This application claims the benefit of Japanese Patent Application No. 2017-069243 filed Mar. 30, 2017, the disclosure of which is herein incorporated by reference in its entirety.
The present invention relates to an optical control element module and in particular to an optical control element module in which an electrical connection part is provided between an optical control element disposed in a housing and a wiring substrate, at least apart of which is disposed outside the housing, to electrically connect the optical control element and the wiring substrate, and the electrical connection part extends along a direction intersecting a plane on which a control electrode of the optical control element is disposed.
In the optical communication field, an optical transmitter and receiver using an optical control element such as an optical modulator is used. In recent years, due to a demand for downsizing of an optical transmission system, there has also been a trend toward shortening of an RF interface connection which is an electrical interface part of an optical control element which is mounted in an optical transmitter and receiver module (a transponder).
For example, in an optical modulator or the like in a transmission format of 100G dual polarization quadrature phase shift keying (DP-QPSK), with demands for a price reduction of a market and downsizing of a device, with respect to the RF interface connection as well, in addition to a connection configuration using a coaxial connector of the related art, a connection configuration is adopted in which solder connection is performed using a flexible printed circuit substrate (FPC) as disclosed in Japanese Laid-open Patent Publication No. 2014-195061 or Japanese Laid-open Patent Publication No. 2012-48121.
Next,
Further, for example, a ceramic material such as alumina is used for the relay substrate. In the glass lead pin, as shown in
On the other hand, in the optical control element such as an optical modulator, a substrate having an electro-optic effect, such as lithium niobate, is used, and in order to deal with a wider bandwidth or a lower drive voltage, devisal such as thinning a substrate, increasing the thickness of an electrode, or narrowing the gap between a signal electrode and a ground electrode has been performed. However, in a case of adopting such a configuration, the characteristic impedance of the optical control element is reduced to a range of about 20 to 40Ω.
An input signal such as a modulation signal is introduced from the external circuit substrate to the wiring substrate such as the FPC. However, since the input impedance of the wiring substrate such as the FPC is usually 50Ω, mismatch occurs between the characteristic impedance of the wiring substrate such as the FPC and the characteristic impedance of the optical control element. In the related art, in order to suppress reflection of microwaves due to the impedance mismatch, a transmission line for impedance adjustment is formed in a control electrode S1 of the optical control element or wiring S2 of the relay substrate.
However, if the transmission line for impedance adjustment is formed on the optical control element or the relay substrate, a new problem such as making it difficult to downsize the optical control element or the optical control element module with the optical control element incorporated therein arises.
An object of the present invention is to solve the problem as described above and provide an optical control element module in which it is also possible to realize the downsizing of the entire optical control element module while improving an electroreflection characteristic due to mismatch between the input impedance of an input signal and the characteristic impedance of an optical control element.
In order to achieve the above object, an optical control element module according to the present invention has the following technical features.
(1) An optical control element module includes: an optical control element having an optical waveguide and a control electrode on a substrate and disposed in a housing; an electrical connection part which is electrically connected to the control electrode, extends along a direction intersecting a plane on which the control electrode of the substrate is disposed, and is disposed in the housing; and a wiring substrate which has an input signal line electrically connected to the electrical connection part, at least a part of which is disposed outside the housing, in which impedance of the electrical connection part is set to be smaller than impedance of the input signal line.
(2) In the optical control element module according to the above (1), the electrical connection part is formed of a lead pin.
(3) In the optical control element module according to the above (2), a diameter of an outer sheath conductor of the lead pin varies along an extension direction of the lead pin.
(4) In the optical control element module according to any one of the above (1) to (3), the impedance of the electrical connection part is 50Ω or less.
(5) In the optical control element module according to any one of the above (1) to (4), the optical control element module further includes: a relay substrate having a relay signal line which electrically connects the control electrode and the electrical connection part to each other, in which a plane on which the relay signal line of the relay substrate is disposed is parallel to a plane on which the control electrode of the substrate is disposed.
(6) In the optical control element module according to any one of the above (1) to (5), the wiring substrate is a flexible printed circuit substrate.
According to the present invention, in the optical control element module including: an optical control element having an optical waveguide and a control electrode on a substrate and disposed in a housing; an electrical connection part which is electrically connected to the control electrode, extends along a direction intersecting a plane on which the control electrode of the substrate is disposed, and is disposed in the housing; and a wiring substrate which has an input signal line electrically connected to the electrical connection part, at least a part of which is disposed outside the housing, the impedance of the electrical connection part is set to be smaller than the impedance of the input signal line, and therefore, it also becomes possible to realize the downsizing of the entire optical control element module while improving an electroreflection characteristic due to mismatch between the input impedance of an input signal and the characteristic impedance of the optical control element.
