806 | Shuber | Jan 1998 | A |
5712124 | Walker | Jan 1998 | A |
5739386 | Holmes | Apr 1998 | A |
5750672 | Kempe | May 1998 | A |
5780613 | Letsinger et al. | Jul 1998 | A |
5830643 | Yamamoto et al. | Nov 1998 | A |
5830655 | Monforte et al. | Nov 1998 | A |
5830662 | Soares et al. | Nov 1998 | A |
5834252 | Stemmer et al. | Nov 1998 | A |
5843669 | Kaiser et al. | Dec 1998 | A |
5843767 | Beattie | Dec 1998 | A |
5846717 | Brow et al. | Dec 1998 | A |
5854033 | Lizardi | Dec 1998 | A |
5858754 | Modrich et al. | Jan 1999 | A |
5861482 | Modrich et al. | Jan 1999 | A |
5863801 | Southgate et al. | Jan 1999 | A |
5869245 | Yeung | Feb 1999 | A |
5877280 | Wetmur | Mar 1999 | A |
5882496 | Northrup et al. | Mar 1999 | A |
5922539 | Modrich et al. | Jul 1999 | A |
5922593 | Livingston | Jul 1999 | A |
5928907 | Woudenberg et al. | Jul 1999 | A |
5962272 | Chenchik et al. | Oct 1999 | A |
5976842 | Wurst | Nov 1999 | A |
5976846 | Passmore et al. | Nov 1999 | A |
5989872 | Luo et al. | Nov 1999 | A |
5994069 | Hall et al. | Nov 1999 | A |
6001567 | Brow et al. | Dec 1999 | A |
6008031 | Modrich et al. | Dec 1999 | A |
6013440 | Lipshutz et al. | Jan 2000 | A |
6015674 | Woudenberg et al. | Jan 2000 | A |
6020481 | Benson et al. | Feb 2000 | A |
6027898 | Gjerde et al. | Feb 2000 | A |
6028189 | Blanchard | Feb 2000 | A |
6028198 | Liu et al. | Feb 2000 | A |
6040138 | Lockhart et al. | Mar 2000 | A |
6077674 | Schleifer et al. | Jun 2000 | A |
6087482 | Teng et al. | Jul 2000 | A |
6090543 | Prudent et al. | Jul 2000 | A |
6090606 | Kaiser et al. | Jul 2000 | A |
6103474 | Dellinger et al. | Aug 2000 | A |
6107038 | Choudhary et al. | Aug 2000 | A |
6110682 | Dellinger et al. | Aug 2000 | A |
6114115 | Wagner, Jr. | Sep 2000 | A |
6130045 | Wurst et al. | Oct 2000 | A |
6132997 | Shannon | Oct 2000 | A |
6136568 | Hiatt et al. | Oct 2000 | A |
6171797 | Perbost | Jan 2001 | B1 |
6180351 | Cattell | Jan 2001 | B1 |
6201112 | Ach | Mar 2001 | B1 |
6218118 | Sampson et al. | Apr 2001 | B1 |
6221653 | Caren et al. | Apr 2001 | B1 |
6222030 | Dellinger et al. | Apr 2001 | B1 |
6232072 | Fisher | May 2001 | B1 |
6235483 | Wolber et al. | May 2001 | B1 |
6242266 | Schleifer et al. | Jun 2001 | B1 |
6251588 | Shannon et al. | Jun 2001 | B1 |
6251595 | Gordon et al. | Jun 2001 | B1 |
6251685 | Dorsel et al. | Jun 2001 | B1 |
6258454 | Lefkowitz et al. | Jul 2001 | B1 |
6262490 | Hsu et al. | Jul 2001 | B1 |
6274725 | Sanghvi et al. | Aug 2001 | B1 |
6284465 | Wolber | Sep 2001 | B1 |
6287776 | Hefti | Sep 2001 | B1 |
6287824 | Lizardi | Sep 2001 | B1 |
6297017 | Schmidt et al. | Oct 2001 | B1 |
6300137 | Earhart et al. | Oct 2001 | B1 |
6306599 | Perbost | Oct 2001 | B1 |
6309822 | Fodor et al. | Oct 2001 | B1 |
6309828 | Schleifer et al. | Oct 2001 | B1 |
6312911 | Bancroft et al. | Nov 2001 | B1 |
6319674 | Fulcrand et al. | Nov 2001 | B1 |
6323043 | Caren et al. | Nov 2001 | B1 |
6329210 | Schleifer | Dec 2001 | B1 |
6346423 | Schembri | Feb 2002 | B1 |
6365355 | McCutchen-Maloney | Apr 2002 | B1 |
6372483 | Schleifer et al. | Apr 2002 | B2 |
6375903 | Cerrina et al. | Apr 2002 | B1 |
6376285 | Joyner et al. | Apr 2002 | B1 |
6384210 | Blanchard | May 2002 | B1 |
6387636 | Perbost et al. | May 2002 | B1 |
6399394 | Dahm et al. | Jun 2002 | B1 |
6399516 | Ayon | Jun 2002 | B1 |
6403314 | Lange et al. | Jun 2002 | B1 |
6406849 | Dorsel et al. | Jun 2002 | B1 |
6406851 | Bass | Jun 2002 | B1 |
6408308 | Maslyn et al. | Jun 2002 | B1 |
6419883 | Blanchard | Jul 2002 | B1 |
6428957 | Delenstarr | Aug 2002 | B1 |
6440669 | Bass et al. | Aug 2002 | B1 |
6444268 | Lefkowitz et al. | Sep 2002 | B2 |
6446642 | Caren et al. | Sep 2002 | B1 |
6446682 | Viken | Sep 2002 | B1 |
6451998 | Perbost | Sep 2002 | B1 |
6458526 | Schembri et al. | Oct 2002 | B1 |
6458535 | Hall et al. | Oct 2002 | B1 |
6458583 | Bruhn et al. | Oct 2002 | B1 |
6461812 | Barth et al. | Oct 2002 | B2 |
6461816 | Wolber et al. | Oct 2002 | B1 |
6469156 | Schafer et al. | Oct 2002 | B1 |
6472147 | Janda et al. | Oct 2002 | B1 |
6492107 | Kauffman et al. | Dec 2002 | B1 |
6518056 | Schembri et al. | Feb 2003 | B2 |
6521427 | Evans | Feb 2003 | B1 |
6521453 | Crameri et al. | Feb 2003 | B1 |
6555357 | Kaiser et al. | Apr 2003 | B1 |
6558908 | Wolber et al. | May 2003 | B2 |
6562611 | Kaiser et al. | May 2003 | B1 |
6566495 | Fodor et al. | May 2003 | B1 |
6582908 | Fodor et al. | Jun 2003 | B2 |
6582938 | Su et al. | Jun 2003 | B1 |
6586211 | Staehler et al. | Jul 2003 | B1 |
6587579 | Bass | Jul 2003 | B1 |
6589739 | Fisher | Jul 2003 | B2 |
6599693 | Webb | Jul 2003 | B1 |
6602472 | Zimmermann et al. | Aug 2003 | B1 |
6610978 | Yin et al. | Aug 2003 | B2 |
6613513 | Parce et al. | Sep 2003 | B1 |
6613523 | Fischer | Sep 2003 | B2 |
6613560 | Tso et al. | Sep 2003 | B1 |
6613893 | Webb | Sep 2003 | B1 |
6621076 | Van de Goor et al. | Sep 2003 | B1 |
6630581 | Dellinger et al. | Oct 2003 | B2 |
6632641 | Brennan et al. | Oct 2003 | B1 |
6635226 | Tso et al. | Oct 2003 | B1 |
6642373 | Manoharan et al. | Nov 2003 | B2 |
6649348 | Bass et al. | Nov 2003 | B2 |
6660338 | Hargreaves | Dec 2003 | B1 |
6664112 | Mulligan et al. | Dec 2003 | B2 |
6670127 | Evans | Dec 2003 | B2 |
6670461 | Wengel et al. | Dec 2003 | B1 |
6673552 | Frey | Jan 2004 | B2 |
6682702 | Barth et al. | Jan 2004 | B2 |
6689319 | Fisher et al. | Feb 2004 | B1 |
6692917 | Neri et al. | Feb 2004 | B2 |
6702256 | Killeen et al. | Mar 2004 | B2 |
6706471 | Brow et al. | Mar 2004 | B1 |
6706875 | Goldberg et al. | Mar 2004 | B1 |
6709852 | Bloom et al. | Mar 2004 | B1 |
6709854 | Donahue et al. | Mar 2004 | B2 |
6713262 | Gellibolian et al. | Mar 2004 | B2 |
6716629 | Hess et al. | Apr 2004 | B2 |
6716634 | Myerson | Apr 2004 | B1 |
6723509 | Ach | Apr 2004 | B2 |
6728129 | Lindsey et al. | Apr 2004 | B2 |
6743585 | Dellinger et al. | Jun 2004 | B2 |
6753145 | Holcomb et al. | Jun 2004 | B2 |
6768005 | Mellor et al. | Jul 2004 | B2 |
6770748 | Imanishi et al. | Aug 2004 | B2 |
6770892 | Corson et al. | Aug 2004 | B2 |
6773676 | Schembri | Aug 2004 | B2 |
6773888 | Li et al. | Aug 2004 | B2 |
6780982 | Lyamichev et al. | Aug 2004 | B2 |
6787308 | Balasubramanian et al. | Sep 2004 | B2 |
6789965 | Barth et al. | Sep 2004 | B2 |
6790620 | Bass et al. | Sep 2004 | B2 |
6794499 | Wengel et al. | Sep 2004 | B2 |
6796634 | Caren et al. | Sep 2004 | B2 |
6800439 | McGall | Oct 2004 | B1 |
6814846 | Berndt | Nov 2004 | B1 |
6815218 | Jacobson et al. | Nov 2004 | B1 |
6824866 | Glazer et al. | Nov 2004 | B1 |
6830890 | Lockhart et al. | Dec 2004 | B2 |
6833246 | Balasubramanian | Dec 2004 | B2 |
6833450 | McGall et al. | Dec 2004 | B1 |
6835938 | Ghosh et al. | Dec 2004 | B2 |
6838888 | Peck | Jan 2005 | B2 |
6841131 | Zimmermann et al. | Jan 2005 | B2 |
6845968 | Killeen et al. | Jan 2005 | B2 |
6846454 | Peck | Jan 2005 | B2 |
6846922 | Manoharan et al. | Jan 2005 | B1 |
6852850 | Myerson et al. | Feb 2005 | B2 |
6858720 | Myerson et al. | Feb 2005 | B2 |
6879915 | Cattell | Apr 2005 | B2 |
6880576 | Karp et al. | Apr 2005 | B2 |
6884580 | Caren et al. | Apr 2005 | B2 |
6887715 | Schembri | May 2005 | B2 |
6890723 | Perbost et al. | May 2005 | B2 |
6890760 | Webb | May 2005 | B1 |
6893816 | Beattie | May 2005 | B1 |
6897023 | Fu et al. | May 2005 | B2 |
6900047 | Bass | May 2005 | B2 |
6900048 | Perbost | May 2005 | B2 |
6911611 | Wong et al. | Jun 2005 | B2 |
6914229 | Corson et al. | Jul 2005 | B2 |
6916113 | Van de Goor et al. | Jul 2005 | B2 |
6916633 | Shannon | Jul 2005 | B1 |
6919181 | Hargreaves | Jul 2005 | B2 |
6927029 | Lefkowitz et al. | Aug 2005 | B2 |
6929951 | Corson et al. | Aug 2005 | B2 |
6936472 | Earhart et al. | Aug 2005 | B2 |
6938476 | Chesk | Sep 2005 | B2 |
6939673 | Bass et al. | Sep 2005 | B2 |
6943036 | Bass | Sep 2005 | B2 |
6946285 | Bass | Sep 2005 | B2 |
6950756 | Kincaid | Sep 2005 | B2 |
6951719 | Dupret et al. | Oct 2005 | B1 |
6958119 | Yin et al. | Oct 2005 | B2 |
6960464 | Jessee et al. | Nov 2005 | B2 |
6969488 | Bridgham et al. | Nov 2005 | B2 |
6976384 | Hobbs et al. | Dec 2005 | B2 |
6977223 | George et al. | Dec 2005 | B2 |
6987263 | Hobbs et al. | Jan 2006 | B2 |
6989267 | Kim et al. | Jan 2006 | B2 |
6991922 | Dupret et al. | Jan 2006 | B2 |
7008037 | Caren et al. | Mar 2006 | B2 |
7025324 | Slocum et al. | Apr 2006 | B1 |
7026124 | Barth et al. | Apr 2006 | B2 |
7027930 | Cattell | Apr 2006 | B2 |
7028536 | Karp et al. | Apr 2006 | B2 |
7029854 | Collins et al. | Apr 2006 | B2 |
7034290 | Lu et al. | Apr 2006 | B2 |
7041445 | Chenchik et al. | May 2006 | B2 |
7045289 | Allawi et al. | May 2006 | B2 |
7051574 | Peck | May 2006 | B2 |
7052841 | Delenstarr | May 2006 | B2 |
7062385 | White et al. | Jun 2006 | B2 |
7064197 | Rabbani et al. | Jun 2006 | B1 |
7070932 | Leproust et al. | Jul 2006 | B2 |
7075161 | Barth | Jul 2006 | B2 |
7078167 | Delenstarr et al. | Jul 2006 | B2 |
7078505 | Bass et al. | Jul 2006 | B2 |
7094537 | Leproust et al. | Aug 2006 | B2 |
7097974 | Staehler et al. | Aug 2006 | B1 |
7101508 | Thompson et al. | Sep 2006 | B2 |
7101986 | Dellinger et al. | Sep 2006 | B2 |
7105295 | Bass et al. | Sep 2006 | B2 |
7115423 | Mitchell | Oct 2006 | B1 |
7122303 | Delenstarr et al. | Oct 2006 | B2 |
7122364 | Lyamichev et al. | Oct 2006 | B1 |
7125488 | Li | Oct 2006 | B2 |
7125523 | Sillman | Oct 2006 | B2 |
7128876 | Yin et al. | Oct 2006 | B2 |
7129075 | Gerard et al. | Oct 2006 | B2 |
7135565 | Dellinger et al. | Nov 2006 | B2 |
7138062 | Yin et al. | Nov 2006 | B2 |
7141368 | Fisher et al. | Nov 2006 | B2 |
7141807 | Joyce et al. | Nov 2006 | B2 |
7147362 | Caren et al. | Dec 2006 | B2 |
7150982 | Allawi et al. | Dec 2006 | B2 |
7153689 | Tolosko et al. | Dec 2006 | B2 |
7163660 | Lehmann | Jan 2007 | B2 |
7166258 | Bass et al. | Jan 2007 | B2 |
7179659 | Stolowitz et al. | Feb 2007 | B2 |
7183406 | Belshaw et al. | Feb 2007 | B2 |
7192710 | Gellibolian et al. | Mar 2007 | B2 |
7193077 | Dellinger et al. | Mar 2007 | B2 |
7198939 | Dorsel et al. | Apr 2007 | B2 |
7202264 | Ravikumar et al. | Apr 2007 | B2 |
7202358 | Hargreaves | Apr 2007 | B2 |
7205128 | Ilsley et al. | Apr 2007 | B2 |
7205400 | Webb | Apr 2007 | B2 |
7206439 | Zhou et al. | Apr 2007 | B2 |
7208322 | Stolowitz et al. | Apr 2007 | B2 |
7217522 | Brenner | May 2007 | B2 |
7220573 | Shea et al. | May 2007 | B2 |
7221785 | Curry et al. | May 2007 | B2 |
7226862 | Staehler et al. | Jun 2007 | B2 |
7227017 | Mellor et al. | Jun 2007 | B2 |
7229497 | Stott et al. | Jun 2007 | B2 |
7247337 | Leproust et al. | Jul 2007 | B1 |
7247497 | Dahm et al. | Jul 2007 | B2 |
7252938 | Leproust et al. | Aug 2007 | B2 |
7269518 | Corson | Sep 2007 | B2 |
7271258 | Dollinger et al. | Sep 2007 | B2 |
7276336 | Webb et al. | Oct 2007 | B1 |
7276378 | Myerson | Oct 2007 | B2 |
7276599 | Moore et al. | Oct 2007 | B2 |
7282183 | Peck | Oct 2007 | B2 |
7282332 | Caren et al. | Oct 2007 | B2 |
7282705 | Brennen | Oct 2007 | B2 |
7291471 | Sampson et al. | Nov 2007 | B2 |
7302348 | Ghosh et al. | Nov 2007 | B2 |
7306917 | Prudent et al. | Dec 2007 | B2 |
7314599 | Roitman et al. | Jan 2008 | B2 |
7323320 | Oleinikov | Jan 2008 | B2 |
7344831 | Wolber et al. | Mar 2008 | B2 |
7348144 | Minor | Mar 2008 | B2 |
7351379 | Schleifer | Apr 2008 | B2 |
7353116 | Webb et al. | Apr 2008 | B2 |
7361906 | Ghosh et al. | Apr 2008 | B2 |
7364896 | Schembri | Apr 2008 | B2 |
7368550 | Dellinger et al. | May 2008 | B2 |
7371348 | Schleifer et al. | May 2008 | B2 |
7371519 | Wolber et al. | May 2008 | B2 |
7371580 | Yakhini et al. | May 2008 | B2 |
7372982 | Le | May 2008 | B2 |
7384746 | Lyamichev et al. | Jun 2008 | B2 |
7385050 | Dellinger et al. | Jun 2008 | B2 |
7390457 | Schembri | Jun 2008 | B2 |
7393665 | Brenner | Jul 2008 | B2 |
7396676 | Robotti et al. | Jul 2008 | B2 |
7399844 | Sampson et al. | Jul 2008 | B2 |
7402279 | Schembri | Jul 2008 | B2 |
7411061 | Myerson et al. | Aug 2008 | B2 |
7413709 | Roitman et al. | Aug 2008 | B2 |
7417139 | Dellinger et al. | Aug 2008 | B2 |
7422911 | Schembri | Sep 2008 | B2 |
7427679 | Dellinger et al. | Sep 2008 | B2 |
7432048 | Neri et al. | Oct 2008 | B2 |
7435810 | Myerson et al. | Oct 2008 | B2 |
7439272 | Xu | Oct 2008 | B2 |
7476709 | Moody et al. | Jan 2009 | B2 |
7482118 | Allawi et al. | Jan 2009 | B2 |
7488607 | Tom-Moy et al. | Feb 2009 | B2 |
7504213 | Sana et al. | Mar 2009 | B2 |
7514369 | Li et al. | Apr 2009 | B2 |
7517979 | Wolber | Apr 2009 | B2 |
7524942 | Wang et al. | Apr 2009 | B2 |
7524950 | Dellinger et al. | Apr 2009 | B2 |
7527928 | Neri et al. | May 2009 | B2 |
7531303 | Dorsel et al. | May 2009 | B2 |
7534561 | Sana et al. | May 2009 | B2 |
7534563 | Hargreaves | May 2009 | B2 |
7537936 | Dahm et al. | May 2009 | B2 |
7541145 | Prudent et al. | Jun 2009 | B2 |
7544473 | Brenner | Jun 2009 | B2 |
7556919 | Chenchik et al. | Jul 2009 | B2 |
7563600 | Oleinikov | Jul 2009 | B2 |
7572585 | Wang | Aug 2009 | B2 |
7572907 | Dellinger et al. | Aug 2009 | B2 |
7572908 | Dellinger et al. | Aug 2009 | B2 |
7585970 | Dellinger et al. | Sep 2009 | B2 |
7588889 | Wolber et al. | Sep 2009 | B2 |
7595350 | Xu | Sep 2009 | B2 |
7604941 | Jacobson | Oct 2009 | B2 |
7604996 | Stuelpnagel et al. | Oct 2009 | B1 |
7608396 | Delenstarr | Oct 2009 | B2 |
7618777 | Myerson et al. | Nov 2009 | B2 |
7629120 | Bennett et al. | Dec 2009 | B2 |
7635772 | McCormac | Dec 2009 | B2 |
7648832 | Jessee et al. | Jan 2010 | B2 |
7651762 | Xu et al. | Jan 2010 | B2 |
7659069 | Belyaev et al. | Feb 2010 | B2 |
7678542 | Lyamichev et al. | Mar 2010 | B2 |
7682809 | Sampson | Mar 2010 | B2 |
7709197 | Drmanac | May 2010 | B2 |
7718365 | Wang | May 2010 | B2 |
7718786 | Dupret et al. | May 2010 | B2 |
7723077 | Young et al. | May 2010 | B2 |
7737088 | Staehler et al. | Jun 2010 | B1 |
7737089 | Guimil et al. | Jun 2010 | B2 |
7741463 | Gormley et al. | Jun 2010 | B2 |
7749701 | Leproust et al. | Jul 2010 | B2 |
7759471 | Dellinger et al. | Jul 2010 | B2 |
7776021 | Borenstein et al. | Aug 2010 | B2 |
7776532 | Gibson et al. | Aug 2010 | B2 |
7790369 | Stahler et al. | Sep 2010 | B2 |
7790387 | Dellinger et al. | Sep 2010 | B2 |
7807356 | Sampson et al. | Oct 2010 | B2 |
7807806 | Allawi et al. | Oct 2010 | B2 |
7811753 | Eshoo | Oct 2010 | B2 |
7816079 | Fischer | Oct 2010 | B2 |
7820387 | Neri et al. | Oct 2010 | B2 |
7829314 | Prudent et al. | Nov 2010 | B2 |
7855281 | Dellinger et al. | Dec 2010 | B2 |
7862999 | Zheng et al. | Jan 2011 | B2 |
7867782 | Barth | Jan 2011 | B2 |
7875463 | Adaskin et al. | Jan 2011 | B2 |
7879541 | Kincaid | Feb 2011 | B2 |
7879580 | Carr et al. | Feb 2011 | B2 |
7894998 | Kincaid | Feb 2011 | B2 |
7919239 | Wang | Apr 2011 | B2 |
7919308 | Schleifer | Apr 2011 | B2 |
7927797 | Nobile et al. | Apr 2011 | B2 |
7927838 | Shannon | Apr 2011 | B2 |
7932025 | Carr et al. | Apr 2011 | B2 |
7932070 | Hogrefe et al. | Apr 2011 | B2 |
7935800 | Allawi et al. | May 2011 | B2 |
7939645 | Borns | May 2011 | B2 |
7943046 | Martosella et al. | May 2011 | B2 |
7943358 | Hogrefe et al. | May 2011 | B2 |
7960157 | Borns | Jun 2011 | B2 |
7977119 | Kronick et al. | Jul 2011 | B2 |
7979215 | Sampas | Jul 2011 | B2 |
7998437 | Berndt et al. | Aug 2011 | B2 |
7999087 | Dellinger et al. | Aug 2011 | B2 |
8021842 | Brenner | Sep 2011 | B2 |
8021844 | Wang | Sep 2011 | B2 |
8034917 | Yamada | Oct 2011 | B2 |
8036835 | Sampas et al. | Oct 2011 | B2 |
8048664 | Guan et al. | Nov 2011 | B2 |
8053191 | Blake | Nov 2011 | B2 |
8058001 | Crameri et al. | Nov 2011 | B2 |
8058004 | Oleinikov | Nov 2011 | B2 |
8058055 | Barrett et al. | Nov 2011 | B2 |
8063184 | Allawi et al. | Nov 2011 | B2 |
8067556 | Hogrefe et al. | Nov 2011 | B2 |
8073626 | Troup et al. | Dec 2011 | B2 |
8076064 | Wang | Dec 2011 | B2 |
8076152 | Robotti | Dec 2011 | B2 |
8097711 | Timar et al. | Jan 2012 | B2 |
8137936 | MacEvicz | Mar 2012 | B2 |
8148068 | Brenner | Apr 2012 | B2 |
8154729 | Baldo et al. | Apr 2012 | B2 |
8168385 | Brenner | May 2012 | B2 |
8168388 | Gormley et al. | May 2012 | B2 |
8173368 | Staehler et al. | May 2012 | B2 |
8182991 | Kaiser et al. | May 2012 | B1 |
8194244 | Wang et al. | Jun 2012 | B2 |
8198071 | Goshoo et al. | Jun 2012 | B2 |
8202983 | Dellinger et al. | Jun 2012 | B2 |
8202985 | Dellinger et al. | Jun 2012 | B2 |
8206952 | Carr et al. | Jun 2012 | B2 |
8213015 | Kraiczek et al. | Jul 2012 | B2 |
8242258 | Dellinger et al. | Aug 2012 | B2 |
8247221 | Fawcett | Aug 2012 | B2 |
8263335 | Carr et al. | Sep 2012 | B2 |
8268605 | Sorge et al. | Sep 2012 | B2 |
8283148 | Sorge et al. | Oct 2012 | B2 |
8288093 | Hall et al. | Oct 2012 | B2 |
8298767 | Brenner et al. | Oct 2012 | B2 |
8304273 | Stellacci et al. | Nov 2012 | B2 |
8309307 | Barrett et al. | Nov 2012 | B2 |
8309706 | Dellinger et al. | Nov 2012 | B2 |
8309710 | Sierzchala et al. | Nov 2012 | B2 |
8314220 | Mullinax et al. | Nov 2012 | B2 |
8318433 | Brenner | Nov 2012 | B2 |
8318479 | Domansky et al. | Nov 2012 | B2 |
8357489 | Chua et al. | Jan 2013 | B2 |
8357490 | Froehlich et al. | Jan 2013 | B2 |
8367016 | Quan et al. | Feb 2013 | B2 |
8367335 | Staehler et al. | Feb 2013 | B2 |
8380441 | Webb et al. | Feb 2013 | B2 |
8383338 | Kitzman et al. | Feb 2013 | B2 |
8415138 | Leproust | Apr 2013 | B2 |
8435736 | Gibson et al. | May 2013 | B2 |
8445205 | Brenner | May 2013 | B2 |
8445206 | Bergmann et al. | May 2013 | B2 |
8470996 | Brenner | Jun 2013 | B2 |
8476018 | Brenner | Jul 2013 | B2 |
8476598 | Pralle et al. | Jul 2013 | B1 |
8481292 | Casbon et al. | Jul 2013 | B2 |
8481309 | Zhang et al. | Jul 2013 | B2 |
8491561 | Borenstein et al. | Jul 2013 | B2 |
8497069 | Hutchison, III et al. | Jul 2013 | B2 |
8500979 | Elibol et al. | Aug 2013 | B2 |
8501454 | Liu et al. | Aug 2013 | B2 |
8507226 | Carr et al. | Aug 2013 | B2 |
8507239 | Lubys et al. | Aug 2013 | B2 |
8507272 | Zhang et al. | Aug 2013 | B2 |
8530197 | Li et al. | Sep 2013 | B2 |
8552174 | Dellinger et al. | Oct 2013 | B2 |
8563478 | Gormley et al. | Oct 2013 | B2 |
8569046 | Love et al. | Oct 2013 | B2 |
8577621 | Troup et al. | Nov 2013 | B2 |
8586310 | Mitra et al. | Nov 2013 | B2 |
8614092 | Zhang et al. | Dec 2013 | B2 |
8642755 | Sierzchala et al. | Feb 2014 | B2 |
8664164 | Ericsson et al. | Mar 2014 | B2 |
8669053 | Stuelpnagel et al. | Mar 2014 | B2 |
8679756 | Brenner et al. | Mar 2014 | B1 |
8685642 | Sampas | Apr 2014 | B2 |
8685676 | Hogrefe et al. | Apr 2014 | B2 |
8685678 | Casbon et al. | Apr 2014 | B2 |
8715933 | Oliver | May 2014 | B2 |
8715967 | Casbon et al. | May 2014 | B2 |
8716467 | Jacobson | May 2014 | B2 |
8722368 | Casbon et al. | May 2014 | B2 |
8722585 | Wang | May 2014 | B2 |
8728766 | Casbon et al. | May 2014 | B2 |
8741606 | Casbon et al. | Jun 2014 | B2 |
8808896 | Choo et al. | Aug 2014 | B2 |
8808986 | Jacobson et al. | Aug 2014 | B2 |
8815600 | Liu et al. | Aug 2014 | B2 |
8889851 | Leproust et al. | Nov 2014 | B2 |
8932994 | Gormley et al. | Jan 2015 | B2 |
8962532 | Shapiro et al. | Feb 2015 | B2 |
8968999 | Gibson et al. | Mar 2015 | B2 |
8980563 | Zheng et al. | Mar 2015 | B2 |
9018365 | Brenner | Apr 2015 | B2 |
9023601 | Oleinikov | May 2015 | B2 |
9051666 | Oleinikov | Jun 2015 | B2 |
9073962 | Fracchia et al. | Jul 2015 | B2 |
9074204 | Anderson et al. | Jul 2015 | B2 |
9085797 | Gebeyehu et al. | Jul 2015 | B2 |
9133510 | Andersen et al. | Sep 2015 | B2 |
9139874 | Myers et al. | Sep 2015 | B2 |
9150853 | Hudson et al. | Oct 2015 | B2 |
9187777 | Jacobson et al. | Nov 2015 | B2 |
9194001 | Brenner | Nov 2015 | B2 |
9216414 | Chu | Dec 2015 | B2 |
9217144 | Jacobson et al. | Dec 2015 | B2 |
9279149 | Efcavitch et al. | Mar 2016 | B2 |
9286439 | Shapiro et al. | Mar 2016 | B2 |
9295965 | Jacobson et al. | Mar 2016 | B2 |
9315861 | Hendricks et al. | Apr 2016 | B2 |
9328378 | Earnshaw et al. | May 2016 | B2 |
9347091 | Bergmann et al. | May 2016 | B2 |
9375748 | Harumoto et al. | Jun 2016 | B2 |
9376677 | Mir | Jun 2016 | B2 |
9376678 | Gormley et al. | Jun 2016 | B2 |
9384320 | Church | Jul 2016 | B2 |
9384920 | Bakulich | Jul 2016 | B1 |
9388407 | Jacobson | Jul 2016 | B2 |
9394333 | Wada et al. | Jul 2016 | B2 |
9403141 | Banyai | Aug 2016 | B2 |
9409139 | Banyai et al. | Aug 2016 | B2 |
9410149 | Brenner et al. | Aug 2016 | B2 |
9410173 | Betts et al. | Aug 2016 | B2 |
9416411 | Stuelpnagel et al. | Aug 2016 | B2 |
9422600 | Ramu et al. | Aug 2016 | B2 |
9487824 | Kutyavin et al. | Nov 2016 | B2 |
9523122 | Zheng et al. | Dec 2016 | B2 |
9528148 | Zheng et al. | Dec 2016 | B2 |
9534251 | Young et al. | Jan 2017 | B2 |
9555388 | Banyai et al. | Jan 2017 | B2 |
9568839 | Stahler et al. | Feb 2017 | B2 |
9580746 | Leproust et al. | Feb 2017 | B2 |
9670529 | Osborne et al. | Jun 2017 | B2 |
9670536 | Casbon et al. | Jun 2017 | B2 |
9677067 | Toro | Jun 2017 | B2 |
9695211 | Wada et al. | Jul 2017 | B2 |
9718060 | Venter et al. | Aug 2017 | B2 |
9745573 | Stuelpnagel et al. | Aug 2017 | B2 |
9745619 | Rabbani et al. | Aug 2017 | B2 |
9765387 | Rabbani et al. | Sep 2017 | B2 |
9771576 | Gibson et al. | Sep 2017 | B2 |
9833761 | Banyai et al. | Dec 2017 | B2 |
9834774 | Carstens | Dec 2017 | B2 |
9839894 | Banyai | Dec 2017 | B2 |
9879283 | Ravinder et al. | Jan 2018 | B2 |
9889423 | Banyai | Feb 2018 | B2 |
9895673 | Peck | Feb 2018 | B2 |
9925510 | Jacobson et al. | Mar 2018 | B2 |
9932576 | Raymond et al. | Apr 2018 | B2 |
9981239 | Banyai et al. | May 2018 | B2 |
10053688 | Cox | Aug 2018 | B2 |
10272410 | Banyai | Apr 2019 | B2 |
10583415 | Banyai et al. | Mar 2020 | B2 |
20010018512 | Blanchard | Aug 2001 | A1 |
20010039014 | Bass et al. | Nov 2001 | A1 |
20010055761 | Kanemoto et al. | Dec 2001 | A1 |
20020012930 | Rothberg et al. | Jan 2002 | A1 |
20020025561 | Hodgson | Feb 2002 | A1 |
20020076716 | Sabanayagam et al. | Jun 2002 | A1 |
20020081582 | Gao et al. | Jun 2002 | A1 |
20020094533 | Hess et al. | Jul 2002 | A1 |
20020095073 | Jacobs et al. | Jul 2002 | A1 |
20020119459 | Griffiths et al. | Aug 2002 | A1 |
20020132308 | Liu et al. | Sep 2002 | A1 |
20020155439 | Rodriguez et al. | Oct 2002 | A1 |
20020160536 | Regnier et al. | Oct 2002 | A1 |
20020164824 | Xiao et al. | Nov 2002 | A1 |
20030008411 | Van et al. | Jan 2003 | A1 |
20030022207 | Balasubramanian et al. | Jan 2003 | A1 |
20030022240 | Luo et al. | Jan 2003 | A1 |
20030022317 | Jack et al. | Jan 2003 | A1 |
20030044781 | Korlach et al. | Mar 2003 | A1 |
20030058629 | Hirai et al. | Mar 2003 | A1 |
20030064398 | Barnes | Apr 2003 | A1 |
20030068633 | Belshaw et al. | Apr 2003 | A1 |
20030082719 | Schumacher et al. | May 2003 | A1 |
20030100102 | Rothberg et al. | May 2003 | A1 |
20030108903 | Wang et al. | Jun 2003 | A1 |
20030120035 | Gao et al. | Jun 2003 | A1 |
20030138782 | Evans | Jul 2003 | A1 |
20030143605 | Lok et al. | Jul 2003 | A1 |
20030148291 | Robotti | Aug 2003 | A1 |
20030148344 | Rothberg et al. | Aug 2003 | A1 |
20030171325 | Gascoyne et al. | Sep 2003 | A1 |
20030186226 | Brennan et al. | Oct 2003 | A1 |
20030228602 | Parker et al. | Dec 2003 | A1 |
20030228620 | Du Breuil Lastrucci | Dec 2003 | A1 |
20040009498 | Short | Jan 2004 | A1 |
20040043509 | Stahler et al. | Mar 2004 | A1 |
20040053362 | De luca et al. | Mar 2004 | A1 |
20040086892 | Crothers et al. | May 2004 | A1 |
20040087008 | Schembri | May 2004 | A1 |
20040106130 | Besemer et al. | Jun 2004 | A1 |
20040106728 | McGall et al. | Jun 2004 | A1 |
20040110133 | Xu et al. | Jun 2004 | A1 |
20040175710 | Haushalter | Sep 2004 | A1 |
20040175734 | Stahler et al. | Sep 2004 | A1 |
20040191810 | Yamamoto | Sep 2004 | A1 |
20040219663 | Page et al. | Nov 2004 | A1 |
20040236027 | Maeji et al. | Nov 2004 | A1 |
20040248161 | Rothberg et al. | Dec 2004 | A1 |
20040259146 | Friend et al. | Dec 2004 | A1 |
20050022895 | Barth et al. | Feb 2005 | A1 |
20050049796 | Webb et al. | Mar 2005 | A1 |
20050053968 | Bharadwaj et al. | Mar 2005 | A1 |
20050079510 | Berka et al. | Apr 2005 | A1 |
20050100932 | Lapidus et al. | May 2005 | A1 |
20050112608 | Grossman et al. | May 2005 | A1 |
20050112636 | Hurt et al. | May 2005 | A1 |
20050112679 | Myerson et al. | May 2005 | A1 |
20050124022 | Srinivasan et al. | Jun 2005 | A1 |
20050137805 | Lewin et al. | Jun 2005 | A1 |
20050208513 | Agbo et al. | Sep 2005 | A1 |
20050227235 | Carr et al. | Oct 2005 | A1 |
20050255477 | Carr et al. | Nov 2005 | A1 |
20050266045 | Canham et al. | Dec 2005 | A1 |
20050277125 | Benn et al. | Dec 2005 | A1 |
20050282158 | Landegren | Dec 2005 | A1 |
20060003381 | Gilmore et al. | Jan 2006 | A1 |
20060003958 | Melville et al. | Jan 2006 | A1 |
20060012784 | Ulmer | Jan 2006 | A1 |
20060012793 | Harris | Jan 2006 | A1 |
20060019084 | Pearson | Jan 2006 | A1 |
20060024678 | Buzby | Feb 2006 | A1 |
20060024711 | Lapidus et al. | Feb 2006 | A1 |
20060024721 | Pedersen | Feb 2006 | A1 |
20060076482 | Hobbs et al. | Apr 2006 | A1 |
20060078909 | Srinivasan et al. | Apr 2006 | A1 |
20060078927 | Peck et al. | Apr 2006 | A1 |
20060078937 | Korlach et al. | Apr 2006 | A1 |
20060127920 | Church et al. | Jun 2006 | A1 |
20060134638 | Mulligan et al. | Jun 2006 | A1 |
20060160138 | Church | Jul 2006 | A1 |
20060171855 | Yin et al. | Aug 2006 | A1 |
20060202330 | Reinhardt et al. | Sep 2006 | A1 |
20060203236 | Ji et al. | Sep 2006 | A1 |
20060203237 | Ji et al. | Sep 2006 | A1 |
20060207923 | Li | Sep 2006 | A1 |
20060219637 | Killeen et al. | Oct 2006 | A1 |
20070031857 | Makarov et al. | Feb 2007 | A1 |
20070031877 | Stahler et al. | Feb 2007 | A1 |
20070043516 | Gustafsson et al. | Feb 2007 | A1 |
20070054127 | Hergenrother et al. | Mar 2007 | A1 |
20070059692 | Gao et al. | Mar 2007 | A1 |
20070087349 | Staehler et al. | Apr 2007 | A1 |
20070099208 | Drmanac et al. | May 2007 | A1 |
20070122817 | Church et al. | May 2007 | A1 |
20070141557 | Raab et al. | Jun 2007 | A1 |
20070196854 | Stahler et al. | Aug 2007 | A1 |
20070207482 | Church et al. | Sep 2007 | A1 |
20070207487 | Emig et al. | Sep 2007 | A1 |
20070231800 | Roberts et al. | Oct 2007 | A1 |
20070238104 | Barrett et al. | Oct 2007 | A1 |
20070238106 | Barrett et al. | Oct 2007 | A1 |
20070238108 | Barrett et al. | Oct 2007 | A1 |
20070259344 | Leproust et al. | Nov 2007 | A1 |
20070259345 | Sampas | Nov 2007 | A1 |
20070259346 | Gordon et al. | Nov 2007 | A1 |
20070259347 | Gordon et al. | Nov 2007 | A1 |
20070269870 | Church et al. | Nov 2007 | A1 |
20080085511 | Peck et al. | Apr 2008 | A1 |
20080085514 | Peck et al. | Apr 2008 | A1 |
20080087545 | Jensen et al. | Apr 2008 | A1 |
20080161200 | Yu et al. | Jul 2008 | A1 |
20080182296 | Chanda et al. | Jul 2008 | A1 |
20080214412 | Stahler et al. | Sep 2008 | A1 |
20080227160 | Kool | Sep 2008 | A1 |
20080233616 | Liss | Sep 2008 | A1 |
20080287320 | Baynes et al. | Nov 2008 | A1 |
20080300842 | Govindarajan et al. | Dec 2008 | A1 |
20080308884 | Kalvesten | Dec 2008 | A1 |
20080311628 | Shoemaker | Dec 2008 | A1 |
20090036664 | Peter | Feb 2009 | A1 |
20090053704 | Novoradovskaya et al. | Feb 2009 | A1 |
20090062129 | McKernan et al. | Mar 2009 | A1 |
20090087840 | Baynes et al. | Apr 2009 | A1 |
20090088679 | Wood et al. | Apr 2009 | A1 |
20090105094 | Heiner et al. | Apr 2009 | A1 |
20090170802 | Stahler et al. | Jul 2009 | A1 |
20090176280 | Hutchison, III et al. | Jul 2009 | A1 |
20090181861 | Li et al. | Jul 2009 | A1 |
20090194483 | Robotti et al. | Aug 2009 | A1 |
20090230044 | Bek | Sep 2009 | A1 |
20090238722 | Mora-Fillat et al. | Sep 2009 | A1 |
20090239759 | Balch | Sep 2009 | A1 |
20090246788 | Albert et al. | Oct 2009 | A1 |
20090263802 | Drmanac | Oct 2009 | A1 |
20090285825 | Kini et al. | Nov 2009 | A1 |
20090324546 | Notka et al. | Dec 2009 | A1 |