Hereinafter, an optical control element module according to the present invention will be described in detail using preferred examples.
As shown in
In
A feature of the present invention is that, when an input signal is transmitted from the wiring substrate (an input signal line) to the optical control element (a control electrode), an electrical connection part is provided in the middle of a line which electrically connects the wiring substrate and the optical control element, as shown in
The electrical connection part is composed of an insulating material (C) surrounding a signal line (S3), such as a glass lead pin shown in
The optical control element is configured by incorporating an optical waveguide or a control electrode into a substrate formed of a substrate material having an electro-optic effect, such as lithium niobate, or a semiconductor material. In a case of using a high-frequency input signal such as a microwave, in order to achieve matching (velocity matching) of the propagation speed of the microwave and the propagation speed of light, devisal such as thinning the thickness of the substrate to 20 μm or less or forming the control electrode to be thick to several tens of μm or more is performed. Further, in order to lower the drive voltage of an input signal, narrowing the gap between a signal electrode and a ground electrode configuring the control electrode is also performed.
The characteristic impedance of the optical control element devised as described above is lower than 50Ω which is a conventional value, and shows a value in a range of about 20 to 40Ω. On the other hand, the input impedance of an input signal line (S4) which is disposed on the outside is conventionally 50Ω. For this reason, impedance mismatch occurs between the input impedance of the input signal line (S4) and the characteristic impedance of the optical control element. In order to solve this problem, it is necessary to provide a transmission line for impedance adjustment.
In the present invention, the transmission line for impedance adjustment is made by an electrical connection part such as a lead pin. For example, in the optical control element module of
In a case where the electrical connection part having characteristic impedance of about 35.4Ω is configured of a columnar glass lead pin as shown in
In a case where the impedance of the electrical connection part is 50Ω, the inner diameter of the outer sheath conductor (G) (the outer diameter of the insulating material) is about 1.5 mm.
That is, if the outer diameter of the center conductor (S3), the relative dielectric constant of the insulating material (C), and the thickness of the outer sheath conductor (G) are the same, the smaller the characteristic impedance becomes, the smaller the outer diameter of the glass lead pin becomes.
In other words, the outer diameter of the glass lead pin affects the housing size of the optical control element module, and therefore, by providing the transmission line for impedance adjustment in the electrical connection part, it is possible to reduce the housing size.
In the above example, it is possible to reduce the housing size by 0.52 mm which is the difference between the inner diameter of the outer sheath conductor (G) (the outer diameter of the insulating material), 0.98 mm, in a case where the characteristic impedance is about 35.4Ω, and the inner diameter, 1.5 mm, of the outer sheath conductor (G) in a case where the characteristic impedance is 50.
In a configuration in which the relay substrate is used as shown in
Also in such a configuration, the outer diameter of the glass lead pin can be reduced compared to a case where the characteristic impedance of the electrical connection part is 50Ω, and therefore, it is possible to reduce the housing size.
Further, as shown in
In the electrical connection part of
Also in such a configuration, the outer diameter of the glass lead pin can be reduced compared to a case where the characteristic impedance of the electrical connection part is 50Ω, and therefore, it is possible to reduce the housing size.
The truncated cone-shaped electrical connection part of
The wiring substrate is configured of a flexible printed circuit substrate, as shown in Japanese Laid-open Patent Publication No. 2014-195061 or Japanese Laid-open Patent Publication No. 2012-48121. Further, in the above description, the input impedance of the wiring substrate is set to 50Ω which is the same as that of the external drive circuit. However, it is also possible to add a configuration for impedance adjustment in the middle of the input signal line of the wiring substrate. Even in the case, it is preferable that the entire impedance adjustment including the characteristic impedance of the electrical connection part is performed.
As described above, according to the present invention, it is possible to provide an optical control element module in which it is also possible to realize the downsizing of the entire optical control element module while improving an electroreflection characteristic due to mismatch between the input impedance of an input signal and the characteristic impedance of an optical control element.
Number | Date | Country | Kind |
---|---|---|---|
2017-069243 | Mar 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8712195 | Sugiyama | Apr 2014 | B2 |
20180180908 | Katou | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
2012048121 | Mar 2012 | JP |
2014195061 | Oct 2014 | JP |
Number | Date | Country | |
---|---|---|---|
20180287274 A1 | Oct 2018 | US |