20100004143 | Shibahara | Jan 2010 | A1 |
20100009872 | Eid et al. | Jan 2010 | A1 |
20100047805 | Wang | Feb 2010 | A1 |
20100051967 | Bradley et al. | Mar 2010 | A1 |
20100069250 | White, III et al. | Mar 2010 | A1 |
20100090341 | Wan et al. | Apr 2010 | A1 |
20100099103 | Hsieh et al. | Apr 2010 | A1 |
20100160463 | Wang et al. | Jun 2010 | A1 |
20100167950 | Juang et al. | Jul 2010 | A1 |
20100173364 | Evans, Jr. et al. | Jul 2010 | A1 |
20100216648 | Staehler et al. | Aug 2010 | A1 |
20100256017 | Larman et al. | Oct 2010 | A1 |
20100258487 | Zelechonok et al. | Oct 2010 | A1 |
20100286290 | Lohmann et al. | Nov 2010 | A1 |
20100292102 | Nouri | Nov 2010 | A1 |
20100300882 | Zhang et al. | Dec 2010 | A1 |
20110009607 | Komiyama et al. | Jan 2011 | A1 |
20110082055 | Fox et al. | Apr 2011 | A1 |
20110114244 | Yoo et al. | May 2011 | A1 |
20110114549 | Yin et al. | May 2011 | A1 |
20110124049 | Li et al. | May 2011 | A1 |
20110124055 | Carr et al. | May 2011 | A1 |
20110126929 | Velasquez-Garcia et al. | Jun 2011 | A1 |
20110171651 | Richmond | Jul 2011 | A1 |
20110172127 | Jacobson et al. | Jul 2011 | A1 |
20110201057 | Carr et al. | Aug 2011 | A1 |
20110217738 | Jacobson | Sep 2011 | A1 |
20110230653 | Novoradovskaya et al. | Sep 2011 | A1 |
20110254107 | Bulovic et al. | Oct 2011 | A1 |
20110287435 | Grunenwald et al. | Nov 2011 | A1 |
20120003713 | Hansen et al. | Jan 2012 | A1 |
20120021932 | Mershin et al. | Jan 2012 | A1 |
20120027786 | Gupta et al. | Feb 2012 | A1 |
20120028843 | Ramu et al. | Feb 2012 | A1 |
20120032366 | Ivniski et al. | Feb 2012 | A1 |
20120046175 | Rodesch et al. | Feb 2012 | A1 |
20120050411 | Mabritto et al. | Mar 2012 | A1 |
20120094847 | Warthmann et al. | Apr 2012 | A1 |
20120128548 | West et al. | May 2012 | A1 |
20120129704 | Gunderson et al. | May 2012 | A1 |
20120149602 | Friend et al. | Jun 2012 | A1 |
20120164127 | Short | Jun 2012 | A1 |
20120164633 | Laffler | Jun 2012 | A1 |
20120164691 | Eshoo et al. | Jun 2012 | A1 |
20120184724 | Sierzchala et al. | Jul 2012 | A1 |
20120220497 | Jacobson et al. | Aug 2012 | A1 |
20120231968 | Bruhn et al. | Sep 2012 | A1 |
20120238737 | Dellinger et al. | Sep 2012 | A1 |
20120258487 | Chang et al. | Oct 2012 | A1 |
20120264653 | Carr et al. | Oct 2012 | A1 |
20120270750 | Oleinikov | Oct 2012 | A1 |
20120270754 | Blake | Oct 2012 | A1 |
20120283140 | Chu | Nov 2012 | A1 |
20120288476 | Hartmann et al. | Nov 2012 | A1 |
20120289691 | Dellinger et al. | Nov 2012 | A1 |
20120315670 | Jacobson et al. | Dec 2012 | A1 |
20120322681 | Kung et al. | Dec 2012 | A1 |
20130005585 | Anderson et al. | Jan 2013 | A1 |
20130005612 | Carr et al. | Jan 2013 | A1 |
20130017642 | Milgrew et al. | Jan 2013 | A1 |
20130017977 | Oleinikov | Jan 2013 | A1 |
20130017978 | Kavanagh et al. | Jan 2013 | A1 |
20130035261 | Sierzchala et al. | Feb 2013 | A1 |
20130040836 | Himmler et al. | Feb 2013 | A1 |
20130045483 | Treusch et al. | Feb 2013 | A1 |
20130053252 | Xie et al. | Feb 2013 | A1 |
20130059296 | Jacobson et al. | Mar 2013 | A1 |
20130059761 | Jacobson et al. | Mar 2013 | A1 |
20130065017 | Sieber | Mar 2013 | A1 |
20130109595 | Routenberg | May 2013 | A1 |
20130109596 | Peterson et al. | May 2013 | A1 |
20130123129 | Zeiner et al. | May 2013 | A1 |
20130130321 | Staehler et al. | May 2013 | A1 |
20130137161 | Zhang et al. | May 2013 | A1 |
20130137173 | Zhang et al. | May 2013 | A1 |
20130137174 | Zhang et al. | May 2013 | A1 |
20130137861 | Leproust et al. | May 2013 | A1 |
20130164308 | Foletti et al. | Jun 2013 | A1 |
20130225421 | Li et al. | Aug 2013 | A1 |
20130244884 | Jacobson et al. | Sep 2013 | A1 |
20130252849 | Hudson et al. | Sep 2013 | A1 |
20130261027 | Li et al. | Oct 2013 | A1 |
20130281308 | Kung et al. | Oct 2013 | A1 |
20130296192 | Jacobson et al. | Nov 2013 | A1 |
20130296194 | Jacobson et al. | Nov 2013 | A1 |
20130298265 | Cunnac et al. | Nov 2013 | A1 |
20130309725 | Jacobson et al. | Nov 2013 | A1 |
20130323722 | Carr et al. | Dec 2013 | A1 |
20130323725 | Peter et al. | Dec 2013 | A1 |
20130330778 | Zeiner et al. | Dec 2013 | A1 |
20140011226 | Bernick et al. | Jan 2014 | A1 |
20140018441 | Fracchia et al. | Jan 2014 | A1 |
20140031240 | Behlke et al. | Jan 2014 | A1 |
20140038240 | Temme et al. | Feb 2014 | A1 |
20140106394 | Ko et al. | Apr 2014 | A1 |
20140141982 | Jacobson et al. | May 2014 | A1 |
20140170665 | Hiddessen et al. | Jun 2014 | A1 |
20140178992 | Nakashima et al. | Jun 2014 | A1 |
20140274729 | Kurn et al. | Sep 2014 | A1 |
20140274741 | Hunter et al. | Sep 2014 | A1 |
20140303000 | Armour et al. | Oct 2014 | A1 |
20140309119 | Jacobson et al. | Oct 2014 | A1 |
20140309142 | Tian | Oct 2014 | A1 |
20150010953 | Lindstrom et al. | Jan 2015 | A1 |
20150012723 | Park et al. | Jan 2015 | A1 |
20150031089 | Lindstrom | Jan 2015 | A1 |
20150038373 | Banyai | Feb 2015 | A1 |
20150056609 | Daum et al. | Feb 2015 | A1 |
20150057625 | Coulthard | Feb 2015 | A1 |
20150065357 | Fox | Mar 2015 | A1 |
20150065393 | Jacobson | Mar 2015 | A1 |
20150099870 | Bennett et al. | Apr 2015 | A1 |
20150120265 | Amirav-Drory | Apr 2015 | A1 |
20150159152 | Allen et al. | Jun 2015 | A1 |
20150183853 | Sharma et al. | Jul 2015 | A1 |
20150191719 | Hudson et al. | Jul 2015 | A1 |
20150196917 | Kay et al. | Jul 2015 | A1 |
20150203839 | Jacobson et al. | Jul 2015 | A1 |
20150211047 | Borns | Jul 2015 | A1 |
20150225782 | Walder et al. | Aug 2015 | A1 |
20150240232 | Zamore et al. | Aug 2015 | A1 |
20150240280 | Gibson et al. | Aug 2015 | A1 |
20150261664 | Goldman et al. | Sep 2015 | A1 |
20150269313 | Church | Sep 2015 | A1 |
20150293102 | Shim | Oct 2015 | A1 |
20150307875 | Happe et al. | Oct 2015 | A1 |
20150321191 | Kendall et al. | Nov 2015 | A1 |
20150322504 | Lao et al. | Nov 2015 | A1 |
20150344927 | Sampson et al. | Dec 2015 | A1 |
20150353921 | Tian | Dec 2015 | A9 |
20150353994 | Myers et al. | Dec 2015 | A1 |
20150361420 | Hudson et al. | Dec 2015 | A1 |
20150361422 | Sampson et al. | Dec 2015 | A1 |
20150361423 | Sampson et al. | Dec 2015 | A1 |
20150368687 | Saaem et al. | Dec 2015 | A1 |
20150376602 | Jacobson et al. | Dec 2015 | A1 |
20160001247 | Oleinikov | Jan 2016 | A1 |
20160002621 | Nelson et al. | Jan 2016 | A1 |
20160002622 | Nelson et al. | Jan 2016 | A1 |
20160010045 | Cohen et al. | Jan 2016 | A1 |
20160017394 | Liang et al. | Jan 2016 | A1 |
20160017425 | Ruvolo et al. | Jan 2016 | A1 |
20160019341 | Harris et al. | Jan 2016 | A1 |
20160024138 | Gebeyehu et al. | Jan 2016 | A1 |
20160024576 | Chee | Jan 2016 | A1 |
20160026753 | Krishnaswami et al. | Jan 2016 | A1 |
20160026758 | Jabara et al. | Jan 2016 | A1 |
20160032396 | Diehn et al. | Feb 2016 | A1 |
20160046973 | Efcavitch et al. | Feb 2016 | A1 |
20160046974 | Efcavitch et al. | Feb 2016 | A1 |
20160082472 | Perego et al. | Mar 2016 | A1 |
20160089651 | Banyai | Mar 2016 | A1 |
20160090592 | Banyai et al. | Mar 2016 | A1 |
20160096160 | Banyai et al. | Apr 2016 | A1 |
20160097051 | Jacobson et al. | Apr 2016 | A1 |
20160102322 | Ravinder et al. | Apr 2016 | A1 |
20160108466 | Nazarenko et al. | Apr 2016 | A1 |
20160122755 | Hall et al. | May 2016 | A1 |
20160122800 | Bernick et al. | May 2016 | A1 |
20160152972 | Stapleton et al. | Jun 2016 | A1 |
20160168611 | Efcavitch et al. | Jun 2016 | A1 |
20160184788 | Hall et al. | Jun 2016 | A1 |
20160200759 | Srivastava et al. | Jul 2016 | A1 |
20160215283 | Braman et al. | Jul 2016 | A1 |
20160229884 | Indermuhle | Aug 2016 | A1 |
20160230175 | Carstens | Aug 2016 | A1 |
20160230221 | Bergmann et al. | Aug 2016 | A1 |
20160251651 | Banyai | Sep 2016 | A1 |
20160256846 | Smith et al. | Sep 2016 | A1 |
20160264958 | Toro et al. | Sep 2016 | A1 |
20160289758 | Akeson et al. | Oct 2016 | A1 |
20160289839 | Harumoto et al. | Oct 2016 | A1 |
20160303535 | Banyai et al. | Oct 2016 | A1 |
20160304862 | Igawa et al. | Oct 2016 | A1 |
20160304946 | Betts et al. | Oct 2016 | A1 |
20160310426 | Wu | Oct 2016 | A1 |
20160310927 | Banyai et al. | Oct 2016 | A1 |
20160333340 | Wu | Nov 2016 | A1 |
20160339409 | Banyai | Nov 2016 | A1 |
20160340672 | Banyai et al. | Nov 2016 | A1 |
20160348098 | Stuelpnagel et al. | Dec 2016 | A1 |
20160354752 | Banyai et al. | Dec 2016 | A1 |
20160355880 | Gormley et al. | Dec 2016 | A1 |
20170017436 | Church | Jan 2017 | A1 |
20170066844 | Glanville | Mar 2017 | A1 |
20170067099 | Zheng et al. | Mar 2017 | A1 |
20170073664 | McCafferty et al. | Mar 2017 | A1 |
20170073731 | Zheng et al. | Mar 2017 | A1 |
20170081660 | Cox et al. | Mar 2017 | A1 |
20170081716 | Peck | Mar 2017 | A1 |
20170088887 | Makarov et al. | Mar 2017 | A1 |
20170095785 | Banyai | Apr 2017 | A1 |
20170096706 | Behlke et al. | Apr 2017 | A1 |
20170114404 | Behlke et al. | Apr 2017 | A1 |
20170141793 | Strauss et al. | May 2017 | A1 |
20170147748 | Staehler et al. | May 2017 | A1 |
20170151546 | Peck et al. | Jun 2017 | A1 |
20170159044 | Toro et al. | Jun 2017 | A1 |
20170175110 | Jacobson | Jun 2017 | A1 |
20170218537 | Olivares | Aug 2017 | A1 |
20170233764 | Young et al. | Aug 2017 | A1 |
20170249345 | Malik et al. | Aug 2017 | A1 |
20170253644 | Steyaert et al. | Sep 2017 | A1 |
20170320061 | Venter et al. | Nov 2017 | A1 |
20170327819 | Banyai | Nov 2017 | A1 |
20170355984 | Evans et al. | Dec 2017 | A1 |
20170357752 | Diggans | Dec 2017 | A1 |
20170362589 | Banyai | Dec 2017 | A1 |
20180029001 | Banyai | Feb 2018 | A1 |
20180051278 | Cox et al. | Feb 2018 | A1 |
20180051280 | Gibson et al. | Feb 2018 | A1 |
20180068060 | Ceze et al. | Mar 2018 | A1 |
20180101487 | Peck | Apr 2018 | A1 |
20180104664 | Fernandez | Apr 2018 | A1 |
20180126355 | Peck et al. | May 2018 | A1 |
20180142289 | Zeitoun | May 2018 | A1 |
20180171509 | Cox | Jun 2018 | A1 |
20180236425 | Banyai et al. | Aug 2018 | A1 |
20180253563 | Peck et al. | Sep 2018 | A1 |
20180264428 | Banyai et al. | Sep 2018 | A1 |
20180273936 | Cox | Sep 2018 | A1 |
20180282721 | Cox et al. | Oct 2018 | A1 |
20180312834 | Cox et al. | Nov 2018 | A1 |
20180326388 | Banyai et al. | Nov 2018 | A1 |
20180346585 | Zhang et al. | Dec 2018 | A1 |
20180355351 | Nugent et al. | Dec 2018 | A1 |
20190060345 | Harrison et al. | Feb 2019 | A1 |
20190118154 | Eugene et al. | Apr 2019 | A1 |
20190135926 | Glanville | May 2019 | A1 |
20190244109 | Bramlett et al. | Aug 2019 | A1 |
20190318132 | Peck | Oct 2019 | A1 |
20190352635 | Toro et al. | Nov 2019 | A1 |
20190366293 | Banyai et al. | Dec 2019 | A1 |
20190366294 | Banyai et al. | Dec 2019 | A1 |
20200017907 | Zeitoun et al. | Jan 2020 | A1 |
20200102611 | Zeitoun et al. | Apr 2020 | A1 |
20200156037 | Banyai et al. | May 2020 | A1 |
20200181667 | Wu et al. | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
3157000 | Sep 2000 | AU |
2362939 | Aug 2000 | CA |
1771336 | May 2006 | CN |
102159726 | Aug 2011 | CN |
103907117 | Jul 2014 | CN |
104562213 | Apr 2015 | CN |
104734848 | Jun 2015 | CN |
10260805 | Jul 2004 | DE |
0090789 | Oct 1983 | EP |
0126621 | Aug 1990 | EP |
0753057 | Jan 1997 | EP |
1153127 | Nov 2001 | EP |
1314783 | May 2003 | EP |
1363125 | Nov 2003 | EP |
1546387 | Jun 2005 | EP |
1153127 | Jul 2006 | EP |
1728860 | Dec 2006 | EP |
1072010 | Apr 2010 | EP |
2175021 | Apr 2010 | EP |
2330216 | Jun 2011 | EP |
1343802 | May 2012 | EP |
2504449 | Oct 2012 | EP |
2751729 | Jul 2014 | EP |
2872629 | May 2015 | EP |
2928500 | Oct 2015 | EP |
2971034 | Jan 2016 | EP |
3030682 | Jun 2016 | EP |
3044228 | Apr 2017 | EP |
2994509 | Jun 2017 | EP |
3204518 | Aug 2017 | EP |
2002536977 | Nov 2002 | JP |
2002538790 | Nov 2002 | JP |
2006503586 | Feb 2006 | JP |
2009294195 | Dec 2009 | JP |
WO-9015070 | Dec 1990 | WO |
WO-9210092 | Jun 1992 | WO |
WO-9210588 | Jun 1992 | WO |
WO-9309668 | May 1993 | WO |
WO-9525116 | Sep 1995 | WO |
WO-9526397 | Oct 1995 | WO |
WO-9615861 | May 1996 | WO |
WO-9710365 | Mar 1997 | WO |
WO-9822541 | May 1998 | WO |
WO-9841531 | Sep 1998 | WO |
WO-9942813 | Aug 1999 | WO |
WO-0013017 | Mar 2000 | WO |
WO-0018957 | Apr 2000 | WO |
WO-0042559 | Jul 2000 | WO |
WO-0042560 | Jul 2000 | WO |
WO-0042561 | Jul 2000 | WO |
WO-0049142 | Aug 2000 | WO |
WO-0053617 | Sep 2000 | WO |
WO-0156216 | Aug 2001 | WO |
WO-0210443 | Feb 2002 | WO |
WO-0156216 | Mar 2002 | WO |
WO-0220537 | Mar 2002 | WO |
WO-0224597 | Mar 2002 | WO |
WO-0227638 | Apr 2002 | WO |
WO-0233669 | Apr 2002 | WO |
WO-02072791 | Sep 2002 | WO |
WO-03040410 | May 2003 | WO |
WO-03046223 | Jun 2003 | WO |
WO-03054232 | Jul 2003 | WO |
WO-03064026 | Aug 2003 | WO |
WO-03064027 | Aug 2003 | WO |
WO-03064699 | Aug 2003 | WO |
WO-03065038 | Aug 2003 | WO |
WO-03066212 | Aug 2003 | WO |
WO-03089605 | Oct 2003 | WO |
WO-03093504 | Nov 2003 | WO |
WO-03100012 | Dec 2003 | WO |
WO-2004024886 | Mar 2004 | WO |
WO-2004029220 | Apr 2004 | WO |
WO-2004029586 | Apr 2004 | WO |
WO-2004031351 | Apr 2004 | WO |
WO-2004031399 | Apr 2004 | WO |
WO-2004059556 | Jul 2004 | WO |
WO-2005014850 | Feb 2005 | WO |
WO-2005051970 | Jun 2005 | WO |
WO-2005059096 | Jun 2005 | WO |
WO-2005059097 | Jun 2005 | WO |
WO-2006023144 | Mar 2006 | WO |
WO-2006076679 | Jul 2006 | WO |
WO-2006116476 | Nov 2006 | WO |
WO-2007120627 | Oct 2007 | WO |
WO-2007137242 | Nov 2007 | WO |
WO-2008006078 | Jan 2008 | WO |
WO-2008027558 | Mar 2008 | WO |
WO-2008045380 | Apr 2008 | WO |
WO-2008054543 | May 2008 | WO |
WO-2008063134 | May 2008 | WO |
WO-2008063135 | May 2008 | WO |
WO-2008109176 | Sep 2008 | WO |
WO-2010025310 | Mar 2010 | WO |
WO-2010025566 | Mar 2010 | WO |
WO-2010027512 | Mar 2010 | WO |
WO-2010089412 | Aug 2010 | WO |
WO-2010141433 | Dec 2010 | WO |
WO-2010141433 | Apr 2011 | WO |
WO-2011053957 | May 2011 | WO |
WO-2011056644 | May 2011 | WO |
WO-2011056872 | May 2011 | WO |
WO-2011066185 | Jun 2011 | WO |
WO-2011066186 | Jun 2011 | WO |
WO-2011085075 | Jul 2011 | WO |
WO-2011103468 | Aug 2011 | WO |
WO-2011109031 | Sep 2011 | WO |
WO-2011143556 | Nov 2011 | WO |
WO-2011150168 | Dec 2011 | WO |
WO-2011161413 | Dec 2011 | WO |
WO-2012013913 | Feb 2012 | WO |
WO-2012061832 | May 2012 | WO |
WO-2012078312 | Jun 2012 | WO |
WO-2012149171 | Nov 2012 | WO |
WO-2012154201 | Nov 2012 | WO |
WO-2013030827 | Mar 2013 | WO |
WO-2013032850 | Mar 2013 | WO |
WO-2013036668 | Mar 2013 | WO |
WO-2013101896 | Jul 2013 | WO |
WO-2013154770 | Oct 2013 | WO |
WO-2013177220 | Nov 2013 | WO |
WO-2014004393 | Jan 2014 | WO |
WO-2014008447 | Jan 2014 | WO |
WO-2014035693 | Mar 2014 | WO |
WO-2014088693 | Jun 2014 | WO |
WO-2014089160 | Jun 2014 | WO |
WO-2014093330 | Jun 2014 | WO |
WO-2014093694 | Jun 2014 | WO |
WO-2014151696 | Sep 2014 | WO |
WO-2014160004 | Oct 2014 | WO |
WO-2014160059 | Oct 2014 | WO |
WO-2015017527 | Feb 2015 | WO |
WO-2015021080 | Feb 2015 | WO |
WO-2015021280 | Feb 2015 | WO |
WO-2015040075 | Mar 2015 | WO |
WO-2015054292 | Apr 2015 | WO |
WO 2015081114 | Jun 2015 | WO |
WO-2015081114 | Jun 2015 | WO |
WO-2015081142 | Jun 2015 | WO |
WO-2015090879 | Jun 2015 | WO |
WO-2015095404 | Jun 2015 | WO |
WO-2015120403 | Aug 2015 | WO |
WO-2015160004 | Oct 2015 | WO |
WO-2015175832 | Nov 2015 | WO |
WO-2016007604 | Jan 2016 | WO |
WO-2016011080 | Jan 2016 | WO |
WO-2016022557 | Feb 2016 | WO |
WO-2016053883 | Apr 2016 | WO |
WO-2016055956 | Apr 2016 | WO |
WO-2016065056 | Apr 2016 | WO |
WO-2016126882 | Aug 2016 | WO |
WO-2016126987 | Aug 2016 | WO |
WO-2016130868 | Aug 2016 | WO |
WO-2016161244 | Oct 2016 | WO |
WO-2016172377 | Oct 2016 | WO |
WO-2016173719 | Nov 2016 | WO |
WO-2016183100 | Nov 2016 | WO |
WO-2017049231 | Mar 2017 | WO |
WO-2017053450 | Mar 2017 | WO |
WO-2017059399 | Apr 2017 | WO |
WO-2017095958 | Jun 2017 | WO |
WO-2017100441 | Jun 2017 | WO |
WO-2017118761 | Jul 2017 | WO |
WO-2017158103 | Sep 2017 | WO |
WO-2017214574 | Dec 2017 | WO |
WO-2018026920 | Feb 2018 | WO |
WO-2018038772 | Mar 2018 | WO |
WO-2018057526 | Mar 2018 | WO |
WO-2018094263 | May 2018 | WO |
WO-2018112426 | Jun 2018 | WO |
WO-2018156792 | Aug 2018 | WO |
WO-2018170164 | Sep 2018 | WO |
WO-2018200380 | Nov 2018 | WO |
WO-2019222706 | Nov 2019 | WO |
Entry |
---|
Martinez-Torrecuadrada et al. (2005) Clinical Cancer Research vol. 11 pp. 6282 to 6290. |
ATDBio, “Nucleic Acid Structure,” Nucleic Acids Book, 9 pages, published on Jan. 22, 2005. from: http://www.atdbio.com/content/5/Nucleic-acid-structure. |
ATDBio, “Solid-Phase Oligonucleotide Synthesis,” Nucleic Acids Book, 20 pages, Published on Jul. 31, 2011. from: http://www.atdbio.com/content/17/Solid-phase-oligonucleotide-synthesis. |
Barton et al., A desk electrohydrodynamic jet printing system. Mechatronics, 20:611-616, 2010. |
Blanchard, et al., “High-Density Oligonucleotide Arrays,” Biosensors & Bioelectronics, 11(6/7):687-690, 1996. |
Buermans et al., “Next Generation sequencing technology: Advances and applications,” Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1842:1931-1941, 2014. |
Cleary et al., “Production of complex nucleic acid libraries using highly parallel in situ oligonucleotide synthesis,” Nature Methods, 1(13):241-248, 2004. |
Fodor et al. “Light-Directed, Spatially Addressable Parallel Chemical Synthesis,” Science, 251(4995):767-773, 1991. |
Kim et al., High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Letters, 15:969-973, 2015. |
Kosuri and Church, “Large-scale de novo DNA synthesis: technologies and applications,” Nature Methods, 11:499-507, 2014. Available at: http://www.nature.com/nmeth/journal/v11/n5/full/nmeth.2918.html. |
Krayden, Inc., A Guide to Silane Solutions. Silane coupling agents. 7 pages. Published on May 31, 2005 at: http://krayden.com/pdf/xia_silane_chemistry.pdf. |
Lausted et al., “POSaM: a fast, flexible, open-source, inkjet oligonucleotide synthesizer and microarrayer,” Genome Biology, 5:R58, 17 pages, 2004. available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC507883/. |
Leproust et al., “Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process,” Nucleic Acids Research, 35(8):2522-2540, 2010. |
McBride & Caruthers, “An investigation of several deoxynucleoside phosphoramidites useful for synthesizing deoxyoligonucleotides.” Tetrahedron Lett. 24: 245-248, 1983. |
PCT Patent Application No. PCT/US2016/052336 International Search Report and Written Opinion dated Dec. 7, 2016. |
Pray. “Discovery of DNA Structure and Function: Watson and Crick,” Nature Education, 2008, 6 pages. available at: http://www.nature.com/scitable/topicpage/discovery-of-dna-structure-and- function-watson-397. |
Quan et al., “Parallel on-chip gene synthesis and application to optimization of protein expression,” Nature Biotechnology, 29(5):449-452, 2011. |
Raje and Murma, A Review of electrohydrodynamic-inkjet printing technology. International Journal of Emerging Technology and Advanced Engineering, 4(5):174-183, 2014. |
The Hood Laboratory, “Beta Group.” Assembly Manual for the POSaM: The ISB Piezoelelctric Oligonucleotide Synthesizer and Microarrayer, Inkjet Microarrayer Manual Version 1.2, 50 pages, May 28, 2004. |
U.S. Appl. No. 15/233,835 Restriction Requirement dated Nov. 4, 2016. |
U.S. Appl. No. 15/245,054 Office Action dated Oct. 19, 2016. |
U.S. Appl. No. 14/885,962 Office Action dated Dec. 16, 2016. |
Wijshoff, Herman. Structure and fluid-dynamics in Piezo inkjet printheads. Thesis. Venio, The Netherlands, published 2008, p. 1-185. |
Xiong et al., Chemical gene synthesis: Strategies, softwares, error corrections, and applications. FEMS Microbiol. Rev., 32:522-540, 2008. |
Andoni and Indyk, Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions, Communications of the ACM, 51(1):117-122, 2008. |
Bethge et al., “Reverse synthesis and 3′-modification of RNA.” Jan. 1, 2011, pp. 64-64, XP055353420. Retrieved from the Internet: URL:http://www.is3na.org/assets/events/Category%202-Medicinal %20Chemistry%20of%2001igonucleotides%020%2864-108%29.pdf. |
Binkowski et al., Correcting errors in synthetic DNA through consensus shuffling. Nucleic Acids Research, 33(6):e55, 8 pages, 2005. |
Blawat et al., Forward error correction for DNA data storage. Procedia Computer Science, 80:1011-1022, 2016. |
Bonini and Mondino, Adoptive T-cell therapy for cancer: The era of engineered T cells. European Journal of Immunology, 45:2457-2469, 2015. |
Bornholt et al., A DNA-Based Archival Storage System, in International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Apr. 2-6, 2016, Atlanta, GA, 2016, 637-649. |
Borovkov et al., High-quality gene assembly directly from unpurified mixtures of microassay-synthesized oligonucleotides. Nucleic Acid Research, 38(19):e180, 10 pages, 2010. |
Brunet, Aims and methods of biosteganography. Journal of Biotechnology, 226:56-64, 2016. |
Cardelli, Two-Domain DNA Strand Displacement, Electron. Proc. Theor. Comput. Sci., 26:47-61, 2010. |
Carlson, “Time for New DNA Synthesis and Sequencing Cost Curves,” 2014. [Online]. Available: http://www.synthesis.cc/synthesis/2014/02/time_for_new_cost_curves_2014. 10 pages. |
Caruthers, The Chemical Synthesis of DNA/RNA: Our Gift to Science. J. Biol. Chem., 288(2):1420-1427, 2013. |
Chen et al., Programmable chemical controllers made from DNA, Nat. Nanotechnol., 8(10):755-762, 2013. |
Church et al., Next-generation digital information storage in DNA. Science, 337:6102, 1628-1629, 2012. |
Cohen et al., Human population: The next half century. Science, 302:1172-1175, 2003. |
Dormitzer et al., Synthetic generation of influenza vaccine viruses for rapid response to pandemics. Sci Translational Medicine, 5(185):185ra68, 14 pages, 2013. |
Elsik et al., The Genome sequence of taurine cattle: A window of ruminant biology and evolution. Science, 324:522-528, 2009. |
Erlich and Zielinski, DNA fountain enables a robust and efficient storage architecture. Science, 355(6328):950-054, 2017. |
European Patent Application No. 14834665.3 extended European Search Report dated Apr. 28, 2017. |
European Patent Application No. 14834665.3 Communication dated Jan. 16, 2018. |
Finger et al., The wonders of Flap Endonucleases: Structure, function, mechanism and regulation. Subcell Biochem., 62:301-326, 2012. |
Fogg et al., Structural basis for uracil recognition by archaeal family B DNA polymerases. Nature Structural Biology, 9(12):922-927, 2002. |
GeneArt Seamless Cloning and Assembly Kits. Life Technologies Synthetic Biology. 8 pages, available online Jun. 15, 2012. |
Gibson Assembly. Product Listing. Application Overview. 2 pages, available online Dec. 16, 2014. |
Goldman et al., Towards practical, high-capacity, low-maintenance information storage in synthesized DNA, Nature, 494(7435):77-80, 2013. |
Grass, et al., Robust chemical preservation of digital information on DNA in silica with error-correcting codes, Angew. Chemie—Int. Ed., 54(8):2552-2555, 2015. |
Greagg et al., A read-ahead function in archaeal DNA polymerases detects promutagenic template-strand uracil. Proc. Nat. Acad. Sci. USA, 96:9045-9050, 1999. |
Gu et al., Depletion of abundant sequences by hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications. Genome Biology, 17:41, 13 pages, 2016. |
IMGUR: The magic of the internet. Uploaded May 10, 2012, 2 pages, retrieved from: https://imgur.com/mEWuW. |
In-Fusion Cloning: Accuracy, Not Background. Cloning & Competent Cells, ClonTech Laboratories, 3 pages, available online Jul. 6, 2014. |
Jinek et al., A Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337:816-821, 2012. |
Koike-Yusa et al., Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nature Biotechnology, 32:267-273, 2014 (with three pages of supplemental “Online Methods”). |
Lewontin and Hart!, Population genetics in forensic DNA typing. Science, 254:1745-1750, 1991. |
Li et al., Beating bias in the directed evolution of proteins: Combining high-fidelity on-chip solid-phase gene synthesis with efficient gene assembly for combinatorial library construction. First published Nov. 24, 2017, 2 pages. retrieved from: https://doi.org/10.1002/cbic.201700540. |
Limbachiya et al., Natural data storage: A review on sending information from now to then via Nature. ACM Journal on Emerging Technologies in Computing Systems, V(N):Article A, May 19, 2015, 17 pages. |
Link Technologies. “Product Guide 2010.” Nov. 27, 2009, 136 pages. XP055353191. Retrieved from the Internet: URL:http://www.linktech.co.uk/documents/517/517.pdf. |
Liu et al., Rational design of CXCR4 specific antibodies with elongated CDRs. JACS, 136:10557-10560, 2014. |
Milo and Phillips, Numbers here reflect the number of protein coding genes and excludes tRNA and non-coding RNA. Cell Biology by the Numbers, p. 286, 2015. |
Morin et al., Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques, 45:81-94, 2008. |
Morris and Stauss, Optimizing T-cell receptor gene therapy for hematologic malignancies. Blood, 127(26):3305-3311, 2016. |
Neiman M.S,. Negentropy principle in information processing systems. Radiotekhnika, 1966, Nº11, p. 2-9. |
Neiman M.S., On the bases of the theory of information retrieval. Radiotekhnika, 1967, Nº 5, p. 2-10. |
Neiman M.S., On the molecular memory systems and the directed mutations. Radiotekhnika, 1965, No. 6, pp. 1-8. |
Neiman M.S., On the relationships between the reliability, performance and degree of microminiaturization at the molecular-atomic level. Radiotekhnika, 1965, No. 1, pp. 1-9. |
Neiman M.S., Some fundamental issues of microminiaturization. Radiotekhnika, 1964, No. 1, pp. 3-12. |
Organick et al., Random access in large-scale DNA data storage. Nature Biotechnology, Advance Online Publication, 8 pages, 2018. |
Organick et al., Scaling up DNA data storage and random access retrieval, bioRxiv, preprint first posted online Mar. 7, 2017, 14 pages. |
PCT/US2015/043605 International Preliminary Report on Patentability dated Feb. 16, 2017. |
PCT/US2016/016459 International Preliminary Report on Patentability dated Aug. 17, 2017. |
PCT/US2016/016636 International Preliminary Report on Patentability dated Aug. 17, 2017. |
PCT/US2016/028699 International Preliminary Report on Patentability dated Nov. 2, 2017. |
PCT/US2016/031674 International Preliminary Report on Patentability dated Nov. 23, 2017. |
PCT/US2016/052916 International Search Report and Written Opinion dated Dec. 30, 2016. |
PCT/US2016/064270 International Search Report and Written Opinion dated Apr. 28, 2017. |
PCT/US2017/026232 International Search Report and Written Opinion dated Aug. 28, 2017. |
PCT/US2017/036868 International Search Report and Written Opinion dated Aug. 11, 2017. |
PCT/US2017/045105 International Search Report and Written Opinion dated Oct. 20, 2017. |
PCT/US2017/052305 International Search Report and Written Opinion dated Feb. 2, 2018. |
PCT/US2017/062391 International Search Report and Written Opinion dated Mar. 28, 2018. |
Plesa et al., Multiplexed gene synthesis in emulsions for exploring protein functional landscapes. Science, 10.1126/science.aao5167, 10 pages, 2018. |
Qian and Winfree, Scaling up digital circuit computation with DNA strand displacement cascades. Science, 332(6034):196-1201, 2011. |
Qian, et al., Neural network computation with DNA strand displacement cascades, Nature, 475(7356):368-372, 2011. |
Rafalski and Morgante, Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends in Genetics, 20(2):103-111, 2004. |
Rastegari, et al., XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks, in ECCV 2016, Part IV, LNCS 9908, p. 525-542, 2016. |
Rogozin et al., Origin and evolution of spliceosomal introns. Biology Direct, 7:11, 2012. |
Sargolzaei et al., Extent of linkage disequilibrium in Holstein cattle in North America. J.Dairy Science, 91:2106-2117, 2007. |
Schmitt et al., New strategies in engineering T-cell receptor gene-modified T cells to more effectively target malignancies. Clinical Cancer Research, 21(23):5191-5197, 2015. |
Seelig, et al., Enzyme-Free Nucleic Acid Logic Circuits, Science 314(5805):1585-1588, 2006. |
Sharpe and Mount, Genetically modified T cells in cancer therapy: opportunities and challenges. Disease Models and Mechanisms, 8:337-350, 2015. |
Simonyan and Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, Published as a conference paper at Int. Conf. Learn. Represent., pp. 1-14, 2015. |
Srivannavit et al., Design and fabrication of microwell array chips for a solution-based, photogenerated acid-catalyzed parallel oligonuclotide DNA synthesis. Sensors and Actuators A, 116:150-160, 2004. |
Srivastava et al., “RNA synthesis: phosphoramidites for RNA synthesis in the reverse direction. Highly efficient synthesis and application to convenient introduction of ligands, chromophores and modifications of synthetic RNA at the 3′-end”, Nucleic Acids Symposium Series, 52(1):103-104, 2008. |
The SLIC, Gibson, CPEC and SLiCE assembly methods (and GeneArt Seamless, In-Fusion Cloning). 5 pages, available online Sep. 2, 2010. |
Twist Bioscience | White Paper. DNA-Based Digital Storage. Retrieved from the internet, Twistbioscience.com, Mar. 27, 2018, 5 pages. |
U.S. Appl. No. 14/885,962 Notice of Allowance dated Nov. 8, 2017 and Sep. 29, 2017. |
U.S. Appl. No. 14/885,965 Office Action dated Aug. 30, 2017. |
U.S. Appl. No. 14/885,965 Office Action dated Feb. 10, 2017. |
U.S. Appl. No. 14/885,965 Office Action dated Jan. 4, 2018. |
U.S. Appl. No. 15/135,434 Notice of Allowance dated Feb. 9, 2018. |
U.S. Appl. No. 15/135,434 Office Action dated Nov. 30, 2017. |
U.S. Appl. No. 15/135,434 Restriction Requirement dated Jul. 12, 2017. |
U.S. Appl. No. 15/154,879 Notice of Allowance dated Feb. 1, 2017. |
U.S. Appl. No. 15/187,721 Notice of Allowance dated Dec. 7, 2016. |
U.S. Appl. No. 15/187,721 Office Action dated Oct. 14, 2016. |
U.S. Appl. No. 15/233,835 Notice of Allowance dated Oct. 4, 2017. |
U.S. Appl. No. 15/233,835 Office Action dated Feb. 8, 2017. |
U.S. Appl. No. 15/233,835 Office Action dated Jul. 26, 2017. |
U.S. Appl. No. 15/245,054 Office Action dated Mar. 21, 2017. |
U.S. Appl. No. 15/377,547 Office Action dated Mar. 24, 2017. |
U.S. Appl. No. 15/377,547 Office Action dated Nov. 30, 2017. |
U.S. Appl. No. 15/602,991 Notice of Allowance dated Oct. 25, 2017. |
U.S. Appl. No. 15/602,991 Office Action dated Sep. 21, 2017. |
U.S. Appl. No. 15/603,013 Office Action dated Jan. 30, 2018. |
U.S. Appl. No. 15/603,013 Office Action dated Oct. 20, 2017. |
U.S. Appl. No. 15/682,100 Office Action dated Jan. 2, 2018. |
U.S. Appl. No. 15/682,100 Restriction Requirement dated Nov. 8, 2017. |
Van Tassell et al., SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nature Methods, 5:247-252, 2008. |
Wagner et al., “Nucleotides, Part LXV, Synthesis of 2′-Deoxyribonucleoside 5′-Phosphoramidites: New Building Blocks for the Inverse (5′-3′)-0iigonucleotide Approach.” Helvetica Chimica Acta, 83(8):2023-2035, 2000. |
Wan et al., Deep Learning for Content-Based Image Retrieval: A comprehensive study. in Proceedings of the 22nd ACM International Conference on Multimedia—Nov. 3-7, 2014, Orlando, FL, p. 157-166, 2014. |
Wiedenheft et al., RNA-guided genetic silencing systems in bacteria and archaea. Nature, 482:331-338, 2012. |
Wright and Church, An open-source oligomicroarray standard for human and mouse. Nature Biotechnology, 20:1082-1083, 2002. |
Xu et al., Design of 240,000 orthogonal 25mer DNA barcode probes. PNAS, 106(7):2289-2294, 2009. |
Yazdi, et al., A Rewritable, Random-Access DNA-Based Storage System, Scientific Reports, 5, Article No. 14138, 27 pages, 2015. |
Zhang and Seelig, Dynamic DNA nanotechnology using strand-displacement reactions, Nat. Chem., 3(2):103-113, 2011. |
Zhirnov et al., Nucleic acid memory. Nature Materials, 15:366, 2016. |
Abudayyeh et al., C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, available on line, Jun. 13, 2016, at: http://zlab.mit.edu/assets/reprints/Abudayyeh_OO_Science_2016.pdf , 17 pages. |
Adessi, et al. Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. Nucleic Acids Res. Oct. 15, 2000;28(20):E87. |
Alexeyev, Mikhail F. et al., “Gene synthesis, bacterial expression and purification of the Rickettsia prowazekii ATP/ADP translocase”, Biochimica et Biophysics Acta, vol. 1419, 299-306 (1999). |
Al-Housseiny et al., Control of interfacial instabilities using flow geometry Nature Physics, 8:747-750 (2012). Published online at: DOI:10.1038/NPHYS2396. |
Amblard, Francois et al., “A magnetic manipulator for studying local rheology and micromechanical properties of biological systems”, Rev. Sci. Instrum., vol. 67, No. 3, 818-827, Mar. 1996. |
Arkles, et al. The Role of Polarity in the Structure of Silanes Employed in Surface Modification. Silanes and Other Coupling Agents. 2009; 5:51-64. |
Arkles, Hydrophobicity, Hydrophilicity Reprinted with permission from the Oct. 2006 issue of Paint & Coatings Industry magazine, Retrieved on Mar. 19, 2016, 10 pages. |
Assi, Fabiano et al., “Massive-parallel adhesion and reactivity-measurements using simple and inexpensive magnetic tweezers”, J. Appl. Phys., vol. 92, No. 9, 5584-5586, Nov. 1, 2002. |
Au, Lo-Chun et al. “Gene synthesis by a LCR-based approach: high level production of Leptin-L54 using synthetic gene in Escherichia coli”, Biochemical and Biophysical Research Communications, vol. 248, 200-203 (1998). |
Baedeker, Mathias et al., Overexpression of a designed 2.2kb gene of eukaryotic phenylalanine ammonialyase in Escherichia coli. FEBS Letters, vol. 457, 57-60 (1999). |
Barbee, et al. Magnetic Assembly of High-Density DNA Arrays for Genomic Analyses. Anal Chem. Mar. 15, 2008; 80(6): 2149-2154. |
Beaucage, et al. Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron. 1992; 48:2223-2311. |
Beaucage, et al. Deoxynucleoside phosphoramidites—A new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 1981; 22(20):1859-1862. |
Beaulieu, Martin et al., “PCR candidate region mismatch scanning adaptation to quantitative, high-throughput genotyping”, Nucleic Acids Research, vol. 29, No. 5, 1114-1124 (2001). |
Beigelman, et al. Base-modified phosphoramidite analogs of pyrimidine ribonucleosides for RNA structure-activity studies. Methods Enzymol. 2000;317:39-65. |
Biswas, Indranil et al., “Identification and characterization of a thermostable MutS homolog from Thennus aquaticus”, The Journal of Biological Chemistry, vol. 271, No. 9, 5040-5048 (Mar. 1, 1996). |
Biswas, Indranil et al., “Interaction of MutS protein with the major and minor grooves of a heteroduplex DNA”, The Journal of Biological Chemistry, vol. 272, No. 20, 13355-13364 (May 1, 1997). |
Bjornson, Keith P. et al., “Differential and simultaneous adenosine Di- and Tri˜hosphate binding by MutS”, The Journal of Biological Chemistry, vol. 278, No. 20, 18557-18562 (May 16, 2003). |
Blanchard, et al. High-Density Oligonucleotide Arrays. Biosens. & Bioelectronics. 1996; 11:687-690. |
Blanchard, in: Genetic Engineering, Principles and Methods, vol. 20, Ed. J. Sedlow, New York: Plenum Press, p. 111-124, 1979. |
Butler, et al. In situ synthesis of oligonucleotide arrays by using surface tension. J Am Chem Soc. Sep. 19, 2001;123(37):8887-94. |
Calvert, Lithographically patterned self-assembled films. In: Organic Thin Films and Surfaces: Directions for the Nineties, vol. 20, p. 109, ed. By Abraham Ulman, San Diego: Academic Press, 1995. |
Carr, et al. Protein-mediated error correction for de novo DNA synthesis. Nucleic Acids Res. Nov. 23, 2004;32(20):e162. |
Caruthers, Chemical synthesis of deoxyoligonucleotides by the phosphoramidite method. In Methods in Enzymology, Chapter 15, 154:287-313 (1987). |
Caruthers. Gene synthesis machines: DNA chemistry and its uses. Science. Oct. 18, 1985;230(4723):281-5. |
Casmiro, Danilo R. et al., “PCR-based gene synthesis and protein NMR spectroscopy”, Structure, vol. 5, No. 11, 1407-1412 (1997). |
Cello, et al. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science. Aug. 9, 2002;297(5583):1016-8. Epub Jul. 11, 2002. |
Chalmers, et al. Scaling up the ligase chain reaction-based approach to gene synthesis. Biotechniques. Feb. 2001;30(2):249-52. |
Chan, et al. Natural and engineered nicking endonucleases—from cleavage mechanism to engineering of strand-specificity. Nucleic Acids Res. Jan. 2011; 39(1): 1-18. |
Chen, et al. Chemical modification of gene silencing oligonucleotides for drug discovery and development. Drug Discov Today. Apr. 15, 2005;10(8):587-93. |
Cheng, et al. High throughput parallel synthesis of oligonucleotides with 1536 channel synthesizer. Nucleic Acids Res. Sep. 15, 2002;30(18):e93. |
Cho, et al. Capillary passive valve in microfluidic systems. NSTI—Nanotech. 2004; 1:263-266. |
Chrisey et al., Fabrication of patterned DNA surfaces Nucleic Acids Research, 24(15):3040-3047 (1996). |
Chung et al., One-step preparation of competentEscherichia coli:Transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A. Apr. 1989;86(7):2172-2175. |
Cleary, et al. Production of complex nucleic acid libraries using highly parallel in situ oligonucleotide synthesis. Nat Methods. Dec. 2004;1(3):241-8. Epub Nov. 18, 2004. |
Crick. On protein synthesis. Symp Soc Exp Biol12:138-163,1958. |
Cutler, David J. et al., “High-throughput variation detection and genotyping using microarrays”, Genome Research, vol. 11, 1913-19 (2001 ). |
Dahl, et al. Circle-to-circle amplification for precise and sensitive DNA analysis. Proc Natl Acad Sci U S A. Mar. 30, 2004;101(13):4548-53. Epub Mar. 15, 2004. |
De Mesmaeker, et al. Backbone modifications in oligonucleotides and peptide nucleic acid systems. Curr Opin Struct Biol. Jun. 1995;5(3):343-55. |
Deamer, David W. et al., “Characterization of nucleic acids by nanopore analysis”, Ace. Cham. Res., vol. 35, No. 10, 817-825 (2002). |
Deaven, The Human Genome Project: Recombinant clones for mapping and sequencing DNA. Los Alamos Science, 20:218-249, 1992. |
Deng et al., Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming Nature Biotechnology, 27:352-360 (2009). |
Dietrich, Rudiger.et al., “Gene assembly based on blunt-ended double-stranded DNA-modules”, Biotechnology Techniques, vol. 12, No. 1, 49-54 (Jan. 1998). |
Doudna et al. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096-1-1258096-9, 2014. |
Dower et al., High efficiency transformation of E.coli by high voltage electroporation. Nucleic Acids Res. 16(13):6127-45 (1988). |
Dressman, et al. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci U S A. Jul. 22, 2003;100(15):8817-22. Epub Jul. 11, 2003. |
Drmanac, et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science. Jan. 1, 2010;327(5961):78-81. doi: 10.1126/science.1181498. Epub Nov. 5, 2009. |
Droege and Hill, The Genome Sequencer FLXTM System-Longer reads, more applications, straight forward bioinformatics and more complete data sets Journal of Biotechnology, 136:3-10, 2008. |
Duffy, et al. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Anal Chem. Dec. 1, 1998;70(23):4974-84. doi: 10.1021/ac980656z. |
Duggan, et al. Expression profiling using cDNA microarrays. Nat Genet. Jan. 1999;21(1 Suppl):10-4. |
Eadie, et al. Guanine modification during chemical DNA synthesis. Nucleic Acids Res. Oct. 26, 1987;15(20):8333-49. |
Eisen, Jonathan A., “A phylogenomic study of the MutS family of proteins”, Nucleic Acids Research, vol. 26, No. 18, 4291-4300 (1998). |
Ellis, et al. DNA assembly for synthetic biology: from parts to pathways and beyond. Integr Biol (Camb). Feb. 2011;3(2):109-18. doi: 10.1039/c0ib00070a. Epub Jan. 19, 2011. |
El-Sagheer, et al. Biocompatible artificial DNA linker that is read through by DNA polymerases and is functional in Escherichia coli. Proc Natl Acad Sci U S A. Jul. 12, 2011;108(28):11338-43. doi: 10.1073/pnas.1101519108. Epub Jun. 27, 2011. |
Elsner et al., 172 nm excimer VUV-triggered photodegradation and micropatterning of aminosilane films, Thin Solid Films, 517:6772-6776 (2009). |
Engler, et al. A one pot, one step, precision cloning method with high throughput capability. PLoS One. 2008;3(11):e3647. doi: 10.1371/journal.pone.0003647. Epub Nov. 5, 2008. |
Engler, et al. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One. 2009;4(5):e5553. doi: 10.1371/journal.pone.0005553. Epub May 14, 2009. |
Evans et al., DNA Repair Enzymes. Current Protocols in Molecular Biology 84:III:3.9:3.9.13.9.12 http://www.ncbi.nlm.nih.gov/pubmed/18972391 (Published online Oct. 1, 2008 Abstract only provided. |
Fahy, et al. Self-sustained sequence replication (3SR): an isothermal transcription-based amplification system alternative to PCR. PCR Methods Appl. Aug. 1991;1(1):25-33. |
Fedoryak, Olesya D. et al., “Brominated hydroxyquinoline as a photolabile protecting group with sensitivity to multiphoton excitation”, Org. Lett., vol. 4, No. 2 , 3419-3422 (2002). |
Ferretti et al., Total synthesis of a gene for bovine rhodopsin. PNAS, 83:599-603 (1986). |
Fodor, et al. Light-directed, spatially addressable parallel chemical synthesis. Science. Feb. 15, 1991;251(4995):767-73. |
Foldesi, et al. The synthesis of deuterionucleosides. Nucleosides Nucleotides Nucleic Acids. Oct.-Dec. 2000;19(10-12):1615-56. |
Frandsen, et al. Efficient four fragment cloning for the construction of vectors for targeted gene replacement in filamentous fungi. BMC Molecular Biology 2008, 9:70. |
Frandsen. Experimental setup. Dec. 7, 2010, 3 pages. http://www.rasmusfrandsen.dk/experimental_setup.htm. |
Frandsen. The USER Friendly technology. USER cloning. Oct. 7, 2010, 2 pages. http://www.rasmusfrandsen.dk/user_cloning.htm. |
Fullwood et al., Next-generation DNA sequencing of paired-end tags [PET] for transcriptome and genome analysis Genome Research, 19:521-532, 2009. |
Galneder. et al., Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology. Biophysical Journal, vol. 80, No. 5, 2298-2309 (May 2001). |
Gao, et al. A flexible light-directed DNA chip synthesis gated by deprotection using solution photogenerated acids. Nucleic Acids Res. Nov. 15, 2001;29(22):4744-50. |
Gao, et al. Thermodynamically balanced inside-out (TBIO) PCR-based gene synthesis: a novel method of primer design for high-fidelity assembly of longer gene sequences. Nucleic Acids Res. Nov. 15, 2003;31(22):e143. |
Garaj, et al. Graphene as a subnanometre trans-electrode membrane. Nature. Sep. 9, 2010;467(7312):190-3. doi: 10.1038/nature09379. |
Garbow, Norbert et al., “Optical tweezing electroghoresis of isolated, highly charged colloidal spheres”, Colloids and Surfaces A: Physiochem. Eng. Aspects, vol. 195, 227-241 (2001). |
Genomics 101. An Introduction to the Genomic Workflow. 2016 edition, 64 pages. Available at: http://www.frontlinegenomics.com/magazine/6757/genomics-101/. |
Geu-Flores, et al. USER fusion: a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products. Nucleic Acids Res. 2007;35(7):e55. Epub Mar. 27, 2007. |
Gibson, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science. Feb. 29, 2008;319(5867):1215-20. doi: 10.1126/science.1151721. Epub Jan. 24, 2008. |
Gosse, Charlie et al. “Magnetic tweezers: micromanipulation and force measurement at the molecular level”, Biophysical Journal, vol. 8, 3314-3329 (Jun. 2002). |
Grovenor. Microelectronic materials. Graduate Student Series in Materials Science and Engineering. Bristol, England: Adam Hilger, 1989; p. 113-123. |
Haber, Charbel et al., Magnetic tweezers for DNA micromanipulation, Rev. Sci. Instrum., vol. 71, No. 12, 4561-4570 (Dec. 2000). |
Hanahan and Cold Spring Harbor Laboratory, Studies on transformation of Escherichia coli with plasmids J. Mol. Biol. 166:557-580 (1983). |
Hanahan et al., Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol, vol. 204, p. 63-113 (1991). |
Harada, et al. Unexpected substrate specificity of T4 DNA ligase revealed by in vitro selection. Nucleic Acids Res. May 25, 1993;21(10):2287-91. |
Heckers Karl H. et al., “Error analysis of chemically synthesized polynucleotides”, BioTechniques, vol. 24, No. 2, 256-260 (1998). |
Herzer et al.: Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates Chem. Commun., 46:5634-5652 (2010). |
Hoover et al., “DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis”, Nucleic Acids Research, vol. 30, No. 10, e43, 7 pages (2002). |
Hosu, Basarab G. et al., Magnetic tweezers for intracellular applications•, Rev. Sci. Instrum., vol. 74, No. 9, 4158-4163 (Sep. 2003). |
Huang, Hayden et al., “Three-dimensional cellular deformation analysis with a two-photon magnetic manipulator workstation”, Biophysical Journal, vol. 82, No. 4, 2211⋅2223 (Apr. 2002). |
Hughes, et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol. Apr. 2001;19(4):342-7. |
Hughes et al. Principles of early drug discovery. Br J Pharmacol 162(2):1239-1249, 2011. |
Hutchison, et al. Cell-free cloning using phi29 DNA polymerase. Proc Natl Acad Sci U S A. Nov. 29, 2005;102(48):17332-6. Epub Nov. 14, 2005. |
Jackson, Brian A. et al., “Recognition of DNA base mismatches by a rhodium intercalator”, J. Am. Chem. Soc., vol. 19, 12986⋅12987 (1997). |
Jacobs and Schar, DNA glycosylases: In DNA repair and beyond Chromosome, 121:1-20 (2012)—http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260424/. |
Karagiannis and El-Osta, RNA interference and potential therapeutic applications of short interfering RNAs Cancer Gene Therapy, 12:787-795, 2005. |
Ke, Song-Hua et al., “Influence of neighboring base pairs on the stability of single base bulges and base pairs in a DNA fragment”, Biochemistry, Vo. 34, 4593-4600 (1995). |
Kelley, Shana, et al. Single-base mismatch detection based on charge transduction through DNA, Nucleic Acids Research, vol. 27, No. 24, 4830-4837 (1999). |
Kim, Yang-Gyun et al., “Chimeric restriction endonuclease”, Proc. Natl. Acad. Sci. USA, vol. 91, 883-887 (Feb. 1994). |
Kim, Yang-Gyun, “The interaction between Z-ONA and the Zab domain of double-stranded RNA adenosine deaminase characterized using fusion nucleases”, The Journal of Biological Chemistry, vol. 274, No. 27, 19081-19086 (1999). |
Kim, Yan˜Gyun et al., “Site specific cleavage of DNA-RNA hybrids by zinc finger/Fok I cleavage domain fusions” Gene, vol. 203, 43-49 (1997). |
Kinde et al., Detection and quantification of rare mutations with massively parallel sequencing PNAS, 108(23):9530-9535, 2011. |
Kodumal, et al. Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc Natl Acad Sci U S A. Nov. 2, 2004;101(44):15573-8. Epub Oct. 20, 2004. |
Kong et al., Parallel gene synthesis in a microfluidic device. Nucleic Acids Res., 35(8):e61 (2007). |
Kong. Microfluidic Gene Synthesis. MIT Thesis. Submitted to the program in Media Arts and Sciences, School of Architecture and Planning, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Media Arts and Sciences at the Massachusetts Institute of Technology. 143 pages Jun. 2008. |
Kopp, Martin U. et al., “Chemical amplification: continuous-flow PCR on a chip”, Science, vol. 280, 1046-1048 (May 15, 1998). |
Kosuri et al., A scalable gene synthesis platform using high-fidelity DNA microchips Nat.Biotechnol., 28(12):1295-1299, 2010. |
Lagally, E.T. et al., “Single-molecule DNA amplification and analysis in an integrated microfluidic device” Anal. Chem., vol. 73, No. , 565-570 (Feb. 1, 2001). |
Lahue, R.S. et al., “DNA mismatch correction in a defined system”, Science, vol. 425; No. 4914, 160-164 (Jul. 14, 1989). |
Lambrinakos, A. et al., “Reactivity of potassium permanganate and tetraethylammonium chloride with mismatched bases and a simple mutation detection protocol”,Nucleic Acids Research, vol. 27, No. 8, 1866-1874 (1999). |
Landegren, et al. A ligase-mediated gene detection technique. Science. Aug. 26, 1988;241(4869):1077-80. |
Lang, Matthew J. et al., “An automated two-dimensional optical force clamp for single molecule studies”, Biophysical Journal, vol. 83, 491⋅501 (Jul. 2002). |
Lashkari, et al. An automated multiplex oligonucleotide synthesizer: development of high-throughput, low-cost DNA synthesis. Proc Natl Acad Sci U S A. Aug. 15, 1995;92(17):7912-5. |
Leamon, et al. A massively parallel PicoTiterPlate based platform for discrete picoliter-scale polymerase chain reactions. Electrophoresis. Nov. 2003;24(21):3769-77. |
Lee, Covalent end-immobilization of oligonucleotides onto solid surfaces. Thesis submitted to the Department of Chemical Engineering in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemical Engineering at the Massachusetts Institute of Technology. Aug. 2001, 315 pages. |
Lee, C.S. et al., “Microelectromagnets for the control of magnetic nanoparticles”, Appl. Phys. Lett., vol. 79, No. 20, 3308-3310 (Nov. 12, 2001). |
Lee, et al. A microfluidic oligonucleotide synthesizer. Nucleic Acids Research 2010 vol. 38(8):2514-2521. DOI: 10.1093/nar/gkq092. |
Leproust, et al. Agilent's Microarray Platform: How High-Fidelity DNA Synthesis Maximizes the Dynamic Range of Gene Expression Measurements. 2008; 1-12. http://www.miltenyibiotec.com/˜/media/Files/Navigation/Genomie%20Services/Agilent_DNA_Microarray_Platform.ashx. |
Leproust, et al. Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process. Nucleic Acids Research. 2010; 38(8):2522-2540. |
Lesnikowski, et al. Nucleic acids and nucleosides containing carboranes. J. Organometallic Chem. 1999; 581:156-169. |
Leumann. DNA analogues: from supramolecular principles to biological properties. Bioorg Med Chem. Apr. 2002;10(4):841-54. |
Levene, et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science. Jan. 31, 2003;299(5607):682-6. |
Lipshutz, Robert J. et al., “High density synthetic oligonucleotide arrays”, Nature Genetics Supplement, vol. 21, 20-24 (Jan. 1999). |
Lishanski, Alia et al., “Mutation detection by mismatch binding protein, MutS, in amplified DNA: application to the cystic fibrosis gene”, Proc. Natl. Acad. Sci. USA, vol. 91, 2674-2678 (Mar. 1994). |
Liu et al., Comparison of Next-Generation Sequencing Systems. Journal of Biomedicine and Biotechnology, 11 pages, 2012. |
Liu, et al. Enhanced Signals and Fast Nucleic Acid Hybridization by Microfluidic Chaotic Mixing. Angew. Chem. Int. Ed. 2006; 45:3618-3623. |
Lizardi, et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet. Jul. 1998;19(3):225-32. |
Li, Lin et al., “Functional domains in Fok I restriction endonuclease”, Proc. Natl. Acad. Sci. USA, vol. 89, 4275-4279 (May 1992). |
Lu, A.-Lien et al., “Methyl-directed repair of DNA base-pair mismatches in vitro”, Proc. Natl. Acad. Sci. USA, vol. 80, 4639-4643 (Aug. 1983). |
Lund, et al. A validated system for ligation-free uracilexcision based assembly of expression vectors for mammalian cell engineering. DTU Systems of Biology. 2011. 1 page. http://www.lepublicsystemepco.com/files/modules/gestion_rubriques/REF-B036-Lund_Anne%20Mathilde.pdf. |
Ma, et al. DNA synthesis, assembly and application in synthetic biology. Current Opinion in Chemical Biology. 2012; 16:260-267. |
Ma et al., Versatile surface functionalization of cyclic olefin copolymer (COC) with sputtered SiO2 thin film for potential BioMEMS applications. Journal of Materials Chemistry, DOI: 10.1039/b904663a, 11 pages (2009). |
Mahato et al., Modulation of gene expression by antisense and antigene oligodeoxynucleotides and small interfering RNA Expert Opin. Drug Delivery, 2(1):3-28, 2005. |
Margulies, et al. Genome sequencing in open microfabricated high-density picolitre reactors. Nature. Sep. 15, 2005;437(7057):376-80. Epub Jul. 31, 2005. |
Matteucci, et al. Synthesis of deoxyoligonucleotides on a polymer support. J. Am. Chem. Soc. 1981; 103(11):3185-3191. |
Matzas et al., Next generation gene synthesis by targeted retrieval of bead-immobilized, sequence verified DNA clones from a high throughput pyrosequencing device. Nat. Biotechnol., 28(12):1291-1294, 2010. |
McGall, et al. Light-directed synthesis of high-density oligonucleotide arrays using semiconductor photoresists. Proc Natl Acad Sci U S A. Nov. 26, 1996;93(24):13555-60. |
McGall, et al. The Efficiency of Light-Directed Synthesis of DNA Arrays on Glass Substrates. J. Am. Chem. Soc. 1997; 119(22):5081-5090. |
Mei et al., Cell-free protein synthesis in microfluidic array devices Biotechnol. Prog., 23(6):1305-1311, 2007. |
Mendel-Hartvig. Padlock probes and rolling circle amplification. New possibilities for sensitive gene detection. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1175. Uppsala University. 2002, 39 pages. http://www.diva-portal.org/smash/get/diva2:161926/FULLTEXT01.pdf. |
Meyers and Friedland, Knowledge-based simulation of genetic regulation in bacteriophage lambda. Nucl. Acids Research, 12(1):1-16, 1984. |
Mitra, et al. In situ localized amplification and contact replication of many individual DNA molecules. Nucleic Acids Res. Dec. 15, 1999;27(24):e34. |
Muller, Caroline et al. “Protection and labelling of thymidine by a fluorescent photolabile group”, Helvetica Chimica Acta, vol. 84, 3735-3741 (2001). |
Nakatani, Kazuhiko et al., “Recognition of a single guanine bulge by 2-Acylamino-1 ,8-naphthyridine”, J. Am. Chem. Soc., vol. 122, 2172-2177 (2000). |
Nishikura, A short primer on RNAi: RNA-directed RNA polymerase acts as a key catalyst Cell, 107:415-418, 2001. |
Nour-Eldin, et al. USER Cloning and USER Fusion: The Ideal Cloning Techniques for Small and Big Laboratories. Plant Secondary Metabolism Engineering. Methods in Molecular Biology vol. 643, 2010, pp. 185-200. |
Ochman, et al. Genetic applications of an inverse polymerase chain reaction. Genetics. Nov. 1988; 120(3):621-3. |
Pan, et al. An approach for global scanning of single nucleotide variations. Proc Natl Acad Sci U S A. Jul. 9, 2002;99(14):9346-51. |
Pankiewicz. Fluorinated nucleosides. Carbohydr Res. Jul. 10, 2000;327(1-2):87-105. |
PCT Patent Applicatio No. PCT/US14/049834 International Preliminary Report on Patentability dated Feb. 18, 2016. |
PCT Patent Application No. PCT/US2015/043605 International Search Report and Written Opinion dated Jan. 6, 2016. |
PCT Patent Application No. PCT/US2015/043605 Invitation to Pay Additional Fees dated Oct. 28, 2015. |
PCT Patent Application No. PCT/US2016/016459 International Search Report and Written Opinion dated Apr. 13, 2016. |
PCT Patent Application No. PCT/US2016/016636 International Search Report and Written Opinion dated May 2, 2016. |
PCT Patent Application No. PCT/US2016/028699 International Search Report and Written Opinion dated Jul. 29, 2016. |
PCT Patent Application No. PCT/US2016/031674 International Search Report and Written Opinion dated Aug. 11, 2016. |
PCT/US2014/049834 International Search Report and Written Opinion dated Mar. 19, 2015. |
PCT/US2014/049834, “Invitation to Pay Additional Fees and, where applicable, protest fee,” dated Jan. 5, 2015. |
Pease, et al. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci U S A. May 24, 1994;91(11):5022-6. |
Peisajovich, et al. BBF RFC 28: A method for combinatorial multi-part assembly based on the type-lis restriction enzyme aarl. Sep. 16, 2009, 7 pages. |
Pellois, et al. “Individually addressable parallel peptide synthesis on microchips”, Nature Biotechnology, vol. 20 , 922-926 (Sep. 2002). |
Petersen, et al. LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol. Feb. 2003;21(2):74-81. |
Pierce, et al. Linear-after-the-exponential polymerase chain reaction and allied technologies. Real-time detection strategies for rapid, reliable diagnosis from single cells. Methods Mol Med. 2007;132:65-85. |
Pirrung. How to make a DNA chip. Angew. Chem. Int. Ed., 41:1276-1289, 2002. |
Pon. Solid-phase supports for oligonucleotide synthesis. Methods Mol Biol. 1993;20:465-96. |
Poster. Reimagine Genome Scale Research. 2016, 1 page. Available at http://www2.twistbioscience.com/Oligo_Pools_CRISPR_poster. |
Powers et al. Optimal strategies for the chemical and enzymatic synthesis of bihelical deoxyribonucleic acids. J Am Chem Soc., 97(4):875-884, 1975. |
Prodromou, et al. Recursive PCR: a novel technique for total gene synthesis. Protein Eng. Dec. 1992;5(8):827-9. |
Quan, et al. Parallel on-chip gene synthesis and application to optimization of protein expression. Nature Biotechnology. 2011; 29:449-452. |
Reimagine SequenceSpace, Reimagine Research, Twist Bioscience, Product Brochure, Published Apr. 6, 2016 online at: www2.twistbioscience.com/TB_Product_Brochure_04.2016, 8 pages. |
RF Electric discharge type excimer lamp. Products Catalog. Excimer lamp light source “flat excimer,” 16 pages dated Jan. 2016. From: http://www.hamamatsu.com/jp/en/product/category/1001/3026/index.html. |
Richmond, et al. Amplification and assembly of chip-eluted DNA (AACED): a method for high-throughput gene synthesis. Nucleic Acids Res. Sep. 24, 2004;32(17):5011-8. Print 2004. |
Roche. Restriction Enzymes from Roche Applied Science—A Tradition of Premium Quality and Scientific Support. FAQS and Ordering Guide. Roche Applied Science. Accessed Jan. 12, 2015, 37 pages. |
Ruminy, et al., “Long-range identification of hepatocyte nuclear factor-3 (FoxA) high and low-affinity binding Sites with a chimeric nuclease”, J. Mol. Bioi., vol. 310, 523-535 (2001). |
Saaem et al., In situ synthesis of DNA microarray on functionalized cyclic olefin copolymer substrate ACS Applied Materials & Interfaces, 2(2):491-497, 2010. |
Saboulard, et al. High-throughput site-directed mutagenesis using oligonucleotides synthesized on DNA chips. Biotechniques. Sep. 2005;39(3):363-8. |
Sacconi, L. et al., Three-dimensional magneto-optic trap for micro-object manipulation, Optics Letters, vol. 26, No. 17, 1359-1361 (Sep. 1, 2001). |
Saiki et al. Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes Nature 324:163-166 (1986). |
Sandhu, et al. Dual asymmetric PCR: one-step construction of synthetic genes. Biotechniques. Jan. 1992;12(1):14-6. |
Schaller, et al. Studies on Polynucleotides. XXV.1 The Stepwise Synthesis of Specific Deoxyribopolynucleotides (5). Further Studies on the Synthesis of Internucleotide Bond by the Carbodiimide Method. The Synthesis of Suitably Protected Dinucleotides as Intermediates in the Synthesis of Higher Oligonucleotides. J. Am. Chem. Soc. 1963; 85(23):3828-3835. |
Schmalzing, Dieter et al., “Microchip electrophoresis: a method for high-speed SNP detection”, Nucleic Acids Research, vol. 28, No. 9, i-vi (2000). |
Smith, et al. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci U S A. Dec. 23, 2003;100(26):15440-5. Epub Dec. 2, 2003. |
Smith, et al. Generation of cohesive ends on PCR products by UDG-mediated excision of dU, and application for cloning into restriction digest-linearized vectors. PCR Methods Appl. May 1993;2(4):328-32. |
Smith, Jane et al., “Mutation detection with MutH, MutL, and MutS mismatch repair proteins.” Proc. Natl. Acad. Sci. USA, vol. 93, 4374-4379 (Apr. 1996). |
Smith Jane et al., “Removal of Polymerase-Produced mutant sequences from PCR products”, Proc. Natl. Acad. Sci. USA, vol. 94, 6847-6850 (Jun. 1997). |
Smith, Steven B. et al., “Direct mechanical measurements of the elasticity of single DNA molecules using magnetic beads”, Science, vol. 258, 1122-1126 (Nov. 13, 1992). |
Soni, et al. Progress toward ultrafast DNA sequencing using solid-state nanopores. Clin Chem. Nov. 2007;53(11):1996-2001. Epub Sep. 21, 2007. |
Southern, et al. Analyzing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: evaluation using experimental models. Genomics. Aug. 1992;13(4):1008-17. |
Sproat, et al. An efficient method for the isolation and purification of oligoribonucleotides. Nucleosides & Nucleotides. 1995; 14(1&2):255-273. |
Steel, the Flow-Thru Chip A Three-dimensional biochip platform. In: Schena, Microarray Biochip Technology, Chapter 5, Natick, MA: Eaton Publishing, 2000, 33 pages. |
Stemmer, et al. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene. Oct. 16, 1995;164(1):49-53. |
Stryer. “DNA Probes and genes can be synthesized by automated solid-phase methods.” Biochemistry, 3rd edition, New York: W.H. Freeman and Company, 1988; 123-125. |
Stutz, et al. Novel fluoride-labile nucleobase-protecting groups for the synthesis of 3′(2′)-O-amino-acylated RNA sequences. Helv. Chim. Acta. 2000; 83(9):2477-2503. |
Takahashi, Cell-free cloning using multiply-primed rolling circle amplification with modified RNA primers. Biotechniques. Jul. 2009;47(1):609-15. doi: 10.2144/000113155. |
Tanase, M. et al., “Magnetic trapping of multicomponent nanowires”, The Johns Hopkins University, Baltimore, Maryland, p. 1-3 (Jun. 25, 2001). |
Taylor et al., Impact of surface chemistry and blocking strategies on DNA microarrays. Nucleic Acids Research, 31(16):e87, 19 pages, 2003. |
Tian, et al. Accurate multiplex gene synthesis from programmable DNA microchips. Nature. Dec. 23, 2004;432(7020):1050-4. |
Tsai et al., Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing Nat. Biotechnol., 32(6):569-576, 2014. |
Unger, et al. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science. Apr. 7, 2000;288(5463):113-6. |
U.S. Appl. No. 14/885,965 Office Action dated Jul. 7, 2016. |
U.S. Appl. No. 14/452,429 Notice of Allowance dated Jun. 7, 2016. |
U.S. Appl. No. 14/452,429 Office Action dated Apr. 9, 2015. |
U.S. Appl. No. 14/452,429 Restriction Requirement dated Dec. 12, 2014. |
U.S. Appl. No. 14/885,962 Office Action dated Sep. 8, 2016. |
U.S. Appl. No. 14/885,962 Restriction Requirement dated Mar. 1, 2016. |
U.S. Appl. No. 14/885,963 Notice of Allowance dated May 24, 2016. |
U.S. Appl. No. 14/885,965 Office Action dated Feb. 18, 2016. |
Vaijayanthi, et al. Recent advances in oligonucleotide synthesis and their applications. Indian J Biochem Biophys. Dec. 2003;40(6):377-91. |
Van Den Brulle, et al. A novel solid phase technology for high-throughput gene synthesis. Biotechniques. 2008; 45(3):340-343. |
Vargeese, et al. Efficient activation of nucleoside phosphoramidites with 4,5-dicyanoimidazole during oligonucleotide synthesis. Nucleic Acids Res. Feb. 15, 1998;26(4):1046-50. |
Verma, et al. Modified oligonucleotides: synthesis and strategy for users. Annu Rev Biochem. 1998;67:99-134. |
Vincent, et al. Helicase-dependent isothermal DNA amplification. EMBO Rep. Aug. 2004;5(8):795-800. |
Visscher et al., “Construction of multiple-beam optical traps with nanometer-resolution position sensing”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, No. 4, 1066-1076 (Dec. 1996. |
Voldmans Joel et al., “Holding forces of single-particle dielectrophoretic traps.” Biophysical Journal, vol. 80, No. 1, 531-541 (Jan. 2001). |
Vos, et al. AFLP:A new technique for DNA fingerprinting. Nucleic Acids Res. Nov. 11, 1995;23(21):4407-14. |
Wah, David A. et al., “Structure of Fok I has implications for DNA cleavage”, Proc. Natl. Acad. Sci. USA, vol. 95, 10564-10569 (Sep. 1998). |
Wah, David A. et al., “Structure of the multimodular endonuclease Fok I bound to DNA”, Nature, vol. 388, 97-100 ( Jul. 1997). |
Walker, et al. Strand displacement amplification—an isothermal, in vitro DNA amplification technique. Nucleic Acids Res. Apr. 11, 1992;20(7):1691-6. |
Weber, et al. A modular cloning system for standardized assembly of multigene constructs. PLoS One. Feb. 18, 2011;6(2):e16765. doi: 10.1371/journal.pone.0016765. |
Welz, et al. 5-(Benzylmercapto)-1H-tetrazole as activator for 2′-O-TBDMS phosphoramidite building blocks in RNA synthesis. Tetrahedron Lett. 2002; 43(5):795-797. |
Westin et al., Anchored multiplex amplification on a microelectronic chip array Nature Biotechnology, 18:199-202 (2000) (abstract only). |
Whitehouse, Adrian et al. “Analysis of the mismatch and insertion/deletion binding properties of Thermus thermophilus, HB8, MutS”, Biochemical and Biophysical Research Communications, vol. 233, 834-837 (1997). |
Wirtz, Denis, “Direct measurement of the transport properties of a single DNA molecule”, Physical Review Letters, vol. 75, No. 12, 2436-2439 (Sep. 18, 1995). |
Withers-Martinez, Chrislaine et al., “PCR-based gene synthesis as an efficient approach for expression of the A+ T-rich malaria genome”, Protein Engineering, vol. 12, No. 12, 1113-1120 (1999). |
Wood, Richard D. et al., “Human DNA repair genes”, Science, vol. 291, 1284-1289 (Feb. 16, 2001). |
Wosnick, et al. Rapid construction of large synthetic genes: total chemical synthesis of two different versions of the bovine prochymosin gene. Gene. 1987;60(1):115-27. |
Wu, et al. RNA-mediated gene assembly from DNA arrays. Angew Chem Int Ed Engl. May 7, 2012;51(19):4628-32. doi: 10.1002/anie.201109058. |
Wu, et al. Specificity of the nick-closing activity of bacteriophage T4 DNA ligase. Gene. 1989;76(2):245-54. |
Wu, Xing-Zheng et al., “An improvement of the on-line electrophoretic concentration method for capillary electrophoresis of proteins an experimental factors affecting he concentration effect”, Analytical Sciences, vol. 16, 329-331 (Mar. 2000). |
Xiong, et al. A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences. Nucleic Acids Res. Jul. 7, 2004;32(12):e98. |
Xiong, et al. Non-polymerase-cycling-assembly-based chemical gene synthesis: Strategies, methods, and progress. Biotechnology Advances. 2008; 26(2):121-134. |
Yang, et al “Purification, cloning, and characterization of the CEL I nuclease”, Biochemistry, vol. 39, No. 13, 3533-351 (2000). |
Yehezkel et al., De novo DNA synthesis using single molecule PCR Nucleic Acids Research, 36(17):e107, 2008. |
Youil, Rima et al., “Detection of 81 of 81 known mouse Beta-Giobin promoter mutations with T4 Endonuclease VII⋅ The EMC Method”, Genomics, vol. 32, 431-435 (1996). |
Young, et al. Two-step total gene synthesis method. Nucleic Acids Res. Apr. 15, 2004;32(7):e59. |
Zheleznaya, et al. Nicking endonucleases. Biochemistry (Mosc). Dec. 2009;74(13):1457-66. |
Zhou et al., Microfluidic PicoArray synthesis of oligodeoxynucleotides and simultaneous assembling of multiple DNA sequences Nucleic Acids Research, 32(18):5409-5417, 2004. |
Acevedo-Rocha et al. Directed evolution of stereoselective enzymes based on genetic selection as opposed to screening systems. J. Biotechnol. 191:3-10 (2014). |
Arand et al. Structure of Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site. EMBO J. 22:2583-2592 (2003). |
Assembly manual for the POSaM: The ISB Piezoelelctric Oligonucleotide Synthesizer and Microarrayer, The Institute for Systems Biology, May 28, 2004 (50 pages). |
Beaucage, Serge L. et al., “The Chemical synthesis of DNA/RNA” Chapter 2 in: Encyclopedia of Cell Biology, 1:36-53, 2016. |
CeGaT. Tech Note available at https://www.cegat.de/web/wp-content/uploads/2018/06/Twist-Exome-Tech-Note.pdf (4 pgs.) (2018). |
Chilamakuri et al. Performance comparison of four exome capture systems for deep sequencing. BMC Genomics 15(1):449 (2014). |
Co-pending U.S. Appl. No. 16/384,678, filed Apr. 15, 2019. |
Cruse et al. Atlas of Immunology, Third Edition. Boca Raton:CRC Press (pp. 282-283) (2010). |
De Silva et al. New Trends of Digital Data Storage in DNA. BioMed Res Int. 2016:8072463 (2016). |
Dillon et al. Exome sequencing has higher diagnostic yield compared to simulated disease-specific panels in children with suspected monogenic disorders. Eur J Hum Genet 26(5):644-651 (2018). |
Dvorsky. Living Bacteria Can Now Store Data. GIZMODO internet publication. Retrieved from https://gizmodo.com/living-bacteria-can-now-store-data-1781773517 (4 pgs) (Jun. 10, 2016). |
European Patent Application No. 12827479.2 Extended European Search Report dated May 18, 2015. |
European Patent Application No. 12827479.2 Partial European Search Report dated Jan. 29, 2015. |
European Patent Application No. 14834665.3 Further Examination Report dated Nov. 28, 2018. |
European Patent Application No. 14834665.3 Office Action dated May 2, 2018. |
European Patent Application No. 16847497.1 Extended European Search Report dated Jan. 9, 2019. |
European Patent Application No. 16871446.7 European Search Report dated Apr. 10, 2019. |
Gao et al. A method for the generation of combinatorial antibody libraries using pIX phage display. PNAS 99(20):12612-12616 (2002). |
Gibson et al. Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome. Science 329(5989):52-56 (2010). |
Goldfeder et al. Medical implications of technical accuracy in genome sequencing. Genome Med 8(1):24 (2016). |
Han et al. Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nat Biotechnol 32(7):684-692 (2014). |
International Application No. PCT/US2017/026232 International Preliminary Report on Patentability dated Feb. 26, 2019. |
International Application No. PCT/US2017/045105 International Preliminary Report on Patentability dated Feb. 5, 2019. |
International Application No. PCT/US2017/052305 International Preliminary Report on Patentability dated Apr. 30, 2019. |
International Application No. PCT/US2017/062391 International Preliminary Report on Patentability dated May 21, 2019. |
International Application No. PCT/US2018/050511 International Search Report and Written Opinion dated Jan. 11, 2019. |
International Application No. PCT/US2018/057857 International Search Report and Written Opinion dated Mar. 18, 2019. |
International Application No. PCT/US2019/012218 International Search Report and Written Opinion dated Mar. 21, 2019. |
Jacobus et al. Optimal cloning of PCR fragments by homologous recombination in Escherichia soli. PLoS One 10(3):e0119221 (2015). |
Jager et al. Simultaneous Humoral and Cellular: Immune Response against Cancer—Testis Antigen NY-ES0-1: Definition of Human Histocompatibility LeukocyteAntigen (HLA)-A2—binding Peptide Epitopes. J. Exp. Med. 187(2):265-270 (1998). |
Kosuri, et al. A scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nature Biotechnology. 2010; 28:1295-1299. |
Lee: Covalent End-Immobilization of Oligonucleotides onto Solid Surfaces; Thesis, Massachusetts Institute of Technology, Aug. 2001 (315 pages). |
Li et al. Beating Bias in the Directed Evolution of Proteins: Combining High-Fidelity on-Chip Solid-Phase Gene Synthesis with Efficient Gene Assembly for Combinatorial Library Construction. ChemBioChem 19:221-228 (2018). |
Light source unit for printable patterning VUV-Aligner / USHIO Inc., Link here: https://www.ushio.co.jp/en/products/1005.html, published Apr. 25, 2016, printed from the internet on Aug. 2, 2016, 3 pages. |
Mazor et al.: Isolation of Full-Length IgG Antibodies from Combinatorial Libraries Expressed in Escherichia coli; Antony S. Dimitrov (ed.), Therapeutic Antibodies: Methods and Protocols, vol. 525, Chapter 11, pp. 217-239 (2009). |
Meynert et al. Quantifying single nucleotide variant detection sensitivity in exome sequencing. BMC Bioinformatics 14:195 (2013). |
Meynert et al. Variant detection sensitivity and biases in whole genome and exome sequencing. BMC Bioinformatics 15:247 (2014). |
Mulligan. Commercial Gene Synthesis Technology PowerPoint presentation. BlueHeron® Biotechnology. Apr. 5, 2006 (48 pgs). |
Eroshenko et al.: Gene Assembly from Chip-Synthesized Oligonucleotides; Current Protocols in Chemical biology 4: 1-17 (2012). |
Jo et al.: Engineering therapeutic antibodies targeting G-protein-coupled receptors; Experimental & Molecular Medicine; 48; 9 pages (2016). |
Lausted et al.: POSaM: a fast, flexible, open-source, inkjet oligonucleotide synthesizer and microarrayer; Genome Biology 2004, 5:R58. |
Douthwaite et al.: Affinity maturation of a novel antagonistic human monoclonal antibody with a long VH CDR3 targeting the Class A GPCR formyl-peptide receptor 1; mAbs, vol. 7, Iss. 1, pp. 152-166 (Jan. 1, 2015). |
PCT/IL2012/000326 International Preliminary Report on Patentability dated Dec. 5, 2013. |
PCT/IL2012/000326 International Search Report dated Jan. 29, 2013. |
PCT/US2016/052336 International Preliminary Report on Patentability dated Mar. 29, 2018. |
PCT/US2016/052916 International Preliminary Report on Patentability dated Apr. 5, 2018. |
PCT/US2016/064270 International Preliminary Report on Patentability dated Jun. 14, 2018. |
PCT/US2017/066847 International Search Report and Written Opinion dated May 4, 2018. |
PCT/US2018/022487 International Search Report and Written Opinion dated Aug. 1, 2018. |
PCT/US2018/022493 International Search Report and Written Opinion dated Aug. 1, 2018. |
PCT/US2018/037152 International Search Report and Written Opinion dated Aug. 28, 2018. |
PCT/US2018/037161 International Search Report and Written Opinion dated Oct. 22, 2018. |
PCT/US2018/037161 Invitation to Pay Additional Fees dated Aug. 27, 2018. |
PCT/US2018/056783 International Search Report and Written Opinion of the International Searching Authority dated Dec. 20, 2018. |
PCT/US2018/19268 International Search Report and Written Opinion dated Jun. 26, 2018. |
PCT/US2018/19268 Invitation to Pay Additional Fees and, where applicable, protest fee dated May 2, 2018. |
PCT/US2018/22487 Invitation to Pay Additional Fees and, where applicable, protest fee dated May 31, 2018. |
PCT/US2018/22493 Invitation to Pay Additional Fees and, where applicable, protest fee dated May 31, 2018. |
Pierce and Wangh, Linear-after-the-exponential polymerase chain reaction and allied technologies Real-time detection strategies for rapid, reliable diagnosis from single cells Methods Mol. Med. 132:65-85 (2007) (Abstract only). |
Puigbo. Optimizer: a web server for optimizing the codon usage of DNA sequences. Nucleic Acid Research, 35(14):126-131, 2007. |
Sharan et al. Recombineering: a homologous recombination-based method of genetic engineering. Nat Profile 4(2):1-37 (originally pp. 206-223) (2009). |
Singh-Gasson, Sangeet et al., Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array, Nature Biotechnology, vol. 17, 974-978 (Oct. 1999). |
Skerra. Phosphorothioate primers improve the amplification of DNA sequences by DNA polymerases with proofreading activity. Nucleic Acids Res. Jul. 25, 1992; 20(14):3551-4. |
Martinez-Torrecuadrada et al.: Targeting the Extracellular Domain of Fibroblast Growth Factor Receptor 3 with Human Single-Chain Fv Antibodies Inhibits Bladder Carcinoma Cell Line Proliferation; Clinical Cancer Research; vol. 11; pp. 6282-6290 (2005). |
Sierzchala, Agnieszka B. et al., “Solid-phase oligodeoxynucleotide synthesis : a two-step cycle using peroxy anion deprotection”, J. Am. Chem. Soc., vol. 125, No. 44, 13427-13441 (2003). |
U.S. Appl. No. 15/187,714 Office Action dated Apr. 4, 2019. |
U.S. Appl. No. 15/603,013 Office Action dated Jun. 26, 2019. |
Sullivan et al. Library construction and evaluation for site saturation mutagenesis. Enzyme Microb. Technol. 53:70-77 (2013). |
Sun et al. Structure-Guided Triple-Code Saturation Mutagenesis: Efficient Tuning of the Stereoselectivity of an Epoxide Hydrolase. ACS Catal. 6:1590-1597 (2016). |
U.S. Appl. No. 14/241,874 Final Office Action dated Jan. 28, 2019. |
U.S. Appl. No. 14/241,874 Office Action dated Feb. 27, 2017. |
U.S. Appl. No. 14/241,874 Office Action dated Jul. 14, 2016. |
U.S. Appl. No. 14/241,874 Office Action dated May 4, 2018. |
U.S. Appl. No. 14/452,429 Office Action dated Oct. 21, 2015. |
U.S. Appl. No. 14/885,963 Office Action dated Feb. 5, 2016. |
U.S. Appl. No. 14/885,965 Office Action dated Aug. 28, 2018. |
U.S. Appl. No. 15/015,059 Final Office Action dated Jul. 17, 2019. |
U.S. Appl. No. 15/015,059 Office Action dated Feb. 7, 2019. |
U.S. Appl. No. 15/151,316 Office Action dated Jun. 7, 2018. |
U.S. Appl. No. 15/156,134 Office Action dated Apr. 4, 2019. |
U.S. Appl. No. 15/187,714 Restriction Requirement dated Sep. 17, 2018. |
U.S. Appl. No. 15/377,547 Final Office Action dated Feb. 8, 2019. |
U.S. Appl. No. 15/377,547 Office Action dated Jul. 27, 2018. |
U.S. Appl. No. 15/433,909 Non-Final Office Action dated Feb. 8, 2019. |
U.S. Appl. No. 15/433,909 Restriction Requirement dated Sep. 17, 2018. |
U.S. Appl. No. 15/602,991 Final Office Action dated Dec. 13, 2018. |
U.S. Appl. No. 15/602,991 Office Action dated May 31, 2018. |
U.S. Appl. No. 15/602,991 Office Action dated May 31, 2019. |
U.S. Appl. No. 15/603,013 Office Action dated Jul. 10, 2018. |
U.S. Appl. No. 15/709,274 Notice of Allowance dated Apr. 3, 2019. |
U.S. Appl. No. 15/729,564 Final Office Action dated Dec. 13, 2018. |
U.S. Appl. No. 15/729,564 Office Action dated Jan. 8, 2018. |
U.S. Appl. No. 15/729,564 Office Action dated Jun. 6, 2018. |
U.S. Appl. No. 15/729,564 Office Action dated May 30, 2019. |
U.S. Appl. No. 15/816,995 Restriction Requirement dated Apr. 4, 2019. |
U.S. Appl. No. 15/844,395 Restriction Requirement dated May 17, 2019. |
U.S. Appl. No. 15/860,445 Final Office Action dated Dec. 13, 2018. |
U.S. Appl. No. 15/860,445 Office Action dated May 30, 2018. |
U.S. Appl. No. 15/921,479 Restriction Requirement dated May 24, 2019. |
U.S. Appl. No. 15/151,316 Final Office Action dated Feb. 21, 2019. |
Van Der Werf et al. Limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis DCL14 belongs to a novel class of epoxide hydrolases. J. Bacteriol. 180:5052-5057 (1998). |
Warr et al. Exome Sequencing: current and future perspectives. G3: (Bethesda) 5(8):1543-1550 (2015). |
Wu, et al. “Sequence-Specific Capture of Protein-DNA Complexes for Mass Spectrometric Protein Identification” PLoS ONE. Oct. 20, 2011, vol. 6, No. 10. |
Yes HMDS vapor prime process application note Prepared by UC Berkeley and University of Texas at Dallas and re-printed by Yield Engineering Systems, Inc., 6 pages (http://www.yieldengineering.com/Portals/0/HMDS%20Application%20Note.pdf (Published online Aug. 23, 2013). |
Zheng et al. Manipulating the Stereoselectivity of Limonene Epoxide Hydrolase by Directed Evolution Based on Iterative Saturation Mutagenesis. J. Am. Chem. Soc. 132:15744-15751 (2010). |
Zhou, et al. “Establishment and application of a loop-mediated isothermal amplification (LAMP) system for detection of cry1Ac transgenic sugarcane” Scientific Reports May 9, 2014, vol. 4, No. 4912. |
European Patent Application No. 16871446.7 First Official Action dated Nov. 13, 2019. |
Galka et al.: QuickLib, a method for building fully synthetic plasmid libraries by seamless cloning of degenerate oligonucleotides. PLOS ONE, 12, e0175146:1-9 (2017). |
Galka et al.: QuickLib, a method for building fully synthetic plasmid libraries by seamless cloning of degenerate oligonucleotides. PLOS ONE, 12, e0175146:S1 figure (2017). |
Galka et al.: QuickLib, a method for building fully synthetic plasmid libraries by seamless cloning of degenerate oligonucleotides. PLOS ONE, 12, e0175146:S1 Table (2017). |
Galka et al.: QuickLib, a method for building fully synthetic plasmid libraries by seamless cloning of degenerate oligonucleotides. PLOS ONE, 12, e0175146:S2 figure (2017). |
International Application No. PCT/US2018/019268 International Preliminary Report on Patentability dated Sep. 6, 2019. |
International Application No. PCT/US2019/032992 International Search Report and Written Opinion dated Oct. 28, 2019. |
International Application No. PCT/US2019/032992 Invitation to Pay Additional Fees dated Sep. 6, 2019. |
Solomon et al.: Genomics at Agilent: Driving Value in DNA Sequencing.https://www.agilent.com/labs/features/2010_genomics.html, 8 pages (Aug. 5, 2010). |
U.S. Appl. No. 15/015,059 Office Action dated Aug. 19, 2019. |
U.S. Appl. No. 15/151,316 Office Action dated Oct. 4, 2019. |
U.S. Appl. No. 15/156,134 Final Office Action dated Jan. 3, 2020. |
U.S. Appl. No. 15/187,714 Final Office Action dated Sep. 17, 2019. |
U.S. Appl. No. 15/603,013 Final Office Action dated Nov. 6, 2019. |
U.S. Appl. No. 15/619,322 Office Action dated Aug. 14, 2019. |
U.S. Appl. No. 15/816,995 Office Action dated Sep. 20, 2019. |
U.S. Appl. No. 15/835,342 Office Action dated Dec. 2, 2019. |
U.S. Appl. No. 15/835,342 Restriction Requirement dated Sep. 10, 2019. |
U.S. Appl. No. 15/844,395 Office Action dated Jan. 24, 2020. |
U.S. Appl. No. 15/921,479 Office Action dated Nov. 12, 2019. |
U.S. Appl. No. 15/960,319 Office Action dated Aug. 16, 2019. |
U.S. Appl. No. 16/006,581 Office Action dated Sep. 25, 2019. |
U.S. Appl. No. 16/239,453 Office Action dated Nov. 7, 2019. |
U.S. Appl. No. 16/384,678 Office Action dated Jan. 21, 2020. |
U.S. Appl. No. 16/409,608 Office Action dated Sep. 9, 2019. |
U.S. Appl. No. 16/530,717 Office Action dated Sep. 6, 2019. |
U.S. Appl. No. 16/535,777 Office Action dated Jan. 23, 2020. |
U.S. Appl. No. 16/535,779 First Action Interview dated Feb. 10, 2020. |
Alberts et al.: Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. The Generation of Antibody Diversity. https://www.ncbi.nlm.nih.gov/books/NBK26860/. |
Almagro et al.: Progress and Challenges in the Design and Clinical Development of Antibodies for Cancer Therapy. Frontiers in immunology; 8, 1751 (2018) doi:10.3389/fimmu.2017.01751 https://www.frontiersin.org/articles/10.3389/fimmu.2017.01751/full. |
European Patent Application No. 17844060.8 Extended Search Report dated Apr. 20, 2020. |
Hauser et al.: Trends in GPCR drug discovery: new agents, targets and indications. Nature Reviews Drug Discovery, 16, 829-842 (2017). doi:10.1038/nrd.2017.178 https://www.nature.com/articles/nrd.2017.178. |
Hötzel et al.: A strategy for risk mitigation of antibodies with fast clearance. mAbs, 4(6), 753-760 (2012). doi:10.4161/mabs.22189 https://www.ncbi.nlm.nih.gov/pubmed/23778268. |
Paul et al.: Acid binding and detritylation during oligonucleotide synthesis. Nucleic Acids Research. 15. pp. 3048-3052 (1996). |
PCT/US2018/056783 International Preliminary Report on Patentability dated Apr. 30, 2020. |
PCT/US2018/057857 International Preliminary Report on Patentability dated Apr. 28, 2020. |
PCT/US2019/068435 International Search Report and Written Opinion dated Apr. 23, 2020. |
PCT/US2020/019371 International Search Report and Written Opinion dated Jun. 25, 2020. |
PCT/US2020/019986 Invitation to Pay Additional Fees dated Jun. 5, 2020. |
PCT/US2020/019988 Invitation to Pay Additional Fees dated Jun. 8, 2020. |
PubChem Data Sheet Acetonitrile. Printed from website https://pubchem.ncbi.nlm.nig.gov/ pp. 1-124 (2020). |
PubChem Data Sheet Methylene Chloride. Printed from website https://pubchem.ncbi.nlm.nih.gov/ pp. 1-140 (2020). |
Rajpal et al.: A general method for greatly improving the affinity of antibodies by using combinatorial libraries. Proc. Natl. Acad. Sci. 102(24):8466-8471 (2005). |
U.S. Appl. No. 15/272,004 Office Action dated Jun. 12, 2020. |
U.S. Appl. No. 15/619,322 Final Office Action dated Mar. 30, 2020. |
U.S. Appl. No. 15/816,995 Office Action dated May 19, 2020. |
U.S. Appl. No. 15/921,479 Final Office Action dated Jun. 15, 2020. |
U.S. Appl. No. 15/991,992 Office Action dated May 21, 2020. |
U.S. Appl. No. 15/991,992 Restriction Requirement dated Mar. 10, 2020. |
U.S. Appl. No. 16/031,784 Office Action dated May 12, 2020. |
U.S. Appl. No. 16/039,256 Restriction Requirement dated May 18, 2020. |
U.S. Appl. No. 16/128,372 Restriction Requirement dated May 18, 2020. |
U.S. Appl. No. 16/165,952 Office Action dated Mar. 12, 2020. |
U.S. Appl. No. 16/239,453 Office Action dated May 11, 2020. |
U.S. Appl. No. 16/530,717 Final Office Action dated Apr. 15, 2020. |
U.S. Appl. No. 15/921,537 Office Action dated Apr. 1, 2020. |
Number | Date | Country | |
---|---|---|---|
20170081660 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
62220879 | Sep 2015 | US | |
62263548 | Dec 2015 | US | |
62354034 | Jun 2016 | US |